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Geometric Spaces and Operations

Mathematical underpinnings of computer graphics

• Hierarchy of geometric spaces

– Vector spaces

– Affine spaces

– Euclidean spaces

– Cartesian spaces

– Projective spaces

• Affine geometry and transformations

• Projective transformations and perspective

• Matrix formulations of transformations

Formally, a space is defined by

• A set of objects
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• Operations on the objects

• Axioms defining invariant properties
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Vector Spaces
Definition:

• Set of vectors V
• Operations on ~u, ~v ∈ V :

– Addition: ~u + ~v ∈ V
– Scalar Multiplication: α~u ∈ V where α ∈ some field F

• Axioms

– Unique zero element: 0 + ~u = ~u

– Field unit element: 1~u = ~u

– Addition commutative: ~u + ~v = ~v + ~u

– Addition associative: (~u + ~v) + ~w = ~u + (~v + ~w)

– Distributive scalar multiplication: α(~u + ~v) = α~u + α~v

• Additional definitions

– Let B = {~v1, ~v2, · · · , ~vn}.

– Then B spans V iff any ~v ∈ V can be written as ~v =
∑ n

i=1 αi~vi.

–
∑ n

i=1 αi~vi is called a linear combination of the vectors in B.

– B is called a basis of V if it is a minimal spanning set.

– All bases of V contain the same number of vectors.
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– The number of vectors in any basis of V is called the dimension of V .

• Comments:

– We are interested in 2 and 3 dimensional spaces.

– No definition of distance (size) exists yet.

– Angles and points have not been defined.
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Affine Spaces

Definition:

• A set of vectors V and a set of points P
• V is a vector space.

• Point-vector sum: P + ~v = Q with P, Q ∈ P and ~v ∈ V
• Additional definitions:

– A frame F = (B,O) where B = {~v1, ~v2, · · · , ~vn} is a basis of V and the point O
is called the origin of the frame.

– The dimension of F is the same as the dimension of V .

• Comments:

– Still no distances or angles

– Closer to what we want for graphics

– The space has no distinguished origin
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Euclidean Spaces

Definition:

• A metric space is any space with a distance metric d(P, Q) defined on its elements.

• Distance metric axioms:

– d(P, Q) ≥ 0

– d(P, Q) = 0 iff P = Q

– d(P, Q) = d(Q, P )

– d(P, Q) ≤ d(P, R) + d(R, Q) (triangle inequality)

• Euclidean distance metric:

d
2
(P, Q) = (P − Q) · (P − Q)

• Comments:

– Euclidean metric based on dot product

– Dot product defined on vectors

– Distance metric defined on points

– Distance is a property of the space, not a frame
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• Dot product axioms:

– (~u + ~v) · ~w = ~u · ~w + ~v · ~w

– α(~u · ~v) = (α~u) · ~v = ~u · (α~v)

– ~u · ~v = ~v · ~u

• Additional definitions:

– The norm of a vector ~u is given by |~u| =
√

~u · ~u.

– Angles are defined by their cosines: cos( 6 ~u~v) = ~u·~v
|~u||~v|

– Orthogonal vectors: ~u · ~v = 0 → ~u⊥~v

The University of Texas at Austin 7



Department of Computer Sciences Graphics – Fall 2003 (Lecture 5)

Cartesian Spaces
Definition:

• A frame (~i,~j,~k,O) is orthonormal iff

– ~i,~j, and ~k are orthogonal, i.e. ~i ·~j = ~j · ~k = ~k ·~i = 0 and

– ~i,~j, and ~k are normal, i.e. |~i| = |~j| = |~k| = 1

• Additional definitions:

– The standard frame Fs = (~i,~j,~k,O)

– Points can be distinguished from vectors using an extra coordinate

∗ 0 for vectors: ~v = (vx, vy, vz, 0) means ~v = vx
~i + vy

~j + vz
~k

∗ 1 for points: P = (px, py, pz, 1) means P = px
~i + py

~j + pz
~k + O

• Comments

– Coordinates have no meaning without an associated frame

– There will be other ways to look at the extra coordinate

– Sometimes we are sloppy and omit the extra coordinate

– Assume standard frame unless specified otherwise

– Points and vectors are different

– Points and vectors have different operations

– Points and vectors transform differently
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Projective Space

• Affine Space = Vector Space + Points

• Projective Space = Affine Space + Infinity

• Homogeneous coordinate (x, y, z, w):

– vector: (x, y, z, 0)

– point: (x, y, z, 1)

• Embedding of vectors and points in space of one higher dimension

+ Infinity
(0,1)

(0,0) (v,0)

(x,1)

w

zero vector vector v

affine origin point x
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Projective Space

Projective Space:

• Division by the homogeneous coordinate

• Equivalence of affine points and homogeneous points

• Relationship with perspective

• More generally: rational splines
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Projective Spaces (Augmented Affine Space)

• Divide through by homogenizing coordinate w

(x, w) −→ ( x
w, 1)

• All homogeneous points of the form α(x, 1), α > 0 are equivalent

• Projects homogeneous points centrally onto the affine plane
w

(x/w,1)

(x,w)
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Comparisons

Affine Space Projective Space

2D: (x, y) (x, y, w)

3D: (x, y, z) (x, y, z, w)

Two lines intersect if they are not parallel Two lines always intersect

{

2x + 3y − 4 = 0

4x + 6y − 9 = 0

never intersect intersect at point at infinity (2, 3, 0)

A linear transformation can map:

an equilateral triangle to an isoceles triangle a circle to a parabola
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Homogeneous Coordinates

• Homogeneous coordinates represent n-space as a subspace of n + 1 space

• For instance, homogeneous 4-space embeds ordinary 3-space as the w = 1 hyperplane

• Thus, we can obtain the 3-d image of any homogeneous point (wx, wy, wz, w), w 6= 0

as (x, y, z, 1) = (wx/w, wy/w, wz/w, w/w), that is, by dividing all coordinates by

w.

• Lines in homogeneous space which intersect the w = 1 hyperplane project to 3-space

points.

• Notice that this is just a perspective projection from 4-d homogeneous space to 3-space,

instead of dividing by z, we are dividing by w.

Relationship to Perspective:

• In rendering, the w values we generate are proportional to z

– Equivalence corresponds to perspective projection
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More Generally: Rational splines

• Homogeneous spline curve

– Spline curve of the form
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• Rational spline curve

– Affine projective spline curve


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ȳ(t)

z̄(t)



 =





∑ n
i=0 xiB

d
i (t)/

∑ n
i=0 wiB

d
i (t)

∑ n
i=0 yiB

d
i (t)/

∑ n
i=0 wiB

d
i (t)

∑ n
i=0 ziB

d
i (t)/

∑ n
i=0 wiB

d
i (t)





=
1

∑ n
i=0 wiBd

i (t)

n
∑

i=0





xi

yi

zi



 B
d
i (t)

The University of Texas at Austin 15



Department of Computer Sciences Graphics – Fall 2003 (Lecture 5)

w
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Vector and Affine Algebra

• Difference of points

(x1, 1) − (x0, 1) = (x1 − x0, 0)

(x 0,1) (x 1

(x 1 0,0) x__

w

,1)
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• Affine combination of points

(1 − t)(x1, 1) + t(x0, 1) = ((1 − t)x1 + tx0, 1)

(x 0,1) (x 1,1)

(x 0,1) (x 1,1)(1 __ t) t+

w
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• Linear combinations of vectors

a(v0, 0) + b(v1, 0) = (av0 + bv1, 0)

(v 0,1) (v

w

,1)1

+(v 0,1) ,1)ba 1(v

The University of Texas at Austin 19



Department of Computer Sciences Graphics – Fall 2003 (Lecture 5)

Linear Transformations

Vector space V

• Linear combinations of vectors in V are in V
• For ~u,~v ∈ V

– ~u + ~v ∈ V
– α~u ∈ V for any scalar α

– In general,
∑

i αi~ui ∈ V for any scalars αi

• Linear transformations

– Let T : V0 7→ V1, where V0 and V1 are vector spaces

– Then T is linear iff

∗ T(~u + ~v) = T(~u) + T(~v)

∗ T(α~u) = αT(~u)

∗ In general, T (
∑

i αi~ui) =
∑

i αiT (~ui)
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Example of linear tranformation for vectors
u = α1u1 + α2u2

2

1

u

u
u

T (u) = w

= T (α1u1 + α2u2)

= T (α1u1) + T (α2u2)

= α1T (u1) + α2T (u2)

 1

 2

w

w

w
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Affine Transformations

Affine space A = (V,P)

• For ~u ∈ V and P ∈ P
P + ~u ∈ P

• Define point subtraction:

– For P, Q ∈ P and ~u ∈ V , if P + ~u = Q, then Q − P ≡ ~u

– So in general we have
∑

i αiPi is a vector iff
∑

i αi = 0

• Define point blending:

– For P, P1, P2 ∈ P and scalar α, if P = P1+α (P2 − P1) then P ≡ (1 − α) P1+

αP2

– This can also be written P ≡ α1P1 + α2P2 where α1 + α2 = 1

– So in general we have
∑

i αiPi is a point iff
∑

i αi = 1

• Geometrically, we have
|P−P0|
|P−P1|

=
d1
d2

or P =
d1P1+d2P2

d1+d2

• Vectors can always be combined linearly
∑

i αi~ui

• Points can be combined linearly
∑

i αiPi iff

– The coefficients sum to 1, giving a point (“affine combination”)

– The coefficients sum to 0, giving a vector (“vector combination”)
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– Example affine combination:

P (t) = P0 + t(P1 − P0) = (1 − t)P0 + tP1
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P
– This says any point on the line is an affine combination of the line segment’s endpoints.

• Affine transformations

– Let T : A0 7→ A1 where A0 and A1 are affine spaces

– T is said to be an affine transformation iff

∗ T maps vectors to vectors and points to points

∗ T is a linear transformation on the vectors

∗ T(P + ~u) = T(P ) + T(~u)

– Properties of affine transformations

∗ T preserves affine combinations:

T(α0P0 + · · · + αnPn) = α0T(P0) + · · · + αnT(Pn)
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where
∑

i αi = 0 or
∑

i αi = 1

∗ T maps lines to lines:

T((1 − t)P0 + tP1) = (1 − t)T(P0) + tT(P1)

∗ T is affine iff it preserves ratios of distance along a line:

P =
d0P0 + d1P1

d0 + d1

⇒ T(P ) =
d0T(P0) + d1T(P1)

d0 + d1

∗ T maps parallel lines to parallel lines (can you prove this?)

– Example affine transformations

∗ Rigid body motions (translations, rotations)

∗ Scales, reflections

∗ Shears
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Reading Assignment and News

Chapter 4 pages 143 - 168, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent

Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)
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