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Abstract

We consider the task of devising large-margin
based surrogate losses for the learning to rank
problem. In this learning to rank setting,
the traditional hinge loss for structured out-
puts faces two main challenges: (a) the su-
pervision consists of instances with multiple
training labels instead of a single label per
instance, and (b) the label space of the set of
all permutations of items is very large, and
less amenable to the usual dynamic program-
ming based methods. The most natural way
to deal with multiple labels leads, unfortu-
nately, to a non-convex surrogate. We ad-
dress this by first providing a general class of
convex perturbation based surrogates as an
extension of the large margin method. Our
experiments demonstrate that a simple sur-
rogate from this class performs better than
other candidate large margin proposals for
the learning to rank task.

1 Introduction

The task of ranking a set of instances by their rela-
tive relevance is of importance in many contemporary
problems including collaborative filtering, text min-
ing and document retrieval. We are interested in a
particular formulation of this problem, natural in in-
formation retrieval (IR), where the ranking is at the
resolution of a data item such as a query. Each query
has a list of documents, and the task is to rank these
documents in the order of relevance to the query. In
the training set, the documents for each query are typ-
ically represented as feature vectors derived from the
query-document pairs, and are annotated with rele-
vance scores indicating the relative preference of the
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document in the list for that query. Given any new
query, the goal is to rank its documents in an order
that best respects their relevance scores according to
some ranking evaluation measure. In this paper, we
address the task of learning to rank Liu (2009) where
we train a ranking model to fit the popular ranking
evaluation measure of Normalized Discounted Cumu-
lative Gain (NDCG) (Järvelin and Kekäläinen, 2000).
We note that while we focus on NDCG, our general ap-
proach can be extended to other evaluation measures
as well. Motivated by user studies, the NDCG evalua-
tion measure evaluates the ranking of the entire list of
documents by penalizing errors in higher ranked doc-
uments more strongly. While easy to evaluate, NDCG
is nonetheless a difficult measure to directly use for
training.

Surrogates; Large Margin. This discrepancy between
ease of evaluation and difficulty in training occurs even
in binary classification, with the zero-one loss. Con-
siderable advances have thus been made on surrogate
loss functions for binary classification which are more
amenable to convex optimization. For instance, an ex-
ponential loss leads to the method of boosting Fried-
man et al. (2000), a logistic log-likelihood loss leads
to the method of logistic regression, while a Hinge
loss leads to very popular Support Vector Machines
(SVMs) Hastie et al. (2001). In many cases, the con-
struction of such surrogates has been extended to clas-
sification in domains where the labels are more struc-
tured and complex. For the particular case of the hinge
loss, one of the most popular surrogate losses for bi-
nary classification, this extension to the case of struc-
tured outputs in general has been shown by Tsochan-
taridis et al. (2004). It is well known that the hinge loss
function is intimately connected to the notion of a large
margin. In binary classification, hinge loss evaluates to
zero if the predicted label is not just correct, but cor-
rect with a large margin. The generalization of hinge
loss to structured outputs preserves this intuition, but
in this case the margin also depends on the specific la-
bel being compared against the true label. The struc-
tured hinge loss encourages the classifier to achieve
larger margin of separation for labels that disagree
more with the correct label. The loss allows smaller
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margins in turn for labels with higher agreement with
the correct label in the underlying discrete/non-convex
loss. The central question we focus on in this paper
is whether the large margin approach can be used to
derive a surrogate for the NDCG ranking evaluation
metric.

Note that the broader question of deriving surrogates
for ranking evaluation metrics has attracted consider-
able attention (Qin et al., 2007; Cao et al., 2007; Xia
et al., 2008), motivated in part by successes of such
an approach in classification. Moreover, there have
been attempts to investigate large-margin approaches
specifically for ranking Chapelle et al. (2007), though
these suffer from some lacunae as we detail below.

Multiple Labels; Large Margin. The large margin sur-
rogate in Tsochantaridis et al. (2004) was proposed
for the general structured output case, but there is
a vital caveat to its applicability in the ranking case:
they make the assumption, natural in most settings,
that there is a single true label in any training ex-
ample. However, certain ambiguities arise when the
supervision consists of multiple labels. This has been
called the “learning with multiple labels” problem in
Jin and Ghahramani (2002): the feedback or supervi-
sion available in the training set does not identify a
unique correct label for each example. Instead, each
example has a set of labels associated with it. This
multiple label scenario, far from being just a theoreti-
cal curiosity, in fact, exactly captures the supervision
available in datasets for ranking. In these datasets,
each example consists of a query and a list of doc-
uments. Instead of a single permutation ranking the
set of documents, each document is labelled with a rel-
evance score from a finite set, say {1, 2, 3}. Since the
output space is the set of permutations or rankings,
multiple rankings are equally compatible with a given
vector of relevance scores. Imagine one of the simplest
cases: if one document has relevance 1 and the oth-
ers 0, all rankings that puts it on the top position are
equally good. The ambiguity issue which arises when
extending the large margin approach in such settings
(which we detail in the later sections) poses a chal-
lenge to be overcome if we are to replicate the suc-
cess of large margin methods to the setting of multiple
true labels in general, and in ranking in particular.
These difficulties in extending large margin methods
to the multiple true label case, and in particular to the
ranking setting, have surfaced in recent work Chapelle
et al. (2007). There, it was shown that arbitrarily
resolving these ambiguities does not solve the prob-
lem and we confirm this in our experiments. We note
that there has been quite a bit of work in the area
of multiple ambiguous labels among which only one
is true (Ambroise et al., 2001; Jin and Ghahramani,

2002; Vannoorenberghe and Smets, 2005; Hullermeier
and Beringer, 2006; Côme et al., 2008; Cour et al.,
2011). But most of the approaches, with the excep-
tion of Cour et al. (2011), are not based on convex
surrogate minimization. While Cour et al. (2011) do
propose a convex surrogate, it cannot scale to ranking
problems since it involves a sum over the ambiguous
labels.

Perturbation based Large Margin Approach. As we
show, the most natural way to deal with multiple la-
bels leads, unfortunately, to a non-convex surrogate.
One of the main contributions of this paper is to show
how the ambiguities can be resolved while still pre-
serving convexity of the derived surrogate. Towards
this, we first devise a “perturbation based approach”
to large margin methods, and then show how these
can be extended to the ranking case while obtaining
a convex surrogate. Experiments on LETOR datasets
shows that our proposed “Hinge” convex surrogate (a)
performs better than the other large margin proposals
for such a multiple label case, and (b) indeed com-
pares favourably with one of the state-of-the-art sur-
rogate loss functions in ranking. This shows that the
large margin approach can be successfully generalized
to optimize the non-convex ranking evaluation metric
NDCG. We note that our approach, in keeping with
the spirit of NDCG, is truly listwise: we do not reduce
the ranking problem to pairwise binary comparisons
or to pointwise regression on relevance scores. We also
note that the developments in this paper would be
independent interest even outside the context of rank-
ing: (a) a perturbation based large margin approach,
and (b) efficiently extending this revised large margin
approach to the multiple label setting.

2 Problem Setup

In the general setting of supervised learning with struc-
tured outputs, we have the space of inputs or features
X , and the space of structured outputs Y. We are
given a training set {Xi, Yi}

n
i=1, of input and output

pairs, and the goal is to learn a map h : X 7→ Y
such that h(x) maps an input x to the true label
y. For the specific case where h(x) belongs to the
class linear maps, we consider the set of functions,
h(x; w) = argmaxy∈Y wT Φ(x, y), which, given fea-
tures Φ(x, y) ∈ R

d, are indexed by weights w ∈ R
d.

Given some loss function ` : Y ×Y 7→ R that captures
the discrepancy or disagreement between these labels,
empirical risk minimization for the loss ` then entails
solving the following optimization problem:

min
w

n∑

i=1

`(h(Xi; w), Yi). (1)
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This optimization problem is typically intractable: the
objective is typically not convex, and usually not even
differentiable, in the weights w. The state of the art
supervised learning methods thus use surrogate objec-
tives instead.

Large Margin. A popular class of surrogates are
derived using the large margin approach which use
the following idea: the training error is zero when
wT Φ(X i, Y i) ≥ wT Φ(X i, y) for y 6= Yi, so that
the true labels have a higher score than the other
labels. We can strengthen this by requiring that
wT Φ(X i, Y i) ≥ wT Φ(X i, y)+`(Y i, y), for all y ∈ Y. It
is natural to allow for slackness in these constraints, so
that we allow wT Φ(X i, Y i) ≥ wT Φ(X i, y)+ `(Y i, y)−
ξi, for some ξi ≥ 0, and add a penalty that is linear in
these slack variables. This yields the structured SVM
formulation of Tsochantaridis et al. (2004) as below:

min
ξ

n∑

i=1

ξi

s.t. wT Φ(X i, Y i) ≥ wT Φ(X i, y) + `(Y i, y) − ξi, ∀y ∈ Y,

ξi ≥ 0, i = 1, . . . , n,

where we have elided the usual `2 regularization on the
weights.

Score Vectors. The hypothesis set of candidate maps
h : X 7→ Y above used the set of linear maps h(x; w) =
arg maxy∈Y wT Φ(x, y). It would be useful in the sequel
to generalize this in terms of real-valued score vectors
s ∈ R

d. Thus, we consider maps h : R
d 7→ Y that take

score vectors to labels in the label space, and which
use a discriminant function f : R

d × Y 7→ R, so that
h(s) ∈ arg maxy f(s, y). This discriminant function f
captures the compatibility between the score vector
and the labels, so that the map h given a score vector
assigns the label which is most compatibile to the score
vector.

The evaluation loss function ` : Y × Y 7→ R can be
naturally extended to allow score vectors instead of
labels, so that we have a loss function ` : R

d × Y,
where the first argument now takes score vectors in-
stead of labels, `(s, y) = `(h(s), y). We will overload
notation and use ` and ` interchangeably. The goal
in devising surrogate objectives is to obtain alterna-
tive loss functions l̃(s, y) that are convex and more
amenable to optimization. The large margin approach
of Tsochantaridis et al. (2004) in particular substitutes
the following objective in place of the loss `(h(s), Y ):

φ(s, Y ) = min
ξ

ξ

s.t. f(s, Y ) ≥ f(s, y) + `(y, Y ) − ξ,

ξ ≥ 0, ∀y ∈ Y,

This surrogate “hinge” loss function φ : R
d × Y 7→ R

can be rewritten as:

φ(s, Y ) = max
y∈Y

{`(y, Y ) + f(s, y) − f(s, Y )}.

2.1 Ranking

We are interested in the structured output setting of
ranking documents in response to queries. Specifi-
cally, each query has a list of documents, and the task
is to rank these documents in the order of relevance
to the query. In the training set, the documents for
each query are typically represented as feature vectors
derived from the query-document pairs, and are an-
notated with relevance values indicating the relative
preference of the document in the list for that query.
Given any new query, the goal is to rank its docu-
ments in an order that best respects their relevance
scores according to some ranking evaluation measure.

To simplify notation, we assume that the number of
documents for all queries is identically m. Let X̄ ⊆
R

d be the space of the feature vectors in which the
documents are represented (typically derived from the
query-document pairs) and R̄ ⊆ R be the space of the
relevance level each document receives. Thus for any
query, we have a list X = (X1, . . . , Xm) ∈ X := X̄m

of document feature vectors, and a corresponding list
R = (R1, . . . , Rm) ∈ R := R̄m of document relevance
vector. The dataset consists of n (Xi,Ri) pairs which
we assume to be drawn iid from some distribution over
X ×R.

Typical losses for the ranking care only about top
ranked documents, since this mirrors the satisfaction
or utility functions of typical users. Thus, even the
NDCG criterion is usually truncated at a particular
level k and `(y,R) depends only the first k items ac-
cording to the permutation y with the following defi-
nition:

`NDCG@k(y,R) = −
1

Zk(R)

k∑

j=1

G(Ry−1(j))

F (j)
. (2)

Here, F and G are arbitrary monotonically increas-
ing functions; usually, G(a) = 2a − 1, and F (a) =
log2(a+1). The normalization Zk(R) is the maximum
possible value (over y) of the sum, y−1 is the inverse
of permutation y (thus Ry−1(j) denotes the relevance
level of the jth ranked document in the order given by
y).

The goal in supervised learning to rank, is to learn a
ranking function h : X 7→ Y, where Y is the set of
all degree m permutations. Note however, instead of
being given a single permutation as the training label,
the supervision consists of a vector of relevance levels



Perturbation based Large Margin Approach for Ranking

R assigned to the documents. A relevance level vector
R however need not imply any single permutation in
Y, since the same relevance levels could be assigned to
multiple documents. This is common especially if m is
large and it is difficult to provide a full permutation as
the training label given the list of m documents given
a query. Even the loss function (2) thus has the form
` : Y × 2Y 7→ R. In this paper, we investigate how
to extend the large margin approach to this multiple
label setting.

2.2 Multiple Label Learning

In many settings like ranking above, the training data
points have more than one label given an input. In
this case, the large margin approach that hinges on
separating the true label from the rest of the label
suffers from an inherent ambiguity: there is no one
true label which can be separated from the rest.

Suppose Y is the set of training labels for some input.
Le et al. (2009) suggest the following natural exten-
sion.

φ(s,Y) = max
y∈Y

{`(y,Y) + f(s, y) − f(s, ỹ)} , (3)

where ỹ ∈ Y is one of the labels in the set of true
labels. One caveat with this formulation is that this
is not even a well-defined function since ỹ can take
any value in the true label set Y. Moreover, Chapelle
et al. (2007); Le et al. (2009) observed that in the con-
text of ranking (specifically on the Ohsumed dataset
in the LETOR package), this formulation had a vac-
uous optimal solution, specifically with linear scoring
functions the optimum yielded weights equal to zero.

Another natural alternative would be the following:

φ(s,Y) = max
y∈Y

{
`(y,Y) + f(s, y) − min

z∈Y

f(s, z)

}
.

(4)
This corresponds to requiring that all true labels be
sufficiently separated from the rest of the labels. This,
however is very conservative, especially in settings
where an output of some true label is typically suf-
ficient. For instance, consider ranking where we are
interested in the top k ranks, and there are m > k
documents that are highly and equally relevant. We
would then be interested in any permutation such that
k of these m documents occur in the top k ranks,
whereas the loss (4) would not penalize any permu-
tation only if all of the relevant documents are ranked
above the non-relevant documents. Thus, the vari-
ant (4) though convex typically performs poorly, par-
ticularly with noisy data where it is typically difficult
to train weights so that all relevant documents are
ranked earlier.

It would be much more natural to instead require that
only some true label be sufficiently separated from the
rest of the labels. This in turn corresponds to the
following loss:

φ(s,Y) = max
y∈Y

{
`(y,Y) + f(s, y) − max

z∈Y

f(s, z)

}
.

This however has the caveat that it is non-convex. Le
et al. (2009) provide a concave-convex (also called dif-
ference of convex or DC) procedure for solving such an
objective.

Besides the multiple true labels issue, point-wise max-
imum operation over all permutations is expensive be-
cause size of Y increases factorially in m. To solve
(3), Le et al. (2009) propose approximation techniques
using cutting plane methods (Tsochantaridis et al.,
2005).

3 Perturbation based Largin Margin

Approach

In this section, we outline two main characteristics of
large margin methods, and then proceed to generalize
those to devise a novel class of methods; which we
show is more amenable to the multiple label setting
detailed in the previous section.

The first characteristic of large margin methods is that
they allow a perturbation via slack variables in order
for the true label to have a higher score than the rest of
the labels. In particular, it allows a slack variable ξ >
0, such that if Y is the training label, then f(s, Y )+ξ ≥
f(s, y)+ `(y, Y ). We will be allowing a simpler notion
of perturbation: where we allow direct perturbations
δ ∈ R

m to the score vector so that the perturbed score
vector s + δ would satisfy the respective constraints.

The second characteristic of large margin methods is
that they use the notion of a large margin to quantify
the compatibility of a score vector s to the training
label Y . Here, we will be allowing a more general
compatibility constraint that s ∈ C (Y ), where C (Y ) is
specified by the class of methods, and is the set of score
vectors that are compatible with the training label Y .
In the case of large margin methods for instance, we
had C (Y ) = {s ∈ R

d : f(s, Y )+ξ ≥ f(s, y)+`(y, Y )}.
In the sequel we will use the notation s′ ; y to indicate
the constraints s′ ∈ C (y) that s′ is compatible with y.

We then define the following surrogate loss:

φ(s, r) = min
δ∈Rm

g(δ) (5)

s.t. δ � 0

s′ = s + δ

s′ ; r
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Here, g is an arbitrary mapping from R
m to R.

We first observe that this surrogate loss is convex un-
der natural conditions on g and ;.

Proposition 1. Consider the loss φ as defined in 5.
Suppose the constraint sets C (y) are convex for any
y ∈ Y, and g is convex in δ. We then have that the
loss φ is convex in its first argument.

Proof. We define h by

h(s, δ) =

{
g(δ) if (s, δ) satisfies the constraints of (5)
∞ otherwise.

If C (y) is convex and g is convex in δ, then h is jointly
convex in (s, δ). At the same time, φ is the minimum of
h over δ in nonempty convex set, and hence is convex
(Boyd and Vandenberghe, 2004, p.87).

Example: Multi-Class Classification. As an exam-
ple, we consider multi-class classification, and verify
that the usual hinge surrogate for multi-class classi-
fication (Crammer et al., 2001) is also a member of
the perturbation based surrogate family (5). Con-
sider the K-class classification task (K ≥ 2), where
the inputs Xi are drawn from a domain X ⊆ R

d

and Yi is an integer from the set {1, . . . , K}. Using
linear maps as in (Crammer et al., 2001), suppose
we have K weight vectors, {wj}j∈[K], one for each
class, and form a prediction for any input X using the
map h(X ;w) = argmaxk=1,...,K{wT

k X}. In multi-class
SVM, we learn these weights {wj}j∈[K] by solving the
following optimization problem:

min
w

1

2

K∑

k=1

‖wk‖
2
2 +

C

n

n∑

i=1

ξi (6)

s.t. wT
Yi

Xi + 1(Yi = k) − wT
k Xi ≥ 1 − ξi ∀i, k.

where w ∈ R
d×K is the concatenation of weight vec-

tors and C is the regularization parameter.

The SVM objective used score vectors s ∈ R
K formed

from a linear map (wT
1 Xi, . . . , w

T
KXi). Expressing the

SVM hinge loss in (6) in terms of these score vectors,
we get

φsvm(s, y) = min
ξ

ξ

s.t. sy ≥ sz + 1 − ξ, ∀z 6= y, z ∈ Y

ξ ≥ 0. (7)

Consider the following surrogate loss from the pertur-

bation family (5):

φclass(s, y) = min
δ∈RK

‖δ‖1 (8)

s.t. δ � 0

s′ = s + δ

s′y ≥ 1 + s′z∀z 6= y, z ∈ Y

Thus, using the loss in (8) for empirical risk minimiza-
tion with score vectors derived from linear maps would
yield:

min
w

1

2

K∑

k=1

‖wk‖
2
2 +

C

n

n∑

i=1

φclass(X
T
i w, Yi).

The following proposition shows that the loss in (8) is
equivalent to the SVM based loss (7)

Proposition 2. Suppose the surrogate losses φsvm and
φclass are defined as in (7) and (8) respectively. Then
for all score vectors s ∈ R

K , and labels y ∈ {1, . . . , K},

φsvm(s, y) = φclass(s, y).

Proof. Suppose δ∗ be the minimizer of optimization
problem (8). We argue that z 6= y, suppose that δ∗z =
0. To see this, note that if the constraint s′y ≥ 1+sz +
δ∗z , is satisfied for δz > 0, then it would be satisfied
for δz = 0 as well, but which would strictly lower the
objective ‖δ‖1. Therefore, δ∗z = 0 for all z 6= y, and
‖δ∗‖1 = |δ∗y |. The two objectives are then identical,
with |δ∗y | serving as the slack variable ξ in the multi-
class hinge loss.

Thus the hinge loss for multi-class classification task
can be seen to fall under the perturbation based family
of surrogate losses.

3.1 Perturbation based Large-Margin

Surrogates for Ranking

In this section, we will apply the perturbation based
large-margin machinery to derive surrogates for the
NDCG ranking loss. Similar to the multi-class SVM
case, if we set g(δ) to |δ|1 and the constraint set of
s′ ; r to include the usual large-margin constraints,
then (5) yields the same Hinge loss as the structured
SVM formulation of Tsochantaridis et al. (2004), and
which is intractable.

To address the multiple training label problem, we pro-
pose a novel member of the family from (5) instead.
First, we restrict the constraint set to the pairwise
constraints, which check the compatability of pairs of
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coordinates of the score vector s with respect to the rel-
evance vector R. Note however that we set the objec-
tive g(δ) in a listwise manner. In contrast to the multi-
classification task, where every δk had an equal contri-
bution (though this might not be the case for the corre-
sponding loss for cost-sensitive classification), in rank-
ing we have a discounted loss: the higher positions in
the ordering matter more. For example, suppose that
we have 100 documents to sort and R1 > · · · > R100.
Even if for some weight vector w ∈ R

d we have scores
so that s99 < s100, and because of which we δ99 > 0.
This is not as serious problem as the case of δ1 > 0
(error in the first position). Thus, in the sequel, we use
a weighted `1 norm for g(δ). Note that while we could
use an arbitrary “discounting” function that discounts
lower positions, we use a weighted `1 norm to make it
linearly proportional to the margin.

We are now ready to describe the perturbation based
surrogate for ranking as follows:

φrank(s,R) = min
δ∈Rm

〈ν, δ〉 (9)

s.t. δ � 0

s′ = s + δ

s′i ≥ ∆i,j + s′j , if Ri > Rj.

where ν and ∆i,j are constants depending on R.

With the score vector s arising from a linearly param-
eterized map with weights w as earlier, the estimation
of the weights via empirical loss minimization can be
formulated as

min
w

1

2
‖w‖2

2 +
C

n

n∑

i=1

φrank(wT Xi,Ri) (10)

Note that superscript i here indexes query id. For
each query i, Xi is the set of m document features,
Xi ∈ R

d×m and wT Xi will give a list of m scores with
linear weight w ∈ R

d.

As discussed above, extending traditional hinge sur-
rogates for ranking suffer from two issues: (i) non-
convexity and (ii) the large size of the label space of
permutations. Note that the surrogate derived from
the minimum perturbation approach is not only con-
vex but also tractable because the number of con-
straints for a single query is at most m2.

Comparison with Ranking SVM (Joachims, 2002). A
broad line of work Cao et al. (2007) has focused on
breaking the ranking problem down into pointwise,
pairwise and listwise problems. In the pointwise ap-
proach, the ranking problem is viewed as a regression
or classification problem of predicting the specific rel-
evance score for any document Xu and Li (2007). In
the pairwise approach on the other hand, the ranking

problem is reduced to the binary classification task of
predicting the more relevant document amongst pairs
of documents. The caveat with such pointwise and
pairwise approaches is that they are ill-suited to eval-
uation measures as NDCG which are listwise: that is
their evaluation is a function of the entire list of ranked
documents. Cao et al. (2007); Xia et al. (2008) in par-
ticular note that methods based on listwise loss func-
tions outperform their pointwise and pairwise counter-
parts.

The Ranking SVM however is an explicitly pairwise
surrogate. For instance, in the above example with
100 documents, suppose the scores satisfy s1 > . . . >
s96 > s98 > s99 > s100 > s97: where all documents
before 97− 100 are ranked (correctly), while these are
ranked last place (with misordering). However, the
pairwise loss would still incur a large penalty for the 3
misclassified pairs, irrespective of their locations. This
might hurt the learning performance drastically. On
the other hand, our surrogate in (9) is a listwise loss:
if νi is inversely proportional to the true location of
document i based on R, then the objective in (10) will
not suffer a large loss for this example.

4 Experiments

In this section, we report empirical results demon-
strating the performance of our proposed large-margin
ranking surrogate (10) (denoted as ‘Min.Perturb’ in
the plots). In all experiments, i-th element of ν is set
to mean{1/F (miny y(i)), . . . , 1/F (maxy y(i))}/Zk(R)
where y is an arbitrary permutation compatible
with R and y(i) the ranking of i-th document
by y. For example, suppose we have a list of
three document features X = (X1, X2, X3) and a
corresponding relevance vector of (1, 1, 0). Then,
mean{1/F (1), 1/F (2)}/Z3(R) for ν1 and ν2 and
1/(F (3)Z3(R)) for ν3. For ∆i,j , we test values from
the set {10−4, . . . , 10−1} on the validation fold to tune
the parameter.

As baselines, two other convex large margin surrogates
are compared against our proposed one: (i) Follow-
ing Le et al. (2009), we can randomly pick a permuta-
tion in y∗ to break ties in (3) (denoted as ‘Random’).
(ii) We can require that all true labels be sufficiently
separated from the rests as (4) (denoted as ‘MaxMax’).

For the regularization parameter C for all three
surrogates, we again use the cross-validation from{
10−5, 10−4, . . . , 100

}
to find the best single param-

eter for all 5 folds. To avoid confusion, please note
that in the earlier sections, we used losses which we
wanted to minimize, instead of gains. However, for re-
porting our results we adhere to reporting the NDCG
gain (as is the convention in IR). Thus, in these plots,
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Figure 1: NDCG@1–NDCG@5 results on LETOR small datasets, comparing our large-margin surrogate to the
alternative surrogates on LETOR.

higher NDCG values are better.

4.1 Synthetic Small Datasets

In the first experiments, we compare two surrogates
on the synthetic small datasets where we can exactly
solve even the optimization problem of (3). For the
training set, we randomly choose 5 documents for a
query from the LETOR datasets (they will be de-
tailed in the next subsection). For the validation and
test sets, all the documents are selected. To solve
optimization problems, we use CVX, a matlab pack-
age for specifying and solving convex programs (Grant
and Boyd, 2011). While all the parameters are tuned
for NDCG@5, Figure 1 reports NDCG@1 through
NDCG@5 results and Table 1 shows their training
times in seconds. Since solving optimization problem
(10) does not require iterating all possible permuta-
tions, training time is much smaller than other alterna-
tive large-margin surrogates. Nevertheless, proposed
surrogate is consistently better than or equal to alter-
natives.

Table 1: Training Time (in sec.)

DATASET Min.Perturb Random MaxMax

OHSUMED 8.6 150.8 3361.4
HP2003 77.6 535.7 25151
HP2004 45.5 162.4 8814.8
TD2003 15.3 38.2 932.9
TD2004 25.8 73.1 2435.4

4.2 LETOR Datasets

In the second set of experiments, we evaluate the surro-
gates on LETOR (Liu et al., 2007) v3 standard bench-
mark collections for learning to rank. These bench-
marks target four tasks over two collections: 2003-2004
TREC Web track Craswell and Hawking (2005) tasks
of (1) Homepage finding, (2) Named page finding, and
(3) Topic distillation on the .GOV collection (1.25 mil-
lion page 2002 crawl of the .gov domain), as well as
(4) biomedical search on the older OHSUMED col-
lection (350,000 documents, titles and abstracts with-
out full-text) Hersh et al. (1994). LETOR includes
a standard 5-fold partition of each dataset (3 train-
ing, 1 validation, and 1 test); our reported results re-
flect an average over the 5 test folds. Note that out
of 7 datasets, we only report the results on 5 exclud-
ing ‘Named page finding’ tasks where mostly only one
document for each query is relevant and all surrogates
perform comparable.

Since all queries in the LETOR datasets usually have
more than 100 documents, optimizing NDCG@k for
k ≥ 2 is computationally intractable. To solve this is-
sue, we use the cutting plane method which boils down
to iterating between finding argmax in (3) and solving
the optimization problem with selected subset of con-
straints, as proposed in Le et al. (2009). Here, it is not
trivial to solve (4) efficiently even with cutting plane
due to the double max operations in (4). Therefore,
in Figure 2, we just compare our surrogate, (3) with
randomly breaking ties and Ranking SVM (Joachims,
2002), pairwise large-margin surrogate for the ranking
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Figure 2: NDCG ranking accuracy achieved across five LETOR (Liu et al., 2007) datasets. Note that, to
maintain same y-axis intervals across the datasets, we intentionally exclude the results for ‘Random’ on HP2003
and HP2004 datasets where it performs really poorly (NDCG values are below 0.3).

task. Note that the results of Ranking SVM came from
LETOR web page and they are based on much more
fine-grained parameter tuning for C. Solving (3) with
random tie breaking performs terribly on 3 datasets
(HP2003, HP2004 and TD2003) out of 5. We guess it
is not only because of the approximation to solve the
optimization problem but also because of the multi-
ple true labels issue mentioned in section 2.2. On the
other hand, our proposed surrogate is uniformly either
better or comparable to the others.

Even though surrogates (3) and (4) usually cannot be
solved exactly for a general `, if we use −NDCG@1
for `, then ‘max’ operation in them can be replaced
with ‘

∑
’ and therefore we can solve it exactly with

reasonable number of constraints because only the top
document in the permutation decides the loss. Table 2
compares NDCG@1 values after applying this modifi-
cation to (3) and (4). Note that in this experiment,
parameter C for them is also selected from the cross-
validation targeting at NDCG@1.

Table 2: Optimizing NDCG@1

DATASET Min.Perturb Random MaxMax

OHSUMED 0.5734 0.5045 0.5841

HP2003 0.7400 0.7000 0.7400
HP2004 0.6400 0.6080 0.6267
TD2003 0.3200 0.2600 0.2200
TD2004 0.4133 0.4000 0.3467

Finally, we evaluate NDCG@10 of our surrogate
against ListNET Cao et al. (2007), one of the best
listwise rank algorithms listed in LETOR. Note that

values in the Table 3 are the relative improvements
on ListNET as a base and negative sign means that
ListNET performs better. For most datasets, two sur-
rogates perform comparably.

Table 3: Relative Improvements against ListNET(%),
NDCG@10

DATASET

OHSUMED 2.68
HP2003 -0.02
HP2004 5.72
TD2003 -4.97
TD2004 0.38

5 Conclusions

We studied perturbation based surrogates and showed
that existing hinge loss surrogates for multiclass and
structured output classification can be cast in this min-
imum perturbation framework. Finally, we derived a
convex surrogate in this class for the ranking problem.

For future work, we will investigate further refinement
of our methods with different settings of ν, ∆. We are
also interested in pursuing a principled way to tune
these constants for different evaluation metrics such
as ERR (Chapelle et al., 2009). More interesting work
would be to kernelize our large margin approach and
thereby learn non-linear functions. Since our surro-
gate performs comparable to the state-of-the-art meth-
ods, even without using kernels, we expect that we can
achieve greatly significant improvements, especially if
datasets are not linearly separable.
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