Automated Reasoning:

Essays in Honor of

Woody Bledsoe

Edited by

Robert S. Boyer

Computer Sciences Department
University of Texas at Austin

Kluwer Academic Publishers Group

Dordrecht, The Netherlands



SPARC and Sun-3 are trademarks of Sun Microsystems, Inc.
VAX is a trademark of Digital Equipment Corporation.
Unix is a trademark of AT&T Information Systems, Inc.

Symbolics 3600 is a trademark of Symbolics, Inc.

Copyright ©1991 by Kluwer Academic Publishers Group, Dordrecht, The
Netherlands. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or me-
chanical including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.



Contents

Preface ix
Acknowledgements xi

1 A Biographical Sketch of W. W. Bledsoe
Anne Olivia Boyer and Robert S. Boyer 1

2 METEORSs: High Performance Theorem Provers
using Model Elimination
O. L. Astrachan and D. W. Loveland 31

3 The Metatheorist: Automatic Proofs of Theorems in
Analysis Using Non-Standard Techniques, Part 1T
A. M. Ballantyne 61

4 Perspectives on Automated Deduction
W. Bibel 77

5 MJIRTY—A Fast Majority Vote Algorithm
Robert S. Boyer and J Strother Moore 105

6 How the Brain Adjusts Synapses—Maybe
Hans J. Bremermann and Russell W. Anderson 119

7 The Use of Proof Plans for Normalization
Alan Bundy 149

8 What Are the Limitations of the Situation Calculus?
M. Gelfond, V. Lifschitz, and A. Rabinov 167

9 Reasoning In Paraconsistent Logics
J. Lu, L. Henschen, V. Subrahmanian, and N. da Costa 181

vii



viii

10 Compiling Recursive Functional Prolog Programs
with List Structure into Procedural Languages
Young K. Nam and Lawrence J. Henschen

11 Aligning Multiple RN A Sequences
Ross Overbeek and Ian Foster

12 Similarity, Uncertainty and Case-Based Reasoning
in Patdex
Michael M. Richter and Stefan Wess

13 Formal and Informal Proofs
J. A. Robinson

14 PTTP and Linked Inference
Mark E. Stickel

15 Automated Reasoning and Bledsoe’s Dream
for the Field
Larry Wos

Contributors

Index

211

231

249

267

283

297

347

349



Preface

These essays have been written to honor W. W. Bledsoe, a scientist who has
contributed to such diverse fields as mathematics, systems analysis, pattern
recognition, biology, artificial intelligence, and automated reasoning. The first
essay provides a sketch of his life, emphasizing his scientific contributions.
The diversity of the fields to which Bledsoe has contributed is reflected in the
range of the other essays, which are original scientific contributions by some
of his many friends and colleagues. Bledsoe is a founding father of the field of
automated reasoning, and a majority of the essays are on that topic. These
essays are collected together here not only to acknowledge Bledsoe’s manifold
and substantial scientific contributions but also to express our appreciation
for the great care and energy that he has devoted to nurturing many of the
scientists working in those scientific fields he has helped found.

Robert S. Boyer
Austin

February, 1991
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Chapter 1

A Biographical Sketch of
W. W. Bledsoe

Anne Olivia Boyer
Robert S. Boyer

614 West 32nd Street
Austin, Texas

1.1 Introduction

W. W. Bledsoe is a major figure in the evolution of the new scientific field
artificial intelligence and one of the founding fathers of the related scientific
field automated reasoning. Into the following biographical sketch of Bledsoe
we weave personal, educational, historical, social, and scientific commentary.
At the time we write, Bledsoe is an active contributor to science and edu-
cation at the University of Texas at Austin. We hope that our fondness for
Bledsoe, whom we have known well for twenty-three years, has not clouded
our assessment of his many achievements. We are certain that we have failed
to treat adequately many aspects of Bledsoe’s life prior to our first meeting
him in 1966, and sadly fear that lack of space and lack of investigative effort
cause us to omit quite a few interesting aspects of his career since then. We
hope, however, that this short sketch of Bledsoe will please his friends and
perhaps provide some useful information for a future biographer or historian
of science.
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1.2 Early Days

Woodrow Wilson (“Woody”) Bledsoe was born November 12, 1921, in Mays-
ville, Oklahoma. He was named for the then recent president of the United
States, whose policies and idealism his parents greatly admired. At the time
of Woody’s birth, the Bledsoe clan had swelled to a considerable size. His
father Thomas brought six children with him when he married his second
wife, Eva Matthews, and together they had six more children. Woody was
Eva’s fourth child. The others were Pickens, Mary Ellen, Sula, Charles, and
Tom.

It was not an easy childhood. Thomas Bledsoe had owned a plantation in
Alabama, but a hired hand upset some turpentine one evening, a fire broke
out, and the farm was lost. After that, it was moving from place to place,
sharecropping. Eventually, the family settled in Oklahoma. Like so many
other farmers in Oklahoma at that time, Thomas found that trying to wrest
a living from the land was exhausting and hardly profitable.

The children, however, were happy living in the country and scarcely aware
that they lived in poverty. Most unfortunately for the family, Thomas died in
1934. It was a blow from which he never recovered, says Woody, who was only
twelve at the time. The Bledsoes were obliged to move into town (Lexington,
Oklahoma), and the children were forced to confront their poverty. Now they
knew they were, indeed, very poor.

“We scrambled,” says Woody, who mowed lawns and delivered papers
and did any honorable work to keep body and soul together. His mother was
managing a small dress shop, but there were few women who could afford a
new dress in those days, and sales were few. Woody worked for about a dollar
a day. At one time he worked for a restaurant that provided employees free
pies, and Woody once found himself covered with boils after eating several
pecan pies in a single day.

The Depression. Hard times all around. Elsewhere in Oklahoma, people
were packing up and fleeing the Dust Bowl. Everything seemed to conspire
against even the most hardworking folks. Famous folksinger Woody Guthrie,
also from Oklahoma, must have had kids like Woody Bledsoe in mind when
he sang his now classic songs about the grit and gumption of the poor people
in Oklahoma then. Woody Bledsoe might have found the going rough, but
he did not cave in to adversity, and discovered that even in poverty there are
joys to be savored in life. He did very well in school, and distinguished him-
self in mathematics, especially under the guidance of teachers Ellen Sherman
and Lois Peyton. He also proved to be extremely adept at tennis, which he
continues to play enthusiastically. In his high school years, Woody ran away
from home several times, catching rides by hitchhiking or riding freight trains
throughout Texas and Oklahoma—a common enough method of transporta-
tion during the Depression. In his senior year, to spare his mother some of
the burden of supporting so many children, he left home again. He traveled
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to Calliham in South Texas, arriving unannounced at the door of an acquain-
tance (Lon Claunch), with whom he spent a year, graduating from Calliham
High School in 1939.

The next year held poverty and uncertainty. Woody moved back to Okla-
homa and spent most of the next year washing dishes in a restaurant. Hoping
to break free from drudgery, working part time to support himself, he en-
tered the University of Oklahoma, but the effort to support himself proved
too much even for Woody’s apparently boundless energy, and he dropped out
to join the army on May 27, 1940.

Life in the army was not much of an improvement, at least in terms of per-
sonal fulfillment. As Bledsoe puts it, “Soldiers of the old army were shunned
by civilians,” and he felt intensely lonely. World War II, however, changed all
that, when so many of the young men in the nation received a summons from
the government to join the fight. Now it was “okay,” even admirable, to be in
the armed forces. Bledsoe attended Officers Candidacy School in 1942, was
commissioned in the Corps of Engineers, and eventually achieved the rank of
captain.

In July, 1943, one of his buddies, Richard Norgaard, in the Corps of Engi-
neers persuaded him to come home with him on leave to Salt Lake City. As
it happened, Richard had a pretty sister, Virginia, and as both recall, it was
love at first sight. Inspired by her beauty, the usually circumspect Bledsoe
was even moved to write a poem in her praise. They corresponded, Bledsoe
called her by telephone to propose marriage, and on January 29, 1944, the
couple was married in her home.

Eventually, four children were born to them: Margaret, Greg, Pamela,
and Lance. Margaret died shortly after birth, in a dysentery epidemic during
World War II, while Bledsoe was in Europe. Incredibly, fifty-six of the ninety-
three babies born in the hospital during the ten days of Virginia’s confinement
died because of a shortage of penicillin and skilled medical help due to the
war effort. Many years later, in 1985, Greg was killed in an automobile
accident. Greg’s death was the most severe blow Woody and Virgina have
ever sustained. Greg left three children. Pamela, who has a daughter, is
a traffic consultant. Lance, who has four children, has followed his father’s
footsteps into the computer industry.

Woody and Virginia have shared their joys and struggles together for near-
ly fifty years now, and both attribute much of their spiritual strength and
growth to their commitment to the Church of Jesus Christ of the Latter Day
Saints (Mormons). Woody was not a Mormon when he married Virginia, but
he sat by her side in church many Sundays for eighteen years, read The Book
of Mormon, and so was eventually converted, on September 21, 1961. He
remains very active in the church to this day; he has served as a bishop twice
(altogether about four years) and once as a counselor of the stake presidency.
(In terms of Roman Catholic organization, the position of Mormon bishop
is roughly equivalent to head of a parish and a stake presidency is roughly
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equivalent to head of a small diocese.)

In August 1944, Bledsoe participated in the war in Europe as a member of
Patton’s Third Army, in the Army Corps of Engineers. Bledsoe received the
Bronze Star medal for his heroic activities in arranging the transportation of
troops across the Rhine in March, 1945. At that time, all the Rhine bridges
except the one at Remagen had been destroyed by the retreating German
army. Patton’s Third Army decided to cross the Rhine by boats near Frank-
furt rather than suffer the delay of waiting for bridge construction. Therefore
the Army Corps of Engineers hauled naval landing craft (designed for beach
landings) by truck across Europe to ferry troops across the Rhine. Bledsoe, by
then an Army captain, recalls that there was only light enemy fire during the
crossing; his main contribution was figuring out how to get the very large land-
ing craft down narrow roads and actually into the water. His first “research”
was experimenting with techniques for launching the craft from trucks into
the Mosel River; initial experiments were disastrous, but ingenuity prevailed.
The simple idea of backing the trucks into the water, floating off the boats,
and hauling the trucks back out with tractors turned out to be the key. While
hauling trucks down to the Rhine, Bledsoe temporarily confused some allied
forces about the location of German artillery by dynamiting away a railroad
bridge that created an overhead blockage against the passing of the landing
craft. Near the Rhine, Bledsoe took his orders from Patton’s headquarters
in Kaiserslautern, Germany. (Kaiserslautern is now a major center of work
in artificial intelligence, under the direction of Bledsoe’s longtime colleague
Michael Richter. At the Tenth Conference on Automated Deduction, held in
Kaiserslautern in 1990, Bledsoe delivered the banquet address in the nearby
Hambacher Schlo8, site of one of the earliest German democratic movements.)
Bledsoe remained in Europe until October, 1945.

Upon returning to the United States, Bledsoe enrolled as an undergraduate
at the University of Utah in Salt Lake City, Utah. After considering electrical
engineering and physics, Bledsoe chose to major in mathematics. Perhaps
the decisive point in Bledsoe’s decision to become a mathematician was his
discovery on his own of a proof of the nontrivial theorem that every real-valued
continuous function defined on the reals has a Riemann integral over any
closed interval. Bledsoe proved this theorem in a course taught by Ferdinand
Biesele in the Socratic or Moore style, wherein the students find and present
proofs in class rather than listen to lectures. As a mathematics professor,
Bledsoe himself would emphasize to his students the importance of finding
for themselves proofs of hard theorems. His research achievements have been
to a significant extent in the area of automating proof discovery.
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1.3 Berkeley

After graduation from Utah, Bledsoe pursued a Ph. D. in mathematics at the
University of California at Berkeley under a full fellowship. Berkeley was then
(and is still) a dominant force in American mathematics. Among the many
renowned faculty members there from whom Bledsoe took classes were the
logician A. Tarski and the topologist J. Kelley. Bledsoe did his Ph. D. thesis
under the analyst A. P. Morse, about whom we briefly digress.

1.3.1 A. P. Morse

Bledsoe’s advisor A. P. Morse believed in the viability and desirability of
being absolutely formal in the statement of mathematical theorems. In his
book on set theory [58], Morse formally develops in about a hundred pages
a flexible syntax akin to ordinary mathematical notation, predicate logic, set
theory (including ordinal and cardinal arithmetic), and elementary topology.
Remarkably, each theorem is stated in the formal logic. Considering the rel-
atively elementary character of the theorems established in Principia Math-
ematica, we suspect that Morse’s book stands as the most mathematically
advanced but totally formal treatise on mathematics ever published. Bled-
soe’s work was heavily influenced by Morse’s work in several ways, and thus
we elaborate on what we regard as some of Morse’s contributions to formal
reasoning.

e Morse provides a logic in which mathematics can be conveniently ex-
pressed via an extremely flexible and extensible syntax and via a very
sturdy and powerful definition principle. (Most formal logics, e.g., that
of [61], are intended to be studied rather than used by people. As a
result, their grammars tend to be unnatural because they do not sup-
port common notatation. Worse, from the practical point of view, these
logics fail to have principles of definition, especially for the definition of
concepts introducing new kinds of quantification such as the set builder
notation or the definite integral. Rather, definition is regarded as an
extralogical, abbreviational, inessential, and extraneous activity.)

e Whenever possible, Morse formulates theorems that are mechanical in
spirit, like the equations for ordinary algebraic operations. Morse goes
out of his way, for example, to define his concepts in such a way that
theorems can be stated as equations, without hypotheses.

Thus it is not surprising that it was a student of Morse (namely Bledsoe)
who produced the first powerful prover for set theory, a prover that incorpo-
rated a rich conceptual and definitional facility and that derived much of its
power from equational set theory theorems.

After he graduated from Berkeley, Bledsoe continued an extensive collabo-
ration and correspondence with A. P. Morse. In 1981, during a meeting of the
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American Mathematical Society in San Francisco, Bledsoe organized a dinner
held in honor of A. P. Morse; attendees included not only many of Morse’s
Ph. D. students but also many distinguished members of the mathematics
department at the University of California at Berkeley, including A. Tarski
and J. Kelley.

1.4 Mathematical Contributions

Bledsoe regards mathematics as his first and greatest academic love, over
and above pattern recognition, artificial intelligence, systems analysis, and
automated reasoning. Bledsoe has made a number of contributions to the
mathematical literature, including these publications in regular mathematics
journals: [5, 6, 7,9, 17, 27, 30, 32].

We now briefly review Bledsoe’s mathematical work. Our review is literal
in part because the authors of this biography lack the mathematical back-
ground to assess the work properly. Why then do we review it at all? We
review it in order to emphasize the point that Bledsoe is a “real mathemati-
cian.” We believe this point deserves emphasis as a lesson to potential con-
tributors to automated reasoning. Most of the most important contributors
to automated reasoning had already become serious mathematicians before
beginning research on automated reasoning, e.g., Martin Davis, Hao Wang,
Bledsoe, Don Knuth, Wu Wen-Tsiin, and Larry Wos. We suspect that this
is because substantial mathematical ability is required to contribute to this
field.

As a graduate student, before finishing his Ph. D. thesis, Bledsoe published
two papers [5, 6]. The first of these [5] presents the following charming result:

In the following p metrizes S and p’ metrizes S’. We agree
that a function f is meighborly at the point z if and only if for
each € > 0 there exists an open sphere « of S such that p(z,v) +
P (f(z), f(y)) < e whenever y € a. We also agree that a function
is meighborly if and only if it is neighborly at each point of S.
Obviously every continuous function is neighborly.

It is well known that if g is a function on S to S’ and if f is such
a sequence of continuous functions that lim,— . p'(fn(z), g(z)) =
0 for each z in S, then the points of discontinuity of g form a
set of first p category. It is the principal purpose of the present
note to show that this same conclusion can be drawn when the
approximating functions are merely restricted to being neighborly.

Bledsoe’s Ph. D. dissertation, written under the supervision of A. P. Morse,
is reported in [9]. The topic was “product measures.” Concerning the general
problem of product measures, Bledsoe remarks in [30]
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It has been known for many years that the product of two reg-
ular borel measures on compact hausdorff topological spaces may
not be borel in the product topology. The problem of defining
a new product measure that extends the classical product mea-
sure and carries over this borel property has been approached in
different ways ...

Among the approaches is that presented in [9]. In summarizing this work,
Bledsoe and Morse remark

One of our aims is to free topological Fubini theory from the
usual restraints of local compactness. In this connection we shall
regard Radon measures as very special indeed. Another of our
aims is to associate with any two measures i and v such a product
measure ¢ that in the event p and v happen to be topological
measures of a rather general sort, then our topology-free measure
¢ will actually be a similar measure under which the Borel subsets
of the product space are measurable. We shall reach both these
goals even though an obvious obstacle in our path to the second is
the fact that the open sets of a topological product are not always
contained in the o-field generated by the open rectangles. The
product measure we construct in order to overcome this difficulty
allows more summable functions and greater freedom of action
than the product measures considered heretofore. ...

Suppose p is an (outer) measure defined for all the subsets of a
topological space S. Suppose that u(S) < oo and that each open
set is not only measurable but equal in measure to the upper bound
of the measure of closed subsets. Suppose further that from each
covering of S by open sets a countable subfamily can be extracted
which covers almost all of S. If v is another measure like y, then
our associated product measure bears to the topological product
space the same relation as p does to S, and at the same time
satisfies the Fubini equality for summable functions. The novel
feature of our product measure is that we require to be of measure
zero each set whose characteristic function integrates iteratively
in both orders to zero.

In some cases, Bledsoe and Morse adopt a language, style, and formality
that is quintessentially Morsean in its formality, precision, and succinctness,
e.g., the following definition of Mspr:

Mspr uvF = E¢ € Msr ret rlm p rlm v [p € Measure,v €
Measure, F € bsc ¢, and, for each a € F,

/ Cr(z,y)Apdxvdy = ¢(A) = / Cr(z,y)Av dy p dz]
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Bledsoe continued to pursue his investigations on product measures in
the 70’s. In [30] he and Wilks extend his Ph. D. dissertation work [9] by
considering the case in which one of the two measure spaces is borel and the
other is constrained by a separation of variables condition.

In [17] Bledsoe, writing again with Morse, generalizes two well-known
results from the theory of metric spaces to topological measure theory. The
principal result concerns the construction of a measure from a nonnegative
set function.

Also, a short note by Bledsoe appears in the Monthly [27] proving that

Every finite set {21, 22, .. ., 2n } of complex numbers has a sub-
set S such that

>z

z€S

171
> =Szl
Sy | ;]
j=1

The two well-known mathematicians R. H. Bing and R. D. Mauldin col-
laborated with Bledsoe in [32] on a collection of set theory theorems with
connections to the continuum hypothesis.

1.5 Sandia

After finishing his Ph. D. in mathematics at the University of California at
Berkeley in 1953, Bledsoe decided to pursue research rather than take an aca-
demic post at Michigan or Virginia. He decided to work in the mathematics
department at Sandia Corporation in Albuquerque, New Mexico, which did
work almost exclusively on weapons for the Atomic Energy Commission (now
the Department of Energy). Bledsoe was attracted both by the desire to fo-
cus his mathematical talent on questions in physics and by the desire to be
involved in the then rapidly developing field of nuclear weapons. (The first
hydrogen bomb was exploded shortly before Bledsoe joined Sandia.) Also
influential in his decision to join Sandia was the fact that then, as now, the
salary of mathematicians in industry was often an integer multiple of salaries
in academia. Albuquerque became the Bledsoes’ favorite town. At Sandia,
Bledsoe worked in “systems analysis” in the mathematics department. His
work there is almost entirely classified. Systems analysis is a term used to
express engineering concerned with the interactions of components in a “sys-
tem” that is itself composed of many other systems, e.g., a telephone system
or a modern battlefield. (After Bledsoe left Sandia, an official there told him,
in an attempt to entice him to return, that he was the best systems ana-
lyst that Sandia had ever had.) Concerning systems analysis, Bledsoe later
remarks in [15]:

In analyzing a system, we often are searching for a set of char-
acteristics which will make the system most optimum in some
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sense. Frequently, this boils down to determining the “best” val-
ues of a set of parameters, and we find ourselves doing a parameter
study in which we vary parametric values according to some policy
while we search for an optimal value of a response function. Also,
we often try to determine tradeoffs between the parameters.

The system may include some random elements, such as a
weather or enemy action, and often the response function we are
trying to optimize is itself a random variable.

Many such systems arise in the war games studied in weapons
systems analysis. There the parameters varied are such things as
aircraft velocity, yields of offensive weapons, yields and types of
defensive weapons, spacing of vehicles, warning time, etc.

The one unclassified document that Bledsoe produced concerning his sys-
tems analysis work at Sandia is entitled “Program for Computing Probabil-
ities of Fallout from a Large-Scale Thermonuclear Attack” [10]. The report
presents a computer program for computing the distribution of fallout from
nuclear weapons explosions. The program allows for variations in longitude,
latitude, wind velocity, megatonage, and for such probabilities as one weapon
destroying another. As a reminder of the difficulty of using early computers,
we cannot resist mentioning a few archaic operating instructions necessary in
those days:

e 1. Put the magnetic drum in a “four interlace” condition.
e 3. Put all weapons cards in READ hopper.

e 8. Start at 40100 (if MS1 is in “ON” position, machine halts with PAK
40104, so hit COMPUTE button).

An extensively commented program listing of about 1400 lines of code is
included, with all of the instructions given in octal, and with no evidence
of an assembler much less a compiler having been available for coding the
computer, an ERA 1103.

By 1957, Bledsoe had become the head of the mathematics department
at Sandia and remained so until his departure in 1960. He collaborated there
frequently with his good friend Joe Weihe.

While working for Sandia, Bledsoe witnessed several atomic bomb ex-
plosions in Nevada. He also traveled to the South Pacific and witnessed a
hydrogen bomb explosion (from the island of Eniwetock).

During his work for Sandia, Bledsoe recalls encounters with the extraor-
dinary mathematicians S. Ulam and John von Neumann. Ulam showed him
a hand drawing of the first hydrogen bomb design, for which the basic cal-
culations were done on a hand calculator. The calculations could have been
refined: the first hydrogen bomb explosion, the “Mike shot,” was twice as
powerful as expected, almost destroying some observers.
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Once, when giving a lecture at Lawrence Livermore Labs on the possibility
of using very small atomic “shells” in artillery, a person in the audience asked
whether the calculation was “linear” in a certain sense. Bledsoe replied “No,”
at which point Herb York, the head of Livermore Labs said: “I agree with
John von Neumann, I too believe it is linear.” This was Bledsoe’s introduction
to von Neumann. Indeed, it was not “linear,” but von Neumann’s remark was
close to true, something Bledsoe subsequently emphasized.

Toward the end of his stay at Sandia, Bledsoe and a very close friend, the
biologist and genius polymath Iben Browning, began work on using computers
to do recognition, first of characters and later of faces. Turning to work on
what has become known as artificial intelligence was a revolutionary event in
Bledsoe’s intellectual life. Many years later, in his presidential address to the
American Association of Artificial Intelligence in 1985, “I Had a Dream” [42],
Bledsoe recalls that after he had his first dream about artificial intelligence:

When I awoke from this daydream, ...I decided then and there
to quit my job and set about spending the rest of my life helping
bring this dream to reality.

Bledsoe and Browning’s initial contribution to artificial intelligence was
presented in the paper “Pattern Recognition and Reading by Machine” [11].
Although the principal topic at hand was the recognition of characters, the
entire topic of pattern recognition was clearly imagined. Distinguishing the
planned work from previous work by others, Bledsoe and Browning remark:

All of these approaches prove upon inspection to center upon
analysis of the specific characteristics of patterns into parts, fol-
lowed by a synthesis of the whole from the parts. In these studies,
pattern recognition of the whole, that is, Gestalt recognition, was
chosen as a more fruitful avenue of approach and as a satisfactory
problem for the initial phases of the over-all study.

In simplified form, the Bledsoe-Browning algorithm for recognizing char-
acters is based upon the following idea. We imagine that we wish to recognize
single characters that are presented as bit patterns in a fixed rectangular ar-
ray of bits (i.e., pixels). Initially, we learn some characters. Later we wish
to recognize some. When presented with a character to recognize, we will
independently compute a “score” for the possibility that the character might
be an A, B, or C, etc., and choose the possibility with the highest score. How
do we score? Even before we have begun the learning process, we randomly
divide the rectangular array into pairs of pixels, p1, pa, ps ...During the learn-
ing phase, whenever we are asked to learn a given pattern as an instance of
a specific letter, say A, we note for each pixel pair p; the state of that pair:
(0,0), (0,1), (1,0), or (1,1), depending on the states (on or off) of the individ-
ual pixels. Later when we are trying to recognize a character, we score one
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point towards the possibility that the character is an A for each i such that
the p;th pixel pair has the same state as it did when learning at least one
instance of A. Clearly, the algorithm can be generalized for tuples other than
pairs, and in fact this method is sometimes known as the “n-tuple method”
instead of the “Bledsoe-Browning method.”

An analysis of Bledsoe and Browning’s method may be found in Ullman’s
[66]. Ullman presents results of tests he performed showing the Bledsoe-
Browning method obtaining recognition rates of about 93% on hand-printed
numerals and of about 95% on multifont printed numerals, using n-tuples
with n = 14, at the cost of about 42 million bits of storage. Related work
by Ullman on the Bledsoe and Browning n-tuple method may be found in
[64, 65]. The latter reduces fourfold what Ullman terms the “storage gluttony
of the Bledsoe and Browning system.”

Besides the basic n-tuple method, the paper [11] describes several addi-
tional techniques that were employed to increase the accuracy of character
recognition. The most successful of these techniques was to finalize the iden-
tity of characters using context: “using a vocabulary of words of the length
in question, add in their proper order the letter scores of each word in the
vocabulary to obtain a total score for each word.”

Several themes that were to influence the remainder of Bledsoe’s work in
artificial intelligence can already be seen here:

o Reliance on partial information for making informed guesses: heuristics.

e Reliance on a variety of partial techniques, working together, to solve a
problem, rather than seeking a single “uniform” strategy for solving a
problem.

e Asking the question “how can we make a machine do something like
what people do?”—e.g., using contextual information.

1.6 Panoramic Research, Inc.

While working at Sandia, Bledsoe, Iben Browning, and Lloyd Lockingen re-
ceived encouragement from Department of Defense sources, promising finan-
cial support to set up a small research firm to pursue topics related to pat-
tern recognition. The three left Sandia in 1960 and established the company
Panoramic Research in Palo Alto, California; Panoramic grew to a staff of
about 10 people. Bledsoe was president of Panoramic from 1963 to 1965,
before his departure for the University of Texas at Austin in January 1966.
Panoramic was a very early company to focus upon research in the general
area of artificial intelligence, including pattern recognition, facial recognition,
genetics, and neural nets. Frequent visitors to Panoramic included Marvin
Minsky, Raj Reddy, John McCarthy, Hans Bremermann, Seymour Papert,
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and Danny Bobrow, many of whom were founding fathers of artificial intelli-
gence.

While at Panoramic, Bledsoe contributed a short note [13] that describes
how the Heisenberg uncertainty principle can be used to show limits on the
speed of a single von Neumann computer. For example,

Thus a computer with a billion bits of storage can have an
access time of no less than 1078 seconds, unless materials are
used whose density is greater than 20 grams/cm?®.

Perhaps Bledsoe’s major research project at Panoramic was on computer
facial recognition. Working with Helen Chan, Charles Bisson, and others,
Bledsoe produced a system that was remarkably successful at recognizing
faces in photographs. The system worked as follows.

A. Database Setup. A human operator examines a photograph and ab-
stracts from it certain facial features, all of which are distances between fixed
points on the face, for example the distance from the top to the bottom of an
ear. The entry of this data was facilitated by the use of a very early analog-
to-digital data entry device known as the Grafacon or Rand Tablet. About
forty photographs per hour could be processed in this way by a relatively new
operator. Before storing the distances in the database, the distances were
mechanically normalized to compensate for head position, e.g., rotation and
tilt.

B. Identification. Given a new photograph that we wish to match against
some of the photographs already entered into the database, we compute a
“pseudo distance” between the new photograph and each of the previously
entered photographs. The distance is computed by summing the differences
of similar features, first dividing each difference by a standard deviation of
measurement for that feature. Photograph pairs that are “close enough” are
then presented to a human, who then finally decides which photographs really
match.

In experiments involving a database of several thousand different pho-
tographs, the computer was able to reduce the number of photographs that
needed to be considered by the human to one percent of the photographs in
the database. Although one of the authors of this note (RSB) has seen a re-
port on this excellent project, Bledsoe was not permitted to publish the work
because of the sensitivity of the photographs used in the experiment! Many
reports on this project were produced, including [18, 19, 22, 24].

Even after Bledsoe left Panoramic, he continued to collaborate on the
topic of facial recognition with Peter Hart at Stanford Research Institute, as
reported in [26]. In that report are described experiments in facial recogni-
tion using (a) slight modifications of the technique mentioned above, (b) us-
ing modifications of those techniques based on Bayesian decision theory, and
(c) using humans to do the entire job of photograph identification. It was con-
cluded that both methods (a) and (b) worked approximately as well as one
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another and both worked considerably better than (c), but that (b) performed
somewhat better on high quality photographs than (a).

While at Panoramic, Bledsoe also made some mathematical analyses of ge-
netic mutation [15, 14] and addressed a National Academy of Sciences meeting
on the topic of “convergence rates in pseudo-evolution” in Austin in 1962. He
was one of the first to study the evolution of genetic structures by computer.
(To this day, Bledsoe is not yet aware of any reasonable computer simulation
of genetic mutations that would predict the evolution of entire new species.)
Through his work on genetics, Bledsoe also began working with Wilson Stone,
a renowned biologist at the University of Texas at Austin.

Another research topic pursued at Panoramic was an algorithm that an
aircraft could use to fly low over mountainous terrain so as to avoid detection
[20, 21].

After several years of the constant press of fundraising and management
incumbent on the president of a small research firm, Bledsoe decided to pursue
an academic career. He was strongly encouraged to join the University of
Texas by Wilson Stone, who offered him carte blanche choice of department
and salary.

1.7 The University of Texas

Bledsoe’s many contributions to automated reasoning all were made after
his move to the University of Texas. We discuss these contributions in a
subsequent section.

1.7.1 Teaching

From the beginning of his tenure at Texas, Bledsoe has been a teacher of con-
siderable inspirational influence. In 1966, in the first course at the University
of Texas on artificial intelligence, a Lisp compiler for the CDC 6600 was pro-
duced by students (including James B. Morris) as a class project. Especially
memorable to one of the authors (RSB) was a class that Bledsoe taught in
the fall of 1967 in the Moore style, but based on Morse’s book on set theory
[58]. Among those attending the class were Forrest Baskett (later professor
of computer science at Stanford, who conceived the Sun workstation); James
B. Morris (later professor of computer science at Purdue); Robert Anderson
(later professor of computer science at the University of Houston); Dallas
Lankford (later professor of mathematics at the Louisiana Tech University)
and Robert S. Boyer (later professor of computer science and mathematics at
the University of Texas at Austin). Of these five, four went on to do Ph. D.’s
in automated reasoning under Bledsoe.

Mark Moriconi, a former Bledsoe student and now director of the Com-
puter Science Laboratory of SRI International, observes the following about
Bledsoe’s influence on his students (private communication):



14 Anne Olivia Boyer and Robert S. Boyer

Bledsoe is very focused, a stickler for detail, and always works
from concrete examples. His approach to problem solving strongly
influenced the way that I work on all kinds of things, both profes-
sionally and in everyday life, and I am sure that it has influenced
other students as well. Moreover, he instilled high standards for
quality in his students, always by example and not by fiat. With-
out question, Bledsoe has been an effective role model for his stu-
dents, which after all is one of the most important, but difficult
to meet, responsibilities of a professor.

Bledsoe’s Ph. D. Students (to date)

John Wade Ulrich 1968, Computer Sciences
Stephen Charles Darden 1969, Computer Sciences
Charles Edward Wilks 1969, Mathematics

James Bertram Morris 1969, Computer Sciences
Robert Brockett Anderson 1970, Mathematics

Robert Stephen Boyer 1971, Mathematics

Dallas Lankford 1972, Mathematics

Vesko Genov Marinov 1973, Computer Sciences
Mark Steven Moriconi 1977, Computer Sciences
John Threecivelous Minor 1979, Computer Sciences
William Mabry Tyson 1981, Computer Sciences
Tie Cheng Wang 1986, Computer Sciences
Larry Marvin Hines 1988, Computer Sciences
Don Simon 1990, Computer Sciences

1.7.2 Visits to Other Universities

While a professor at the University of Texas, Bledsoe has traveled extensively.
He spent the 1970-71 academic year at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology, as a guest of Marvin Minsky.
In 1973 Bledsoe visited Bernard Meltzer, J Moore, and the authors at the
Metamathematics Unit at Edinburgh University. (While in Edinburgh he
toured the Highlands in Moore’s taxi and played golf at St. Andrews.) In
1978 Bledsoe spent a semester at Carnegie-Mellon University, where he began
a collaboration with Doug Lenat that continued later at MCC.

1.7.3 Administration

Despite having received assurances from the University of Texas that he would
not be asked to serve as chairman of the mathematics department, Bledsoe was
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nevertheless lured into being chairman twice, 1967-69 and 1973-75. The first
period of Bledsoe’s chairmanship involved considerable administrative tension
because the department was sharply divided between the “third floor” group,
which included the eighty-year old topologist R. L. Moore, and the rest of the
department. (The third floor group was so named because it occupied the
entire third floor of the mathematics building. The group had in common a
dedication to the Moore method of teaching, which opposed the use of lectures
and textbooks.) Eventually the remainder of the mathematics department
and Dean John Silber (who was himself fired not much later) determined
finally to retire Moore, who had taught at the University since 1920.

1.8 IJCAI, CADE, and AAAI

Bledsoe has been exceptionally active in the building of organizations and con-
ferences for the fields of artificial intelligence and automated reasoning. For
example, he was the general chairman of the International Joint Conference
on Artificial Intelligence at MIT in 1977 and a member of the IJCAI board of
trustees from 1978 to 1983. He hosted the Conference on Automated Deduc-
tion in Austin in 1979. He has served numerous times on program committees
for IJCAI, AAAI, and CADE.

In 1983, Bledsoe was named president-elect of the American Association
of Artificial Intelligence. In 1984, he helped organize the annual AAAT meet-
ing in Austin, where he was installed as president of AAAI. In an address
to the 1984 AA AT meeting, outgoing president John McCarthy expressed dis-
may at the extremely large size of the meeting, over four thousand; in less
than twenty years the field had grown from a handful of practitioners to a
giant academic and commercial enterprise. Sociologists of academia may note
that organizing such major conferences is remarkably frustrating and time
consuming. Bledsoe vowed at the end of the conference that he would never
again run another conference at the University of Texas because of the bu-
reaucratic ensnarlments he encountered in attempting to provide space for
the many computer manufacturers who wished to advertize their wares at the
conference, a surprising vow from a man well known for his commitment to
positive thinking.

In his 1985 presidential address to the American Association of Artificial
Intelligence [42], we find no technical monologue but rather an extremely frank
and personal expression of Bledsoe’s vision for artificial intelligence and his
faith in its future. He opens the address by remarking:

Twenty-five years ago I had a dream, a daydream, if you will.
A dream shared with many of you. I dreamed of a special kind of
computer, which had eyes and ears and arms and legs, in addition
to its “brain.”
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In the address, Bledsoe is clear that the dream has not yet been fulfilled:

The twenty-five years have not been totally kind to my dream:
Shakey! liked shaking more than running and thinking, and was
laid aside for a season; language translation sputtered, died, and
was resurrected; facial recognition was pushed back on the re-
searchers stack; automatic provers showed signs of growing pains,
which disheartened the fainthearted; no machine stepped forward
to try the Turing test; robot arms were duplicating block castles
instead of playing squash; etc., etc., etc.; many Al researchers lost
faith and dropped out.

Yet Bledsoe is adamant that progress is being made:

First, let me express my annoyance with some of the distracted
individuals who criticize AI researchers for not “jumping to infin-
ity” in one leap. Somehow, to them it is OK to work step by step
on the dream of obtaining controlled thermonuclear energy or a
cure for cancer or a cure for the common cold, but no such step-
by-step process is allowed for those trying (partially) to duplicate
the intelligent behavior of human beings. To these cynics, a nat-
ural language system that converses with us in a limited form of
English is not a legitimate step toward passing the Turing test.
...Indeed, almost all of our AI accomplishments have been of the
partial kind: natural language processors that handle a subset of
English (or French, etc.); systems that recognize and synthesize
limited forms of speech; character recognition machines that read
only typewritten characters; expert systems that perform a variety
of tasks (but not all that a human can); theorem provers that can
prove difficult theorems in a particular area of mathematics or that
can handle the inferencing needed for elementary expert systems,
including monotonic reasoning; programs that play expert-level
chess; programs that exhibit an elementary level of learning and
reasoning by analogy. And the list goes on.

In this presidential address, Bledsoe also describes the characteristics of
a good researcher, enumerates the important research topics in Al, and ex-
presses considerable enthusiasm for the prospects of progress in Al.

1.9 MCC

In late 1983, after an intensive consideration of alternative sites, and with
considerable financial incentives from the University of Texas, Admiral Bobby
Inman (former assistant director of the CIA and former director of the NSA)

LA robot developed at SRI in the early 70’s.
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opened up in Austin the Microelectronics and Computer Technology Corpora-
tion. MCC, as it is generally known, was backed by commitments of research
funding by over twenty American computer companies to do advanced re-
search. Such unprecedented collaboration was endorsed by a congressional
act explicitly waiving anti-trust prohibitions against collaborative efforts on
research. The consortium was developed in part as a response to a fear that
the Japanese computer industry was on the road to surpassing American
dominance in computing.

In early 1984, Bledsoe indicated to Inman a general interest in supporting
the goals of MCC, even to the extent of spending some time at MCC. Inman
quickly offered Bledsoe the position of vice-president for artificial intelligence,
a multi-million dollar per year budget, and the charter to set up a first class
AT research center. Bledsoe did set up such a center and directed it for three
years.

Shortly after Bledsoe took leave from the University of Texas to work at
MCC, the Austin Chamber of Commerce’s glossy publication Austin Magazine
did a story on artificial intelligence. On the cover is a handsome photograph
of Bledsoe, with the headline “Machines Who Think—Austin scientists are
at the forefront of research to create a new breed of computers that think
like humans.” In the photograph, Bledsoe is leaning on a computer terminal,
whose display reads “I Think, Therefore I Am.” A subhead reads “MCC’s
Woodrow Bledsoe and friend.”

During this period, perhaps the most visible artificial intelligence project
established at MCC was the CYC project of Doug Lenat. This ambitious
project has as its objective the encoding into a computer of all the basic prin-
ciples and fundamental facts of knowledge necessary for reasoning, perhaps
the most ambitious scientific undertaking ever.

Bledsoe left MCC in 1987 to return to the joys of teaching and doing
research in automated reasoning.

1.10 Return to the University of Texas

Upon returning to the University of Texas at Austin, Bledsoe was appointed
to the “million dollar” Peter O’Donnell, Jr. Chair in Computing Systems,
named after a philanthropist extremely generous in endowing major chairs in
science and engineering at the University of Texas.

Under the philanthropy of the computer scientist and entrepreneur Ed
Fredkin, some prizes in the area of artificial intelligence have been estab-
lished. Bledsoe chaired and initially formed one such prize committee, now
known as the Automatic Theorem Proving Prize Committee of the American
Mathematical Society. Under Bledsoe’s chairmanship, the committee’s first
prizes were awarded at a special session in the 1983 Denver meeting of the
American Mathematical Society, which Bledsoe organized. The first “mile-
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stone” prize of the committee was given to Hao Wang, and the first “current”
prize was awarded to L. Wos and S. Winker. A second milestone prize was
later awarded to J. A. Robinson. Bledsoe left the committee in 1985. In
1991 Bledsoe was awarded the third “milestone” prize, by a committee then
chaired by the Harvard mathematician D. Mumford. In characteristic bash-
fulness and modesty, Bledsoe’s first remark after learning of the award was
that it should have been awarded to someone else. The award was presented
by John McCarthy at a special session on automated reasoning at the 1991
meeting of the American Mathematical Society in San Francisco. The citation
for the prize reads thus:

The Milestone Award of 1991 goes to Woodrow W. Bledsoe,
who has been a central figure in Automatic Theorem Proving, in-
spiring and guiding this field for over twenty years. His broad view
of the subject, using resolution and non-resolution techniques, his
deep study of theorem proving in analysis and with inequalities,
and his work on interactive theorem provers distinguish him as a
major innovator in the field.

Bledsoe received the 1991 Distinguished Service Award of the International
Joint Conferences on Artificial Intelligence.

1.11 Automated Reasoning

We now review Bledsoe’s contributions to automated reasoning. Bledsoe’s re-
ceipt of the “milestone” award for contributions to automatic theorem proving
is a clear indication than his contributions in automated reasoning have been
truly major. What are the respects in which Bledsoe has contributed to au-
tomated reasoning?

e Wrote, with J. Morris, one of the first, and one of the best-ever “proof-
checking” programs, which was used to check a substantial part of
A. P. Morse’s [58].

e Invented a remarkably easy-to-use method for doing completeness proofs
of resolution strategies and showed the completeness of a new strategy
for linear resolution.

e First emphasized the importance of building a prover with many differ-
ent kinds of heuristic components, reflecting the diversity of reasoning
methods employed by mathematicians. Among the components incor-
porated together in Bledsoe provers have been:

— Ordinary resolution

— Natural deduction
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Special arithmetic decision procedures

Rewriting procedures

Inductive procedures

Special heuristics for analysis
— Use of example generation techniques

— Use of analogical reasoning

Use of type inference

Demonstrated that by using such a variety of techniques, proofs for
moderately deep theorems in analysis could be automatically discovered.

Virtually singlehandedly identified the subfield of “non-resolution” the-
orem proving with several comprehensive survey articles [34, 47].

Extremely characteristic of Bledsoe is his “try it out and see” attitude
toward ideas in Artificial Intelligence. To quote further from his AAAT address

The principle I want to make is this: when you have what looks
like a good idea, give it your best shot, waste a little money to
get some early feedback. Don’t take forever to study the problem,
because that is even more expensive (and less exciting).

An excellent summary of Bledsoe’s work may be found in [41]. This paper
gives an overview of techniques used in Bledsoe’s prover, including reduction,
induction, resolution, natural deduction, the limit heuristic, variable restric-
tions and elimination, and shielding. Bledsoe also enumerates theorems in
analysis proved entirely automatically by his prover, including:

The limit of sums and products are the sums and products of the limits.

The sums, products, and compositions of continuous functions are con-
tinuous.

Differentiable and uniformly continuous functions are continuous.

If a function f is continuous on a compact set, then it is uniformly
continuous on f, and f[S] is compact.

The Bolzano-Weierstrass Theorem.

The Intermediate Value Theorem
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1.11.1 Mechanical Proof Checking

How did Bledsoe happen to shift from the study of pattern recognition and
evolution to automated reasoning? Both while working at Panoramic and af-
ter moving to the University of Texas, Bledsoe continued to consult at Sandia.
In the summer of 1966, Bledsoe began consulting with Sandia employees E.
Gilbert, D. Morrison, and J. Weihe on a mechanical proof-checking program
for the Morse logic [58]. Weihe, like Bledsoe, had done his Ph. D. under
A. P. Morse, as had T. McMinn, who also consulted on this proof-checking
project, and had written the trenchant foreward to [58]. This remarkable
proof-checker project is described in [25]. Among the rules of inference of the
Morse logic supported by the checker were:

e detachment

e variable instantiation

schematic (second order) instantiation

change of bound variable

e universalization

The proof-checker included quite a few additional, derived rules of infer-
ence, including tautology checking [25]. Over the course of several years,
Bledsoe and Morris developed this checker to the point that they were able
to use it to check a substantial percentage of the theorems in Morse’s book.
This experience convinced him that it was, from the mathematical point of
view, not only feasible but even easy to proof check almost any part of math-
ematics if the user of the proof-checking system were sufficiently patient to
provide enough intermediate steps. But Bledsoe became both bored by the
tedium of providing steps (especially since at this time the technology was to
submit long trays of IBM punch cards and wait hours for a listing of a “run”)
and excited about the possibility of getting a computer to take much larger
inference steps.

1.11.2 Resolution—Yeas and Nays

Like most of the early workers in automated reasoning, Bledsoe became fasci-
nated by the infinite improvement over previous techniques represented by the
resolution technique of J. A. Robinson, which had been developed at Argonne
National Laboratory in the summer of 1963. Working with his Ph. D. stu-
dent Robert Anderson, Bledsoe made important mathematical contributions
to the theory of resolution, including a new “linear format” and a technique
for proving completeness [28]. The completeness technique, known as the ex-
cess literal technique, is surprisingly easy to apply. The idea is simply this:



A Biographical Sketch of W. W. Bledsoe 21

when trying to prove the (ground) completeness of a new resolution strat-
egy, do the induction “on” the “excess literal” measure. The excess literal
measure of a set of clauses is the numeric difference between the number of
occurrences of literals in the set of clauses and the number of clauses in the
set. This method has been used successfully by many people, including one
of the authors of this note (RSB) in his Ph. D. thesis under Bledsoe, which
introduced the “locking” restriction of resolution and proved its completeness
[48, 51]. Other Ph. D. students of Bledsoe who made serious contributions to
the resolution literature include Robert Anderson [1, 2], Dallas Lankford [55],
James B. Morris [56, 57], and T. C. Wang [46].

One of the first extensions Bledsoe made to his proof-checker was a reso-
lution theorem-prover coded by his student James B. Morris. But despite the
fascination that Bledsoe has always felt for the simplicity and power of the
resolution approach to theorem-proving, his practical experience with using it
to prove difficult theorems was and remains largely a disappointment to him.
As he remarks in his [34], “by the early 70’s there was emerging a belief that
resolution type systems could never really ‘hack’ it, could not prove really
hard mathematical theorems, without some extensive changes in philosophy.”

1.11.3 PROVER

In order to develop a theorem prover that was actually capable of proving deep
theorems using a feasible amount of computing resources, Bledsoe began the
construction and evolution of his most well-known theorem-proving system,
which has been known as the “UT Interactive Theorem Prover,” or simply as
“PROVER.” The initial substantial components of this prover, in addition to
a resolution component, are described in [29):

e A splitting routine for proving separable subgoals completely indepen-
dently.

e A simplification (rewriting, normalizing, or demodulating) routine to-
gether with about thirty built-in, set-theoretic rewrite rules.

e An induction routine for setting up base cases and induction steps.
e An equality substitution routine.

e A governing scheme called CYCLE to decide which of the above routines
to call in which order.

This prover used resolution as a “black box,” but only for short periods
of run time. That is, the resolution component could not call the reducer or
other routines and did not contribute to finding a proof except by succeeding
entirely by itself on very simple subgoals. With this first prover, Bledsoe was
able to prove some nontrivial set theory theorems that he found impossible
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to get solely by resolution, including the theorem that every natural integer
is an ordinal.

With a strong background in “analysis,” it was natural for Bledsoe to
move from set theory to elementary theorems about limits and continuous
functions. But to achieve the goal of obtaining a satisfactory number of
mechanical proofs in this area, Bledsoe found it necessary to make quite a
number of additional changes to his prover.

First, he abandoned resolution altogether, replacing it with a natural de-
duction theorem-proving program called IMPLY. Unlike the resolution routine
that he had been using, IMPLY provided a natural environment for embedding
some of his other heuristics and the reducer.

Second, intertwined with IMPLY was not only the rewriter, but a new
typing facility, which associated with terms some expressions that were (con-
servative) characterizations of sets over which the terms could range. As an
example, a variable  might be known to range over the interval [a, b]. Explicit
association of types with certain expressions, together with simple operations
for taking set unions and intersections, made it possible to build into the
deduction machinery set-theoretic reasoning rules that would be difficult to
implement efficiently in a pure resolution setting.

Third, he added a mechanism for solving linear inequalities. Although it
is possible to express as clauses appropriate axioms for linear order and poly-
nomials, it appears vastly more efficient to embed such axioms in a decision
procedure or even a partial decision procedure rather than to permit such
axioms to “slosh around” in a general clause database.

Bledsoe also added to IMPLY the “limit heuristic,” a very simple trick for
proving certain inequalities. This trick “uses up” a hypothesis inequality by
factoring it out of the desired conclusion.

These additions are first described in [31], which was written at M. I. T.
Further development of the IMPLY prover is described in [33]. This IMPLY
prover of Bledsoe’s was influential in the design of the prover of Boyer and
Moore [49, 50].

Probably the most significant subsequent improvement to IMPLY is the
mechanism reported in [36] for instantiating set variables. Here Bledsoe de-
scribes a mechanism for constructing sets with specified properties, and uses
it to prove such theorems as “if a set B contains an open neighborhood of
each of its points, then B is open” and The Intermediate Value Theorem.

1.11.4 Work With A. Michael Ballantyne

Perhaps the colleague who has worked most on automated reasoning with
Bledsoe is Mike Ballantyne. Ballantyne was clearly among the most creative
of the many Bledsoe graduate students; Mike also consulted at MCC under
Bledsoe. Two Ballantyne-Bledsoe projects are especially worth mentioning.
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Perhaps the high point of success with the IMPLY prover is their work on
nonstandard analysis [3]. In that paper, some very interesting theorems in
intermediate analysis are proved, including the Bolzano-Weierstrass theorem
and the theorem that the image of a continuous function on a compact set is
compact. Although these theorems were proved by the IMPLY prover, with
its natural deduction and rewriting facilities, what is most remarkable about
this work is that the axiomatization used for the reals is based upon the
non-standard analysis of A. Robinson [60], with its infinitesimals and infinite
integers. It is a remarkable fact that proofs of some theorems in intermediate
analysis are much simpler in a nonstandard setting than in the usual € and 6
approach.

The usefulness of examples in finding proofs has been well known at least
since the earliest days of geometry. A very few efforts at using examples in
automated reasoning have been successful, notably the early geometry work
of Gelernter. In [4], Ballantyne and Bledsoe demonstrate the value of using
examples in the area of analysis, especially topology. In that article is de-
scribed a system, named GRAPHER, that constructs counterexamples as an
aid to eliminating false subgoals arising in proofs. The program considers fi-
nite families of finite sets together with considerable knowledge of elementary
topology. Among many, many decidedly nontrivial inferences, the program
found an example of a subspace of a normal space that is not normal.

1.11.5 Work With Larry Hines

Another long time colleague and student of Bledsoe is Larry Hines. The most
well-known result of Bledsoe and Hines is the variable elimination method,
which is a technique for proving, in a resolution setting, theorems involving
inequalities. Although the basic ideas of variable elimination are easily stated
[38], a considerable amount of deep thinking has gone into proving that this
technique is “complete” [43]. The completeness work was done with Rob
Shostak and Ken Kunen.

1.11.6 Program Verification and Natural Language

In 1974 Bledsoe began to contribute to the field of mechanical program verifi-
cation. The IMPLY prover that he developed was incorporated into a verifica-
tion system for Pascal [52] and was later utilized in the verification system for
Gypsy [53, 54, 63], which has been used to verify several significant computing
systems. See also [35].

In 1990, Bledsoe’s student Don Simon finished a Ph. D. thesis [62] about a
program that could proof check number theory proofs directly from a textbook
([67]) typeset in IATRX.
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1.11.7 The Future of Automated Reasoning

In Bledsoe’s view, some of the earliest work on automated reasoning, such
as that of Newell, Simon, and Shaw [59], started a trend in the direction of
employing “people-oriented” reasoning techniques, but this trend was “over-
shadowed by the emergence of other techniques emphasizing speed, and thus
the field took a turn away from people methods.” In Bledsoe’s view, it is
“time to make a significant change in direction” to pursue more automated
reasoning studies along the lines of “people methods.” According to Bledsoe’s
[45], the following are crucial elements of mathematical thought that an au-
tomated reasoning system should incorporate, all analogous to the way that
people reason:

e analogy

e generation and use of examples

e use of counterexamples to prune the search
e conjecturing of lemmas and subgoals

e intelligent fetching of useful lemmas and definitions from a large knowl-
edge base

e an agenda mechanism for controlling the search
e mathematical pattern recognition

e learning

e planning and abstraction

e higher-level and meta reasoning

Since his return to the University of Texas in 1987, Bledsoe has primarily
focused on “reasoning by analogy,” which he believes is perhaps the most
important key to advances in automated reasoning.
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