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ABSTRACT

To make progress in the face of possible system failures,

long-running parallel applications often checkpoint, or save

their state, so they can resume execution. Many cur-

rent checkpointing techniques require user input, impose

run-time performance penalties, or result in all processes

checkpointing synchronously which leads to network and

file system contention, again resulting in significant perfor-

mance penalty. This paper presents an algorithm to perform

compiler-placed staggered checkpointing, where process

checkpoints are placed at compile-time at different places

in the application text, thereby reducing contention for the

network and file system.

Identifying staggered checkpoints is algorithmically

challenging since the number of possible solutions is

enormous—it grows as LP , where L is the number of

possible checkpoint locations and P is the number of

processes—and the number of desirable solutions is rela-

tively small. But our algorithm successfully places stag-

gered checkpoints in parallel applications that use tens

of thousands of processes. On benchmarks, our algo-

rithm generates and places checkpoints that improve per-

formance by an average of 35% over the current technique.
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1 Introduction

Supercomputers are large-scale systems often composed of

many thousands of processors. These machines support

long-running parallel applications that can use tens of thou-

sands of processes. Unfortunately, these applications might

encounter failures before they complete, due to problems

with the application itself, system software errors, or hard-

ware failures [1–3]. To mitigate the effect of these failures,

each process can periodically save its state in a checkpoint

so that the application can restart execution after a failure.

The checkpoint and recovery process is greatly simplified

if the set of checkpoints can be guaranteed to represent a

consistent state [4], which means that the state could have

existed during the execution of the application.

Typically, programmers manually choose where the

application checkpoints by placing a checkpoint call in the

application source code, ensuring a consistent saved state

by synchronizing all processes before and after the check-

points. This technique is fairly straightforward to imple-

ment. Unfortunately, as the number of processes grows,

these synchronous checkpoints suffer from significant over-

head due to network and file system contention [5].

This paper presents an alternative to programmer-

placed checkpoints that scales to applications using tens of

thousands of processes. In particular, we present an algo-

rithm that allows compilers to place staggered checkpoints,

where the process checkpoint calls are placed at different

locations in the application text while guaranteeing that

the saved checkpoints form a consistent state. Our solu-

tion assumes that spacing process checkpoint calls in the

application text results in a corresponding temporal spac-

ing during execution—creating a separation in time of each

process’s checkpoint and reducing network and file system

contention and thus checkpoint overhead. Our algorithm

guarantees the consistency of the checkpoint without: 1)

dynamic coordination among processes, 2) message log-

ging, or 3) user input. Our solution also allows processes

to save checkpoints during inter-process communication.

It is difficult to place consistent staggered checkpoints

in an application because the number of possible solutions

grows as LP , where L is the number of possible checkpoint

locations, or sites in the application text where a process

checkpoint call may be placed, and P is the number of pro-

cesses, and the number of valid solutions is minuscule. For

example, for the NAS Parallel Benchmark BT [6] using just

16 processes, 3816 possible solutions exist but only 191 of

those are valid. Desirable solutions—those that both save

a consistent state and are sufficiently staggered to reduce

contention—are even more rare. Thus, any algorithm that

arbitrarily reduces the search space is unlikely to find de-

sirable solutions. Our algorithm uses informed techniques

to reduce the search space—enabling it to reduce the search

space for BT using 1,024 processes by 1,594 orders of mag-

nitude before it begins generating solutions.

We also introduce a static metric for evaluating the de-

sirability of a solution. This metric enables the algorithm

to quickly identify solutions that reduce network and file

system contention. We show that using this metric, the so-

lutions chosen by our algorithm achieve a 24% decrease



in checkpoint time when the checkpoints can be staggered

over a three minute window. When given a fifteen minute

window, checkpoint time is decreased by 44%.

2 Related Work

Network and file system contention can be reduced in three

ways: (1) processes can save their checkpoints to some de-

vice other than the global file system, (2) checkpoint size

can be reduced, and (3) the number of simultaneous check-

points can be reduced.

The first approach often saves checkpoints to the local

disk of another machine [7–9], but many supercomputers

do not provide this form of storage. Alternatively, check-

points can be saved to another node’s main memory [9], but

that is not suitable for memory-bound applications.

The second approach reduces the checkpoint

size [10], but for large problem sizes, such solutions still

incur significant contention.

Staggered checkpointing falls into the third category,

where our work is distinguished by its scalability. Previ-

ous staggered checkpointing methods focused on systems

with just a small number of processes [11, 12]. Other pro-

tocols reduce the number of simultaneously writing pro-

cesses by partitioning processes and then performing coor-

dinated checkpointing within the partitions [13, 14]; these

protocols suffer from dynamic coordination and require

message logging for communication between partitions. In

message logging, processes write their messages to a log

so that, if necessary the messages can be replayed during

recovery to create a consistent state. Checkpointing tech-

niques that use message logging require that the applica-

tion has enough unused memory on the local hardware to

store message logs, a requirement that is not met by many

applications [15]. Another protocol [16] allows for unco-

ordinated checkpointing, which reduces contention for the

network and file system but also requires message logging.

Previous compiler-assisted checkpointing work

includes techniques that stagger checkpoints across

communication-free zones [17, 18], but many applications

do not have sufficiently large communication-free zones to

reduce contention for large problem sizes. Another line of

work [19, 20] uses compilers to assist in identifying valid

recovery lines, but this work does not attempt to stagger

the checkpoints to reduce contention.

3 Background

In this section, we define terms and concepts that we need

to explain our algorithm.

A recovery line is a set of checkpoints, one checkpoint

per process. A valid recovery line represents a consistent

state, or a state that could have existed in the execution of

the program [21], so it disallows the save of a message re-

ceive if the corresponding send of the message is not also

saved. By ensuring that data shared amongst processes is
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Figure 1. Examples of invalid (a) and valid (b) recovery

lines. The arrows represent message sends. The source is

the sending process and the target is the receiving process.

The X’s mark checkpoint locations.

the same data everywhere, valid recovery lines save a con-

sistent state even in the face of non-determinism in appli-

cations. For example, recovery line a in Figure 1 is invalid

because it saves a message as received on process 1 while

process 0 does not save the corresponding send. Thus, the

state represented by a could not exist in an actual execution

of the system. By contrast, recovery line b is valid because

it could have existed in a possible execution.

Our algorithm specifies a recovery line as set of

{process, checkpoint location} pairs, with one pair for each

process. Since our algorithm builds recovery lines incre-

mentally, we define a partial recovery line to be a set of

{process, checkpoint location} pairs for a subset of the pro-

cesses in the system; a partial valid recovery line is a partial

recovery line that could be a subset of a valid recovery line.

Valid recovery lines can differ in the number of pro-

cesses that checkpoint at approximately the same time, and

thus they differ in terms of the network and file system con-

tention that they induce. Thus, we refer to one recovery line

as being better than another if it reduces that contention and

so has lower checkpoint overhead.

4 Our Solution

Our solution strives to create useful recovery lines, which

are lines that are both valid and consist of process check-

point calls that are sufficiently staggered to reduce net-

work and file system contention and thus checkpoint over-

head. Our solution is applicable to either message passing

or shared memory programs, including those using non-

deterministic communication. Non-deterministic commu-

nication causes our algorithm to identify more conservative

communication dependences.

Our solution has three phases: the first identifies all

communication using a static analysis, the second deter-

mines inter-process dependences by statically creating vec-

tor clocks1, and the third generates recovery lines. We fo-

cus on the last phase since it represents our most novel and

important contributions, while the other two phases are rel-

atively straightforward [22].

1Vector clocks were developed independently by prior researchers.



identify communication

divide application into phases (Sec 4.2.2)

for each phase

perform control-dependence analysis to

determine which processes execute each

communication call and checkpoint location

identify process dependences

generate clumps (Sec 4.2.3)

form clumpsets (Sec 4.2.3)

merge any checkpoint locations not

separated by a minimum number of local

operations (Sec 4.2.2)

for each clump set

generate_lines() (Sec 4.2.1)

Figure 2. Pseudocode for Our Algorithm, Part 1

We restrict checkpoint locations to coincide with

dependence-generating events, which are typically com-

munication and synchronization operations. In principle,

the checkpoint locations can be adjusted relative to these

events to both increase the separation of the checkpoints

and reduce the amount of checkpoint data, but we leave

such considerations to future work.

The algorithm that generates recovery lines is de-

signed to eliminate redundant work and reduce the search

space. To place this work in context, we first briefly present

the obvious depth-first search algorithm.

4.1 Brute Force Algorithm

An obvious algorithm uses exhaustive depth-first search

(DFS) to combine {process, checkpoint location} pairs into

recovery lines. It checks the validity of each line after each

new {process, checkpoint location} pair and backtracks

when a recovery line is found to be invalid. This algorithm,

which has an executions complexity of O(P 2 ∗LP ), where

P is the number of processes and L is the number of check-

point locations, becomes infeasible for even small values of

P . Moreover, it performs much redundant work, repeatedly

checking pair combinations already found to be invalid.

4.2 Our Algorithm

We now describe our algorithm, beginning with our foun-

dation algorithm, which eliminates portions of the search

space that contain no valid recovery lines. Then we present

techniques that reduce the number of considered check-

point locations, L. Finally, we describe two heuristics: the

first reduces the number of considered processes, P , and

the second preferentially produces useful recovery lines.

The resulting algorithm is outlined in Figures 2 and 3.

Our solution assumes that applications are written in

generate_lines()

divide clumps into partitions

while (partition_size < # of clumps in set)

combine partitions into sets

for (each partition combination)

if(initial clump/location pair is valid)

merge partition combination into

partial valid recovery line

add new partial valid recovery

line to set of recovery lines

if(# of recovery lines >

line check threshold) (Sec 4.2.7)

for (each recovery line)

if(line is valid)

add line to valid set

if(set of valid lines >

pruning threshold) (Sec 4.2.7)

evaluate valid lines using

branch and bound policy with

Wide-And-Flat (Sec 4.2.6)

keeping the number of lines

set by lines to keep

(Sec 4.2.7)

if(initial pair or line invalid) &&

(# of recovery lines >

line check threshold))

use strictly increasing nature of

dependences to prune (Sec 4.2.4)

Figure 3. Pseudocode for Our Algorithm, Part 2

the Single Process Multiple Data (SPMD) model and that

communication is explicit at compile time.

4.2.1 Foundation Algorithm

The foundation algorithm is a constraint-satisfaction solu-

tion synthesis algorithm2that builds valid recovery lines by

combining {process, checkpoint location} pairs into larger

partial valid recovery lines until complete valid recovery

lines are generated. Our algorithm begins by placing pro-

cesses into partitions of size k. For each partition, the al-

gorithm generates all partial valid recovery lines. It then

merges j partitions to create a new partition and combines

the partial valid recovery lines from each source partition

to form new recovery lines, storing the valid ones. The

algorithm repeats these steps until all processes are in the

same partition and the generated valid recovery lines are

complete. This technique eliminates redundant compar-

isons of invalid {process, checkpoint location} pair combi-

nations by immediately pruning each invalid combination

2It is based on the basic Essex solution synthesis algorithm [23].
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Figure 4. An example of our foundation algorithm, where

k = 3 and j = 2. At the base of the diagram, each block

represents a process and that process’s checkpoint loca-

tions. In the top levels, each line in the merged partitions

represents either a partial or complete valid recovery line.

from consideration. Figure 4 shows an example of how the

foundation algorithm proceeds. We found the algorithm to

be fastest and generate the best results for k = 2 and j = 2.

The execution complexity is O(log(P ) ∗ LP−2).

4.2.2 Reducing L

To reduce the O(LP ) sized search space, we reduce the

value of L by dividing the application into phases, which

are application segments delimited by events that synchro-

nize all processes, such as barriers or collective communi-

cation. Valid recovery lines cannot straddle such events,

so our algorithm searches within each phase. Furthermore,

because the goal is to spread the checkpoints apart in time,

the algorithm further reduces L by considering the set of

well-separated locations within a phase. dditionally, in

some applications so few local operations, or operations

that execute entirely on the local machine, separate poten-

tial checkpoint locations that these locations are in close

temporal proximity; separating process checkpoint loca-

tions across these events would be unlikely to reduce con-

tention. The algorithm therefore considers any checkpoint

locations that are not separated by some minimum amount

of local operations to be a single location.

The execution complexity of the algorithm remains

the same as that of the foundation algorithm O(log(P ) ∗
LP−2) and the algorithm must now execute once per phase,

but the value of L is now significantly reduced.

4.2.3 Reducing P

The number of checkpoint locations in a given phase is

typically much smaller than the number of processes, so

multiple processes must write their checkpoints at the same

checkpoint location. If the processes that write their check-

points together also communicate with each other, then the

number of invalid recovery lines will be reduced since com-

munication generates recovery line constraints. To exploit

this property, our algorithm generates clumps, which are

sets of processes that communicate between two consec-

utive checkpoint locations.The algorithm considers each

clump as a single entity when it generates a recovery line,

and so every process in a clump writes its checkpoint at the

same checkpoint location.

The clumps are then further assigned into clump sets.

A clump set is a group of clumps where each process is

represented exactly once, such that a recovery line formed

using every clump in a clump set is complete. Our recov-

ery line algorithm is then modified to: 1) execute once per

clump set and 2) place each of the set’s member clumps in

a recovery line rather than each process.

These techniques reduce execution complexity to

O(log(C) ∗ LC−2), where C is the number of clumps in

a clump set. The algorithm now executes once per clump

set for each phase—which increases only the coefficients.

4.2.4 Pruning Invalid Solutions

The dependences generated by an application’s com-

munication are strictly increasing, so when the algorithm

finds that two {clump, checkpoint location} pairs form an

invalid recovery line, it has information that it can use to

prune other lines without additional validity checks. Re-

call that an invalid line indicates that a clump, say clump

a, is saving fewer events than another clump, say clump b,

needs. So for any recovery line where clump a is check-

pointing at that checkpoint location, clump b cannot check-

point at its current location or at any later location. The

algorithm can use this information to prune any lines with

the clumps at those combinations of checkpoint locations.

4.2.5 Optimizations

Our algorithm is fast and bounds memory usage even

though checking recovery line constraints is time consum-

ing and storing recovery lines is memory intensive.

For speed, our algorithm performs only one valid-

ity check before generating a line: it compares the first

{clump, checkpoint location} pairs in each of the source

partial valid recovery lines—if they are compatible, then

the line is generated. It also generates many recovery

lines for each partition before performing complete valid-

ity checks, allowing the algorithm to leverage the constraint

information described in Section 4.2.4.

To bound memory usage, though, the algorithm may

not generate all of a partition’s recovery lines at once. In-

stead, it generates lines until the number generated reaches

a threshold and then prunes the invalid ones. The process

of generating and pruning recovery lines is iterative and

continues until all lines have been considered.

4.2.6 Branch-and-Bound

To bound memory usage and execution time, the algo-

rithm must limit the number of partial valid recovery lines

it keeps from each partition. However, it must also care-

fully select which lines to discard since it must retain par-



tial valid recovery lines that will result in useful recovery

lines. Lines that are less staggered have a better chance of

forming valid recovery lines as they are merged to complete

lines—the more staggered a line, the more communication

happens between each of its checkpoint locations and, thus,

the more constraints are introduced and the more likely it

is to become invalid as other clumps are introduced.

To find useful recovery lines, the algorithm uses the

branch-and-bound search strategy [24] in conjunction with

our novel Wide and Flat (WAF) metric. In this strategy,

heuristics tuned to the desired solution—those recovery

lines that are both valid and staggered—are used to prune

preliminary results. The heuristics are based on the WAF

metric, which statically estimates the amount of staggering

contained in both partial and complete recovery lines by

quantifying the interval of the checkpoint locations (width)

and the number of processes that would write their check-

point at each (flatness). Presently, this metric is a simplified

form of the circular string edit distance [25] from the gen-

erated line to a perfectly staggered one, and so the goal is

to find complete valid recovery lines with low WAF values,

which indicate that fewer edits are needed to convert that

line to the perfectly staggered line.

At each partition level, the algorithm determines

which lines to prune by separating the recovery lines into

bins based on their WAF values. During pruning, a mini-

mum number of lines is saved in each of the bins, which

ensures that some less staggered lines are kept. The details

of this policy are discussed in the next section.

4.2.7 Pruning Policy

Our pruning policy is designed to reduce the memory us-

age and execution time of our algorithm—here we discuss

some of the parameters that affect its performance. The set-

tings we use, which are displayed in Table 1, are based on

the available memory on the machines we use.

As explained in Section 4.2.4, the algorithm generates

some threshold number of recovery lines, the Line Check

Threshold, before performing validity checks and elimi-

nating invalid lines. A higher number for this threshold

results in more lines begin checked for validity at once and

thus more potential for the algorithm to leverage informa-

tion from invalid lines. A higher number also reduces the

number of pruning interruptions and decreases the algo-

rithm execution time but causes more lines to be stored,

which increases the algorithm’s memory usage.

After eliminating the invalid lines, if the number of

remaining valid lines is above the Pruning Threshold, the

algorithm begins deleting some of the latter. The algorithm

prunes lines until the total number of lines is some factor

of the pruning threshold, Lines to Keep. As explained in

Section 4.2.6, the algorithm uses each line’s WAF value to

choose which ones to delete. It leaves a minimum number

of lines in each bin (Minimum Lines in Each Bin) and

deletes the rest; this minimum helps ensure that valid lines

are found, since it preserves the lines in higher bins that are

more likely to form complete valid lines. This minimum is

determined by a formula that approaches zero as the algo-

rithm nears completion.

4.2.8 Correctness Considerations

Some programs delegate communication to wrapper func-

tions, so the context of a function call determines which

processes execute the communication. Thus, our algorithm

places context-sensitive recovery lines. It does so by insert-

ing a single integer variable in the application text, which

is modified to produce a unique value for each context dur-

ing execution [26]. Process checkpoints are guarded by a

condition checking for the appropriate context.

So that process checkpoint calls are placed at lo-

cations they execute, our compiler performs a control-

dependence analysis. Also, a recovery line must either re-

side entirely inside or outside of a loop body.

5 Evaluation

We now evaluate our algorithm’s scalability, its ability to

find useful recovery lines, and the effectiveness of the Wide

and Flat metric. We also evaluate the performance of the

recovery lines identified by our algorithm.

5.1 Implementation

We have implemented our algorithm using the

Broadway [27] source-to-source ANSI C compiler;

it performs context-sensitive interprocedural pointer anal-

ysis. Our current implementation simplifies our algorithm.

It assumes the application is written in C and uses the MPI

communication library. It also assumes that any variables

analyzed during the first two phases are regular variables

or single-dimension arrays; the variables that are analyzed

must not be pointers, multi-dimensional arrays, or loop

induction variables. Loops evaluated by our analysis must

have a fixed trip count. This implementation assumes that

the number of processes the application uses is statically

known and that all communication is deterministic.

5.2 Benchmarks

We use three kernel benchmarks and an application bench-

mark to illustrate the potential for staggered checkpointing.

The kernel benchmarks, BT, SP, and LU, are FORTRAN

codes from the NAS Parallel Benchmark Suite [6] that we

convert to C using for c [28]. Ek-simple, our appli-

cation benchmark, is a well-known computational fluid dy-

namics benchmark. These benchmarks are indicative of the

larger applications in use today.

These benchmarks typically have short execution

times, so our experiments use larger than typical problem

sizes. We limit the execution to one iteration for our kernel

benchmarks to better illustrate how an iteration is affected



Variable Value Effect

Pruning Threshold 32,768
(sizeofcurrentlines) increase to generate more recovery lines

and reduce execution time; decrease to

reduce memory usage

Line Check Threshold 2048 ∗ (pruningthreshold) increase to maximize leveraging and reduce

execution time; decrease to reduce memory

Lines to Keep
(pruningthreshold)

5 increase to save more lines between

pruning passes; decrease to reduce pruning

frequency and thus time

Minimum Lines in Each Bin
Closeness∗(linestokeep)

(numberofbins) where

Closeness < 1

increase to keep more less staggered lines;

decrease to keep more staggered lines

Table 1. Parameters of the Pruning Policy

by staggered checkpointing. For Ek-simple, we report

results with 100 iterations but one checkpoint per process.

These applications are simplified—e.g., command-

line arguments are set to be constants and function pointers

are replaced with static function calls. These simplifica-

tions do not affect the overall behavior of the benchmark.

5.3 Algorithm Performance

We report our algorithm’s performance including the ef-

fects of optimization techniques, which control algorithm

complexity and significantly reduce the search space. The

compile time necessary to achieve these results is on the

order of minutes for 1,024 and 4,096 processes, hours for

16,384 processes, and days for 65,536 processes.

5.3.1 Methodology

We evaluate the algorithm for each of our benchmarks us-

ing from 1,024 to 65,536 processes. Since our first two

phases, which are not the subject of our research or this pa-

per, scale with the number of processes, we cannot evaluate

the algorithm for larger process sizes. For each benchmark

configuration, we use a problem size that provides approx-

imately a fifteen minute window for checkpointing.

5.3.2 Results and Analysis

The results of our optimization techniques are presented

in Table 2; the column labeled Initial defines the size of

the starting valid recovery line search space. This space

narrows as phases are introduced; we report the size of the

search space for a single phase of each benchmark in the

Phases column. The rest of our results are presented for

the same single phase, which is either representative of the

phases for that benchmark or is the phase with the majority

of the communication.

Our algorithm begins by reducing L, the number of

considered checkpoint locations and the base of our search

space calculation, by merging checkpoint locations that are

too closely spaced to reduce contention. These results are

shown in the Checkpoint Reduction column of Table 2.

For the problem sizes shown in these tables, most check-

point locations are separated by a sufficient number of lo-

cal operations to remain individual locations. However,

Ek-simple’s results show several merged locations.

We also reduce the value of P , the number of consid-

ered processes and the exponent of our search space calcu-

lation. In the Clumps column of Table 2, we report on the

results of our clumps technique. Clumps reduce the search

space dramatically; the space for LU with 1,024 processes

is reduced by over 800 orders of magnitude. Clump sizes

are relatively even within a configuration, though there is

often one clump containing all processes (usually the result

of a collective communication call). Also, the number of

clumps increases sublinearly with the number of processes,

indicating that the clump concept is scalable in practice.

Once the clumps are combined into clump sets, as we see in

the Clumps Sets column, the search space is reduced even

further. The number of clump sets is factored out of the

exponent of the search space and becomes a multiplier.

Although we have significantly reduced the search

space, it is still very large; LUwith 1,024 processes still has

a possible 1.6 ∗ 1025 recovery lines. However, by leverag-

ing constraint information, first by not propagating invalid

constraints in the synthesis algorithm, then by reducing the

number of checks required to determine if a recovery line

is valid (usually an average of P 2/2), and finally by prun-

ing recovery lines less likely to reduce contention, we con-

vert an originally intractable problem into manageable one

and enable our algorithm to find useful recovery lines in

this space. Table 3 reports the results for each optimiza-

tion technique employed by our synthesis algorithm. The

Skipped Initially column represents those lines eliminated

by our initial validity check. The next three columns re-

spectively report the number of recovery lines generated,

the number eliminated as invalid, and those eliminated as

invalid by leveraging the strictly increasing nature of re-



Possible Recovery Lines

Benchmark Processes Initial Phases
Checkpoint
Reduction

Clumps Clump Sets

BT

1,024 381024 141024 141024 596 + 21 3(532) + 21

4,096 384096 144096 144096 5192 + 21 3(564) + 21

16,384 3816384 1416384 1416384 5384 + 21 3(5128) + 21

65,536 3865536 1465536 1465536 5768 + 21 3(5256) + 21

Ek-simple

1,024
61024 + 22992 +

5961 + 1231 20992+4961+831 13992+3961+631 121 + 112 +
931 + 530 + 361

121 + 112 +
101 + 930 + 630

4,096
64096 + 224032 +

53969 + 1263
204032 + 43969 +

863
134032 + 33969 +

663
121 + 112 +

1063 +562 +3125
121 + 112 +

111 + 1062 + 662

16,384
616384 +
2216256 +

516129 + 12127

2016256 +
416129 + 8127

1316256 +
316129 + 6127

121 + 112 +
9127+5126+3252

121 + 112 +
101 +9126 +6126

65,536
665536 +
2265280 +

565025 + 12255

2065280 +
416129 + 8255

1365280 +
365025 + 6255

121 + 112 +
9255+5254+3509

121 + 112 +
101 +9254 +6254

LU

1,024
161024 + 18992 +

431 11024 + 8992 11024 + 8992 664 2(632)

4,096
164096 +

184032 + 463 14096 + 84032 14096 + 84032 6128 2(664)

16,384
1616384 +

1816256 + 4127 116384 + 816256 116384 + 816256 6256 2(6128)

65,536
1665536 +

1865280 + 4255 165536 + 865280 165536 + 865280 6512 2(6256)

SP

1,024 371024 141024 141024 596 + 11 3(532) + 11

4,096 374096 144096 144096 5192 + 21 3(564) + 21

16,384 3716384 1416384 1416384 5384 + 21 3(5128) + 21

65,536 3765536 1465536 1465536 5768 + 21 3(5256) + 21

Table 2. Search space reduction by each technique in our algorithm.

covery line constraints. Lastly, the table shows the number

of lines pruned by our branch and bound strategy and the

number of valid recovery lines produced by our algorithm.

Complexity

The complexity of our algorithm is exponential to the num-

ber of clumps in each clump set rather than either 1) the

number of clumps in the system or 2) the number of pro-

cesses in use by the application. Table 2 shows that for

most of our benchmarks, the typical number of clumps in a

clump set grows with the square root of the number of pro-

cesses. Ek-simple shows an even smaller growth rate.

Wide and Flat Metric

Our WAF metric separates useful recovery lines from other

generated lines for complete and partial recovery lines.

By comparing lines with different WAF values for

several configurations of each benchmark, we found that

the WAF metric performs well particularly for configura-

tions with large numbers processes and amounts of check-

point data. Table 4 shows a snapshot of these results.

While for smaller configurations the WAF metric al-

ways identifies a line faster than the line in which every

process writes its checkpoint at approximately the same

time, the line with the lowest WAF value may not be the

fastest. This situation happens with smaller amounts of

checkpoint data because recovery lines that are less stag-

gered can sufficiently reduce network and file system con-

tention to maintain system performance—and less separa-

tion of checkpoints causes less disruption of communica-

tion, which is an overall benefit to the application.

5.4 Performance of the Identified Lines

Our results show that staggered recovery lines identified by

our algorithm reduce checkpoint time when simultaneous



Recovery Lines

Skipped Pruned Valid

Benchmark Processes Initially Generated Investigated Leveraged by WAF Found

BT

1,024 18,606 4,603,597 4,603,597 0 4,588,183 620
4,096 50,262 9,325,092 9,325,092 0 9,293,840 432

16,384 77,206 18,731,170 18,731,170 0 18,668,236 442
65,536 156,414 37,759,736 37,759,736 0 37,632,812 408

Ek-simple

1,024 401,967 2,465,869 924,627 1,541,242 193,270 408

4,096 1,187,522 8,243,283 2,850,232 5,393,051 2,819,754 204
16,384 3,598,557 10,667,118 3,620,224 7,046,894 3,571,133 102

65,536 3,889,674 22,989,972 8,860,009 14,129,963 8,763,342 50

LU

1,024 1,056 3,233,318 2,615,253 618,065 2,603,302 409
4,096 2,046 6,603,040 5,604,553 998,487 5,580,103 203

16,384 128,655 13,129,553 10,591,018 2,538,535 10,542,142 103

65,536 8,382 26,464,194 19,406,505 7,057,689 19,308,542 191

SP

1,024 22,573 4,600,329 4,600,329 0 4,584,915 614
4,096 45,352 9,331,318 9,331,318 0 9 299,935 538

16,384 91,860 18,927,310 18,927,310 0 18,863,945 188
65,536 179,544 39,437,768 39,437,768 0 39,308,070 169

Table 3. Pruning performed by our algorithm.

checkpointing, which occurs when all processes write their

checkpoints at the same location in the application text, sat-

urates the file system. However, when a sufficiently small

number of processes writes a sufficiently small amount of

data such that the file system is not saturated, simultaneous

checkpointing is better than staggered checkpointing, since

the latter can disrupt communication.

In our analysis, we indicate configurations where the

lines identified by our algorithm are in the sweet spot for

staggered checkpointing, or where: 1) staggered check-

pointing reduces checkpoint time by at least 25% and to

less than fifteen minutes, and 2) simultaneous checkpoint-

ing requires more than five minutes.

5.4.1 Methodology

To evaluate the recovery lines identified by our algorithm,

we compare a line with a low WAF value, which is a stag-

gered line, against a line with a high WAF value. The

lines with high WAF values typically perform simultaneous

checkpointing. We present results showing the decrease

in checkpointing time achieved by staggered checkpoint-

ing on Ranger [29], a supercomputer located at the Texas

Advanced Computing Center [30]. Ranger consists of lo-

cal hardware with four 2.3 GHz processors with four cores

each, an Infiniband network, and a Lustre file system fea-

turing 40 GB/s throughput. The results presented here are

from simulation due to usage restrictions on the produc-

tion systems to which we have access. We used our sim-

ulator [22] , which was validated against Ranger [29], and

on average predicts the execution time of our benchmarks

with checkpointing as 83% of their actual measured perfor-

mance. This accuracy suffices to evaluate our solution—we

show that it is effective using confidence (95%) and toler-

ance (95%) intervals.

Our simulator performs optimistically in the face of

file system saturation, so we do not present results for con-

figurations that cause both forms of checkpointing to sat-

urate the file system. In addition, unlike our algorithm,

our simulator scales with the number of processes used by

the application. As such, it cannot simulate in a reason-

able amount of time two of our benchmarks with 16,384

processes or any of the benchmarks with 65,536 processes.

Thus, those results are not presented.

To better analyze our results, we have fixed the check-

point size for each configuration.

5.4.2 Results and Analysis

Tables 5 and 6 present the decreases in checkpointing time

realized by the staggered line over the simultaneous line:

this data supports both our claim that staggered checkpoint-

ing improves checkpointing performance and our claim

that the WAF metric identifies useful recovery lines. The

decrease is adjusted for the average error of our simulator,

and these tables also display the 95% confidence interval

around the mean and the tolerance interval indicating the

range for values of 95% of the population with 95% cer-

tainty. Table 5 shows the results for when the checkpoint

locations are staggered within a three minute window; Ta-

ble 6 shows the results for when the window is increased

to fifteen minutes. These time periods translate to three or

fifteen minutes without a synchronization point or a collec-

tive communication, respectively. In today’s applications,

three minutes is closest to the expected interval, though the

intervals are often smaller. Fifteen minutes represents the

amount of time we consider reasonable for an application

to spend checkpointing. In both of these tables, configura-



Checkpoint Time
WAF value 4 MB 32 MB

418 12m 67m
3,958 4m 78m
7,008 18m 93m
7,361 19m 94m

Table 4. The simulated checkpoint times for recovery lines.

tions falling into the sweet spot are in bold.

When checkpoint locations are separated within an

approximately three minute window, the staggered lines

placed by our algorithm reduce checkpoint time by an av-

erage of 24% (Table 5). Additionally, our algorithm finds

lines that bring three configurations into the sweet spot. We

conclude that the WAF metric can identify useful recovery

lines even within this small interval size.

If we increase the window size to approximately fif-

teen minutes (Table 6), checkpoint time typically decreases

by an even larger amount; the average decrease is now

44%. The increased window size also brings two more con-

figurations into the sweet spot, again pointing to the effect

of both staggered checkpointing and our WAF metric.

6 Conclusions and Future Work

We designed and implemented a new compile-time algo-

rithm that generates and places useful recovery lines in ap-

plications that use up to tens of thousands of processes.

This algorithm uses a constraint-based search to eliminate

redundant work and reduces the search space by constrain-

ing the checkpoint locations, considering clumps of pro-

cesses rather than independent processes, and performing

the search for useful recovery lines within sets of clumps

where each process is represented exactly once. These

techniques reduce the search space for BT with 1,024 pro-

cesses from 381024 to 3(532) + 21 , or by 1,594 orders

of magnitude. We consider the algorithm scalable since

it causes the search space to grow much more slowly than

the number of processes: typically the space grows with

the square root of the number of processes.

Our pruning policy enables the rapid sorting of the

created recovery lines, and the metric we introduced, Wide

and Flat (WAF), statically estimates the usefulness of both

complete and partial recovery lines.

For our benchmarks, our implementation finds and

places useful recovery lines in applications that use up to

65,536 processes. The staggered recovery lines placed by

our algorithm checkpoint an average of 35% faster than si-

multaneous checkpointing.

In the future, we plan to improve the lines identified

by our algorithm by adjusting the checkpoints in the gener-

ated recovery lines relative to the checkpoint locations we

consider. Such adjustments may both increase the separa-

tion of the checkpoints and reduce the amount of check-

point data. We also plan to build a recovery system to com-

plement our checkpoint methodology.
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