Program Completion in the Input Language of
GRINGO

AMELIA HARRISON, VLADIMIR LIFSCHITZ
DHANANJAY RAJU
University of Texas
(e-mail: ameliaj,vl,raju@cs.utexas.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We argue that turning a logic program into a set of completed definitions can be sometimes thought of as
the “reverse engineering” process of generating a set of conditions that could serve as a specification for it.
Accordingly, it may be useful to define completion for a large class of ASP programs and to automate the
process of generating and simplifying completion formulas. Examining the output produced by this kind
of software may help programmers to see more clearly what their program does, and to what degree its
behavior conforms with their expectations. As a step toward this goal, we propose in this paper a definition
of program completion for a large class of programs in the input language of the ASP grounder GRINGO,
and study its properties.

1 Introduction

In this paper we extend the definition of program completion (Clark 1978) to a large class of
programs in the input language of the ASP grounder GRINGO.1

This direction of work is motivated by the goal of extending formal methods for software ver-
ification to answer set programming. Turning a logic program into a set of completed definitions
can be sometimes thought of as the “reverse engineering” process of generating a set of condi-
tions that could serve as a specification for it. Consider, for instance, the condition “set r is the
union of sets p and q.” In the language of logic programming this definition of r is represented
by the pair of rules

\[
\begin{align*}
 r(X) & \leftarrow p(X), \\
 r(X) & \leftarrow q(X).
\end{align*}
\]

The corresponding completed definition

\[
\forall X (r(X) \leftrightarrow p(X) \lor q(X))
\]

is the usual definition of union in set theory. Turning program (1) into a completed definition
gives us a plausible specification that could have led to this program in the first place. The stable
model semantics of program (1) matches the completed definition, because the program is tight
(Fages 1994; Erdem and Lifschitz 2003).

It may be useful to define completion for a large class of ASP programs and to automate the

1 https://potassco.org
process of generating and simplifying completion formulas. (Simplifying is essential because “raw” completion rarely provides such a clean specification as in the example above.) Examining the output produced by this kind of software may help programmers to see more clearly what their program does, and to what degree its behavior conforms with their expectations. If the programming project started with a formal specification then they may be able to verify the correctness of the program relative to that specification by comparing the given specification with the “engineered specification” extracted from the program.

To define completion for GRINGO programs we should address three issues. First, GRINGO programs often include constraints and choice rules, which are not covered by Clark’s theory. Extending completion to these constructs has been discussed in the literature; see, for instance, (Ferraris et al. 2011, Section 6.1).

Second, we need to take into account the fact that in the language of GRINGO a ground term may denote a set of values, rather than a single value. For instance, the term 1..3 denotes the set \{1, 2, 3\}, and the condition \(N = 1..3\) in the body of a rule expresses that \(N\) is an element of that set. In standard mathematical notation, this condition would be expressed using the set membership symbol rather than equality. The syntax of GRINGO allows us to write also \(M..M+1 = N..N+1\), which is understood as \(M\) and \(N\) are integers, and \(\{M, M+1\} \cap \{N, N+1\} \neq \emptyset\).

Third, the semantics of aggregate expressions in the language of GRINGO depends on the distinction between local and global variables. This is similar to the distinction between bound and free variables familiar from first-order logic, except that the definition of a local variable does not refer to quantifiers. The expression

\[
\text{sum}\{M \times N : p(M, N)\}
\]

in the body of a rule\(^2\) may correspond to any of the expressions

\[
\sum_{M,N:p(M,N)} M \times N, \quad \sum_{M:p(M,N)} M \times N, \quad \sum_{N:p(M,N)} M \times N
\]

depending on where \(M\) and \(N\) occur in other parts of the rule. Our way of translating aggregate expressions takes into account this feature. Otherwise it is similar to the approach proposed by Ferraris and Lifschitz (2010), which is closely related to the use of generalized quantifiers by Lee and Meng (2009, 2012).

We start by discussing a class of programs that do not contain aggregate expressions. Sections 2 and 3 define a language of programs and a language of formulas—the source and the target of the completion operator. Section 4 describes the process of representing rules by formulas, which is used in the definition of completion in Section 5. We discuss tight programs in Section 6 and give an example of calculating an engineered specification in Section 7. Incorporating aggregate expressions is described in Section 8. The definition of a stable model for the class of programs defined in Section 2 is given in Appendix A, and proofs of theorems in Appendix B.

\(^2\) We use here an “abstract” syntax, which disregards some details related to writing rules as strings of ASCII characters (Gebser et al. 2015, Section 1). In an actual GRINGO program this expression would be written as \#sum\{M*N : p(M, N)\}.
2 Programs

We assume that four disjoint sets of symbols are selected: numerals; symbolic constants; variables; and operation names of various arities. We assume that these sets do not contain the interval symbol

the relation symbols

= ≠ < > ≤ ≥

and the symbols

inf sup not ∧ ∨ ←

, ; : () { }

∈ ¬ ∧ ∨ → ↔ ∀ ∃

We assume that a 1–1 correspondence between the set of numerals and the set \mathbb{Z} of integers is chosen. For every integer n, the corresponding numeral will be denoted by \overline{n}. We will identify a numeral with the corresponding integer when this does not lead to confusion.

We assume that for every operation name op, a function \overline{op} from a subset of \mathbb{Z}^n to \mathbb{Z} is chosen, where n is the arity of op. For instance, we can choose plus as a binary operation name, define $\overline{\text{plus}}$ as the addition of integers, and use $t_1 + t_2$ as shorthand for $\overline{\text{plus}}(t_1, t_2)$.

We assume a total order on precomputed terms such that $\overline{\text{inf}}$ is its least element, $\overline{\text{sup}}$ is its greatest element, and, for any integers m and n, $m \leq n$ iff $m \leq n$.

Terms are defined recursively, as follows:

- numerals, symbolic constants, variables, and the symbols $\overline{\text{inf}}$ and $\overline{\text{sup}}$ are terms,
- if f is a symbolic constant and t is a non-empty tuple of terms (separated by commas) then $f(t)$ is a term,
- if op is an n-ary operation name and t is an n-tuple of terms then $op(t)$ is a term,
- if t_1 and t_2 are terms then $(t_1..t_2)$ is a term.

Atoms are expressions of the form $p(t)$, where p is a symbolic constant and t is tuple of terms, possibly empty. An atom of the form $p()$ will be written as p.

Literals are atoms (positive literals) and atoms preceded by $\overline{\text{not}}$ (negative literals).

A comparison is an expression of the form $(t_1 \prec t_2)$ where t_1, t_2 are terms and \prec is a relation symbol.

A choice expression is an expression of the form $\{A\}$ where A is an atom.

A rule is an expression of the form

$$\text{Head} \leftarrow \text{Body}$$

(2)

where

- Body is a conjunction of literals and comparisons, and
- Head is either an atom (then we say that (2) is a basic rule), or a choice expression (then (2) is a choice rule), or empty (then (2) is a constraint).

If the body of a basic rule or choice rule is empty then the arrow will be dropped.

A program is a set of rules.

A term, or another syntactic expression, is ground if it does not contain variables. A ground
term is precomputed if it contains neither operation names nor the interval symbol. An interpretation is a set of atoms of the form \(p(t) \) where \(t \) is a tuple of precomputed terms.

According to the semantics of terms defined in Section A.1, every ground term \(t \) denotes a finite set \([t]\) of precomputed terms, which are called the values of \(t \). For instance,

\[
[3] = \{3\}, \ [1..3] = \{1, 2, 3\}, \ [abc + 1] = \emptyset
\]

if \(abc \) is a symbolic constant.

Every program denotes a set of interpretations, which are called its stable models (Appendix A).

3 Formulas

The language defined in this section is essentially a first-order language with variables for precomputed terms.

An argument is a term that contains neither operation names nor the interval symbol. Formulas are defined recursively:

(a) if \(p \) is a symbolic constant and \(\text{arg} \) is a tuple of arguments then \(p(\text{arg}) \) is a formula,
(b) if \(\text{arg}_1 \) and \(\text{arg}_2 \) are arguments and \(\prec \) is a relation symbol then \((\text{arg}_1 \prec \text{arg}_2) \) is a formula,
(c) if \(\text{arg} \) is an argument and \(t \) is a term then \(\text{arg} \in t \) is a formula,
(d) \(\top \) ("true") and \(\bot \) ("false") are formulas,
(e) if \(F \) is a formula then \(\neg F \) is a formula,
(f) if \(F \) and \(G \) are formulas and \(\odot \) is one of the symbols \(\land, \lor, \rightarrow, \leftrightarrow \) then \((F \odot G) \) is a formula,
(g) if \(F \) is a formula and \(X \) is a variable then \(\forall X F \) and \(\exists X F \) are formulas.

We will drop parentheses in formulas when it does not lead to confusion. If \(\text{arg}_1, \ldots, \text{arg}_n \) is a tuple of arguments and \(t_1, \ldots, t_n \) is a tuple of terms, then

\[
\text{arg}_1, \ldots, \text{arg}_n \in t_1, \ldots, t_n
\]

stands for the formula

\[
\bigwedge_{1 \leq i \leq n} \text{arg}_i \in t_i.
\]

Note that a term that is not an argument can occur in a formula in only one position—"to the right of the \(\in \) symbol. For example, \(N \in 1..3 \) and \(N \in M+1 \) are formulas, but \(N = 1..3 \) and \(N = M+1 \) are not. There reason why we do not allow \(M+1 \) in equalities is that substituting a precomputed terms for \(M \) in this expression (for instance, \(abc \)) may give a term that has no values. This can be expressed by the formula \(\neg \exists X (X \in abc+1) \).

Free and bound occurrences of variables, closed formulas, and the universal closure of a formula are defined as usual in first-order logic.

If \(F \) is a formula, \(X \) is a variable, and \(r \) is a precomputed term, then \(F^X_r \) stands for the formula obtained from \(F \) by substituting \(r \) for all free occurrences of \(X \).

The truth value \(F^\mathcal{I} \), assigned by an interpretation \(\mathcal{I} \) to a closed formula \(F \), is defined as follows:

- \(p(\text{arg})^\mathcal{I} \) is \(\text{t} \) if \(p(\text{arg}) \in \mathcal{I} \),
- \((\text{arg}_1 \prec \text{arg}_2)^\mathcal{I} \) is \(\text{t} \) if \(\text{arg}_1 \prec \text{arg}_2 \),
- \((\text{arg} \in t)^\mathcal{I} \) is \(\text{t} \) if \(\text{arg} \in [t] \),
- if \(F \) is \(\top \) or \(\bot \), or is formed using a propositional connective, then its truth value is determined by the standard truth tables,
Program Completion in GRINGO

- $(\forall XF)^I$ is t if, for every precomputed term r, $(F^X)^I$ is t.
- $(\exists XF)^I$ is t if, for some precomputed term r, $(F^X)^I$ is t.

We say that an interpretation I satisfies a closed formula F if $F^I = t$.

For any argument arg and any ground term t, $arg \in t$ is equivalent to $\bigwedge_{r \in \{t\}} (arg = r)$.

This is immediate from the definition of satisfaction.

For example, for any integers m and n, $arg \in m..n$ is equivalent to $\bigwedge_{i=m}^n (arg = i)$.

- $(\forall XF)^I$ is t if, for every precomputed term r, $(F^X)^I$ is t.
- $(\exists XF)^I$ is t if, for some precomputed term r, $(F^X)^I$ is t.

We say that an interpretation I satisfies a closed formula F if $F^I = t$.

For example, the interpretation $\{ p(2), p(3), p(4) \}$ satisfies the formula

$$\exists N \, (p(N) \land N \in 1..3).$$

Indeed, it satisfies $p(3)$, because it includes $p(3)$; it also satisfies $3 \in 1..3$, because $[1..3]$ is

$$\{1, 2, 3\},$$

and 3 is an element of this set. Consequently it satisfies the conjunction $p(3) \land 3 \in 1..3$.

A formula is universally valid if its universal closure is satisfied by all interpretations. A formula F is equivalent to a formula G if $F \leftrightarrow G$ is universally valid. Since our definition of satisfaction treats propositional connectives, quantifiers, and equality in the same way as the standard definition of satisfaction applied to the domain of precomputed terms, all equivalent transformations sanctioned by classical first-order logic can be used in this setting as well. The following additional observations about equivalence will be useful.

Observation 1. For any argument arg and any ground term t, $arg \in t$ is equivalent to $\bigwedge_{r \in \{t\}} (arg = r)$.

This is immediate from the definition of satisfaction.

For example, for any integers m and n, $arg \in m..n$ is equivalent to $\bigwedge_{i=m}^n (arg = i)$.

Observation 2. For any arguments arg_1 and arg_2, $arg_1 \in arg_2$ is equivalent to $arg_1 = arg_2$.

It is sufficient to check this claim for the case when arg_1, arg_2 do not contain variables. In this case, it follows from the fact that $[arg_2]$ is the singleton $\{arg_2\}$.

For example, $X \in Y$ is equivalent to $X = Y$.

This is immediate from the definition of satisfaction.

4 Representing Rules by Formulas

In this section we define a syntactic transformation ϕ that turns rules and their subexpressions into formulas—their formula representations.

Formula representations of literals and comparisons are defined as follows:

- $\phi(p(t))$ is $\exists X(X \in t \land p(X))$,
- $\phi(\neg p(t))$ is $\exists X(X \in t \land \neg p(X))$,
- $\phi(t_1 \prec t_2)$ is $\exists X_1 X_2 (X_1 \in t_1 \land X_2 \in t_2 \land X_1 \prec X_2)$;

here X is a tuple of new variables of the same length as t, and X_1, X_2 are new variables.

For example, the transformation ϕ turns $p(N)$ into $\exists X(X = N \land p(X))$; this formula is equivalent to $\exists X(X = N \land p(X))$, and consequently to $p(N)$. The formula representation of $p(1..N)$ is $\exists X(X \in 1..N \land p(X))$. The representation of $N = 1..3$ is

$$\exists X_1 X_2 (X_1 \in N \land X_2 \in 1..3 \land X_1 = X_2);$$

this formula is equivalent to $N \in 1..3$, and consequently to $N = 1 \lor N = 2 \lor N = 3$.

If each of the expressions C_1, \ldots, C_k is a literal or a comparison then $\phi(C_1 \land \cdots \land C_k)$ stands for $\phi C_1 \land \cdots \land \phi C_k$.

The formula representation of a basic rule

$$p(t) \leftarrow \text{Body}$$

(3)
is defined as the implication

\[V \in t \land \phi(Body) \rightarrow p(V) , \]

(4)

where \(V \) is a tuple of new variables of the same length as \(t \). For example, the formula representation of the rule

\[q(N+1) \leftarrow p(N) \land N = 1..3 \]

(5)

is

\[V \in N+1 \land \phi p(N) \land \phi (N = 1..3) \rightarrow q(V) ; \]

after applying equivalent transformations to the antecedent, this formula becomes

\[V \in N+1 \land p(N) \land N \in 1..3 \rightarrow q(V). \]

The formula representation of a choice rule

\[\{ p(t) \} \leftarrow Body \]

(6)

is defined as the (universally valid) formula

\[V \in t \land \phi(Body) \land p(V) \rightarrow p(V) , \]

(7)

where \(V \) is a tuple of new variables of the same length as \(t \). For example, the formula representation of the rule

\[\{ p(1..3) \} \]

(8)

is \(V \in 1..3 \land p(V) \rightarrow p(V) \).

The formula representation of a constraint \(\leftarrow Body \) is the formula

\[\neg \phi(Body). \]

(9)

5 Completion

A *predicate symbol* is a pair \(p/n \), where \(p \) is a symbolic constant and \(n \) is a nonnegative integer. The *definition* of a predicate symbol \(p/n \) in a program \(\Gamma \) consists of

- the basic rules of \(\Gamma \) with the head of the form \(p(t_1, \ldots, t_n) \), and
- the choice rules of \(\Gamma \) with the head of the form \(\{ p(t_1, \ldots, t_n) \} \).

It is clear that any program is the union of the definitions of several predicate symbols and a set of constraints.

If the definition of \(p/n \) in a program \(\Gamma \) is \(\{ R_1, \ldots, R_k \} \) then the each of the formulas \(\phi R_i \) has the form

\[F_i \rightarrow p(V) , \]

(10)

where \(V \) is a tuple of distinct variables. We will assume that this tuple is chosen in the same way for all \(i \). The *completed definition* of \(p/n \) in \(\Gamma \) is the formula

\[\forall V \left(p(V) \leftrightarrow \bigvee_{i=1}^{k} \exists U_i F_i \right) , \]

(11)

where \(U_i \) is the list of all free variables of the formula \(F_i \) that do not belong to \(V \). (Observe that \(U_i \) is the list of all global variables in rule \(R_i \).)
For example, if the definition of $q/1$ in Γ is (5) then the completed definition of $q/1$ is equivalent to

$$\forall V(q(V) \leftrightarrow \exists N(V \in N+1 \land p(N) \land N \in 1..3)).$$

This formula can be further rewritten as

$$\forall V(q(V) \leftrightarrow (V = 2 \land p(1)) \lor (V = 3 \land p(2)) \lor (V = 4 \land p(3))).$$

If the definition of $p/1$ in Γ is (8) then the completed definition of $p/1$ is

$$\forall V(p(V) \leftrightarrow V \in 1..3 \land p(V)).$$

This formula is equivalent to

$$\forall V(p(V) \rightarrow V \in 1..3)$$

and can be further rewritten as

$$\forall V(p(V) \rightarrow V = 1 \lor V = 2 \lor V = 3).$$

About a program or another syntactic expression we say that a predicate symbol p/n occurs in it if it contains an atom of the form $p(t_1, \ldots, t_n)$. The completion of a finite program Γ consists of

- the completed definitions of all predicate symbols occurring in Γ, and
- the universal closures of the formula representations of all constraints in Γ.

The definition of completion matches the stable model semantics in the following sense:

Theorem 1

Every stable model of a finite program satisfies its completion.

The proof of this theorem (for an extended language that includes aggregates) is given in Appendix B. In the next section we define a class of programs for which the converse of Theorem 1 can be proved.

6 Tight Programs

For any program Γ, by G_Γ we denote the directed graph that has the predicate symbols occurring in Γ as its vertices, and has an edge from q/m to p/n if Γ includes a rule R such that

(i) q/m occurs in the head of R, and
(ii) p/n occurs in a positive literal in the body of R.

If graph G_Γ is acyclic then we will say that program Γ is **tight**.

Consider, for instance, the program $\Gamma_{r,n}$ (r and n are positive integers) that consists of the rules

$$\{in(1..n, 1..r)\}, \quad \text{(12)}$$

$$\text{covered}(I) \leftarrow in(I,S), \quad \text{(13)}$$

$$I = 1..n \land \neg \text{covered}(I), \quad \text{(14)}$$

$$\leftarrow in(I,S) \land in(J,S) \land in(I+J,S). \quad \text{(15)}$$

(The stable models of this program represent collections of r sum-free sets covering $\{1, \ldots, n\}$;
Harrison, Lifschitz, and Raju see http://mathworld.wolfram.com/SchurNumber.html. The graph $G_{r,n}$ has one edge, from $\text{covered}/1$ to $\text{in}/2$, so that this program is tight.

The vocabulary of a program Γ is the set of atoms $p(r)$ such that r is a tuple of n precomputed terms, and p/n occurs in Γ. For other syntactic expressions the vocabulary is defined in the same way.

Theorem 2

For any tight finite program Γ, an interpretation \mathcal{I} is a stable model of Γ iff \mathcal{I} is contained in the vocabulary of Γ and satisfies the completion of Γ.

The proof of the theorem, for programs that may contain aggregates, is given in Appendix B. The theorem shows, for instance, that the stable models of $\Gamma_{r,n}$ can be characterized as the subsets of its vocabulary that satisfy its completion.

7 Example

We will now calculate and simplify the completion of $\Gamma_{r,n}$. Consider first the formula representation of rule (12). It can be written as

$$\bigwedge_{i=1}^{n} V_i = i \land \bigvee_{s=1}^{r} V_2 = s \land \text{in}(V_1, V_2) \to \text{in}(V_1, V_2).$$

It follows that the completed definition of $\text{in}/2$ is

$$\forall V_1 V_2 \left(\text{in}(V_1, V_2) \leftrightarrow \left(\bigwedge_{i=1}^{n} V_i = i \land \bigvee_{s=1}^{r} V_2 = s \land \text{in}(V_1, V_2) \right) \right),$$

which is equivalent to

$$\forall V_1 V_2 \left(\text{in}(V_1, V_2) \to \left(\bigwedge_{i=1}^{n} V_i = i \land \bigvee_{s=1}^{r} V_2 = s \right) \right).$$ \(16\)

The formula representation of rule (13) can be written as

$$V = I \land \text{in}(I, S) \to \text{covered}(V).$$

It follows that the completed definition of $\text{covered}/1$ is

$$\forall V (\text{covered}(V) \leftrightarrow \exists S (V = I \land \text{in}(I, S))),$$

which is equivalent to

$$\forall V (\text{covered}(V) \leftrightarrow \exists S \text{in}(V, S)).$$ \(17\)

The remaining two rules of the program are constraints. The universal closure of the formula representation of (14) is equivalent to

$$\forall I \neg \left(\bigvee_{i=1}^{n} I = i \land \neg \text{covered}(I) \right),$$

and it can be further rewritten as

$$\bigwedge_{i=1}^{n} \text{covered}(i).$$ \(18\)
Finally, the universal closure of the formula representation of constraint (15) can be written as
\[\neg \exists IJS(\text{in}(I,S) \land \text{in}(J,S) \land \exists X (X \in I+J \land \text{in}(X,S))). \]

Condition (16) shows that the quantifiers over \(I \) and \(J \) can be replaced by finite disjunctions:
\[\neg \bigvee_{i=1}^{n} \bigvee_{j=1}^{n} \exists S(\text{in}(i,S) \land \text{in}(j,S) \land \exists X (X \in i+j \land \text{in}(X,S))). \]

This is equivalent to
\[\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{n} \neg \exists S(\text{in}(i,S) \land \text{in}(j,S) \land \text{in}(i+j,S)). \] (19)

We showed that the completion of program \(\Gamma_{r,n} \)—its “engineered specification”—is equivalent to the conjunction of formulas (16)–(19).

8 Incorporating Aggregates

8.1 Programs with Aggregates

In addition to the four sets of symbols mentioned at the beginning of Section 2, we assume now that a set of aggregate names is selected, and for every aggregate name \(\alpha \) a function \(\hat{\alpha} \) is chosen that maps every set of non-empty tuples of precomputed terms to a precomputed term. Examples:

- aggregate name \(\text{count} \); \(\hat{\text{count}}(T) \) is defined as the cardinality of \(T \) if \(T \) is finite, and \(\text{sup} \) otherwise;
- aggregate name \(\text{sum} \); \(\hat{\text{sum}}(T) \) is the sum of the weights of all tuples in \(T \) if \(T \) contains finitely many tuples with non-zero weights, and 0 otherwise.

(The weight of a tuple \(t \) of precomputed terms is the first member of \(t \) if it is a numeral, and 0 otherwise.)

An aggregate expression is an expression of the form
\[\alpha \{ t : C \} \prec s \] (20)
where \(\alpha \) is an aggregate name, \(t \) is a non-empty tuple of terms, \(C \) is a conjunction of literals and comparisons (in the case when \(C \) is empty the preceding colon can be dropped), \(\prec \) is a relation symbol, and \(s \) is a term.

In the definition of a rule, the body is now allowed to have, among its conjunctive terms, not only literals and comparisons, but also aggregate expressions.

A variable \(V \) occurring in a rule \(R \) is local if every occurrence of \(V \) in \(R \) belongs to the left-hand side \(\alpha \{ t : C \} \) of one of the aggregate expressions (20) in its body, and global otherwise. For instance, in the rule
\[q(N) \leftarrow \text{sum}\{K^2 : p(K)\} = N \] (21)
\(K \) is local and \(N \) is global.

8.2 Formulas with Aggregates

The definitions of an argument and a formula in Section 3 are replaced now by a mutually recursive definition of both concepts. It includes clauses (a)–(g) from the old definition of a formula and three additional clauses:
(h) numerals, symbolic constants, variables, and the symbols \(inf\) and \(sup\) are arguments;

(i) if \(f\) is a symbolic constant and \(\arg\) is a non-empty tuple of arguments then \(f(\arg)\) is an argument;

(j) if \(\alpha\) is an aggregate name, \(X\) is a non-empty tuple of distinct variables, and \(F\) is a formula, then \(\alpha\{X\mid F\}\) is an argument.

Clause (j) is what makes the new definition more general than the definitions from Section 3.

In this more general setting, the distinction between free and bound occurrences of variables applies not only to formulas, but also to arguments. An occurrence of a variable \(X\) in an argument or in a formula is bound if it belongs to a subformula of the form \(\forall X F\) or \(\exists X F\), or if it belongs to a subargument \(\alpha\{X\mid F\}\) such that \(X\) is a member of the tuple \(X\). For example, in the argument

\[
\text{sum}\{X \mid \exists Y p(X, Y, Z)\}
\]

\(X\) and \(Y\) are bound, and \(Z\) is free. An argument or a formula is closed if all occurrences of variables in it are bound.

The substitution notation will be now applied not only to formulas, but also to arguments: \(\arg^X\) is the argument obtained from an argument \(\arg\) by substituting a precomputed term \(r\) for all free occurrences of a variable \(X\). For every interpretation \(\mathcal{J}\), the truth value \(F^\mathcal{J}\) that it assigns to a closed formula \(F\), and the precomputed term \(\arg^\mathcal{J}\) that it assigns to a closed argument \(\arg^\mathcal{J}\), are described by a joint recursive definition:

\[
\begin{align*}
\bullet & \quad p(\arg_1, \ldots, \arg_k)^\mathcal{J} = t \text{ if } p((\arg_1)^\mathcal{J}, \ldots, (\arg_k)^\mathcal{J}) \in \mathcal{J}, \\
\bullet & \quad (\arg_1 \prec \arg_2)^\mathcal{J} = t \text{ if } (\arg_1)^\mathcal{J} \prec (\arg_2)^\mathcal{J}, \\
\bullet & \quad (\arg \in t)^\mathcal{J} = t \text{ if } \arg^\mathcal{J} \in [t], \\
\bullet & \quad (\forall X F)^\mathcal{J} = t \text{ if, for every precomputed term } r, (F^X)^\mathcal{J} = t; \\
\bullet & \quad (\exists X F)^\mathcal{J} = t \text{ if, for some precomputed term } r, (F^X)^\mathcal{J} = t; \\
\bullet & \quad \text{if } \arg \text{ is a numeral, or a symbolic constant, or } \inf, \text{ or } \sup, \text{ then } \arg^\mathcal{J} = \arg; \\
\bullet & \quad f((\arg_1, \ldots, \arg_k)^\mathcal{J}) = f((\arg_1)^\mathcal{J}, \ldots, (\arg_k)^\mathcal{J}), \\
\bullet & \quad \alpha\{X_1, \ldots, X_k\mid F\}^\mathcal{J} = \tilde{\alpha}(T), \text{ where } T \text{ is the set of all tuples } r_1, \ldots, r_k \text{ of precomputed terms such that } (F^{X_1\ldots X_k})^\mathcal{J} \text{ is } t.
\end{align*}
\]

Since an argument containing aggregate names is not a term, in this more general setting the statement of Observation 2 (Section 3) has to be modified:

Observation 2'. For any arguments \(\arg_1\) and \(\arg_2\) such that \(\arg_2\) does not contain aggregate names, \(\arg_1 \in \arg_2\) is equivalent to \(\arg_1 = \arg_2\).

8.3 Completion and Tightness in the Presence of Aggregates

How do we turn an aggregate expression (20) into a formula? It depends on how we classify the variables occurring in this expression into local and global. For this reason, instead of extending the definition of \(\phi\) from Section 4 to aggregate expressions, we will define the transformations

3 This notation can be ambiguous, because some expressions can be viewed both as formulas and as arguments. But its meaning will be always clear from the context.
\(\phi^X \), where \(X \) is a list (possibly empty) of distinct variables—those that we treat as local. The result of applying \(\phi^X \) to an aggregate expression (20) is the formula
\[
\exists Y (\alpha(Z) \land \exists X(Z \in t \land \phi C)) \prec Y \land Y \in \delta),
\]
where \(Z \) is a tuple of new variables of the same length as \(t \), and \(Y \) is a new variable.

Consider, for instance, the result of applying the transformation \(\phi^K \) (“treat \(K \) as local”) to the aggregate expression in the body of rule (21). It can be written as
\[
\exists Y (\text{sum} \lbrace Z \mid \exists K(Z \in K^2 \land p(K)) \rbrace = Y \land Y = N),
\]
which is equivalent to
\[
\text{sum} \lbrace Z \mid \exists K(Z \in K^2 \land p(K)) \rbrace = N.
\]

In application to literals and comparisons, \(\phi^X \) has the same meaning as \(\phi \). If each of the expressions \(C_1, \ldots, C_k \) is a literal, a comparison, or an aggregate expression, then \(\phi^X(C_1 \land \cdots \land C_k) \) stands for \(\phi^X(C_1 \land \cdots \land \phi^X(C_k) \).

Now we are ready to state how the definitions (4), (7), and (9) of formula representations of rules are modified in the presence of aggregates. In all three definitions, we replace \(\phi(\text{Body}) \) by \(\phi^X(\text{Body}) \), where \(X \) is the list of local variables of the rule. For instance, the formula representation of rule (21) can be written as
\[
V = N \land \text{sum} \lbrace Z \mid \exists K(Z \in K^2 \land p(K)) \rbrace = N \rightarrow q(V).
\]

All definitions from Section 5, including the definition of the completion of a finite program, remain the same. In the definition of the graph \(G_\Gamma \) (Section 6), clause (ii) is restated as follows:
\[
(\text{ii}) \quad p/n \text{ occurs in a positive literal or in an aggregate expression in the body of } R.
\]

For example, if \(\Gamma \) is the one-rule program (21) then \(G_\Gamma \) has an edge from \(q/1 \) to \(p/1 \).

8.4 Example: 8-Queens

The following program with aggregates encodes a solution to the problem of how to place 8 queens on an \(8 \times 8 \) so that no two queens attack each other.

\[
\text{row}(1..8), \quad (22)
\]
\[
\text{col}(1..8), \quad (23)
\]
\[
\{\text{queen}(I,J)\} \leftarrow \text{col}(I) \land \text{row}(J), \quad (24)
\]
\[
\leftarrow \text{count}\{\text{queen}(I,J) : \text{queen}(I,J) \land \text{col}(I) \land \text{row}(J)\} > 8, \quad (25)
\]
\[
\leftarrow \text{count}\{\text{queen}(I,J) : \text{queen}(I,J) \land \text{col}(I) \land \text{row}(J)\} < 8 \quad (26)
\]
\[
\leftarrow \text{queen}(I,J) \land \text{queen}(I,JJ) \land J \neq JJ, \quad (27)
\]
\[
\leftarrow \text{queen}(I,J) \land \text{queen}(II,JJ) \land I \neq II, \quad (28)
\]
\[
\leftarrow \text{queen}(I,J) \land \text{queen}(II,JJ) \land I \neq II \land |I - II| = |J - JJ|. \quad (29)
\]

The formula representation of rule (22) is
\[
V \in 1..8 \rightarrow \text{row}(V),
\]
so that the completed definition of \(\text{row}/1 \) is
\[
\forall V(\text{row}(V) \leftrightarrow V \in 1..8),
\]
or, equivalently,

\[\forall V (row(V) \iff V = 1 \lor \cdots \lor V = 8). \]

(30)

Similarly, the completed definition of \(col/1 \) is

\[\forall V (col(V) \iff V = 1 \lor \cdots \lor V = 8). \]

(31)

The formula representation of (24) is

\[V_1 \in I \land V_2 \in J \land \exists W (W \in I \land col(W)) \land \exists W (W \in J \land row(W)) \land queen(V_1, V_2) \rightarrow queen(V_1, V_2), \]

or, after simplifying the antecedent,

\[V_1 = I \land V_2 = J \land col(I) \land row(J) \land queen(V_1, V_2) \rightarrow queen(V_1, V_2). \]

Consequently the completed definition of \(queen/2 \) is

\[\forall V_1 V_2 (queen(V_1, V_2) \iff \exists JJ (V_1 = I \land V_2 = J \land col(I) \land row(J) \land queen(V_1, V_2))). \]

This formula is equivalent to

\[\forall V_1 V_2 (queen(V_1, V_2) \leftrightarrow col(V_1) \land row(V_2) \land queen(V_1, V_2)) \]

and consequently to

\[\forall V_1 V_2 (queen(V_1, V_2) \rightarrow col(V_1) \land row(V_2)). \]

(32)

Variables \(I \) and \(J \) are local in (25). Consequently the formula representation of constraint (25) is

\[\exists W (\text{count}\{V \mid \exists JJ (V = queen(I, J) \land col(I) \land row(J))\} \land W_1 W_2 (W_1 \in I \land W_2 \in J \land queen(W_1, W_2))) \land W_1 (W_1 \in I \land col(I)) \land W_2 (W_2 \in J \land row(J)) \} > W \]

\[\land W = 8 \rightarrow \bot. \]

This formula can be rewritten as

\[\text{count}\{V \mid \exists JJ (V = queen(I, J) \land col(I) \land row(J))\} \leq 8. \]

(33)

Similarly, the formula representation of constraint (26) is

\[\text{count}\{V \mid \exists JJ (V = queen(I, J) \land col(I) \land row(J))\} \geq 8. \]

(34)

The formula representations of constraints (27)–(29) can be written as

\[queen(I, J) \land queen(I, JJ) \rightarrow J = JJ, \]

\[queen(I, J) \land queen(II, J) \rightarrow I = II, \]

(35)

\[queen(I, J) \land queen(II, JJ) \land |I - II| = |J - JJ| \rightarrow I = II. \]

The completion of program (22)–(29) consists of formulas (30)–(34), and the universal closures of formulas (35).

So far, we simplified each of these formulas in isolation. We can also observe that the conjunction of (33) and (34) can be rewritten as

\[\text{count}\{V \mid \exists JJ (V = queen(I, J) \land col(I) \land row(J))\} = 8, \]

and that in the presence of (32) this can be further rewritten as

\[\text{count}\{V \mid \exists JJ (V = queen(I, J))\} = 8. \]

(36)
Furthermore, in the presence of (30) and (31) formula (32) can be rewritten as
\[\forall V_1 V_2 (\text{queen}(V_1, V_2) \rightarrow (V_1 = 1 \lor \cdots \lor V_1 = 8) \land (V_2 = 1 \lor \cdots \lor V_2 = 8)). \] (37)

Formulas (35)–(37) can be viewed as a specification for program (22)–(29).

9 Conclusion

This paper extends familiar results on the relationship between stable models and program completion to a large class of programs in the input language of GRINGO, and we hope that this technical contribution will help us apply formal methods to answer set programming. Automation of the process of generating and simplifying completed definitions described above is the theme of an ongoing project at the University of Potsdam, the home of GRINGO.

We would like to generalize the main result of this paper, Theorem 2 from Section 6, in several directions. First, including edges from head to aggregate expressions in graph \(G_\Gamma \) (condition \(\text{ii}^\prime \) in Section 8.3) is sometimes unnecessary. Second, a dependency graph with atoms from the program’s vocabulary as its vertices, rather than predicate symbols, can be useful. Finally, the idea of a loop formula (Lin and Zhao 2004) may help us extend Theorem 2 to non-tight programs.

Acknowledgements

This work was partially supported by the National Science Foundation under Grant IIS-1422455. Many thanks to Michael Gelfond, Joohyung Lee, Patrick Lühne, and Torsten Schaub for useful discussions related to the topic of this paper.

Appendix A Semantics of Programs

Gebser et al. (2015) showed that stable models of many programs in the input language of GRINGO can be described in terms of stable models of infinitary propositional formulas. That approach is applied here to programs in the sense of Section 8.1; we will call them EG programs (for “Essential GRINGO”).

The translation \(\tau \), defined below, transforms every EG program \(\Gamma \) into an infinitary formula over the vocabulary of \(\Gamma \). Stable models of \(\Gamma \) are defined as stable models of \(\tau \Gamma \).

A.1 Semantics of Ground Terms

The set \([t]\) of precomputed terms denoted by a ground term \(t \) is defined recursively:

- if \(t \) is a numeral, a symbolic constant, or one of the symbols inf, sup then \([t]\) is the singleton \(\{t\}\);
- if \(t \) is \(f(t_1, \ldots, t_n) \), where \(f \) is a symbolic constant, then \([t]\) consists of the terms \(f(r_1, \ldots, r_n) \) for all \(r_1 \in [t_1], \ldots, r_n \in [t_n] \);
- if \(t \) is \(\text{op}(t_1, \ldots, t_n) \) where \(\text{op} \) is an operation name then \([t]\) consists of the numerals \(\overline{\text{op}}(k_1, \ldots, k_n) \) for all tuples \(k_1, \ldots, k_n \) in the domain of \(\overline{\text{op}} \) such that \(k_1 \in [t_1], \ldots, k_n \in [t_n] \);

\(^4\) https://github.com/potassco/anthem/
• if \(t \) is \((t_1 \ldots t_2) \) then \([t]\) consists of the numerals \(\overline{m} \) for all integers \(m \) such that, for some integers \(k_1, k_2 \),

\[
\overline{k}_1 \in [t_1], \quad \overline{k}_2 \in [t_2], \quad k_1 \leq m \leq k_2.
\]

For any tuple of ground terms \(t_1 \ldots t_n, [t_1, \ldots, t_n] \) is the set of tuples \(r_1, \ldots, r_n \) for all \(r_1 \in [t_1], \ldots, r_n \in [t_n] \).

A.2 Review: Stable Models of Infinitary Formulas

This review follows Truszczynski (2012).

Let \(\sigma \) be a propositional signature—a set of expressions called atoms. The sets \(\mathcal{F}_0, \mathcal{F}_1, \ldots \) are defined as follows:

- \(\mathcal{F}_0 = \sigma \cup \{ \bot \} \);
- \(\mathcal{F}_{i+1} \) consists of expressions \(\mathcal{H}^\vee \) and \(\mathcal{H}^\wedge \), for all subsets \(\mathcal{H} \) of \(\mathcal{F}_0 \cup \ldots \cup \mathcal{F}_i \), and of expressions \(F \rightarrow G \), where \(F, G \in \mathcal{F}_0 \cup \ldots \cup \mathcal{F}_i \).

An infinitary formula (over \(\sigma \)) is an element of \(\bigcup_{i=0}^{\infty} \mathcal{F}_i \).

Multiple conjunctions and disjunctions (possibly infinite, such as \(\bigwedge_{i \geq 0} \mathcal{F}_i \)), as well as the abbreviations \(\neg F \) and \(F \leftrightarrow G \), are defined in a natural way in terms of \(\mathcal{H}^\vee, \mathcal{H}^\wedge, F \rightarrow G \), and \(\bot \).

Formulas in the sense of Section 8.2 will be called \(EG \) formulas to distinguish them from infinitary formulas defined above.

An interpretation of \(\sigma \) is a subset of \(\sigma \). The satisfaction relation \(\models \) between an interpretation and an infinitary formula is defined in a natural way. When two infinitary formulas are satisfied by the same interpretations, we will say that they are classically equivalent.\(^5\)

The definition of the reduct \(F^\sigma \) of a finite propositional formula \(F \) relative to an interpretation \(\mathcal{I} \) proposed by Ferraris (2005) is extended to infinitary formulas as follows:

- \(\bot^\sigma = \bot \).
- For any atom \(A, A^\sigma = \bot \) if \(\mathcal{I} \not\models A \); otherwise \(A^\sigma = A \).
- \((\mathcal{H}^\vee)^\sigma = \bot \) if \(\mathcal{I} \not\models \mathcal{H}^\vee \); otherwise \((\mathcal{H}^\vee)^\sigma = \{ G : G \in \mathcal{H} \}^\vee \).
- \((\mathcal{H}^\wedge)^\sigma = \bot \) if \(\mathcal{I} \not\models \mathcal{H}^\wedge \); otherwise \((\mathcal{H}^\wedge)^\sigma = \{ G : G \in \mathcal{H} \}^\wedge \).
- \((G \rightarrow H)^\sigma = \bot \) if \(\mathcal{I} \not\models G \rightarrow H \); otherwise \((G \rightarrow H)^\sigma = G^\sigma \rightarrow H^\sigma \).

An interpretation \(\mathcal{I} \) is a stable model of an infinitary formula \(F \) if \(\mathcal{I} \) is minimal among the interpretations satisfying \(F^\sigma \). An interpretation \(\mathcal{I} \) satisfies \(F^\sigma \) iff it satisfies \(F \) (Truszczynski 2012, Proposition 1), so that all stable models of \(F \) satisfy \(F \).

A.3 Transforming Programs into Infinitary Formulas

For any ground atom \(p(t) \), \(\tau p(t) \) stands for \(\bigvee_{t \in [t]} p(t) \), and \(\tau (not p(t)) \) stands for \(\bigvee_{t \in [t]} \neg p(t) \).

For any ground comparison \(r_1 \prec r_2, \tau (r_1 \prec r_2) \) is \(\top \) if the relation \(\prec \) holds between some terms \(r_1, r_2 \) such that \(r_1 \in [t_1] \) and \(r_2 \in [t_2] \), and \(\bot \) otherwise.

If each of the expressions \(C_1, \ldots, C_k \) is a ground literal or a ground comparison then \(\tau (C_1 \land \cdots \land C_k) \) stands for \(\tau C_1 \land \cdots \land \tau C_k \).

An aggregate expression (20) is closed if the term \(s \) is ground. Let \(X \) be the list of variables

\(^5\) We say “classically” to distinguish this equivalence relation from strong equivalence (Harrison et al. 2015).
occuring in a closed aggregate expression (20), and let \(A \) be the set of tuples \(r \) of precomputed terms of the same length as \(X \). Let \(\Delta \) be a subset of \(A \). By \(\{X\}_r^r \) we denote the union of the sets \(\{X\}_r^r \) for all tuples of precomputed terms \(r \) in \(\Delta \). We say that \(\Delta \) justifies the aggregate expression (20) if the relation \(\prec \) holds between \(\hat{\alpha} | \Delta \) and an element of the set \([s]\). We define the result of applying \(\tau \) to (20) as the conjunction of the implications

\[
\bigwedge_{r \in \Delta} \tau(C^X_r) \rightarrow \bigvee_{r \in A \setminus \Delta} \tau(C^X_r)
\]

(A1)

over all subsets \(\Delta \) of \(A \) that do not justify (20).

The definition of \(\tau \) for conjunctions of ground literals and ground comparisons extends in the obvious way to the case when some conjunctive terms are closed aggregate expressions.

A rule is **closed** if all its variables are local. If \(R \) is a closed basic rule (3) then \(\tau R \) is the formula

\[
\tau(\text{Body}) \rightarrow \bigwedge_{r \in [t]} p(r).
\]

(A2)

If \(R \) is a closed choice rule (6) then \(\tau R \) is the formula

\[
\tau(\text{Body}) \rightarrow \bigwedge_{r \in [t]} (p(r) \lor \neg p(r)).
\]

(A3)

If \(R \) is a closed constraint \(\leftarrow \text{Body} \) then \(\tau R \) is \(\neg \tau(\text{Body}) \).

An **instance** of a rule is a closed rule obtained from it by substituting precomputed terms for its global variables. For any EG program \(\Gamma \), \(\tau \Gamma \) is the conjunction of the formulas \(\tau R \) for all instances \(R \) of the rules of \(\Gamma \).

Appendix B Proofs

B.1 Relationship between \(\phi \) and \(\tau \)

To prove Theorems 1 and 2, we need to investigate the relationship between the operator \(\phi \) used in the definition of completion (Section 5) and the operator \(\tau \) that the semantics of programs is based on (Section A.3).

If \(C \) is a conjunction of ground literals and ground comparisons then the formula \(\tau C \) is finite, and we can ask whether it is equivalent to \(\phi C \) in the sense of Section 3. The answer to this question is yes:

Lemma 1

For any conjunction \(C \) of ground literals and ground comparisons, \(\tau C \) is equivalent to \(\phi C \).

Proof It is sufficient to prove this assertion assuming that \(C \) is a single ground literal or a single ground comparison.

Case 1: \(C \) is a ground atom \(p(t_1, \ldots, t_n) \). Then \(\phi C \) is

\[
\exists x_1 \ldots x_n (x_1 \in t_1 \land \cdots \land x_n \in t_n \land p(x_1, \ldots, x_n)).
\]

In view of Observation 1, this formula is equivalent to

\[
\exists x_1 \ldots x_n \left(\bigvee_{r_1 \in [t_1]} x_1 = r_1 \right) \land \cdots \land \left(\bigvee_{r_n \in [t_n]} x_n = r_n \right) \land p(x_1, \ldots, x_n),
\]
and consequently to
\[
\bigvee_{r_1 \in [t_1], \ldots, r_n \in [t_n]} p(r_1, \ldots, r_n).
\]

The last formula is \(\tau C\).

Case 2: \(C\) is a negative ground literal \(\neg p(t_1, \ldots, t_n)\). The proof is similar.

Case 3: \(C\) is a ground comparison \(t_1 \prec t_2\). Then \(\phi C\) is

\[
\exists x_1 x_2 (x_1 \in t_1 \land x_2 \in t_2 \land x_1 \prec x_2).
\]

In view of Observation 1, this formula is equivalent to

\[
\exists x_1 x_2 \left(\left(\bigvee_{r_1 \in [t_1]} x_1 = r_1 \right) \land \left(\bigvee_{r_2 \in [t_2]} x_2 = r_2 \right) \right) \land x_1 \prec x_2,
\]

and consequently to

\[
\bigvee_{r_1 \in [t_1], r_2 \in [t_2]} r_1 \prec r_2.
\]

If the relation \(\prec\) holds between some terms \(r_1, r_2\) such that \(r_1 \in [t_1]\) and \(r_2 \in [t_2]\) then one of the disjunctive terms in the last formula is \(\top\), and the formula is equivalent to \(\top\); otherwise each disjunctive term is \(\bot\), and the formula is equivalent to \(\bot\). In both cases, it is equivalent to \(\tau C\). \(\Box\)

Lemma 2

For any closed aggregate expression \(E\) and any list \(X\) of distinct variables containing all variables that occur in \(E\), the infinitary formula \(\tau E\) is satisfied by the same interpretations of the vocabulary of \(E\) as the EG formula \(\phi X E\).

Proof: Let \(E\) be a closed aggregate expression (20). Without loss of generality we can assume that the list \(X\) contains only variables occurring in \(E\). As defined in Section A.3, \(\tau E\) is the conjunction of formulas (A1), where \(A\) stands for the set of tuples of precomputed terms of the same length as \(X\), over the subsets \(\Delta\) of \(A\) that do not justify \(E\).

Note first that \(\tau E\) is classically equivalent to the disjunction of formulas

\[
\bigwedge_{r \in \Delta} \tau(C^X_r) \land \bigwedge_{r \in A \setminus \Delta} \neg \tau(C^X_r)
\]

(B1)

over the subsets \(\Delta\) of \(A\) that justify \(E\). Indeed, call this disjunction \(D^+\), and let \(D^-\) be the disjunction of formulas (B1) over all other subsets \(\Delta\) of \(A\). It is clear that \(D^-\) is classically equivalent to \(\neg D^+\); on the other hand, \(\neg D^-\) is classically equivalent to the conjunction \(\tau E\).

Consider now an interpretation \(\mathcal{I}\) of the vocabulary of \(E\). Set \(A\) has exactly one subset \(\Delta\) for which \(\mathcal{I}\) satisfies (B1); the set of all tuples \(r\) for which \(\mathcal{I} \models \tau(C^X_r)\). Consequently \(\mathcal{I}\) satisfies \(\tau E\) iff this subset \(\Delta\) justifies \(E\). In other words, \(\mathcal{I}\) satisfies \(\tau E\) iff, for some \(s' \in [s]\),

\[
\hat{\alpha} \left(\bigcup_{r : \mathcal{I} \models \tau(C^X_r)} [t^X_r] \right) \prec s'.
\]

(B2)

By Lemma 1, the condition \(\mathcal{I} \models \tau(C^X_r)\) in this expression can be equivalently replaced by \(\mathcal{I} \models \phi(C^X_r)\), and consequently by \(\mathcal{I} \models (\phi C)^X_r\). Hence (B2) holds iff

\[
\hat{\alpha} \{ q : \text{there exists } r \text{ such that } q \in [t^X_r] \} \prec s'.
\]

(B3)
On the other hand, $\phi^X E$ is
$$\exists Y (\alpha \{ Z \mid \exists X (Z \in t \land \phi C) \} \prec Y \land Y \in s),$$
and \mathcal{I} satisfies this formula iff, for some $s' \in s$,
$$\mathcal{I} \models \alpha \{ Z \mid \exists X (Z \in t \land \phi C) \} \prec s'.$$
This condition can be rewritten as
$$\hat{\alpha} \{ q : \mathcal{I} \models \exists X (q \in t \land \phi C) \prec s' \},$$
which is equivalent to (B3).
\[\square\]

From Lemmas 1 and 2 we conclude:

Lemma 3
For any conjunction C of ground literals, ground comparisons, and closed aggregate expressions, and for any list X of distinct variables containing all variables that occur in C, the infinitary formula τC is satisfied by the same interpretations of the vocabulary of C as the EG formula $\phi^X C$.

B.2 Relation to Infinitary Programs

An infinitary rule is an implication $F \rightarrow A$ such that F is an infinitary formula and A is an atom. An infinitary program is a conjunction of (possibly infinitely many) infinitary rules. We will prove Theorems 1 and 2 using properties of infinitary programs proved by Lifschitz and Yang (2013). The result of applying transformation τ to an EG program is, generally, not an infinitary program, and the following definitions will be useful.

For any EG program Γ, by $\tau_1 \Gamma$ we denote the conjunction of
- the infinitary rules
 $$\tau(Body) \rightarrow p(r)$$
 for all instances (3) of the basic rules of Γ and all r in $[t]$, and
- the infinitary rules
 $$\tau(Body) \land \neg \neg p(r) \rightarrow p(r)$$
 for all instances (6) of the choice rules of Γ and all r in $[t]$.
By $\tau_2 \Gamma$ we denote the conjunction of the infinitary formulas $\neg \tau C$ for all instances $\leftarrow C$ of the constraints of Γ.

Lemma 4
Stable models of an EG program Γ can be characterized as the stable models of the infinitary program $\tau_1 \Gamma$ that satisfy $\tau_2 \Gamma$.

Proof The infinitary formula obtained by applying τ to a closed basic rule (3) is strongly equivalent to the conjunction of the infinitary rules (B4) for all r in $[t]$, because these two formulas are equivalent in the deductive system HT^∞ (Harrison et al. 2015, Section 6). Similarly, the infinitary formula obtained by applying τ to a closed choice rule (6) is strongly equivalent to the conjunction of the infinitary rules (B5) for all r in $[t]$. It follows that Γ has the same stable models as $\tau_1 \Gamma \cup \tau_2 \Gamma$. We know, on the other hand, that for any infinitary formula F and any conjunction G
of infinitary formulas that begin with negation, stable models of $F \land G$ can be characterized as the stable models of F that satisfy G. (This is a straightforward extension of Proposition 4 from Ferraris and Lifschitz (2005) to infinitary formulas.) It remains to apply this general fact to $\tau_1 \Gamma$ as F and $\tau_2 \Gamma$ as G.

For any infinitary program Π and any atom A, by $\Pi|_A$ we denote the set of formulas F such that $F \rightarrow A$ is a rule of Π. The completion of Π is the conjunction of the formulas $A \leftrightarrow (\Pi|_A)^\vee$ for all atoms A in the underlying signature.

Lemma 5

For any finite EG program Γ, the completion of the infinitary program $\tau_1 \Gamma$ is satisfied by the same interpretations of the vocabulary of Γ as the set of completed definitions of the predicate symbols occurring in Γ.

Proof We will show, for every predicate symbol p/n occurring in Γ, that its completed definition (11) is satisfied by the same interpretations of the vocabulary of Γ as the conjunction of the formulas

$$p(r) \leftrightarrow (\tau_1 \Gamma|_{p(r)})^\vee$$

over all tuples r of precomputed terms of length n. An interpretation satisfies (11) iff it satisfies the formulas

$$p(r) \leftrightarrow \bigvee_{i=1}^{k} \exists U_i(F_i)^V$$

for all tuples r of precomputed terms of length n. Consequently it is sufficient to check that for every such tuple r, the infinitary formula

$$(\tau_1 \Gamma|_{p(r)})^\vee$$

and the EG formula

$$\bigvee_{i=1}^{k} \exists U_i(F_i)^V$$

are satisfied by the same interpretations.

The rules of $\tau_1 \Gamma$ with the consequent $p(r)$ are obtained as described in the definition of τ_1 above from instances of the rules R_1, \ldots, R_k that define p/n in Γ. If R_i is a basic rule

$$p(t_i) \leftarrow \text{Body}_i$$

then its instances have the form

$$p\left((t_i)^U_s\right) \leftarrow \left((\text{Body}_i)^U_s\right)$$

where s is a tuple of precomputed terms of the same length as U_i. The infinitary rules with the consequent $p(r)$ contributed by this instance to $\tau_1 \Gamma$ have the form

$$\tau\left((\text{Body}_i)^U_s\right) \rightarrow p(r)$$

where s satisfies the condition $r \in [(t_i)^U_s]$. If R_i is a choice rule

$$\{p(t_i)\} \leftarrow \text{Body}_i$$

then its instances have the form

$$\{p\left((t_i)^U_s\right)\} \leftarrow (\text{Body}_i)^U_s$$
and the corresponding rules of $\tau_1 \Gamma$ with the consequent $p(r)$ have the form

$$\tau((\text{Body}_i)^U_r) \land \neg\neg p(r) \rightarrow p(r).$$

Let G_i stand for $\tau(\text{Body}_i)$ if R_i is a basic rule (B8), and for $\tau(\text{Body}_i) \land \neg\neg p(r)$ if R_i is a choice rule (B9). Using this notation, we can represent formula (B6) as

$$\bigvee_{i=1}^{k} \bigvee_{s: r \in [(t_i)^U_s]} (G_i)^U_s.$$

An interpretation \mathcal{I} satisfies this formula iff

for some $i \in \{1, \ldots, k\}$ and some s such that $r \in [(t_i)^U_s]$, $\mathcal{I} \models (G_i)^U_s$. \hspace{1cm} (B10)

On the other hand, F_i in disjunction (B7) is

$$V \in t_i \land \phi^{X_i}(\text{Body}_i)$$

if R_i is a basic rule (B8), and

$$V \in t_i \land \phi^{X_i}(\text{Body}_i) \land p(V)$$

if R_i is a choice rule (B9), where X_i is the list of local variables of rule R_i. Let H_i stand for $\phi^{X_i}(\text{Body}_i)$ if R_i is (B8), and for $\phi^{X_i}(\text{Body}_i) \land p(r)$ if R_i is (B9). Formula (B7) can be written as

$$\bigvee_{i=1}^{k} \exists U_r (r \in t_i \land H_i).$$

An interpretation \mathcal{I} satisfies this formula iff

for some $i \in \{1, \ldots, k\}$ and some s, $r \in [(t_i)^U_s]$ and $\mathcal{I} \models (H_i)^U_s$. \hspace{1cm} (B11)

Lemma 3 shows that formulas $(G_i)^U_s$ and $(H_i)^U_s$ are satisfied by the same interpretations. Consequently condition (B11) is equivalent to condition (B10).

Lemma 6

For any EG program Γ, the infinitary formula $\tau_2 \Gamma$ is satisfied by the same interpretations of the vocabulary of Γ as the conjunction of the universal closures of the formula representations of the constraints of Γ.

Proof We will show, for every constraint $\leftarrow \text{Body}$ from Γ, that the universal closure of its formula representation $\phi(\leftarrow \text{Body})$ is satisfied by the same interpretations of the vocabulary of Γ as the conjunction of the formulas

$$\neg \tau(\text{Body}^U_r)$$

for all tuples r of precomputed terms of the same length as the tuple U of the global variables of $\leftarrow \text{Body}$. Recall that $\phi(\leftarrow \text{Body})$ is defined as $\neg \phi^{X}(\text{Body})$, where X is the list of local variables of $\leftarrow \text{Body}$. An interpretation \mathcal{I} satisfies the universal closure of this formula iff it satisfies the formulas

$$\neg \phi^{X}(\text{Body}^U_r)$$

for all tuples r of precomputed terms of the same length as U. By Lemma 3, formulas (B12) and (B13) are satisfied by the same interpretations. \hspace{1cm} \square
B.3 Proof of Theorem 1

An interpretation \(I \) is supported by an infinitary program \(\Pi \) if for each atom \(A \) in \(I \) there exists an infinitary formula \(F \) such that \(F \rightarrow A \) is a rule of \(\Pi \) and \(I \) satisfies \(F \). Every stable model of an infinitary program is supported by it (Lifschitz and Yang 2013, Lemma B).\(^6\) It is easy to see that an interpretation \(I \) satisfies the completion of \(\Pi \) iff \(I \) satisfies \(\Pi \) and is supported by \(\Pi \). We conclude:

Lemma 7

Every stable model of an infinitary program satisfies its completion.

To prove Theorem 1, assume that \(I \) is a stable model of an EG program \(\Gamma \). Then \(I \) is a stable model of \(\tau_1 \Gamma \), and \(I \) satisfies \(\tau_2 \Gamma \) (Lemma 4). Consequently \(I \) satisfies the completion of \(\tau_1 \Gamma \) (Lemma 7). It follows that \(I \) satisfies the completed definitions of all predicate symbols occurring in \(\Gamma \) (Lemma 5). On the other hand, since \(I \) satisfies \(\tau_2 \Gamma \), it satisfies also the universal closures of the formula representations of the constraints of \(\Gamma \) (Lemma 6). \(\square \)

B.4 Proof of Theorem 2

The proof of Theorem 2 below refers to the concept of a tight infinitary program (Lifschitz and Yang 2013). We first define the set \(P_{nn}(F) \) of positive nonnegated atoms of an infinitary formula \(F \) and the set \(N_{nn}(F) \) of negative nonnegated atoms of \(F \):

- \(P_{nn}(\bot) = \emptyset \).
- For any atom \(A \), \(P_{nn}(A) = \{A\} \).
- \(P_{nn}(H \land) = P_{nn}(H \lor) = \bigcup_{H \in \mathcal{H}} P_{nn}(H) \).
- \(P_{nn}(G \rightarrow H) = \left\{ \begin{array}{ll} \emptyset & \text{if } H = \bot, \\ N_{nn}(G) \cup P_{nn}(H) & \text{otherwise.} \end{array} \right. \)
- \(N_{nn}(\bot) = \emptyset \).
- For any atom \(A \), \(N_{nn}(A) = \emptyset \).
- \(N_{nn}(H \land) = N_{nn}(H \lor) = \bigcup_{H \in \mathcal{H}} N_{nn}(H) \).
- \(N_{nn}(G \rightarrow H) = \left\{ \begin{array}{ll} \emptyset & \text{if } H = \bot, \\ P_{nn}(G) \cup N_{nn}(H) & \text{otherwise.} \end{array} \right. \)

Let \(\Pi \) be an infinitary program, and \(I \) an interpretation of its signature. About atoms \(A, B \in I \) we say that \(B \) is a parent of \(A \) relative to \(\Pi \) and \(I \) if there exists a formula \(F \) such that \(F \rightarrow A \) is a rule of \(\Pi \), \(I \) satisfies \(F \), and \(B \) is a positive nonnegated atom of \(F \). We say that \(\Pi \) is tight on \(I \) if there is no infinite sequence \(A_0, A_1, \ldots \) of elements of \(I \) such that for every \(i \), \(A_{i+1} \) is a parent of \(A_i \) relative to \(\Pi \) and \(I \).

If an infinitary program \(\Pi \) is tight on an interpretation \(I \) that satisfies \(\Pi \) and is supported by \(\Pi \) then \(I \) is a stable model of \(\Pi \) (Lifschitz and Yang 2013, Lemma 2). We conclude:

Lemma 8

If an infinitary program \(\Pi \) is tight on an interpretation \(I \) that satisfies the completion of \(\Pi \) then \(I \) is a stable model of \(\Pi \).

\(^6\) See the long version of the paper, http://www.cs.utexas.edu/users/ai-lab/?ltc.
Lemma 9
For any conjunction \(C \) of ground literals, ground comparisons, and closed aggregate expressions, if \(p(t_1,\ldots,t_n) \) is a positive nonnegated atom of \(\tau C \) then \(p/n \) occurs in a positive literal or in an aggregate expression in \(C \).

Proof Consider the conjunctive term \(C \) of \(\tau C \) such that \(p(t_1,\ldots,t_n) \) is a positive nonnegated atom of \(\tau C \). It is clear from the definition of \(\tau \) that \(p/n \) occurs in \(C \). On the other hand, the formulas obtained by applying \(\tau \) to negative literals and comparisons have no positive nonnegated atoms. Consequently \(C \) is either a positive literal or an aggregate expression. \(\square \)

Lemma 10
If an EG program \(\Gamma \) is tight then \(\tau_1 \Gamma \) is tight on all interpretations.

Proof Assume that \(\tau_1 \Gamma \) is not tight on an interpretation \(\mathcal{I} \), and consider an infinite sequence \(p_0(t_0), p_1(t_1), \ldots \) of atoms such that for every \(i \), \(p_{i+1}(t_{i+1}) \) is a parent of \(p_i(t_i) \) relative to \(\tau_1 \Gamma \) and \(\mathcal{I} \). We will show that for every \(i \), the graph \(G_{\tau_1 \Gamma} \) has an edge from \(p_i/n_i \) to \(p_{i+1}/n_{i+1} \), where \(n_i \) is the length of \(t_i \). The assertion of the lemma will follow, because an infinite path \(p_0/n_0, p_1/n_1, \ldots \) in the finite graph \(G_{\tau_1 \Gamma} \) is impossible if that graph is acyclic.

Consider a rule \(F_i \rightarrow p_i(t_i) \) of \(\tau_1 \Gamma \) such that \(p_{i+1}(t_{i+1}) \) is a positive nonnegated atom of \(F_i \). This rule has either the form (B4) or the form (B5). In both cases, \(p_{i+1}(t_{i+1}) \) is a positive nonnegated atom of \(\tau \) (Body), and we can conclude, by Lemma 9, that \(p_{i+1}/n_{i+1} \) occurs in a positive literal or in an aggregate expression in \(\text{Body} \). It remains to observe that \(\text{Body} \) is the body of an instance of a rule of \(\tau_1 \Gamma \) that contains \(t_i/n_i \) in the head. \(\square \)

Proof of Theorem 2
Let \(\Gamma \) be a finite tight EG program. Given Theorem 1, we only need to establish the “if” direction of Theorem 2: if an interpretation of the vocabulary of \(\Gamma \) satisfies the completion of \(\Gamma \) then it is a stable model of \(\Gamma \).

Let \(\mathcal{I} \) be an interpretation of the vocabulary of \(\Gamma \) that satisfies the completion of \(\Gamma \). Then \(\mathcal{I} \) satisfies the completion of \(\tau_1 \Gamma \) (Lemma 5). But \(\tau_1 \Gamma \) is tight on \(\mathcal{I} \) (Lemma 10); consequently \(\mathcal{I} \) is a stable model of \(\tau_1 \Gamma \) (Lemma 8). On the other hand, \(\mathcal{I} \) satisfies \(\tau_2 \Gamma \) (Lemma 6). It follows that \(\mathcal{I} \) is a stable model of \(\Gamma \) (Lemma 4). \(\square \)

References

Harrison, Lifschitz, and Raju

