
Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Illumination II

Local illumination model: only consider the effect of light arriving directly from light sources,

and use crude approximations for indirect lighting effects.

Luminance function:

I = (Ir, Ig, Ib)

Components of OpenGL local illumination model:

glLightfv(source,parameter,pointer-to-array)

glLightf(source,parameter,value)

• ambient emission

Ia =





Iar

Iag

Iab





The University of Texas at Austin 1

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

• point emission

I(p0) =





Ir(p0)

Ig(p0)

Ib(p0)





GLfloat ambient0[]=1.0,0.0,0.0,1.0

GLfloat diffuse0[]=1.0,0.0,0.0,1.0

GLfloat specular0[]=1.0,1.0,1.0,1.0

GLfloat light0-pos[]=1.0,2.0,1.0,1.0

glLightfv(GL-LIGHT0,GL-AMBIENT,ambient0)

glLightfv(GL-LIGHT0,GL-POSITION,light0-pos)

The University of Texas at Austin 2

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Attenuation function:

I(p, p0) =
1

a + bd + cd2
I(p0)

where d = |p − p0|
2.

glLightf(GL-LIGHT0,GL-CONSTANT-ATTENUATION,a)

The University of Texas at Austin 3

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

The Phong Illumination Model

Components of Phong illumination or reflection model:

• Emission: to model objects that glow

• Ambient reflection: A simple way to model indirent reflection. All surfaces in all positions

and orientations are illuminated equally.

• Diffuse reflection: The shading produced by dull smooth objects.

• Specular reflection: The bright spots appearing on smooth shiny (e.g., metallic or

polished) surfaces.

Question: What is the amount of light that is transmitted (either by emission or reflection)

from each point in the direction of the viewer.

Question: This is achieved by first associating reflectivity or material properties to all the

modelled objects in the scene, and then applying a Phong reflection calculation to determine

the transmitted light intensity.

The University of Texas at Austin 4

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Relevant Vectors

The shading of a point on a surface is a function of the relatonship between the viewer, light

sources, and surface. The following vectors are relevant to direct illumination. All vectors

are assumed to be normalized to unit length.

• Normal vector: A vector ~n that is perpendicular to the surface and directed outwards

from the surface.

• View vector: A vector ~v that points in the direction of the viewer.

• Light vector: A vector ~l that points towards the light source.

• Reflection vector: A vector ~r that indicates the direction of pure reflection of the light

vector.

l

n

v

r

The University of Texas at Austin 5

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

The Reflection Vector

l

n

r

u u

n ,

Reflection vector

~n
′
= (~n ·~l)~n

~u = ~n
′
−~l

~r = ~l + 2~u = ~l + 2(~n
′
−~l) = 2(~n ·~l)~n −~l

The University of Texas at Austin 6

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Specular Reflection

Most objects are not perfect Lambertian reflector. One of the most common deviation is for

smooth metallic or highly polished objects. They tend to have specular highlights (or “shiny

spots”).

There are common models of specular reflection: Phong model and halfway vector model

(OpenGL).

Define ~h = Normalize (~l + ~v).

The parameters of surface that control specular reflection are ks, the surface’s coefficient of

specular reflection, and α, shininess.

The formula for the specular component is

Is = ks(~n · ~h)
α
LsCs

The University of Texas at Austin 7

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Phong Illumination Equation

The total illumination of a point in OpenGL is computed for the supported Light sources and

is calculated

I = Ie + Ia +
1

a + bd + cd2
(Id + Is)

= Ie + kaLaCa +
1

a + bd + cd2
(kd max(0, ~n ·~l)LdCd + ks(~n · ~h)

α
LsCs),

where d is the distance from the object to the light source. The reflection material properties

for front/back of each surface is specified by OpenGL using functions

glMaterialfv(face,type,pointer-to-array)

glMaterialf(face,value)

GLfloat ambient[]=0.1,0.25,0.0,1.0

GLfloat diffuse[]=0.1,0.25,0.0,1.0

The University of Texas at Austin 8

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

GLfloat specular[]=1.0,0.0,1.0,1.0

GLfloat emission[]=0.0,0.8,0.0,1.0

glMaterialfv(GL-front-and-back,GL-specular,specular)

glMaterialf(GL-front-and-back,GL-shininess, 100.0)

For multiple light sources, we add up the ambient, diffuse, and specular components for each

light source.

The University of Texas at Austin 9

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Different Normals

Normals by Cross Products

Given any three non-collinear points, P0, P1, P2, on a polygon, a normal of the polygon is

given through a cross product

~n = (P1 − P0) × (P2 − P0).

P
0

P
1

P
2

n

The University of Texas at Austin 10

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Normals by Area

A polygon is given by n points P0, P1, . . . , Pn−1. If we can determine a plane equation

ax + by + cz + d = 0

from these points, then (a, b, c) is the normal vector of the polygon.

(x

x

y

Area = (y1
2

,y3 3)

(x ,y2 2)

2+ y3)(x2

_ x
3)

The University of Texas at Austin 11

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

a =
1

2

n
∑

i=1

(zi + zi+1)(yi − yi+1)

b =
1

2

n
∑

i=1

(xi + xi+1)(zi − zi+1)

c =
1

2

n
∑

i=1

(yi + yi+1)(xi − xi+1)

Then normalizing (a, b, c) is ~n.

The University of Texas at Austin 12

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Normals for Implicitly Defined Surfaces

Given a surface defined by an implicit representation, i.e., defined by some equation

f(x, y, z) = 0

then the normal at some point is given by gradient vector

~n =





∂f/∂x

∂f/∂y

∂f/∂z





The University of Texas at Austin 13

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Normals for Parametric Surfaces

Surfaces in computer graphics are most often represented parametrically. The parametric

representation of a surface is defined by three functions of 2 variables or parameters:

x = φx(u, v),

y = φy(u, v),

z = φz(u, v).

Then the normal of the surface at a point is defined as

~n =
∂φ

∂u
×

∂φ

∂v

where

∂φ

∂u
=





∂φx/∂u

∂φy/∂u

∂φz/∂u





∂φ

∂v
=





∂φx/∂v

∂φy/∂v

∂φz/∂v





The University of Texas at Austin 14

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Shading

Shading algorithms apply lighting models to polygons, through interpolation from the vertices.

OPENGL:

glShadeModel(GL-FLAT)

Gouraud Shading: Lighting in only computed at the vertices, and the colors are interpolated

across the (convex) polygon

Phong Shading: A normal is specified at each vertex, and this normal is interpolated across

the polygon. At each pixel, a lighting model is calculated.

The University of Texas at Austin 15

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Gouraud Shading

• Gouraud shading interpolates colors across a polygon from the vertices

• Lighting calculations are only performed at the vertices

• Highlights can be missed or blurred

• Common in hardware renderers; model that OpenGL supports

• Gouraud shading is well-defined only for triangles...

Equivalent to a barycentric combination

• Barycentric combinations are also affine combinations...

Triangular Gouraud shading is invariant under affine transformations

The University of Texas at Austin 16

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Triangle Gouraud Shading

aC

B

A

C

P
aB

aA

2

αA = D(P, B, C)/D(A, B, C)

αB = D(A, P, C)/D(A, B, C)

αC = D(A, B, P)/D(A, B, C)

αA + αB + αC = 1

P = αA A + αB B + αC C

The University of Texas at Austin 17

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

D(A, B, C) =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

1 xA yA zA

1 xB yB zB

1 xC yC zC

∣

∣

∣

∣

∣

∣

∣

∣

The University of Texas at Austin 18

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

• Gouraud shading for polygons with more than three vertices:

– Sort the vertices by y coordinate

– Slice the polygon into trapezoids with parallel top and bottom

– Interpolate colors along each edge of the trapezoid...

– Interpolate colors along each scanline

F = lerp(A,B)

H = lerp(D,E)

I = lerp(H,E)

J = lerp(B,F)

P = lerp(I,J)

D

A

F

J

B

E

P

H
I

G

C

The University of Texas at Austin 19

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

• Gouraud shading gives bilinear interpolation within each trapezoid

• Since rotating the polygon can result in a different trapezoidal decomposition, n-sided

Gouraud interpolation is not affine invariant

glShadeModel(GL-SMOOTH)

The University of Texas at Austin 20

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Phong Shading

• Phong Shading interpolates lighting model parameters, not colors

• Much better rendition of highlights

• A normal is specified at each vertex of a polygon

• Vertex normals are independent of the polygon normal

• Vertex normals should relate to the surface being approximated by the polygon

• The normal is interpolated across the polygon (using Gouraud techniques).

• At each pixel,

– Interpolate the normal...

– Interpolate other shading parameters...

– Compute the view and light vectors...

– Evaluate the lighting model

• The lighting model does not have to be the Phong lighting model...

• Normal interpolation is nominally done by vector addition and renormalization

• Several “fast” approximations are possible

• The view and light vectors may also be interpolated or approximated

The University of Texas at Austin 21

Department of Computer Sciences Graphics – Fall 2003 (Lecture 15)

Reading Assignment and News

Chapter 6 pages 275 - 304, of Recommended Text.

On Wednesday October 22 (tomorrow) Peter Djeu shall conduct a recitation class from

2:30pm - 4:00pm in ACES 2.402, about subdivision surfaces. Please also track the News

section of the Course Web Pages for the most recent Announcements related to this course.

(http://www.cs.utexas.edu/users/bajaj/graphics23/cs354/)

The University of Texas at Austin 22

