Geometric Spaces and Operations

Mathematical underpinnings of computer graphics

- Hierarchy of geometric spaces
 - Vector spaces
 - Affine spaces
 - Euclidean spaces
 - Cartesian spaces
 - Projective spaces
- Affine geometry and transformations
- Projective transformations and perspective
- Matrix formulations of transformations

Formally, a space is defined by

• A set of objects

Department of Computer Sciences

- Operations on the objects
- Axioms defining invariant properties

Vector Spaces

- $\bullet~$ Set of vectors ${\cal V}$
- Operations on $\vec{u}, \ \vec{v} \in \mathcal{V}$:
 - Addition: $\vec{u} + \vec{v} \in \mathcal{V}$
 - Scalar Multiplication: $\alpha \vec{u} \in \mathcal{V}$ where $\alpha \in$ some field \mathcal{F}
- Axioms
 - Unique zero element: $0 + \vec{u} = \vec{u}$
 - Field unit element: $1\vec{u} = \vec{u}$
 - Addition commutative: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
 - Addition associative: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
 - Distributive scalar multiplication: $\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$
- Additional definitions
 - Let $\mathcal{B} = \{ \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \}$.
 - Then \mathcal{B} spans \mathcal{V} iff any $\vec{v} \in \mathcal{V}$ can be written as $\vec{v} = \sum_{i=1}^{n} \alpha_i \vec{v}_i$.
 - $\sum_{i=1}^{n} \alpha_i \vec{v}_i$ is called a *linear combination* of the vectors in \mathcal{B} .
 - \mathcal{B} is called a *basis* of \mathcal{V} if it is a minimal spanning set.
 - All bases of ${\cal V}$ contain the same number of vectors.

- The number of vectors in any basis of \mathcal{V} is called the *dimension* of \mathcal{V} .
- Comments:
 - We are interested in 2 and 3 dimensional spaces.
 - No definition of distance (size) exists yet.
 - Angles and points have not been defined.

Affine Spaces

- A set of vectors ${\mathcal V}$ and a set of points ${\mathcal P}$
- \mathcal{V} is a vector space.
- Point-vector sum: $P + \vec{v} = Q$ with $P, \ Q \in \mathcal{P}$ and $\vec{v} \in \mathcal{V}$
- Additional definitions:
 - A frame $F = (\mathcal{B}, \mathcal{O})$ where $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n\}$ is a basis of \mathcal{V} and the point \mathcal{O} is called the *origin* of the frame.
 - The dimension of F is the same as the dimension of \mathcal{V} .
- Comments:
 - Still no distances or angles
 - Closer to what we want for graphics
 - The space has no distinguished origin

Euclidean Spaces

- A metric space is any space with a distance metric d(P, Q) defined on its elements.
- Distance metric axioms:
 - $d(P,Q) \ge 0$
 - d(P,Q) = 0 iff P = Q
 - d(P,Q) = d(Q,P)
 - $d(P,Q) \leq d(P,R) + d(R,Q)$ (triangle inequality)
- *Euclidean* distance metric:

$$d^{2}(P,Q) = (P-Q) \cdot (P-Q)$$

- Comments:
 - Euclidean metric based on dot product
 - Dot product defined on vectors
 - Distance metric defined on points
 - Distance is a property of the space, not a frame

• Dot product axioms:

$$- (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$$

- $\alpha(\vec{u}\cdot\vec{v}) = (\alpha\vec{u})\cdot\vec{v} = \vec{u}\cdot(\alpha\vec{v})$
- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- Additional definitions:
 - The *norm* of a vector \vec{u} is given by $|\vec{u}| = \sqrt{\vec{u} \cdot \vec{u}}$.
 - Angles are defined by their cosines: $\cos(\angle \vec{u}\vec{v}) = \frac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}$
 - Orthogonal vectors: $ec{u}\cdotec{v}=0
 ightarrowec{u}otec{v}$

Cartesian Spaces

- A frame $(\vec{i}, \vec{j}, \vec{k}, \mathcal{O})$ is orthonormal iff
 - \vec{i}, \vec{j} , and \vec{k} are orthogonal, i.e. $\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$ and
 - $-\vec{i},\vec{j},$ and \vec{k} are normal, i.e. $|\vec{i}| = |\vec{j}| = |\vec{k}| = 1$
- Additional definitions:
 - The standard frame $F_s = (\vec{i}, \vec{j}, \vec{k}, \mathcal{O})$
 - Points can be distinguished from vectors using an extra coordinate * 0 for vectors: $\vec{v} = (v_x, v_y, v_z, 0)$ means $\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$ * 1 for points: $P = (p_x, p_y, p_z, 1)$ means $P = p_x \vec{i} + p_y \vec{j} + p_z \vec{k} + O$
- Comments
 - Coordinates have no meaning without an associated frame
 - There will be other ways to look at the extra coordinate
 - Sometimes we are sloppy and omit the extra coordinate
 - Assume standard frame unless specified otherwise
 - Points and vectors are different
 - Points and vectors have different operations
 - Points and vectors transform differently

Projective Space

- Affine Space = Vector Space + Points
- Projective Space = Affine Space + Infinity
- Homogeneous coordinate (x, y, z, w):
 - vector: (x, y, z, 0)
 - point: (x, y, z, 1)
- Embedding of vectors and points in space of one higher dimension

Projective Space

Projective Space:

- Division by the homogeneous coordinate
- Equivalence of affine points and homogeneous points
- Relationship with perspective
- More generally: rational splines

Projective Spaces (Augmented Affine Space)

- Divide through by homogenizing coordinate w $(x,w) \longrightarrow (\frac{x}{w},1)$
- All homogeneous points of the form $\alpha(x,1), \alpha>0$ are equivalent
- *Projects* homogeneous points *centrally* onto the affine plane

Comparisons

Affine Space

Projective Space

2D: (x, y)	(x,y,w)
3D: (x, y, z)	(x,y,z,w)
Two lines intersect if they are not parallel	Two lines always intersect

$$\begin{cases} 2x + 3y - 4 &= 0\\ 4x + 6y - 9 &= 0 \end{cases}$$

never intersect

intersect at point at infinity (2,3,0)

A linear transformation can map:

an equilateral triangle to an isoceles triangle a circle to a parabola

Homogeneous Coordinates

- Homogeneous coordinates represent $n\mbox{-space}$ as a subspace of n+1 space
- $\bullet\,$ For instance, homogeneous 4-space embeds ordinary 3-space as the w=1 hyperplane
- Thus, we can obtain the 3-d image of any homogeneous point $(wx, wy, wz, w), w \neq 0$ as (x, y, z, 1) = (wx/w, wy/w, wz/w, w/w), that is, by dividing all coordinates by w.
- \bullet Lines in homogeneous space which intersect the w=1 hyperplane project to 3-space points.
- Notice that this is just a perspective projection from 4-d homogeneous space to 3-space, instead of dividing by z, we are dividing by w.

Relationship to Perspective:

- In rendering, the w values we generate are proportional to z
 - Equivalence corresponds to *perspective projection*

DEPARTMENT OF COMPUTER SCIENCES

More Generally: Rational splines

- Homogeneous spline curve
 - Spline curve of the form

$$\begin{bmatrix} x(t) \\ y(t) \\ z(t) \\ w(t) \end{bmatrix} = \sum_{i=0}^{n} \begin{bmatrix} x_i \\ y_i \\ z_i \\ w_i \end{bmatrix} B_i^d(t) = \begin{bmatrix} \sum_{i=0}^{n} x_i B_i^d(t) \\ \sum_{i=0}^{n} y_i B_i^d(t) \\ \sum_{i=0}^{n} z_i B_i^d(t) \\ \sum_{i=0}^{n} w_i B_i^d(t) \end{bmatrix}$$

- Rational spline curve
 - Affine projective spline curve

$$\begin{bmatrix} \bar{x}(t) \\ \bar{y}(t) \\ \bar{z}(t) \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} x_i B_i^d(t) / \sum_{i=0}^{n} w_i B_i^d(t) \\ \sum_{i=0}^{n} y_i B_i^d(t) / \sum_{i=0}^{n} w_i B_i^d(t) \\ \sum_{i=0}^{n} z_i B_i^d(t) / \sum_{i=0}^{n} w_i B_i^d(t) \end{bmatrix}$$
$$= \frac{1}{\sum_{i=0}^{n} w_i B_i^d(t)} \sum_{i=0}^{n} \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} B_i^d(t)$$

Vector and Affine Algebra

• Difference of points

• Affine combination of points

• Linear combinations of vectors

Linear Transformations

Vector space ${\cal V}$

- Linear combinations of vectors in ${\mathcal V}$ are in ${\mathcal V}$
- For $\vec{u}, \vec{v} \in \mathcal{V}$
 - $\vec{u} + \vec{v} \in \mathcal{V}$
 - $\alpha \vec{u} \in \mathcal{V}$ for any scalar α
 - In general, $\sum_i lpha_i ec{u}_i \in \mathcal{V}$ for any scalars $lpha_i$
- Linear transformations
 - Let $\mathbf{T}:\mathcal{V}_0\mapsto\mathcal{V}_1$, where \mathcal{V}_0 and \mathcal{V}_1 are vector spaces

• Then **T** is *linear* iff
*
$$\mathbf{T}(\vec{u} + \vec{v}) = \mathbf{T}(\vec{u}) + \mathbf{T}(\vec{v})$$

* $\mathbf{T}(\alpha \vec{u}) = \alpha \mathbf{T}(\vec{u})$
* In general, $\mathbf{T}(\sum_{i} \alpha_{i} \vec{u}_{i}) = \sum_{i} \alpha_{i} \mathbf{T}(\vec{u}_{i})$

Example of linear tranformation for vectors

 $u = \alpha_1 u_1 + \alpha_2 u_2$

Affine Transformations

Affine space $\mathcal{A} = (\mathcal{V}, \mathcal{P})$

• For $\vec{u} \in \mathcal{V}$ and $P \in \mathcal{P}$

$$P+\vec{u}\in\mathcal{P}$$

- Define *point subtraction*:
 - For $P,Q\in \mathcal{P}$ and $\vec{u}\in \mathcal{V}$, if $P+\vec{u}=Q$, then $Q-P\equiv \vec{u}$
 - So in general we have $\sum_{i} \alpha_i P_i$ is a *vector* iff $\sum_{i} \alpha_i = 0$
- Define *point blending*:
 - For $P, P_1, P_2 \in \mathcal{P}$ and scalar α , if $P = P_1 + \alpha (P_2 P_1)$ then $P \equiv (1 \alpha) P_1 + \alpha P_2$
 - This can also be written $P\equiv \alpha_1P_1+\alpha_2P_2$ where $\alpha_1+\alpha_2=1$
 - So in general we have $\sum_i \alpha_i P_i$ is a *point* iff $\sum_i \alpha_i = 1$
- Geometrically, we have $\frac{|P-P_0|}{|P-P_1|} = \frac{d_1}{d_2}$ or $P = \frac{d_1P_1 + d_2P_2}{d_1 + d_2}$
- Vectors can always be combined linearly $\sum_i \alpha_i \vec{u}_i$
- Points can be combined linearly $\sum_i \alpha_i P_i$ iff
 - The coefficients sum to 1, giving a point ("affine combination")
 - The coefficients sum to 0, giving a vector ("vector combination")

- Example affine combination:

$$P(t) = P_0 + t(P_1 - P_0) = (1 - t)P_0 + tP_1$$

$$P_1 \qquad P_2$$

$$P_1 \qquad P_2$$

$$P_1 \qquad P_3$$

$$P_4 \bullet \qquad P_3$$

- This says any point on the line is an affine combination of the line segment's endpoints.
- Affine transformations
 - Let $\mathbf{T}:\mathcal{A}_0\mapsto\mathcal{A}_1$ where \mathcal{A}_0 and \mathcal{A}_1 are affine spaces
 - \mathbf{T} is said to be an *affine transformation* iff
 - * T maps vectors to vectors and points to points
 - * T is a linear transformation on the vectors
 - * $\mathbf{T}(P + \vec{u}) = \mathbf{T}(P) + \mathbf{T}(\vec{u})$
 - Properties of affine transformations
 - * **T** preserves affine combinations:

$$\mathbf{T}(\alpha_0 P_0 + \dots + \alpha_n P_n) = \alpha_0 \mathbf{T}(P_0) + \dots + \alpha_n \mathbf{T}(P_n)$$

where
$$\sum_{i} \alpha_{i} = 0$$
 or $\sum_{i} \alpha_{i} = 1$
* **T** maps lines to lines:

$$\mathbf{T}((1-t)P_0 + tP_1) = (1-t)\mathbf{T}(P_0) + t\mathbf{T}(P_1)$$

* T is affine iff it preserves ratios of distance along a line:

$$P = \frac{d_0 P_0 + d_1 P_1}{d_0 + d_1} \Rightarrow \mathbf{T}(P) = \frac{d_0 \mathbf{T}(P_0) + d_1 \mathbf{T}(P_1)}{d_0 + d_1}$$

- * T maps parallel lines to parallel lines (can you prove this?)
- Example affine transformations
 - * Rigid body motions (translations, rotations)
 - * Scales, reflections
 - * Shears

Reading Assignment and News

Chapter 4 pages 143 - 168, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)