
An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

23

(prove-lemma permutation-qsort (rewrite)

(permutation (qsort list) list))

;; End PROVEALL

))

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

22

(length list)))

(prove-lemma lessp-length-geq-list (rewrite)

(implies

(listp list)

(lessp (length (geq-list val (cdr list)))

(length list)))

;;Hint

((use (length-geq-list (list (cdr list))))))

;; MEMBERship lemmas for LESSP-LIST and GEQ-LIST.

(prove-lemma member-lessp-list (rewrite)

(equal (member x (lessp-list val list))

(and (member x list)

(lessp x val))))

(prove-lemma member-geq-list (rewrite)

(equal (member x (geq-list val list))

(and (member x list)

(leq val x))))

;; We prove that LESSP-LIST and GEQ-LIST partition LIST.

(prove-lemma lessp-geq-partition ()

(permutation (append (lessp-list val list)

(geq-list val list))

list)

;;Hint

((enable permutation permutation-right-cons)))

;; The form of the above lemma needed for the proof of QSORT.

(prove-lemma lessp-geq-qsort-partition (rewrite)

(implies

(listp list)

(permutation (append (lessp-list (car list) (cdr list))

(cons (car list)

(geq-list (car list) (cdr list))))

list))

;;Hint

((use (lessp-geq-partition (val (car list)) (list list)))))

;; The recursive quick-sort, QSORT.

(defn qsort (list)

(if (nlistp list)

nil

(append (qsort (lessp-list (car list) (cdr list)))

(cons (car list)

(qsort (geq-list (car list) (cdr list))))))

;;Hint

((lessp (length list))))

;; With equivalence, the proof that QSORT returns a permutation is a snap!

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

21

((congruence-frame (permutation x y)))

(implies

(permutation x y)

(permutation (append z x) (append z y)))

;;Hint

((enable permutation)))

(prove-lemma permutation-delete-right-frame

((congruence-frame (permutation y z)))

(implies

(permutation y z)

(permutation (delete x y) (delete x z)))

;;Hint

((enable permutation)))

(prove-lemma permutation-member-right-frame

((congruence-frame (permutation y z)))

(implies

(permutation y z)

(equal (member x y) (member x z))))

;; The functions LESSP-LIST and GEQ-LIST partition a list into two parts.

;; LESSP-LIST contains all entries less than VAL, and GEQ list contains all

;; entries greater than or equal to val.

(defn lessp-list (val list)

(if (nlistp list)

nil

(if (lessp (car list) val)

(cons (car list) (lessp-list val (cdr list)))

(lessp-list val (cdr list)))))

(defn geq-list (val list)

(if (nlistp list)

nil

(if (leq val (car list))

(cons (car list) (geq-list val (cdr list)))

(geq-list val (cdr list)))))

;; These lemmas are necessary to prove the admissibility of QSORT.

(prove-lemma length-lessp-list ()

(leq (length (lessp-list val list))

(length list)))

(prove-lemma lessp-length-lessp-list (rewrite)

(implies

(listp list)

(lessp (length (lessp-list val (cdr list)))

(length list)))

;;Hint

((use (length-lessp-list (list (cdr list))))))

(prove-lemma length-geq-list ()

(leq (length (geq-list val list))

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

20

;; The function LENGTH.

(defn length (list)

(if (nlistp list)

0

(add1 (length (cdr list)))))

;; A few facts about DELETE, APPEND, and MEMBER.

(prove-lemma delete-append (rewrite)

(equal (delete x (append list1 list2))

(if (member x list1)

(append (delete x list1) list2)

(if (member x list2)

(append list1 (delete x list2))

(append list1 list2)))))

(prove-lemma member-append (rewrite)

(equal (member x (append list1 list2))

(or (member x list1)

(member x list2))))

;; Establish PERMUTATION as an equivalence relation.

(prove-lemma permutation-equivalence ((establish-equivalence permutation))

(and (permutation x x)

(equal (permutation x y) (permutation y x))

(implies

(and (permutation x y)

(permutation y z))

(permutation x z)))

;;Hint

((use (permutation-reflexivity (l x))

(commutativity-of-permutation (b x) (a y))

(transitivity-of-permutation (a x) (b y) (c z)))))

;; Congruence frames for PERMUTATION with CONS, APPEND, DELETE, and MEMBER.

(prove-lemma permutation-cons-right-frame

((congruence-frame (permutation y z)))

(implies

(permutation y z)

(permutation (cons x y) (cons x z)))

;;Hint

((enable permutation)))

(prove-lemma permutation-append-left-frame

((congruence-frame (permutation x y)))

(implies

(permutation x y)

(permutation (append x z) (append y z)))

;;Hint

((enable permutation)))

(prove-lemma permutation-append-right-frame

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

19

Cross Fertilization. The \cross fertilization" heuristic has not been extended

to equivalence relations other than EQUAL.

Performance. On one large set of example proofs that used none of the new

features

9

, the equivalence prover required 12%more CPU time than NQTHM.

References

[Bev88] Bill Bevier. A Library for Hardware Veri�cation. Internal Note 57,

Computational Logic, Inc., June 1988. Draft.

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic

Press, New York, 1979.

[BM85] Robert S. Boyer and J Strother Moore. Integrating Decision Pro-

cedures into Heuristic Theorem Provers: A Case Study of Linear

Arithmetic. Technical Report ICSCA-CMP-44, University of Texas

at Austin, 1985.

[BM88a] R.S. Boyer and J S. Moore. The Code for a Computational Logic.

Technical Report CLI-24, Computational Logic, Inc., 1988.

[BM88b] R.S. Boyer and J S. Moore. A User's Manual for a Computational

Logic. Technical Report CLI-18, Computational Logic, Inc., 1988.

[BMRS88] R.S. Boyer, J S. Moore, D. Russino�, and N. Shankar. Basic Events

for a Computational Logic. Technical Report CLI-23, Computa-

tional Logic, Inc., 1988.

A Events for PERMUTATION-QSORT

(proveall "qsort" '(

;; This is Bill Bevier's SETS-AND-BAGS library, loaded and saved in the

;; equivalence prover.

(note-lib "sets-and-bags")

;; Turn off some possibly interfering lemmas.

(disable not-permutation)

(disable permutation-right-cons1)

(disable permutation-right-cons)

(disable commutativity-of-permutation)

(disable permutation-reflexivity)

9

The �rst \proveall" from [BMRS88].

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

18

(IMPLIES

(AND (NLISTP X)

(NLISTP Y))

(EQUAL (PERMUTATION X Y)

T)).

This trick is a general way to prohibit a rule whose conclusion is an equivalence

from being used as a directed rewrite rule, while allowing it to function as a

matching rule.

5 Caveats

Although the equivalence prover is currently very usable, the implementation is

not complete. This section documents several features that NQTHM provides

for EQUAL but that are currently not implemented in the equivalence prover.

We also include comments on related topics. No implication about the relative

importance of these features is implied by their order here.

BREAK-LEMMA. No break facility is provided for CONGRUENCE-FRAME lemmas.

META-Lemmas. There is no support for META lemmas for equivalence relations

other than EQUAL.

Linear Arithmetic. The active-equalities are set to (hEQUAL; (); ()i) prior

to entering the linear arithmetic package, and the code for linear arith-

metic was not modi�ed. Thus, any congruence frame for an argument of

LESSP will probably be ignored.

Abbreviation Expansion. NQTHM applies selected hypotheses-free EQUAL

rewrite rules when non-recursive de�nitions are initially expanded. This

code has not been modi�ed in the equivalence prover.

Congruence Frame Order. The user should make no assumptions about how

the order in which congruence frames were proved might a�ect the course

of a proof. If the \wrong" congruence frame is being used during an

automatic proof, it can be disabled like any other lemma.

Reporting. The equivalence prover reports the use of congruence frames as if

they were rewrite rules. Also, whenever implicit reasoning occurs for an

instance of an equivalence relation r, the equivalence prover will report the

use of the ESTABLISH-EQUIVALENCE lemma for r, regardless of whether the

implicit reasoning had any e�ect on the proof. Most instances of \bogus"

reporting occur because the symmetry of r is used during construction of

the type-alist.

Commutative Uni�cation. The equivalence prover does not commute the

arguments of equivalence relations other than EQUAL during uni�cation.

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

17

by this process are those without hypotheses, other than the frame hypothesis.

8

Also notice that when a variable is replaced by a term EQUAL to it, we are guar-

anteed that no information is lost by deleting the equality literal, since every

instance of the variable will have been substituted. As there may not always be

congruence frames which justify replacing a variable by an equivalent term, the

equivalence prover only deletes the literal (NOT (r var term m1 ... mN)) if

every occurrence of the variable is substituted.

Directed Rewriting

The most visible use of equality is in user supplied rewrite rules. A REWRITE

lemma whose conclusion takes the form (EQUAL t1 t2) is used by NQTHM to

replace instances of t1 by t2 whenever the hypotheses of the rule can be estab-

lished. Perhaps less utilized are REWRITE lemmas whose conclusions take the

form (IFF t1 t2). These rules are used as directed rewrite rules by NQTHM

at places in a term where only the propositional value matters.

Once a function symbol r has been admitted as an equivalence relation, any

subsequent REWRITE lemmas with conclusions (r t1 t2 m1 ... mN) will also

be stored by the equivalence prover as directed rewrite rules. These rules will

be used to rewrite term to t2 if all of the following conditions are met:

1. The triple hr; (p1; . . . ; pN); lemmasi appears in active-equalities;

2. The term t1 uni�es with term;

3. The moduli m1,. . . ,mN unify with p1,. . . ,pN;

4. The hypotheses of the rule are relieved under the substitution.

Notice that these rules are not stored as matching rules, as they would be in

NQTHM.

A minor problem may be that a rule like

(IMPLIES

(AND (NLISTP X)

(NLISTP Y))

(PERMUTATION X Y))

will be rejected if PERMUTATION has been established as an equivalence relation.

This is because the equivalence prover will correctly note that this rule attempts

to rewrite a variable. Instead, this rule can be entered in the equivalent form

8

In technical terms, trivial equations are removed before the type-alist is created, and

the type-alist is critical for relieving hypotheses. We could arrange for the type-alist

to be available at the time trivial equations are removed, but this might be very expensive

computationally.

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

16

The equivalence prover implements all of the above for equivalence terms

(r t1 t2 m1 ... mN), except for commuting the arguments during uni�ca-

tion.

4.3 Transitivity

Reasoning about the transitivity of EQUAL is subsumed by the processing of the

equality axioms for functions in NQTHM. The same is true for the equivalence

prover.

4.4 Using the Equality Axioms

The most common form of equality reasoning in NQTHM is the implicit use of

the equality axioms, or \substituting equals for equals". This type of reasoning

also appears in several forms.

Using Equality Hypotheses

The last step in rewriting a term is to check whether the term matches the

left-hand side of a \true" equality, that is, an equality literal stored in the

type-alist as true. If so, the term is replaced by the right-hand side of the

equality.

The equivalence prover treats every \true" equivalence as an equality at this

point. Assume that the term is t1, and the literal (r t1 t2 m1 ... mN) ap-

pears as a \true" equivalence in the type-alist. Then the rewriter will return

t2 provided there is a triple hr; (m1; . . . ;mN); lemmasi in active-equalities.

Notice that the moduli must be equal, since neither the moduli in the type-alist

nor the moduli in active-equalities contain \variables".

Removing Trivial Equations

At the beginning of each round of simpli�cation, NQTHM �rst tries to simplify

the clause by removing trivial equations. If the clause contains a literal of the

form (NOT (EQUAL var term)), where var is a variable and term does not

contain that variable, then var is replaced by term throughout the clause, and

the equality literal is deleted from the clause. If the clause contains a literal of

the form (NOT (EQUAL term exterm)) where term is not an explicit value and

exterm is an explicit value, then term is replaced with exterm throughout the

clause, and the equality literal is retained.

Removing trivial equivalences is accomplished by a \mini-rewriter" whose

sole purpose is to replace the variable or non-explicit value term by the equiva-

lent expression. This rewriter maintains the active-equalities as it rewrites

each literal, and performs the substitutions as if they were \true" equality hy-

potheses (see above). For technical reasons, the only congruence frames utilized

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

15

4.1 Re
exivity

NQTHM automatically reduces (EQUAL t1 t2) to T either if the terms t1 and

t2 are textually the same, or if t1 and t2 have the same type, and there is only

one element

7

of that type. Similarly, NQTHM reduces (EQUAL t1 t2) to F if

the terms t1 and t2 are of di�erent types. NQTHM also does other kinds of

type reasoning if the two arguments are of di�erent, but intersecting types, and

reduces EQUAL terms whose argument are EQUAL terms.

In the equivalence prover, the term (r t1 t2 m1 ... mN) is also reduced

to T if r is an equivalence relation and t1 and t2 are the same, or are members

of the same singleton type set. None of the other sorts of reasoning done for

(EQUAL t1 t2) are justi�ed simply by the fact that r is an equivalence relation.

4.2 Symmetry

Reasoning about the symmetry of EQUAL appears in several guises. In NQTHM,

EQUAL is the only function whose arguments will be commuted by the uni�er

when attempting to unify two terms.

Whenever the term (EQUAL t1 t2) is assumed false, either because it ap-

pears as (EQUAL t1 t2) in the current clause or because the rewriter is rewriting

the false branch of an IF controlled by (EQUAL t1 t2), the prover stores both

symmetric versions in an internal data structure known as the type-alist,

along with the indication that the equality literal is false. Thus should either

symmetric version appear in a term being rewritten, the EQUAL term is rewritten

to F after a quick scan of the type-alist.

Whenever the term (EQUAL t1 t2) is assumed true, a slightly di�erent pro-

cess takes place. In this case, only one form of the equality is stored in the

type-alist, and the form that is stored depends on the relative \weights" of

the left and right hand sides. Quoting from [BM85],

The \heavier" relation is a total ordering on terms. We say t

1

is

heavier than t

2

i� either the number of variables in t

1

is greater

than that in t

2

, or the number of variables in the two are equal but

the \size" of t

1

is greater than that of t

2

, or the number of variables

in and the sizes of the two are equal and t

1

comes later than t

2

in

the lexicographic ordering of terms. By size we mean the number of

open parenthesis in the unabbreviated presentation of the term.

So, if (EQUAL t1 t2) is assumed true, it will only be stored as (EQUAL t1 t2)

if t1 is \heavier" than t2. Otherwise, the equality is stored as (EQUAL t2

t1). This procedure, coupled with techniques described later, insures ground

completeness for equality.

7

A singleton type set is created by a shell with no destructors and no bottom objects, e.g.

(TRUE) and (FALSE).

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

14

ii. p1,. . . ,pN unify with q1,. . . ,qN respectively;

iii. All of the hyps except the frame hypothesis are relieved.

then add hr1; (m1

0

; . . . ; mL

0

); (name : lemmas)i to temp, where mi

0

rep-

resents mi after applying the accumulated substitution.

3. Set active-equalities = temp.

The restrictions on the forms of the congruence frame lemmas guarantee that

every variable in m1,. . . ,mL will be bound before these moduli are entered into

active-equalities. The restrictions also guarantee that the variable y remains

unbound throughout the process.

Congruence frames are unique among lemmas in that they are applied outside-

in, whereas the Boyer-Moore rewriter is strictly inside-out. The congruence

frame algorithm requires that the current term, (f x1 ... xi ... xM),

must unify with the conclusion of the congruence frame. But notice that be-

cause the rewriter is rewriting inside-out, when the rewriter enters the subterm

xi those arguments to the left of xi will have already been rewritten, while

those arguments to the right of xi will not have been rewritten. The equiva-

lence prover uses the original, non-rewritten values of all of the terms x1,. . . ,xM

in this uni�cation, however. The user needs to be cognizant of this fact only if

the terms in the conclusion of the congruence frames are not all unique variables.

The user should also realize that although the moduli from the conclusion of

the congruence frame may be modi�ed by substitution, they are currently not

rewritten before they are entered into the active-equalities.

4 Features

In this section we compare and contrast equality reasoning in NQTHM with

analogous processes in the equivalence prover. Most of the information on

NQTHM can be found in other sources [BM79,BM88b] and is concisely summa-

rized here. Note that these comments are based on an examination of the

current code for NQTHM [BM88a] and in some cases are slightly at odds

with earlier reports. The equivalence prover treats EQUAL exactly as NQTHM

does, and all reasoning about other equivalence relations r is predicated on the

ESTABLISH-EQUIVALENCE lemma for r being enabled. The equivalence prover

treats IFF like any other equivalence relation.

6

We begin the discussion with

the general properties of equivalence relations, and conclude with the use of the

equality axioms and directed rewriting.

6

The user will probably never notice the di�erence between NQTHM and the equivalence

prover in terms of handling IFF.

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

13

symbol is the function symbol of an equivalence relation, moduli is a list of the

moduli of equivalence, and lemmas is a list of the names of all of the congruence

frames that support the presence of symbol in active-equalities.

Rewriting normally begins at the literal level, where propositional equality

preserves the truth value of the clause. Thus, at the beginning of rewriting,

active-equalities = (hEQUAL; (); ()i ; hIFF; (); ()i):

The active-equalities are also set to this value when rewriting the �rst ar-

gument of IF, and when commencing to relieve a hypothesis of a rewrite rule.

The active-equalities are updated every time the rewriter descends into the

argument of a function. This is critical for soundness: If an equivalence relation

appears in active-equalities at one level, it must either be removed as the

rewriter passes into the next level, or there must be a congruence frame that

justi�es its continued membership in active-equalities at the lower level.

Assume that the current term is

(f x1 ... xi ... xM);

and the rewriter is about to rewrite xi. Then the following algorithm is exe-

cuted:

1. Set temp = (hequal; (); ()i). We will use temp to collect the new value of

active-equalities for xi.

2. For every congruence frame associated with the i

th

argument of f do:

4

(a) Assume that the congruence frame was established by the lemma

name, has the form

(IMPLIES

hyps

(r2 (f t1 ... x ... tM) (f t1 ... y ... tM) p1 ... pN)),

and frame hypothesis (r1 x y m1 ... mL).

(b) If r2 is not in active-equalities, name is disabled, or the ESTABLISH-EQUIVALENCE

lemma for r1 is disabled, then return to step 2 to try the next frame.

(c) For every triple hr2; (q1; . . . ; qN); lemmasi in active equalities,

if:

i. (f t1 ... x ... tM) uni�es

5

with (f x1 ... xi ... xM);

4

Referring back to the schematic congruence frame at the beginning of Section 3.2, the

abstract representation of that congruence frame would have been \associated" with the ar-

gument position of f where the variable x appears.

5

Here, and throughout the rest of this note, whenever we use the term unify we mean

\one-way" uni�cation, and whenever we say that X uni�es with Y, it is understood that X

contains the \variables".

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

12

3.2 The CONGRUENCE-FRAME Lemma Class

Congruence frames are created by events of the form:

(PROVE-LEMMA name ((CONGRUENCE-FRAME (r1 x y m1 ... mL))

[other-classes])

(IMPLIES

hyps

(r2 (f t1 ... x ... tM) (f t1 ... y ... tM) p1 ... pN))

[hints]),

We will refer to the designated hypothesis, (r1 x y m1 ... mL), as the frame

hypothesis. The body of the congruence frame is subject to the following re-

strictions:

� Both r1 and r2 are equivalence relations. The equivalence relations are

EQUAL, IFF, or any other symbol for which an ESTABLISH-EQUIVALENCE

lemma has been proved in the current history.

� The terms x and y are distinct variables.

� The term hyps is either the frame hypothesis, or a conjunction containing

the frame hypothesis. Furthermore, the variable y may not appear in any

hypothesis other than the frame hypothesis.

� The terms t1,. . . ,tN are arbitrary except that they may not contain either

of the variables x or y.

� The moduli p1,. . . ,pN are arbitrary except that none of them may contain

the variable y.

� The moduli m1,. . . ,mL are arbitrary except that any variable occurring in

m1,. . . ,mL must either be x, occur in t1,. . . ,tM, occur in p1,. . . ,pN, or occur

in another hypothesis.

Disabling name prevents the congruence frame from being used. As we men-

tioned earlier, name can also be e�ectively disabled by disabling the ESTABLISH-EQUIVALENCE

lemma for r1.

3.3 Using Congruence Frames

Congruence frames are not stored as rewrite rules by the equivalence prover.

Instead, the information contained in a congruence frame is extracted and used

heuristically. We previously introduced the set A of function symbols of equiv-

alence relations that preserve equality at the current point in the term. In the

equivalence prover, this set is represented by a list known as the active-equalities.

Each entry in active-equalities is a triple, hsymbol;moduli; lemmasi where

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

11

3 User Interface

Externally, the equivalence prover di�ers from NQTHM only by the addition of

two new lemma classes for PROVE-LEMMA: ESTABLISH-EQUIVALENCE and CONGRUENCE-FRAME.

After introducing these two lemma classes, we describe in detail how the modi-

�ed rewriter uses congruence frames.

3.1 The ESTABLISH-EQUIVALENCE Lemma Class

If r is an equivalence relation, then this fact is recorded by the event:

(PROVE-LEMMA name ((ESTABLISH-EQUIVALENCE r) [other-classes])

(AND (r x x m1 ... mN)

(EQUAL (r x y m1 ... mN) (r y x m1 ... mN))

(IMPLIES

(AND (r x y m1 ... mN)

(r y z m1 ... mN))

(r x z m1 ... mN)))

[hints]),

subject to the constraints that:

� r is boolean. That is, the equivalence prover must have noted that

(OR (FALSEP (r x y m1 ... mN)) (TRUEP (r x y m1 ... mN))

is a theorem when r was admitted.

� Within each conjunct, the terms x, y, z, and m1,. . . ,mN must all be distinct

variables.

� Any of the symmetric variants of the transitivity conjunct are allowed.

� The three conjuncts asserting the re
exivity, symmetry, and transitivity

of r may appear in any order.

Once a function r is established as an equivalence relation by the event name,

all implicit use of r as an equivalence relation (see Section 4) is controlled by

name. That is, if name is disabled, then implicit reasoning about r will cease.

Disabling name will also e�ectively disable any congruence frame for which r is

the equivalence relation appearing in the hypothesis of the frame. There is no

way to disable equivalence reasoning for EQUAL or IFF.

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

10

is used a a matching rule; that is, this rule reduces instances of its conclusion

to T. However, if this lemma were proved after PERMUTATION was admitted as

an equivalence relation, then this lemma will be stored as a directed rewrite

rule, to be applied whenever PERMUTATION 2 A. If such were the case in the

preceding example, then the conclusion

(PERMUTATION (APPEND (LESSP-LIST (CAR LIST) (CDR LIST))

(CONS (CAR LIST)

(GEQ-LIST (CAR LIST) (CDR LIST))))

LIST)

would have �rst been reduced to

(PERMUTATION LIST LIST)

by directed rewriting. The above term would then have been reduced to T by

the re
exivity of PERMUTATION. Of course, this simple example does not really

demonstrate the utility of directed rewriting by equivalence rules. In more

complex examples, however, it appears to be a very useful feature.

2.5 Justi�cation

Did the equivalence prover provide any real advantage in the preceding proof?

Imagine trying to prove PERMUTATION-QSORT in NQTHM, given the same de�-

nitions and lemmas available to the equivalence prover. The congruence frames

used above are almost worthless as directed rewrite rules, because they all con-

tain a free variable in the hypothesis. Possible approaches to getting this proof

in NQTHM would be to USE the proper instances of the congruence frame lem-

mas, or to combine the congruence frames into these two highly specialized

lemmas:

Lemma. CROCK-1

(IMPLIES

(PERMUTATION X Y)

(EQUAL (PERMUTATION (APPEND X Z) L)

(PERMUTATION (APPEND Y Z) L)))

Lemma. CROCK-2

(IMPLIES

(PERMUTATION Y Z)

(EQUAL (PERMUTATION (APPEND W (CONS X Y)) L)

(PERMUTATION (APPEND W (CONS X Z)) L)))

Notice that even here there are free variables in the hypothesis. These crock

lemmas will \work" in the proof only because NQTHM will happen to �nd an

exact match for the hypotheses in the clause representing the inductive step.

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

9

(PERMUTATION (QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

(LESSP-LIST (CAR LIST) (CDR LIST))),

and replace

(QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

with

(LESSP-LIST (CAR LIST) (CDR LIST)).

A similar sequence of events takes place for the other argument of APPEND. The

equivalence prover uses the congruence frames PERMUTATION-APPEND-RIGHT-FRAME

and PERMUTATION-CONS-RIGHT-FRAME to establish that A = fEQUAL; PERMUTATIONg

when rewriting

(QSORT (GEQ-LIST (CAR LIST) (CDR LIST))),

and reduces this term to

(GEQ-LIST (CAR LIST) (CDR LIST))

with the inductive hypothesis. The end result is that

(PERMUTATION (APPEND (QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

(CONS (CAR LIST)

(QSORT (GEQ-LIST (CAR LIST) (CDR LIST)))))

LIST)

has been heuristically rewritten to

(PERMUTATION (APPEND (LESSP-LIST (CAR LIST) (CDR LIST))

(CONS (CAR LIST)

(GEQ-LIST (CAR LIST) (CDR LIST))))

LIST),

which can be further reduced to T by means of the appropriate lemma.

2.4 Equivalence Rewrite Rules

Normally, a rule like

Lemma. LESSP-GEQ-QSORT-PARTITION

(IMPLIES

(LISTP LIST)

(PERMUTATION (APPEND (LESSP-LIST (CAR LIST) (CDR LIST))

(CONS (CAR LIST)

(GEQ-LIST (CAR LIST) (CDR LIST))))

LIST))

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

8

(GEQ-LIST (CAR LIST) (CDR LIST)))

(PERMUTATION (APPEND (QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

(CONS (CAR LIST)

(QSORT (GEQ-LIST (CAR LIST) (CDR LIST)))))

LIST)),

we follow the rewriter as it recursively rewrites the conclusion. Since the truth

value of this clause

2

only depends on the propositional values of its arguments,

the rewriter may replace the conclusion not only by a term EQUAL to it, but by

any term propositionally equal (IFF) to it. To generalize, at any point during

rewriting there is a set A of function symbols of equivalence relations such that

if r is in A, the current term is t1, and (r t1 t2) is true, then replacing t1

with t2 maintains the truth value of the entire clause. Thus, prior to rewriting

the above conclusion, A = fEQUAL; IFFg.

The equivalence prover maintains the set A as each clause is recursively

rewritten. When rewriting the �rst argument of PERMUTATION,

(APPEND (QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

(CONS (CAR LIST)

(QSORT (GEQ-LIST (CAR LIST) (CDR LIST))))).

propositional equivalence no longer preserves equality, and the symbol IFF is

removed from A. Note, however, the information implicit in the congruence

frame PERMUTATION-LEFT-FRAME. This lemma shows that if the left-hand side

of a PERMUTATION term is replaced by a PERMUTATION, then the value of the new

term is EQUAL to the value of the original. Thus, entering the �rst argument of

PERMUTATION, A = fEQUAL; PERMUTATIONg.

3

Now the rewriter begins rewriting the �rst argument of APPEND,

(QSORT (LESSP-LIST (CAR LIST) (CDR LIST))).

In this case, the congruence frame PERMUTATION-APPEND-LEFT-FRAME shows

that replacing the �rst argument of APPEND by a PERMUTATION produces a term

which is a PERMUTATION of the original. Since this occurrence of APPEND appears

in an environment where PERMUTATION preserves equality, PERMUTATION remains

in A, and again A = fEQUAL; PERMUTATIONg.

The rewriter will now attempt to recursively rewrite

(QSORT (LESSP-LIST (CAR LIST) (CDR LIST))),

and �nd that no rules apply to its subterms. Since PERMUTATION preserves

equality at the current point in the term, however, the rewriter will use the

inductive hypothesis

2

Recall that (IMPLIES (AND p (NOT q)) r) is the printed representation of the clause

(OR (NOT p) q r)

3

Technically, PERMUTATION replaces EQUAL in A as we move into the argument during rewrit-

ing. But since EQUAL always preserves equality, EQUAL is added back into A.

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

7

Congruence Frame. PERMUTATION-LEFT-FRAME

(IMPLIES

(PERMUTATION A B)

(EQUAL (PERMUTATION A C) (PERMUTATION B C)))

Congruence Frame. PERMUTATION-RIGHT-FRAME

(IMPLIES

(PERMUTATION A B)

(EQUAL (PERMUTATION C A) (PERMUTATION C B))).

These lemmas show that PERMUTATION is a congruence relation for both argu-

ments of PERMUTATION. Before the equivalence prover can complete the desired

reduction, however, it will also need these three congruence frames for CONS and

APPEND:

Congruence Frame. PERMUTATION-CONS-RIGHT-FRAME

(IMPLIES

(PERMUTATION Y Z)

(PERMUTATION (CONS X Y) (CONS X Z)))

Congruence Frame. PERMUTATION-APPEND-LEFT-FRAME

(IMPLIES

(PERMUTATION X Y)

(PERMUTATION (APPEND X Z) (APPEND Y Z)))

Congruence Frame. PERMUTATION-APPEND-RIGHT-FRAME

(IMPLIES

(PERMUTATION X Y)

(PERMUTATION (APPEND Z X) (APPEND Z Y))).

Using Congruence Frames

We can now show how the equivalence prover determines that PERMUTATION

preserves equality at the desired points in the term. Returning to the term

under scrutiny,

(IMPLIES

(AND (LISTP LIST)

(PERMUTATION (QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

(LESSP-LIST (CAR LIST) (CDR LIST)))

(PERMUTATION (QSORT (GEQ-LIST (CAR LIST) (CDR LIST)))

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

6

2.3 Example Proof

We would like to prove the conjecture:

(PERMUTATION (QSORT LIST) LIST).

The proof is by induction, using the induction scheme suggested by the de�nition

of QSORT. The base case,

(IMPLIES

(NLISTP LIST)

(PERMUTATION (QSORT LIST) LIST),

follows easily from the de�nitions of PERMUTATION and QSORT. In the inductive

case we are required to show

(IMPLIES

(AND (LISTP LIST)

(PERMUTATION (QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

(LESSP-LIST (CAR LIST) (CDR LIST)))

(PERMUTATION (QSORT (GEQ-LIST (CAR LIST) (CDR LIST)))

(GEQ-LIST (CAR LIST) (CDR LIST))))

(PERMUTATION (APPEND (QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

(CONS (CAR LIST)

(QSORT (GEQ-LIST (CAR LIST) (CDR LIST)))))

LIST)).

Here is the key to the proof: If the inductive hypotheses were EQUAL terms

instead of PERMUTATION terms, we could reduce the above to

(IMPLIES

(LISTP LIST)

(PERMUTATION (APPEND (LESSP-LIST (CAR LIST) (CDR LIST))

(CONS (CAR LIST)

(GEQ-LIST (CAR LIST) (CDR LIST))))

LIST)),

which is provable from the de�nitions of PERMUTATION, LESSP-LIST, and GEQ-LIST.

This is exactly what the equivalence prover will do. With the aid of selected con-

gruence frames, the equivalence prover will be able to establish that PERMUTATION

preserves equality at the proper points in the term, and to use the inductive

hypotheses as if they were equalities.

The Necessary Congruence Frames

When the equivalence prover accepted PERMUTATION as an equivalence relation,

two facts were noted. These facts follow from the symmetry and transitivity of

PERMUTATION:

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

5

Lemma. PERMUTATION-EQUIVALENCE

(AND (PERMUTATION A A)

(EQUAL (PERMUTATION A B) (PERMUTATION B A))

(IMPLIES

(AND (PERMUTATION A B)

(PERMUTATION B C))

(PERMUTATION A C))).

2.2 QSORT

The sorting routine we have chosen is a recursive quicksort for lists of num-

bers. The sorting program is implemented by three functions. The functions

LESSP-LIST and GEQ-LIST partition the input list, and QSORT recursively sorts

and assembles the result:

De�nition.

(LESSP-LIST VAL LIST)

=

(IF (NLISTP LIST)

NIL

(IF (LESSP (CAR LIST) VAL)

(CONS (CAR LIST) (LESSP-LIST VAL (CDR LIST)))

(LESSP-LIST VAL (CDR LIST))))

De�nition.

(GEQ-LIST VAL LIST)

=

(IF (NLISTP LIST)

NIL

(IF (LEQ VAL (CAR LIST))

(CONS (CAR LIST) (GEQ-LIST VAL (CDR LIST)))

(GEQ-LIST VAL (CDR LIST))))

De�nition.

(QSORT LIST)

=

(IF (NLISTP LIST)

NIL

(APPEND (QSORT (LESSP-LIST (CAR LIST) (CDR LIST)))

(CONS (CAR LIST)

(QSORT (GEQ-LIST (CAR LIST) (CDR LIST))))))

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

4

2.1 PERMUTATION

A sorting routine for lists has two speci�cations: The output list should be a

permutation of the input, and the output should be ordered in some way. Here

we are only concerned with the former property. This de�nition of PERMUTATION

is taken from a standard library of Boyer-Moore events created by Bill Bevier

[Bev88]

1

:

De�nition.

(MEMBER X L)

=

(IF (NLISTP L)

F

(IF (EQUAL X (CAR L))

T

(MEMBER X (CDR L))))

De�nition.

(DELETE X L)

=

(IF (LISTP L)

(IF (EQUAL X (CAR L))

(CDR L)

(CONS (CAR L) (DELETE X (CDR L))))

L)

De�nition.

(PERMUTATION A B)

=

(IF (LISTP A)

(AND (MEMBER (CAR A) B)

(PERMUTATION (CDR A)

(DELETE (CAR A) B)))

(NOT (LISTP B)))

The function PERMUTATION is also an equivalence relation, as this lemma shows:

1

The function MEMBER is a built{in function. We have included its de�nition for

completeness.

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

3

Congruence Frame.

(IMPLIES

(MOD= A B K)

(MOD= (TIMES A C) (TIMES B C) K)).

In the equivalence prover, lemmas of this form are called congruence frames.

The most important types of congruence frames are those for which the

equivalence symbol in the conclusion is EQUAL. This congruence frame, for ex-

ample, is the way that the equivalence prover notes the transitivity of MOD=

:

Congruence Frame.

(IMPLIES

(MOD= A B K)

(EQUAL (MOD= A C K) (MOD= B C K))).

This is an important lemma because it shows that if the �rst argument of MOD=

is replaced by any other MOD= (mod K) term, then the value of the resulting term

is EQUAL to the original. In other words, MOD= (mod K) preserves equality for the

�rst argument of MOD=. Congruence frames can also be linked together. Since

MOD= (mod K) preserves congruence (mod K) for the arguments of TIMES, we

may infer that MOD= (mod K) preserves equality for arguments of TIMES terms

occurring at locations where MOD= (mod K) preserves equality. That is, the two

congruence frames above show that we may replace A in

(MOD= (TIMES A B) C K)

by any MOD= (mod K) term without altering the value of the entire expression.

The preceding introductory remarks were purposefully brief. The philosophy

and operation of the equivalence prover are completely elaborated in the coming

pages. We begin with a detailed example using a modulus free equivalence

relation; a proof that a simple quicksort routine for lists returns a permutation

of the original list. The next section documents the two new lemma types

available in the equivalence prover, followed by a detailed comparison between

NQTHM and the equivalence prover. We conclude with a list of de�ciencies in

the equivalence prover. A listing of the events for the example appears as an

Appendix.

2 Example: A Simple Sorting Algorithm

We show the utility of equivalence reasoning with an example, a partial proof

of correctness of a simple sorting routine. This example demonstrates at an

intuitive level how the equivalence prover reasons about equivalence relations,

and also why the equivalence prover provides an advantage over NQTHM. The

majority of the technical details are left for later sections.

An Experimental Implementation of Equivalence Reasoning

in the Boyer-Moore Theorem Prover

Internal Note #104 ** Draft ** December 9, 1988

2

5 Caveats 18

A Events for PERMUTATION-QSORT 19

1 Introduction

This note describes an experimental extension of the Boyer-Moore theorem

prover that includes reasoning about general equivalence relations. The contin-

uing goal of this work is to provide as many of the implicit reasoning methods

and heuristics for equivalence relations as are currently provided for equality.

The targeted features extend from simple reasoning about re
exivity and sym-

metry up to and including the use of equality hypotheses and directed rewriting.

To avoid confusion, we will always refer to the current, standard version of the

Boyer-Moore theorem prover as NQTHM, and we will always refer to our mod-

i�cation as the equivalence prover.

Our modi�cations do not extend the Boyer-Moore logic, but instead extend

the heuristics of NQTHM. The concept is very simple, and rests on the notions

of equivalence relations and congruence relations. An equivalence relation, of

course, is any re
exive, symmetric, and transitive relation. NQTHM currently

\recognizes" two equivalence relations, EQUAL and IFF, although only EQUAL

bene�ts from the full range of equality heuristics. In the equivalence prover, an

equivalence relation is any boolean function of two or more arguments which

is provably re
exive, symmetric, and transitive. For simplicity, we impose the

syntactic restriction that the re
exive, symmetric, and transitive arguments

always appear as the �rst two arguments of the function. The other arguments

represent the moduli of equivalence. This function, for example:

De�nition.

(MOD= A B K)

=

(EQUAL (REMAINDER A K) (REMAINDER B K))

is the equivalence relation a � b (mod k) for the natural numbers.

We also employ a very general notion of congruence relations. Assume that

r1 and r2 are (possibly identical) equivalence relations, with moduli m1,. . . ,mL

and p1,. . . ,pN, respectively. Further, let f be an arbitrary function in the Boyer-

Moore logic. Then r1 is a congruence relation for the indicated argument of f

if

(IMPLIES

(r1 x y m1 ... mL)

(r2 (f t1 ... x ... tM) (f t1 ... y ... tM) p1 ... pN))

is a theorem. This lemma, for example, establishes MOD= (mod K) as a congruence

relation for the �rst argument of TIMES:

Internal Note #104

Computational Logic, Inc.

December 9, 1988 ** Draft **

An Experimental Implementation

of Equivalence Reasoning

in the

Boyer-Moore Theorem Prover

Bishop Brock

�

Contents

1 Introduction 2

2 Example: A Simple Sorting Algorithm 3

2.1 PERMUTATION : 4

2.2 QSORT : 5

2.3 Example Proof : 6

2.4 Equivalence Rewrite Rules : 9

2.5 Justi�cation : 10

3 User Interface 11

3.1 The ESTABLISH-EQUIVALENCE Lemma Class : : : : : : : : : : : : 11

3.2 The CONGRUENCE-FRAME Lemma Class : : : : : : : : : : : : : : : 12

3.3 Using Congruence Frames : 12

4 Features 14

4.1 Re
exivity : 15

4.2 Symmetry : 15

4.3 Transitivity : 16

4.4 Using the Equality Axioms : 16

�

This work was supported in part at Computational Logic by the Defense Advanced Re-

search Projects Agency, ARPA Orders 6082 and 9151. The views and conclusions contained in

this document are those of the author and should not be interpreted as representing the o�-

cial policies, either expressed or implied, of Computational Logic, Inc., the Defense Advanced

Research Projects Agency or the U.S. Government.

