
Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

This research was supported in part by the U.S.
Government. The views and conclusions contained in this
document are those of the authors and should not be
intepreted as representing the official policies, either
expressed or implied, of Computational Logic, Inc., the
National Computer Security Center, or the U.S.
Government.

Proving Gypsy Programs

February 9, 1989
Technical Report #4-b

supercedes May, 1986 edition

Richard M. Cohen
Revised by Robert L. Akers

Abstract

Program verification applies formal understanding of programming language semantics to the practical
problem of constructing reliable software. The programming language Gypsy and the Gypsy Verification
Environment, a programming environment that supports development of programs, specifications, and
proofs, represent significant steps in making the program verification technology available for practical
use.

The purpose of this dissertation is to specify clearly the meaning of Gypsy programs, and the means by
which they are proven. The semantics are presented in a "semi-formal" way, so that they are more
accessible to the verification practitioner, than would be more formal, mathematical semantics. First an
operational semantics for a subset of Gypsy is presented. Then this model is extended to cover more
complex features of the language. Using the execution semantics as the underlying conceptual base, we
proceed to present the mechanisms used to generate verification conditions for the full Gypsy language,
including data abstraction, concurrent programming, and exception handling.

Acknowledgments

I owe many debts to my friends and colleagues for their support and encouragement throughout this work.
None of this work would have been done without the interest and enthusiasm of Don Good, the primary
force behind the creation of Gypsy. Bob Boyer was instrumental in helping me avoid several blind alleys,
and convincing me I was done. Dan Craigen read an early draft of my dissertation, and his comments
helped me improve upon it.

My past and present colleagues at the Institute for Computing Science have contributed to my efforts in
many ways. They have provided a good environment for discussion, elaboration, and refinement of my
understanding of Gypsy. They have also provided friendship and intellectual interest that has helped me
through these efforts.

Many friends have encouraged me throughout my graduate career, and without them I surely would not
have persevered. For this I acknowledge special gratitude to my dear friends Dave and Paula Matuszek,
John McHugh, Ruth Baldwin, Paul Reynolds, and Bernice Borak. The members of C.E.R.F. offered
encouragement, and I trust they are satisfied with the result. Many others have been helpful, and I do not
mean to slight them by not mentioning their names. It only indicates that I have a poor memory.

And lastly, I must acknowledge the support of my wife, Dorene. She not only put up with me when I was
tired, depressed, excited, and frequently absent, but remained supportive and enthusiastic. We have
supported each other through our studies financially, emotionally, and spiritually. Neither of us would
have finished without the other’s support.

Proving Gypsy Programs February 9, 1989 2
Introduction

Chapter 1

INTRODUCTION

Gypsy is a program description language. That is, Gypsy is a language for describing computer programs
and their specifications. This report defines the proof methods for the language Gypsy. A simple
semantic model of a language feature is first presented and then extended as required to encompass the
additional complexities of the full language. A verification condition generator based on this model is
then developed. The elaboration is pedagogical and is meant to provide an understanding of the meaning
of Gypsy programs. The goal of this report is to provide the reader with this understanding.

The presentation describes the unique proof methods for handling concurrency and data abstraction in
Gypsy. Gypsy supports concurrent programming using message buffers and supports specification of
concurrent programs by defining buffer histories, records of the messages sent to and received from a
buffer.

The reader is expected to be familiar with the Gypsy language, as described by the Gypsy 2.1 language
report [Good 85].1 Footnotes generally discuss details that relate the current topic to topics that are
discussed in later sections. They may be skipped on first reading.

1.1 Why Gypsy is Important and What I Have Done

I have defined the semantics of the Gypsy language and the formal methods used to prove the consistency
of Gypsy programs and specifications. Gypsy and the Gypsy Verification Environment (GVE) mark a
significant step in the development of practical methods for program verification. The development of
these proof methods form the underlying basis for Gypsy verification. Moreover, the definition style used
here (mapping an operational definition into a verification condition generator) offers an intuitive basis for
the verification by clearly relating an operational understanding of the program to the verification
conditions (VCs) required for the proof. This reinforces in the programmer’s mind the relation between a
procedural understanding of the program (as is common to most programmers) and the requirements of
the proof methods encountered during the verification.

Gypsy proof methods include two areas often left out of formal semantic definitions:

• concurrency, and

• exception handling.

1The reader who is familiar with the Gypsy 2.0 language report [Good 78a] should not find the differences particularly
bothersome.

Proving Gypsy Programs February 9, 1989 3
Introduction

The proof methods developed for concurrent programs in Gypsy were the first formalization of the
semantics of message buffers. Earlier descriptions and examples of the Gypsy concurrency have already
been published in [Good 78b] and [Good 79].

1.2 Semantic Definition Method

The programming language Gypsy and informal proof methods for Gypsy programs have evolved over
several years. An important goal in this evolutionary design has been modularity of programs and their
proofs. Modularity in programs is traditionally enforced by abstraction and information hiding. An
acceptable semantic definition of Gypsy must reflect those mechanisms into the proof methods.

Normally denotational semantic definitions embody no abstraction. The denotation of a function
declaration is the mathematical function it computes. References to the function from other points in the
program evoke that denotation and hence, complete knowledge of its definition. This violates the
requirement of information hiding.

To solve this we take a two-step approach, presenting:

1. an execution model which lacks abstraction, and then

2. methods (derived from the execution model) to generate and prove the verification
conditions (VCs) derived from the program. The VCs and their proofs will be constructed
to permit proof to reflect abstraction in the program.

The primitive execution model is presented mainly to provide an intuitive base on which to develop the
VC generator. The simple execution model is unacceptable in our proofs, as it violates our requirement of
modularity. The VC generator supports our notions of modular and abstract proofs, but masks the full
semantic interpretation of program units by reducing the usable knowledge of a routine to its (possibly
incomplete) external specifications.

In practice, the formal specifications of verified software often specify less than full functionality, stating
only the critical program properties. Thus, programs that meet their formal specifications may not exhibit
other required (but not formally specified) behavior. (E.g., real-time behavior is ignored in most formal
specification languages.)

1.3 Nondeterminism

Nondeterminism arises for many reasons and is necessary for most distributed computing systems. This
nondeterminism causes significant complications in programming. Thus, program verification is of
particular interest for distributed or parallel systems, as they are much harder to understand than
sequential programs. This same nondeterminism also complicates programming language semantics,
causes significant complications in program verification, and interferes with the use of most mechanical
theorem provers. Most theorem proving work is done in theories with deterministic functions. If F is a
nondeterministic function, then F(X) = F(X) may not be a valid formula.

Our semantics allow us to manage nondeterministic program constructs. Basically, the extensions add
contextual knowledge about otherwise uninterpreted function symbols. This allows us to reason about the
function symbols without revealing complete details. Use of the "context" mechanism is sufficient to
provide a weak definition of concurrent Gypsy constructs. We use the abstraction facility to hide many of
the nondeterministic details of how the concurrent processes interact. The Gypsy specification language

Proving Gypsy Programs February 9, 1989 4
Introduction

does not allow us to describe the full behavior of Gypsy concurrent processes. Certain aspects of
concurrent program behavior that are evident in the intuitive operational model cannot be expressed in the
specification language. The semantics of concurrency given here are incomplete in exactly the same way.
The modularity and abstraction that form the basis of the Independence Principle [Good 85, p. 2] are
enforced equally in the programming language and in the specification language. Gypsy buffers
resemble shared variables. There is no mechanism to pass a buffer "exclusively" to a procedure,
indicating that no other active procedure has access to that buffer. Therefore, the independence principle
forces us to treat the buffer parameter as a shared buffer, which other procedures may manipulate while
this procedure is active. With sufficient global knowledge of the calling structure program, it might be
possible to determine that no other procedures could in fact access the buffer while this procedure was
active; such knowledge cannot be used in a proof of the Gypsy procedure, as it would violate the
independence principle.

Gypsy procedures may be nondeterministic. For example, in a concurrent procedure call, the result may
depend on the order in which events occur in the parallel procedure invocations. The semantics of the
concurrent procedure call do not specify the order of the events. Any ordering information regarding the
events must be gained from the specification abstraction of the called procedures.

1.4 Incremental Development of Programs and Proofs

Programs are usually developed by iterative refinement and rewriting. The direction may be top-down or
bottom-up, but some backtracking is almost always necessary. Later, programs are often revised and
extended (an activity called "maintenance"). Modifying a program may require recompilation. It may
also require modifications to the proof. Constructing formal specifications and proofs is very time
consuming and labor intensive. Redoing the proof of an entire program would be extremely expensive,
and if verification is to be practical, small modifications in a program must require only small
modifications in the proof. The same notions of abstraction that allow us to modify programs easily also
allow us to construct modular proofs. The portion of a proof that depends on a particular piece of the
program should be comparable to the portion of the program that depends on that piece. The VC
generation semantics allow us to reflect the abstraction mechanisms built into the language into the proof
methods, and hence, to support modularity in proofs just as the language supports modularity in the
program. This allows the GVE’s proof manager [Moriconi 77] to handle incremental changes during
program development.

1.5 Negotiable Semantics

The language definer has a choice between defining rigorous, inflexible semantics, leaving no aspect of
program behavior undefined, or defining looser, flexible semantics, leaving some aspects of program
behavior unspecified. (The appearance of the word "undefined" in language definitions usually indicates
presence of the latter approach.) Some have argued as to whether the presence of "undefined" in a
language definition is good or bad [Palme 74]. One main reason for introducing these unspecified
portions into the language definition is to provide some leeway for the implementor. Some details of a
language feature may be irrelevant or tangential to the intended behavior of a program. Leaving these
details of the language unspecified may allow the use of a variety of implementation techniques.
Conversely, specifying every detail of the language may preclude some desirable implementation options.

Some semantic definition techniques lend themselves to leaving some things undefined, while others do
not. Often the semantic definitional methods make it easier or cleaner for the language definer to
completely specify program behavior. In the semantic definition of Gypsy, the order of argument

Proving Gypsy Programs February 9, 1989 5
Introduction

evaluation is specified, and call-by-value/call-by-value-result semantics are used to describe program
behavior.2 This admits several reasonable operational models, which are simpler than ones involving
call-by-reference. However, this also has the effect of requiring Gypsy compilers to preserve these
semantics even when attempting to use the more efficient call-by-reference technique at run time. We
propose a language extension that allows the programmer to "request" relaxation of some details of the
language definition. The formal semantics do not reflect any leniency in the formally required program
behavior, but the proof methods do recognize this relaxation request and relax the semantics used to verify
that the program conforms to its specifications. Thus, the programmer can explicitly annotate the program
to indicate that some details for the program behavior are not required. The proof methods will use the
relaxed program semantics in verifying the program, and an optimizing compiler might be allowed to take
advantage of the relaxed semantics to apply specific optimizations.

The "negotiation" allows the program writer to specify an abstract equality relation on program states,
masking certain uninteresting distinctions. Based on this, weaker proof rules can be used and a possible
explosion of cases can be avoided.

This "relaxation" of semantics is particularly helpful in the case of exception conditions in Gypsy
programs. Gypsy programs typically handle many exception conditions with a single "condition handler",
and it is often not necessary to deal with the detailed state information that distinguishes one particular
condition from another. Thus, if the programmer could specify that the values of some variables were not
of interest when an exception condition is raised, then the proofs relating to the exception condition would
not have to distinguish among the multiple signalling states.

1.6 Outline of Chapters

1.6.1 Introduction

The introduction provides a brief overview of the work and presentation, and tries to gently introduce the
reader to the issues at hand.

1.6.2 Related Work

This chapter discusses the nature of program verification, and identifies several tutorial works on
verification. Other mechanical systems supporting program verification are described. Several other
efforts have addressed the areas of specifying and proving concurrent programs and exception handling.
These are contrasted with the approach presented here.

1.6.3 Some Remarks about Gypsy Programs

This chapter deals with several issues underlying the Gypsy proof methods. The first section outlines the
properties of the Gypsy language that helped to make the semantic definition simple. Gypsy does not
distinguish function declarations intended for use in specifications from those intended for execution.
Thus, Gypsy functions have meaning in program proofs, as well as a possible interpretation as an
executable function. The nature of this dual definition is discussed, as well as several aspects of Gypsy

2The Gypsy 2.1 Report [Good 85] defines assignment and other basic operations of the language (including function invocation)
in terms of procedures and procedure calls. The approach taken here is slightly different. We use assignment and function
invocation as primitive operations, and reduce the other parts of the language (including procedure invocation) to these two
primitives. This different approach was chosen to reduce the number of primitives required in the semantic description, but is
logically equivalent to that taken in the language report.

Proving Gypsy Programs February 9, 1989 6
Introduction

specifications and their analysis.

1.6.4 Normalizing Gypsy Programs

Many Gypsy constructs can be eliminated by treating them as abbreviations with expansions composed
from a smaller base language. In order to simplify the semantic definition, the number of constructs in the
base language is reduced. The normalization process reduces Gypsy programs to six executable
statements and three specification statements. The details of normalization and expanding syntactic
abbreviations are described.

1.6.5 A Simple Operational Model

A simple operational model for Gypsy programs is presented. The model is first developed without
considering exception handling or concurrency. The model is then extended to include exception
handling. Concurrency is dealt with in Chapter 8.

1.6.6 A Verification Condition Generator

Based on the operational model in Chapter 5, a verification condition generator (VC generator) is
described. A forward VC generation technique is used to provide a close relation between the operational
model and the VC generation process. The VC generator first analyzes the control flow of the routine to
compute a set of linear control path segments, and then symbolically executes each path segment to
generate the VCs. Methods for proving termination of execution of sequential Gypsy programs are also
described.

1.6.7 Buffers and Activation_ids

The basic Gypsy concurrency mechanism is based on message buffers. Specification of concurrent
programs is based on histories of the messages sent to and received from buffers. The history mechanism
uses a unique activation_id to identify each dynamic routine invocation, in order to pair each message in
the history with the specific routine activation that performed the corresponding send or receive operation
on the buffer.

1.6.8 Concurrency

The Gypsy concurrent procedure call (COBEGIN statement) is a generalization of the sequential
procedure call. The basis of specifying and verifying concurrent Gypsy programs is to describe the effect
of the COBEGIN on buffer parameters. The BLOCK specification is a technique for describing behavior of
non-terminating concurrent programs. The interpretation of the BLOCK specification is given, along with
its proof methods.

1.6.9 Proof of Data Abstraction

Data abstraction does not affect the execution semantics of the program. Data abstraction merely imposes
visibility restrictions on the program description and proof. Program code and specifications dealing with
the abstract data type (not its implementation) must be independent of the details of the data
representation. External specifications of a routine include both abstract specifications, which are visible
everywhere, and concrete specifications, which are only visible in contexts in which the data
representation is known. These two sets of specifications must be proven to be consistent. Gypsy allows
the programmer to define equality on abstract data types. To allow the normal rules of substitution in

Proving Gypsy Programs February 9, 1989 7
Introduction

proofs, it is necessary to show that the user has defined an equivalence relation, and that all functions
defined on the abstract data type behave deterministically under this equivalence relation.

1.6.10 Proposed Language Changes

In pursuing this work, several relatively minor changes came to light that might improve the language.
The most significant of these are the suggested extensions to support proof of well-definedness of
specification functions and termination of (sequential) executable routines.

1.6.11 Future Work

The work presented suggests several lines for future research, such as the application of this style of
semantic definition to other languages, and more formal models of VC generation. Several other topics
for further work are discussed.

1.7 Lacuna: Topics Omitted

The precise version of the language addressed here lies partly between Gypsy 2.0 and Gypsy 2.1. The
language is basically Gypsy 2.1 as described in the July 1985 draft language manual [Good 85]. This
work proceeded in parallel with the evolution of Gypsy 2.1 from Gypsy 2.0, and some aspects of this
"moving target" may yet be evident in the manuscript. Some of the language changes incorporated in
Gypsy 2.1 were based on these efforts to clarify and formalize the semantics of Gypsy.

The static semantics or compile-time type consistency requirements of Gypsy are not discussed here, nor
are the semantics of Gypsy data structures. The type consistency rules are adequately explained in the
Gypsy 2.0 and Gypsy 2.1 language reports. Gypsy’s data structures are quite ordinary. They include
integers, rationals, arrays, and records, all of which are common in many programming languages, and
quite well understood. Gypsy also includes sets, sequences (indexed lists), and "mappings" (sets of
ordered pairs), which are not present in most programming languages. But these less common data types
are defined to behave as in common mathematical usage, and so they, too, are not of special interest here.

Proving Gypsy Programs February 9, 1989 8
Related Work

Chapter 2

RELATED WORK

2.1 Specification & Verification Techniques

There are several different aspects of "program correctness."

• Partial correctness deals with proving properties of the results of programs. The results are
guaranteed to satisfy the properties if the program terminates and produces any results.

• Proof of termination addresses the question of whether a given program will terminate. Of
course, we know that proof of termination is not possible for all programs, since this is
precisely the Halting Problem [Hopcroft & Ullman 69].

• Total correctness is the combination of partial correctness plus a proof of termination.

• Safety properties are the analog of partial correctness in the world of concurrent programs.
These deal with properties of partial results of running programs.

• Liveness properties and the absence of deadlock are the analogs of termination in the world
of concurrent programs. These deal with the progress of a concurrent computation and its
ultimate production of some result or action.

Many techniques have been proposed for specifying and proving partial correctness of programs (e.g.,
state machines, algebraic axioms, program assertions for specifications, and inductive assertions,
structural induction, computational induction for proofs). The classic technique for proving partial
correctness properties of sequential, procedural code is the Floyd-Hoare inductive assertion
method [Floyd 67, Hoare 69]. This forms the basis for Gypsy verification, as it does for much of the
practical verification work being done.

There are several introductions to the area of formal program verification, including [Manna 74, Hantler
76, Anderson 79, Boyer&Moore 81a]. [Berg 82] is particularly encyclopedic in its coverage of
specification and verification techniques. Many progressive introductory programming texts, such as
[Wirth 73], introduce the notions of formal specification and proof along with the more traditional
notions of algorithmic programming. Some perspectives on program verification can be obtained by
reading [London 75, Gries 78]. [Gordon 79] provides a very nice introduction to denotational semantics,
and [Pagan 81] and [Tennent 81] provide a general introduction to programming language semantics.

Proving Gypsy Programs February 9, 1989 9
Related Work

2.2 Verification Systems

Interest in the formal correctness of programs dates from the 1960’s [McCarthy 63, Floyd 67, Dijkstra
68, Hoare 69]. Elspas et al. suggested that mechanical theorem provers were required to make program
verification practical as early as 1972 [Elspas 72]. Yet Lipton et al. seem to have misunderstood the
importance of mechanical proof checkers in 1979 [De Millo 79].

King [King 69] was the first to implement a mechanical program verifier based on Floyd’s work. His
verifier used backward substitution to generate VCs for a simple Algol-like language manipulating
integers.

The Stanford Pascal Verifier [von Henke 75, Luckham 79] is perhaps best known for Wolfgang Polak’s
proof of a Pascal compiler [Polak 80]. However, the user must supply the theorem prover with a large
number of axioms in order to complete the proofs, and it is extremely difficult for humans to construct
large sets of axioms without introducing a contradiction.

AFFIRM [Gerhart 80, Thompson 81, Erickson 81] started as a verifier for abstract data types based on the
Knuth-Bendix algorithm [Knuth 69] for testing the completeness of a system of rewrite rules. The system
was extended to support VC generation for Pascal-like programs, although the proofs about abstract data
types (including inductive proofs) remains AFFIRM’s strength.

The Hierarchical Development Methodology (HDM) was developed at Stanford Research Institute, later
SRI International [Robinson 75, Robinson 77, Robinson 79, Silverberg 79, Levitt 79]. It centered around
the program specification language SPECIAL [Roubine 77], which uses a state machine model to describe
changes to a global machine state (i.e., global variables), based on the work of David Parnas [Parnas
72a, Parnas 72b]. The user then proves properties of the initial machine state and invariants about
reachable states. Lower level machines may be defined, and mappings between the higher level and lower
level machines may be shown to preserve the verified properties of the higher level machine. Ultimately,
the state machine specification is used as a specification for a program written in a standard programming
language. HDM adherents claim that this "programming language independence" is an advantage.
However, HDM only proves properties of a non-procedural program specification, which must then be
interpreted by a human programmer in order to produce an actual program. Thus, the relevance of the
specification proof to the actual program depends on the integrity of the human programmer.

A new version of HDM is under development [Crow 85a]. Revised SPECIAL is based on Hoare-axioms
[Crow 85b], and the new HDM system accepts statements about fragments of Pascal programs using
Hoare’s notation. Larger program fragments can then be built from smaller ones by the rule of
composition, until full Pascal programs have been constructed.

Ina Jo [Locasso 80] is the specification language component of the Formal Development Methodology
developed at Systems Development Corporation. Ina Jo is another state-machine oriented program
specification language. It is mated with a low-level interactive theorem prover called ITP [Schorre 84].
As with HDM, this system only proves properties of non-procedural state-machine program
specifications. An attempt is being made to extend Ina Jo to support specification of concurrent programs
using temporal logic [Nixon 85].

Starting in the early 1970’s, Boyer and Moore built one of the most impressive mechanical theorem
provers in existence [Boyer&Moore 75, Boyer&Moore 79]. They use structural induction to prove
properties of pure LISP programs, using LISP as the specification language as well as the "programming
language." They implemented a VC generator for a large subset of FORTRAN in order to produce more

Proving Gypsy Programs February 9, 1989 10
Related Work

theorems for their prover to prove [Boyer&Moore 81b].

The Gypsy Verification Environment has evolved over a period of ten years. It’s predecessor, jointly
developed by USC Information Sciences Institute and The University of Texas, is described in [Good 75].
Various aspects of the GVE are described in [Moriconi 77, Hare 79, Smith 80, Akers 83]. Some of the
notable successes of the Gypsy effort are described in [DiVito 81, DiVito 82, Good 82, Siebert 84, Good
84].

2.3 Proof of Concurrent Programs

Owicki and Gries [Owicki 75, Owicki 76] handle concurrent programs with globally shared variables.
The only constraint is that the underlying machine provide the uninterruptable memory operations read-a-
word and write-a-word. Their method first proves properties of the individual, sequential procedures, and
then shows that there is no "interference" between the operation of the concurrent procedures and the
assumptions of the individual proofs. Thus, the sequential proofs remain valid for the concurrent
program. While this is a very powerful technique, the non-interference proofs can grow very large.

Apt et al. [Apt 80] developed an axiomatic proof technique for Hoare’s CSP. They deal with both safety
properties and freedom from deadlock. This requires proving "cooperation" of the component, sequential
proofs, which corresponds to global reasoning about the cooperating processes, in addition to the
sequential proofs. The proofs of cooperation can grow as O (n2) in the length of the program, as is the
case with Owicki and Gries.

Levin has also developed an axiomatic proof technique for CSP [Levin 81]. He uses shared auxiliary
variables, rather than global invariants as Apt et al. Thus, in constructing the proof of a program from
those of its sequential processes, he must prove both a "satisfaction" proof, that all possible message
exchanges justify the post-condition following a send or receive, and a non-interference proof (similar to
Owicki and Gries). He views communication between processes as a means to an end, rather than as the
purpose of the computation. Thus, it is natural to use auxiliary variables to reflect as much or as little of
the communication history as needed.

Monitors [Hoare 74] provide a mechanism for structuring control of and access to shared objects. Proof
methods for monitors were introduced [Howard 76] as Gypsy 1.0 was being designed. Indeed, monitors
were originally envisioned as the concurrency mechanism to be included in Gypsy. However, the
examples that were driving the initial concurrent verification work at that time were mainly
communication and networking problems, and early examples of Gypsy programs tended to use monitors
to build bounded buffers. This observation led to the adoption of message buffers as a simpler, more
constrained concurrency mechanism, and ultimately led to simpler proof methods.

2.4 Exception Handling

The Gypsy mechanisms for handling exception conditions is based on the work of
Goodenough [Goodenough 75]. A significant extension added in Gypsy is the mapping of condition
names at routine boundaries, in order to preserve the independence principle.

A condition signalled in a routine is propagated into the calling environment as ROUTINEERROR if the

Proving Gypsy Programs February 9, 1989 11
Related Work

condition signalled is neither handled within the routine nor is it a condition parameter of the routine.3

Propagating the original condition unchanged would leave unconstrained the possible exception
conditions that could arise at a call site, depending on all of the routines in the possible call-tree below
that point. There would be no way to analyze the possible control paths due to exceptions without global
knowledge of all of the routines involved. Mapping the condition names at routine boundaries allows
analysis to be done based only on the local procedure and the external specifications of called routines.
Luckham’s work on exception handling in Ada has used the Gypsy EXIT CASE style of specification
in Anna. [Luckham 80]

Optimizing compilers prove theorems about programs in order to justify that optimizing transformations
do not alter the semantics of a program. Typically, either the optimizers simply fail to do the proofs, or
apply optimizations for which the proofs can be done very simply (perhaps due to the language design).
McHugh used clean termination proofs of Gypsy statements to support optimization of Gypsy
programs [McHugh 83]. Typical optimizations involving code motion and the suppression of run-time
tests preserve program semantics only in the absence of run-time errors. By using a description of the
run-time environment, McHugh was able to prove the absence of certain run-time errors, and hence apply
program optimizations safely.

Several attempts have been made to extend algebraic specifications to describe operations that may
encounter run-time error conditions. The notion of an extended algebra including error terms and
undefined terms is discussed in [Majster 79] and [Musser 77].

Euclid [Lampson 77]was initially designed at the same time as Gypsy, but was intended more to support
practical programming efforts than program verification research. Still, verifiability was an important
goal of the Euclid work. Following the style of the axiomatic definition of Pascal done by Hoare and
Wirth [Hoare 73], proof rules were developed for Euclid [London 78], and a verifier for a close
descendent of Euclid [Crowe 82] is currently under construction [Bonyun 82, Craigen 84]. Euclid took an
interesting approach to exception handling. No legal Euclid program can signal an exception. In order to
be a legal Euclid program, various "legality assertions" must be proven, showing that run-time errors will
not occur. Thus, one cannot determine whether a program is a legal Euclid program without doing the
proofs! Early work on proving absense of run-time errors was done by Richard Sites [Sites 74]. Sites
developed techniques for proving clean termination of flow-graph programs. Later, Steve German
worked on proving absence of run-time errors in Pascal programs [German 81]. German produced a
working implementation based on his formalism.

2.5 Key Results of the Gypsy Project

The Gypsy Project has addressed the breadth of program verification from language design and formal
semantics, to mechanical tools for supporting proofs about real programs, to compilers for the language.
Here are some of the key results of these efforts.

• Integration of specifications & program into a single language.

• Use of message buffers as concurrency mechanism, and first proof methods for buffers. The
simple structure of concurrent programs has allowed proofs of significant, real-world,
distributed programs -- verified Gypsy programs have actually run on distributed hardware!

3The one exception to this rule is that SPACEERROR propagates unchanged. This is because SPACEERROR represents violation
of an implementation defined constraint on computing resources, a resource limit not directly under the control of the invoked
routine.

Proving Gypsy Programs February 9, 1989 12
Related Work

• The Independence Principle -- an enforcement of modularity in program code,
specifications, and proof -- allows incremental program development (top-down, or bottom-
up) with manageable consequences to the verification.

• Incremental development manager

• manages ripple effects of changes during program development and verification,

• only invalidates proofs that use changed elements of the program,

• provides a verification environment that integrates program development,
specification, and verification, along with editing and compilation.

• Interactive theorem prover to decouple automatic proving technology from practice of
verification. The prover helps in discovering proofs (the hard part, the intellectual
challenge), but should not stand in the way of the user completing the rest of the verification
if a single formula cannot be proven.

• Forward VC generation & natural deduction prover help the programmer/verifier maintain
context during development.4

4 [Good 70] is one of the first descriptions of "forward accumulation" in VC generation, although this was not the major reason for
choosing forward VC generation for the GVE.

Proving Gypsy Programs February 9, 1989 13
Some Remarks about Gypsy Programs

Chapter 3

SOME REMARKS ABOUT GYPSY PROGRAMS

3.1 Why the Semantics of Gypsy are Easier than Many Other Languages

3.1.1 Parameter Passing Mechanisms

Gypsy outlaws the uses of variables that commonly cause problems in programming and are awkward in
semantic definitions. The following common programming language sore spots are illegal:

• dangerous aliasing (overlapping parameter references to VAR parameters)

• general shared variables (shared between concurrent processes)

• undetermined values resulting from routines that exit abnormally (e.g., after a run-time
arithmetic error).

In Gypsy programs the call-by-value-result and call-by-reference mechanisms for passing data parameters
are equivalent.5 Banning dangerous aliasing for data parameters and returning well-defined values when
routines terminate abnormally eliminate the circumstances in which these parameter passing mechanisms
are distinguishable for data parameters.6 Buffer parameters represent a restricted case of shared variables,
and the no-aliasing rules are slightly relaxed. Thus, slightly more complexity is required to deal with
passing buffer parameters within a concurrent procedure call.

3.1.2 No Dangerous Aliasing

No dangerous aliasing is ever allowed within the argument list of a single procedure. This means there is
no need for explicit use of locations (see, for example, [Stoy 77], or [Tennent 81]) in the semantics of
Gypsy.

Locations are an elegant mechanism for modeling:

• explicit storage allocation and deallocation,

• call-by-reference parameter passing,

• aliasing in parameter passage, and

5This is not the case for buffer parameters.

6The Gypsy 2.0 condition VARERROR has been eliminated in Gypsy 2.1. Type consistency restrictions in Gypsy 2.1 assure that
the assignment to the formal parameters required by "call by value" can be performed properly if the actual data parameters yield
proper values.

Proving Gypsy Programs February 9, 1989 14
Some Remarks about Gypsy Programs

• dangling references.
Locations allow this by introducing a level of indirection in resolving all identifier references. This
mechanism is useful when we want to include a certain level of implementation details in the semantic
definition, or when the programming language in question requires this more cumbersome mechanism.
We choose not to use this mechanism, and Gypsy does not require it.

3.1.3 Simple Control Structures

Gypsy does not have a GO TO statement. Further, all control structures must always be exited "properly."
It is impossible for a statement to abort the execution of an encompassing control structure. (Signalling a
condition does not abort encompassing control structures -- the encompassing control structures may
handle the condition, or, in the case of routines, may map the condition name into some other condition
name.) Thus, evaluation of Gypsy programs follows the conventional stack model of expression
evaluation (augmented to handle conditions).

Consequently, there is no need to use the cumbersome (but fully general and powerful) mechanism of
continuations to describe Gypsy control structures. (See, for example, [Milne 76], or [Gordon 79].)
Simple function composition is sufficient. We do not need to introduce the explicit notions of an
interpreter and control stack. The basic notion of function evaluation is enough.

3.1.4 Procedure Calls

Since no non-local variable references exist within Gypsy procedures, procedures cannot refer to global
variables. Similarly, since no GO TO statements exist in Gypsy, no global labels can be referenced.
Further, there are no non-local exits from the procedure body during execution of a procedure call. In
addition, the signalling of error conditions involves the normal (proper) unwinding of the calling stack.
Thus, the proper "post-lude" of the procedure is always executed, and no "pre-mature block exit" is
possible.

3.1.5 Run-Time Error Conditions

Gypsy defines a mechanism for handling exception conditions that arise during execution of a program.
There is no exception handling defined for specifications, and the remainder of this section deals only
with executable functions. During execution, all routine invocations must either:

• terminate normally,

• terminate abnormally (i.e., signalling an exception condition), or

• fail to terminate.

In effect, all executable functions and procedures that terminate, either normally or abnormally, under all
circumstances, are total functions. There is no need to worry about clean termination of executable
functions. (Routines are defined to return an exception condition if they do terminate abnormally. Thus,
all routines return values composed of a condition name -- perhaps *NORMAL -- and the function result or
procedure output parameters. The execution-time notion which occurs in some programming languages,
of a function yielding an undefined result, does not occur in Gypsy. A function that terminates
abnormally simply yields a value with the condition name being something other than *NORMAL.)

Restrictions on the proper domain of a function can appear as "type restrictions" on the formal parameters,
or as predicates in the entry specification. Routine invocations need not terminate normally simply
because the actual parameters are type consistent with the formal parameter list, and the routine’s entry

Proving Gypsy Programs February 9, 1989 15
Some Remarks about Gypsy Programs

specification is satisfied. In fact, functions that never terminate normally are perfectly acceptable, as for
example,

function Never (x:integer) : boolean unless (cond C) =
begin
entry x in [1..10];

signal C;
end;

This function always terminates abnormally, signalling its condition parameter. This declaration denotes
a function that is defined over all integers if we acknowledge that functions return an ordered pair (a
condition and a normal value).7 In this case, Never would return the pair (C, FALSE), where C stands
for the function’s actual condition parameter, and FALSE is the default initial value for type boolean.

The only way that a sequential routine may fail to terminate and yield a value is to execute a non-
terminating LOOP statement, or invoke a routine that does not terminate. Gypsy SEND and RECEIVE
statements are modeled as procedure calls, so blocking for input or output also fits this model.

3.2 Data Abstraction

Data abstraction is merely an enforced programmer discipline and has no effect on dynamic semantics.
The discipline forces the programmer to avoid having Gypsy programs and proofs depend on the concrete
representation of data types.

In Gypsy, abstract data type declarations contain a list of routine names, identifying the routines inside
which the concrete data representation is visible. The visibility restrictions affect type checking and
accessing of the concrete representation in specifications and executable code. Within routines that have
concrete access to an abstract type, the abstract type is considered type equivalent to the concrete type.
Outside those routines, the two types are not considered equivalent.

Visibility restrictions affect the proof methods implemented in the Gypsy Verification Environment.
Thus, proof dependencies are restricted to reflect the dependencies permitted in routines. The proof of a
routine lacking concrete access to an abstract data type, just as the executable code of that routine, cannot
directly depend on the concrete structure of that data type.

Later in the discussion on generation of verification conditions, we see that function names are left
uninterpreted. Information about the behavior of the function is introduced when external specifications
of the routine are brought into the proof.

3.3 Duality of Function Definitions

7It would be totally undefined if we only considered the normal value portion of the result.

Proving Gypsy Programs February 9, 1989 16
Some Remarks about Gypsy Programs

3.3.1 Specification Functions and Executable Functions

Function declarations in Gypsy include the following aspects:

• executable code (i.e., input to the compiler to generate machine executable code),

• internal and external specifications (i.e., input intended for purposes of formally verifying
properties of the program)

• type specifications (which are used for both compilation and proof purposes).
Within this Gypsy function declaration there are actually two function definitions -- one executable, the
other a specification. These are distinct and separate (though related) function definitions. The main goal
of verification of Gypsy programs is to prove that the executable function conforms to the specification
function. That is, both yield the same value whenever both are well-defined. We say that the executable
function is a restriction of the specification function. For convenience, we consider a function to be a
restriction of itself.

The entry and exit specifications8 define a function (in a purely mathematical domain). Conjuncts in
function exit specifications can be divided into two classes: function definitions (i.e., conjuncts of the
form RESULT = ..., and similar forms), and everything else. Any conjunct appearing in a function
exit specification that is not a function definition can be written as a Gypsy lemma.9 Hence, we will
assume that exit specifications contain only function definitions.

The executable body of the function declaration defines the function that is to be evaluated when the
program runs.10 These two definitions are intended to be closely related to one another -- that is precisely
the role of the Gypsy proof methods.

It is a key concept in composing and verifying Gypsy programs that these two
function definitions are distinct, and that they serve very different roles within
the Gypsy proof methods.

Specification function refers to the function defined in the exit specification. Executable function refers
to the function defined in the executable body of the declaration.

3.3.2 Specification Functions and Specification Abstraction

Specification functions are the basic Gypsy mechanism for proof and specification abstraction.
Abstraction plays a parallel role in program implementation, specification, and proof. Just as procedural
abstraction is used to suppress implementation details in the executable program, the abstraction of the
specification function is used to suppress details of the implementation and specification in the proof of
the program. In both cases, the object is to build an implementation or proof structure that is modular; an
internal modification to one function should have only minor, local effects through the rest of the program
or proof. This property has been recognized as a key in program implementation (e.g., see the literature
on structured programming, top-down design, and step-wise refinement) and has been identified as a key
step toward practical program verification.

8The following remarks discuss only abstract specifications. These comments mostly apply to concrete specifications, except that
Gypsy lemmas can only refer to abstract properties.

9Actually, definitions could be written as lemmas, too, but the proof methods for proving that the executable function conforms to
the specification function is keyed to the exit specification.

10A particular Gypsy implementation may have constraints that cause its execution of a given Gypsy program to evaluate some
function that is a restriction of the function defined by the executable body. That is, the implemented executable function may signal
ROUTINEERROR or SPACEERROR under some circumstances under which the executable body would not.

Proving Gypsy Programs February 9, 1989 17
Some Remarks about Gypsy Programs

3.3.3 The Relation Between the Two Functions

In our proofs and specifications, we use the specification function defined by the function declaration in
place of the executable function. All Gypsy specifications (e.g., ASSERT statements, ENTRY and EXIT
specifications) use the function name to refer to the specification function. Thus, by requiring that the
executable function be a restriction of the specification function, properties proven using the specification
function will hold for the executable function when it terminates normally.

Specifications may describe program behavior on a set larger than the proper domain11 of the executable
function. If so, our proofs will include consideration of cases that do not correspond to any possible
program execution, as well as all the cases that do correspond to possible program executions. Thus, it is
important that the specification function be a suitable stand-in for our implementation in each reference.
To assure this, we must prove the following:

• that the executable function conforms to the specification function (i.e., the executable
function, which may be a partial function, is a restriction of the specification function),

• that the specification function is a well-defined function over some specified domain, and

• that in our specifications and proof each use of the specification function applies the
function to actual parameters in its proper domain.12

An additional property is desirable (in terms of keeping our specifications and proofs closely related to the
expected behavior of our program):

• that the executable function be well-defined (i.e., terminate normally) over some identified
domain.

This last property allows us to restrict use of the specification function to instances that correspond to
possible uses of the executable function. If we omit this restriction, then we are free to extend our
specification to describe extensions to program behavior (and hence prove theorems about behavior) that
cannot be realized by the executable program. Nothing is wrong with proving these possibly interesting
theorems, but it is desirable that the proof methods help us to understand when we have drifted from
proving things about our executable programs and proceed to prove properties of our specification
abstractions.

3.3.4 Domains of the Two Functions

The proper domain of a function refers to a set of values over which the function terminates normally and
returns a proper value (i.e., not bottom, the undefined element, and -- in the case of an executable function
-- not an abnormal condition).

The specification function definition given in the exit specification should probably be a total function.
For the time being we will relax this view, and only require that the specification function be well-defined
when the entry condition for the function declaration is satisfied. Thus, the proper domain for the
specification function is identified by the entry specification. The proper domain for the executable

11The proper domain of an executable function is the set of input parameter values for which the function terminates normally and
returns a proper value.

12The current GVE only proves these last two points for the Gypsy predefined functions, not for user defined functions. A future
enhancement of the GVE will remove this potential for constructing unsound proofs.

Proving Gypsy Programs February 9, 1989 18
Some Remarks about Gypsy Programs

function may be smaller than that of the specification function.13 In this case, the executable body will
signal an abnormal termination condition for some input values that satisfy the entry specification. Our
proof methods must assure that whenever the executable function terminates normally and yields a value,
the value is precisely that of the specification function definition. In other words, the executable function
must be a restriction of the specification function (i.e., they must agree wherever both are defined, and the
proper domain of the executable function must be a subset of the proper domain of the specification
function). Further, if we prove the proper domain of the executable function is a subset of the proper
domain of the exit specification, then we can assume the well-definedness of the exit specification in any
context corresponding to normal termination of the executable function.

3.4 Prescriptive versus Descriptive Specifications

We divide specifications of routines into two classes: prescriptive specifications and descriptive
specifications. A prescriptive specification lays down a rule, and dictates that certain actions must be
taken when computing the function. A descriptive specification expresses qualities or properties of the
function, serving to describe necessary conditions when certain actions are taken. This is a particularly
important distinction when defining functions that may terminate abnormally. Prescriptive specifications
require that the routine signal an exception condition when a certain precondition is met (or not met).
Descriptive specifications specify what the normal result of the computation should be (without regard to
the preconditions of any particular implementation of the computation), and describe conditions that hold
if an exception condition is signalled. Thus, the descriptive specifications permit an implementation to
compute a correct result whenever possible, specifying a predicate that holds when an exception condition
is signalled. A prescriptive specification gives a precondition that defines a set of values outside the
proper domain of the function; a descriptive specification gives a characterization of a superset of values
outside the domain of the function.

Below we define foo prescriptively, and bar descriptively.

{Prescriptive version: }

function foo (x:T) unless (cond abnormal_cond)
begin

entry prescriptive_predicate(x)
otherwise abnormal_cond;

exit foo(x) = alter_x(x);
result:=alter_x(x) unless (abnormal_cond);

end;

{Descriptive version: }

function bar (x:T) unless (cond abnormal_cond)
begin

entry true;
exit case (is normal: bar(x) = alter_x(x);

is abnormal_cond:
descriptive_predicate(x));

result:=alter_x(x) unless (abnormal_cond);
end;

function alter_x (x:T) unless (abnormal_cond) = pending;

13It can even be larger, but we are not interested in any input values not admitted by the entry specification, because they are
neither relevant to our proof, nor to the expected program behavior at execution time.

Proving Gypsy Programs February 9, 1989 19
Some Remarks about Gypsy Programs

Foo is not allowed to return a normal result outside the set characterized by
prescriptive_predicate, while BAR is not allowed to signal an exception condition outside the
set characterized by descriptive_predicate. Thus, in verifying BAR, we would have to establish
that descriptive_predicate holds whenever Alter_x terminates abnormally. This is obviously
required, since BAR terminates abnormally precisely when Alter_x does.14

3.5 Relation of Proofs to Real Implementations

All implementations of Gypsy implement only subsets of full Gypsy language; they are required to
compute restrictions of the functions defined or described by the formal meaning of the program (i.e.,
implemented functions can signal conditions more often than the formally-defined executable function,
but must always agree when both are well defined). In practice, implementations are likely to "punt" and
signal an abnormal condition when computations require arithmetic precision greater than the hardware
word size, or when a program requires more memory than is physically present. Such behavior is
permitted by this semantic definition, if the appropriate abnormal condition is signalled.

The mechanism for proving absence of run-time errors discussed in [McHugh 83] allows us to talk about
clean termination of a Gypsy program on real hardware, rather than only on an ideal Gypsy machine.

3.6 Nondeterminism in Gypsy

3.6.1 What is nondeterminism, and why do we have it?

A routine is nondeterministic if its result (or output) is not a well-defined mathematical function of its
input. A mathematical equality function is required to be symmetric, transitive, and reflexive. Since we
do not know that f(x) = f(x) when f is a nondeterministic function, we would have to restrict very
severely our use of equality, and much of our ability to apply normal mathematical theorem proving and
algebraic techniques. To avoid this, Gypsy specifications functions are constrained to be deterministic.15

Nondeterminism in programming languages can arise for several reasons.

• imprecise language definitions

• precise language definitions that intentionally leave open some implementation choices
(usually in the interest of efficiency or ease of implementation)

• languages intended for writing algorithms at a "high level" -- not allowing the programmer
to specify "low level" (and presumably unimportant) details of the program

• data abstraction (i.e., functions may appear deterministic at the abstract level, but not at the
concrete level. Consider a function that performs a table look up, and as a side effect
reorders the table to speed up future queries, preserving abstract equality on the table, but
not concrete equality.)

• concurrency (either due to nondeterministic parallel computations within a routine, or due to
interaction with external concurrent computation).

14Implementations can signal implementation error conditions, such as memory size limits, which can further restrict the actual
domain of a function. In this case, exception conditions, such as stack overflow, can arise at execution time, causing BAR to
terminate abnormally, even though Alter_x is normally defined for those arguments. See section 3.5, page 19.

15And the Gypsy verification system requires that specification functions be proven to be deterministic.

Proving Gypsy Programs February 9, 1989 20
Some Remarks about Gypsy Programs

3.6.2 Sources of Nondeterminism in Gypsy

Gypsy procedures are permitted to behave nondeterministically. The Gypsy 2.1 language has three
sources of nondeterministic behavior.16

a. Explicit Concurrency. The COBEGIN statement, which supports possible parallel execution
of program parts, does not specify any timing constraints on the order of events in different
arms of the COBEGIN. Three functions defined on buffers (FULL, EMPTY, and CONTENT)
can reveal properties of buffers as truly shared objects. Thus, these functions may behave
nondeterministically.

b. Nondeterministic Buffer Polling. The AWAIT statement allows a sequential Gypsy
procedure to wait until any one of several buffer operations can complete. For example, a
procedure could thus respond to input from any one of several input buffers, using the
AWAIT to suspend its execution until any one of the buffers became non-empty. This is
essentially a nondeterministic CASE statement in which the case arms are labeled with
buffer operations. The nondeterminism is at the statement level, and does not threaten the
determinacy of our expression language.

c. Data Abstraction. Procedures in which the concrete representation of an abstract data type is
visible can reveal information about that concrete representation. Thus, the procedures may
not behave deterministically from an abstract point of view. Functions with concrete access
to the data type are not permitted to violate the visibility rules of the abstract data type.17

3.6.2-A Apparently Nondeterministic Procedure Calls

Procedure invocation (as opposed to function invocation) need not appear deterministic. Thus, results are
permitted to depend on external events or scheduling decisions. Procedure results can differ by violating
data abstraction rules (e.g., a procedure can produce different results when called with two abstract objects
that appear to be equal at the abstract level).

3.6.2-B Resource Errors and Determinacy

Any routine invocation can terminate abnormally if for some reason the processor cannot complete the
computation properly. Abnormal termination is reflected in the calling environment by signalling a
condition. When a function invocation terminates abnormally, it does not yield a normal result value to be
used in further computations. Our requirement for determinacy is restricted to the function invocations
that yield normal values, since only these are in our specifications and proofs. Signalling an abnormal
condition is reflected in the procedural execution of a routine, and the process of generating verification
conditions maps this procedural behavior into the functional domain of verification conditions.

16Gypsy 2.0 had an additional source of nondeterminacy, expression evaluation. Within a Gypsy 2.0 expression, the language
specifies that arguments (or nested expressions) are evaluated before higher level (or containing) expressions. There are two degrees
of freedom in the order of evaluation:

i. of evaluation of actual parameters in a routine call, and

ii. of evaluation of arguments to an infix operator (e.g., "+").
(Actually, these are the same, as infix operators are merely syntactic abbreviations for function calls to predefined functions. Thus,
the arguments are actual parameters in a routine call.) The flexibility permitted the implementor is only in the choice of which of
several possible exception conditions to signal. If the expression yields a normal value, then all Gypsy implementations must
produce the same result. For this reason Gypsy 2.1 specifies the order of evaluation of expressions and function arguments.

17All concrete access functions must be shown to behave deterministically under substitution using abstract equality. That is, the
function must yield results that are equal under an appropriate equality function when it is applied to two sets of actual parameters
that satisfy the abstract equality function associated with the abstract data type. See Chapter 9 for more details.

Proving Gypsy Programs February 9, 1989 21
Some Remarks about Gypsy Programs

3.6.2-C Concurrent Routine Calls

The order of execution in a concurrent routine call (COBEGIN statement) is unspecified to allow the
parallel routines to operate asynchronously. Sometimes their execution order will be determined by
explicit external communication (i.e., outside the routine and its descendants); sometimes it will be
determined by implicit external communication (e.g., a clock-driven scheduler); sometimes it will be
determined by explicit internal communication between the concurrent routines. Often the system
behavior will be determined by some combination of these circumstances.

3.6.2-D Expression Evaluation

Expression evaluation always yields a well-defined value, or a well-defined exception condition. Actual
parameters in routine call statements are evaluated from left to right. If evaluation of one of the actual
parameters terminates abnormally, then that condition is propagated.

The normal result of a Gypsy function must be determined by the actual parameters of the function call.
The determinacy of the normal exit case may require proof that routine calls evaluated within the
evaluation of the function are themselves deterministic, and that uses of data abstraction are sound.
Abnormal termination conditions need not be deterministic, since abnormal termination can depend (for
example) on implementation resource constraints.

The language constraints on expression evaluation derive from the following two goals:

• assuring that program execution can be accurately modeled by the algebra of the proof
system,

and within that,

• allowing the implementor maximum flexibility.

In general, specifications of the predefined routines in Gypsy are of the form

If the routine exits normally, then the result is exactly

The language does not specify exactly when a routine will exit normally. Often the specification will not
even specify when a routine must not exit normally. The main and pervasive constraint is that if the
routine exits normally, then the result must be algebraically correct.

Further, every attempt is made in the language definition to be as machine independent as possible. Thus,
while implementation constraints (such as integer overflow) are acknowledged as possible exit conditions
for predefined routines (such as add), the circumstances under which these error conditions will be
signalled are defined in terms of function definitions supplied by the implementor. The language
definition is independent of what a particular implementation can properly evaluate. Any implementation
is a restriction of the full language. A completely degenerate implementation, which cannot properly
evaluate anything, might reduce all programs to signalling ROUTINEERROR. (That is, an implementor
can always punt on any feature. Of course, most implementations attempt to support at least some useful
programs.)

The language definition, particularly with the constraints on order of evaluation, requires the
implementation to signal an appropriate error condition at a relatively well-defined time. The time at
which the condition must be signalled is constrained by the order of observable side effects. Normally,
this would mean that the signal must occur during expression evaluation, before the next side effect is
performed. (In fact, the requirement is that the program state be consistent with the statically observable

Proving Gypsy Programs February 9, 1989 22
Some Remarks about Gypsy Programs

state from the original program, given the point of the signal. The implementor is free to evaluate pieces
of the program in arbitrary order, only if the observable program state, order of observable side effects,
and routine results are correct. The implementor is quite free to let incorrect computations proceed, only
if the program state is rolled back appropriately before the error handler is entered.)

Evaluation of actual parameters includes three checks:

1. Actual parameters are handled in left-to-right order, each parameter being evaluated and
then value checked to assure that it is an element in the value space of the formal parameter
type.

2. If evaluation of any of the actual parameters does not yield a value, but terminates
abnormally, then the exception condition signalled by the left-most parameter that failed to
yield a value is signalled.

3. After all actual values have been determined to be proper, then all parameters are checked
for aliasing, and aliaserror is signalled if any potentially dangerous aliasing is
detected.18

We can model this by using explicit temporaries for function parameters (i.e., parameter evaluation
becomes an assignment to a temporary, and then only simple variables are passed as parameters).19

3.6.3 An Aside on Optimization

In some sense these constraints on expression evaluation severely hamper attempts to optimize Gypsy
programs. Gypsy statements such as

N := (1 + LargestRepresentableInteger) -
LargestRepresentableInteger

appear to be required to signal ADDERROR. This follows because the subexpression

1 + LargestRepresentableInteger

cannot be evaluated, and so must signal an error condition, even though the value of the containing
expression can easily be computed by an implementation with an intelligent optimizer.

The requirement that the expression

1 + LargestRepresentableInteger

must signal ADDERROR arises because the definition of the predefined routine ADD cannot examine the
context of the routine call. Its behavior must be completely specified by its actual parameters. However,
the optimizer can notice that the original expression

(1 + LargestRepresentableInteger) -
LargestRepresentableInteger

is equivalent to

1 + (LargestRepresentableInteger -
LargestRepresentableInteger),

18See Sections 5.2 and 5.3.1 for more discussion of aliasing restrictions.

19Evaluating all the actual parameters before checking for dangerous aliasing simplifies the modeling of parameter passing in
routine calls.

Proving Gypsy Programs February 9, 1989 23
Some Remarks about Gypsy Programs

which is algebraically equal to 1. This optimization is really a program transformation. The original
program is transformed into a new, algebraically equivalent program. One difference between the
programs is that some computations have been eliminated. It happens that one of the computations
eliminated could not have been properly completed by the implementation, and thus the required
signalling of an exception condition is eliminated. The semantics of the optimized program are precisely
the same as those of the original program on an ideal Gypsy machine.20

Accordingly, we see that simple optimizing transformations cannot be applied without regard to possible
error conditions. This suggests the following two possible courses for implementation of Gypsy
optimizers:

• verify that no error signals are introduced or eliminated by optimizing transformations, or

• perform the optimizations at the Gypsy source program level, and allow the user to verify
the new program against user specifications. (This course requires care, as user
specifications in Gypsy programs are usually incomplete, and so simply preserving
conformance with formal specifications is not sufficient.)

John McHugh’s dissertation [McHugh 83] discusses this and related issues in verification driven program
optimization.

3.6.4 Dealing with Nondeterminism in the Language Definition

In order to make execution of function calls deterministic, we will define the order of evaluation of actual
parameters. Functions with concrete access to an abstract data type are forbidden to introduce
nondeterminacy by revealing the underlying data representation.

We will deal with the nondeterminism in procedures introduced by concurrency through the abstraction
mechanism introduced in chapters 7 and 8.

In order for proofs to be valid, functions are required to be deterministic. Determinacy follows almost
directly from easy syntactic checks, though some proof obligation may be imposed. To demonstrate
determinacy of a function definition, it is sufficient to show that:

• All called routines are deterministic21, and

• The function neither invokes concurrent routine calls (via COBEGIN) nor awaits buffer
operations (via AWAIT).

Functions cannot communicate with external processes through shared buffers. Functions do not accept
VAR parameters, and so cannot communicate with external concurrent processes through shared buffers.22

Determinacy of functions should be checked by the Gypsy Verification Environment, as part of the
general process of proving properties of Gypsy programs.

20An ideal Gypsy machine is one in which there are no size or space restrictions. Arbitrarily large integers, sequences, sets, and
mappings can be represented. SPACEERROR never occurs, nor do any of the exceptions from predefined functions that are based on
finite precision arithmetic.

21The Gypsy 2.1 manual describes the language in terms of predefined procedures. This definition uses an equivalent paradigm
that reduces the language to function calls plus assignment. Basic operations that the Gypsy 2.1 manual describes as predefined
procedures are modeled as function calls plus assignment here. Thus, there are no procedures that need to be used in defining the
semantics of a user defined function.

22The functions FULL, EMPTY, and CONTENT behave deterministically in the absence of concurrency and shared buffers.

Proving Gypsy Programs February 9, 1989 24
Normalizing Gypsy Programs

Chapter 4

NORMALIZING GYPSY PROGRAMS

To simplify specifying the semantics of our programs, we will reduce certain Gypsy constructs to simpler
forms. This allows us to define the semantics of a smaller language, and use these reductions to extend
the definition to the larger language. These reductions come about in two places: mapping the full
language onto a base language subset, and then "normalizing" the resulting program.

4.1 New Statement Forms

In order to reflect the various interactions between the procedural, executable portion of Gypsy and the
proof mechanism, we introduce three new statement forms.

• ASSUME <BOOLEAN EXP>: denotes that <BOOLEAN EXP> should be assumed to hold at
that point in the routine.

• PROVE <BOOLEAN EXP>: denotes that <BOOLEAN EXP> must be proven to hold at that
point in the routine.

• BREAKPATH: indicates locations at which user-supplied assertions were placed. During VC
generation these locations will be used to decompose the routine body into linear code
segments.

These three statements can be understood by looking at the expansion of the normal Gypsy ASSERT
statement. The statement

ASSERT prove Q

becomes

PROVE Q;
BREAKPATH;
ASSUME Q.

Here the three uses of the ASSERT are made explicit. It requires that Q be proven at that location, that
this location is used to break the control paths into finite linear program segments, and that Q is to be
assumed at the beginning of the next linear segment. The simpler case is the statement:

ASSERT (ASSUME p);

which becomes the canonical form:

ASSUME p;

The path is not broken, and no proof is required.

Proving Gypsy Programs February 9, 1989 25
Normalizing Gypsy Programs

The ASSERT statements can also be expanded to include the statement that the routine’s CONST
parameters have not changed, and that they are equal to their initial values within the routine. In Gypsy
the initial value of a formal parameter X is denoted by X’. Thus, X = X’ holds for all formal data
parameters at the beginning of a routine, and continues to hold for all CONST parameters throughout the
routine. This automatic extension of the assertion relieves the programmer from having to repeat this
statement again and again.

We also introduce one new statement form to subsume the place of <STATEMENT LIST> in the syntax. The
statement form

PROG2 Statement1; Statement2 END

is a compound statement limited to exactly two statements. This is analogous to the function PROG2 in
LISP 1.5 [McCarthy 65]. PROG2...END is used to replace compound statements purely as a syntactic
simplification, so that our rules have a fixed number of arguments.

4.2 Extended Body of a Routine

Portions of a Gypsy routine that are relevant to VC generation are sometimes elided, abbreviated, or
placed "inconveniently" for describing VC generation in simple syntactic terms. For example, the EXIT
specification is included as part of the routine header (along with the other externally visible
specifications), rather than at the end of the executable body, where it might be thought to belong
"logically." The extended body of a routine is an extension of the basic routine body (i.e., it’s executable
code body) formed by explicitly including the additional information from its external and internal
specifications.23 The following are the operations performed to construct the extended body of a routine:

1. The KEEP specification, an invariant for local routine variables and parameters, is placed
before the beginning of the routine body as an explicit PROVE, and after every "relevant"
statement in the routine body. A statement is "relevant" to the KEEP if it changes the value
of a variable mentioned in the KEEP assertion.

2. Local variable initialization is moved from implicit assignments in local declarations to
become explicit assignments at the beginning of the executable code body.24

3. The ENTRY specification is moved to the beginning of the extended body, and becomes an
ASSUME.25

4. The EXIT specification is moved to the end of the extended body, and becomes a PROVE or
ASSUME statement as appropriate. If the EXIT specification includes specification of
possible abnormal exits, then the EXIT expansion wraps condition handlers around the
routine body, with a condition handler for each condition mentioned in the EXIT
specification explicitly containing the appropriate assertion from the EXIT.

An example makes this transformation clearer. The body of the procedure

23The notion of an extended routine body is also used to simplify program analysis in the Gypsy Optimizer [McHugh 83].

24The order of the declarations must be preserved in the order of the explicit assignments, so that any run-time exceptions would
be signalled in the same way.

25In-line insertion of the concrete external specifications (the CENTRY and CEXIT) and concrete data invariants (the HOLD
specification) is also performed similarly. For details of how data abstraction interacts with proofs, see chapter 9.

Proving Gypsy Programs February 9, 1989 26
Normalizing Gypsy Programs

procedure P (var X:T1; const Y:T2) =
begin
entry P_Entry(X, Y);
exit P_Exit(X, Y);

var I:T3 := initial_I;
keep P_keep(x,y,i)

routine_body(x,y,i);
end;

expands into

X := X’; {Initially these two identifiers denote}
Y := Y’; { the same values }
ASSUME P_Entry(X, Y);

I := initial_I; {Assign initial values to local variables}
PROVE P_keep(X,Y,I); {Prove KEEP assertion for initial values }
ASSUME P_keep(X,Y,I);

routine_body(X,Y,I);

PROVE P_keep(X,Y,I); {if any of X, Y, or I was changed by }
ASSUME P_keep(X,Y,I); { routine_body }

PROVE P_Exit(X,Y);
BREAKPATH

If the EXIT specification is a CASE construct, then each arm of the EXIT specification is embedded in
one arm of a condition handler surrounding the entire body of the routine. Each arm of the condition
handler must also resignal the condition if it is to propagate into the calling environment. For example,
the EXIT specification of

procedure P (var X:T1; const Y:T2) unless (cond C1, C2) =
begin
entry P_Entry(X, Y);
exit CASE (IS c1: Q1(X, Y);

IS c2: Q2(X, Y);
IS NORMAL: Q3(X, Y));

...
end;

would result in an extended body of the form:

begin
...

when is c1: PROVE Q1(X, Y); signal c1;
is c2: PROVE Q2(X, Y); signal c2;
is NORMAL: PROVE Q3(X, Y);
is SPACEERROR: signal SPACEERROR;
else signal ROUTINEERROR;

end;

The else clause at the end of the when shows that any condition signalled within the routine body other
than c1, c2 (the routine’s condition parameters), or the predefined condition SPACEERROR will be
propagated as the condition ROUTINEERROR in the calling environment.

Proving Gypsy Programs February 9, 1989 27
Normalizing Gypsy Programs

4.3 Reductions to the Base Language

A number of surface level syntactic constructs disappear in the normalized representation of Gypsy
programs. These reductions generally deal with optional parts of a construct, or with abbreviated forms
permitted in the program.

4.3.1 Index Simplification

Component selectors of the form (i, j, ...) are an abbreviation for the component selectors (i) (j)
.... Any of the index selectors in this expansion may be a subsequence selector (i.e., a range rather than
simply an expression). For example, A[i,j] expands into A[i][j].

4.3.2 CASE Statement

CASE statements are reduced to an IF...THEN...ELIF structure. A case statement of the form

CASE exp
IS case1: stmt1
IS case2: stmt2

...
IS casen: stmtn
ELSE stmtx

END

expands into

IF exp = case1 THEN stmt1
ELIF exp = case2 THEN stmt2

...
ELIF exp = casen THEN stmtn
ELSE stmtx
END

4.3.3 ELIF Statement

This syntactic form disappears from the base language. IF statements containing ELIF’s are all reduced
to nested IF...THEN...ELSE...END forms. A IF statement of the form

IF bool1 THEN stmt1
ELIF bool2 THEN stmt2

...
ELIF booln THEN stmtn
ELSE stmtx
END

expands into

Proving Gypsy Programs February 9, 1989 28
Normalizing Gypsy Programs

IF bool1
THEN stmt1
ELSE IF bool2

THEN stmt2
ELSE ...

...IF booln
THEN stmtn
ELSE stmtx

END
...

END
END

4.3.4 ASSERT

In order to separate the proof-time assertions from constructs with execution-time effects, we expand
Gypsy ASSERT statements into distinct proof-time assertions, and execution-time control statements.

The statement

ASSERT P otherwise C

is taken as an abbreviation for

ASSERT P;
if not P then signal C end.

Run-time validation can always be expressed by the if ... then signal ... construct. This
applies to validated routine entry specifications in the extended routine body, as well.

Run-time validation of assertions to be proven is also possible. Note that this amounts to run-time
validation of the proof, or the assumptions of the proof. Such a run-time check can fail if the basis of the
proof (e.g., a properly functioning Gypsy machine) is contradicted by the physical hardware.

Having dealt with run-time validation, we can now perform the canonicalization of ASSERT as described
in Section 4.1.

4.3.5 Alteration Clauses

Alteration clauses are an expression notation for describing piecewise modifications to the value of a
structured object. The notation is simply a different syntactic representation of calls to overloaded
predefined Gypsy functions. Some of these functions are defined generically, others, specifically for array
and record alterations, are defined as a consequent to definition of a new array or record type.26

The following transformations illustrate the mapping of alteration clause syntax into alteration function
calls. Those functions which are consequentially defined contain a "*t*" in their names, that notation
being a placeholder for the name of the type from which they were derived.

The form for modifying an existing element of a sequence or mapping,

26In the case of the array, the consequent function does array bounds checking, based on information about the index type wired
into its defintion. For record alterations, there is one function defined for modifying each record field; the function has the name of
the field wired into its definition.

Proving Gypsy Programs February 9, 1989 29
Normalizing Gypsy Programs

x WITH ((y) := z)

is a representation of

gypsy_alter_element# (x, y, z)

The form for modifying an array element,

x WITH ((y) := z)

is a representation of

gypsy_alter_*t*_element# (x, y, z)

There is one such function for each field of a record type, so that

r WITH (.f := x)

is a representation of

gypsy_alter_*t*_record_field_f# (r, x)

The mapping alteration

x WITH (INTO (y) := z)

is a representation of

gypsy_alter_into_mapping_element# (x, y, z)

The sequence insertion alteration

x WITH (BEFORE (y) := z)

is a representation of

gypsy_alter_before_seq_element# (x, y, z)

Similarly,

x WITH (BEHIND (y) := z)

is a representation of

gypsy_alter_behind# (x, y, z)

Sequence element deletion

x WITH (SEQOMIT (y) := z)

is a representation of

gypsy_alter_seqomit# (x, y, z)

Similarly for mappings,

x WITH (MAPOMIT (y) := z)

is a representation of

gypsy_alter_mapomit# (x, y, z)

Proving Gypsy Programs February 9, 1989 30
Normalizing Gypsy Programs

4.3.6 Assignment to Elements of Structures

Assignments to elements of arrays, sequences, records, and mappings are abbreviations for assignments of
new values to the entire structure. These new values are described by Gypsy alteration clauses. For
example, the Gypsy statements

A[i] := x; {array}
R.F := y; {record}
S[i] := z; {sequence}
M[x] := y; {mapping}

are abbreviations for the statements

A := A with ([i] := x);
R := R with (.F := y);
S := S with ([i] := z);
M := M with ([x] := y);

Multiple component selectors on the left-hand side of the assignment are treated recursively from right-to-
left. That is, the name expressions A, R, S, and M above may contain further component selectors, in
which case the expansions are applied repeatedly until the left-hand side of the assignment is simply an
identifier. Sequence assignment statements using before and behind translate directly to alteration
clause form (see 4.3.7 below).

4.3.7 Before and Behind

The before and behind keywords are syntactic constructs denoting assignments that insert elements
into sequences. They can be completely eliminated without loss of power. Before and behind appear
in several places in the grammar, and are eliminated in similar ways in each place.

An assignment statement of the form

new v before X[s1, ... ,sN]

is an abbreviation for

X := X with (before [s1, ... ,sN] := v)

(See [Good 85, section 9.3].)

Alteration clauses of the form

S with (before [i] := v)
S with (behind [j] := v)

are abbreviations for

S[1..i-1] @ [seq: v] @ S[i..size(S)]
S[1..j] @ [seq: v] @ S[j+1..size(S)]

Recall that S[1..0] and S[size(S)+1..size(S)] both denote empty sequences. Thus, these
expansions for before and behind work properly when inserting before the first element of a
sequence, or after the last element of a sequence.

Proving Gypsy Programs February 9, 1989 31
Normalizing Gypsy Programs

4.3.8 Compact Alteration Clauses

Several forms of alteration clauses are defined in Gypsy as abbreviations for less compact alteration
clauses.

Two examples of such compacted forms are

X with ([i,j,k] := a)

X with ([i]:= a; [j]:= b)

which expand to

X with ([i] :=
X[i] with ([j] :=

X[i,j] with ([k] := a)))

(X with ([i]:=a)) with ([j] := b)

respectively.

Applying the syntactic transformation of alteration clauses to function calls to the second example, we
have:

gypsy_alter_element# (gypsy_alter_element# (x, i, a), j, b)

4.3.9 EACH Clauses in Alterations

Alternation clauses may contain EACH clauses. This allows a succinct description of a large number of
regular changes to a structured object. For example, in the context of these declarations

type array_index = integer (0..4);
type my_array = array (array_index) of integer;
function F (n : integer) : integer = pending;

and a variable A declared to be of type my_array, the alteration clause

A with (each i:array_index, [i]:=F(i))

represents an array in which every element i is equal to F(i). This form is an abbreviation for a
sequence of alterations to each of the indexed elements. In this case, the expansion would be

A with ([0]:=F(0); [1]:=F(1); [2]:=F(2); [3]:=F(3); [4]:=F(4))

The bound identifier i in the each clause takes on successive values of the specified index type, which
must be a bounded simple type, from the smallest to the largest. Since the number of elements modified
in the structure must be finite, and the order is specified, we can expand the abbreviated alteration clause
into a finite number of simple alterations (without an each clause).

4.3.10 Global Constants

For proof purposes, global constant definitions can be reduced to parameterless functions. The constant
declaration

const number_of_nodes:integer := 5

behaves just as the function declaration

Proving Gypsy Programs February 9, 1989 32
Normalizing Gypsy Programs

function number_of_notes : integer =
begin
exit result = 5;

result := 5;
end.

Note that the value of the constant must be of the declared type.27

4.3.11 Unwinding Nested Function Calls in Executable Code

Whenever function calls appear in a statement, the function call is explicitly replaced with a new
temporary variable, and the statement is preceded by an explicit assignment of the value of the function
call to that new variable. This procedure should be performed from right-to-left within the statement, so
that the left-to-right order of parameter evaluation is reflected in the order of the computation of the
temporary variables. Repeating this treatment on the generated assignment statements unwinds nested
function calls in the proper order. This recursive treatment is terminated when all nested function calls
have been removed, and all function calls appear only on the right-hand side of assignment statements.

IF expressions occurring within the right-hand side should be treated as function calls, until unwinding
yields an assignment statement with the IF expression as the top level of the right-hand side. Then the
reduction for IF expressions (below) is applied.

Finally, we will be left with assignment statements of the form

• X := Y, or

• X := F(Y, Z, ...).
On the left-hand side, X stands for any identifier. On the right-hand side, Y and Z stand for identifiers, and
F stands for any function name. Thus, the left-hand side of the assignment is always a simple variable
name without any component selectors, and the expression on the right-hand side contains at most one
reference to a function name.

If the right-hand side of a reduced assignment statement is of the form

X := F(Y, Z, ...)

then we add the statement

PROVE F_Entry(Y, Z, ...)

before the assignment statement, where F_Entry(Y, Z, ...) represents the entry specification of F
applied to the actual parameters in the function call.

4.3.12 IF expressions

An IF expression on the right-hand side of an assignment statement can be converted to an IF statement
with the two branches being assignment statements each with one of the alternative values. Thus,

X := if B then C else D fi

can be rewritten as

27A constant for an abstract type must be given an abstract value of that type, not a concrete value. Hence it is proper to use the
exit specification above, rather than cexit. See chapter 9 for details on data abstraction.

Proving Gypsy Programs February 9, 1989 33
Normalizing Gypsy Programs

if B then X := C
else X := D

end

4.3.13 NEW Statement

The NEW statement is a form of assignment that can create a new element of a dynamic object (i.e., a
sequence, set, or mapping). It is normalized to an equivalent assignment statement using an alteration
clause to describe the new dynamic object. The normalizations are:

NEW Y INTO M[X] {mappings} ==> M := M with (into [X] := Y)
NEW X INTO SET S {sets} ==> S := S union (set: X)
NEW X BEFORE S[I] {sequences} ==> S := S with (before [I] := X)
NEW X BEHIND S[I] {sequences} ==> S := S with (behind [I] := X)

4.3.14 GIVE Statement

The GIVE statement is simply a syntactic abbreviation for a SEND statement followed by a REMOVE
statement. The expansion is illustrated by

give S[i] to B;

becoming

send S[i] to B;
remove S[i]

This syntactic form is provided so that Gypsy compilers can easily recognize this form and produce
optimized code.

4.3.15 REMOVE Statement

The REMOVE statement allows removal of an element from a dynamic structure. This effect is
accomplished in normalized form by an explicit assignment of an alteration expression. For example, if S
is a sequence, then the Gypsy statement

remove S[i]

becomes

S := S with (seqomit [i]).

This reduction is also done for removal of elements from sets and mappings using appropriate alteration
clauses for the different types of structures.

4.3.16 LEAVE Statement

LEAVE statements are replaced by SIGNAL *LEAVE.

4.3.17 LOOP Statement

Each LOOP statement is encapsulated in a condition handler for the condition *LEAVE. Thus,

loop
<loop body>

end

Proving Gypsy Programs February 9, 1989 34
Normalizing Gypsy Programs

becomes

begin

*loop
<loop body>

end
when
is *Leave;

end

4.3.18 Reduction of Statement Lists to PROG2

All statement lists (i.e., sequential compositions of statements) are reduced to nested PROG2 statements.
Thus, for example, the composition

BEGIN ST1; ST2; ST3 END

can be reduced to

PROG2 ST1; prog2 st2; st3 end END

Since composition is associative, the PROG2 nesting could just as well be

PROG2 prog2 st1; st2 end; ST3 END

4.4 Normalizing Condition Handlers

We briefly describe Gypsy condition handling, and then explain how parallel condition handlers (i.e., a
BEGIN...WHEN statement with arms for several different conditions) can be rewritten as nested
condition handlers, each with a single arm.

4.4.1 Abnormal Conditions and Condition Handlers

Conditions are signalled to identify abnormal situations (e.g., when an out-of-bounds index is supplied to
the array selector function). When a condition is signalled, all the subsequent Gypsy statements that
would normally be executed are traversed and ignored until a condition handler for the signalled condition
is found. At that point the condition is "cleared," the appropriate body of the condition handler is
executed, and normal execution continues immediately following the BEGIN...WHEN...END
statement. Thus, after execution of

begin
x := 0;
y := 0;
signal c;
x := 1;

when
is c: y := 1;
is d: x := 2;

end

the variable x has the value 0, and the variable y has the value 1. In this particular case, the condition d
can never be signalled, and the statements x := 1 and x := 2 can never be executed.

Proving Gypsy Programs February 9, 1989 35
Normalizing Gypsy Programs

4.4.2 Reducing Condition Handlers

In the above example of condition handlers, we say that the handlers for c and d are parallel handlers.
Parallel handlers at a particular level correspond to a multiple branch conditional, in which only one of the
condition handler bodies can be executed. In particular, if the execution of a handler body signals a
condition, that condition will not be trapped by a parallel handler, but by a higher level handler associated
with a containing compound statement.

For convenience, we can model parallel condition handlers as a multiple branch conditional, which traps
the condition and records it in a variable, and a separate multiple branch conditional, which selects and
executes the appropriate handler body based on that variable. The motivation for splitting the condition
handler into these pieces arises because the handler body is executed outside the scope of the other
parallel handlers. Our execution model is basically stack structured, and this parallel test in one context,
together with the conditional execution in another, is awkward to describe.

For example, the parallel condition handlers

begin
S0;

when is C1: S1;
is C2: S2;
...
is Cn: Sn;

end

can be modeled as

begin begin ... begin begin
cond_num:=0;
S0;

when is C1: cond_num:=1
end

when is C2: cond_num:=2
end

...
when is Cn: cond_num:=n
end

end
case cond_num
is 1: S1;
is 2: S2;
...
is n: Sn;
else assert cond_num = 0;

end

Assuming that cond_num is an integer variable, then none of the assignments to cond_num can signal a
condition. Thus, if any of the conditions Ci is signalled, it must have been from the compound body S0.
Any condition not handled by the original parallel handlers simply propagates to an enclosing handler as
before. The variable cond_num represents a new identifier that is assumed not to occur in the program
before normalizing the parallel condition handlers.28

Given this expansion mechanism, we proceed to treat condition handlers as if there can only be a handler

28Note that since only one abnormal condition can be signalled at a time, only one new variable per routine need be introduced.

Proving Gypsy Programs February 9, 1989 36
Normalizing Gypsy Programs

for a single condition around a statement.

Proving Gypsy Programs February 9, 1989 37
A Simple Operational Model

Chapter 5

A SIMPLE OPERATIONAL MODEL

Here is a simple operational model for Gypsy programs. This is meant to be intuitively satisfying, and to
lend credence to the VC generator based on this model.

First a model is presented for the language without procedures, concurrency, buffers, or abnormal
conditions. Then the model is extended to handle procedures and abnormal conditions. Buffers and
concurrency are dealt with later, in Chapters 7 and 8.

5.1 Basics of the State Model

Gypsy condition handling plays a key role in how statements affect program states. For this reason two
notions are defined.

• state: a mapping of identifiers to values, and

• cstate: an ordered pair, <condition, state>.

A normalized Gypsy program has been essentially reduced to nine internal statement forms. There are six
executable statements: three whose purpose is to change the cstate, and three whose purpose is to
affect flow of control. In addition, three statement forms have no effect on execution at all; they are for
proof purposes only.

1. x := exp. This assignment statement changes either

(a) the state binding of the variable x to be the result of evaluating exp, or

(b) the condition component of the cstate, if (for example) evaluating exp
results in a cvalue whose condition component is not *NORMAL.29

2. SIGNAL C. The SIGNAL statement changes the condition component of a cstate to C if
it was *NORMAL. Otherwise the cstate is unchanged.

3. BEGIN stmt1 WHEN IS cond-name: stmt2 END. The statement stmt1 is
executed on the current cstate, and the condition of the resulting cstate is examined. If
the condition is *NORMAL, then that cstate is the value of the BEGIN-WHEN statement.
If the condition is not *NORMAL, then the condition is compared with the condition
cond-name handled in the WHEN part. If the condition names are the same, then the
condition of the cstate is changed to *NORMAL, and stmt2 is executed with the new

29The condition component can change to VALUEERROR, or SPACEERROR if the assignment cannot be completed due to
violation of type specifications or run-time resource constraints. Recall that x stands for an identifier, not an arbitrary name
expression. All assignment statements have been normalized as described in Chapter 4.

Proving Gypsy Programs February 9, 1989 38
A Simple Operational Model

resulting cstate being the value of the BEGIN-WHEN.

And the three statements affecting control are:

4. PROG2 stmt1; stmt2 END. The PROG2 form executes two (possibly compound)
statements sequentially.

5. IF b THEN stmt1 ELSE stmt2 END. The IF statement determines which of two
embedded statements is executed.30

6. *LOOP stmt END. The *LOOP statement repeats execution of an embedded statement
until a condition is signalled.31

And the three statements for proof purposes only are:

7. PROVE. The PROVE statement indicates that a proposition should be proven for the current
cstate.

8. ASSUME. The ASSUME statement indicates that a proposition can be assumed to hold for
the current cstate.

9. BREAKPATH. The BREAKPATH indicates a cut point when tracing control flow during VC
generation.

We discuss expression evaluation (and function invocation) later.

5.2 Basic Procedure Calls

Gypsy procedure call semantics are similar to the procedure call semantics of FORTRAN, Algol 60, and
Pascal, but are greatly simplified by several language restrictions:

• Global variables are not allowed.

• Potentially dangerous aliasing among actual parameters is not allowed.32

• Gypsy routines that terminate always terminate in a well-defined state, even in the event of
abnormal termination (e.g., run-time arithmetic errors such as overflow).

• Parameter passage is uniformly call-by-value-result.33

The only shared objects permitted in Gypsy programs are message buffers. The sharing only creates an
alias when several concurrent processes have access to the same buffer. For the moment we will discuss
only sequential processes and sequential procedure calls.

30This form requires an ELSE branch. We will use an assignment of the form X := X as a no-op to model a one-branch IF
statement.

31Recall that the Gypsy LEAVE statement is modeled as SIGNAL *LEAVE.

32Potentially dangerous aliasing refers to the situation in which the values of two or more actual parameters of a routine overlap in
such a way that altering one value has the side effect of altering the other. This violates one of our basic assumptions about
variables: they don’t change spontaneously. A value of a non-buffer variable only changes by way of an explicit assignment
(perhaps via a procedure call). Buffer parameters actually represent shared variables, and the semantics of buffers explicitly deny
this assumption. However, local buffer histories do obey this property of data variables, and hence potentially dangerous aliasing of
buffer parameters in procedure calls is disallowed, just as it is for data parameters.

33Call-by-value-result is equivalent to call-by-reference in Gypsy, except for buffer parameters, which are truly shared variables.
This is because Gypsy procedure calls always return "result values" for VAR parameters, even when the routine exits "abnormally."

Proving Gypsy Programs February 9, 1989 39
A Simple Operational Model

5.3 Reducing Procedure Calls to Function Calls and Assignment

We can extend this simple model for statements to include procedure invocation. Procedures can be
viewed as assignment statements. Basically, a procedure computes a function from its input parameters to
its output parameters, and performs a parallel assignment on exit. The issue of nondeterminism is
deferred briefly until section 5.3.3. Concurrency and data abstraction are deferred until chapters 8 and 9.
Abnormal termination of functions is discussed in section 5.6.

Consider some simplified examples in the context of the following declarations.

procedure P (x:T1; var y:T2) =
begin
...
y := F(x);

end;

procedure P2 (x1:T1; var y:T2; var z:T3) =
begin
y := F2(x,y);
z := F3(x,z);

end;

function F (x:T1) : T2 = pending;

function F2(x:T1; y:T2) : T2 = pending;

function F3(x:T1; y:T2) : T2 = pending;

The procedure call statement

P(a, v)

is equivalent to the assignment statement

v := F(a).

Similarly, the procedure call

P2(a,v,w)

is equivalent to

v := F2(a,v);
w := F3(a,w).

No interference exists between the two assignment statements, because v does not appear in the actual
parameter list in the Call to F3. However, potential interference is still easily handled. The parallel
assignment can be formulated by composing the several functions (F2, F3 in the example) into a single
composite function returning the several values as a record structure. The individual fields of the record
can then be picked out and assigned to the VAR parameters simulating a parallel assignment with no
interference.

At this point it is clear that the body of a deterministic procedure always computes a function of this sort.
We can mechanically construct such a composite function from any procedure definition. Consider the
procedure Q:

Proving Gypsy Programs February 9, 1989 40
A Simple Operational Model

procedure Q (a1, ..., aN:T; var v1, ..., vM:T) =
begin
...

end;

We can assume that all parameters are of type T without loss of generality. Let *body* represent the
body of the procedure Q. A series of functions F1 through FM is composed according to the following
scheme:

function Fi (a1, ..., aN:T; x1, ..., xM:T) : T =
begin
var v1, ..., vM:T;
v1 := x1;
...
vM := xM;
body
result := vi;

end;

Note that the formal VAR parameters v1...vM have been replaced by const parameters x1...xM in the
function header. This is necessary because the variables vi can appear on the left-hand side of
assignment statements in *body*. (In Gypsy const parameters cannot appear on the left-hand side of
assignment statements.) We now construct the composite function FQ as

Big_Record_of_T = record (v1, ..., vM : T);

function FQ (a1, ..., aN:T;
x1, ..., xM:T) : Big_Record_of_T =

begin
result.v1 := F1(a1, ..., aN, x1, ..., xM);
...
result.vi := Fi(a1, ..., aN, x1, ..., xM);
...
result.vM := FM(a1, ..., aN, x1, ..., xM);

end;

and replace the procedure call

Q(a1, ..., aN, v1, ..., vM)

with

temp := FQ(a1, ..., aN, v1, ..., vM);
v1 := temp.v1;
...
vi := temp.vi;
...
vM := temp.vM.

Thus, in the absence of abnormal termination conditions and concurrency, we have reduced procedure
calls to function calls and assignments to variables.

5.3.1 Aliasing Restrictions

Procedure calls are restricted to avoid potentially dangerous aliasing. The parameter passing mechanism
is the only way to introduce aliasing in Gypsy. Because there are no mechanisms for direct manipulation
of pointers or addresses, aliasing can be defined almost purely syntactically. In Gypsy syntax, a
<VARIABLE NAME EXPRESSION> is the syntactic class that can appear on the left-hand side of an
assignment statement, or as a VAR parameter in a procedure call. This class (as it appears in normalized

Proving Gypsy Programs February 9, 1989 41
A Simple Operational Model

Gypsy programs) is defined by the following grammar rules:

<VARIABLE NAME EXPRESSION> ::= <IDENTIFIER> { <COMPONENT SELECTORS> }

<COMPONENT SELECTOR> ::= . <FIELD NAME> |
(<INDEX SELECTOR>)

<INDEX SELECTOR> ::= <EXPRESSION>

<FIELD NAME> ::= <IDENTIFIER>

In this notation, { <COMPONENT SELECTORS> } denotes that the syntactic form <COMPONENT
SELECTORS> can be repeated zero or more times. The occurrences of the symbols dot ("."), open
parenthesis ("("), and close parenthesis (")") denote literal occurrences of these characters. Note that
because <INDEX SELECTOR>s are computed expressions, determination of aliasing may depend on
state information. Let us consider a <VARIABLE NAME EXPRESSION> to be a sequence of
constituents as given by these rules, with <EXPRESSION> considered to be an atomic constituent. The
functions first and nonfirst are used to decompose the sequence. We can define a predicate,
OVERLAP, to identify aliasing between two <VARIABLE NAME EXPRESSION>s in a particular state.

The predicate OVERLAP(VNE1, VNE2) holds in in state S if and only if

MATCH(first(VNE1, first(VNE2)
& if size(VNE1) > 1 & size(VNE2) > 1

then OVERLAP(nonfirst(VNE1), nonfirst(VNE2))
else TRUE fi

where MATCH is defined as follows:

(a) if either of the first two arguments is the empty sequence, then TRUE;

(b) for identifiers, the two identifiers must match literally;

(c) for literal tokens (i.e., "(" and ")" and "."), the tokens must match literally;

(d) for expressions, the two expressions must evaluate to equal values in the state S.

Aliasing is considered potentially dangerous aliasing if a VAR parameter overlaps with any other
parameter. Potentially dangerous aliasing is only possible in procedure calls, since only procedure calls
have VAR parameters. When translating procedure calls into function calls, we must be sure that the
presence of dangerous aliasing is detected. We can do this by inserting a statement of the form

if OVERLAP(VNE1, VNE2) then signal ALIASERROR end;

before the procedure call expansion, where VNE1 ranges over all VAR parameters in the procedure call,
and for each VNE1, VNE2 ranges over all other actual parameters. We will also insert

Prove (not OVERLAP(VNE1, VNE2))

into the expanded program. This PROVE statement causes the VC generation process to emit VCs stating
that no dangerous aliasing occurs.

Note that this analysis for aliasing must be done before normalization, since the function nesting is
eliminated as part of normalization, and the component selector operations are viewed as functions.

Proving Gypsy Programs February 9, 1989 42
A Simple Operational Model

5.3.2 Checking Value Restrictions

Gypsy allows definition of certain classes of subtypes. Subrange types are based on simple types (scalar
types, integers, or rationals) whose value set is restricted to a limited range. For example integer
[1..10] is a subrange type based on type integer. The other sort of subtype is based on size limit
restrictions on dynamic structures (sequences, sets, mappings, and buffers).34

The static semantic type checking enforced by the Gypsy parser checks to verify that the type of every
actual parameter is consistent with the type declared for the corresponding formal parameter. This means
that they must have the same base types, essentially the same structure composition of the same primitive
types, ignoring range and size restrictions.35 Analysis of dynamic semantics is required to verify that the
actual parameter values to be passed will satisfy any range or size restrictions of the formal parameter
type. Assertions to verify this can easily be constructed from the type definition associated with each
formal parameter, instantiated on the actual parameter expression, and inserted into the routine body as
part of the expansion of the procedure call. Since the details of Gypsy type declarations and type
checking are not dealt with here, details of this construction are omitted as well.

5.3.3 Nondeterminism

Now consider that Gypsy procedures are not required to be deterministic. They may behave
nondeterministically due to observable effects of concurrency, or by revealing concrete representations of
abstract data types.36 Since procedures need not be deterministic, the resulting new value for a VAR
parameter may not be determined by a single (deterministic) function. Even though each time the
procedure is called the new value can be expressed as a function of the input values, it might not be the
same function each time. This can be modeled by defining a new function to encapsulate all of the
functions that compute the VAR parameter at different activations. This encapsulation function takes an
additional parameter, which distinguishes each distinct activation of the procedure. So, the new function
can choose among the various functions that compute the value of the VAR parameter in different
activations. The activation_id, discussed in Section 7.1, can serve as this additional actual
parameter, providing a unique actual parameter at every call site.37

Specification functions are required to be deterministic, so that the normal rules for substitution and
equality will hold in proofs.38 Using the encapsulation function described above assures that the functions
used to model procedure calls are also deterministic. Thus, any statements about the results of procedure
invocations that arise in VCs must be well-behaved.

34Array indexing sets are not considered size restrictions; arrays with different subrange indexing sets are considered different
types.

35See the Gypsy language manuals for a full discussion of base types.

36The procedure may yield different results for actual parameters that are abstractly equal, but not concretely equal. This only
appears nondeterministic when viewed though an abstract equality function. See Chapter 9 for details on data abstraction.

37The actual VC generator in the GVE performs an equivalent manipulation. It uses a distinct function name to denote the newly
computed value of the VAR parameter at each call site. Since the VC generator analyzes a procedure based on a finite number of
linear code segments (as we see in Chapter 6), only a finite number of unique function names are required.

38This is not a language restriction, but a requirement of the implemented proof methods. The soundness of the proofs performed
by the GVE depends on this fact. The GVE requires proof that specification functions do not reveal concrete details of abstract data
types; specification functions cannot involve concurrency; and they cannot include procedural statements, such as the AWAIT. Thus,
they must behave deterministically.

Proving Gypsy Programs February 9, 1989 43
A Simple Operational Model

5.4 Notation and Preliminary Definitions

In preparation for defining the operational model of Gypsy, we need some basic definitions.

5.4.1 States and Conditions

Definition: A state is a mapping from identifiers to values.

Definition: A cstate is an ordered pair, composed of a condition name and a state.

Function: CSTATE : condition.name × state → cstate.

Definition: A cvalue is an ordered pair, composed of a condition name and a value.

Function: CVALUE : condition.name × value → cvalue.

Function: The primitive function eval: identifier × state → value

maps identifiers to their values with respect to a given state.

We can extend eval in a natural way to take a cstate, and return a cvalue. This
extended eval maps the identifier according to the state component of cstate, and preserves
the condition component of cstate in the resulting cvalue. We can also later extend
eval to map expressions to values with respect to a given state.

5.4.2 General Notation

We use LISP-style, prefix notation [McCarthy 65]. The notation for function application is (G X),
which denotes the application of the function G to the argument X. We can sometimes use X.F to denote
accessing a field named F of an n-tuple X. The same field name can also be used as a function that yields
the value of that field, as in (F X). Although the name is overloaded, no ambiguity results.

Identifiers and function names are composed of letters, periods (.), and pound signs (#).

Sets can be written by explicitly enumerating its elements within braces, separating the elements by
commas. An example is {alpha, beta, gamma}. Sets can also be defined by describing the set
elements with a boolean expression or predicate. For example, {i | ∃ j, j is an integer ∧
i=j*j} denotes the set of perfect squares.

Fragments of Gypsy programs are enclosed in double-angle brackets, as 〈〈x〉〉. In these Gypsy fragments,
words in upper-case will generally denote themselves (Gypsy reserved words), and words in lower-case
denote syntax variables or meta-symbols.

The following are some basic definitions:

Definition: nil denotes the empty set, or the empty list. This is sometimes written explicitly as
empty.set to emphasize representing the empty set.

Definition: (cons E L) is similar to the LISP cons function. It extends the list L by adding
the element E at the beginning.

Definition: (rcons L E) is "right cons". It extends the list L by adding the element E at the end

Proving Gypsy Programs February 9, 1989 44
A Simple Operational Model

Definition: (first L) returns the first element of the list L for non-empty lists.

Definition: (rest L) returns all but the first element of the list L. rest returns nil for empty
lists.

Definition: (append L1 L2) appends lists L1 and L2.

Definition: A stmt is a piece of a normalized Gypsy program, corresponding to program text
derived from the non-terminal <STATEMENT> in the Gypsy grammar.

5.5 Basic Axioms for EXECUTE

The function EXECUTE maps a cstate and a stmt to a new cstate. EXECUTE is the basic function
in our operational model of sequential Gypsy. For the moment we will confine ourselves to the realm of
deterministic programs, so EXECUTE can be described as a function. We will also restrict our initial
discussion to programs that terminate normally. (See section 5.6 for the effect of abnormal termination on
the definition of EVAL.)

The function EVAL maps an expression and a cstate into a value. We can define EVAL as follows:

W1. (EVAL 〈〈identifier〉〉 cs) ≡ (lookup identifier cs)

W2. (EVAL 〈〈F(x)〉〉, cs) ≡
(lookup RESULT
(execute (cstate *NORMAL (bind-formal F (eval x cs)))

(extended-routine-body F))

The function LOOKUP takes an identifier and a cstate, and yields the value of the identifier
in the state. The function EXTENDED-ROUTINE-BODY maps a Gypsy routine name into its normalized,
extended body.

Recall that after normalization, function calls are never nested. Therefore, the actual parameters must be
simple identifiers. The function bind-formal takes a Gypsy function name and a value, and yields a
cstate.39 This cstate has a single identifier binding, namely the formal parameter name of the
Gypsy function named is bound to the second argument of the bind-formal call. (We can assume the
function takes a single argument without loss of generality, as multiple arguments can always be
composed into a simple record structure for parameter passage.) The function
extended-routine-body is assumed to return the extended routine body derived from a function
declaration. When a Gypsy function terminates, the reserved identifier RESULT is bound to the value to
be returned; therefore, we look up RESULT in the final state after executing the routine body.

Function: Execute : cstate × stmt → cstate

Here are the axioms defining Execute, which formalize the effects of "executing" a Gypsy program.

X1. (EXECUTE CS 〈〈ASSIGN X exp〉〉) ≡
(if (= (CONDITION CS) *Normal)

then (ALTER CS X (EVAL exp CS))
else CS)

Recall that the left-hand side of an assignment is always an identifier after program normalization. Thus,

39Obviously it also takes an additional, implicit parameter, namely the set of routine declarations.

Proving Gypsy Programs February 9, 1989 45
A Simple Operational Model

the symbol exp above represents an either an identifier or an unnested function call.

Function: ALTER : cstate × identifier × value → cstate

Definition: For all X, Y : identifiers,

(1) (EVAL X (ALTER CS X VAL)) ≡ VAL;

(2) (literal-neq X Y) → (EVAL X (ALTER CS Y VAL)) ≡
(EVAL X CS).

This use of literal-neq denotes literal inequality of identifiers, not inequality of the values of the
identifiers.

X2. (EXECUTE CS 〈〈SIGNAL c〉〉) ≡ (if (= (CONDITION CS) *NORMAL)
then (cstate c (STATE CS))
else CS)

X3. (EXECUTE CS 〈〈BEGIN stmt1 WHEN IS c: stmt2 END〉〉) ≡
(if (= (condition CS) *NORMAL)

then (if (= (condition cs1) c)
then (execute (cstate *NORMAL (state cs1)) stmt2)
else cs1)

else CS)

where cs1 = (execute cs stmt1).

X4. (EXECUTE CS 〈〈PROG2 stmt1; stmt2 END〉〉) ≡
(execute (execute CS stmt1) stmt2)

X5. (EXECUTE CS 〈〈IF b THEN stmt1 ELSE stmt2 END〉〉) ≡
(if (= (CONDITION CS) *Normal)

then (if (= (eval b cs) TRUE)
then (EXECUTE CS stmt1)
else (EXECUTE CS stmt2))

else CS)

X6. (EXECUTE CS 〈〈*LOOP stmt END〉〉) ≡
(if (= (condition CS) *NORMAL)

then (execute (execute CS stmt)
〈〈*LOOP stmt END〉〉)

else CS)

Recall that LEAVE statements have been converted into SIGNAL *LEAVE. Thus, when the body of the
loop executes a LEAVE, the state condition changes from *NORMAL to *LEAVE. Also, as part of
normalization, the *LOOP is encapsulated inside a WHEN handler that traps *LEAVE and transforms it to
*NORMAL, so that execution can continue normally after the loop.

X7. (EXECUTE CS 〈〈PROVE assertion〉〉) ≡ CS

X8. (EXECUTE CS 〈〈ASSUME assertion〉〉) ≡ CS

X9. (EXECUTE CS 〈〈BREAKPATH〉〉) ≡ CS

Proving Gypsy Programs February 9, 1989 46
A Simple Operational Model

5.6 Extending EXECUTE to Handle Abnormal Termination

So far our axioms assume that the only way an abnormal condition can arise is from executing a SIGNAL
statement. Expression evaluation is always assumed to yield a value.

Instantiation of procedure calls can easily be extended to handle condition parameters and case exit
specifications. Basically, the procedure body is encapsulated in a WHEN handler that traps the formal
condition name and then signals the actual condition name (into what was the "calling environment").
Since Gypsy data parameter values are returned even on abnormal termination, the WHEN handler must
also assign the current values of the (formal) VAR parameters to their (actual) variables in the calling
environment.

Let us first look at modeling normal expression evaluation in a functional form. First we do this under the
assumption that all functions are totally defined. We extend this to include procedure calls within the
context of totally defined functions. Then we look at how to extend this model to handle abnormal
termination as embodied in Gypsy functions and procedures. Finally, the new axioms for EVAL and
EXECUTE to handle abnormal termination are presented.

5.6.1 Simple Expression Evaluation

Gypsy expressions can be mapped into function calls if all functions are required to be totally defined.
The built-in infix operators are defined (in the Gypsy 2.1 report, [Good 85]) to be syntactic abbreviations
for calls to predefined functions. For example,

i+j*k

is an abbreviation for

integer#add(i, integer#multiply(j, k))

Similarly, accessing data structures, such as arrays and records, is defined in terms of function references
with syntactic abbreviation. Thus all Gypsy expressions are really nested function calls. If each function
is required to be total, there can be no problem with undefined values creeping into our universe.

5.6.2 Abnormal Termination in Functions

Gypsy functions have no side effects. This discipline is enforced by the fact that functions have no VAR
parameters, and Gypsy does not allow global variables. A function terminates abnormally if during its
evaluation an exception condition is signalled in its body. Rather than returning a value to the call site,
the exception condition name is mapped according to the formal/actual condition parameter names and the
resulting name is resignalled in the calling environment. (If the exception condition name does not appear
in the function’s formal condition parameter list, then the standard condition RoutineError is
signalled in the calling environment.) Signalling in the calling environment aborts all pending function
invocations in the current expression evaluation, and control proceeds to the appropriate exception handler
(remapping condition names if routine boundaries are crossed).

The first part of modeling abnormal function termination is to return a condition name, and to abort
evaluation of the current expression. We do this by extending the value returned by the function to
include a condition name. For a function F returning a value of type T1, F is extended to return a value of
type T2,

type T2 = record (Value : T1;
ConditionName : ConditionNames);

Proving Gypsy Programs February 9, 1989 47
A Simple Operational Model

This is done uniformly for all functions, including predefined ones. Each function body effectively gains
a new local variable named Result.ConditionName. The ConditionName field is initially
Normal, and is assigned some other condition name when that exception condition would have been
signalled. Thus, whenever an exception condition would have been signalled,
Result.ConditionName is assigned the name of the condition to be signalled, and the remaining
portion of the function body is skipped. Consider the function F shown in Figure 5-1. This can be

function F (x,y:T) : T unless (cond C1, C2) =
begin
result := G(x,y) unless (C1);
result := H(x,y) unless (C2);
...

end;

Figure 5-1: Original Function with Condition Parameters

transformed into the function FCond as shown in Figure 5-2. Note that FCond must check that its actual

function FCond (x,y:TC) : TC =
begin
var temp:TC;
if x.ConditionName ne Normal then

result.ConditionName := x.ConditionName
elif y.ConditionName ne Normal then

result.ConditionName := y.ConditionName
else

temp := GCond(x,y); { MUST HANDLE C1 }
if temp.ConditionName ne Normal then

result.ConditionName := temp.ConditionName
else

result.value := temp.value;
temp := HCond(x,y); { MUST HANDLE C2 }
if temp.ConditionName ne Normal then

result.ConditionName := temp.ConditionName
else

result.value := temp.value
end

end
end

end {of FCond}

Figure 5-2: Augmented Function without Condition Parameters

parameters are evaluated properly to yield values, as indicated by their condition fields being Normal. If
the evaluation of one of the actual parameters "signalled" an exception condition during evaluation, then
the evaluation of FCond is skipped, and the exception condition is propagated in the result of FCond.

We have added the restriction that actual parameter lists are evaluated in left to right order. This is done
precisely so that the IF-tests at the beginning of FCond can be performed as illustrated in Figure 5-2. The
Gypsy 2.0 report specifies that the order is not defined. Thus, if evaluation of two or more actual
parameter expressions terminates abnormally, the condition name propagated is not determined. The
motivation for this nondeterministic behavior is to permit the implementors some leeway in evaluating
parameter lists in any convenient way. Since expression evaluation can have no side effects other than

Proving Gypsy Programs February 9, 1989 48
A Simple Operational Model

signalling an exception condition, there is no detectable effect if all the expressions evaluate normally.
Nondeterminism complicates our semantics considerably, and we shall endeavor to suppress
nondeterministic behavior as much as possible in order to make the semantics more readable. The
problems of efficiently compiling the resulting strictly defined language are addressed briefly later. (See
also [McHugh 83].)

5.6.3 Extended Axioms for EVAL

The function EVAL can be extended to handle abnormal termination in function calls. We first extend
EVAL to yield a cvalue, rather than a value. This allows us to return the condition from the final state
of a function evaluation, as well as the value of RESULT. The new axioms for EVAL are:

W1’. (EVAL 〈〈identifier〉〉 CS) ≡
(if (= (condition CS) *NORMAL)

then (cvalue *NORMAL (lookup identifier CS))
else (cvalue (condition CS) dont.care))

W2’. (EVAL 〈〈F(x)〉〉, CS) ≡
(if (= (condition CS) *NORMAL)

then (cvalue (condition final-state)
(lookup RESULT final-state))

else (cvalue (condition CS) dont.care))

where final-state = (execute (cstate *NORMAL
(bind-formal F (eval x CS)))

(extended-routine-body F)).

Observe that the inner call to EVAL cannot fail, as it is merely a call to lookup. The identifier
dont.care denotes an arbitrary value. It is used when the value portion of a cvalue is not relevant to
the computation.

5.6.4 Extended Axiom for EXECUTE

Only the EXECUTE axiom for assignment need be extended, since all function calls appear on the
right-hand sides of assignment statements in normalized programs. Thus, any abnormal condition that
arises from a function call is signalled from an assignment statement. The new axiom is:

X1’. (EXECUTE CS 〈〈ASSIGN X exp〉〉) ≡
(if (= (condition CS) *Normal)

then (if (= (condition rhs-cvalue) *Normal)
then (ALTER CS X (value rhs-cvalue))
else (cstate (condition rhs-cvalue) (state CS)))

else CS)

where rhs-cvalue = (EVAL exp (state CS)).

For the parallel assignment used to model procedure calls the axiom is slightly different. This reflects the
fact that VAR parameters in procedure calls change their values as a result of the call even if the procedure
terminates abnormally. The new assignment axiom for assignment derived from procedure calls is:

X1’’. (EXECUTE CS 〈〈ASSIGN X exp〉〉) ≡
(if (= (condition CS) *Normal)

then (cstate (condition rhs-cvalue)
(state (ALTER CS X (value rhs-cvalue))))

else CS)

where rhs-cvalue = (EVAL exp (state CS)).

Proving Gypsy Programs February 9, 1989 49
A Verification Condition Generator

Chapter 6

A VERIFICATION CONDITION GENERATOR

6.1 VC Generation

Verification conditions are propositions that state the consistency between a program and a specification.
Proving the VCs is sufficient to prove that the program satisfies the specifications. Just as we started with
a simple model of execution and expanded it to handle more complex aspects of the language, we will
start with a basic model of VC generation and expand that model.

We can derive a description of VC generation from the definition of EXECUTE. VC generation basically
involves symbolic execution of each possible path in the program. Since there are potentially an
unbounded number of possible paths through a routine (because of LOOP statements and recursion), we
cannot truly symbolically execute each possible path. Therefore, we divide VC generation into two steps:

• computing the finite set of finite linear path segments from which all other control paths
through the routine can be composed, and

• symbolic execution of those path segments.

This separates the process of control path analysis from the process of symbolic execution, which allows
the control path analysis to be done on a purely syntactic basis, leaving the interpretation of dynamic
semantics and specifications to symbolic execution. The actual symbolic execution is really quite simple,
once the appropriate set of path segments has been computed.

Proving properties of loop paths corresponding to an arbitrary number of iterations though the loop body
requires an inductive proof. For example, let the regular expression A B* C represent the set of paths
traversing A, followed by any number of traversals of B, followed by a traversal of C. We can prove
properties of this infinite set of paths by using induction on the form of each path, using P(AC) as the
base case, and

P(A Bn C)→ P(A Bn+1 C)

as the inductive step. In general the symbols A, B, and C denote sets of paths, since there can be multiple
paths through the loop body. ASSERT statements are used in the program to indicate the loop body is to
be decomposed into these segments, and to specify the property P to be proven. Thus, all iteration paths
through loop bodies must be broken by an ASSERT statement. (This use of the ASSERT statement
becomes more explicit in normalized Gypsy programs by the presence of the BREAKPATH statement
form.)

This set of path segments, which "covers" all possible paths through the program is called the covering

Proving Gypsy Programs February 9, 1989 50
A Verification Condition Generator

path set.40 We use ASSERT statements to break paths into path segments. Each path segment starts with
an ASSERT statement, and continues until it encounters another ASSERT statement. A SIGNAL
statement causes subsequent statements to be ignored until an appropriate WHEN handler is encountered.
Basically, wherever EXECUTE is defined to choose between two possible execution paths, our path
tracing function traces both paths (yielding a set of possible paths, where EXECUTE traced and executed a
single path). And the state change operators (assignment, signal, and when-handler) are interpreted.
ASSERT statements are predicates about the program state.

The VCs are propositions in first order logic that state that for each path the initial assertion evaluated in
the null state41 implies the validity of the final assertion evaluated in the state resulting from applying the
sequential composition of all of the state change operators along the path.

6.2 Preliminary Definitions for Manipulating Paths

Here are some additional definitions that will be used to define the functions that construct the set of
linear path segments derived from a Gypsy routine. Hereafter, the term "path" will be used to mean a
"linear path segment".

Definition: (pair x y) denotes an ordered pair, sometimes written <x, y>.

Definition: (pair.union (pair x1 y1) (pair x2 y2) ...) ≡
(pair (union x1 x2 ...) (union y1 y2 ...)).

Definition: A StmtList is a piece of a normalized Gypsy program, corresponding to program
text derived from the non-terminal <STATEMENT LIST> in the Gypsy grammar.

Definition: A path is a pair <Condition, StmtList>. A path object is constructed by the
function path.

Function: Path : condition × stmtlist → path.

Path is also used with a single statement as its second argument. This simplifies our notation, and does
not introduce any ambiguity.

Function: Condition : path → condition

Function: StmtList : path → stmtlist

Definition: If P is the path (Path c s), then (Condition P) = c, and (StmtList P)
= s.

Definition: The empty path is the path (path *normal nil), and is sometimes denoted by
empty.path.

Definition: (cons.path P E) is defined to be
(path (condition P) (cons (StmtList P) E)), for path P and path

40This is called the set of Floyd paths by Boyer and Moore in their description of a VC Generator for FORTRAN. [Boyer&Moore
81b].

41In a null state, all identifiers evaluate to themselves.

Proving Gypsy Programs February 9, 1989 51
A Verification Condition Generator

element E.

Definition: (cons.paths.in.set S E) is defined to be
{(cons.path P E) | P ∈ S} for S a set of paths, and E a statement.

Definition: (rcons.path P E) is defined to be
(path (condition P) (rcons (StmtList P) E)) for P a path, and E a
statement.

Definition: (rcons.paths S E) is defined to be {(rcons.path P E) | P ∈ S}, for
S a set of paths, and E a statement.

Definition: (append.paths P1 P2) is defined to be

(path (condition P2)
(append (StmtList P1) (StmtList P2)))

for paths P1, and P2.

Definition: (append.paths.in.set S1 S2) is defined to be

{(append.paths P1 P2) | P1 ∈ S1
∧ P2 ∈ S2}

for sets of paths S1 and S2.

Function: Normal.Paths: set.of.paths → set.of.paths.

Definition: (Normal.Paths S) ≡ {P | P ∈ S ∧ (condition P) = *normal}.

Function: Abnormal.Paths: set.of.paths → set.of.paths.

Definition: (Abnormal.Paths S) ≡
{P | P ∈ S ∧ (Condition P) ≠ *normal}.

Function: Signal.Paths : set.of.paths × condition-name → set.of.paths.

Definition: (Signal.Paths S C) ≡ { P | P ∈ S ∧ (condition P) = C}.

Function: NonSignal.Paths : set.of.paths × condition-name → set.of.paths.

Definition: (NonSignal.Paths S C) ≡
{ P | P ∈ S and (condition P) ≠ C}.

6.3 Tracing Paths: The Functions CPS and EP

The function EXECUTE defines all of the control paths potentially followed during execution of a Gypsy
routine. We define a linear path segment to be a potential control path that begins and ends with a
BREAKPATH statement.42 Routines with loops or recursion can describe potentially infinite control paths.
However, there can only be a finite number of distinct linear path segments for any Gypsy routine. This

42Boyer and Moore [Boyer&Moore 81b] call this a Floyd path.

Proving Gypsy Programs February 9, 1989 52
A Verification Condition Generator

follows because the text of the Gypsy routine is finite, and potentially infinite control paths can only be
composed through recursion (in which case the paths are broken by the entry and exit specifications of the
routine) or iteration (and we assume that each LOOP statement is properly sprinkled with ASSERT
statements, which yield BREAKPATH statements to break each potential path through the body of the
loop). Thus, all possible execution paths for a routine are composed of linear path segments. The set
composed of these linear path segments is called the covering path set of the routine.

We want to define a function CPS that computes the covering path set for a Gypsy routine. These paths
cover all possible execution paths through the routine, so that it is sufficient for proof purposes to deal
with these finite path segments, even to prove properties of possibly infinite execution paths.

The body of a Gypsy routine is a single (compound) statement. Thus, we want to be able to compute the
linear path segments through a single (possibly compound) statement. We further reduce the problem to
extending a set of paths by a single statement. We call this "extend path" function EP. (EP computes the
control paths on a purely syntactic basis, and so can yield paths that are never, in fact, traversed during
execution.)

Function: CPS : stmt → set.of.paths, the covering path set for the statement.

The path segments each begin and end where an assertion (ENTRY, EXIT, or ASSERT statement)
appeared in the program. These points where paths must be broken are indicated explicitly in the
normalized Gypsy program by the BREAKPATH statement. Thus, as we build the covering path set, we
keep two partial results:

• finished paths, which begin at an assertion and end with a BREAKPATH, and

• partial paths, which begin with an assertion, but do not end with a BREAKPATH.

The function EP takes three arguments, a set of partial paths, a set of finished paths, and a Gypsy
statement. EP yields a new set of partial paths, and a new set of finished paths. When computing the
covering path set, we want to extend each partial path as we encounter additional statements. When a
partial path is extended with a BREAKPATH statement, it is added to the set of finished paths. Path
segments in the set of finished paths do not get extended as additional statements are processed.

Function: EP : partial.paths × finished.paths × stmt
→ partial.paths × finished.paths,

extends all of the normal paths in partial.paths by adding stmt at the end,
yielding the resulting new partial paths, and possibly some additional finished paths.

EP extends each of the normal paths in partial.paths by one additional statement, and yields two
new partial results. Path segments in finished.paths argument are not affected by EP, and appear in
the finished.paths of the result. If the additional statement is an ASSERT, then any partial path
extended by the ASSERT becomes finished, and is included in the set of finished paths yielded by EP.43

For ease of notation, the first two arguments of EP are combined into an ordered pair. Thus, EP takes an
ordered pair of sets of paths as its first argument, and yields an ordered pair of sets of paths as its result.
The two components of the result of EP can be extracted by the functions Partial.Paths and
Finished.Paths.

43Some partial paths may not be affected by the ASSERT, if their associated condition is abnormal. Exactly how this works is
discussed shortly.

Proving Gypsy Programs February 9, 1989 53
A Verification Condition Generator

Definition: If p is the pair (pair x y), (Pfirst p) = x and (Psecond p) = y.

Definition: If p is the pair (pair x y), (Partial.Paths p) = (Pfirst p) and
(Finished.Paths p) = (Psecond p).

Definition: (CPS Stmt) ≡ (Finished.Paths (EP (pair {empty.path} empty.set) stmt)).

6.4 The Axioms for EP

We basically derive the axioms for EP from the axioms for EXECUTE. Where EXECUTE uses state
information to choose between possible control paths, EP traces both paths, adding as an assumption the
predicate (or its negation) that EXECUTE uses to choose the proper control path.

The function EP is defined by the following equations.

Since EP extends each normal path in p, the partial.paths component of its result is the union of the extended normal paths of
p, and the abnormal paths of p (which are not affected, and remain partial paths). Since extending a partial path by an assignment
statement cannot result in a finished path, the finished.paths component of the result is simply the set of finished paths that
was passed as an argument, namely f. Tracing abnormal exit paths from a function call in exp will be discussed in section 6.5.

E1. (EP (pair p f) 〈〈X := exp〉〉) ≡
(pair (union (rcons.paths (Normal.Paths p) 〈〈X := exp〉〉)

(Abnormal.Paths p))
f)

The SIGNAL statement changes the condition of each normal partial path, leaving abnormal partial paths unaffected.

E2. (EP (pair p f) 〈〈SIGNAL C〉〉) ≡
(pair (union (Abnormal.Paths p)

(Change.Condition (rcons.paths NP 〈〈SIGNAL C〉〉)
C))

f),

where NP = (Normal.Paths p).

Function: Change.Condition : set.of.paths × condition-name → set.of.paths.

Definition: (Change.Condition S C) ≡
{ P1 | (∃ P ∈ S, (StmtList P) = (StmtList P1))

∧ (condition P1) = C}.

The BEGIN causes the normal paths of p to be extended by stmt1. Any of the resulting partial paths that are signalling condition c
are "caught" by the WHEN, and extended by stmt2. Any of the new partial paths generated by adding stmt1 that are normal, or
signal a condition other than c are left as partial paths in the result.

Proving Gypsy Programs February 9, 1989 54
A Verification Condition Generator

E3. (EP (pair p f) 〈〈BEGIN stmt1 WHEN IS c: stmt2 END〉〉) ≡
(pair (union (Abnormal.Paths p)

(Paths.Not.Signalling (Partial.Paths A) c)
(Partial.Paths B))

(union (Finished.paths A)
(Finished.paths B)))44

where A = (EP (pair p f) 〈〈stmt1〉〉),
and B = (EP (pair (Paths.Signalling (Partial.Paths A) c) nil) 〈〈stmt2〉〉).

Function: Paths.Signalling : set.of.paths × condition → set.of.paths.

Definition: (Paths.Signalling S name) ≡
{ P1 | (∃ P ∈ S, (StmtList P) = (StmtList P1))

∧ (condition P) = name
∧ (condition P1) = *NORMAL}.

Function: Paths.Not.Signalling : set.of.paths × condition → set.of.paths.

Definition: (Paths.Not.Signalling S name) ≡
{path | path ∈ S ∧ (condition path) ≠ name}.

PROG2 is simply the statement composition operator.

E4. (EP (pair p f) 〈〈PROG2 stmt1; stmt2 END〉〉) ≡
(EP (EP (pair p f) 〈〈stmt1〉〉) 〈〈stmt2〉〉).

In E5 the evaluation of bool must terminate normally, because in a normalized program bool must be a simple variable. Any
abnormal paths originating as part of the evaluation of the expression from the original IF statement are traced from one of the
assignment statements generated during normalization of expressions containing function calls.

E5. (EP (pair p f) 〈〈IF bool THEN stmt1 ELSE stmt2 END〉〉) ≡
(pair.union (EP (pair (rcons.paths NP 〈〈ASSUME bool〉〉) f)

stmt1)
(EP (pair (rcons.paths NP 〈〈ASSUME NOT bool〉〉) f)

stmt2)
(pair (Abnormal.Paths p) f)),

where NP = (Normal.Paths p).

The path tracing extends paths along both branches of the IF statement, placing the appropriate
assumption in each path. This can generate paths that seem possible syntactically, but are not possible
program executions. For example the fragment

44It is not necessary to include f in the second union. It is subsumed by the term 〈〈(Finished.paths A)〉〉, because

(A = (EP (pair p f) <<stmt>>).

Thus set 〈〈(Finished.paths A)〉〉 includes 〈〈f〉〉 as a subset, since each equation defining EP preserves the f component of its first argument.

Proving Gypsy Programs February 9, 1989 55
A Verification Condition Generator

x := 0;
if x=0 then if x=1 then Stmt1;

else Stmt2;
end

else Stmt3;
end;

generates paths through Stmt1, even though the two IF tests are mutually exclusive, and through
Stmt3, even though the IF test x=0 evaluates to FALSE during symbolic evaluation of the path. In both
cases the VCs generated during symbolic execution have FALSE as a hypothesis, and hence immediately
reduce to TRUE.

Recall that in normalized Gypsy programs, LEAVE statements have been transformed into SIGNAL
*LEAVE, and *LOOP statements have been encapsulated in when handlers to handle the *LEAVE
condition.

E6. (EP (pair p f) 〈〈*LOOP stmt END〉〉) ≡
(EP (EP (pair p f) stmt) 〈〈*LOOP stmt END〉〉).

Equation E6 is clearly circular. There is no ground case for the recursion. E6 is the most intuitively clear
and correct formulation of the paths through the loop. It produces the unbounded set of syntactically
possible paths through the loop body, including paths of unbounded length. We only need the component
path segments sufficient to construct these possibly infinite paths.

Other equivalent closed-form expressions can yield those component path segments. Let us construct one
such closed form. All paths through the body of the loop are broken by BREAKPATH statements. Hence,
all new partial paths resulting from (EP (pair p f) stmt) must begin with an ASSUME statement
in stmt. So, the first recursive reference to EP extends these paths that start in stmt through the stmt
as the "second iteration" of the loop. All of the normal partial paths from the previous "iteration" become
finished this time around (since all paths through the loop are broken by a BREAKPATH) -- or they
become abnormal paths.45 Thus, the normal partial paths resulting from this reference to EP are exactly
the same as the normal partial paths that resulted from the first call.46 (I.e., the resulting normal partial
paths are completely determined by stmt, regardless of the pair <p,f> from which we start.) In fact,
the same argument applies to the abnormal partial paths, with the exception that (Abnormal.Paths
p) are maintained throughout the recursion. Abnormal paths correspond to paths that leave the loop
(either due to a LEAVE statement or some other signal), and normal paths correspond to a continuation of
the loop. Thus, we arrive at the closed form rule:

E6’. (EP (pair p f) 〈〈*LOOP stmt END〉〉) ≡
(pair (union (Abnormal.Paths p)

(Abnormal.Paths (Partial.Paths A))
(Abnormal.Paths (Partial.Paths B)))

(Complete.Paths B)),

where A = (EP (pair (Normal.Paths p) f) stmt),
and B = (EP A stmt).

45The BREAKPATH and ASSUME must occur because each LOOP is required to have a proof-time ASSERT statement somewhere
along each execution path through its body, and the normalized form of the ASSERT yields the BREAKPATH; ASSUME ... pair.

46In fact, this allows us to detect paths through the loop that are not broken by ASSERT statements. If the set of normal partial
paths increases in size at the first level recursive call, then it must be that some partial path from the initial call was extended. But
that means it was not terminated by an ASSERT/BREAKPATH statement.

Proving Gypsy Programs February 9, 1989 56
A Verification Condition Generator

Note that EP avoids producing duplicate paths through the loop body by using sets of path segments and
set union to remove duplicates that otherwise might be introduced during the second traversal of the loop.

The PROVE and ASSUME statements simply extend a partial path. They will be interpreted later as indicating that a formula is to be
proven (i.e., a VC is to be generated), or that an assumption about the state should be made (i.e., a hypothesis should be added to all
subsequent VCs generated along this path.

E7. (EP (pair p f) 〈〈PROVE q〉〉) ≡
(pair (union (rcons.paths (Normal.Paths p) 〈〈PROVE q〉〉)

(Abnormal.Paths p))
f)

E8. (EP (pair p f) 〈〈ASSUME q〉〉) ≡
(pair (union (rcons.paths (Normal.Paths p) 〈〈ASSUME q〉〉)

(abnormal.paths p))
f)

The BREAKPATH statement causes all normal partial paths to become finished paths. BREAKPATH only appears where an ASSERT
appeared in the unnormalized program, and such occurrences are always immediately preceded by a PROVE statement. Thus, we
know that all finished paths end in a PROVE statement that corresponds to an ASSERT in the original program.

E9. (EP (pair p f) 〈〈BREAKPATH〉〉) ≡
(pair (Abnormal.Paths p)

(union (Normal.Paths p)
f))

6.5 Effects of Abnormal Function Termination on EP

In normalized programs all function calls appear on the right-hand side of assignment statements. Hence,
only axiom E1, the axiom for assignment, needs change. A few new functions to describe the abnormal
exits possible from a Gypsy function are required.

Function: Num.Cond.Params: function.name → integer.

This function returns the number of formal condition parameters that the named function
accepts.

Function: ExitCase: function.name × integer → Boolean.Expression.

This function returns the exit assertion associated with the Nth condition parameter to the
function. It returns TRUE if there is no exit assertion for a particular condition parameter.

Function: ExitSpec: function.name × special.cond.name → Boolean.Expression.

This function returns the exit assertion of the named function associated with a predefined
Gypsy condition name. The predefined Gypsy conditions are ROUTINEERROR,
SPACEERROR, and NORMAL. It returns TRUE if there is no exit assertion for a particular
predefined condition.

Handling abnormal exit paths from function calls adds a number of extra abnormal paths to the partial
paths result of EP. There are always at least two abnormal paths, corresponding to the predefined
conditions ROUTINEERROR, and SPACEERROR, plus n more, where n is the number of formal condition
parameters accepted by the Gypsy function being invoked.

Consider the assignment statement

X := F(X)

Proving Gypsy Programs February 9, 1989 57
A Verification Condition Generator

or

X := F(X) unless (C1, C2)

in the case of a function call with actual condition parameters. The function F can be a predefined Gypsy
function or a user-defined function. For each normal partial path in the call to EP, for n from 1 to
Num.Cond.Params(F), the path is extended by 〈〈ASSUME (exitcase F n) on (X); SIGNAL
cn〉〉, where (exitcase F n) on (X) denotes the appropriate exit specification for F instantiated on
the actual parameter list of the function call, and cn is the actual condition parameter corresponding to the

nth formal condition parameter. Missing actual condition parameters default to ROUTINEERROR or
SPACEERROR, as described in the Gypsy manual [Good 85, section 8.5.3].47

6.6 Whatever Became of Procedure Calls?

Procedure calls are reduced to function calls plus assignment when programs are normalized. This
simplifies path tracing, and makes assignment the only statement form that alters variable bindings. When
we symbolically evaluate the assignment statement, a function reference from the right-hand side is
simply recorded as part of the new binding for the variable named on the left-hand side. This is fine for
user-defined functions and predefined Gypsy functions, as these have definitions available when proving
the VCs, and the function definition can be expanded as part of the proof. But the function definitions
corresponding to the reduced procedure calls are not available during the proof. For these functions, an
explicit ASSUME statement asserting the appropriately instantiated exit specification of the procedure is
inserted immediately after the assignment.

In the Gypsy execution model, EVAL handled function calls on the right-hand side of an assignment
statement by invoking EXECUTE on the extended body of the function. Every execution path through that
body starts at the ENTRY specification and finishes at the EXIT specification. Applying the principle of
abstraction, we can suppress the computational details of the routine body, and simply assume that the
EXIT specification supplies sufficient detail about the result of the function invocation to complete the
proofs. So, for proof purposes, the function call can be reduced to

1. proving the routine’s ENTRY specification (instantiated on the actual parameters),

2. assigning a new symbol to the left-hand side of the assignment,

3. assuming the routine’s EXIT specification (instantiated on the actual parameters, with the
new symbol used above taking the place of RESULT in the EXIT).

This is the actual form that function calls and procedure calls should take in the expanded routine body,
which introduces procedural abstraction into our VCs.

Thus, for the procedure P declared as

procedure P (var x:integer) =
begin
entry x in [0..100];
exit x = x’ + 1;
x := x+1;

end;

the procedure call

47Formal cond parameters are divided into 5 groups: VALUE, ALIAS, COND, SPACE, and ELSE. Missing actual condition
parameters in the SPACE group default to SPACEERROR; all other missing condition parameters default to ROUTINEERROR.

Proving Gypsy Programs February 9, 1989 58
A Verification Condition Generator

P(N);

would expand into

N := P#1(N);

in the expanded body. Adding the entry and exit properties yields

PROVE N in [0..100];
Temp := P#1(N);
ASSUME Temp = N + 1;
N := Temp;

P#1 is a new, previously undefined, function symbol, and Temp is a previously unused variable name.
This expansion allows the proof to use the relation between the input and output values of the VAR
parameter X given in the exit specification of P.

Because procedures need not be deterministic, two distinct calls to the same procedure must not yield
assignment statements that behave identically during symbolic execution. That is, the symbolic
evaluation of the assignment Temp := P#1(N) must behave differently each time it is symbolically
executed, yielding a different symbolic value for Temp each time. We accomplish this by presuming that
the generated function symbols (such as P#1) can be distinguished from function symbols that originally
appeared in the program. Then, each time an assignment statement with one of these distinguished
symbols on the right-hand side is executed symbolically, the distinguished symbol is replaced with
another arbitrary new symbol. Thus, the only information relating the input and output values of the VAR
parameters comes from the exit specification of P, and there is no deterministic relation between the
results of two invocations of P (other than what is stated in the exit specification).

6.7 Generating VCs from Paths

To generate the actual VCs from the paths is a simple matter of symbolically executing the path, emitting
one VC each time a PROVE statement is traversed.

Function: SymEval: Symbolic.Expr × State → Symbolic.Expr.

Definition: (SymEval 〈〈x〉〉 S) ≡ (lookup x S),

where x denotes the name of a Gypsy variable.

Definition: (SymEval 〈〈F(x)〉〉 S) ≡ (subst (SymEval 〈〈x〉〉 S) 〈〈x〉〉 〈〈F(x)〉〉)

Function: subst: Symbolic.Expr × Variable.Name × Symbolic.Expr → Symbolic.Expr.

The function subst substitutes its first argument for all occurrences of its second argument
within its third argument. For example,

(subst 〈〈X〉〉 〈〈Y〉〉 〈〈F(Y)〉〉) would yield 〈〈F(X)〉〉.

Function: Generate.VCs: set.of.paths → set.of.vcs

Definition: (Generate.VCs set.of.paths) ≡
{vc | ∃ p ∈ set.of.paths, vc ∈ (generate.path.vcs p)}

Proving Gypsy Programs February 9, 1989 59
A Verification Condition Generator

Function: generate.path.vcs: path → set.of.vcs

Definition: generate.path.vcs path ≡
(generate.more.vcs empty.set 〈〈TRUE〉〉 empty.state path)

Function: generate.more.vcs: set.of.vcs × boolean.expr × state × path → set.of.vcs

Generate.more.vcs is defined by the following equations:

G0. (generate.more.vcs vcs context state nil) ≡ vcs

G1. (generate.more.vcs vcs state (cons 〈〈X := Y〉〉 path)) ≡
(generate.more.vcs vcs

(alter state
〈〈X〉〉
(SymEval 〈〈Y〉〉 state))

path)

G2. (generate.more.vcs vcs context state (cons 〈〈ASSUME q〉〉 path)) ≡
(generate.more.vcs vcs 〈〈qval AND context〉〉 state path),

where qval = (SymEval 〈〈q〉〉 state).

G3. (generate.more.vcs vcs context state (cons 〈〈PROVE q〉〉 path)) ≡
(generate.more.vcs (union { 〈〈context → qval〉〉 } vcs)

context state path),

where qval = (SymEval 〈〈q〉〉 state).

6.8 Proof of termination

6.8.1 When It Is Required

It may be desirable to prove termination of user routines to avoid certain unpleasantness at execution time.
However, "termination" proofs are required for all definitions of functions that appear in program
specifications. This is so because functions used in specifications and proofs must be well-defined, and
functions whose recursive definitions do not terminate for some values do not yield well-defined results
for those values. Since the proofs use the function defining form contained in the routine’s EXIT
specification, that definition must be shown to yield a well-defined function. The executable body of the
routine can also be analyzed with regard to proving termination of the executable program, but this is not
required for the soundness of the program proof. The following new forms of assertions could easily be
added to facilitate generation of the required additional VCs.

6.8.2 Methods (measure functions, count assertions)

Routines can fail to terminate by entering a non-terminating LOOP statement, or by entering a series of
non-terminating routine calls. Our proof methods must detect either sort of failing.

Proving Gypsy Programs February 9, 1989 60
A Verification Condition Generator

6.8.3 Termination of Loops

Each assertion inside a LOOP statement must be extended by a "count" clause. The syntax for ASSERT
given in [Good 85] is extended from

<assert specification> ::= ASSERT <specification expression>

to

<assert specification> ::= ASSERT <specification expression>
[<count clause>]

<count clause> ::= <non-negative integer expression>
<non-negative integer expression> ::= <expression>

where <non-negative integer expression> is constrained to be an <expression> that
yields a non-negative integer value. When a path starts and ends within a loop, both the beginning and
ending assertions must have count clauses. If the final assertion of the path has a count clause exp2 then
the VCs include additional conclusion exp2 > -1 to be proven. If the initial assertion of the path has a
count clause(exp1), then the additional assumption exp1 > -1 is made at the beginning of the path.
Finally, if both the beginning and ending assertions have count clauses, then the additional conclusion
exp1 < exp2 must be proven. To assure that this decreasing chain cannot be infinite, we must be
assured that the initial count is non-negative. Thus, paths entering a loop can have the form

assert P;
S1;
assert Q count exp2;

and paths within a loop can have the form

assert P count exp1;
S1;
assert Q count exp2;

and paths leaving a loop can have the form

assert P count exp1;
S1;
signal *Leave;
...
assert Q;

The count clauses and the resulting VCs are sufficient to establish loop termination, because the count
clauses determine a strictly decreasing sequence of non-negative integers and any such sequence must be
of finite length.

6.8.4 Termination of Recursive Calls

Since there are only a finite number of routine declarations in a Gypsy program, a non-terminating (i.e.,
infinite) sequence of routine calls must contain some routine an unbounded number of times. We prevent
non-terminating recursion by imposing two requirements. First, all directly recursive routines must have
an additional external specification, called a measure specification. The measure specification is used
similarly to the count clause of a loop assertion, to assure that any sequence of recursive routine calls is
finite. The syntax for <abstract operational specification> is extended to include an
optional <measure specification>, where

<measure specification> ::=
measure <non-negative integer expression>

Proving Gypsy Programs February 9, 1989 61
A Verification Condition Generator

As with all other <external operational specifications>, only global constants and data
parameters can be used as variable identifiers within the measure specification.

The measure specification forms an additional conjunct of the entry specification of the routine, much in
the manner of the count clause in loop assertions. At each call site, it must be proven that the measure
specification instantiated on the routine data parameters of that call yields a non-negative integer value.
Thus, the entry specification assumed at routine entry may be augmented by the additional assumption
that the measure specification instantiated on the routine’s formal parameters yields a non-negative integer
value.

Further, for recursive calls (i.e., when a routine directly calls itself) it must be shown that the value of the
measure specification instantiated on the parameters of the recursive call is strictly less than the value of
the measure specification instantiated with the routine’s formal parameters. Thus, the values of the
measure specification instantiated on the actual parameter values of a sequence of recursive routine calls
must yield a non-negative sequence of integer values. Since all such sequences must be finite, the
sequence of recursive routine calls must be finite.

6.8.5 Mutual Recursion

The argument of the preceding section must apply to all sequences of recursive routine calls, even if calls
to other routines may be interspersed in the sequence. The analysis required to uncover all possible
routine calling sequences that potentially contain indirect recursion is potentially exponential in the
number of routines in the program. This cost is deemed to be more expensive than the benefit of
permitting mutually recursive routines. Therefore, the methods for proving termination of sequential
Gypsy programs assume absence of mutual recursion.48

48The GVE is being extended to detect mutual recursion and to issue a warning that termination proofs will not be valid.

Proving Gypsy Programs February 9, 1989 62
Buffers

Chapter 7

BUFFERS

7.1 What Is an Activation_Id?

A Gypsy program is a collection of program units -- types, functions, procedures, and lemmas. Of these,
only the "routines" -- functions and procedures -- are executable. During execution, the executable
definitions of various routines are invoked, perform the computation described by the routine body,
possibly change the program state, and exit. Such a sequence of actions is called an activation of the
routine. Each time the routine is invoked, it yields a separate and distinct activation of the routine. The
lifetime of a routine activation is that portion of the execution corresponding to computations that are
performed between the invocation of this activation of the routine and the exit from this activation. An
activation is said to be alive during its lifetime, and dead during other portions of program execution.
Note that during the lifetime of an activation there can be other live activations of the same routine,
corresponding to recursive calls beneath this activation or calls to this routine from a parallel process.

An activation_id is a Gypsy object that uniquely identifies a particular activation of a particular routine.
The activation_id is used to identify portions of buffer histories representing buffer operations during the
lifetime of a routine activation.

If an activation of routine P with activation_id P#1 invokes routine Q (creating an activation of routine Q
with activation_id Q#1) during execution, then P#1 is the parent of Q#1, and Q#1 is a child of P#1. The
ancestors of an activation are the set formed by the transitive closure of the parent relation. The
descendants of an activation are the set formed by the transitive closure of the child relation.

7.2 A Model of Activation_Ids

We can model activation_ids as a path identifying a routine activation by listing the routine’s ancestors’
activation_ids together with a unique "invocation count" from its immediate parent.

For example, activation_ids could be defined as an abstract type.

type Activation_id < ... > =
begin
ID : sequence of integer;

end;

The activation_id of the top level procedure invoked in at run time might be (seq: 0). (The Gypsy
notation (seq: 0) denotes a sequence of integers containing the single element 0.) Recall that each
Gypsy routine receives an implicit data parameter of type activation_id under the formal parameter name

Proving Gypsy Programs February 9, 1989 63
Buffers

of MYID [Good 85, section 10.7.1]. Thus, within procedure MAIN the parameter MYID would be bound
to the value (SEQ: 1). Each time MAIN invokes a routine, it will construct a new activation_id by
using the predefined function New_Activation_Id. New_Activation_Id takes two parameters,
an activation_id (i.e., a list of integers), and an integer. It returns a new activation_id, which is formed by
attaching the integer parameter to the end of the activation_id parameter. Thus, New_Activation_Id
might be defined as

function New_Activation_Id
(ID: Activation_id; Ext : integer) : Activation_id =

begin
result = ID <: Ext;

end

The Gypsy operator "<:" adds an element to the right end of a sequence.

Our model also requires some extensions to the extended body of each routine. Each routine must have an
implicitly declared local variable, which is used to count each routine call made in the executable body. If
MAIN is defined by

procedure Main (var B:buf_type)
unless (cond RoutineError, SpaceError) =

begin
var I : integer := 0;

P(B);
loop
Q(B,I+0); { Second parameter must be const,

because I+0 is not a <name expression>.}
if I = 10 then leave end;
I := I + 1;

end;
end

then, the partially expanded definition of MAIN looks like

procedure Main (var B:buf_type; const MYID:activation_id)
unless (cond RoutineError, SpaceError) =

begin
var Invocation_Count# : integer := 0;
var I : integer := 0;

P(B, New_Activation_Id(MYID, Invocation_Count#));
Invocation_Count# := Invocation_Count# + 1;
loop
Q(B, I+0, New_Activation_Id(MYID, Invocation_Count#));
Invocation_Count# := Invocation_Count# + 1;
if I = 10 then leave end;
I := I + 1;

end;
end.

Thus, the activation_id passed to procedure P would be (SEQ: 0 0). The eleven activations of
procedure Q would have activation_ids (SEQ: 0 1) through (SEQ: 0 11). The completely
expanded definition of MAIN would also have to pass unique activation_ids to each function invocation.

Thus, the simple statement

I := I + 2 - 1;

Proving Gypsy Programs February 9, 1989 64
Buffers

with function calls made explicit would expand to

I := INTEGER#SUBTRACT(INTEGER#PLUS(I,2), 1);

Further, with the activation_ids made explicit, it would look like

I := INTEGER#SUBTRACT
(INTEGER#PLUS(I,2,New_Activation_Id(MYID,Invocation_Count#)),
1,
New_Activation_Id(MYID,Invocation_Count# + 1));

Invocation_Count# := Invocation_Count# + 2.

Activation_ids are used to describe elements of buffer histories. Since functions cannot have VAR
parameters, functions cannot affect external buffers. However, functions can use local buffers internally,
and so they are passed activation_ids as well as procedures. To avoid an infinite expansion of a routine
definition, we will permit some predefined functions that do not take an activation_id parameter. (The
predefined function INTEGER#PLUS would not normally require an activation_id parameter. In
particular, none of the functions required to compute new activation_ids can themselves require
activation_id parameters!)49

7.3 Operations on ActivatIon_Ids

In later discussions of activation_ids and buffer histories, the following functions will prove useful.

• Is_Ancestor(A,D)
Is the activation identified by activation_id D a descendant of the activation identified by
activation_id A? (In other words, is activation_id A an initial subsequence of D?)

• All_Ancestors(A)
Produces a list of the activation_ids of all ancestors of activation identified by activation_id
A (i.e., the list of all initial subsequences of A).

7.4 What Is a Buffer?

Gypsy buffers are based on the notion of message buffers as a mechanism to support concurrent process
cooperation [Brinch Hansen 73]. Message buffers are first-in/first-out queues. The basic operations insert
a message at the end of the queue, and remove a message from the head of the queue. Messages are
passed "by value." (Note that Gypsy semantics do not specifically define destructive operations on any
data structures. However, the language allows many operations to be optimized to in-place operations to
improve efficiency.)

Gypsy has no global variables; all variables in a Gypsy routine must either be declared locally or passed in
as parameters. Thus, in order for a routine to have access to a buffer, the buffer must either be declared
locally or passed into the routine as a buffer parameter.

Buffers are the only interprocess communication mechanism available to pass information between
parallel processes. No other objects are shared between processes that can run in parallel. Gypsy does not
include any other process synchronization mechanism (e.g., semaphores, shared variables, monitors,

49The use of "+" and "INTEGER#PLUS" in the above example is meant to distinguish uses of "INTEGER#PLUS" that are
computing new activation_ids from those in the user’s computation.

Proving Gypsy Programs February 9, 1989 65
Buffers

critical regions).50 Since all interprocess communication must be done through message buffers, the flow
of messages between the two parallel processes completely describes the information flow between them.
Gypsy uses just such "buffer histories" to completely describe the interactions between Gypsy routines
executing in parallel.

Message buffers can be declared to be of finite, non-negative length. If a length of N is declared, the
queue of messages in the buffer cannot be longer than N messages. A buffer is said to be "empty" if the
queue has no messages, and is said to be "full" if the queue length is equal to the declared maximum. An
attempt to send a message to a full buffer results in the sending process being "blocked" until the send
operation can complete. When a message is removed from the buffer (by a receive operation), the sending
process can complete the send. Similarly, an attempt to receive a message from an empty buffer results in
the receiving process blocking until a message is sent to the buffer. A buffer may have a length limit of
zero, in which case the buffer acts like a channel in Hoare’s CSP [Hoare 78, Hoare 85], permitting tightly
coupled synchronization between processes. The notion of blocking is the basis of Gypsy methods for
specifying the behavior of non-terminating, concurrent processes. These methods are discussed later.

7.4.1 Critical Region Model of Buffers

Message buffers can be modeled as queues of messages protected by some mechanism to assure mutual
exclusion. For purposes of exposition, and for further investigation of the properties of buffers and buffer
histories, we will describe how to model buffer operations using conditional critical regions [Brinch
Hansen 73]. We will restrict our discussion to buffers without length restrictions. So far, we can model a
buffer as a sequence of messages, a send operation as appending a message on one end, and a receive
operation as removing a message from the other end. Figure 7-1 contains a Pascal-like description that
illustrates these three aspects of the model. Critical regions are represented by the USING statement.
Within the USING statement, exclusive access to a buffer is assured. The conditional critical region tests
a predicate, and only enters the critical region if the predicate is satisfied. If not, it waits until a future
time, and tries again. The form is

USING B_contents WHEN size(B_Contents) ≠ 0 DO ...

This statement waits until size(B_Contents) ≠ 0, and then executes the body of the critical
region. No other process may alter the value of the buffer between the time the predicate succeeds and the
exit of the critical region.

As can be seen, the send operation requires two accesses to the buffer contents, and the receive operation
requires three, so exclusive access must be assured lest other processes’ buffer operations be interleaved
with these accesses. We assume nothing about the scheduling of processes attempting to enter their
critical regions, except that scheduling must be fair.

This simple model does not capture the possibility of a finite length restriction on the buffer contents. We
will ignore this possibility until we discuss non-terminating processes and blockage specifications.

50Gypsy parameter passage is defined here essentially as call-by-value-result for non-buffer parameters. Strictly speaking an
implementation must make copies of constants at routine calls. However, an implementation might optimize the copying required by
call-by-value-result semantics if the resulting call-by-reference yields the same semantic interpretation. Passing buffer parameters to
parallel processes requires call-by-reference at execution time, so that the single buffer object may be shared. Here we describe the
results of procedure calls on buffer parameters. We describe the results of procedure calls on buffer histories, and so avoid having to
model call-by-reference execution explicitly.

Proving Gypsy Programs February 9, 1989 66
Buffers

B_contents : sequence of msg { a buffer B of msg }

Using B_contents do
B_contents := B_contents <: x { send x to B }

Using B_contents When size(B_contents) > 0 do
Y := first(B_Contents); { receive y from B }
B_contents := nonfirst(B_contents);

end

Note: "<:" is the Gypsy operator that adds an element onto the right end of a sequence.

Figure 7-1: First Model of Buffer Operations

7.4.2 Primitive Buffer Operations

There are two basic operations on buffers:

• send a message to a buffer, and

• receive a message from a buffer.

These are the only two operations that affect the value of a buffer (i.e., change the queue of pending
messages in the buffer). Buffers are created with empty message queues, and there is no way to assign a
value to a buffer variable directly.

7.5 Buffer Histories

7.5.1 Functions to Access Buffer Histories

Associated with each Gypsy buffer are histories of all messages that have passed through the buffer.
Thus, the history captures the message traffic through a buffer from the start of program execution until
some point in the execution. Separate histories record the messages sent to a buffer so far (called the
allto history), and the messages received from the buffer so far (called the allfrom history). The
histories are sequences, and the order in which messages are sent to the buffer is preserved. (Recall that
the send operation is atomic, so the order in which messages are sent is meaningful even in the presence
of concurrent processing.) Since messages are removed from the buffer by a first-in/first-out protocol, the
allfrom history must be an initial substring of the allto history. That is, any messages received must
have been received in exactly the order they were sent to the buffer.

Two more aspects of buffer histories that will be needed:

• local versus global histories,

• histories containing "time-stamped" messages.

The distinction between local and global histories is explained below. The need for time-stamps is
discussed in the chapter on concurrency.51

51The semantics of buffer parameter passage are straightforward, even in the presence of concurrency.

Proving Gypsy Programs February 9, 1989 67
Buffers

7.5.2 Global Buffer Histories

Global histories (the allto and allfrom histories) record all input and output activity using a buffer.
The histories are denoted by

allto(B)
and

allfrom(B)

Whenever a send m to B operation is performed anywhere in the Gypsy program, the value of the
message m is added to the end of the allto history. Whenever a receive m1 from B is performed
anywhere in the Gypsy program, the current message at the head of the message queue representing B is
removed from the queue (and m1 is assigned its value), and the message is added to the end of the
allfrom history.

We can now revise our buffer operations model to include updating the global histories as in Figure 7-2.

{ Declare a buffer B of msg }
B : record (contents:sequence of msg;

allto,
allfrom:sequence of msg)

{ send x to B }
Using B do
B.contents := B.contents <: x;
B.allto := B.allto <: x;

end

{ receive y from B }
Using B do
Y := first(B.Contents);
B.contents := nonfirst(B.contents);
B.allfrom := B.allfrom <: Y;

end

Figure 7-2: Model of Buffer Operations with Global Histories

Note that global histories of non-local buffers (i.e., buffers passed in as parameters) behave as shared
variables. To preserve the independence principle in our proofs, we will simulate arbitrary changes to the
shared histories of the buffer by inserting statements explicitly updating the global history (and buffer
contents) between each pair of statements in the routine. Given the unwinding of function calls performed
during normalization, two uses of ALLTO(B) in a statement in the original Gypsy program would be
broken into two distinct assignments to temporaries. Thus, our newly interspersed statements updating
the global buffer histories would cause the expression ALLTO(B) = ALLTO(B) to become (in effect)
ALLTO(B) = ALLTO(B#1). Thus, the nondeterministic nature of global histories of non-local buffers
is accurately reflected in our VCs and proofs.

Proving Gypsy Programs February 9, 1989 68
Buffers

7.5.3 Local Buffer Histories

Local buffer histories (INFROM and OUTTO) only reflect message traffic that has been performed by a
particular routine activation. Buffer operations performed by the routine’s descendants are included in the
routine’s local history, but operations performed by parent routines or siblings are not. A short example
illustrates the basic idea.

Figure 7-3 shows two Gypsy procedures, P and Q. Procedure P calls procedure Q, so let us consider Q
first. The body of procedure Q performs two send operations, and no receive operations. Thus, the
local outto history of buffer B for procedure Q is the sequence [3, 5], and the local infrom history
of B with respect to Q is the null sequence. Procedure P also performs two send operations, but it also
invokes procedure Q. The local outto history with respect to P includes not only the two messages that
it sends directly, but also the messages that its activation of Q causes to be sent. Thus, the local outto
history of B in P is the sequence [2, 3, 5, 7]. Note that the messages appear in the same order in
which they are sent to the buffer. The local infrom history of B for P is null.

type buf_type = buffer of integer;

procedure P (var B : buf_type) =
begin
send 2 to B;
Q(B);
send 7 to B;

end;

procedure Q (var B : buf_type) =
begin
var n : integer;

send 3 to B;
send 5 to B;

end;

Figure 7-3: Small Example of Procedures and Buffers

In our small example in figure 7-3, the behavior of procedure Q is invariant. Thus, the history of
messages sent and received by Q is always the same for each activation of the procedure. In general the
behavior of a procedure varies from activation to activation (perhaps depending on the values of some
data parameters or messages received from some other processes), and the number and content of
messages sent to a buffer can vary from one activation to another. In order to capture this notion in our
histories, we must introduce a mechanism for distinguishing the history associated with one routine
activation from that associated with another. To do this we use activation_ids. An unique activation_id is
associated with each routine activation, and the local histories with respect to a particular activation are
selected using the activation_id associated with that activation. Activations_ids are typically denoted by a
routine name followed by a "#" character and a number. The notation for local histories is

Proving Gypsy Programs February 9, 1989 69
Buffers

infrom(B, Q#1) == local input history of B
with respect to the routine
activation identified by "Q#1",

outto(B, Q#2) == local output history of B
with respect to the routine
activation identified by "Q#2",

where B is a buffer, and Q#1 and Q#2 are activation_ids.

The manipulation of activation_ids by Gypsy programs is restricted. There are no operations available to
Gypsy programmers to construct or decompose activation_ids, or even to compare activation_ids for
equality. User defined routines cannot return results of type activation_id, nor is assignment permitted in
user programs. The only activation_id available for use in specifying a routine is the implicit formal
parameter myid. Thus, specification of the procedure can only be written in terms of a single (generic)
activation.

VC generation can introduce new activation_ids, representing routines invoked by the procedure. More
complete details of the Gypsy procedure call mechanism and activation_ids are discussed in the next
section.

7.5.4 Local Buffer Histories as Records of Mappings

All the local buffer histories are initially null sequences. The values of the local histories are altered by
the SEND and RECEIVE statements, and (as we shall see) by extension they can also be altered by
procedure calls.

The principle of uniform reference allows us to think of the buffer histories as functions of a buffer, or as
record fields in a structured object representing a buffer. The Gypsy Report [Good 85] uses functional
notation. The preceding explanation uses record structures. Buffers can be modeled as a record with a
field for each type of history (infrom, outto, allfrom, allto, and so on) with each of the local
history fields being a Gypsy mapping from Activation_id to a history sequence. The mapping of
Activation_id could equally well be placed above a single record structure composed of all the local
histories for a particular routine activation.52

52Another approach to modeling buffer histories is to have a single history sequence representing the global allto and
allfrom histories, and stamp each message with the activation_id of the routine doing the send or receive. Then local
histories can be extracted by searching for messages with particular activation_id stamps. This requires an operation such as
All_Ancestors, so that the send or receive operation can stamp the message with the activation_id of all ancestors of
the activation, since the message must appear on their local histories. A dual of this is to define a relation Descendant_of, to be
used when extracting local histories so as to include operations performed by descendants of the given activation.

This alternative approach requires an ontological commitment to globally shared objects. The approach presented in the text was
chosen to allow the changes in the histories to be described analogously to other procedure VAR parameters.

Proving Gypsy Programs February 9, 1989 70
Buffers

7.6 Procedure Calls with Buffer Parameters

Basically the procedure call with buffer parameters has the same effect as a primitive SEND or RECEIVE,
except that there may be multiple messages appended to the input and output histories (i.e., the effect of
the procedure call is a composition of the individual effects of the components of the invoked procedure
body). The procedure call

Q(B);

would update buffer histories for a local buffer as:

Using B do
B.allto := B.allto @ outto(B,Q#2);
B.allfrom := b.allfrom @ infrom(B,Q#2);

end

We have not yet introduced concurrency, so the call of procedure Q is effectively a critical region. More
generally, if the buffer is not local but is passed to the routine as a parameter, the update rule within the
procedure would only refer to the local histories. The buffer updates would be:

Using B do
B.outto(myid) := B.outto(myid) @ outto(B,Q#3);
B.infrom(myid) := B.infrom(myid) @ infrom(B,Q#3);

end

The local histories of the parent routine would be updated similarly upon return from this activation.
Updating the global histories requires global knowledge about all processes with access to the buffer. In
the presence of concurrency, such knowledge is only available for local buffers (i.e., buffers declared as
local variables within the routine).

7.7 Writing Specifications about Buffer Histories

Normally specifications are stated in terms of properties of local buffer histories. (You can rarely state
anything about the global buffer histories unless the buffer is declared locally, in which case the local
buffer histories are identical to the global ones.)

Specifications about a procedure’s local histories can appear in external specifications, and are thus
exported into proofs of routines calling the procedure. The references to MYID in the procedure’s external
specifications are converted to refer to an appropriate activation_id when the external specifications
appear in a VC generated in the proof of a calling routine. We have not yet introduced concurrency, so
none of its complications need be addressed yet.

7.8 Summary of Buffers

The functionality and restrictions on Gypsy buffers are summarized below.

A. No assignment operator exists for buffers; only SEND and RECEIVE change buffer contents
and buffer histories.

B. Buffer operations extend histories (i.e., send and receive operations extend the
appropriate input and output history sequences).

C. History extraction functions are well-behaved.

Proving Gypsy Programs February 9, 1989 71
Buffers

i. Global histories are sequences of every message sent to or received from a buffer.

ii. Local histories are sequences of every message sent to or received from a buffer by a
particular activation of a procedure (or any procedure called from it).

iii. Buffer histories have relative-time stamps on messages so that the time-ordered
merge of the local histories of parallel processes can be performed deterministically.

D. The functions FULL and EMPTY apply to buffers. Since only the state of local buffers is
completely determined by a procedure, only the fullness or emptiness of local buffers can be
completely determined by a routine’s execution behavior; for non-local buffers FULL and
EMPTY appear to be non-deterministic tests. FULL and EMPTY are used mainly to describe
instantaneous states in proofs.

E. Global buffer histories and the functions FULL, EMPTY, and CONTENTS represent access to
information shared between concurrent processes when applied to non-local buffers. VCs
containing references to these functions are constructed to treat their values as if they were
nondeterministic.

Proving Gypsy Programs February 9, 1989 72
Concurrency

Chapter 8

CONCURRENCY

Concurrent programming is supported in Gypsy by the COBEGIN statement, which invokes several
procedures in parallel.53 The COBEGIN is treated almost identically to the normal (sequential) procedure
call, with the exception that buffers can be shared between concurrent procedures. This generalization of
the sequential procedure call is fairly clean and straightforward. Since buffers are the only objects shared
between concurrent procedures, only changes in buffer histories are described during concurrent
execution. Gypsy also supports a technique for specifying properties of non-terminating procedures,
using the BLOCK specification.

8.1 COBEGIN - A Generalized Procedure Call

The COBEGIN statement is a strict generalization of the sequential procedure call. The no-aliasing rule is
generalized to cover the several procedure calls, and the order of evaluation of the arguments is defined
for all the procedure calls in the COBEGIN. The COBEGIN terminates when all its called procedures
terminate (just as in the case of a sequential procedure call).

8.1.1 Generalized Aliasing Restriction

In the sequential case, the no-aliasing rule requires that no actual VAR parameter overlap with any other
actual parameter in the procedure call. In the concurrent case, this generalizes to cover all the procedure
calls under a COBEGIN. However, it is relaxed slightly with respect to buffer parameters. The same
buffer may be passed as an actual VAR parameter to several procedure activations under a single
COBEGIN. The relaxation only permits the buffer to be overlapped between distinct procedure
activations within the COBEGIN. Thus, concurrent routines can communicate through the shared buffers,
but no dangerous aliasing is permitted within any of the procedure calls under the COBEGIN.

In summary, the following constraints apply to the set procedure calls in a COBEGIN statement.

• No non-buffer actual VAR parameter may overlap with any other actual parameter.

• No buffer actual VAR parameter may overlap with another actual parameter in the same
routine’s parameter list.

• An actual buffer parameter may overlap with another actual parameter in a different routine
activation -- even if the different activation is of the same procedure (e.g., by means of an

53The AWAIT statement is a non-deterministic CASE statement (poll) of one or more buffer operations. It blocks until one of the
buffer operations can complete, and then executes that buffer operation and the corresponding AWAIT arm. It is a sequential
operation, although it is important in supporting effective concurrent programming.

Proving Gypsy Programs February 9, 1989 73
Concurrency

EACH clause).

8.1.2 Effects Observable During Routine Execution

Buffers can be shared between concurrent processes, and so changes in buffers caused by one process can
be observed by another concurrent process. The sequential Gypsy model updated VAR parameters after
the routine call terminated. This was sufficient for buffers in the sequential case, but is not in the
concurrent case. Note that this simple model is still sufficient for non-buffer (i.e., non-shared) VAR
parameters, because no other concurrent process can refer to the altered values of a procedure’s non-
overlapped VAR parameters before the procedure terminates.54

8.1.3 Termination of the COBEGIN

Just as in the sequential case, a concurrent procedure call can terminate normally or abnormally.

The COBEGIN terminates normally if all the called routines terminate normally. Execution in the calling
routine is suspended until all the called routines have terminated, whereupon execution of the called
routine continues. All the non-shared VAR parameters are updated when the COBEGIN terminates.

The COBEGIN terminates abnormally if all the called routines terminate and one or more of them
terminates abnormally. If exactly one of them terminates abnormally, then the appropriate actual
condition parameter is signalled in the calling environment. If more than one routine terminates
abnormally, then the special condition MULTIPLECOND is signalled in the calling environment.

8.2 The BLOCK Specification for Non-Terminating Procedures

For procedure calls in sequential Gypsy, no provision is made for external procedure specifications that
are visible during procedure execution. Since none of the procedure’s VAR parameters are shared, no
other active routine can observe the intermediate changes of the procedure; the effects are only observable
after the procedure has terminated, and the changes can be observed in the calling environment. In the
presence of concurrency this is no longer the case, as mentioned above.

8.2.1 What BLOCK Specifications Mean

Gypsy BLOCK specifications provide a technique for specifying the external behavior of processes during
their execution. They augment the traditional EXIT specification, which specifies effects after the
process has terminated. BLOCK specifications also allow description of processes that do not normally
terminate. The BLOCK specification must hold whenever a procedure is blocked waiting to complete a
buffer operation. Recursively, a procedure can be blocked waiting for a called procedure to finish a buffer
operation.

54One could argue that use of call-by-reference semantics would lead naturally to immediate reflection of the altered VAR
parameter values into the calling environment, and that that information could be useful in writing BLOCK specifications. However,
given that these VAR parameters cannot be externally observed (since the calling routine is suspended) until the concurrent processes
terminate, this adds no power to either the executable language or the specification language.

Proving Gypsy Programs February 9, 1989 74
Concurrency

8.2.2 Blockage Points

The two primitive buffer operations are SEND and RECEIVE.

• SEND is defined to block or suspend execution of the routine when the destination buffer is
full.

• RECEIVE is defined to block when the source buffer is empty.

BLOCK specifications are intermittent assertions that must hold whenever a SEND or a RECEIVE is
blocked. Since the SEND or RECEIVE blocks before completing, the assertion must hold before the
buffer operation takes place and the buffer histories are updated. Further, since the operation has blocked,
we can assume the "blockage assumption" for the buffer operation (namely, for a RECEIVE that the
source buffer is full, and for a SEND that the destination buffer is empty).

Three other Gypsy constructs are considered to block, as well.

• The AWAIT is defined to block if all the guards of the await arms (i.e., the SEND and
RECEIVE forms) are blocked.

• A sequential procedure call is defined to be blocked if the called procedure is blocked, either
at a SEND, RECEIVE, AWAIT, or another (sequential or concurrent) procedure call.

• A concurrent procedure call (COBEGIN) is defined to be blocked if and only if at least one
of its spawned procedure activations is blocked, and all of the spawned procedure
activations are either blocked or terminated.

The appropriate blockage assumption for the AWAIT statement is a conjunction of the blockage
assumption for each of the guards. In the case of a procedure call, no assumption about the states of
particular buffers can be made, since the particular construct causing the block is not visible externally.
However, the called routine’s BLOCK specification is visible externally, and must hold if the routine is
blocked. Therefore, if a procedure call is blocked, then the appropriately instantiated BLOCK specification
of each called routine can be assumed.

8.2.3 Effects of Modularity on Provable Buffer Properties

Because of enforced modularity in Gypsy, it is not possible to prove that a buffer operation on a non-local
buffer (i.e., a buffer parameter) will not block. To prove that the operation would not block would require
knowledge about the global state of the buffer; either that it was not full, or that it was not empty. Since
other concurrent, external processes can have access to the buffer, it is not possible to prove this sort of
proposition within a Gypsy procedure.55 Further, since we cannot show that an operation on an external
buffer will not block, we are required to verify the blockage specification at each potential blockage point.
This strong proof method is required so that procedures’ proofs depend only on their visible external
specifications.

8.2.4 What If a Routine Doesn’t Block?

The definition of the blockage specification says nothing about the behavior of the procedure if it does not
block. However, knowledge of program behavior can still be derived from the blockage specification.

A. A process can always be "forced to block" by permitting it to execute, but not permitting
other processes to send new input or receive output. In the absence of infinite internal
chatter, or non-termination of sequential portions of the process, it will ultimately block

55It would be possible if the buffer parameter passing mechanism were extended, for example, to pass to a procedure exclusive
input or output rights for a buffer.

Proving Gypsy Programs February 9, 1989 75
Concurrency

trying to send or receive to an external buffer.

B. Buffer histories can be extended by a procedure, but previous history information cannot be
altered. Blockage specifications often serve as inductive loop invariants, describing ongoing
behavior of a procedure. When used in this way as inductive assertions, blockage
specifications must be preserved through the body of the loop, because the histories cannot
be "fixed up" after the fact.

Note, however, that use of a blockage specification as a loop invariant permits one
"indiscreet" buffer operation. Since the blockage proofs are done before the buffer operation
completes, they refer to the buffer history before the relevant send or receive is done.
The blockage specification is only proven of the buffer history after the operation completes,
and only if there is another potential blockage point after it. There is no other blockage
point if the procedure exits, or enters a non-terminating loop. In either case, the blockage
specification is never proven on the final buffer histories. In the case of procedure exit, the
exit specification would normally include an assertion about the final buffer histories. The
proof methods for proving sequential termination can identify the potential trouble spot for
the non-terminating loop.

Contrasted with Process Invariants

Blockage specifications are very similar to process invariants. Both are proven precisely when an
externally visible change of state is about to take place. Invariants are usually thought to be proven just
after the state change, whereas blockage specifications are thought of as being proven just before the state
change. However, since none of the program operations between the state changes are externally visible,
these "before" and "after" points appear to be indistinguishable.

Blockage proofs do make an additional assumption compared to simple invariants: they assume the
emptiness or fullness of a particular buffer. This permits blockage specifications to be formulated as loop
invariants and to distinguish between the various potential blockage points within a loop. A simple
example illustrates.

procedure pass_it_on (in, out : buffer);
begin
block empty(in) -> outto(out,myid) = infrom(in,myid);
var m : message;

loop
receive m from in;
send m to out;

end;
end

The process invariant for pass_it_on would have to deal with the two separate blockage points, and
the "off by one" lag of the output buffer history.

8.3 Hierarchical Proof of BLOCK Specifications

BLOCK specifications are quite similar to EXIT specifications. The BLOCK specification of a procedure
is introduced into VCs by procedure call statements, just as the EXIT specification is. However, whereas
the EXIT specification is normally associated with an implicit assumption that the procedure terminated,
the BLOCK specification is associated with an explicit predicate that the procedure blocked.

Proving Gypsy Programs February 9, 1989 76
Concurrency

8.3.1 Blockage Assumption at Procedure Calls

If a sequential procedure call is blocked, then we know that the blockage specification of the called
procedure must hold. Blockage of a concurrent procedure call is slightly more complex. A COBEGIN
blocks if at least one of the called procedures is blocked, and the other called procedures are all either
blocked or terminated. Thus, the blockage assumption for a COBEGIN is that for each procedure either its
blockage specification or its exit specification holds, and that at least one procedure is blocked, rather than
terminated. We introduce the predicate IsBlocked to identify activation_ids of blocked procedures.

Here is a simple example. For this procedure call

cobegin
P(a,b);
Q(b,c);

end

the blockage assumption would be

if Is_Blocked(P#1)
then P#Block(a,b)
else P#Exit(a,b)

if
& if Is_Blocked(Q#1)

then Q#Block(b,c)
else Q#Exit(b,c)

if
& (Is_Blocked(P#1) or Is_Blocked(Q#1))

P#1 represents the activation_id of this activation of procedure P, and P#Block and P#Exit represent
the blockage specification and exit specification of P, respectively. The function argument notation
indicates that the specifications are instantiated with the actual parameters of the procedure call. Similar
notation is used for procedure Q.

8.3.2 Buffer States in COBEGIN Blockage

In principle each procedure under the cobegin can terminate in a different state, and so the different
blockage and exit specifications mentioned above might have to be instantiated in different states for the
proof to be valid. However, Gypsy’s parameter passing rules avoid this difficulty. All the blocked
routines share a common state, of course. We need only worry that the terminated routines may have
terminated in different states. We observe that:

• Non-buffer VAR parameters cannot be shared between concurrent procedures.

• Only properties of local buffer histories can be proven within the proof of the individual
procedures (and hence only those properties can appear in provable external block or exit
specifications).

These observations permit us to ignore the distinctions between the various states on which the procedure
specifications need be instantiated, and to use a single state when constructing the blockage assumption.
In this single state the value of each non-buffer VAR parameter is specified by the BLOCK or EXIT
specification of a single procedure (at most). Further, since provable BLOCK and EXIT specifications of
the called procedures can only refer to their own local histories, these imported specifications cannot be
affected by any state changes caused by the other concurrent routines.

Proving Gypsy Programs February 9, 1989 77
Concurrency

8.4 An Example

Histories and subsequence relations are convenient for specifying some properties for programs.
However, some programs are awkward to specify in Gypsy. Consider a distributed version of factorial.

function fact (n:integer) : integer =
begin
entry n > 0;
exit result = factorial(n);

local b:buffer_of_integer;

send 1 to b;
cobegin
each i:[1..n], multiply_by_i (i, b);

end;
receive result from b;
assert size(allfrom(b)) = n+1

& size(allto(b)) = n+1
& last(allfrom(b)) = factorial(n);

end;

procedure multiply_by_i (i:integer; b:buffer_of_integer);
begin
exit first(outto(b,myid)) = first(infrom(b,myid))*i

& size(outto(b,myid) = 1
& size(infrom(b,myid) = 1;

var partial:integer;

receive partial from b;
send i*partial to b;

end;

function factorial (n:integer) : integer =
begin
entry n > 0;
exit assume Result = (if n=1 then 1

else n * factorial(n-1) fi);
end;

The correctness of this program depends on some subtle properties of history equality. There is nothing
constraining multiply_by_i from sending a result to b before reading its "input" from b. The
constraint is merely that the appropriate relation holds between the input and output. The following
theorem provides the basis for proving the correctness of such distributed descriptions of essentially
sequential computations.

8.4.1 Adequacy of Buffer Histories

The proof in this section shows that Gypsy buffer histories are adequate to prove properties of a broad
class of concurrent programs beyond the usual message routers, multiplexers, and filters that are common
Gypsy applications. The formulation of this theorem and its proof were assisted by Bob Boyer, J Moore,
Natarajan Shankar, and Don Stuart. Their intellectual curiosity and enthusiasm is greatly appreciated.

Consider a Gypsy program with the form of the distributed factorial example. Let the subprocedure
compute a commutative function F. The buffer history is a sequence of elements [seq: 1, F(1),

Proving Gypsy Programs February 9, 1989 78
Concurrency

F(F(1)), ...]. The last element of the history is Fn(1). The following theorem shows that this must
be true, even though we do not know the order of execution of the concurrent procedure calls under the
COBEGIN.

Theorem:

If inhistories is a permutation of y1,y2...,yn,
and outhistories is a permutation of F(y1),...,F(yn),
and inhistories <: result = 1 :> outhistories,
and ∀x, ∀ i > 0, Fi(x) ≠ x,

then result = Fn(1).

Recall that the Gypsy operator ":>" denotes adding one element to the left of a sequence, and that ":<"
denotes adding one element to the right.
Proof: The sequence equality inhistories <: result = 1 :> outhistories yields n+1 equalities of the form:

1=z1
F(zi1

)=z2

F(zi2
)=z3

.

.

.
F(zin

)=result,

such that ∀i, zi appears on the right-hand side of only one equality and on the left-hand side of only one
equality. Thus all the subscripts ij are unique, and in the range [1..n].
Now, starting from the equation F(zin

)=result, find the one equation which has zin
on its right-hand side.

Call this the candidate equation. Substitute the left-hand side of the candidate equation for its right-hand
side in the original equation. Repeat this process, substituting for the zi term so long as any zi appears in
the expanded form of the original equation.

Observe that an equation can be used as the candidate equation only once. This follows because its
right-hand side occurred in the left-hand side of exactly one other equation. It must have been some other
equation, because F(x) ≠ x by hypothesis. Its right-hand side was introduced by some previous
substitution (or it was in the original equation), and it was eliminated by this substitution. Its right-hand
side cannot be reintroduced into the expanded equation, because any substitution that would introduce it
has already been used and discarded. Thus, the substitution process must terminate.

Further, we must use each of the equations. If we do not use some equation (call it equation A), then there
must be a chain of substitutions from the original equation to the equation 1=z1 that does not involve
equation A. Equation A is of the form F(zij

)=zj, for some j. Thus, the chain of substitutions from the

original equation must not ever contain the term zj, since it could never be removed by a substitution other
than equation A. We know that ij ≠ j, since F(x) ≠ x. Further, zij

could not have been introduced by any

substitution in the chain, since it occurs only on the left-hand side of equation A. Thus, there is another
equation (call it B) of the form F(zii

j

)=zij
, which could not have been used in the chain. Thus, the equation

right-hand side zii
j

could not have been used in the chain either. In this manner, we can construct a chain

of equations that do not occur in the chain of substitutions.

Since there are only a finite number of equations to start with, our chain of unused equations must be
finite. The process of constructing the chain of unused equations can only terminate by using the equation

Proving Gypsy Programs February 9, 1989 79
Concurrency

1=z1, or by looping back to another unused equation. It cannot loop back, because that would mean that

for some i and j, Fi(zj) = zj. Thus, the chain of unused equations must end with 1=z1. But this is
impossible, since the chain of substitutions in the original equation must have ended here (since it
terminated, it could not loop.)

Since the substitution process does terminate, we must end up with result=Fi(1). QED.

The theorem and proof can be generalized for functions F1,F2,...,Fn to show that result is equal to some

sequence of applications of Fi’s applied to 1, or any initial value. The restriction that Fi(x) ≠ x can also be
removed, if a slightly more complex argument is used concerning loops in the substitutions.

8.5 Global Histories as Shared Variables

Buffers can be shared between concurrent processes. Hence, the buffer contents, and the global buffer
histories behave as nondeterministic functions, since their values are affected by actions outside the local
procedure. We can simulate these nondeterministic changes by explicitly updating the global histories to
reflect arbitrary actions by external processes before and after each statement in the procedure body.
Since histories grow as extensions of previous histories, these updates must extend the histories
appropriately with unknown (possibly empty) message sequences.

8.6 Effects of Concurrent Procedure Calls on Buffers

Since COBEGIN is a generalization of the sequential procedure call, the effect of a COBEGIN on buffer
histories should be a generalization of the effect of a sequential procedure call. This is, indeed, the case.
Just as for a normal procedure call, the local buffer histories are updated by appending the messages sent
and received by the routines activated by the COBEGIN. But this is not enough information. Consider

COBEGIN
P(B);
Q(B);

END

OUTTO(B,MYID) is clearly updated by appending some shuffle of OUTTO(B,P#1), and
OUTTO(B,Q#1). The precise ordering of the shuffle depends on the interleaving of the concurrent
execution. This could be specified by

∃ S,
is_shuffle(S, [bag: OUTTO(B,P#1), OUTTO(B,Q#1)])

& OUTTO(B,MYID) = previous_OUTTO @ S

where "[bag: x, y]" denotes construction of a bag, or multiset. This formulation was used in the
proof methods for Gypsy 1.0, and continually dealing with the existential quantifier became awkward in
proofs.

The existential quantifier is needed in this formulation because the shuffle of the histories is
nondeterministic. We can eliminate the quantifier if we can make the shuffle deterministic. Since the
order of the shuffle is determined by the order of interleaving of the SEND and RECEIVE operations, we
choose to extend the buffer histories to include time stamps. Each element of the input or output history is
paired with an integer value indicating the "time" at which the buffer operation took place. These time
stamps need not be chosen to reflect real time, but need only reflect the relative sequence of input and
output events. Thus, a buffer history has the invariant property that the time stamps increase

Proving Gypsy Programs February 9, 1989 80
Concurrency

monotonically from the earliest element of the history to the latest, and no two distinct elements have the
same time stamp. These extended, time stamped local histories are accessed by functions
TIMEDINFROM and TIMEDOUTTO. The extended global histories are accessed by TIMEDALLFROM
and TIMEDALLTO. All four functions take the same arguments as the corresponding non-extended
history functions.

Without knowing anything about the actual interleaving of SEND and RECEIVE operations, we can now
specify the incremental change to the buffer history across a COBEGIN.

TIMEDOUTTO(B,MYID) = previous_TIMEDOUTTO
@ TimedMerge(TIMEDOUTTO(B,P#1),

TIMEDOUTTO(B,Q#1))

where TimedMerge merges two time-stamped history sequences according to the order of the time
stamps. We can do this without loss of generality, because nothing about the order of the time stamps has
been specified. The TimedMerge expression above has a well-defined value; we simply do not know
precisely what it is. Of course, the exit specifications of P and Q must also hold at this point. Typically,
those specifications will state some properties of the local buffer histories of their respective routine
activations.

Additional examples and explanation have been published elsewhere [Good 79].

8.7 Treating Blockage as an Exit

So far, the discussion of the effects of procedure calls (both sequential and concurrent) on buffer histories
have been described after the procedure calls have completed, in terms of the incremental change to the
local history in the calling environment. One appealing aspect of this description is that the SEND and
RECEIVE operations can be specified solely with respect to their effect on the local histories.

Any simple operational model of concurrency requires considerable detail to describe the interleaving of
operations under a COBEGIN. Although we benefited initially from having a VC generation model based
on an operational model, we can now benefit by divorcing the two. Specifically, blockage is treated as a
separate kind of "exit" from the COBEGIN. The local buffer histories are updated from the histories of the
called routines, just as they would be if the COBEGIN terminated. This is essentially taking a snapshot of
the incremental changes due to the COBEGIN up to the point of blockage. These updated histories, along
with the BLOCK specifications of the called routines, would be used to prove the BLOCK specification of
the calling routine. The proof of the BLOCK specification permits the blockage assumption and the
BLOCK specifications of the subroutines to be assumed, so a separate path with the appropriate
assumptions is generated. Normal symbolic execution of the path yields the required blockage VCs. This
pseudo-path does correspond, in some fashion, to the partial execution of the COBEGIN.

Proving Gypsy Programs February 9, 1989 81
Proof of Abstract Data Types

Chapter 9

PROOF OF ABSTRACT DATA TYPES

The data abstraction mechanism is entirely orthogonal to the execution semantics of Gypsy. Gypsy
abstract data types provide a way to enforce independence of proofs and routine definitions from the
concrete implementation details of the data types in terms of primitive Gypsy data structures. This
independence applies to both executable code and specifications within the program.56

Basically, abstract data types provide the three following capabilities in Gypsy:

• hiding concrete data representations through visibility rules for data type definitions, and
specifications dealing with the concrete representation of a type,

• proof of concrete data invariants, and

• user-defined equality over abstract types.

9.1 Abstract Type Declarations

A data type declaration denotes an abstract data type, if the declaration includes an "access list" of
"privileged units" (procedures, functions, lemmas). The details of the type definition can only be used
within the units (functions, procedures, and lemmas) named in the access list. The type definition defines
the concrete values of the type. The abstract type name denotes a new, non-decomposable type in
contexts in which the concrete details of the type definition are hidden. The privileged units are said to
have concrete access to the type, and are called concrete manipulation routines or, sometimes, concrete
access functions.

Consider a simple abstract type definition.

type stack <push, pop, top, is_empty, empty_stack> =
record (i:integer[0..max_size];

a:array (integer[1..max_size]) of integer);

type array_and_index =
record (i:integer[0..max_stack_size];

a:array (integer[1..max_size]) of integer);

The abstract data type stack is implemented as an array with an index. Only the privileged routines
push, pop, top, and is_empty can make use of knowledge of that implementation. Within those

56The Gypsy verification environment also applies this to proofs. Details about concrete representations are only permitted in
proofs in accordance with the visibility "rights" of the program unit being proven.

Proving Gypsy Programs February 9, 1989 82
Proof of Abstract Data Types

routines, the internal definition of type stack is visible, and is considered to be a type consistent with
any other record structure of similar concrete definition, such as array_and_index. In any other
context, where the details of type stack are not visible, types stack and array_and_index would
not be considered consistent.57

9.2 Abstract Versus Concrete Specifications

The external operational specifications of a routine includes the externally visible ENTRY and EXIT
specifications. These are abstract specifications, and cannot decompose objects of abstract types. The
header also includes concrete versions of the ENTRY and EXIT specifications, the CENTRY and CEXIT.
Within the concrete external specifications and within the body of a routine with concrete access, the
concrete representation of an abstract data type can be revealed and used.

The CENTRY and CEXIT specifications are used to factor the proof of the concrete access routine. Using
the notation of Hoare axioms, the proof of the routine body can be factored as

ENTRY → CENTRY
& CENTRY { routine_body } CEXIT58

& CEXIT → EXIT.

Thus, the proof of the routine_body can be done entirely at the concrete level, with the proof of the
mapping, from abstract to concrete specifications, handled separately.

There is also a CBLOCK specification, a concrete analog of the BLOCK specification. It is required that

CBLOCK → BLOCK.

9.2.1 External use of CEXIT and CBLOCK

Assume that two routines, R1 and R2, have concrete access to abstract type T1, and that R1 calls R2.
Then, whenever the EXIT or BLOCK specification of R2 would be used in constructing a VC for R1, the
CEXIT or CBLOCK specification is to be used. If R2 does not have a CEXIT specification, then the
EXIT specification is still used. Similarly, the BLOCK is used if R2 has no CBLOCK.

The more general case is that a routine, R3, has concrete access to a set of abstract types {A1, A2, ...
Am}, and a routine, R4, has concrete access to another set of abstract types {B1, B2, ... Bn}. The
concrete external specifications of R3 are visible to R4 when the set of Ai’s is a subset of the set of Bj’s.
In other words, the concrete external specifications of R3 can be used in the VCs and proof of R4 when
those specifications can only contain the concrete implementation details of abstract data types to which
R4 already has access.

The definition of a specification function can appear in either the EXIT or the CEXIT. Of course, if both
are present they must be consistent, since we prove the formula CEXIT → EXIT. When function
definitions are expanded in proofs, the normal rules for visibility of the CEXIT apply. The definition
from a CEXIT specification is used in preference to one in the EXIT specification when both are present

57Type consistency is required between actual parameters and formal parameters in routine calls. See the Gypsy 2.1 Report,
Section 5.9.2, for details on type consistency.

58This represents the VCs of the routine body from the CENTRY to the CEXIT. This notation, reminiscent of Hoare’s notation in
[Hoare 69], is equivalent to (generate.vcs (fp extended.routine.body)), where extended.routine.body is
the extended routine body using only the concrete external specifications.

Proving Gypsy Programs February 9, 1989 83
Proof of Abstract Data Types

and visible.

9.2.2 Lemmas and Data Abstraction

Lemmas about abstract data objects must always be stated without reference to the concrete structure of
the type. Thus, the lemma can be used in any context, regardless of visibility of the data representation.
If the name of a lemma appears in the access list of an abstract type declaration, it signifies that the proof
of the lemma can depend on the concrete structure of the type, and that expansion of function definitions
in the proof can use the appropriate CEXIT forms.

9.2.3 The INITIALLY Specification

All type definitions in Gypsy specify an initial value for objects of that type. Each of the primitive Gypsy
data types has a default initial value. If there is no explicit initial value specification in a type declaration,
then appropriate default initial values are inherited from primitive constituents of the type. For example,
the individual elements of an array of integers would each have the default initial value from type integer
(namely, zero). This default initial value can be overridden by an explicit value assignment in the type
declaration, such as

type my_integer = integer := 13;
type my_array = array (integer[1..max_size]) of my_integer;

which declares type my_array with elements whose initial values would be 13.

Abstract data type declarations have concrete initial values that are determined in the same way as any
other data type declaration. The optional INITIALLY specification allows an abstract specification of
the initial value. Let us again consider stacks.

type stack initially (empty_stack)
<push, pop, top, is_empty, empty_stack> =

record (i:integer[0..max_size] := 0;
a:array (integer[1..max_size]) of integer);

function empty_stack : stack =
begin
cexit result.i = 0

& all i:[1..max_size], result.a[i]=0;
pending;59

end;

This declaration specifies that the initial value of the i field of the record is 0, representing an empty
stack. The function empty_stack is defined, which constructs an empty stack. The declaration of
stack says that the concrete initial value of an object of type stack corresponds to the result of the
abstract stack function empty_stack. Thus, routines that deal with stack at the abstract level can
deal with stacks in their initial state. It must be proven that the abstract initial value, identified by the
INITIALLY specification, and the concrete initial value, given implicitly or explicitly as part of the
concrete definition of the type, are equivalent. Thus, in this case we must prove (with full visibility of the
concrete structure of stacks) that

empty_stack = initial(stack)

where initial(stack) denotes the concrete initial value for type stack. Expanding the equality by

59The Gypsy keyword PENDING indicates that the executable body of this routine has been left out.

Proving Gypsy Programs February 9, 1989 84
Proof of Abstract Data Types

decomposing the record into its two component fields results in the form which must be proven.

empty_stack.i = 0
& all k:integer[1..max_size], empty_stack.a[k] = 0.

The function empty_stack is parameterless and returns a stack. The Gypsy expression
empty_stack.i denotes the i field of the resulting stack.

The predefined Gypsy function INITIAL maps a type name into its default initial value. This is either
the abstract initial value or the concrete initial value, depending on whether the concrete structure is
visible in the given context. There will not be an explicit abstract representation of the abstract initial
value if there is not an INITIALLY specification in the type declaration. If an abstract type declaration
for type T specifies "INITIALLY (<exp>)", then we must verify that

<exp> = INITIAL(T),

where "INITIAL(T)" denotes the concrete initial value for T. The equality operator denotes abstract
equality, if an abstract equality function is defined. Otherwise concrete equality, which is a stronger
equivalence relation, is used.

9.3 Proof of Concrete Invariants

Gypsy expresses concrete data invariants with the HOLD specification. For example, we can define an
abstract type well_formed_state that is represented as a system_state with the additional
constraint that well_formed must hold on all values of well_formed_state. This constraint is
expressed as a restriction on the concrete values of the type system_state that are proper values of the
type well_formed_state. This can be expressed in Gypsy as

type well_formed_state <Read_State, Write_State> =
begin
S: system_state;
HOLD well_formed(S);

end;

Note that the HOLD specification is defined for the concrete representation of the abstract type.

9.3.1 Proving the HOLD specification

The HOLD specification must be proven for the initial value of an abstract type, and whenever a new
abstract value is constructed. New abstract values are constructed from concrete values at the boundaries
of a concrete access routine. These are the points at which the value ceases to be viewed as a concrete
value, and assumes the role of an abstract value. Thus, the HOLD specification of a type T is added to the
CEXIT specification of a routine R if R is included in the access list of T.60 The HOLD specification must
be instantiated for each of the VAR parameters of R declared to be of type T. For function declarations,
the reserved identifier RESULT, used to identify the result of a function, must be treated in the same way.

The HOLD specification must also be proven when a concrete access routine R calls a routine R1 that has a
parameter whose formal type is the abstract type T. This is also a "boundary" of R at which the concrete
value assumes the role of an abstract value. Note that within a concrete access routine the concrete

60This can also be proved by requiring the stronger statement that CEXIT → HOLD. This stronger formulation can have
advantages in factoring the proofs, and in forcing the CEXIT specification to capture a stronger specification of the routine. The
GVE actually produces a VC of this form, with additional hypotheses asserting the ENTRY and HOLD specifications on the initial
values of the parameters.

Proving Gypsy Programs February 9, 1989 85
Proof of Abstract Data Types

representation of the abstract value can be manipulated, and the invariant need not hold. Thus, the HOLD
must be verified whenever a value is passed out of the context of the concrete manipulation routine. This
requirement applies to the predefined Gypsy send61 routine, as well as user-defined routines. If a buffer
is declared to have elements of an abstract type, then the HOLD specification must be proven for any
messages sent to the buffer.

9.3.2 Using the HOLD Specification in Proofs

Given that the HOLD specification is required to be satisfied at the points described, it can be assumed to
be satisfied for any abstract value passed to a concrete manipulation routine. That is, for each formal
parameter of R declared to be of an abstract type, the HOLD for that abstract type instantiated on that
parameter name can be assumed along with the ENTRY specification in the proof of R.62

9.4 Equality on Abstract Types

Equality is defined for the primitive Gypsy data types, and equality on structured types (i.e., arrays,
records, sequences, sets, and mappings) are defined by appropriately composing the equality relation on
the element types. Structured objects are equal if they are type consistent and all the corresponding
elements are equal (recursively).63

When an abstract data type is defined, no equality relation is automatically available. If equality is
needed, an explicit equality function for the abstract data type can be defined. The defining form looks
like:

function T_equal extends "=" (x,y : T) : boolean = ...

The string extends "=" indicates that this function is intended to define equality for an abstract type.
An abstract equality function must be a function of two arguments, both of the abstract type; it must be a
boolean-valued function; it must be named on the access list of the abstract data type (so as to have access
to the concrete structure of the type). These functions are called equality extension functions or abstract
equality functions.

If an abstract type does not have an equality extension function defined for it, then the use of "=" in a
context that would call the equality extension (i.e., a context without concrete access) is a call to an
undefined function.

Observe that a number of the predefined Gypsy operations implicitly require the use of equality. Such
operations as union, intersection, and membership (the Gypsy in operator) require that equality be
defined for elements of the set or mapping.64

61The procedure call statement for send has a special statement form. The HOLD specification must be proven when a message is
sent to a buffer whose elements contain abstract objects.

62This could be handled equally well by adding the instantiated HOLD specifications to both the ENTRY and CENTRY. Thus, the
proof ENTRY → CENTRY would still be possible, and the CENTRY would not have to restate the HOLD specification.

63For arrays and records, the elements of the structured value are selected by the regular element selectors, and equality for the
element type is used. For sequences and mappings universal quantification is used to range over the appropriate selector expressions
(i.e., the range [1..size(s)] for a sequence s, and the set domain(m) for a mapping m). For sets defined the quantification is
over all members of the set, using the Gypsy membership operator (IN).

64Details of the consequences of this problem, and the GVE implementation to handle it, are given in ICS Internal Note #209,
"Gypsy Data Abstraction", by Larry Akers.

Proving Gypsy Programs February 9, 1989 86
Proof of Abstract Data Types

9.4.1 Proof of Equivalence Relation

An equality extension function must be an equivalence relation. That is, it must be symmetric, transitive,
and reflexive, and also satisfy the substitution property. The substitution property can be stated as,

Substituting an equal value for any term in an expression does not change the
meaning of that expression.

Thus, for every function F that has concrete access to the abstract type T, it must be proven that

all x,y:T,
all a:T1,

T_equal(x,y)
& F_entry(x,a)
& F_entry(y,a)

→ F(x,a) = F(y,a)

F is assumed to take a second parameter of type T1. If type T1 were also an abstract type, it would
similarly be necessary to prove

all u,v:T1,
all b:T,

T1_equal(u,v)
& F_entry(b,u)
& F_entry(b,v)

→ F(b,u) = F(b,v),

assuming that T1_equal is the equality extension for T1. These two theorems are sufficient to show
that

all x,y:T,
all u,v:T1,

T_equal(x,y)
& T1_equal(u,v)
& F_entry(x,u)
& F_entry(y,u)

→ F(x,u) = F(y,v).

This property also states that all concrete access functions behave as deterministic functions at the abstract
level. Thus no concrete access function can reveal information about the concrete value representing an
abstract value that would distinguish that value from any other concrete value that is abstractly equal to it.
Such information can be revealed, however, by procedures, since procedures are not required to behave
deterministically.

9.4.2 Overloading of the Equality Operator (=)

For concrete types the equality operator ("=") is used to denote the appropriate equality function for any
particular type. There is no ambiguity in this overloading because the same equality function handles all
types that have the same "base type," and the arguments of the equality operator are required to have the
same base type.65

Within the context of concrete manipulation routines where the concrete structure is visible (the CENTRY,
CEXIT, and body of the routine), the equality operator denotes equality of the concrete data type. The

65The base type of a type CT has the same composition of primitive types as CT, but with some size restrictions are removed. See
the Gypsy 2.1 [Good 85] manual for details.

Proving Gypsy Programs February 9, 1989 87
Proof of Abstract Data Types

abstract equality function can be called explicitly if needed. In any other context, equality operator
denotes the abstract equality function. (Of course, use of equality operator to denote abstract equality is
not permitted unless an equality extension function has been declared.) Again, there is no ambiguity in
this overloading of equality operator.

If a function definition is to be expanded during a proof, care must be taken to assure that the meaning of
the equality operator is preserved. Consider the case of expanding the definition of a function F in the
proof of a routine R. Let FADTs be the set of abstract data types to which F has concrete access, and
RADTs be similarly defined for R. The unloading rules fall into three cases:

FADTs = RADTs The equality operator always denotes the same equality function in both F and
R, so no unloading is necessary. The definition can be taken from the CEXIT
if there is one. If the definition comes from the EXIT, then the equality
operator denotes abstract equality, and any use of equality on an object whose
type is in RADTs must be changed to an explicit call to the abstract equality
function.

FADTs ⊂ RADTs The definition can be taken from the CEXIT if there is one. If the definition is
taken from the EXIT specification, then unloading is the same as the previous
case. If the definition comes from a CEXIT, then the equality operator need
only be unloaded for those types in RADTs but not in FADTs.

Anything else. The definition must be taken from the EXIT specification. All uses of the
equality operator denote abstract equality, and must be unloaded for all types in
RADTs.

Observe that, in general, for n abstract data types there can be as many as 2n distinct equality relations. A
distinct equality extension function is permitted for each abstract type. The additional equality functions
are defined implicitly by composing the semi-abstract (or semi-concrete) equality functions necessary in a
context that has concrete access of some subset of the n data types from the abstract equality functions and
the definition of concrete equality on the visible portions of the data structure. To see that this is
necessary, consider n abstract data types, each with an abstract equality function. Now consider a
concrete data type CT, that is a record structure with n fields, each one being declared as a different one of
the n abstract types. Since each of the abstract types has a separate concrete access list, a given routine
can be named on any subset of the n abstract types. In each routine the equality operator will denote
equality for the concrete record structure, which decomposes into equality for each of the fields of the
record. But equality for an individual field can either be abstract equality or concrete equality, depending
on whether the routine is named in the concrete access list of the type declaration for the type of that field.
This causes no problem, as the equality operator is always unambiguous, and whenever an equality is
imported from a specification into a proof, the proper equality relation can be expressed explicitly in the
proof context. Several levels of the concrete structure of a type may have to be decomposed explicitly to
do this. For example, if R1 and R2 are record structures with two fields, the equality

R1 = R2

might become

R1.A = R2.A
& Abstract_Equality_Fn(R1.B, R2.B).

This observation poses no problem in soundness, but does require some care in doing proofs involving
abstract data types.

Proving Gypsy Programs February 9, 1989 88
Proposed Language Changes

Chapter 10

PROPOSED LANGUAGE CHANGES

Based on the work done developing the proof methods for Gypsy, some language extensions are
proposed. None of these proposals are a radical departure from the existing Gypsy language. The COUNT
and MEASURE specifications extend the power of the specification language. The other proposals merely
ease some syntactic restraints, perhaps adding a little clarity to some styles of programming, without
adding any new power.

10.1 Additional Assertion Types

User-supplied assertions in Gypsy programs support generation of verification conditions. ASSERT
statements annotate the procedural body of a routine and, in conjunction with control statements, define
paths for verification condition generation. The ASSERT statement is the only way a user can specify that
some property of the program is to be verified or assumed at a particular point in the program. (The
KEEP, HOLD, and BLOCK specifications specify a property to be proven at a number of points in the
program.) The key property of the ASSERT statement is that it indicates a path break when the linear path
segments are constructed.

For this reason, a predicate describing all desired properties of the program state should be present in the
current ASSERT statement. (Any information left out of the assertion is not included in verification
conditions concerning that program state.) (A simple extension to this type of assertion eases the problem
of annotating programs.)

The current ASSERT statement comes in the following flavors:

• ASSERT PROVE <boolean exp> [otherwise C]

• ASSERT ASSUME <boolean exp> [otherwise C]
Both forms of the ASSERT statement "break paths" in the verification condition generation process. They
differ in whether the boolean expression appears in the conclusion of a verification condition.
("Assumed" assertions only appear as hypotheses in generated verification conditions.)

The proposed extensions are to introduce two new flavors of assertions that do not break paths in the
verification condition generation process.

• PROVE ... [otherwise C]

• ASSUME ... [otherwise C]

These assertions are "proved" or "assumed" during the generation of verification conditions, just as for the
ASSERT statement. However, since they do not break paths, they provide a new mechanism for the user.

Proving Gypsy Programs February 9, 1989 89
Proposed Language Changes

The ASSUME statement can be used at a particular point in a routine body to add knowledge concerning
the program state at that point. The PROVE statement can be used to force a verification condition with a
specific conclusion, effectively letting the user split a subgoal from the proof of a verification condition.
This mechanism can help the user annotate the program with useful observations, or, allow some program
analysis components to insert PROVE statements mechanically to construct proofs of various program
properties.

The Gypsy optimizer [McHugh 83] is an example of a program analysis component that could make good
use of mechanically inserting PROVE statements. The optimizer could annotate a program with PROVE
statements requesting that various overflow and error conditions not occur. In fact the optimizer should
generate "optimization conditions" -- "verification condition-like" proposed theorems that should be
passed through the proof process, but relate to the optimization of a program, rather than directly to its
verification. To draw this distinction, we could extend the PROVE statement to accept a string identifying
the "type" of proposed theorem to be generated. For example,

PROVE "for optimization" ... ;

The language definition might include some specific terms, or use the style of the operator extension
mechanism of simply accepting a string in an appropriate syntactic position. In this case, the string might
tend to be relatively long, and hence somewhat awkward for the user. We might use the default "for
verification," and hope that other required PROVE assertions are mostly generated mechanically.

10.2 LOOP Count Assertions

In order to facilitate proof of termination of LOOP statements, we could extend ASSERT statements to
include an optional count clause, as

ASSERT ... [count <non-negative integer expression>];

where <non-negative integer expression> is constrained to be an <expression> that
yields a non-negative integer value. Whenever an assertion containing a count clause starts a path, it is
assumed that the expression yields a non-negative integer value. Whenever an assertion containing a
count clause ends a path, it must be shown that the expression yields a non-negative integer value. If
both the starting and ending assertions of a path contain count clauses, then it must be shown that the
value of the ending count expression is strictly less than the value of the beginning count expression.

The count clause is limited to <non-negative integer expressions> because "less than" is
known to be a well-ordering on non-negative integers. If expressions of other types were permitted in the
count clause, there would have to be an additional mechanism for identifying a well-ordering relation on
the type.

10.3 Measure Specification

The measure specification was introduced in section 6.8.4, to facilitate proof of termination of recursive
functions. The following describes a simple method sufficient to prove termination of recursive functions
in the absence of mutual recursion. It is similar to the mechanism used to prove termination in the
Boyer-Moore Theorem Prover [Boyer&Moore 79].

The syntax for <abstract operational specification> given in [Good 85] could be
extended to include an optional <measure specification>, of the form

Proving Gypsy Programs February 9, 1989 90
Proposed Language Changes

measure <non-negative integer expression>;

The value of the measure specification instantiated on the routine data parameters must be shown to be
a non-negative integer at each call site, including any recursive calls. Further, at recursive call sites, the
value of the measure specification instantiated on the actual data parameters must be shown to be
strictly less than the value of the measure specification instantiated on the format parameters of the
routine.

10.4 Proper Domain Specification

Recall that satisfying entry specifications is not sufficient to assure proper termination. We now introduce
a new specification form precisely to specify the domain (i.e., via a prescriptive entry condition) over
which the routine will terminate. Since routines can terminate either normally or abnormally, we need
two specification forms:

• Proper_Domain - identifies domain over which the function terminates normally.

• Terminates - identifies the domain over which the function terminates either normally or
abnormally.

These new specification forms support proof that

• terms appearing in specification expressions are well-defined,

• programs terminate,

• programs terminate normally.
This can also be useful to a compiler for suppressing some run-time error checking, since we prove
absence of untrapped run-time errors in order to prove normal termination.

10.5 Concrete Lemmas

In the current definition of Gypsy 2.1 the <non-validated specification expression> that
makes up a lemma body "must be stated in purely abstract terms." [Good 85, section 11.4.4] This
proposal would extend the lemma facility to include lemmas about the concrete representation of abstract
types.

At present, a lemma body can never refer to the concrete structure of an abstract type. If the lemma name
appears in the concrete access list of an abstract type, that indicates that the proof of the lemma can
depend on concrete level specifications concerning that type. Statements concerning concrete properties
of the abstract type must be stated either in the HOLD specification or as CEXIT’ properties of routines
with concrete access to the type definition.

Although this does not represent any restriction in the power of the language (since lemmas are
semantically equivalent boolean specification functions), this restriction does have at least two detrimental
effects.

a. Lemmas are one of the key mechanisms intended to support modularity in proofs. By
disallowing lemmas about concrete structure, we are limiting their use in decomposing

Proving Gypsy Programs February 9, 1989 91
Proposed Language Changes

proofs about the concrete implementation of abstract data types.66

b. The GVE Prover is being extended to convert assumed subgoals to lemmas. Because of the
current restrictions on lemmas, subgoals involving concrete specifications of abstract data
types cannot be handled.67

10.5.1 A Proposed Extension

The proposed extension would add a <privileged units> list to a lemma declaration, and allow a
lemma body to have access to the concrete structure of an abstract type if

• the lemma name appears in the concrete access list of the abstract type,

• the lemma, itself, has a <privileged units> list, naming those units permitted to use
the lemma directly in their proofs, and

• each of the privileged unit named has access to the abstract type.

These points restrict use of the lemma to proofs of routines that already have access to the concrete
structure of the type. Thus, we do not introduce any new dependencies by using this lemma in the proof
of any of the named routines. (Of course, the top-level proof manager assures that the lemma can only be
used in the proofs of units named in the lemmas reference access list.)

The proposed extension mechanism provides a missing level of abstraction within the Gypsy abstract type
mechanism. Just as lemmas are a nice syntactic device for phrasing boolean functions with abstract exit
specifications, we would like a device for phrasing boolean functions with concrete exit specifications.
Concrete lemmas would provide a mechanism for stating properties of the abstract type that might not be
satisfied by the unconstrained concrete representation.

10.5.2 An Example

Here is the infamous stack example, making use of a concrete lemma.

66Again, there is no loss of expressive power. If we restrict abstract data type declarations to take type names, rather than type
definitions, then we can always write lemmas about the concrete type. This is yet another example of the need to avoid anonymous
types if things are to be uniform.

67One future GVE extension being considered would place all VCs in the database as lemmas. This is not generally possible if
concrete access to abstract types is not permitted in lemma bodies.

Proving Gypsy Programs February 9, 1989 92
Proposed Language Changes

type Stack <push, pop, top,
push_pop_lemma, concrete_push_pop_lemma> =

begin
st: record (p : index;

a : array [index] of element);
end;

function push (st:stack, x:element) : stack
unless (cond full_err) =

begin
exit top(result) = x and pop(result) = st’;
pending;

end;

function pop (st:stack) : stack unless (cond empty_err) =
begin
cexit st.p = st’.p-1 and st.a = st’.a;
pending;

end;

{ These 2 lemmas can only refer to stacks as abstract
objects, though the their proofs may depend on the
concrete structure of stacks.}

lemma push_pop_lemma (st:stack, x:element) =
pop(push(st,x)) = st;

lemma top_push_lemma (st:stack, x:element) =
top(push(st,x)) = x;

{ This lemma can refer to the concrete structure of
stacks, because its access list restricts it
sufficiently.}

<push, pop, top, push_pop_lemma>
lemma concrete_push_pop_lemma (st:stack, x:element) =

pop(push(st,x)).a = st.a with ([st.p+1]:=x)
& pop(push(st,x)).p = st.p;

10.6 User-Specified Semantic Relaxation

The meaning of Gypsy programs sometimes suffers from the problem of being completely specified, even
regarding details the programmer considers unimportant. (This failing is common to almost all procedural
programming languages, as the programmer must often specify two actions in a particular order, even
though no particular order is important.) As described in section 3.6.3, Gypsy program behavior in the
presence of abnormal conditions (e.g., arithmetic overflow) is precisely defined. Thus, a Gypsy
implementation must take great care either to avoid producing side effects until it is certain that a
computation completes successfully, or be prepared to undo any partial side effects of a computation if
that computation cannot complete successfully.

An implementation might permit considerable program optimization if it could selectively ignore undoing
certain side effects when computations fail to complete. The notion of "user-specified semantic
relaxation" allows the user to specify certain variables that can suffer side effects in the presence of
abnormal conditions. For example, the statement

Proving Gypsy Programs February 9, 1989 93
Proposed Language Changes

ignore a,b,c,...;

appearing along a path would indicate to the compiler and to the proof methods that no knowledge of the
values of the named variables (a,b,c,...) was assumed along the rest of the path. All information
gathered along the path so far would be left out of any subsequent VCs. The ignore statement would be
most useful in the body of a condition handler, to indicate that the condition path need not preserve the
pristine values of the specified variables.

Similar sort of semantic-relaxation specifications are desirable for purposes of program
optimization [McHugh 83], as they specifically grant the optimizer greater freedom to alter the
computation into a more efficient one without changing the semantic specification of the program.

Proving Gypsy Programs February 9, 1989 94
Modification History

Appendix A

Modification History

Modifications to the May, 1986 Edition, incorporated in Version B.

Date Item

9-Feb-89 Section 3.6.2-D ("Expression Evaluation"), paragraph 2,
Akers once began:

The normal result of a Gypsy function must be determined by the
actual parameters of the function call. The determinacy of the normal exit
case may require proof that concurrent routine calls evaluated within the
evaluation of the function are themselves deterministic.

This captured neither the notions of nondeterminism arising
from data abstraction nor the possibility of nondeterministic
procedures in the implementation prelude. The paragraph has
been modified to read:

The normal result of a Gypsy function must be determined by the
actual parameters of the function call. The determinacy of the normal exit
case may require proof that routine calls evaluated within the
evaluation of the function are themselves deterministic, and that
uses of data abstraction are sound.

9-Feb-89 The second paragraph of Section 3.6.4 ("Dealing with
Akers Nondeterminism in the Language Definition"), originally

read:

Functions are required to be deterministic. This follows almost
directly from easy syntactic checks. Functions are not permitted to:

• call procedures, since procedures need not be deterministic, nor

• invoke concurrent routine calls (which follows from the first premise).

This text was replaced by the following:

In order for proofs to be valid, functions are required to be deterministic.
Determinacy follows almost directly from easy syntactic checks, though
some proof obligation may be imposed. To demonstrate determinacy of a
function definition, it is sufficient to show that:

• All called routines are deterministic, and

• The function neither invokes concurrent routine calls (via COBEGIN) nor
awaits buffer operations (via AWAIT).

9-Feb-89 The last sentence of the first paragraph of Section 4.1,
Akers "New Statement Forms", has been deleted. The claim about

the multiple arity of ASSERT was not true for the
Gypsy 2.1 language. The sentence originally read:

Since a single ASSERT statement can contain several prove or assume
directives, its expansion can include several PROVE statements
before the BREAKPATH, and several ASSUME statements after the
BREAKPATH.

Furthermore, the following was added to the end of the same
paragraph:

The simpler case is the statement:

Proving Gypsy Programs February 9, 1989 95
Modification History

ASSERT (ASSUME p);

which becomes the canonical form:

ASSUME p;

The path is not broken, and no proof is required.

9-Feb-89 Section 4.3.4, "ASSERT", has been extended as follows:
Akers

Having dealt with run-time validation, we can now perform the canonicalization
of ASSERT as described in Section 4.1.

9-Feb-89 The paragraph following rule E6 in Section 6.4, "The Axioms
Akers for EP", originally began:

Other equivalent closed-form expressions can yield those component path
segments. Let us construct one such closed form. All paths through the
body of the loop are broken by ASSERT statements. Hence, all new
partial paths resulting from (EP (pair p f) stmt) must begin with an
ASSERT statement in stmt. So, the first recursive reference to
EP extends these paths that start in stmt through the stmt
as the "second iteration" of the loop. All of the normal partial paths
from the previous "iteration" become finished this time around (since
all paths through the loop are broken by an ASSERT) -- or they
become abnormal paths.

It has been modified to read:

Other equivalent closed-form expressions can yield those component path
segments. Let us construct one such closed form. All paths through the
body of the loop are broken by BREAKPATH statements. Hence, all new
partial paths resulting from (EP (pair p f) stmt) must begin with an
ASSUME statement in stmt. So, the first recursive reference to
EP extends these paths that start in stmt through the stmt
as the "second iteration" of the loop. All of the normal partial paths
from the previous "iteration" become finished this time around (since
all paths through the loop are broken by a BREAKPATH) -- or they
become abnormal paths.68

9-Feb-89 A new section, 4.3.5, "Alteration Clauses" has been introduced.
Akers

9-Feb-89 The following note was added to the end of Section 4.3.8
Akers (formerly 4.3.7) on "Compact Alteration Clauses".

Applying the syntactic transformation of alteration clauses to function calls
to the second example, we have:

gypsy_alter_element# (gypsy_alter_element# (x, i, a), j, b)

9-Feb-89 In Section 4.3.17 (formerly 4.3.16) on "LOOP Statement", the
Akers canonicalization of the loop has been changed from "loop" to

"*loop".

68The BREAKPATH and ASSUME must occur because each LOOP is required to have a proof-time ASSERT statement somewhere along each execution path through its body,
and the normalized form of the ASSERT yields the BREAKPATH; ASSUME ... pair.

Proving Gypsy Programs February 9, 1989 96
Modification History

begin
*loop

<loop body>
end

when
is *Leave;

end

All subsequent references to the canonicalized loop statement
have been changed to *loop.

9-Feb-89 In Section 6.2, "Preliminary Definitions for Manipulating Paths",
Akers in each of the following definitions, the function "path"

replaced the function "cons".

Definition: (cons.path P E) is defined to be (path (condition P) (cons (StmtList P) E)), for path P
and path element E.

Definition: (rcons.path P E) is defined to be (path (condition P) (rcons (StmtList P) E)) for P a
path, and E a statement.

Definition: (append.paths P1 P2) is defined to be

(path (condition P2) (append (StmtList P1) (StmtList P2)))

for paths P1, and P2.

9-Feb-89 At the end of Section 6.3, "Tracing Paths: The Functions CPS
Akers and EP", the following definitions were inserted for

completeness.

Definition: If p is the pair (pair x y), (Pfirst p) = x and (Psecond p) = y.

Definition: If p is the pair (pair x y), (Partial.Paths p) = (Pfirst p) and
(Finished.Paths p) = (Psecond p).

9-Feb-89 In section 6.4, "The Axioms for EP", a footnote has been added
Akers to clarify formula E3, as follows:

It is not necessary to include f in the second union. It is subsumed by the
term 〈〈(Finished.paths A)〉〉, because

A = (EP (pair p f) <<stmt>>).

Thus set 〈〈(Finished.paths A)〉〉 includes 〈〈f〉〉 as a subset, since each
equation defining EP preserves the f component of its first argument.

9-Feb-89 In section 6.4, "The Axioms for EP", the definition of
Akers Paths.Not.Signalling, which was formerly:

Definition: (Paths.Not.Signalling S name) ≡
{path | path ∈ S ∧ (condition path)∉ {name, *NORMAL} }.

Proving Gypsy Programs February 9, 1989 97
Modification History

has been changed as follows:

Definition: (Paths.Not.Signalling S name) ≡
{path | path ∈ S ∧ (condition path) ≠ name}.

Bibliography

[Akers 83] Robert L. Akers.
A Gypsy-to-Ada Program Compiler.
Technical Report 39, Institute for Computing Science, The University of Texas at

Austin, December, 1983.

[Anderson 79] R. B. Anderson.
Proving Programs Correct.
John Wiley & Sons, New York, 1979.

[Apt 80] K. R. Apt, N. Francez, W. P. de Roever.
A Proof System for Communicating Sequential Processes.
ACM Transactions on Programming Languages 2(3):359-385, July, 1980.

[Berg 82] H. K. Berg, W. E. Boebert, W. R. Franta, T. G. Moher.
Formal Methods of Program Verification and Specification.
Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[Bonyun 82] D. Bonyun, et al..
A Blueprint for a Verification and Evaluation Environment based upon Euclid.
Technical Report FR-5017-82-1, I. P. Sharp Associates, 1982.

[Boyer&Moore 75]
R. S. Boyer, J S. Moore.
Proving Theorems About Lisp Functions.
Journal ACM 22(1):129-144, January, 1975.

[Boyer&Moore 79]
R. S. Boyer and J S. Moore.
A Computational Logic.
Academic Press, New York, 1979.

[Boyer&Moore 81a]
R. S. Boyer and J S. Moore (editors).
The Correctness problem in Computer Science.
Academic Press, London, 1981.

[Boyer&Moore 81b]
R. S. Boyer and J S. Moore.
A Verification Condition Generator for FORTRAN.
In R. S. Boyer and J S. Moore (editors), The Correctness Problem in Computer

Science. Academic Press, 1981.

[Brinch Hansen 73]
Per Brinch Hansen.
Operating System Principles.
Prentice-Hall, 1973.

[Craigen 84] D. Craigen, and M. Saaltink.
Ottawa Euclid and EVES: A Status Report.
In Proceedings of the 1984 IEEE Symposium on Security and Privacy. IEEE, 1984.

[Crow 85a] Judith Crow, Dorothy Denning, Peter Ladkin, Michael Melliar-Smith, John Rushby,
Richard Schwartz, Robert Shostak, Friedrich von Henke.
SRI Verification System Version 1.8: User’s Guide
SRI International Computer Science Laboratory, 1985.

Proving Gypsy Programs February 9, 1989 99
Bibliography

[Crow 85b] Judith Crow, Dorothy Denning, Peter Ladkin, Michael Melliar-Smith, John Rushby,
Richard Schwartz, Robert Shostak, Friedrich von Henke.
SRI Verification System Version 1.8: Specification Language Description
SRI International Computer Science Laboratory, 1985.

[Crowe 82] D. Crowe.
Ottawa Euclid Reference Manual.
Technical Report TR-5613-81-7, I. P. Sharp Associates, December, 1982.

[De Millo 79] R. A. De Millo, R. J. Lipton, and A. J. Perlis.
Social Processes and Proofs of Theorems and Programs.
Communications of the ACM (5):271-280, 1979.

[Dijkstra 68] E. W. Dijkstra.
A Constructive Approach to the Problem of Program Correctness.
BIT 8-3, 1968.

[DiVito 81] B. L. DiVito.
A Mechanical Verification of the Alternating Bit Protocol.
Technical Report 21, Institute for Computing Science, The University of Texas at

Austin, June, 1981.

[DiVito 82] B. L. DiVito.
Verification of Communications Protocols and Abstract Process Models.
Technical Report 25, Institute for Computing Science, The University of Texas at

Austin, August, 1982.

[Elspas 72] B. Elspas, et al..
An Assessment of Techniques for Proving Program Correctness.
Computing Surveys 4(2):97-147, June, 1972.

[Erickson 81] Roddy W. Erickson, Editor.
AFFIRM Collected Papers.
Technical Report, USC Information Sciences Institute, February, 1981.

[Floyd 67] R. W. Floyd.
Assigning Meanings to Programs.
In J. T. Schwartz (editor), Proceedings of Symposia in Applied Mathematics, pages

19-32. American Mathematical Society, 1967.
Volume 19.

[Gerhart 80] S. L. Gerhart, D. R. Musser, D. H. Thompson, D. A. Baker, R. L. Bates,
R. W. Erickson, R. L. London, D. G. Taylor and D. S. Wile.
An Overview of AFFIRM: A Specification and Verification System.
In S. H. Lavington (editor), Information Processing 80, pages 343-348. October, 1980.
North Holland Publishing Company.

[German 81] Steven M. German.
Verifying the Absense of Common Runtime Errors in Computer Programs.
Technical Report STAN-CS-81-866, Computer Science Department, Stanford

University, June, 1981.

[Good 70] D. I. Good.
Toward a Man-Machine System for Proving Program Correctness.
PhD thesis, University of Wisconsin, 1970.

[Good 75] D. I. Good, R. L. London, W. W. Bledsoe.
An Interactive Program Verification System.
In Proceedings of 1975 International Conference on Reliable Software. IEEE, 1975.

Proving Gypsy Programs February 9, 1989 100
Bibliography

[Good 78a] D. I. Good, R. M. Cohen, C. G. Hoch, L. W. Hunter, D. F. Hare.
Report on the Language Gypsy: Version 2.0.
Technical Report ICSCA-CMP-10, Institute for Computing Science, The University of

Texas at Austin, 1978.

[Good 78b] D. I. Good and R. M. Cohen.
Verifiable Communications Processing in Gypsy.
In Proceedings of Compcon ’78. IEEE, September, 1978.

[Good 79] Donald I. Good, Richard M. Cohen, James Keeton-Williams.
Principles of Proving Concurrent Programs in Gypsy.
In Sixth Annual ACM Symposium on Principles of Programming Languages, pages

42-52. ACM, New York, 1979.

[Good 82] Donald I. Good.
The Proof of a Distributed System in Gypsy.
In M. J. Elphick (editor), Formal Specification - Proceedings of the Joint

IBM/University of Newcastle upon Tyne Seminar. University of Newcastle upon
Tyne, Claremont Tower, Newcastle upon Tyne, NE1 7RU, England., September,
1982.

Also Technical Report #30, Institute for Computing Science, The University of Texas
at Austin.

[Good 84] Donald I. Good.
Mechanical Proofs about Computer Programs.
Technical Report 41, Institute for Computing Science, The University of Texas at

Austin, March, 1984.

[Good 85] Donald I. Good.
Revised Report on Gypsy 2.1 (Draft).
Technical Report, Institute for Computing Science, University of Texas at Austin, July,

1985.

[Goodenough 75] J. B. Goodenough.
Exception Handling: Issues and a Proposed Notation.
Communications of the ACM 18(12), December, 1975.

[Gordon 79] Michael J. C. Gordon.
The Denotational Descriptions of Programming Languages.
Springer-Verlag, 1979.

[Gries 78] David Gries (editor).
Programming Methodology: A Collection of Articles by Members of IFIP WG2.3.
Springer-Verlag, 1978.

[Hantler 76] S. L. Hantler, and J. C. King.
An Introduction to Proving the Correctness of Programs.
Computing Surveys 8(3):331-353, September, 1976.

[Hare 79] Dwight F. Hare.
A Structure Editor for the Gypsy Verification Environment.
Technical Report 16, Institute for Computing Science, The University of Texas at

Austin, August, 1979.

[Hoare 69] C. A. R. Hoare.
An Axiomatic Basis for Computer Programming.
Communications of the ACM 12(10), 1969.

[Hoare 73] C. A. R. Hoare, N. Wirth.
An Axiomatic Definition of the Programming Language PASCAL.
Acta Informatica 2, 1973.

Proving Gypsy Programs February 9, 1989 101
Bibliography

[Hoare 74] C. A. R. Hoare.
Monitors: An Operating System Structuring Concept.
Communications of the ACM 17(10):549-557, October, 1974.

[Hoare 78] C. A. R. Hoare.
Communicating Sequential Processes.
Communications of the ACM 21(8), August, 1978.

[Hoare 85] C. A. R. Hoare.
Communicating Sequential Processes.
Prentice-Hall International, 1985.

[Hopcroft & Ullman 69]
John E. Hopcroft, and Jefrey D. Ullman.
Formal Languages and Their Relation to Automata.
Addison-Wesley, 1969.

[Howard 76] J. Howard.
Proving Monitors Correct.
Communications of the ACM 19(5), May, 1976.

[King 69] J. C. King.
A Program Verifier.
PhD thesis, Carnegie-Mellon University, 1969.

[Knuth 69] D. E. Knuth, and P. E. Bendix.
Simple Word Problems in Universal Algebras.
In J. Leech (editor), Computational Problems in Abstract Algebra. Peramon Press,

Elmsford, N.Y., 1969.

[Lampson 77] B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchel, G. J. Popek.
Report on the Programming Language Euclid.
SIGPLAN Notices 12(2), 1977.

[Levin 81] G. M. Levin, and D. Gries.
A Proof Technique for Communicating Sequential Processes.
Acta Informatica 15:281-302, 1981.

[Levitt 79] Karl N. Levitt, Lawrence Robinson, and Brad A. Silverberg.
The HDM Handbook. Volume 3: A Detailed Example in the Use of HDM.
Technical Report, Computer Science Laboratory, SRI International, June, 1979.

[Locasso 80] R. Locasso, J. Scheid, V. Schorre, P. Eggert.
The Ina Jo Specification Language Reference Manual.
Technical Report TM-(L)-6021/001/00, System Development Corporation, June, 1980.

[London 75] R. London.
A View on Program Verification.
In International Conference on Reliable Software. IEEE, April 21-23, 1975.

[London 78] R. L. London, J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and
G. J. Popek.
Proof Rules for the Programming Language Euclid.
Acta Informatica (10), 1978.

[Luckham 79] D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne,
D. C. Oppen, W. Polak, and W. L. Scherlis.
Stanford Pascal Verifier User Manual.
Technical Report STAN-CS-79-731, Computer Science Departent, Stanford

University, March, 1979.

Proving Gypsy Programs February 9, 1989 102
Bibliography

[Luckham 80] D. C. Luckham, and W. Polak.
Ada Exception Handling: An Axiomatic Approach.
ACM Transactions on Programming Languages and Systems 2(2):225-233, April,

1980.

[Majster 79] M. E. Majster.
Treatment of Partial Operations in Algebraic Specifications.
In Proceedings of the Conference on Specifications of Reliable Software. IEEE

Computer Society, 1979.

[Manna 74] Zohar Manna.
Mathematical Theory of Computation.
McGraw-Hill, 1974.

[McCarthy 63] John McCarthy.
A Basis for a Mathematical Theory of Computation.
In Braffort and Hirschberg (editors), Computer Programming and Formal Systems.

North Holland, 1963.

[McCarthy 65] John McCarthy, et al..
LISP 1.5 Programmer’s Manual.
The M.I.T. Press, Cambridge, Mass., 1965.

[McHugh 83] John McHugh.
Towards the Generation of Efficient Code from Verified Programs.
PhD thesis, The University of Texas at Austin, 1983.

[Milne 76] R. E. Milne and C. Strachey.
A Theory of Programming Language Semantics.
John Wiley, New York, 1976.

[Moriconi 77] Mark S. Moriconi.
A System for Incrementally Designing & Verifying Programs.
PhD thesis, The University of Texas at Austin, 1977.
Also Technical Report #9, Institute for Computing Science, The University of Texas at

Austin.

[Musser 77] John V. Guttag, Ellis Horowitz, and David R. Musser.
Some Extensions to Algebraic Specifications.
In Proceedings of an ACM Conferences on Language Design for Reliable Software,

pages 63-67. ACM, 1977.

[Nixon 85] Mark Nixon.
Private communication.
1985

[Owicki 75] S. Owicki.
Axiomatic Proof Techniques for Parallel Programs.
PhD thesis, Cornell University, Ithaca, N.Y., August, 1975.

[Owicki 76] S. Owicki, and D. Gries.
An Axiomatic Proof Technique for Parallel Programs I.
Acta Informatica 6, 1976.

[Pagan 81] Frank G. Pagan.
Formal Specification of Programming Languages: A Panoramic Primer.
Prentice-Hall, 1981.

[Palme 74] Jacob Palme.
SIMULA as a Tool for Extensible Program Products.
SIGPLAN Notices 9(2):24-40, February, 1974.

Proving Gypsy Programs February 9, 1989 103
Bibliography

[Parnas 72a] D. L. Parnas.
A Technique for Software Module Specification with Examples.
Communications of the ACM 15(5), May, 1972.

[Parnas 72b] D. L. Parnas.
On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM 15(12), December, 1972.

[Polak 80] Wolfgang Heinz Polak.
Theory of Compiler Specification and Verification.
Technical Report STAN-CS-80-802, Computer Science Department, Stanford

University, May, 1980.

[Robinson 75] Lawrence Robinson, Karl N. Levit, Peter G. Neumann, Ashok R. Saxena.
On Attaining Reliable Software for a Secure Operating System.
In Proceedings of the International Conference on Reliable Software. IEEE, 1975.

[Robinson 77] Lawrence Robinson and Karl N. Levitt.
Proof Techniques for Hierarchically Structured Programs.
Communications of the ACM 20(4):271-283, April, 1977.

[Robinson 79] Lawrence Robinson.
The HDM Handbook. Volume 1: The Foundations of HDM.
Technical Report, Computer Science Laboratory, SRI International, June, 1979.

[Roubine 77] Olivier Roubine, and Lawrence Robinson.
SPECIAL Reference Manual.
Technical Report, SRI International, 1977.

[Schorre 84] Val Schorre, and Judy Stein.
The Interactive Theorem Prover (ITP) User Manual.
Technical Report TM-6889/000/05, System Development Corporation, September,

1984.

[Siebert 84] Ann E. Siebert, and Donald I. Good.
General Message Flow Modulator.
Technical Report #42, Institute for Computing Science, The University of Texas at

Austin, March, 1984.

[Silverberg 79] Brad A. Silverberg, Lawrence Robinson,and Karl N. Levitt.
The HDM Handbook. Volume 2: The Languages and Tools of HDM.
Technical Report, Computer Science Laboratory, SRI International, June, 1979.

[Sites 74] Richard Sites.
Proving that Computer Programs Terminate Cleanly.
Technical Report, Computer Science Department, Stanford, May, 1974.

[Smith 80] L. M. Smith.
Compiling from the Gypsy Verification Environment.
Technical Report 20, Institute for Computing Science, The University of Texas at

Austin, August, 1980.

[Stoy 77] Joseph E. Stoy.
Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory.
The M.I.T. Press, Cambridge, Mass., 1977.

[Tennent 81] R. D. Tennent.
Principles of Programming Languages.
Prentice-Hall International, 1981.

Proving Gypsy Programs February 9, 1989 104
Bibliography

[Thompson 81] D. H. Thompson, C. A. Sunshine, R. W. Erickson, S. L. Gerhart, and D. Schwabe.
Specification and Verification of Communication Protocols in AFFIRM Using State

Transition Models.
Technical Report ISI/RR-81-88, USC/Information Sciences Institute, March, 1981.

[von Henke 75] F. W. von Henke, and D. C. Luckham.
A Methodology for Verifying Programs.
In Proceedings of 1975 International Conference on Reliable Software. IEEE, 1975.

[Wirth 73] Niklaus Wirth.
Systematic Programming: An Introduction.
Prentice-Hall, 1973.

Next, for purposes of path tracing, ASSERT statements need to be decomposed to the simpler statements,
PROVE, BREAKPATH, and ASSUME. The proof directive of the ASSERT determines whether or not an
execution path is to be broken. The statement

ASSERT (PROVE p);

is taken as an abbreviation for

PROVE p;
BREAKPATH;
ASSUME p;

i

Table of Contents

Abstract . 1

Acknowledgments . 1

Chapter 1. Introduction . 2

1.1. Why Gypsy is Important and What I Have Done . 2
1.2. Semantic Definition Method . 3
1.3. Nondeterminism . 3
1.4. Incremental Development of Programs and Proofs . 4
1.5. Negotiable Semantics . 4
1.6. Outline of Chapters . 5

1.6.1. Introduction . 5
1.6.2. Related Work . 5
1.6.3. Some Remarks about Gypsy Programs . 5
1.6.4. Normalizing Gypsy Programs . 6
1.6.5. A Simple Operational Model . 6
1.6.6. A Verification Condition Generator . 6
1.6.7. Buffers and Activation_ids . 6
1.6.8. Concurrency . 6
1.6.9. Proof of Data Abstraction . 6
1.6.10. Proposed Language Changes . 7
1.6.11. Future Work . 7

1.7. Lacuna: Topics Omitted . 7

Chapter 2. Related Work . 8

2.1. Specification & Verification Techniques . 8
2.2. Verification Systems . 9
2.3. Proof of Concurrent Programs . 10
2.4. Exception Handling . 10
2.5. Key Results of the Gypsy Project . 11

Chapter 3. Some Remarks about Gypsy Programs . 13

3.1. Why the Semantics of Gypsy are Easier than Many Other Languages 13
3.1.1. Parameter Passing Mechanisms . 13
3.1.2. No Dangerous Aliasing . 13
3.1.3. Simple Control Structures . 14
3.1.4. Procedure Calls . 14
3.1.5. Run-Time Error Conditions . 14

3.2. Data Abstraction . 15
3.3. Duality of Function Definitions . 15

3.3.1. Specification Functions and Executable Functions . 16
3.3.2. Specification Functions and Specification Abstraction . 16
3.3.3. The Relation Between the Two Functions . 17

ii

3.3.4. Domains of the Two Functions . 17
3.4. Prescriptive versus Descriptive Specifications . 18
3.5. Relation of Proofs to Real Implementations . 19
3.6. Nondeterminism in Gypsy . 19

3.6.1. What is nondeterminism, and why do we have it? . 19
3.6.2. Sources of Nondeterminism in Gypsy . 20

3.6.2-A. Apparently Nondeterministic Procedure Calls . 20
3.6.2-B. Resource Errors and Determinacy . 20
3.6.2-C. Concurrent Routine Calls . 21
3.6.2-D. Expression Evaluation . 21

3.6.3. An Aside on Optimization . 22
3.6.4. Dealing with Nondeterminism in the Language Definition . 23

Chapter 4. Normalizing Gypsy Programs . 24

4.1. New Statement Forms . 24
4.2. Extended Body of a Routine . 25
4.3. Reductions to the Base Language . 27

4.3.1. Index Simplification . 27
4.3.2. CASE Statement . 27
4.3.3. ELIF Statement . 27
4.3.4. ASSERT . 28
4.3.5. Alteration Clauses . 28
4.3.6. Assignment to Elements of Structures . 30
4.3.7. Before and Behind . 30
4.3.8. Compact Alteration Clauses . 31
4.3.9. EACH Clauses in Alterations . 31
4.3.10. Global Constants . 31
4.3.11. Unwinding Nested Function Calls in Executable Code . 32
4.3.12. IF expressions . 32
4.3.13. NEW Statement . 33
4.3.14. GIVE Statement . 33
4.3.15. REMOVE Statement . 33
4.3.16. LEAVE Statement . 33
4.3.17. LOOP Statement . 33
4.3.18. Reduction of Statement Lists to PROG2 . 34

4.4. Normalizing Condition Handlers . 34
4.4.1. Abnormal Conditions and Condition Handlers . 34
4.4.2. Reducing Condition Handlers . 35

Chapter 5. A Simple Operational Model . 37

5.1. Basics of the State Model . 37
5.2. Basic Procedure Calls . 38
5.3. Reducing Procedure Calls to Function Calls and Assignment 39

5.3.1. Aliasing Restrictions . 40
5.3.2. Checking Value Restrictions . 42
5.3.3. Nondeterminism . 42

5.4. Notation and Preliminary Definitions . 43
5.4.1. States and Conditions . 43
5.4.2. General Notation . 43

5.5. Basic Axioms for EXECUTE . 44
5.6. Extending EXECUTE to Handle Abnormal Termination 46

5.6.1. Simple Expression Evaluation . 46

iii

5.6.2. Abnormal Termination in Functions . 46
5.6.3. Extended Axioms for EVAL . 48
5.6.4. Extended Axiom for EXECUTE . 48

Chapter 6. A Verification Condition Generator . 49

6.1. VC Generation . 49
6.2. Preliminary Definitions for Manipulating Paths . 50
6.3. Tracing Paths: The Functions CPS and EP . 51
6.4. The Axioms for EP . 53
6.5. Effects of Abnormal Function Termination on EP . 56
6.6. Whatever Became of Procedure Calls? . 57
6.7. Generating VCs from Paths . 58
6.8. Proof of termination . 59

6.8.1. When It Is Required . 59
6.8.2. Methods (measure functions, count assertions) . 59
6.8.3. Termination of Loops . 60
6.8.4. Termination of Recursive Calls . 60
6.8.5. Mutual Recursion . 61

Chapter 7. Buffers . 62

7.1. What Is an Activation_Id? . 62
7.2. A Model of Activation_Ids . 62
7.3. Operations on ActivatIon_Ids . 64
7.4. What Is a Buffer? . 64

7.4.1. Critical Region Model of Buffers . 65
7.4.2. Primitive Buffer Operations . 66

7.5. Buffer Histories . 66
7.5.1. Functions to Access Buffer Histories . 66
7.5.2. Global Buffer Histories . 67
7.5.3. Local Buffer Histories . 68
7.5.4. Local Buffer Histories as Records of Mappings . 69

7.6. Procedure Calls with Buffer Parameters . 70
7.7. Writing Specifications about Buffer Histories . 70
7.8. Summary of Buffers . 70

Chapter 8. Concurrency . 72

8.1. COBEGIN - A Generalized Procedure Call . 72
8.1.1. Generalized Aliasing Restriction . 72
8.1.2. Effects Observable During Routine Execution . 73
8.1.3. Termination of the COBEGIN . 73

8.2. The BLOCK Specification for Non-Terminating Procedures 73
8.2.1. What BLOCK Specifications Mean . 73
8.2.2. Blockage Points . 74
8.2.3. Effects of Modularity on Provable Buffer Properties . 74
8.2.4. What If a Routine Doesn’t Block? . 74

8.3. Hierarchical Proof of BLOCK Specifications . 75
8.3.1. Blockage Assumption at Procedure Calls . 76
8.3.2. Buffer States in COBEGIN Blockage . 76

8.4. An Example . 77
8.4.1. Adequacy of Buffer Histories . 77

iv

8.5. Global Histories as Shared Variables . 79
8.6. Effects of Concurrent Procedure Calls on Buffers . 79
8.7. Treating Blockage as an Exit . 80

Chapter 9. Proof of Abstract Data Types . 81

9.1. Abstract Type Declarations . 81
9.2. Abstract Versus Concrete Specifications . 82

9.2.1. External use of CEXIT and CBLOCK . 82
9.2.2. Lemmas and Data Abstraction . 83
9.2.3. The INITIALLY Specification . 83

9.3. Proof of Concrete Invariants . 84
9.3.1. Proving the HOLD specification . 84
9.3.2. Using the HOLD Specification in Proofs . 85

9.4. Equality on Abstract Types . 85
9.4.1. Proof of Equivalence Relation . 86
9.4.2. Overloading of the Equality Operator (=) . 86

Chapter 10. Proposed Language Changes . 88

10.1. Additional Assertion Types . 88
10.2. LOOP Count Assertions . 89
10.3. Measure Specification . 89
10.4. Proper Domain Specification . 90
10.5. Concrete Lemmas . 90

10.5.1. A Proposed Extension . 91
10.5.2. An Example . 91

10.6. User-Specified Semantic Relaxation . 92

Appendix A. Modification History . 94

Bibliography . 98

v

List of Figures

Figure 5-1: Original Function with Condition Parameters 47
Figure 5-2: Augmented Function without Condition Parameters 47

Figure 7-1: First Model of Buffer Operations 66
Figure 7-2: Model of Buffer Operations with Global Histories 67
Figure 7-3: Small Example of Procedures and Buffers 68

vi

List of Tables

