CSE 380: Lecture 3
Unix is fun

Instructors:

Dr. Karl W. Schulz, TACC/ICES
Dr. Chris Simmons, ICES

{karl,csim}@ices.utexas.edu

Chris Simmons Unix — a friend for life September 12,2012 1/127

N
Unix in Practice
* Q: Onthe June 2010 Top500 list, how many

systems ran Unix / Linux?
e A: atleast 95% is UNIX-like, 1% windows

Operating system Family Count Share% Rmax Sum (GF) Rpeak Sum (GF) Processor Sum
Linux 455 91.00% 27162011 41989385 3774451
Windows o 1.00 % 412590 509350 59072

Unix 22 4.40 % 1479895 1891787 118930

BSD Based 1 0.20 % 122400 131072 1280

Mixed 17 3.40 % 3257787 3948902 1177728

Totals 500 100% 32434683.70 48470495.53 5131461

Chris Simmons Unix — a friend for life September 12,2012 2/127

Unix Background
 Q: How old is Unix?

e A:>40Years

— Unix originally dates back to 1969
with a group at Bell Laboratories

— The original Unix operating system
was written in assembler

— In 1973 Thompson and Ritchie
finally succeeded in rewriting Unix in
their new language, C.

— Most system programming was
done in assembler

— The very concept of a portable
operating system was unheard of

— First Unix installations in 1972 had 3
users and a 500KB disk

DEC PDP-11, 1972

Chris Simmons Unix — a friend for life September 12,2012 3/127

What is UNIX?

* UNIXis a multi user, Pree_mptive, multitasking operating system which
provides a number of facilities:

— management of hardware resources
— directories and file systems
— loading / execution / suspension of programs

e What does UNIX stand for?

— Nothing actually - It is a "play on words" of an older multiuser time-sharing OS
known as Multics

* There are many flavors of UNIX:
— Solaris (Sun)
— AIX(IBM)
— Tru64 (Compaq)
— IRIX (SGlI)
— SysV (from AT&T)
— BSD (from Berkeley)
— Linux (its not UNIX, but it’s close enough from our point of view)

Chris Simmons Unix — a friend for life September 12,2012 4/127

What is Linux?

Linux is a clone of the Unix operating system written from scratch by Linus Torvalds
with assistance from developers around the globe

* Technically speaking, Linux is not UNIX

* Torvalds uploaded the first version of Linux in September 1991

* Only about 2% of the current Linux kernel is written by Torvalds himself
* He remains the ultimate authority on what new code is incorporated into the kernel

. Devlelct)) ed under the GNU General Public License , the source code for Linux is freely
available

* Download latest kernels from www.kernel.org

* Alarge number of Linux-based distributions exist (for free or purchase):

— RedHat, Fedora, CentOS — Slackware
— SUSE — Ubuntu

— Debian — Mandrake
— Gentoo — Mint

Chris Simmons Unix — a friend for life September 12,2012 5/127

Why use UNIX?

* Performance: as we’ve seen, supercomputers generally
run UNIX; rich-multi user environment

* Functionality: a number of community driven scientific
applications and libraries are developed under UNIX
(molecular dynamics, linear algebra, fast-fourier
transforms, etc).

 Flexibility/Portability: UNIX lets you build your own
applications and there is a wide array of support tools
(compilers, scientific libraries, debuggers, network

monitoring, etc.)

Chris Simmons Unix — a friend for life September 12,2012 6/127

Some Key People

Ken Thompson and Dennis Ritchie 2777
Your new heroes. Linus Torvalds

Chris Simmons Unix — a friend for life September 12,2012 7/127

Unix Background: Chronology

SCO IBM AT&T Siemens Berkeley SUN DEC HPipollo

Undx Sywimn
Laberederiss

1969 =

1979 =

1oy, D —

1934 — CEEEEED

1987 =
1988 —

(Sc0Um520)
1990 =

1997 . ConSeneid)

1993 =

1995

Single UNIX Specification

The Single UNIX Specification is the collective name of a family of standards for computer
operating systems to qualify for the name "Unix* (eg. HP-UX, IBM AIX, SGI IRIX, Sun Solaris).

Source: The Open Group, www.unix.org

Chris Simmons Unix — a friend for life September 12,2012 8/127

How does UNIX work?

e UNIX has a kernel and one
or more shells

e The kernel is the core of
the OS

* |t receives tasks from the
shell and performs them

e Users interact with the
shell

Chris Simmons Unix — a friend for life September 12,2012 9/127

How does UNIX work?

* Everything in UNIX is either a file or a
process

e Aprocess..

— is an executing program identified by a
unique PID (process identifier).

— may be short in duration or run
indefinitely

e Afileis...
— a collection of data.

— created by users using text editors,
running compilers, etc

e The UNIX kernel is responsible for
ﬁlrganizing processes and interacting with
e s e R,

Chris Simmons Unix — a friend for life September 12,2012 10/127

What does the Shell Do?

e The UNIX user interface is called the shell

* The shell tends to do 4 jobs repeatedly:

.
An Example

Example: A user wants to remove a file:

— User has a command-line prompt (the
shell is waiting for instructions)

— User types the command (rm myfile) in
the shell

— The shell searches the filesystem for the
file containing the program (rm)

— A new process is forked from the shell to
run the command with an instruction to
remove myfile

— The process requests that the kernel,
through system calls, delete the
reference to myfile in the filesystem

— When the rm process is complete, the
shell then returns to the UNIX prompt
indicating that it is waiting for further
commands

— The process ID (PID) originally assigned to
the rm command is no longer active J

Chris Simmons Unix — a friend for life

September 12,2012 12/127

Unix Interaction

e The user interacts with UNIX via a shell

* The shell can be graphical (X-Windows) or
text-based (command-line) shells like tcsh
and bash

* To remotely access a shell session, use ssh
(secure shell)

* ssh is a secure replacement for telnet

Chris Simmons Unix — a friend for life September 12,2012 13/127

X-Windows and Unix

 X-Windows is the
standard graphical
layer for UNIX systems

* Most graphical interfaces
for UNIX are actually built
on top of X-Windows

e Fundamental
command-line
application in
X-windows is an s :
PV =) ¢ 5 on.veakly oarotate.canf odoc.ini prpd-backup

A user can have many different invocations of xterm runnlng at once on the same
display, each of which provides independent input/output for the process running in
it (normally the process is a Unix shell)

September 12,2012 14/127

X-Windows

The original idea of X emerged at MIT in
1984

It provides a standard toolkit and protocol
to build graphical user interfaces (GUI) on
Unix, or Unix-like operating systems

X supports remote connectivity

The computer where application programs
(the client applications) run can differ
from the user's local machine (the display
server).

X's usage of the terms "client" and
"server" reverses what people often
expect, in that "server" refers to the user's
local display ("display server") rather than
to a remote machine.

Chris Simmons Unix — a friend for life

User's workstation

»

Network —-

Remote machine

X-Windows and Unix

Location Edit View Go Bookmarks Tools Settings Window Help

(CXSKT NGRS

Location Edit View Go Bookmarks Tools Settings Window Help

QOO OO =mXAAN G

E> Location: (3 /home/kde35uzer

E> Location: |\ http://en.wikipedia.org/wiki/Main_Page |53 =1 (e
M \ é r o~ 27Slgn In / create account
° everal nice desktop > Iz o e LT e [
e « C .
Main Page
\ From Wikipedia, the free encyclopedia.

environments exist for Linux : I ™ oo o o, 1 s o

PEL
The Free Encydopedia

anyone can edit.
In this English version, started in 2001, we are currently working on 835,932

navigation
Summary articles.
= Main Page Wikipedia FAQs - Browse - A= Z - Portals - Ask a question
—_— H AR AR AR AR AR EEEEEEEEEEEEAEEEEEAEEEEEAREEEEAEEEEESEREESSEEEEESEEEESEEEEEEEEE 2 » Community Portal
. i Al Culture | Geography | History | Mathematics | People | Science | Society |

Technols
» Recent changes echnology

e . Today's featured In the news
o ltem Selectel] s article = A motion of no

Select an event seorcn Mary 11 confidence ki
SNy to view 9 reigned as threatens to
Calendar Queen of tobole Prime

‘
To-do List Default KO|

3 Default KOr:

Journal

—_ G nome NN NN NN EE NS EEEEEEEEEEEEEEESEEESEEESEESEESEEESEEEEREEE

* Cygwin for Windows also includes
an Xserver and xterm client

[\ Main Page - Wikipedia, ¢/ ' Calendar - Kontact C@ U0 03:54

2 E3kde35uzer - Konqueror 2005-11-30

€ Applications Places Desktop @) B30 c @ @210 Mon Har 6.2020 Qb @

ko)
GUADEC Sponsor Brachuse

Elle Edt \ew Go Help
8 ofe [t page width % |

anaversoml (S/DocUmentsWiting/releas, Les-2.14) - gedil
‘ Ele Edt Mew Seach Jocls Qocuments Help

v\q B &8 B &&
W (O rmusersomt »

<zect2 dde*rn gedit >
<fitlesDetter Editor</titles

* X.Orgis a freely redistributable
open-source implementation of
the X Window System
(http://www.x.org/)

Gedis continues 1o provide the usability of 3 sisple text editor vith all
the festures you need to develos applications or vebsites, Features in

Gedit 2.1 ndwe seproved handling of multile documerts and writing to
t e this vith brovsing of 777, and Wi

Featly fron tha file brresers Slve symear iamighting of
AR Al creating persoml wed business vebsates 13
nov & piece of cake for anyzne

<Figure 14

Conventlon OV' r—nn can handle -u\l.l!\z source files ensily, apeming and saving them
etvo

locally or over a.n

Shout gHONE tis the GUAD
2 GUADEC I,ﬂ-m peed GWANDEL agedstn .
Users And | u e:digure-gedit-adi.cng
Held ansually & .

i

DEC is argest gat
ovelopers. foundatica kaders. i¢ Ln 302, Col 34
azud businexs

L & and Lisw ®
excring ideas and

@] | B wrting [3 rruzers i (~Dosument=writing... | [E] GUA0EC Sponscr Brochure & M

Chris Simmons Unix — a friend for life September 12,2012 16/127

Unix Accounts

 To access a Unix system you need to have an
account

 Unix account includes:

— username and password
— userid and groupid
— home directory

* aplace to keep all your snazzy files

* may have a quota (system imposed limit on how much
data you can have)

— a default shell preference

Chris Simmons Unix — a friend for life September 12,2012 17/127

Unix Accounts

* A username is a sequence of alphanumeric
characters

— eg. csim or karl

 The username is the primary identifying
attribute of your account

* the name of your home directory is usually
related to your username:

— eg, /homel/00416/csim

Chris Simmons Unix — a friend for life September 12,2012 18/127

Unix Accounts

* A password is a secret string that only the user knows

* Not even the system knows a user’s password

* When you enter your password the system encrypts it and
compares to a stored string

* |t's a good idea to include numbers and/or special characters
(don't use an english word, as this is easy to crack)

Chris Simmons Unix — a friend for life September 12,2012 19/127

Unix Accounts

* A useridis a number (an integer) that identifies a Unix
account.

* Each userid must be unique
* In Unix-speak, userids are known as UIDs

 Why does Unix implement UIDs? It's easier (and more
efficient) for the system to use a number than a string
like the username

* You don't necessarily need to know your userid

Chris Simmons Unix — a friend for life September 12,2012 20/127

Unix Accounts

* Unix includes the notion of a "group" of users

A Unix group can share files and active processes

 Each account is assigned a "primary" group

 The groupid is a number that corresponds to this primary

group
* In Unix-speak, groupids are knows as GIDs

* Asingle account can belong to many groups (but has only
one primary group)

Chris Simmons Unix — a friend for life September 12,2012 21/127

Files and File Names

e A fileis a basic unit of storage (usually on a disk)
* Every file has a name

* Unix file names can contain any characters
 Some characters make it hard to access the file
* Unix file names can be long!

— how long depends on your specific flavor of Unix

Chris Simmons Unix — a friend for life September 12, 2012 22/127

File Contents

e Each file can hold some raw data

* Unix does not impose any structure on files
— files can hold any sequence of bytes
— itis up to the application or user to interpret the files correctly

 Many programs interpret the contents of a file as having some
special structure
— text file, sequence of integers, database records, etc.

— in scientific computing, we often use binary files for efficiency in storage
and data access

* Fortran unformatted files

* Scientific data formats like NetCDF or HDF have specific formats and
provide APIs for reading and writing

» Portability is an issue with some formats (little endian vs. big endian)

Chris Simmons Unix — a friend for life September 12,2012 23/127

Directories

e Adirectory is a special kind of file

* Unix uses a directory to hold information
about other files

 We often think of a directory as a container
that holds other files (or directories)

e Mac and Windows users can relate a
directory to the same idea as a folder

Chris Simmons Unix — a friend for life September 12, 2012 24/127

More about File Names

* Every file must have a name

e Each file in the same directory must have a
unigue name

* Files that are in different directories can have
the same name

* Note: Unix is case-sensitive
— So, “texas-fight” is different from “Texas-Fight”
— caveat: the default mac file-system is dodgy

Chris Simmons Unix — a friend for life September 12, 2012 25/127

Unix Filesystem

 The filesystem is a hierarchical system of organizing files and directories

e The top level in the hierarchy is called the "root" and holds all files and
directories.

* The name of the root directory is / (the “slash” directory)

* Typical system directories below the root directory include:
/bin contains many of the programs which will be executed by users
/etc files used by system administrators
/dev hardware peripheral devices
/proc a pseudo file system which tracks running processes and system state
/lib system libraries
[usr normally contains applications software
/home home directories for different systems

Chris Simmons Unix — a friend for life September 12, 2012 26/127

N
Unix Filesystem (an upside-down tree)

/
I I I I
bin etc hl tmp uTr
I I I
csim karl bin etc

I I I I
public html local public 1s who

Chris Simmons Unix — a friend for life September 12, 2012 27/127

Pathnames

* The full pathname of a file includes the file name and the
name of the directory that holds the file, and the name of
the directory that holds the directory that holds the file, and
the name of the ...

....all the way up up to the root directory

* The full pathname of every file in a Unix filesystem is unique
(falls from the requirement that every file in the same
directory must be a unigue name)

Chris Simmons Unix — a friend for life September 12, 2012 28/127

.
Pathnames (cont.)

* To create a pathname you start at the root
(so you start with "/"), then follow the path
down the hierarchy (including each directory
name) terminating with the filename

* In between every directory name you put a

II/II

Chris Simmons Unix — a friend for life

September 12,2012 29/127

N
Pathname Examples

/
|
I I I I I
bin etc ?l tmp uTr
I I I
csim karl bii.n etc
| | | |
public html local public who

lecturel.pdf _
/usr/bin/1ls

/hl/csim/public _html/lecturel.pdf

Chris Simmons Unix — a friend for life September 12, 2012 30/127

-
Absolute Pathnames

* The pathnames described in the previous
slides start at the root

* These pathnames are absolute pathnames

 We can also talk about the pathname of a file
relative to a directory

Chris Simmons Unix — a friend for life September 12,2012 31/127

Relative Pathnames

* Arelative pathname specifies a file
in relation to the current working
directory (CWD)

* If CWD=/home, then the relative
pathname to charles is: charles

* |f CWD=/home, then the relative
pathname to pigpen is: charles/pigpen

* |[fCWD=/home, then the relative \
f / Y charles —

pathname to baseball noopyfriend
is: charles/franklin/baseball ® "

* Most Unix commands deal with pathnames

* We often use relative pathnames when specifying files (for convenience)

Chris Simmons Unix — a friend for life September 12, 2012

32/127

Special Directory Names

* There is a special relative pathname for the current working directory
(CWD):

. (yes, that’s a dot)

Example: ./foo (refers to “foo” in the current directory)

* There is also a special relative pathname for the parent directory:
.. (affectionately known as a dot-dot)

Example: ../foo (refers to “foo” in the parent directory)

* There is a special symbol for the location of your home directory:
~ (that’s a tilde)

Example: ~csim (refers to the home directory for user “csim”)

Chris Simmons Unix — a friend for life September 12, 2012 33/127

Disk vs. Filesystem

* Note that the file system hierarchy can actually be served by one or more
physical disk drives

* In addition, some directories may be provided from other computers (e.g. NFS)

Chris Simmons Unix — a friend for life September 12, 2012 34/127

Basic Commands

* Some basic commands for interacting with the
Unix file system are:

—Is - pwd - touch
— cd -Ccp - mkdir
— df - awk - rmndir
— cat -rm - find

— more -chmod -grep
— head -tail - chown/chgrp

e We will focus on Is first

Chris Simmons Unix — a friend for life September 12, 2012 35/127

e
The 1s command

 The Is command displays the names of files

* |f you give it the name of a directory as a
command line parameter it will list all the
files in the named directory

Chris Simmons Unix — a friend for life September 12, 2012 36/127

.
Example 1s Commands

1s list files in current directory

1s / list files in the root directory

1s . list files in the current directory
1s .. listfiles in the parent directory

1s /usr list files in the directory /usr

Chris Simmons Unix — a friend for life September 12,2012 37/127

I—
Command Line Options

 We can modify the output format of the Is
program with a command line option.

 The Is command supports a bunch of options:

— | long format (include file times, owner and
permissions)

— a all (shows hidden files as well as regular files)
— F include special char to indicate file types

In Unix, hidden files have names that start with "."

Chris Simmons Unix — a friend for life September 12, 2012 38/127

N
1s Command Line Options

* To use a command line option precede the
option letter with a minus:

ls -a or 1ls -1

* You can use two or more options at the same
time like this:

ls -al

Chris Simmons Unix — a friend for life September 12,2012 39/127

General 1s command line

 The general form for the Is command is:
ls [options] [names]

* The options must come first!

* You can mix any options with any names.

 An example:
ls -al /usr/bin

Chris Simmons Unix — a friend for life September 12, 2012 40/127

Command Line Syntax

* 1s [options] [names]

— The brackets around options and names in the
general form of the Is command means that
something is optional

— This type of description is common in the
documentation for Unix commands

— Some commands have required parameters

Chris Simmons Unix — a friend for life September 12,2012 41/127

.
Variable Argument Lists

* You can give the Is command many files or
directory names to display:

ls /usr /etc
ls -1 /usr/bin /tmp /etc

Chris Simmons September 12, 2012 42/127

Where to Get More Information?

 Almost all UNIX systems have extensive on-line documentation known as
man pages (short for "manual pages").

e The Unix command used to display them is man. Each page is a self-contained

document.
* So, to learn more about the Is command, refer to its man page:
— manls
. I_I\(Ian s)ages are generally split into 8 numbered sections (on BSD Unix and
inux):

— 1 General commands
— 2 System calls
— 3 Clibrary functions
— 4 Special files (usually devices, those found in /dev)
— 5 File formats and conventions
— 6 Games
— 7 Miscellaneous
— 8 System administration commands and daemons
* You can request pages from specific sections:
— man 3 printf (shows manpage for C library function)

Chris Simmons Unix — a friend for life September 12, 2012 43/127

Example Man Page

Manual pager utils

NAME
man - an i1nterface to the on-line reference manuals

SYNOPSIS
man [-c|-w|-tZ] [-H[browser]] [-T[devicel] [-adhu7v] [-1|-I] [-m sys-
tem[,...]] [-L locale] [-p string] [-C file] [-M path] [-P pager] I[-r
prompt] [-S list] [-e extension] [[section] page ...]
man -1 [-7] [-tZ] [-H[browser]] [-T[devicell] [-p s trlng] [-P pager] [-r
prompt] file ...
man -k [apropos options] regexp ...
man -f [whatis options] page ...

DESCRIPTION

man 1s the system’s manual pager. Each page argument given to man 1s
normally the name of a program, utility or function. The manual page
associated with each of these arguments i1s then found and displayed. A
section, 1f provided, will direct man to look only i1n that section of
the manual. The default action 1s to search in all of the available
sections, following a pre-defined order and to show only the first page
found, even 1f page exists in several sections.

The table below shows the section numbers of the manual followed by the
Manual paage man(1) line 1

Chris Simmons September 12, 2012 44/127

Unix: A Culture in Itself

COMPUTER HOLY WARS

THAT SCRUFFY YOU'RE ONE OF THOSE

BEARD ... THOSE CONDESCENDING UNIX
HOLD IT RIGHT
THERE, BUDDY fg:iﬁtsﬂgeg\s... COMPUTER USERS!
y HERE'S A
EXPRESSION. . E'S A NICKEL,

KID. GET YOUR-
SELF A BETTER
COMPUTER,

5. Adms E-mail: SCOTTADAMSEZAOL.COM

&(3y @ 1905 United Feature Syndicate, Inc. (NYC)

"Two of the most famous products of Berkeley
are LSD and Unix. I don't think that this is a coincidence."
(Anonymous quote from The UNIX-HATERS Handbook.)

Chris Simmons Unix — a friend for life September 12, 2012 45/127

Interacting with the Shell

Running a Unix Program

* Typically, you type in the name of a program
and some command line options

* The shell reads this line, finds the program and
runs it, feeding it the options you specified

* The shell establishes 3 separate 1/O streams:
— Standard Input
— Standard Output
— Standard Error

Chris Simmons Unix — a friend for life September 12,2012 47/127

.
Programs and Standard 1/0O

tandard Output

(STDOUT)
Note: File descriptors
are associated with
each stream
0=STDIN Standard Error
1=STDOUT (STDERR)
2=STDERR

Chris Simmons Unix — a friend for life September 12, 2012 48/127

Unix Pipes

A pipeis a holder for a stream of data

A Unix pipeline is a set of processes chained by their
standard streams, so that the output of each process
(stdout) feeds directly as input (stdin) of the next one

* This is handy for using multiple unix commands together
to perform a task

re— —e

STDOUT STDIN

Chris Simmons Unix — a friend for life September 12, 2012 49/127

Building Commands

* More complicated commands can be built up by using one
or more pipes

Use the “|” character to pipe two commands together
The shell takes care of all the hard work for you
Example:

> cat apple. txt
core

worm seed

jewel

Note: the wc command prints

> cat apple.txt | wc the number of newlines,
3 4 21 words, and bytes in a file

Chris Simmons Unix — a friend for life September 12, 2012 50/127

e
File Attributes

e Every file has a specific list of attributes:

— Access Times:
* when the file was created
* when the file was last changed
* when the file was last read

— Size

— Owners
e user (remember UID)
e group (remember GID)

— Permissions

Chris Simmons Unix — a friend for life September 12,2012 51/127

File Time Attributes

 Time Attributes:
— Is -l shows when the file was last changed
— |s -lc shows when the file was created
— |s -lu shows when the file was last accessed

e Special names exist for these date-related attributes:
— mtime (last modification time)

— ctime (last change time, ie. when changes were made to the file or
directory's inode: owner, permissions, etc.

— atime (last access time)

— Display with ‘stat’ command

Chris Simmons Unix — a friend for life September 12, 2012 52/127

File Permissions

 Each file has a set of permissions that control who can
access the file

 There are three different types of permissions:

— read abbreviated r
— write abbreviated w
— execute abbreviated x

* In Unix, there are permission levels associated with
three types of people that might access a file:
— owner (you)
— group (a group of other users that you set up)
— world (anyone else browsing around on the file system)

Chris Simmons Unix — a friend for life September 12, 2012 53/127

File Permissions Display Format

 —TWXTWXTWX

Owner Group Others

The first entry specifies the type of file:
“-" js a plain file

“d” is a directory

“c” is a character device

“b” is a block device

“I” is a symbolic link

Chris Simmons Unix — a friend for life

S
What is this rwx Craziness?

 Meaning for Files:
r - allowed to read
w - allowed to write
x - allowed to execute

 Meaning for Directories:
r - allowed to see the names of the files
w - allowed to add and remove files

x - allowed to enter the directory

Chris Simmons Unix — a friend for life September 12, 2012 55/127

Changing File Permissions

* The chmod command changes the permissions associated with a file or
directory

* Basicsyntaxis: chmodmode file

 The mode can be specified in two ways:
— symbolic representation
— octal number

 Both methods achieve the same result (user’s choice)

* Multiple symbolic operations can be given, separated by commas

Chris Simmons Unix — a friend for life September 12, 2012 56/127

chmod: Symbolic Representation

* Symbolic Mode representation has the
following form:

[ugoa] [+-=] [rwxX...]

u=user + add permission r=read
g=group - remove permission w=write
o=other = set permission x=execute
a=all X= see below

 The X permission option is very handy - it sets to execute only if the file
is a directory or already has execute permission (you really want to
remember this one when using recursively)

Chris Simmons Unix — a friend for life September 12,2012 57/127

chmod Symbolic Mode Examples

> 1ls -al foo
-rw——————-— 1 karl support

> chmod g=rw foo
> 1ls -al foo

-rw-rw---- 1 karl support

> chmod u-w,g+x,0=x foo
> 1ls -al foo
-r--rwx--x 1 karl support

Chris Simmons Unix — a friend for life September 12, 2012 58/127

chmod: Octal Representation

* Octal Mode uses a single argument string which describes the

permissions for a file (3 digits) '
* Each digit of this number 0 = no permissions whatsoever;

is a code for each of the 1 = execute only

three permission levels 2 = write only

(user,group,world) 3 = write and execute (1+2)

4 = read only

e Permissions are set 5 = read and execute (4+1)

according to the following 6 = read and write (4+2)

numbers: 7 = read and write and execute (4+2+1)

— Read =4 :

— Execute=1

Sum the individual permissions to get the desired combination

Chris Simmons Unix — a friend for life September 12, 2012 59/127

chmod Octal Mode Examples

> 1ls -al foo
-rw——————-— 1 karl support

> chmod 660 foo
> 1ls -al foo
-rw-rw---- 1 karl support

> chmod 417 foo
> 1ls -al foo
-r-—-—--xrwx 1 karl support

Chris Simmons Unix — a friend for life September 12, 2012 60/127

Basic Commands

* Some basic commands for interacting with the
Unix file system are:

— Is - pwd - touch

— cd -cp - mkdir

— df - awk - rendir

— cat -rm - find

— more (less) - chmod - grep

— head - tail - chown/chgrp

* Let’s cruise through some interactive examples....

Chris Simmons Unix — a friend for life September 12,2012 61/127

UNIX Commands: find

At its simplest, find searches the filesystem for files whose
name matches a specific pattern

However, it can do a lot more and is one of the most useful
commands in Unix (as it can find specific files and then
perform operations on them)

Here is a simple example:

> 1s
dirl foo foo2

> find . -name foo -print
./foo

Chris Simmons Unix — a friend for life September 12,2012 62/127

UNIX Commands: find

* Find can also scan for certain file types. Here are some
simple examples:

> find . -type d —-print (find directories)
> find . -type f -print (find files)

* Particularly powerful commands can be built using the exec
option to issue commands on found files

> find . -type f -exec wc -1 {} \;

e What will the above do? (Counts the # of lines in each file)

Chris Simmons Unix — a friend for life September 12, 2012 63/127

UNIX Commands: grep

grep extracts lines from a file that match a given string or pattern

J

E Terminal

)|

Wwindow Edit Options

Help

/export/home/rob> cat sequence.fas

>c01_009 499 amino acids Mw=55632 D pI=5.38 numambig=0
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DYSNASRTMLFNINKLEWDREILELLKIPESILPEVRPSSDIYGYTEVLGSSIPISGDAG
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
ILGIRVVRPKVMETASMGVAMLAGLAINYWNSLNELKQKWTVDKEFIPSINKEERERRYN
AWKEAVKRSLGWEKSLGSK*

/export/home/rob> grep AA sequence.fas
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI

&

—

for the pattern to search

grep can also use a regular expression

Chris Simmons Unix — a friend for life

September 12, 2012 64/127

Regular Expressions

* In addition to grep, a number of Unix commands support the use of
regular expressions to describe patterns:

— sed
— awk
— perl
* General search pattern characters:
— Any character (except a metacharacter) matches itself

oy

— “” matches any character except a newline
— “*” ‘matches zero or more occurrences of the single preceding character
— “+” matches one or more of the proceeding character
— “?” matches zero or one of the proceeding character
e Additional special characters:
— “()” parentheses are used to quantify a sequence of characters
“|” works as an OR operator

— “{}” braces are used to indicate ranges in the number of occurrences

”

Chris Simmons Unix — a friend for life September 12,2012 65/127

e —
Regular Expressions

* |f you really want to match a period ., you
need to escape it with a backslash "\."

Regexp Matches Does not match

a.b axb abc
al.b a.b axb

Chris Simmons September 12, 2012 66/127

Regular Expressions

* Acharacter class, also called a character set can be used to match only
one out of several characters

 To use, simply place the characters you want to match between square
brackets []

* You can use a hyphen inside a character class to specify a range of
characters

e Placing a caret () after the opening square bracket will negate the
character class. The result is that the character class will match any
character that is in the character class

 Examples:
[abc] matches a single a b or c
[0-9] matches a single digit between 0 and 9
[*A-Za-z] matches a single character as long as it is not a letter

Chris Simmons Unix — a friend for life September 12,2012 67/127

Regular Expressions

e Since certain character classes are used often, a series of
shorthand character classes are available for
convenience:

\d a digit. eg [0-9]

\D a non-digit, eg. [*0-9]

\w a word character (matches letters and digits)
\W a non-word character

\s a whitespace character

\S a non-whitespace character

Chris Simmons Unix — a friend for life September 12, 2012 68/127

Regular Expressions

* More shorthand classes are available for matching
boundaries:

A the beginning of a line
S the end of aline

\b a word boundary

\B a non-word boundary

Chris Simmons Unix — a friend for life September 12,2012 69/127

Regular Expressions Examples

 “notice” astring that has the text "notice" in it

e “F matches an “F” followed by any character

e “ab” matches “a” followed by any 1 char followed by “b”

e “AThe” matches any string that starts with "The"

* “oh boyS” matches a string that ends in the substring "oh boy";

 “NAabcS” matches a string that starts and ends with "abc" -- that could only

be "abc" itself!

e “ab*” matches an “a” followed by zero or more “b™'s ("a", "ab", "abbb",
etc.)

« “ab+” similar to previous, but there's at least one “b” ("ab", "abbb", etc.)

 “(b|cd)ef” matches a string that has either "bef" or "cdef"
« “a(bc)*” matches an “a” followed by zero or more copies of the sequence "bc"

« “3b{3,5” matchesan “a”followed by three to five “b™s ("abbb", "abbbb",
' or "abbbbb")

* “[Dd][Aa][VV][Ee]” matches "Dave" or "dave" or "dAVE“, does
not match "ave" or "da"

Chris Simmons Unix — a friend for life September 12,2012 70/127

UNIX Commands: grep

grep extracts lines from a file that match a given string or pattern

JE Terminal

=

Wwindow Edit Options

Help

/export/home/rob> cat sequence.fas

>c01_009 499 amino acids Mw=55632 D pI=5.38 numambig=0
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAI
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DYSNASRTMLFNINKLEWDREILELLKIPESILPEVRPSSDIYGYTEVLGSSIPISGDAG
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
SIFITGAAVQWFRDGLGREPKICKSBUTTASVPDTGGVYFVPAFVGLGAPYWDPYARGLI
IGITRGTTKAHIARAILESIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD
ILGIRVVRPKVMETASMGVAMLAGLAINYWNSLNELKQKWTVDKEFIPSINKEERERRYN

AWKEAVKRSL GWEKSLGSK*)t ...

(\
/export/home/rob> grep '[ST].[RK]' sequence.fas
MPGGFILAIDEGTTSARAIIYNQDLEVLGIGQYDFPQHYPSPGYVEHNPDEIWNAQMLAT
KEAMKKAKIESRQVAGIGVTNQRETTILWDAISGKPIYNAIVWQDRRTSNITDWLKENYF
DQQAALFGQVAYDMGEVKSTYGTGSFILMNIGSNPIFSENLLTTIAWGLESKRVTYALEG
IGITRGTTKAHIARAILESTIAYQNRDVIEIMEKESGTKINILKVDGGGAKDNLLMQFQAD

&

—

a regular expression search e

Chris Simmons Unix — a friend for life

September 12,2012 71/127

regex: another unix culture

OH NO! THE KILLER || BUT TO FIND THEM WED HAVE TO SEARCH
MUST HAVE FOLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR

WHENEVER T LEARN A, |
NEW SKILL T ConcoCT | | HER ON VACATION ! || SOMETHING FORMATTED LIKE AN ADDRESS!

ELABORATE. FANTASY I /
SCENARI0S WHERE (T _ ~— [T5 HOPELESS!
LETS ME. SAVE THE DAY. %
: T KNOW REGUIAR
|| (R

ﬁ X % http://xkcd.com/208/

September 12,2012 72/127

Unix — a friend for life

Chris Simmons

Shell Customization

 Each shell supports some customization.
— user prompt settings
— environment variable settings
— aliases

 The customization takes place in startup files
which are read by the shell when it starts up

— Global files are read first - these are provided by the
system administrators (eg. /etc/profile)

— Local files are then read in the user’s HOME directory
to allow for additional customization

Chris Simmons Unix — a friend for life September 12,2012 73/127

N
Shell Startup Files

~/ .profile

~/ .bash profile
~/ .bash login
~/ .profile

~/ .bashrc

~/ .bash logout

~/ .tshrc
~/ .cshrc
~/.login
~/ .logout

Chris Simmons Unix — a friend for life

.
Programs and Standard 1/0O

tandard Output

(STDOUT)
Note: File descriptors
are associated with
each stream
0=STDIN Standard Error
1=STDOUT (STDERR)
2=STDERR

Chris Simmons Unix — a friend for life September 12, 2012 75/127

Defaults for 1/0O

* When a shell runs a program for you:
— standard input is your keyboard

— standard output is your screen or window
— standard error is your screen or window

e If standard input is your keyboard, you can type stuff in that
goes to a program

* To end the input you press Ctrl-D (D) on a line by itself, this
ends the input stream

 The shell is a program that reads from standard input

Any idea what happens when you give the shell AD?

Chris Simmons Unix — a friend for life September 12,2012 76/127

Shell Stream Redirection

* A very powerful function in Unix is redirection for input and
output:
— The shell can attach things other than your keyboard to standard
input (stdin)

* Afile (the contents of the file are fed to a program as if you typed it) -
common in scientific programming

* A pipe (the output of another program is fed as input as if you typed it)

— The shell can attach things other than your screen to standard output
(stderr)

» A file (the output of a program is stored in file)
* A pipe (the output of a program is fed as input to another program

Chris Simmons Unix — a friend for life September 12,2012 77/127

Stream Redirection

* To tell the shell to store the output of your
program in a file, follow the command line for
the program with the “>” character followed by
the filename:

ls > lsout

* The command above will create a file named

l1sout and place the output of the 1s
command in the file

Chris Simmons Unix — a friend for life September 12,2012 78/127

Stream Redirection

e To have the shell get standard input from a file, use the
“<" character:

sort < nums

. The command above would sort the lines in the file nums
and send the result to stdout

e The beauty of redirection is that you can do both forms
together:

sort < nums > sortednums

Chris Simmons Unix — a friend for life September 12,2012 79/127

N
Modes of Output Redirection

 There are two modes of output redirections:
— “>” the create mode
— “>>"” the append mode

 For example:

— the command 1s > foo will create a new file
named foo (deleting any existing file named foo).

— if you use “>>~ instead, the output will be
appended to foo:

ls /etc >> foo
ls /usr >> foo

v

Chris Simmons Unix — a friend for life September 12, 2012 80/127

-
Stream Redirection

* Many commands send error messages to standard error (stderr) which
is different from stdout.

 However, the “>” output redirection only applies to stdout (not stderr)

 Toredirect stderr to a file you need to specify the request direclty (note
that this syntax is shell dependent):
— BASH
“2>” redirects stderr (eg. 1s foo blah gork 2> erroroutput)
o “&>"” redirects stdout and stderr (eg. 1s foo &> /dev/null)
* “>> filename 2>&1” merges stdout and stderr and appends to filename

Chris Simmons Unix — a friend for life September 12,2012 81/127

Example of stderr/out

[albook:~/tst] %% cc -0 errout errout.c
[albook:~/tst] %% errout

al
[albook:~/tst] %% cat errout.c b2
#include <stdlib.h> [albook:~/tst] %% errout > what.out
#include <stdio.h> b2
[albook:~/tst] %% cat what.out
int main() al
{ [albook:~/tst] % % errout 1> out.out 2> err.out
fprintf(stdout,"al\n"); [albook:~/tst] %% cat out.out
fprintf(stderr,"b2\n"); al
return 0; [albook:~/tst] %% cat err.out
) b2

[albook:~/tst] %% cat erroutf.f [albook:~/tst] %% errout > all.out 2>&1
program errout [albook:~/tst] %% cat all.out

write(6,%) "al" b2

write(0,*) "b2" al
end program [albook:~/tst] %% errout &> all.out

[albook:~/tst] %% cat all.out
b2
al

Note: this only works this way in sh/bash

Chris Simmons Unix — a friend for life September 12, 2012

82/127

Wildcards for Filename Abbreviation

* When you type in a command line the shell
treats some characters as special
(metacharacters)

 These special characters make it easy to
specify filenames

* The shell processes what you give it, using
the special characters to replace your
command line with new strings

Chris Simmons Unix — a friend for life September 12, 2012 83/127

The special character *

e “*” matches anything.

* |f you give the shell “*” by itself (as a
command line argument), the shell will
remove the * and replace it with all the

filenames in the current directory.

e “a*b” matches all files in the current
directory that start with a and end with b.

* This looks like regular expressions but isn’t
qguite the same.

Chris Simmons Unix — a friend for life September 12, 2012 84/127

Understanding *

e The echo command prints out whatever you tell it:

> echo hi
hi

> 1s
dirl foo foo2

 What will the following command do?

> echo *
dirl foo foo2

Chris Simmons Unix — a friend for life September 12, 2012 85/127

Understanding ?

e The ? matches one single character:

> 1ls
dirl fool foo2

* What will the following command do?

> 1ls foo0?

fool foo2

Chris Simmons Unix — a friend for life September 12, 2012 86/127

Job Control

* The shell allows you to manage jobs
— place jobs in the background
— move a job to the foreground
— suspend a job
— kill a job
* |f you follow a command line with “&”, the shell will run the
job in the background
— this is you useful if you don’t want to wait for the job to complete
— you can type in a new command right away
— you can have a bunch of jobs running at once

>cat foo | sort | uniq > saved sort &

Chris Simmons Unix — a friend for life September 12,2012 87/127

Background jobs

 Handy for programs you need throughout a session:
emacs &

e For commands that take a lot of time:
make all &> make.out &

* If the job will run longer than your session:
nohup make all &> make.out &

Chris Simmons Unix — a friend for life September 12, 2012 88/127

.
Listing Your Jobs

* The command jobs will list all background
jobs:

> jobs
[1] Running cat foo | sort | unig >
saved ls &

* The shell assigns a number to each job (in
this case, the job number is 1)

Chris Simmons Unix — a friend for life September 12,2012 89/127

Managing Jobs

* You can kill the foreground job by pressing
AC
(Ctrl-C).

* You can also kill a job in the background
using the kill command (and the job index)

Note: it’s important to include the
“%” sign to reference a job number.

> kill %1

Chris Simmons Unix — a friend for life September 12, 2012 90/127

Moving Jobs between fore/background

* Turn a foreground process into background:
— Use ~-Z to suspend the command
— Use the bg command to send the job to the background

> sleep 60

Suspended

> Jjobs

[1] + Suspended sleep 60

> bg

[1] sleep 60 &

> jobs

[1] Running sleep 60
* The £g command will move a job to the foreground.

— You give £g a job number (as reported by the jobs command)

> Jjobs
[1] Stopped ls -1R > saved 1ls &
> fg %1

ls -1R > saved ls

Chris Simmons Unix — a friend for life September 12,2012 91/127

Unix Environment Variables

* Unix shells maintain a list of environment variables which
have a unique name and a value associated with them

— some of these parameters determine the behavior of the shell

— also determine which programs get run when commands are
entered (and which libraries they link against)

— provide information about the execution environment to programs
 We can access these variables:

— set new values to customize the shell
— find out the value of some to help accomplish a task

Chris Simmons Unix — a friend for life September 12,2012 92/127

Environment Variables

 To view environment variables, use the env (or printenv Jcommand

e |If you know what you are looking for, you can use your new friend
grep:

> env | grep PWD
PWD=/home/karl

* Use the echo command to print variables; the “S” prefix is required
to access the value of the variable:

> echo S$PWD
/ tmp

e (Can also use environment variables in arbitrary commands:
Koomie@canyon--> ls $PWD
fool £foo02

Chris Simmons Unix — a friend for life September 12, 2012 93/127

Special Environment Variable:
PATH

 Each time you provide the shell a command to execute, it
does the following:
— Checks to see if the command is a built-in shell command

— If it is not a build-in command, the shell tries to find a program
whose name matches the desired command

* How does the shell know where to look on the filesystem?

e The PATH variable tells the shell where to search for
programs (non built-in commands)

Chris Simmons Unix — a friend for life September 12,2012 94/127

N
Special Environment Variable:

PATH

 Example PATH Definition:

-> echo $PATH

/home/karl/bin/krb5: /opt/intel/compiler70/ia32/
bin:/home/karl/bin: /usr/local/apps/mpich/icc/
bin:/usr/kerberos/bin: /usr/local/bin: /bin: /usr/
bin:/usr/X11R6/bin

e The PATH is a list of directories delimited by colons (":“)

— It defines a list and search order

— Directories specified earlier in the PATH take precedent; once the
matching command is found, the search terminates

* You can add more search directories to your PATH by

changing the shell startup files
— BASH: export PATH="SPATH":/home/karl/bin J

Chris Simmons Unix — a friend for life September 12, 2012 95/127

Other Important Variables

PWD current working directory

MANPATH determines where to find man pages
HOME home directory of user

MAIL where your email is stored

TERM what kind of terminal you have

PRINTER specifies the default printer name
EDITOR used by many applications to identify your

choice of editors (eg. vi or emacs)

LD LIBRARY PATH specifies a search path for
dynamic runtime libraries

Chris Simmons Unix — a friend for life September 12, 2012 96/127

Setting Environment Variables

* The syntax for setting Unix environment variables depends on your shell:

— BASH: use the export command
> export PRINTER=scully
> echo S$PRINTER
scully

— TCSH: use the setenv command
> setenv PRINTER mulder
> echo S$PRINTER
mulder

* Note: environment variables that you set interactively are only available
in your current shell
— If you spawn a new shell (or login again), these settings will be lost

— To make permanent changes, you should alter the login scripts that affect
your particular shell (eg. .login, .bashrc, .cshrc, etc...)

Chris Simmons Unix — a friend for life September 12,2012 97/127

Modules on TACC Machines

* Modules are used to setup and remove various environment variables

along with PATH, LD_LIBRARY_PATH declarations

 They are used to setup environments for packages & compilers.

hbar%
hbar%
hbar%
hbar%
hbar$%
hbar%

module
module
module
module
module
module

list

avail

del <module>

add <module>

switch <modl> <mod2>

e Demonstration...

{lists options}

{lists loaded modules}
{lists available modules}
{removes a module}
{add a module}

{switch modules}

Chris Simmons

Unix — a friend for life

September 12, 2012 98/127

Text Editors

Text Editors

* For programming and changing of various text files, we need
to make use of available Unix text editors

 The two most popular and available editors are vi and emacs

* You should familiarize yourself with at least one of the two
(and this let’s you enter into the editor wars which is a never-
ending debate in the programming community)

http://en.wikipedia.org/wiki/Editor war

 We will have very short introductions to each....

Chris Simmons Unix — a friend for life September 12,2012 100/127

Brief history of Unix text editors

 ed:line mode editor

e ex:extended version of ed
e vi :full screen version of ex
* vim - VilMproved

e emacs : another popular editor, deep GNU,FSF
roots

 ed/ex/vi share lots of syntax, which also comes
back in sed/awk: useful to know.

Chris Simmons Unix — a friend for life September 12,2012 101/127

Vi Overview

 Fundamental thing to remember about vi is that it has two different
modes of operation:

— Insert Mode
— Command mode

e The insert mode puts anything typed on the keyboard into the current
file

e The command mode allows the entry of commands to manipulate text.
These commands are usually one or two characters long, and can be
entered with few keystrokes

* Note that vi starts out in the command mode by default

Chris Simmons Unix — a friend for life September 12,2012 102/127

Vi Overview

e Quick Start Commands
—>vi
— Press i to enable insert mode
— Type text (use arrow keys to move around)
— Press Esc to enable command mode
— Press :w <filename> to save the file
— Press :q to exit vi

Chris Simmons Unix — a friend for life September 12,2012 103/127

Useful vi commands

e :g! - exit without saving the document. Very handy for beginners

e :wq-—save and exit

e /<string> - search within the document for text. n goes to next result
 dd—delete the current line

e yy-—copy the current line

* p—paste the last cut/deleted line

 :1-gotofirstlinein the file

e :S-goto last line in the file

 S—end of current line, » — beginning of line

* % —show matching brace, bracket, parentheses

Chris Simmons Unix — a friend for life September 12,2012 104/127

e
Additional vi References

e http://www.eng.hawaii.edu/Tutor/vi.html

e http://staff.washington.edu/rells/R110/

e Vi Commands Reference card:
http://tnerual.eriogerg.free.fr/vimgrc.pdf

e vimtutor —the Vim tutor

Chris Simmons September 12,2012 105/127

Emacs Overview

* Programmer friendly modes for common languages (C/C++,
Fortran, shell scripts, etc)

* Different from vi in that emacs has only one-main mode
e Lots of commands and extremely customizable (using LISP)

* Includes some very sophisticated features if you take the
time to learn them:

— Compile your executables within emacs

— Interact with your revision control process (eg. CVS/subversion)
— Control RPM software builds

— Debug your application using gdb

Chris Simmons Unix — a friend for life September 12,2012 106/127

Emacs Overview

* >emacs myfile opens myfile for editing

* Type whatever text you like (use arrow keys to navigate)
e (C-x C-s (control + x, control + s) — saves the file

e (C-g exits the current command

e C-xu-Undo

e (C-x C-c exit after saving

Chris Simmons Unix — a friend for life September 12,2012 107/127

Additional Emacs References

 http://www.lib.uchicago.edu/keith/tcl-course/emacs-tutorial.html

 http://www.stolaf.edu/people/humke/UNIX/emacs-tutorial.html

 Emacsincludes its own on-line tutorial; to run issue the following:

— > emacs

— Then, enter “C-h t”, to invoke the on-line emacs tutorial (that’s a
“Control-h”, followed by a “t”)

Chris Simmons Unix — a friend for life September 12,2012 108/127

Unix tOOI: Sed $% cat 123

one

word

is is

enough

words

% sed s/word/picture/ 123
one

picture

is is

enough

pictures

% sed 2,4s/word/picture/ 123
one

picture

is is

enough

words

% sed -e 's/word/picture/' -e 's/is$/often/' 123
one

picture

is often

enough

pictures

e Stream editor: editor
commands applied to
an input file or stream,
giving an output stream

0 T WNER PO WMNPRUIE WNRIPOUIE WDNPR

o°

Chris Simmons Unix — a friend for life September 12,2012 109/127

Unix tool: awk

e Pattern/action
pairs, applied
successively to
each line

[albook:~/tst] %% cat awk.in
C from filel.f
subroutine foo
call something
end
C from file2.f
subroutine bar
call something(else)
end

%% awk '{print $0}' awk.in
C from filel.f
subroutine foo
call something
end
C from file2.f
subroutine bar
call something(else)
end
$% awk '{print $1}' awk.in

Q

subroutine

call

end

C

subroutine

call

end

%% awk '/subroutine/ {print $2}' awk.in
foo

bar

Chris Simmons

Unix — a friend for life

Unix Scripting

e Scripting is “easy” - you just place all the Unix commands in
a file as opposed to typing them interactively

 Handy for automating certain tasks:
— staging your scientific applications
— performing limited post-processing operations
— any repetitive operations on files, etc...

* Shells provide basic control syntax for looping, if constructs,
etc...

Chris Simmons Unix — a friend for life September 12,2012 111/127

Unix Scripting

» Shell scripts must begin with a specific line to indicate which shell should be
used to execute the remaining commands in the file:

— BASH:
#!/bin/bash

— TCSH
#!/bin/tcsh

e Comment lines can be included if they start with #

* Inorder to run a shell-script, it must have execute permission. Consider the
following script:

> cat hello.sh
#!'/bin/bash
echo “hello world”

> ./hello.sh
./hello.sh: Permission denied.

> chmod 700 hello.sh
> ./hello.sh
hello world

Chris Simmons Unix — a friend for life September 12,2012 112/127

N
Unix Scripting: Arithmetic
Operations

* Simple arithmetic syntax depends on the shell:

il=2

j1=6

k1=$ (($i1*$31))

echo "The multiplication of $il and $jl1 is $kl1”

* Note, you can also use the expr command (for both shells). For

example:
— z="expr $il + $jl1°

consult man page on

* For floating point use bc expr and bc for more
$ echo "scale=4; 2 / 3" | bc -1 | details

.6666

Chris Simmons Unix — a friend for life September 12,2012 113/127

Unix Scripting: Conditionals
* Syntax for conditional expressions depends on your choice of shell:

* BASH (general format):

if [condition A]; then
code to run if condition A true
elif [condition B]; then
code to run if condition A false and
condition B true
else
code to run if both conditions false

fi

Chris Simmons Unix — a friend for life September 12,2012 114/127

Unix Scripting: String Comparisons

e stringl =string2 Test identity
e stringl !=string2 Test inequality

* -nstring the length of string is
nonzero
e -z string the length of string is
Zero
BASH Example:
today="monday"
if ["$today" = "monday"] ; then
echo '"today is monday"
fi

Chris Simmons Unix — a friend for life September 12,2012 115/127

BASH Integer Comparisons

e intl—eqint2 Testidentity
 intl-neint2 Testinequality
 intl-ltint2 Less than

e intl—gtint2 Greater than

* intl-leint2 Less than or equal

intl —ge int2 Greater than or equal

BASH Example:

x=13

y=25

if [$x -1t Sy]; then
echo “$x is less than S$y"

fi

Chris Simmons Unix — a friend for life September 12,2012 116/127

Unix Scripting: Common File Tests

« -dfile Testiffileisa directory

« -ffile Testiffileis nota directory

« -sfile Testif the file has non zero length
« -rfile Testifthe fileisreadable

« -wfile Testif the file is writable

« -xfile Testifthe fileis executable

e -ofile Testifthe fileis owned by the user
e -efile Testifthe file exists

BASH Example:

if [-£f foo]; then
echo "foo is a file"

fi

Chris Simmons Unix — a friend for life September 12,2012 117/127

Unix Scripting: For loops

e These are useful when you want to run the same command in sequence
with different options

example:
for VAR in testl test5 test7b finaltest; do
runmycode $VAR > $VAR.out
Done

one-liner

for i in 'seq 1 5°; do echo $i; done

Chris Simmons Unix — a friend for life September 12,2012 118/127

N
Quoting in Unix

e We've seen that some metacharacters are treated
special on the command line: * 2

 What if we don't want the shell to treat these as special -
we really mean *, not all the files in the current directory

* To turn off special meaning - surround a string with
double quotes:

> echo here is a star "*"
here is a star *

Chris Simmons Unix — a friend for life September 12,2012 119/127

Use of Quotes

* You have to be careful with the use of different styles of
guotes in your commands or scripts

* They have different functions:
— Double quotes inhibit wildcard replacement only

— Single quotes inhibit wildcard replacement, variable
substitution and command substitution

— Back quotes cause command substitution

Chris Simmons Unix — a friend for life September 12,2012 120/127

e
Double Quotes

Double quotes around a string turn the string in to a
single command line parameter:

> 1s
fee file? foo
> 1ls "foo fee file?"

ls: foo fee file?: No such file or
directory

Double quotes only inhibit wildcards; use \ to escape
special characters:

> echo “This is a quote \" "
This i1s a quote "

Chris Simmons Unix — a friend for life September 12,2012 121/127

e —
Single Quotes

* Single quotes are similar to double quotes,

but they also inhibit variable substitution and
command substitution

 Means that special characters do not have to
be escaped:

> echo 'This is a quote \" '
This is a quote \"

Chris Simmons Unix — a friend for life September 12,2012 122/127

Back Quotes

If you surround a string with back quotes, the string is
replaced with the result of running the command in back

quotes:

> echo "1ls°

foo fee file?

> echo "It is now date and OU is still

questionable”
It is now Tue Sep 19 11:24:25 CDT 2006 and OU is

still questionable

Chris Simmons Unix — a friend for life September 12,2012 123/127

More Quote Examples

 Some Quoting Examples:
S echo Today is date
Today is date
S echo Today is ‘date’
Today is Thu Sep 19 12:28:55 EST 2002
S echo ”"Today is “date™
Today is Thu Sep 19 12:28:55 EST 2002

£k L6

S echo ‘Today is ‘date™ = double quotes

‘¢ =single quotes

Today is ‘date’ "' = back quotes

Chris Simmons Unix — a friend for life September 12,2012 124/127

Command-Line Parsing

* To build generic shell scripts, consider using command-line arguments to provide the
inputs you need internally (syntax again depends on the choice of shell)

* Syntax:
- S# refers to the number of command-line arguments
- SO refers to the name of the calling command
— $1,S52,...,, SN refers to the Nth argument
- S* refers to all command-line parameters
echo "Calling command is: sSo"
echo "Total # of arguments is: S#"
echo "A list of all arguments is: $*"
echo "The 2nd argument is: s$2"

> ./foo.sh texas rose bowl

Calling command is: ./foo.sh

Total # of arguments is: 3

A list of all arguments is: texas rose bowl
The 2nd argument is: rose

Chris Simmons Unix — a friend for life September 12,2012 125/127

More UNIX Commands for Programmers

— man—k Search man pages by topic

— time How long your program took to run

— date print out current date/time

— test Compare values, existence of files, etc

— tee Replicate output to one or more files

— diff Report differences between two files

— sdiff Report differences side-by-side

— WC Show number of lines, words in a file

— sort Sort a file line by line

— gzip Compress a file

— gunzip Uncompress it

— strings Print out ASCII strings from a (binary)

— ldd Show shared libraries program is linked to
— nm Show detailed info about a binary obj

— tar Archiving utility

— uniqg Remove duplicate lines from a sorted file
— which Show full path to a command

— file Determine file type ’

Chris Simmons Unix — a friend for life September 12,2012 126/127

Text editors — another subculture

nano? REAL HEY. REAL WELL, REAL | | NO, REAL | |REAL PROGRAMVERS EXCUSE ME, BUT
PROGRAMMERS PROGRAMMERS | | PROGRAMMERS | | PROGRAMMERS | | USE A MAGNETIZED REAL PROGRAMMERS
USE emacs USE vim. VSE ed. USE cat. NEEDLE AND A USE BUTTERFLIES.

%

THE DISTURBANCE RIPPLES WHICH ACT AS LENSES THAT NICE.

THEYOPEN THEIR OUTWARD, CHANGING THE FLOW DEFLECT INCOMING COSMIC COURSE, THERES AN EMACS

HANDS AND LET THE | OF THE EDDY CURRENTS RAYS, FOCUSING THEM TO commwo TO DO THAT.

DELICATE WINGS FLAPONCE.| | THE UPPER mmsmaRE STRIKE THE DRIVE PLATTER ,
AND FLIP THE DESIRED) BIT, OH YERH GOoD o

" "’ '_.A.'._ ,A' N 2 3 ‘ C'x H C n buﬁerfl
T w . -
N D=5
THESE CAUSE MOTENTARY POCKETS s
OF HIGHER-PRESSURE. AR TO FORM,

Wﬁiﬁ

DAMAIT, EMACS.

Chris Simmons Unix — a friend for life

