
Department of Computer Sciences Graphics – Fall 2003 (Lecture 17)

Illumination IV: Radiosity

The whole philosophy of our previous lectures on illumination were based on what we called

“quick-and-dirty” methods: efficient approaches that manage to “fool the eye”. The local

illumination is central to the efficiency of these approaches.

A global illumination model is a model which take into account the fact that light is not just

coming from a few point light source, but that light is arriving indirectly form many different

directions.

What are the elements of a global illumination model?

The basic idea is vewing each object as being a potential light source. Some objects (light

sources) radiate light directly, but others (nonblack surfaces) can radiate light indirectly.

Radiosity is an example of a global illumination model.
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Radiosity Overview

Radiosity: the intensity of each point on the surface of some object in our environment.

This intensity of the point P is a function of

• the emittance of light from this point (if it is a light source),

• the reflection of light coming from other surfaces in the environment.

The second component is quite complicated, because it depends on the radiosity of points

on surfaces throughout the environment, whether these points are visible from P, and how

reflective the surface is that P lies on.
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Sampling

Radiosity computations are quite expensive since for every point we need to know the

illumination of all the surface elements that this point can see. A common way is to choose

some sampled points in the environment.

How to selected?

The most common way is based on a generalization of the finite element method.

• Subdivide each of the object surface into a number of small polygonal patches (surface

mesh)

• For each patch, compute an approximation of the radiosity of this patch. For example,

this could be done by computing the radiosities at each of its vertices and then averaging

these.

How to construct these patches?

• Small patches can give good accuracy, but expensive.

• Large patches can give speed, but lost of accuracy.
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The best method is to use an adaptive approach:

• First start with a coarse mesh, determining in which areas the radiosity is varying most

rapidly.

• Then refining these ares and trying again.

• When the radiosity values are fairly constant in the neighborhood of a patch of the mesh,

or when the patches are deemed to be “small enough” then we do not need to refine

further.

More sophisticated methods, like discontinuity meshing actually attempt to align the edges

of the mesh with sharp changes in radiosity (e.g. as happens along the edge of a shadow).
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Who Comes First?

The radiosity at point A depends on the radiosity from all visible points B. And visa versa.

Then how to compute radiosities?

There are two general approaches.

• Define a large linear system of equations, that “encodes” all of the radiosity dependencies.

By solving this equation, we can determine all the radiosities at all the points.

The problem is the size of this linear equation is enormous.

n surface patches =⇒ n2
× n2 matrix.

• Progressive refinement radiosity: The idea is:

– starting with the brightest light source and shooting its radiation around to the entire

scene.

– Then we move to the next brightest light source and repeat this process.

Note that as we do this, surface that were initially black start picking up more and more

intensity. Eventually a nonemitting light source can start accumulating more and more

intensity, until it becomes the brightest light source, and then it shoots its intensity to

the surrounding scene.
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Energy Balance Equation
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• Lo(x, θo
x, φo

x, λo) is the radiance

– at wavelength λo

– leaving point x

– in direction θo
x, φo

x

• Le(x, θo
x, φo

x, λo) is the radiance emitted by the surface from the point

• Li(x, θi
x, φi

x, λi) is the incident radiance impinging on the point

• ρbd(x, θi
x, φi

x, λi, θo
x, φo

x, λo) is the BRDF at the point
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– describes the surface’s interaction with light at the point

• the integration is over the hemisphere above the point
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The most basic concept of radiosity is radiance.

Radiance L: the amount of energy per unit time (or equivalently power) emitted from a

point x in a given direction.

Define:

• θ: the angle with respect to the surface normal,

• φ: the angle of the projection onto the surface.

• ω: the resulting directional vector.

Thus

L = L(x, θ, φ) = L(x, ω)

dwdq

f

dx
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The power radiating from a small patch in some small solid angle can be expressed as:

L(x, θ, φ)dx cos θdω

Radiance is measured in watts per square meter per steradian.

dω = (sin θ)dθdφ

Then the radiosity, denoted by B, is as follows

B(x) =

∫

Ω

L(x, θ, φ) cos θdω

where Ω is the hemisphere’s surface lying on the above the surface.
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Simple Radiosity Equation

If surfaces are Lambertian, then we can simplify L(x, θ, φ) and just write L(x). The

radiosity at the point x is given by

B(x) =

∫

Ω

L(x, θ, φ) cos θdω

= L(x)

∫

Ω

cos θdω

= L(x)

∫ π

0

∫ 2π

0

cos θ sin θdθdφ

= πL(x).

This means simply that depends only on the radiance, the light power, at the point.
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Radiosity equation (for Lambertian reflectors):

L(x) = Le(x) +
ρd(x)

π

∫

Ω

Li(x, θ, φ) cos θdω

where Le denotes emitted radiance and Li denotes the incoming irradiance, ρd(x) denotes

the coefficient of diffuse reflection (earlier we had written this kd).

We cannot eliminate the directional component from the Li term, because we still need to

consider Lambert’s law for incoming radiation.

If we define

H(x) =

∫

Ω

Li(x, θ, φ) cos θdω

and let E(x) denote the emitted radiosity πLe(x), and recall that B(x) = πL(x) then

we can write this as

B(x) = E(x) + ρd(x)H(x)

The term H(x) essentially describes how much illumination energy is arriving from all other

points in the scene.

To simplify H(x) we can use the Lambertian assumption. Rather than integrating over the

angular space surrounding x, instead we will integrate over the set of points on all surface,
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denoted S. Let y ∈ S be such a surface point visible from x in direction ω. Let θ′ denote

the angle between the surface normal at y and the line-of-sight vector from y to x(−ω),

and let φ′ be defined similar to φ but for y. Let r denote the distance from x to y.

dq

dq�

dy

r

dx

By symmetry of radiance, we have L(x, θ, φ) = L(y, θ′, φ′).
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Since all surfaces are Lambertian, we have

L(y, θ
′
, φ

′
) =

B(y)

π
.

And

dω =
cos θ′dy

r2
.

Putting these together, we can define H(x) in terms of an integral over surface points:

H(x) =

∫

y∈S

B(y)
cos θ cos θ′

πr2
V (x, y)dy.

where

V (x, y) =

{

1, if x can see y

0, otherwise

is the visibility function.
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Form Factors

In practice, we cannot expect to be able to solve this integral equation. As mentioned before,

most radiosity methods are based on subdividing space into small patches, and assuming

that the radiosity is constant for each path. Thus, in the equation for H(x) above, we can

assume that B(y) is constant for all points y in a surface patch.

Form factor Fi,j: the fraction of light energy leaving Pi that arrives at patch Pj:

Fi,j =
1

Ai

∫

x∈Pi

∫

y∈Pj

cos θ cos θ′

πr2
V (x, y)dydx

Fi,j is a dimensionless quantity. If patches are close, large, and facing one another, Fi,j will

be large.

Then the radiosity equation is a system of linear equations:

Bi = Ei + ρi

n
∑

j=1

BjFj,i

Aj

Ai
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Here Bi is the radiosity of patch i (the amount of light reflected per unit area), Ei is the

amount of light emitted from this patch per unit area, ρi is the reflectivity of patch i (ρ ≈ 0

means a dark nonreflecting object and ρ ≈ 1 means a bright highly reflecting object). Ai

and Aj are the areas of patches Pi and Pj, respectively.

The linear system is sparse. Iterative techniques from numerical analysis, such as Gauss-Seidel,

can be used to solve this type of system.

Since we assume that light can travel equally well in any direction it follows that

AiFi,j = AjFj,i.

We can simplify the above equation as

Bi = Ei + ρi

n
∑

j=1

BjFi,j

Ei = Bi − ρi

n
∑

j=1

BjFi,j
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Its matrix form is









1 − ρ1F1,1 −ρ1F1,2 · · · −ρ1F1,n

−ρ2F2,1 1 − ρ2F2,2 · · · −ρ2F2,n
... ... ... ...

−ρnFn,1 ρnFn,2 · · · 1 − ρnFn,n

















B1

B2
...

Bn









=









E1

E2
...

En









The values ρi are dependent on the surface types. The hard thing to compute are the values

of Fi,j.

It can be shown that there is a fairly simple geometric interpretation of Fi,j.

1. Break the i-th patch into small differential elements.

2. For each element consider a hemisphere surrounding this element, and project patch j

onto this hemisphere through its center.

3. Then project this projection orthographically onto the base circle of the hemisphere.

4. The value of Fi,j is the area of this projection, divided by the area of the circle.

Thus intuitively patches that occupy a larger field of view contribute more to Fi,j and patches

that are more nearly orthogonal to the surface contribute more.
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Computing this orthogonal projection of a spherical projection is somewhat tricky (considering

that it must be repeated for every tiny element of every patch), so it is important of speed

this computation up, at the cost of the introduction of approximation errors. We can

approximate the hemisphere by a hemicube, and discretize the surface of the hemicube into

square (pixel-like) elements. We project all the surrounding patches on to each of the faces

of the hemicube. (Note that this is essentially a visible surface elimination task, which can be

solved with hardware assistance, e.g. using a z-buffer algorithm.) Each cell of the hemicube

is now associated with a patch, and we apply a weighting factor that depends on the square

of the hemicube, and sum these up.

Needless to say, this process is extremely computationally intensive. We are basically solving

a visible surface determination problem at every point on the surface of our objects. Much of

the research in radiosity is devoted to mechanisms to save computations, without sacrificing

realism.
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