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Orientations and Quaternions
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(a) Rotate about x so that

w lies in xz-plane.
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(b) Rotate about y so that

w coincides with z.
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(c) Rotate about z so that

u and v coincide with x

and y.
Rotating a frame to coincide with the standard frame
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Smooth Interpolation of Frames

It is possible to perform any change of orientation about an arbitrary axis with three rotations,

one about each of the coordinate axes, by a triple of three angles, (θx, θy, θz). These define

a general rotation matrix, by composing the three basic rotations:

R(θx, θy, θz) = Rz(θz)Ry(θy)Rx(θx).

These three angles are called the Euler angles for the rotation. Thus, we can parameterize
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any rotation in 3-space as triple of numbers, each in the range α ∈ [0, 2π].

With ca = cos(θa) and sa = sin(θa),

R(θx, θy, θz) =









cycz cysz −sy 0

sxsycz − cxsz sxsysz + cxcz sxcy 0

cxsycz + sxsz cxsysz − sxcz cxcy 0

0 0 0 1









= Rz(θz)Ry(θy)Rx(θx),

where Rx(θx), Ry(θy) and Rz(θz) are the standard rotation matrices.

Given a point P represented as a homogeneous row vector, the rotation of P is given by P ′ =

PR(θx, θy, θz). Animation between two rotations involves interpolating independently the

three angles θx, θy and θz.
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The standard rotation matrices are given by

Rx(θx) =









1 0 0 0

0 cx sx 0

0 −sx cx 0

0 0 0 1









Ry(θy) =









cy 0 −sy 0

0 1 0 0

sy 0 cy 0

0 0 0 1









Rz(θz) =









cz sz 0 0

−sz cz 0 0

0 0 1 0

0 0 0 1









Gimbal Lock

An example will clarify the parametric singularity problem, commonly known as gimbal

lock. Gimbal lock is a mechanical problem that arises in the support of gyroscopes by three
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nested rotating frames.

Suppose we set θy = π/2 = 90◦, and set θx and θz arbitrarily. Then cy = 0, sy = 1 and

the matrix R(θx, π/2, θz) can be reduced to

R(θx, θy, θz) =









0 0 −1 0

sxcz − cxsz sxsz + cxcz 0 0

cxcz + sxsz cxsz − sxcz 0 0

0 0 0 1









=









0 0 −1 0

sin(θx − θz) cos(θx − θz) 0 0

cos(θx − θz) sin(θx − θz) 0 0

0 0 0 1









.

The Transformation only depends on the difference θx − θz, and hence only has one degree

of freedom when it should have two.

This occurs because a y-roll by π/2 rotates the x-axis onto the negative z axis, and so a

x-roll by θ has the same effect as a z-roll by −θ. Gimbal lock can be very frustrating in

practice:
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• During interactive manipulation the object will seem to “stick”;

• Certain orientations can be hard to obtain if approached from the wrong direction;

• Interpolation through these parametric singularities will behave strangely.

Perhaps a somewhat more natural way to express rotations (about the origin) in 3-space is

in term of two quantities, (θ, ~u), consisting of an angle θ, and an axis of rotation ~u. Let’s

consider how we might do this. First consider a vector ~v to be rotated to R(~v). Let us

assume that ~u is of unit length.

In order to derive this, we begin by decomposing ~v as the sum of its components that are

parallel to and orthogonal to ~u, respectively.

~v‖ = (~u · ~v)~u

~v⊥ = ~v − ~v‖ = ~v − (~u · ~v)~u.

Note that ~v‖ is unaffected by the rotation, but ~v⊥ is rotated to a new position R(~v⊥). To

determine this rotated position, we will first construct a vector that is orthogonal to ~v⊥ lying

in the plane of rotation,

~w = ~u × ~v⊥ = ~u × (~v − ~v‖) = (~u × ~v) − (~u × ~v‖) = ~u × ~v.
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Now, consider the plane spanned by ~v⊥ and ~w. We have

R(~v⊥) = (cos θ)~v⊥ + (sin θ)~w.

From this we have

R(~v) = R(~v‖) + R(~v⊥)

= R(~v‖) + (cos θ)~v⊥ + (sin θ)~w

= (~u · ~v)~u + (cos θ)(~v − (~u · ~v)~u) + (sin θ)~w

= (cos θ)~v + (1 − cos θ)~u(~u · ~v) + (sin θ)(~u × ~v).

Quaternions:

i
2
= j

2
= k

2
= −1 ij = k, jk = i, ki = j.

Combining these, it follows that ji = −k, kj = −i and ik = −j. A quaternion is defined

to be a generalized complex number of the form

q = q0 + q1i + q2j + q3k.
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We will see that quaternions bear a striking resemblance to our notation for angular

displacement. In particular, we can rewrite the quaternion notation in terms of a scalar and

vector as

q = (s, ~u) = s + uxi + uyj + uzk.

Furthermore define the product of quaternions to be

q1q2 = (s1s2 − (~u1 · ~u2), s1~u2 + s2~u1 + ~u1 × ~u2).

Define the conjugate of a quaternion q = (s, ~u) to be q̄ = (s,−~u). Define the magnitude

of a quaternion to be the square root of this product:

|q|
2
= qq̄ = s

2
+ |~u|

2
.

A unit quaternion is one of unit magnitude, |q| = 1. A pure quaternion is one with a 0

scalar component

p = (0, ~v).

Any quaternion of nonzero magnitude has a multiplicative inverse, which is

q
−1

=
1

|q|2
q̄.
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Quaternion and Rotation:

Define the rotation operator

Rq(p) = qpq
−1

.

Rq(p) = (0, (s
2
− (~u · ~v))~v + 2~u(~u · ~v) + 2s(~u × ~v)).

Unit quaternions can be shown to be isomorphic to orientations and given by

q = (cos θ, (sin θ)~u), where |~u| = 1.

This is equivalent to a rotation by an angle 2θ around the axis ~u.

Plugging q into the above expression Rq(p), we have

Rq(p) = (0, (cos
2
θ − sin

2
θ)~v + 2(sin

2
θ)~u(~u · ~v) + 2 cos θ sin θ(~u × ~v))

= (0, (cos 2θ)~v + (1 − cos 2θ)~u(~u · ~v) + sin 2θ(~u × ~v)).

Thus, in summary, we encode points in 3-space as pure quaternions

p = (0, ~v),
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and we encode a rotation by angle q about a unit vector u → as a unit quaternion

q = (cos(θ/2), sin(θ/2)~u),

then the image of the point under this rotation is given by the vector part of the result of

the quaternion rotation operator Rq(p).
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Rotation example.

Composing Rotations:

Given two unit quaternions q and q′, a rotation by q followed by a rotation by q′ is equivalent

to a single rotation by the product q′′ = q′q. That is,

Rq′Rq = Rq′′ where q
′′

= q
′
q.

This follows from the associativity of quaternion multiplication, and the fact that (qq′)−1 =

q−1q′−1
, as shown below.

Rq′(Rq(p)) = q
′
(qpq − 1)q

′−1

= (q
′
q)p(q

−1
q
′−1

)

= (q
′
q)p(qq

′
)
−1

= q
′′
pq

′′−1

= Rq′′(p).

Matrices and Quaternions:
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Given a unit quaternion

q = (cos(θ/2), sin(θ/2)~u) = (w, (x, y, z))

what is the corresponding affine transformation (expressed as a rotation matrix). By simply

expanding the definition of Rq(p), it is not hard to show that the following (homogeneous)

matrix is equivalent









1 − 2y2 − 2z2 2xy − 2wz 2xz + 2wy 0

2xy + 2wz 1 − 2x2 − 2z2 2yz − 2wx 0

2xz − 2wy 2yz + 2wx 1 − 2x2 − 2y2 0

0 0 0 1









To convert from an orthogonal rotation matrix to a unit quaternion, we observe that if

M = [mi,j] is the affine transformation in homogeneous form,

trace(M) = 4 − 4(x
2
+ y

2
+ z

2
) = 4w

2
.
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Once we have w, we can find the order quantities by cancelling symmetric terms:

x =
m32 − m23

4w
,

y =
m13 − m31

4w
,

z =
m21 − m12

4w
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Reading Assignment and News

Chapter 4 pages 200 - 212, of Recommended Text.

Please also track the News section of the Course Web Pages for the most recent

Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)
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