
Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Pixels

• Pixel: Intensity or color sample.

• Raster Image: Rectangular grid of pixels.

• Rasterization: Conversion of a primitive’s geometric representation into

– A set of pixels.

– An intensity or color for each pixel (shading, antialiasing).

• For now, we will assume that the background is white and we need only change the color

of selected pixels to black.

The University of Texas at Austin 1

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Pixel Grids

• Pixel Centers: Address pixels by integer coordinates (i, j)

• Pixel Center Grid: Set of lines passing through pixel centers.

• Pixel Domains: Rectangular semi-open areas surrounding each pixel center:

Pi,j = (i − 1/2, i + 1/2) × (j − 1/2, j + 1/2)

• Pixel Domain Grid: Set of lines formed by domain boundaries.

1 2 3 1 2 3

2

1

3

2

1

3

00

0 0

Pixel center grid Pixel domain grid

The University of Texas at Austin 2

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Specifications and Representations

Each rendering primitive (point, line segment, polygon, etc.) needs both

• A geometric specification, usually “calligraphic.”

• A pixel (rasterized) representation.

Standard device-level geometric specifications include:

Point: A = (xA, yA) ∈ RR2.

Line Segment: `(AB) specified with two points, A and B. The line segment `(AB) is the

set of all collinear points between point A and point B.

Polygon: Polygon P(A1A2 . . . An) specified with an ordered list of points A1A2 . . . An.

A polygon is a region of the plane with a piecewise linear boundary; we connect An to A1.

This “list of points” specification is flawed... a more precise definition will be given later.

The University of Texas at Austin 3

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Line Segments

• Let `(AB) = {P ∈ RR2|P = (1 − t)A + tB, t ∈ [0, 1]}
• Problem: Given a line segment `(AB) specified by two points A and B,

• Decide: Which pixels to illuminate to represent `(AB).

• Desired properties: Rasterization of line segment should

1. Appear as straight as possible;

2. Include pixels whose domains contain A and B;

3. Have relatively constant intensity (i.e., all parts should be the same brightness);

4. Have an intensity per unit length that is independent of slope;

5. Be symmetric;

6. Be generated efficiently.

The University of Texas at Austin 4

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Line Segment Representations

1. Given AB, choose a set of pixels L1(AB) given by

L1(AB) = {(i, j) ∈ ZZ
2|`(AB) ∩ Pi,j}

1 2 3

2

1

3

0

0 4 5 6 7 8

Unfortunately, this results in a very blotchy, uneven looking line.

The University of Texas at Austin 5

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

2. Given AB, choose a set of pixels L2(AB) given by

L2(AB) =







|xB − xA| ≥ |yB − yA| −→
{(i, j) ∈ ZZ2|(i, j) = (i, [y]), (i, y) ∈ `(AB), y ∈ RR}
∪([xA], [yA]) ∪ ([xB], [yB]).

|xB − xA| < |yB − yA| −→
{(i, j) ∈ ZZ2|(i, j) = ([x], j), (x, j),∈ `(AB), x ∈ RR}
∪([xA], [yA]) ∪ ([xB], [yB]).

Where [z] = bz + 1/2c, and bwc is the greatest integer less than or equal to w.

1 2 3

2

1

3

0

0 4 5 6 7 8

The University of Texas at Austin 6

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Line Equation Algorithm

Based on the line equation y = mx + b, we can derive:

LineEquation (int xA, yA, xB, yB)

float m, b;

int xi, dx;

m = (yB - yA)/(xB - xA);

b = yA - m∗xA;
if (xB - xA > 0) then dx=1;

else dx = -1;

for xi = xA to xB step dx do

y = m∗xi + b;

WritePixel(xi, [y]);

endfor

Problems:

• One pixel per column so lines of slope > 1 have gaps

The University of Texas at Austin 7

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

• Vertical lines cause divide by zero

To fix these problems, we need to use x = m−1(y − b) when m > 1.

The University of Texas at Austin 8

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Discrete Differential Analyzer

Observation: Roles of x and y are symmetric...

• Change roles of x and y if |yB − yA| > |xB − xA|

Observation: Multiplication of m inside loop...

• The value of m is constant for all iterations.

• Can reduce computations inside loop:

yi+1 and be computed incrementally from yi

yi+1 = m(xi + 1) + b = yi + m

The University of Texas at Austin 9

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

DDA (int xA, yA, xB, yB)

int length, dx, dy, i;

float x,y,xinc,yinc;

dx = xB - xA;

dy = yB - yA;

length = max (|dx| > |dy|);

xinc = dx/length; # either xinc or yinc is -1 or 1

yinc = dy/length;

x = xA; y = yA;

for i=0 to length do

WritePixel([x], [y]);

x += xinc;

y += yinc;

endfor

The University of Texas at Austin 10

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Bresenham’s Algorithm

• Completely integer;

• Will assume (at first) that xA, yA, xB, yB are also integer.

• Only addition, subtraction, and shift in inner loop.

• Originally for a pen plotter.

• “Optimal” in that it picks pixels closest to line, i.e., L2(AB).

• Assumes 0 ≤ (yB − yA) ≤ (xB − xA) ≤ 1 (i.e., slopes between 0 and 1).

• Use reflections and endpoint reversal to get other slopes: 8 cases.

The University of Texas at Austin 11

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

A

NE[i]

D

M[i]
E[i]P[i-1]

B

C

M[i+1]

• Suppose we know at step i − 1 that pixel (xi, yi) = Pi−1 was chosen.

Thus, the line passed between points A and B.

• Slope between 0 and 1 ⇒
line must pass between points C and D at next step ⇒
Ei = (xi + 1, yi) and N Ei = (xi + 1, yi + 1) are only choices for next pixel.

• If Mi above line, choose Ei;

The University of Texas at Austin 12

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

• If Mi below line, choose N Ei.

The University of Texas at Austin 13

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

• Implicit representations for line:

y = ∆y
∆xx + b

F (x, y) = (2∆y)
︸ ︷︷ ︸

Q

x + (−2∆x)
︸ ︷︷ ︸

R

y + 2∆xb︸ ︷︷ ︸
S

= 0

where

∆x = xB − xA

∆y = yB − yA

b = yA − ∆y

∆x
xA ⇒ S = 2∆xyA − 2∆yxA

Note that

1. F (x, y) < 0 ⇒ (x, y) above line.

2. F (x, y) > 0 ⇒ (x, y) below line.

3. Q, R, S are all integers.

• The mystery factor of 2 will be explained later.

The University of Texas at Austin 14

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

• Look at F (Mi). Remember, F is 0 if the point is on the line:

– F (Mi) < 0 ⇒ Mi above line ⇒ choose Pi = Ei.

– F (Mi) > 0 ⇒ Mi below line ⇒ choose Pi = N Ei.

– F (Mi) = 0 ⇒ arbitrary choice, consider choice of pixel domains...

• We’ll use di = F (Mi) as an decision variable.

• Can compute di incrementally with integer arithmetic.

The University of Texas at Austin 15

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

• At each step of algorithm, we know Pi−1 and di...

• Want to choose Pi and compute di+1

• Note that

di = F (Mi) = F (xi−1 + 1, yi−1 + 1/2)

= Q · (xi−1 + 1) + R · (yi−1 + 1/2) + S

• If Ei is chosen then

di+1 = F (xi−1 + 2, yi−1 + 1/2)

= Q · (xi−1 + 2) + R · (yi−1 + 1/2) + S

= di + Q

• If N Ei is chosen then

di+1 = F (xi−1 + 2, yi−1 + 1/2 + 1)

= Q · (xi−1 + 2) + R · (yi−1 + 1/2 + 1) + S

= di + Q + R

The University of Texas at Austin 16

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

• Initially, we have

d1 = F (xA + 1, yA + 1/2)

= QxA
+ RyA

+ S + Q + R/2

= F (xA, yA) + Q + R/2

= Q + R/2

• Note that F (xA, yA) = 0 since (xA, yA) ∈ `(AB).

• Why the mysterious factor of 2?

It makes everything integer.

The University of Texas at Austin 17

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Bresenham (int xA, yA, xB, yB)

int d, dx, dy, xi, yi

int incE, incNE

dx = xB - xA

dy = yB - yA

incE = dy<<1 /∗ Q ∗/
incNE = incE - dx<<1; /∗ Q + R ∗/
d = incE - dx /∗ Q + R/2 ∗/
xi = xA; yi = yA

WritePixel(xi, yi)

while (xi < xB)

xi++

if (d < 0) then /∗ choose E ∗/
d += incE

else /∗ choose NE ∗/
d += incNE

yi++

endif

The University of Texas at Austin 18

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

WritePixel(xi, yi)

endwhile

The University of Texas at Austin 19

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

• Some asymmetries (choice when ==).

• Did we meet our goals?

1. Straight as possible: yes, but depends on metric.

2. Correct termination.

3. Even distribution of intensity: yes, more or less, but:

4. Intensity varies as function of slope.

– Can’t do better without gray scale.

– Worst case: diagonal compared to horizontal (same number of pixels, but
√

2

longer line).

5. Careful coding required to achieve some form of symmetry.

6. Fast! (if integer math fast ...)

• Interaction with clipping?

• Subpixel positioning of endpoints?

• Variations that look ahead more than one pixel at once...

• Variations that compute from both end of the line at once...

• Similar algorithms for circles, ellipses, ...

(8 fold symmetry for circles)

The University of Texas at Austin 20

Department of Computer Sciences Graphics – Fall 2003 (Lecture 2)

Reading Assignment and News

Chapter 2 pages 37 - 74, of Recommended Text.

(Recommended Text: Interactive Computer Graphics, by Edward Angel, 3rd edition, Addison-

Wesley)

On Wednesday September 3 (tomorrow) Peter Djeu shall conduct a recitation class from

2:30pm - 4:00pm on OpenGL programming and describe our programming environment for

all the Project Assignments.

Please also track the News section of the Course Web Pages for the most recent

Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)

The University of Texas at Austin 21

