
Department of Computer Sciences Graphics – Fall 2003 (Lecture 7)

Projections

• Mapping from d dimensional space to d − 1 dimensional subspace

• Range of any projection P : R3 → R2 called a projection plane

• P maps lines to points

• The image of any point p under P is the intersection of a projection line through p with

the projection plane.
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Parallel Projections

• All projection lines are parallel.

• An orthographic projection has projection lines orthogonal to projection plane.

• Otherwise a parallel projection is an oblique projection

• Particularly interesting oblique projections are the cabinet projection and the cavalier

projection.
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Perspective Projection

• All projection lines pass through the center of projection (eyepoint).

• Therefore also called central projection

• This is not affine, but rather a projective transformation.

Projective Transformation

• Does not preserve angles, distances, ratios of distances or affine combinations.

• Cross ratios are preserved.

• Incidence relationships are generally preserved.

• Straight lines are mapped to straight lines.
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Perspective Transform in Eye Coordinates

• Given a point p, find its projection P(p)

• Convenient to do this in eye coordinates, with center of projection at origin and z = n

projection plane

• Note that eye coordinates are left-handed

(0,0) z

Projection plane, z = n

y

p’=(x’,y’,n)

p=(x,y,z)

y

z

y’

n

• Due to similar triangles P(p) = (nx/z, ny/z, n)

• For any other point q = (kx, ky, kz), k 6= 0 on same projection line P(q) =

(nx/z, ny/z, n)

• If we have surfaces, we need to know which ones occlude others from the eye position

• This projection loses all z information, so we cannot do occlusion testing after projection
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The OpenGL Viewing System

• The camera’s visible volume in world space is known as the viewing pyramid or frustum.

• Specify perspective projection with the call glFrustum(l, r, b, t, n, f)

• In OpenGL, the window is in the near plane

• l and r are u-coordinates of left and right window boundaries in the near plane

• b and t are v-coordinates of bottom and top window boundaries in the near plane

• n and f are positive distances from the eye along the viewing ray to the near and far

planes

• OpenGL looks down −z rather than z.

• Specify orthographic projection with the call glOrtho(l, r, b, t, n, f). While similar

parameters to glFrustum, the view volume is a right parallelopiped.

(1, 1, 1)

(-1, -1, -1)

f

n
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Mapping Perspective to Orthographic

• Map the frustum to a 2x2x2 cube centered at the origin.

(1, 1, 1)

(-1, -1, -1)

f

n

•

• First we map the bounding planes x = ±z and y = ±z to the planes x = ±1 and

y = ±1.

• This can be done by mapping x to x
−z and y to y

−z .

• If we set z′ = −1, this is equivalent to projecting onto the z = −1 plane.

• However, we want to derive a map for z that preserves lines and depth information.

• To map x to x
−z and y to y

−z
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• First use a matrix to map to homogeneous coordinates, then project back to 3 space by

dividing (normalizing).
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• Now we solve for a, b, c and d such that z ∈ [n, f ] maps to z′ ∈ [−1, 1].

• To map x to x
−z ,

x

bz + d
=

x

−z
⇒ d = 0 and b = −1

• Thus
az + c

bz + d
becomes

az + c

−z
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• Since the near plane is at z = −n and the far plane at z = −f , our constraints on the

near and far clipping planes (e.g., that they map to -1 and 1) give us

−1 =
−an + c

n
⇒ c = −n + an

1 =
−af − n + an

f
⇒ (f + n) = a(n − f)

⇒ a =
f + n

n − f

⇒ a =
−(f + n)

f − n

⇒ c = −n +
−(f + n)n

f − n

=
−n(f − n) − n(f + n)

f − n

=
−2fn

f − n
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This gives us
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• After normalizing we get

[

x

−z
,

y

−z
,
−z(f + n) − 2fn

−z(f − n)
, 1

]T

• If we multiply this matrix in with the geometric transforms, the only additional work is

the divide.

• After normalization we are in left-handed 3-dimensional Normalized Device Coordinates
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Mapping the Frustum to Canonical Position

viewing frustum

y

x x

y

z
viewing frustum

[-(r-l)/2,(t-b)/2,-n]

[(r-l)/2,-(t-b)/2,-n]

(t+b)/2

z
(r+l)/2

f
n

b

l r
t

f
n

• We need to move the ray from the origin through the window center onto the −z axis.

• Rotation won’t do since the window wouldn’t be orthogonal to the z axis.

• Translation won’t do since we need to keep the eye at the origin.

• We need differential translation as a function of z, i.e. shear.
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• When z = −n, δx should be −r+l
2n and δy should be −t+b

2n , so we get

x
′

= x +
r + l

2n
z

y
′

= y +
t + b

2n
z

z
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= z
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Adjusting the Clipping Boundaries

• For ease of clipping, we want the oblique clipping planes to have equations x = ±z and

y = ±z.

• This will make the window square, with boundaries l = b = −n and r = t = n.

• This requires a scale to make the window this size.

[-(r-l)/2,(t-b)/2,-n]

[n,-n,-n][(r-l)/2,-(t-b)/2,-n]

z

y

x

y

x

z

[-n,n,-n]

Thus the mapping is
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x
′

=
2nx

r − l

y
′

=
2ny

r − l

z
′

= z

or in matrix form:


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Complete OpenGL Perspective Matrix

• Combining the three steps given above, the complete OpenGL perspective matrix is
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Field of View Frustum Scaling

– After the frustum is centered on the −z axis:
y

zθ

n

(t-b)/2

window
near plane

viewing frustum

– Note that n
t−b = cot

(

θ
2

)

– This gives the y mapping y′′ = y′ cot
(

θ
2

)

– Since the window need not be square, we can define the x mapping using the aspect ratio

aspect = ∆x
∆y = (r−l)

(t−b)

– Then x maps as x′′ = x′
cot

(

θ
2

)

aspect
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– This gives us the alternative scaling formulation:
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– This is used by gluPerspective(θ, aspect, n, f)
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Reading Assignment and News

Chapter 5 pages 217 - 265, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent

Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)
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