DEPARTMENT OF COMPUTER SCIENCES GRAPHICS — FALL 2003 (LECTURE 7)

Projections

Mapping from d dimensional space to d — 1 dimensional subspace
Range of any projection P : R®* — R? called a projection plane
P maps lines to points

The image of any point p under P is the intersection of a projection line through p with
the projection plane.
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Parallel Projections

e All projection lines are parallel.
e An orthographic projection has projection lines orthogonal to projection plane.
e Otherwise a parallel projection is an oblique projection

e Particularly interesting oblique projections are the cabinet projection and the cavalier
projection.
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Perspective Projection

e All projection lines pass through the center of projection (eyepoint).
e Therefore also called central projection

e This is not affine, but rather a projective transformation.

Projective Transformation

Does not preserve angles, distances, ratios of distances or affine combinations.
Cross ratios are preserved.
Incidence relationships are generally preserved.

Straight lines are mapped to straight lines.
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Perspective Transform in Eye Coordinates

Given a point p, find its projection P(p)

Convenient to do this in eye coordinates, with center of projection at origin and z = n
projection plane

Note that eye coordinates are left-handed

y
p=(x.y.2)
y
(0,0) n 7
z |

Projection plane, z=n
Due to similar triangles P(p) = (nx/z,ny/z,n)
For any other point q = (kz, ky,kz),k # 0 on same projection line P(q) =
(nx/z,ny/z,n)
If we have surfaces, we need to know which ones occlude others from the eye position

This projection loses all z information, so we cannot do occlusion testing after projection
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The OpenGL Viewing System
The camera’s visible volume in world space is known as the viewing pyramid or frustum.
Specify perspective projection with the call glFrustum(l, r, b,t, n, f)
In OpenGL, the window is in the near plane
[ and r are u-coordinates of left and right window boundaries in the near plane
b and t are v-coordinates of bottom and top window boundaries in the near plane

n and f are positive distances from the eye along the viewing ray to the near and far
planes

OpenGL looks down —z rather than z.
Specify orthographic projection with the call glOrtho(l,r, b,t, n, f). While similar
parameters to glFrustum, the view volume is a right parallelopiped.

> 1,1, 1
\
& (_1, -1, _1)
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Mapping Perspective to Orthographic

e Map the frustum to a 2x2x2 cube centered at the origin.

> (1,1,

L | /\

\
& (_1' -1, _]_)

f

e First we map the bounding planes * = +z and y = £z to the planes x = 41 and
y = =+1.

This can be done by mapping = to - and y to .

If we set 2’ = —1, this is equivalent to projecting onto the z = —1 plane.

However, we want to derive a map for z that preserves lines and depth information.

T Yy
To map x to = and y to =
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e First use a matrix to map to homogeneous coordinates, then project back to 3 space by
dividing (normalizing).

az + c

bz +d

S O O
QO O© O

R BENO ]
Nay

o O O
o O = O

bz+d
Yy

bz+d
az+c
bz+d

e Now we solve for a, b, c and d such that z € [n, f] maps to 2’ € [—1,1].

e To map x to =,

T x
= = d=0and b= -1
bz + d —2z
e Thus
az + c az + c
becomes
bz + d —z
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e Since the near plane is at z = —n and the far plane at z = — f, our constraints on the
near and far clipping planes (e.g., that they map to -1 and 1) give us

—1=M = c=—n++an
n
1:_af_fnﬂm = (f+n)=a(n—f)
_f+m
= a_n—f
IR ¢ i L)
f—n
I 0L
f—n
_ —n(f—n) —n(f +n)
— s
_ —2fn
_f—n
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This gives us

1 0 0 0 [ x ] T

01 0 0 y | y

0 0 —(f+n) —2fn Py - —z(f}l—n)—2fn

0O O —1 0 | L 1] ] —z ]

e After normalizing we get

x vy —z(f—l—n)—anlT

—z =z —2(f —n)

e If we multiply this matrix in with the geometric transforms, the only additional work is
the divide.

e After normalization we are in left-handed 3-dimensional Normalized Device Coordinates
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Mapping the Frustum to Canonical Position

YA

viewing frustum

NA

n I\

N (r‘+l)/2\r_

yA

[

[

-(r-1)/2,(t-b)/2,-n]

NA

[(r-1)/

| —

iewing frustum

2 ~(t-b)/2,1]

We need to move the ray from the origin through the window center onto the —z axis.

Rotation won't do since the window wouldn’t be orthogonal to the z axis.

Translation won't do since we need to keep the eye at the origin.

We need differential translation as a function of z, i.e. shear.
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e When z = —n, dx should be —% and dy should be —%, so we get
, r+1
r = x z
2n
t+ b
y = y+ 5=
2n
/
zZ = z
2] [1 0 2 o072
v | | 0 1 & o Y
Z 1 0 0 1 0 2z
1 0 0 0 1 ]| | 1]
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Adjusting the Clipping Boundaries

e For ease of clipping, we want the oblique clipping planes to have equations * = +z and
y = *=z.
e This will make the window square, with boundariesl = b = —n and r =t = n.

e This requires a scale to make the window this size.

y y
[-(r-1)/2,(t-b)/2,-n] e
z L 77777777 B z N~ T ~
X X — \x\
[-h2-(by2r] e N

Thus the mapping is
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, 2nx
T j—
r —1
/ 2ny
y p—
r —1
/
z = z
or in matrix form:

[ 2] _f—_l 0 0 0] [z
v | _| 0 & 0 0 Y
2z’ 0 0 1 O z

1 0 0 0O 1 1
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e Combining the three steps given above, the complete OpenGL perspective matrix is

o O O M=

S O = O

Complete OpenGL Perspective Matrix

C 20
0
0
0
0 0
0 0
~(f+n)  —2fn
—1 0
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Ll 0
Lh 0
—(f+n)  —2fn
f—n —n

—1 0 |
20 0 0|
2n
0 2 0 0
0O 0 1 0
0O 0 0 1

o O O

S o = O

_= O O O
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Field of View Frustum Scaling

— After the frustum is centered on the —z axis:
y

. ~—near plane
window P

(thy2 | ;«@ _

.
' viewing frustum
n_ __ 0
— Note that —p — cot (5)
— This gives the y mapping y" = y’ cot (%)
— Since the window need not be square, we can define the x mapping using the aspect rat!

xr T—l
aspect = ﬁy = Et_bg

— Then £ maps as 2"/ = =
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— This gives us the alternative scaling formulation:

0
0 cot (g)
0 0)
0 0

— This is used by gluPerspective-(G, aspect, n, f)
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Reading Assignment and News

Chapter 5 pages 217 - 265, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent
Announcements related to this course.

(http: //www.cs.utexas.edu/users/bajaj/graphics23/cs354 /)
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