The nanoAV A Definition

Dan Craigen, Mark Saaltink, Michael K. Smith

Technical Report 21 June, 1988

Computational Logic Inc.
1717 W. 6th St. Suite 290
Austin, Texas 78703
(512) 322-9951

This work was sponored in part by the Defense Advanced
Research Projects Agency, ARPA Orders 6082 and 9151.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies either expressed or
implied, of the Defense Advanced Research Projects
Agency, the U.S. Government, or Computational Logic,
Inc.

Abstract

This document comprises a complete description (formal and informal) of the nanoAVA subset of Ada.
As such, it represents our first attempt at a complete formal and informal description of AVA (A
Verifiable Ada). The intent of this work was twofold. First, we wanted to set a least upper bound. We
wanted to be sure that we could formally specify an extremely trivial subset of Ada before embarking on a
more ambitious subset. Secondly we wanted to experiment with the technical approach to the definition
and its presentation to the reader.

Two definitional techniques were experimented with. Included in thisreport is
1. A denotational definition of nanoAV A and a Boyer-Moore translation of it.
2. A Lisp based definition of nancAVA.

This reflects the past experience of the project members. Smith originally did a somewhat clumsy Lisp
description of the static and dynamic semantics. Saaltink responded with a very clean denotational
definition which fed back into the Lisp definition presented here. We have done proofs using the Boyer
Moore description derived from the denotational definition and have executed the Lisp version.

This document consists of three primary parts.

1. nancAVA Language Reference Manual: Thisinformal description was produced largely by
subsetting the Ada Language Reference Manual [DoD 83].

2. Denotational Definition:

a. The Static and Dynamic Semantics of nanoAVA: This very brief section
demonstrates the compactness and readability of the denotational approach.

b. Following this section is a trandation to Boyer Moore with the statement of some
associated proofs.

3. Lisp Definition: The elements of the Lisp definition have been tied together so that, in
conjunction with a lexical scanner (again in Lisp), we can parse in a nanoAVA program,
check its semantics, and interpret it.

a Syntax of nanoAVA: The grammar presented accepts a strict subset of Ada
Associated with each rule is aform that describes how an internal representation (the
input to static semantic analysis) is constructed.

b. Static Semantics of nanoAVA: This section describes the semantic constraints that
are placed on the output of the syntactic component. Forms are anayzed in the
context of an environment, which contains descriptors for defined objects
(predefined types, user defined types, routine definitions, etc.). Forms that are
accepted semantically are converted to the internal form expected by the interpreter
definition. Some of these converted forms augment the environment is specified
ways.

¢. Dynamic Semantics of nanoAVA: The dynamic semantics of the language are
described operationally, via an interpreter definition.

2 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanocAVA 3
Introduction

PART |: INTRODUCTION

AVA (A Verifiable Ada) is intended to be a formally defined subset of the Ada programming language
that is large enough to support simple, standalone applications.

This document comprises a complete description (formal and informal) of the nanoAVA subset of Ada.
As such, it represents our first attempt at a complete formal and informal description of AVA. The intent
of this work was twofold. First, we wanted to set a least upper bound. We wanted to be sure that we
could formally specify an extremely trivial subset of Ada before embarking on a more ambitious subset.
Secondly we wanted to experiment with the technical approach to the definition and its presentation to the
reader.

In some cases these goals conflict. That is, nanoAVA does not require a number of features that we are
relatively certain will be needed for the AVA definition. At some points in this document we have
included mechanisms more complex than strictly required for nanoAV A due to an inability to refrain from
looking ahead to AVA.

The prototypical nanoAV A program isthe swap procedure below.

procedure swap (x, y: in out INTEGER) is
tenp: constant |INTEGER : = x;

begi n

X 1= y;

y 1= tenp;
end ;

A nanoAVA program consists of a single procedure definition. The only data types are INTEGER and
BOOLEAN. There are no control structures other than BEGIN - END statement sequencing. The only
statement is assignment. Expressions are of the form IDENTIFIER or IDENTIFIER OPERATOR
IDENTIFIER, where the operator must be one of the relational operators, "=", "<", ">", "<=" and ">=".

We have attempted to thoroughly cross-reference this document. In addition to the index there are
pointersin the text between the various definitional components. For example, where the null statement is

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

defined in the reference manual part there are pointers to the pages where the syntax and the denotational,
static and dynamic semantics are defined.

null_statement ::= null; [Deno: 52,Syntax: 69,Static: 77,Dynamic: 81]

Similarly, in the semantic definitions you will see a pointer back to the definition of the language element
in the Reference Manual part of the document.

nancAVA 5
Language Reference Manual

PART II: LANGUAGE REFERENCE MANUAL

As modified by
Dan Craigen and Mark Saaltink

The numbering of sectionsin this part of the nanoAV A description are taken from the full Ada Language
reference Manual for ease of reference.

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

6 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA 7
Language Reference Manual

Chapter I1-1
INTRODUCTION

n-AVA (nanoAVA) isasubset of Ada.

I1-1.1 Scope of the Standard

This standard specifies the form and meaning of program units written in n-AVA. Its purpose is to
promote the portability of n-AVA programsto avariety of data processing systems.

I1-1.1.1 Extent of the Standard

This standard specifies:

(8 Theform of aprogram unit writtenin n-AVA.
(b) The effect of trandating and executing such a program unit.

(¢) The manner in which program units may be combined to form n-AVA
programs.

(d) The predefined program unitsthat a conforming implementation must
supply.

(e) The permissible variations within the standard, and the manner in
which they must be specified.

(f) Thoseviolations of the standard that a conforming implementation is
required to detect, and the effect of attempting to translate or
execute a program unit containing such violations.

(g) Those violations of the standard that a conforming implementation is
not required to detect.

This standard does not specify:

(h) The means whereby a program unit writtenin n-AVA is transformed into
object code executable by a processor.

(i) The meanswhereby trandlation or execution of program unitsisinvoked
and the executing units are controlled.

() Thesize or speed of the object code, or the relative execution speed

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

8 nanocAVA

of different language constructs.

(k) Theform or contents of any listings produced by implementations; in
particular, the form or contents of error or warning messages.

(I) The effect of executing a program unit that contains any violation
that a conforming implementation is not required to detect.

(m) The size of aprogram or program unit that will exceed the capacity of
aparticular conforming implementation.

Where this standard specifies that a program unit written in n-AVA has an exact effect, this effect is the
operational meaning of the program unit and must be produced by al conforming implementations.
Where this standard specifies permissible variations in the effects of constituents of a program unit written
in n-AVA, the operational meaning of the program unit as a whole is understood to be the range of
possible effects that result from all these variations, and a conforming implementation is allowed to
produce any of these possible effects.

I1-1.1.2 Conformity of an Implementation With the Standard

A conforming implementation is one that:

(a) Correctly trandlates and executes legal program units writtenin n-AVA,
provided that they are not so large asto exceed the capacity of the
implementation.

(b) Rejectsall program unitsthat are so large asto exceed the capacity
of the implementation.

(c) Rejectsall program units that contain errors whose detection is
required by the standard.

(d) Suppliesall predefined program units required by the standard.
(e) Contains no variations except where the standard permits.

(f) Specifiesall such permitted variations in the manner prescribed by
the standard.

[1-1.2 Structure of the Standard

This reference manual contains various chapters, annexes, and appendices. Each is numbered to
correspond to a section of the Ada Reference Manual.

Each chapter is divided into sections that have a common structure. Each section introduces its subject,
gives any necessary syntax rules, and describes the semantics of the corresponding language constructs.
Examples and notes, and then references, may appear at the end of a section.

Examples are meant to illustrate the possible forms of the constructs described. Notes are meant to
emphasize consequences of the rules described in the section or elsewhere. References are meant to
attract the attention of readers to aterm or phrase having a technical meaning defined in another section.

The standard definition of the n-AVA programming language consists of the chapters and the annexes,
subject to the following restriction: the material in each of the items listed below is informative, and not
part of the standard definition of the n-AV A programming language:

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 9
Language Reference Manual

- Section 1.4 Language summary
- The examples, notes, and references given at the end of each section

- Each section whose title starts with the word "Exampl€e” or "Examples"

I1-1.3 Design Goals and Sour ces: Removed

[1-1.4 Language Summary

An n-AVA program is composed of one program unit. Program units are subprograms (which define
executable algorithms).

Program Units
A subprogram is the basic unit for expressing an algorithm. Thereis one kind of subprogram: procedures.
A procedure is the means of invoking a series of actions. For example, it may read data, update variables,

or produce some output. It may have parameters, to provide a controlled means of passing information
between the procedure and the point of call.

Declarations and Statements
The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the

program unit.

The declarative part associates names with declared entities. For example, a name may denote a constant
or avariable.

The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession.

An assignment statement changes the value of avariable.
Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations.

An enumeration type defines an ordered set of distinct enumeration literals. The enumeration type
BOOLEAN is predefined.

Numeric types provide a means of performing numerical computations. Exact computations use integer
types, which denote sets of consecutive integers. The numeric type INTEGER is predefined.

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

10 nanocAVA

I1-1.5 Method of Description and Syntax Notation

The form of n-AVA program units is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of n-AV A program unitsis described by means of narrative rules defining both the effects of
each construct and the composition rules for constructs. This narrative employs technical terms whose
precise definition is given in the text (references to the section containing the definition of atechnical term
appear at the end of each section that uses the term).

All other terms are in the English language and bear their natural meaning, as defined in Webster’s Third
New International Dictionary of the English Language.

The context-free syntax of the language is described using a simple variant of Backus-Naur-Form. In
particular,

(8 Lower casewords, some containing embedded underlines, are used to
denote syntactic categories, for example:

adding_operator

Whenever the name of a syntactic category is used apart from the
syntax rules themselves, spaces take the place of the underlines
(thus: adding operator).

(b) Boldface words are used to denote reserved words, for example:

array

(c) Square brackets enclose optional items. Thus the two following rules
are equivalent.

return_statement ::= return [expression];
return_statement ::= return; | return expression;

(d) Bracesenclose arepeated item. Theitem may appear zero or more
times; the repetitions occur from left to right as with an equivalent
left-recursive rule. Thus the two following rules are equivalent.

term ::= factor { multiplying_operator factor}
term ::= factor | term multiplying_operator factor

(e) A vertical bar separates dternative items unless it occurs
immediately after an opening brace, in which caseit standsfor
itself:

letter_or_digit ::= letter | digit
component_association ::= [choice {| choice} =>] expression

(f) If the name of any syntactic category startswith anitalicized part,
it is equivaent to the category name without the italicized part.
Theitalicized part is intended to convey some semantic information.
For example type_name and task_name are both equivalent to name alone.

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA 11
Language Reference Manual

[1-1.6 Classification of Errors

The language definition classifies errors into a single category:

(8) Errorsthat must be detected at compilation time by every n-AVA
compiler.

These errors correspond to any violation of arule giveninthis
reference manual. In particular, violation of any rule that uses the terms
must, allowed, legal, or illegal belongs to this category. Any
program that contains such an error is not alegal n-AVA program; on
the other hand, the fact that aprogramislegal does not mean, per

se, that the program is free from other forms of error.

[Wedid not include (b) because it would introduce exceptions. Our
section 10.1 allows for abandonment of programs.]

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

12 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 13
Language Reference Manual

Chapter I1-2
LEXICAL ELEMENTS

The text of a program consists of the text of a compilation. The text of a compilation is a sequence of
lexical elements, each composed of characters; the rules of composition are given in this chapter.

References: character 2.1, compilation 10.1, lexical element 2.2

[1-2.1 Character Set

The only characters allowed in the text of a program are the graphic characters and format effectors. Each
graphic character corresponds to a unique code of the ISO seven-bit coded character set (1SO standard
646), and is represented (visualy) by a graphical symbol. Some graphic characters are represented by
different graphical symbols in alternative national representations of the 1SO character set. The
description of the language definition in this standard reference manual uses the ASCII graphical symbols,
the ANSI graphical representation of the |SO character set.

graphic_character ::= basic_graphic_character | lower_case letter | other_special _character

basic_graphic_character ::= upper_case letter | digit
| special_character | space_character

basic_character ::= basic_graphic_character | format_effector

The basic character set is sufficient for writing any program. The characters included in each of the
categories of basic graphic characters are defined as follows:

(@) upper caseletters ABCDEFGHIJKLMNOPQRSTUVWXYZ
(b) digits 0123456789

(c) specia characters " #& ' ()*+,-./:;<=>_

(d) the space character

Format effectors are the ISO (and ASCII) characters called horizontal tabulation, vertical tabulation,
carriage return, line feed, and form feed.

The charactersincluded in each of the remaining categories of graphic characters are defined as follows:

(e) lower caseletters abcdefghijklmnopqgrstuvwxyz

(f) other special characters !'$%?@[\]"*{}

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

14 nanoAVA

Notes:

The I SO character that corresponds to the sharp graphical symbol in the ASCII representation appears as a
pound sterling symbol in the French, German, and United Kingdom standard national representations. In
any case, the font design of graphical symbols (for example, whether they arein italic or bold typeface) is
not part of the SO standard.

The meanings of the acronyms used in this section are as follows: ANSI stands for American National
Standards Institute, ASCII stands for American Standard Code for Information Interchange, and 1SO
stands for International Organization for Standardization.

The following names are used when referring to special characters and other special characters:

symbol name symbol name

" quotation > greater than

sharp _ underline

& ampersand | vertical bar

' apostrophe I exclamation mark
(left parenthesis $ dollar

) right parenthesis % percent

* star, multiply ? question mark

+ plus @ commercial at

, comma [left square bracket
- hyphen, minus \ back-dash

. dot, point, period] right square bracket
|/ dlash, divide A circumflex

. colon ‘ grave accent

; semicolon { left brace

< lessthan } right brace

= equa ‘ tilde

I1-2.2 Lexical Elements, Separators, and Delimiters

The text of a program consists of the text of a compilation. The text of each compilation is a sequence of
separate lexical elements.

Each lexical element is either a delimiter, an identifier (which may be a reserved word), or a comment.
The effect of a program depends only on the particular sequences of lexical elements that form its
compilation, excluding the comments, if any.

In some cases an explicit separator is required to separate adjacent lexical elements (namely, when
without separation, interpretation as a single lexical element is possible). A separator is any of a space
character, a format effector, or the end of a line. A space character is a separator except within a
comment. Format effectors other than horizontal tabulation are always separators. Horizontal tabulation
is a separator except within a comment.

The end of a line is always a separator. The language does not define what causes the end of a line.
However if, for agiven implementation, the end of alineis signified by one or more characters, then these
characters must be format effectors other than horizontal tabulation. In any case, a sequence of one or
more format effectors other than horizontal tabulation must cause at least one end of line.

One or more separators are allowed between any two adjacent lexical elements, before the first of each
compilation, or after the last. At least one separator is required between an identifier or a numeric literal
and an adjacent identifier or numeric literal.

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA 15
Language Reference Manual

A delimiter is either one of the following specia characters (in the basic character set)
&' ()*+,-.1:;,<=>]
or one of the following compound delimiters each composed of two adjacent special characters

= | ** = [z >z <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment, string literal,
character literal, or numeric literal.

The remaining forms of lexical element are described in other sections of this chapter.

Notes:

Each lexical element must fit on one line, since the end of aline is a separator. The quotation, sharp, and
underline characters, likewise two adjacent hyphens, are not delimiters, but may form part of other lexical

elements.

The following names are used when referring to compound delimiters:

delimiter name

=> arrow
. double dot
*x double star, exponentiate

= assignment (pronounced: "becomes")
= inequality (pronounced: "not equal")

>= greater than or equal
<= less than or equal
<< left 1abel bracket
>> right label bracket
<> box

References. comment 2.7, compilation 10.1, format effector 2.1, identifier 2.3, reserved word 2.9, space
character 2.1, special character 2.1

[1-2.3 Identifiers
Identifiers are used as names and also as reserved words.
identifier ::= letter {[underling] letter_or_digit}

letter_or_digit ::= letter | digit
letter ::= upper_case letter | lower_case_|etter

All characters of an identifier are significant, including any underline character inserted between a letter

or digit and an adjacent letter or digit. Identifiers differing only in the use of corresponding upper and
lower case |etters are considered as the same.

Examples:
COUNT X get_symbol Ethelyn Marion

SNOBOL_4 X1 PageCount STORE_NEXT_ITEM

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

16 nanocAVA

Note:

No space is allowed within an identifier since a space is a separator.

References: digit 2.1, lower case letter 2.1, name 4.1, reserved word 2.9, separator 2.2, space character
2.1, upper case letter 2.1

[1-2.4 NumericaLiterals. Removed

[1-2.5 Character Literals: Removed

11-2.6 String Literals: Removed

[1-2.7 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line. A comment can
appear on any line of a program. The presence or absence of comments has no influence on whether a
program is legal or illegal. Furthermore, comments do not influence the effect of a program; their sole
purpose is the enlightenment of the human reader.

Examples:

-- thelast sentence above echoes the Algol 68 report
end; -- processing of LINE is complete

-- along comment may be split onto
-- two or more consecutive lines

———————————————— the first two hyphens start the comment
Note:

Horizontal tabulation can be used in comments, after the double hyphen, and is equivalent to one or more
spaces (see 2.2).

References: end of aline 2.2, illegal 1.6, legal 1.6, space character 2.1
[1-2.8 Pragmas
11-2.9 Reserved Words

The identifiers listed below are caled reserved words and are reserved for special significance in the
language. For readability of this manual, the reserved words appear in lower case boldface.

abort declare generic of select
abs delay goto or separate
accept delta others subtype
access digits if out

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA 17
Language Reference Manual

all do in task
and is package terminate
array pragma then
at ese private type
dsf limited procedure
end loop
begin entry raise use
body exception range
exit mod record when
rem while
new renames with
case for not return
constant function null reverse xor

A reserved word must not be used as a declared identifier.
Notes:

Reserved words differing only in the use of corresponding upper and lower case letters are considered as
the same (see 2.3).

References: declaration 3.1, identifier 2.3, lower case letter 2.1, upper case letter 2.1

I1-2.10 Allowable Replacements of Characters: Removed

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

18 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 19
Language Reference Manual

Chapter 11-3
DECLARATIONSAND TYPES

This chapter describes the types in the language and the rules for declaring constants and variables.

[1-3.1 Declarations

The language defines severa kinds of entities that are declared, either explicitly or implicitly, by
declarations. Such an entity can be an object, a type, a subprogram, a formal parameter (of a
subprogram), or an operation (see 3.3.3).

There are several forms of declaration. A basic declaration is either an object declaration, a type
declaration, or a subprogram body. [How do we handle predefined operators? Are they subprograms?]

Certain forms of declaration always occur (explicitly) as part of another declaration; these forms are
parameter specifications. [This is a prevarication. LEFT and RIGHT parameters may be implicitly
declared. See ARM 4.5]

The remaining forms of declaration are implicit. Certain operations are implicitly declared (see 3.3.3).

For each form of declaration the language rules define a certain region of text called the scope of the
declaration (see 8.2). Severa forms of declaration associate an identifier with a declared entity. Within
its scope, and only there, there are places where it is possible to use the identifier to refer to the associated
declared entity; these places are defined by the visibility rules (see 8.3). At such places the identifier is
said to be a name of the entity (its simple name); the name is said to denote the associated entity.

Certain forms of declaration associate some notation with an explicitly or implicitly declared operation.

The process by which a declaration achieves its effect is called the elaboration of the declaration; this
process happens during program execution.

After its elaboration, a declaration is said to be elaborated. Prior to the completion of its elaboration
(including before the elaboration), the declaration is not yet elaborated. The elaboration of any
declaration has always at least the effect of achieving this change of state (from not yet elaborated to
elaborated). The phrase "the elaboration has no other effect” is used in this manual whenever this change
of state is the only effect of elaboration for some form of declaration. An elaboration process is also
defined for declarative parts, declarative items, and compilation units (see 3.9 and 10.5).

Note:

The syntax rules use the term identifier for the first occurrence of an identifier in some form of
declaration; the term simple name is used for any occurrence of an identifier that already denotes some
declared entity.

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

20 nanocAVA

References. declarative item 3.9, declarative part 3.9, elaboration 3.9, identifier 2.3, name 4.1, object
declaration 3.2.1, operation 3.3, operator symbol 6.1, parameter specification 6.1, scope 8.2, simple name
4.1, subprogram body 6.3, subprogram specification 6.1, visibility 8.3

[1-3.2 Objects
An object is an entity that contains (has) avalue of agiven type. An object isone of the following:
- an object declared by an object declaration, or

- aformal parameter of a subprogram.

object_declaration ::= identifier_list : [constant] type_mark := expression;

identifier_list ::= identifier {, identifier} [Syntax: 68]
An object declaration is called a single object declaration if its identifier list has a single identifier; it is
called a multiple object declaration if the identifier list has two or more identifiers. A multiple object
declaration is equivalent to a sequence of the corresponding number of single object declarations. For
each identifier of the list, the equivalent sequence has a single object declaration formed by this identifier,

followed by a colon and by whatever appears at the right of the colon in the multiple object declaration;
the equivalent sequenceisin the same order as the identifier list.

A similar equivalence applies also for the identifier lists of parameter specifications.

In the remainder of this reference manual, explanations are given for declarations with a single identifier;
the corresponding explanations for declarations with several identifiers follow from the equivalence stated
above.

Example:
-- the multiple object declaration
JOHN, PAUL : INTEGER := GEORGE;
-- isequivalent to the two single object declarations in the order given

JOHN : INTEGER := GEORGE;
PAUL : INTEGER := GEORGE;

References: declaration 3.1, expression 4.4, formal parameter 6.1, identifier 2.3, parameter specification
6.1, scope 8.2, simple name 4.1, subprogram 6, type 3.3, type_mark 3.3.2

[1-3.2.1 Object Declarations

An object declaration declares an object whose type is given by atype mark. The expression specifies an
initial value for the declared object; the type of the expression must be that of the object.

The declared object is a constant if the reserved word constant appears in the object declaration. The
value of a constant cannot be modified after initialization.

An object that is not a constant is called a variable (in particular, the object declared by an object
declaration that does not include the reserved word constant is a variable). The only way to change the
value of avariable isdirectly by an assignment.

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 21
Language Reference Manual

The elaboration of an object declaration proceeds as follows:

(b) Theinitia value is obtained by evaluating the corresponding
expression.

(c) Theobject is created.

(d) Theinitial valueis assigned to the object.

The steps (b) to (d) are performed in the order indicated.

Examples of variable declarations:
COUNT, SUM : INTEGER := ZEROQ;

Examples of constant declarations:
LIMIT : constant INTEGER := SUM;

References: assignment 5.2, declaration 3.1, elaboration 3.9, evaluation 4.5, expression 4.4, forma
parameter 6.1, reserved word 2.9, subprogram 6, type 3.3, type mark 3.3.2

11-3.2.2 Number Declarations: Removed

[1-3.3 Types
A typeis characterized by a set of values and a set of operations.

There exists a single class of types. Scalar types are integer types and types defined by enumeration of
their values.

The name of aclass of typesis used in this manual as a qualifier for objects and values that have a type of
the class considered. For example, the term "integer object” is used for an object whose type is an integer
type.

References: integer type 3.5.4, object 3.2.1, operation 3.3.3

[We omitted 3.3.1 since type declarations are implicit in n-AVA. We are drawing an analogy with the
definition of literals within package STANDARD -- in full Ada]

11-3.3.1 Type Declarations. Removed

11-3.3.2 Subtype Declarations
type_mark ::=type name [ARM: 21,Static: 76,Dynamic: 81]
A type mark denotes atype.

References: name 4.1

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

22 nanocAVA

11-3.3.3 Classification of Operations

The set of operations of atype includes the explicitly declared subprograms that have a parameter or result
of the type; such subprograms are necessarily declared after the type declaration.

The remaining operations are each implicitly declared for a given type declaration, immediately after the
type definition. These implicitly declared operations comprise the basic operations and the predefined
operators.

A basic operation is an operation that isinherent in one of the following:

- Anassignment (in assignment statements and initializations)
References: assignment 5.2, formal parameter 6.1, initial value 3.2.1, subprogram 6, type 3.3
Note:

Assignment is an operation that operates on an object and avalue.

11-3.4 Derived Types. Removed

11-3.5 Scalar Types

Scalar types comprise enumeration types and integer types. Enumeration types and integer types are
called discrete types. Integer types are called numeric types. All scalar types are ordered, that is, all
relational operators are predefined for their values.

References: integer type 3.5.4, relational operator 4.5 4.5.2
[1-3.5.1 Enumeration Types
[1-3.5.2 Character Types

I1-3.5.3 Boolean Types

There is a predefined enumeration type named BOOLEAN. It contains the two literals FALSE and TRUE
ordered with the relation FALSE < TRUE.

References: type 3.3

11-3.5.4 Integer Types

The predefined integer type is the type INTEGER. The range of this type must be symmetric about zero,
excepting an extra negative value which may exist in some implementations.

References: type 3.3

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 23
Language Reference Manual

I1-3.5.5 Operationsof Discrete Types
The basic operations of a discrete type include the operations involved in assignment.
Besides the basic operations, the operations of a discrete type include the predefined relational operators.

References. assignment 5.2, basic operation 3.3.3, discrete type 3.5, operation 3.3, relational operator 4.5
452, type3.3

1-3.5.6 Real Types. Removed
11-3.5.7 Floating Point Types. Removed
I1-3.5.8 Operations of Floating Point Types Types: Removed

11-3.5.9 Fixed Point Types. Removed

[1-3.6 Array Types. Removed

[1-3.7 Record Types. Removed

11-3.8 Access Types. Removed

[1-3.9 Declarative Parts

A declarative part contains declarative items (possibly none).
declarative part ::={basic_declarative_item} [Deno: 49,Syntax: 68,Static: 76,Dynamic: 81]
basic_declarative _item ::= object_declaration [Deno: 49,Syntax: 68,Static: 76,Dynamic: 81]
The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in the
order in which they are given in the declarative part. After its elaboration, a declarative item is said to be
elaborated. Prior to the completion of its elaboration (including before the elaboration), the declarative
itemis not yet elaborated.
For several forms of declarative item, the language rules (in particular scope and visibility rules) are such
that it is either impossible or illegal to use an entity before the elaboration of the declarative item that
declares this entity.
References: scope 8.2, visibility 8.3, object declaration 3.2.1,

Elaboration of declarations: 3.1, object declaration 3.2.1

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

24 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 25
Language Reference Manual

Chapter 11-4
NAMES AND EXPRESSIONS

The rules applicable to the different forms of name and expression, and to their evaluation, are given in
this chapter.

[1-4.1 Names

Names can denote declared entities.

name ::= simple_name [Syntax: 68]
simple_name ::= identifier

A simple name for an entity is the identifier associated with the entity by its declaration.

The evaluation of a name determines the entity denoted by the name. This evaluation has no other effect.

Examples of simple names:

LIMIT -- the simple name of a constant (see3.2.1)

COUNT -- thesimple name of ascalar variable (see3.2.1)
References: declaration 3.1, entity 3.1, evaluation 4.5, identifier 2.3, object 3.2.1
[1-4.2 Literals: Removed

I1-4.3 Aggregates. Removed

I1-4.4 Expressions

An expression is aformulathat defines the computation of avalue.

expression ::= relation [Deno: 49,Syntax: 69,Static: 78,Dynamic: 81]
relation ::= [Deno: 49,Syntax: 69,Static: 78,Dynamic: 81]

simple_expression |
simple_expression relational_operator ssimple_expression

simple_expression ::= term

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

26 nanocAVA

term ::= factor
factor ::= primary
primary ::= name

Each primary has a value and a type. The only names alowed as primaries are names denoting objects
(the value of such aprimary isthe value of the object).

The type of an expression depends only on the type of its constituents and on the operators applied; for an
overloaded congtituent or operator, the determination of the constituent type, or the identification of the
appropriate operator, is determinable by overload resolution (8.7). For each predefined operator, the
operand and result types are given in section 4.5.

Examples of primaries:
SUM -- variable

Examples of expressions:

VOLUME -- primary
NATURAL_E<PI -- expression

References: name 4.1, object 3.2, operator 4.5, overload resolution 8.7, relation 4.5.1, relational operator
45452, type 3.3, variable 3.2.1
I1-4.5 Operatorsand Expression Evaluation
The language defines the following class of operators:
relational_operator ::= = |/= |< |[<=|>]|>= [Deno: 49,Syntax: 69,Static: 78,Dynamic: 81]

[1-4.5.1 Logical Operatiorsand Short Circuit Control Forms: Removed

I1-4.5.2 Relational Operators

The equality and inequality operators are predefined for any type. The other relational operators are the
ordering operators < (less than), <= (less than or equal), > (greater than), and >= (greater than or equal).
The ordering operators are predefined for any scalar type. The operands of each predefined relational
operator [must] have the same type. The result type is the predefined type BOOLEAN.

The relational operators have their conventional meaning: the result is equal to TRUE if the

corresponding relation is satisfied; the result is FALSE otherwise. The inequality operator gives the
complementary result to the equality operator: FALSE if equal, TRUE if not equal .

Operator Operation Operand type Result type

=/= equality and inequality any type BOOLEAN

<<=>>= testfor ordering any scalar type BOOLEAN
Equality for the discrete typesis equality of the values.

References: boolean predefined type 3.5.3, operator 4.5, predefined operator 4.5, type 3.3

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA
Language Reference Manual

11-4.6 4.6 through 4.10 Removed

*kk DRAFT***

27

19 Oct 88 at 5:28 p.m.

28 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 29
Language Reference Manual

Chapter I1-5
STATEMENTS

A statement defines an action to be performed; the process by which a statement achieves its action is
called execution of the statement.

[1-5.1 Simple and Compound Statements - Sequences of Statements

sequence of statements ::= statement { statement} [Deno: 51,Syntax: 69,Static: 77,Dynamic: 81]
statement ::= simple_statement [Deno: 49,Syntax: 69,Static: 77,Dynamic: 81]
simple_statement ::= null_statement [Syntax: 69,Static: 77,Dynamic: 81]

| assignment_statement
null_statement ::= null; [Deno: 52,Syntax: 69,Static: 77,Dynamic: 81]
Execution of anull statement has no other effect than to pass to the next action.

The execution of a sequence of statements consists of the execution of the individua statements in
succession until the sequence is compl eted.

References: assignment statement 5.2

I1-5.2 Assignment Statement

An assignment statement replaces the current value of a variable with a new value specified by an

expression. The named variable and the right-hand side expression must be of the same type.
assignment_statement :;= [Deno: 52,Syntax: 69,Static: 77,Dynamic: 81]
variable_name := expression;

For the execution of an assignment statement, the variable name and the expression are first evaluated, in
some order that is not defined by the language. Finaly, the value of the expression becomes the new
value of the variable.

Examples:

SHADE :=BLUE;
FLAG :=LOWER < HIGHER

References: evaluation 4.5, expression 4.4, name 4.1, type 3.3, variable 3.2.1

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

30 nanocAVA

11-5.3 5.3 through 5.9: Removed

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 31
Language Reference Manual

Chapter 11-6
SUBPROGRAMS

A subprogram is a program unit whose execution is invoked as part of the execution of a program (see
10.1). Thereis one form of subprogram: procedures.

References: procedure 6.1

I1-6.1 Subprogram Specifications

A subprogram specification defines the calling conventions of a procedure.

subprogram_specification ::= [Syntax: 69,Static: 76,Dynamic: 81]
procedure identifier [formal_part]
formal_part ::= [Syntax: 69,Static: 76]
(parameter_specification {; parameter_specification})
parameter_specification ::= [Syntax: 70]
identifier_list : mode type_mark
mode ::=in out [Syntax: 70]
[Static: 76]

The specification of a procedure specifiesitsidentifier and its formal parameters (if any).

A parameter specification with severa identifiers is equivalent to a sequence of single parameter
specifications, as explained in section 3.2. Each single parameter specification declares a formal
parameter.

The elaboration of a subprogram specification elaborates the corresponding formal part. The elaboration
of aformal part has no other effect.

Examples of subprogram specifications:

procedure TRAVERSE_TREE
procedure INCREMENT(X : in out INTEGER)

References: elaboration 3.9, identifier 2.3, identifier list 3.2, elaboration has no other effect 3.1, procedure
6, type mark 3.3.2

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

32 nanocAVA

[1-6.2 Formal Parameter Modes: Removed

11-6.3 Subprogram Bodies

A subprogram body declares a procedure and specifies its execution.

subprogram_body ::= [Deno: 49,Syntax: 70,Static: 76,Dynamic: 81]
subprogram_specificationis
[declarative part]
begin
sequence_of_statements
end;

[We have deleted the optional trailing simple name, due to Al-253.]
The elaboration of a subprogram body elaborates its subprogram specification.

The execution of a subprogram body is invoked as part of the execution of a program (see 10.1). For this
execution the declarative part of the body is elaborated, and the sequence of statements of the body isthen
executed.

References. declaration 3.1, declarative part 3.9, elaboration 3.9, formal parameter 6.1, sequence of
statements 5.1, subprogram 6, subprogram specification 6.1

[1-6.4 6.4through 6.7: Removed

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA
Language Reference Manual

*kk DRAFT***

Chapter I1-7
PACKAGES. REMOVED

33

19 Oct 88 at 5:28 p.m.

34 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 35
Language Reference Manual

Chapter 11-8
VISIBILITY RULES

The rules defining the scope of declarations and the rules defining which identifiers are visible at various
points in the text of the program are described in this chapter. The formulation of these rules uses the
notion of a declarative region.

References: declaration 3.1, declarative region 8.1, identifier 2.3, scope 8.2, visibility 8.3

[1-8.1 Declarative Region

A declarative region is a portion of the program text. A single declarative region is formed by the text of
each of the following:

- A subprogram body
- Package STANDARD

In the first of the above cases, the declarative region is said to be associated with the corresponding
declaration. A declaration is said to occur immediately within a declarative region if this region is the
innermost region that encloses the declaration, not counting the declarative region (if any) associated with
the declaration itself.

If any rule defines a portion of text as the text that extends from some specific point of a declarative
region to the end of this region, then this portion is the corresponding subset of the declarative region.

Notes:

As defined in section 3.1, the term declaration includes basic declarations, implicit declarations, and those
declarations that are part of basic declarations, for example, parameter specifications. It follows from the
definition of a declarative region that a parameter specification occurs immediately within the region
associated with the enclosing subprogram body.

The package STANDARD forms a declarative region which encloses al library units (see sections 8.6
and 10.1).

Declarative regions can be nested within other declarative regions.

References: basic declaration 3.1, declaration 3.1, library unit 10.1, parameter specification 6.1, standard
package 8.6, subprogram body 6.3

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

36 nanocAVA

I1-8.2 Scope of Declarations

For each form of declaration, the language rules define a certain portion of the program text called the
scope of the declaration. The scope of a declaration is also called the scope of any entity declared by the
declaration. Furthermore, if the declaration associates some notation with a declared entity, this portion of
the text is also called the scope of this notation (either an identifier, an operator symbol, or the notation for
a basic operation). Within the scope of an entity, and only there, there are places where it is legal to use
the associated notation in order to refer to the declared entity. These places are defined by the rules of
visibility and overloading.

The scope of a declaration that occurs immediately within a declarative region extends from the beginning
of the declaration to the end of the declarative region; this part of the scope of a declaration is called the
immediate scope.

Note:

The above scope rules apply to all forms of declaration defined by section 3.1; in particular, they apply
also to implicit declarations.

References: basic operation 3.3.3, declaration 3.1, declarative region 8.1, extends 8.1, identifier 2.3,
implicit declaration 3.1, occur immediately within 8.1, overloading 8.7, visibility 8.3

11-8.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text is defined by the visibility rules
and also, in the case of overloaded declarations, by the overloading rules. The identifiers considered in
this chapter include any identifier other than a reserved word. The places considered in this chapter are
those where a lexical element (such as an identifier) occurs. The overloaded declarations considered in
this chapter are those for operations (including basic operations).

For each identifier and at each place in the text, the visibility rules determine a set of declarations (with
thisidentifier) that define possible meanings of an occurrence of the identifier. A declaration is said to be
visible at a given place in the text when, according to the visibility rules, the declaration defines a possible
meaning of this occurrence. Two cases arise.

- Thevisibility rules determine at most one possible meaning. In such
a case the visbhility rules are sufficient to determine the
declaration defining the meaning of the occurrence of the identifier,
or in the absence of such a declaration, to determine that the
occurrenceis not legal at the given paint.

- Thevisibility rules determine more than one possible meaning. In
such a case the occurrence of the identifier islegal at this point if
and only if exactly one visible declaration is acceptable for the
overloading rules (see section 8.7 for overload resolution).

A declaration is only visible within a certain part of its scope; this part starts at the end of the declaration,
except for a subprogram body, where it starts at the reserved word is appearing in the body. (This rule
applies, in particular, for implicit declarations.)

A declaration is visible within a certain part of its immediate scope; this part extends to the end of the
immediate scope of the declaration, but excludes places where the declaration is hidden as explained
below.

A declaration is said to be hidden within (part of) an inner declarative region if the inner region contains a
homograph of this declaration; the outer declaration is then hidden within the immediate scope of the

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 37
Language Reference Manual

inner homograph. Each of two declarations is said to be a homograph of the other if both declarations
have the same identifier.

Two declarations that occur immediately within the same declarative region must not be homographs.

Whenever a declaration with a certain identifier is visible from a given point, the identifier and the
declared entity (if any) are also said to be visible from that point. Visibility is likewise defined for
operator symbols. An operator is visible if and only if the corresponding operator declaration is visible.
The notation associated with a basic operation is visible within the entire scope of this operation.

Note on immediate scope, hiding, and visibility:

The rules defining immediate scope, hiding, and visibility imply that a reference to an identifier within its
own declaration isillegal (except for a subprogram body). The identifier hides outer homographs within
its immediate scope, that is, from the start of the declaration; on the other hand, the identifier is visible
only after the end of the declaration. For this reason, al but the last of the following declarations are
illegal:

K :INTEGER :=K * K; -- illegd

T:T; -- illegd

procedure R(R : INTEGER); -- aninner declarationislega

References: basic operation 3.3.3, declaration 3.1, declarative region 8.1, extends 8.1, identifier 2.3,
immediate scope 8.2, lexical element 2.2, occur immediately within 8.1, reserved word 2.9, scope 8.2,
subprogram 6, subprogram specification 6.1

[1-8.4 Use Clauses; Removed

11-8.5 Renaming Declarations. Removed

[1-8.6 The Package Standard

The predefined types BOOLEAN and INTEGER are implicitly declared in a declarative region called
package STANDARD. The package STANDARD is described in Annex C.

The package STANDARD forms a declarative region which encloses every library unit and consequently
the main program.

References: declaration 3.1, declarative region 8.1, implicit declaration 3.1, library unit 10.1, main
program 10.1, occur immediately within 8.1, type 3.3
I1-8.7 Overload Resolution

Overloading is defined for operators and also for the basic operation assignment. [We do not know what
‘‘assignment’’ and ‘‘assignment operations’ are. Note inconsistency, within ARM, between 3.3.3(3) and
here]

For overloaded entities, overload resolution determines the actual meaning that an occurrence of an
operator [symbol] or [the notation for] some basic operation, whenever the visibility rules have
determined that more than one meaning is acceptable at the place of this occurrence.

At such aplace al visible declarations are considered. The occurrence is only legal if there is exactly one

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

38 nanocAVA

interpretation of each constituent.

When considering possible interpretations, the only rules considered are the syntax rules, the scope and
visibility rules, and the rules of the form described below.
(8 Any rulethat requires aname or expression to have a certain type, or

to have the same type as another name or expression.

References: assignment 5.2, basic operation 3.3.3, class of type 3.3, declaration 3.1, expression 4.4, formal
part 6.1, identifier 2.3, legal 1.6, name 4.1, operation 3.3.3, operator 4.5, statement 5, subprogram 6,
visibility 8.3

Rules of the form (a): assignment 5.2

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA
Language Reference Manual

*kk DRAFT***

Chapter 11-9
TASKS: REMOVED

39

19 Oct 88 at 5:28 p.m.

40

19 Oct 88 at 5:28 p.m.

nanoAVA

DRAF'I’

nancAVA 41
Language Reference Manual

Chapter 11-10
PROGRAM STRUCTURE AND COMPILATION ISSUES

The overall structure of programs is described in this chapter. A program is a compilation unit submitted
to a compiler in a compilation. A compilation unit specifies the compilation of a construct which is a
subprogram body.

References: compilation 10.1, compilation unit 10.1, subprogram body 6.3

11-10.1 Compilation Units- Library Units

The text of a program is submitted to the compiler in a compilation. Each compilation is a compilation
unit.

compilation ::= compilation_unit [Deno: 49,Syntax: 70,Static: 75,Dynamic: 81]
compilation_unit ::= library_unit [Deno: 49,Syntax: 70,Static: 75,Dynamic: 81]
library_unit ::= subprogram_body

For the visibility rules, each library unit acts as a declaration that occurs immediately within the package
STANDARD.

A subprogram that is a library unit can be used as a main program in the usua sense. The means by
which this execution is initiated are not prescribed by the language definition. An implementation may
impose certain requirements on the parameters of a main program (these requirements must be stated in
Appendix F). In any case, every implementation is required to alow, at least, main programs that are
parameterless procedures, and every main program must be a subprogram that is alibrary unit.

Execution of amain program may be abandoned due to an implementation’ s limitations.

The name of the main program may not be any of the following: INTEGER, BOOLEAN, FLOAT,
CHARACTER, ASCII, NATURAL, POSITIVE, STRING, DURATION, CONSTRAINT_ERROR,
NUMERIC_ERROR, PROGRAM_ERROR, STORAGE_ERROR, TASKING_ERROR, TRUE, or
FALSE. An implementation may further restrict the name of the program as recorded in Annex F.

References: allow 1.6, declaration 3.1, library unit 10.5, occur immediately within 8.1, parameter of a
subprogram 6.2, procedure 6.1, program unit 6, standard package 8.6, subprogram 6, subprogram body
6.3, visihility 8.3

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

42

[1-10.2 Subunitsof Compilation Units. Removed

[1-10.3 Order of Compilation: Removed

[1-10.4 TheProgram Library: Removed

[1-10.5 Elaboration of Library Units

Before the execution of amain program, its subprogram body is elaborated.

References: elaboration 3.1, main program 10.1, subprogram body 6.3

11-10.6 Program Optimization: Removed

19 Oct 88 at 5:28 p.m.

nanoAVA

DRAF'I’

nancAVA
Language Reference Manual
Appendix A
Predefined L anguage Attributes: Removed
DRAFT

43

19 Oct 88 at 5:28 p.m.

44 nanoAVA

Appendix B
Predefined L anguage Pragmas. Removed

19 Oct 88 at 5:28 p.m. ***DRAFT***

Appendix C
Predefined L anguage Environment

Package STANDARD contains implicit declarations of the predefined entities of n-AVA. These declared
entities are:

- type BOOLEAN
- the boolean relational operators "=", "/=", "<",
"<=",">"and ">=" are defined.

- the basic operation inherent in assignment of booleans
- type INTEGER

- the integer relational operators "=", "/=", "<",
"<=",">"and ">=" are defined.

- the basic operation inherent in assignment of integers

References: assignment 5.2, basic operation 3.3.3, types 3.3

46

19 Oct 88 at 5:28 p.m.

nanoAVA

DRAF'I’

nancAVA 47
The Denotational Semantics of NanoAVA (Version 1)

PART IIl1: THE DENOTATIONAL SEMANTICS
OF NANOAVA (VERSION 1)

Mark Saaltink

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

48

19 Oct 88 at 5:28 p.m.

nanoAVA

DRAF'I’

nanocAVA

The Denotational Semantics of NanoAVA (Version 1)

Chapter I11-1

49

THE DENOTATIONAL DEFINITION

[11-1.1 Notations

nes
fX < V]
>,y

s

A
Xy
Xey

powerset of S
Ay . if y=xthenv elsef(y)
ordered pair

the set of sequences composed of elements of set S

empty sequence
prefix element x to sequencey
append seguence y to sequence X

If i is defined as avariable ranging over set |, theni” isimplicitly defined as avariable ranging over |”.

[11-1.2 Abstract Syntax

cOCmp
p O Sub
bdi O BDI
psU Ps
s Stm
tmO Tm
el Exp
O d Opr
i Olde

c

p
ps
bdi
S
tm
e
@]

*kk DRAFT***

compilations [ARM:
subprogram bodies [ARM:
basic declarative items [ARM:

parameter specifications

statements [ARM:
type marks [ARM:
expressions [ARM:
relational operators [ARM:

identifiers

proci ps bdi* s°

inout i” tm

var i"tme O consti* tme
null Oi:=e

[

i JiOi
=0/=0<0<=0>01>=

41,Syntax: 70,Static: 75,Dynamic: 81]
32,Syntax: 70,Static: 76,Dynamic: 81]
23,Syntax: 68,Static: 76,Dynamic: 81]

[ARM: 31,Syntax: 70,Static: 76]
29,Syntax: 69,Static: 77,Dynamic: 81]
21,Syntax: 68,Static: 76,Dynamic: 81]
25,Syntax: 69,Static: 78,Dynamic: 81]
26,Syntax: 69,Static: 78,Dynamic: 81]

19 Oct 88 at 5:28 p.m.

50 nanocAVA

[11-1.3 Static Semantics

111-1.3.1 Domains

di O Din declaration info
p OEnv static environments
di = type O var(tm) O const(tm) O proc

Env = M(lde) x (Ide 0 M(Din))

The static environment used in the analysis of some part of a program is intended to represent the
declarations visible in that part of the program. In this formalism, we record some information derived
from the visible declarations rather than the declarations themselves. We allow for a set of declarations
that might define a meaning of an identifier (although this set can contain at most one member in n-AVA).
It is also necessary to keep track of the names declared immediately within the current declarative region
in order to be able to check compliance with rule [ARM 8.3(17)]. Therefore, the environment has two
parts: a set of locally declared names, and a mapping from identifiers to the set of (declaration info
associated with) visible declarations of thisidentifier.

The environment is not used to associate meanings with *‘ notations associated with basic operations'’; it
should be in order to more closely correspond to the rules asthey are expressed in the ARM.

Five basic functions act on environments:

locals: Env O M(Ide)

lookup: Idex Env O M(Din)
start_declarative_region: Env O Env
hide_homographs: ldex Env O Env
add_decl: Idex Dinx Env O Env

Functions ‘‘locals’ and ‘‘lookup’’ merely extract the appropriate component of the environment.
Function ‘‘start_declarative_region’’ modifies the environment when a new declarative region is entered.
Function ‘*hide_homographs’ removes homographs of a particular identifier (when the scope of a new
declaration is entered), and function ‘‘add decl’’ adds the declaration info associated with a declaration
(when the declaration becomes visible).

locals(,mD) =1

lookup(i, ,m0) = m(i)

start_declarative_region(,m0= pmO
hide_homographs(i, im0 = O, m[i — @O

add decl(i, di, mD=00{i},m[i « miHOd{di}]O

Relating the formal static semantics with the narrative rules of scoping and visibility is not trivial. Two
ideas are central: (1) the basic functions on the environment modify it in appropriate ways (reflecting the
correct locals and visible declarations after each event mentioned informally above); and (2) these
functions are applied appropriately in the static semantics (so that an appropriate environment in used in
the analysis of each part of a program).

We also use two derived syntactic domains:

nps O nPs normalized parameter specifications
nbdi O nBDI normalized basic declarative items

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA 51
The Denotational Semantics of NanoAVA (Version 1)

inout i tm
var itme O constitme

nps
nbdi

Various normalization functions act on these domains:

Nog - Ps'O nPs’
No PsO nPs’
Npgi* - BDI" O nBDI”
Npgi : BDI O nBDI"

These new domains and normalization functions are used to reflect the rules [ARM 3.2(10)] on multiple
object declarations and [ARM 6.1(4)] on multiple parameter specifications.

Noe(N) = A

Nos: (PS PS') = Noo(ps) * Npg (pS)
Nps(mout Atm)=A
Npg(inout (i;i") tm) = {inout i tm}); Nyg(inout i tm)

Npgis(A) = A

Npgi(var Atme) =A

Npgi(var (i;i") tme) = (var i tme); Npg(var i* tme)
Npgi(const Atme) = A

Npq(const (i;i") tme) = (const i tme); N, (const i tm e)

111-1.3.2 Static semantics functions

The following functions are used in well-formedness testing:

W, : Cmp O Bool [ARM: 41,Syntax: 70,Static: 75,Dynamic: 81]
Wy Sub x Env 0 Bool [ARM: 32,Syntax: 70,Static: 76,Dynamic: 81]
Wi : Ps’ x Env O Bool [ARM: 31,Syntax: 70,Static: 76]
Wips nPs’ x Env O Bool

Wnps: nPsx Env O Bool

Wit BDI" x Env O Bool [ARM: 23,Syntax: 68,Static: 76,Dynamic: 81]
Wipgi® - nBDI” x Env 0 Bool

Wi - nBDI x Env 0 Bool

Wy - Stm” x Env O Bool [ARM: 29,Syntax: 69,Static: 77,Dynamic: 81]
W Stmx Env O Bool

Wi Tmx Env O Bool [ARM: 21,Syntax: 68,Static: 76,Dynamic: 81]
W, : Expx Tmx Env O Bool [ARM: 25,Syntax: 69,Static: 78,Dynamic: 81]

The only unusual functions here are W, and W,. W((c) is true iff c is a well-formed compilation unit.
Wy(e t, p) istrueiff eis awell-formed expression of type t with respect to environment p. Each of the
other functions is true iff its first argument is well-formed with respect to the second argument (the
environment).

The following functions are used in expressing modifications of the environment:

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

52

nancAVA
X - Sub x Env O Env
Xog Ps x Env O Env
Xops' - nPs’ x Env O Env
ans: nPsx Env O Env
Xpgi® - BDI" x Env O Env
Xopgi® - nBDI" x Env O Env
Xibdi - nBDI x Env OO Env
111-1.3.3 Static Semantic Definitions
W,(c) = Wy ,(c, MmD)
wherel = { INTEGER, BOOLEAN, FLOAT, ... }
and m=(Ai0Olde. @[BOOLEAN ~ {type},INTEGER ~ {type}]
W, (proci ps’ bdi* s*, p) =
let p’ = hide_homographs(i, start_declarative _region(p))
andp”’ =Xy (proc i ps bdi* s*, p')in
i O Iocalsgp)
OWps(ps, p7)
DWbdl*(bdl , Xps*(pS , p, ,))
OWg (s, Xy (bdi ,Xps*(ps . P"))
Woe (pS', P) = Wope (N (PS'), P)
Wnps*(/\, p) = true
Wnps*(nps; nps*, p) = Wnps(nps, P) D\ans*(nps*, ans(nps P))
Wnps(inout i tm, p) =i O locas(p) W, (tm, hide_homographs(i, p))
Wi (bdi™, p) = Wiy (N (beli*), p)
W it (N, p) = true
Wipype (nbodli; nbdi®, p) = Wiy (nbdli, p) DW - (nbdi”, X (nbi, p)
W pgi(var itme, p) =
W, pgi(const i tme, p) =
i O locas(p)
O W,,(tm, hide_homographs(i, p))
O W(e, tm, hide_homographs(i, p))
Wg (A, p) =true
We(s s, p) = Wys, p) DWg(s', p)
W(null, p) = true [ARM: 29,Syntax: 69,Static: 77,Dynamic: 81]

W((i:=e p)= 0t0OTm . lookup(i,p) ={ var(t) } OWJ et p)

[ARM: 29,Syntax: 69,Static: 77,Dynamic: 81]

Wi (i, p) = (lookup(i, p) = { type})
W(i, tm, p) =lookup(i, p) O { {var(tm)}, { const(tm)} }

Wi O, tm, p) = (tm=BOOLEAN) O 0Otm" . Wi, tm’, p) OW(i’, tm’, p)

19 Oct 88 at 5:28 p.m.

DRAF'I’

nanoAVA 53
The Denotational Semantics of NanoAVA (Version 1)

XgpProcips bdi* s°, p) = add_decl(i, proc, p)
Xog (PS', P) = X (N (S), P)

Xops (N P) =p
Xnps'(NPS; NP, P) = Xpe (NS, X(NPS, p))

ans(inout i tm, p) = add_decl(i, var (tm), hide_homographs(i, p))
dei*(bdi*, p) = andi*(Nbdi*(bdi*), P)

Xopai (N P) =P

X pgi(const i tme, p) = add_decl (i, const(tm), hide_homographs(i, p))
Xppgi(var i tme, p) =add_decl(i, var (tm), hide_homographs(i, p))

I11-1.4 Dynamic Semantics

The dynamic semantics of n-AVA are very simple. The significant domain is the state, mapping
identifiers to their values. The state collects together the current values of all objects, and is changed to
reflect changes in the values of any objects. For nanoAVA, we can take objects to be the same as
identifiers.

The nanoAVA reference manual says little about how a compilation unit (subprogram) is invoked. The
formal definition captures the effects described in [ARM 6.3]. However, we have no notion of ‘‘calling’’
the main procedure; rather, we just execute the subprogram body. The initia state for this execution is
presumed to be established in some implementation-dependent way (and so is not specified by the formal
definition).

I11-1.4.1 Domains

vQdVva values
ol states
vd = Bool O Int
z = lded Vad

[11-1.4.2 Dynamic Functions (signatures)

The following functions express the effect of elaborating, evaluating, or executing the various constructs:

E.: Cmpxx0O X

S BDI"xz0 =
(S nBDI" xx 0 X

Bogi - nBDI x>0 X

Eg: Sm'xz0 =

Ey: Stmx >0 X

Ee: Expxx 0O Va

Ey: OprxVa xVa O va

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

54 nanoAVA

I11-1.4.3 Dynamic Semantics Definitions
Ey(proci ps” bdi* s', 0) =E4(S", Eg(bdi", 0))

Enbdi*(/\, 0) =0

Epgi(var itme, 0) =
Epgi(constitme, o) =a[i « EJe 0)]

E¢(A\,o)=0
E¢(s s, 0) = Eg(s, Egs, 0))

E(null,0)=0
E{i:=e0)=0[i « Efe 0)]

Eg(i, tm, 0) = o(i)
EJi Oi', tm, 0) =E (O, E((i, 0), E(i", 0))

E)(= v, V) =ifv=V thentrueelsefase

E,(/= v, V) =if v#V thentrueelsefase

E(<, v, V) =ifv<vinintO(v=fase OV =true) thentrue elsefase
E(<=v,V)=ifv<=viniIntO(v= false OV = true) then true else false
E)(> v, V) =ifv>VvinintO(v=true 0V = false) then true else false
E,(>=v,v)=ifv>=vinintO(v=truedv = false) then true else false

[11-1.5 Inadequacies

Several aspects of this definition are disturbing, or will not work in alarger subset of Ada:

* There is no dynamic environment. As soon as we have subprograms and calls, we will need
one. To conform to the form of the ARM, we should perhaps use a dynamic environment to
record which declarations have been elaborated yet (although this doesn’t appear to matter
inn-AVA).

* Should there be a domain of ‘*interpretations’? (This would correspond to Mike's second
prefix form.) Interpretations would let us reflect the overloading rules, and would alow us
to pass extra information to the dynamic semantics. (For example, we could disambiguate
the relational operators.)

» Some of the environment manipulations (such as hiding homographs) appear in both the W
functions and the X functions. It would be nice to avoid this duplication.

e In the ARM, parameter specifications and basic declarative items are lumped under
declarations, with general rules applying to both. Should that be reflected in the formalism?

* There is alack of parallelism in the definitions of X , on one hand, and ans and X,g ON
the other. (This may relate to the preceding item.)

« Should the static environment contain info for *‘ notations associated with basic operations'’
[ARM 8.13(18)]?

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA
The Denotational Semantics of NanoAVA (Version 1)

Chapter I11-2
THE BOYER MOORE DEFINITION

iy, -*- Mode: LISP; Syntax: Zetalisp; Package: USER; Base: 10 -*-
(boot - st rap)

;;; sone basic functions

(defn append (x y)

(if (listp x)
(cons (car x) (append (cdr x) y))
y))

(defn a-1ookup (key alist not-found)
(if (listp alist)
(if (and (listp (car alist))
(equal key (caar alist)))
(cdar alist)
(a-1 ookup key (cdr alist) not-found))
not - f ound))

;;; finite functions
we have functions that are constant except on a finite subdonain
;;; represented by (constant-value . exception-alist)

(defn constant-function (val)
(cons val nil))

(defn apply-function (fn x)
(a-l1ookup x (cdr fn) (car fn)))

(defn update-function (fn x val)
(cons (car fn)
(cons (cons x val) (cdr fn))))

(prove-1l emma appl y-constant-function (rewite)
(equal (apply-function (constant-function c) x)

c))

(prove-1l emma appl y-update-function (rewite)
(equal (apply-function (update-function fn x v) vy)
(if (equal x vy)
%
(apply-function fny))))

(di sabl e constant-function)
(di sabl e apply-function)
(di sabl e updat e-functi on)

v., sets

*kk DRAFT***

55

19 Oct 88 at 5:28 p.m.

56 nanocAVA

(defn set-p (x)
(if (listp x)
(and (not (nenmber (car x) (cdr x)))
(set-p (cdr x)))
(equal x nil)))

(defn set-size (x)

(if (listp x)
(addl (set-size (cdr x)))
0))

(defn null-set () nil)
(defn unit-set (x) (cons x nil))

(defn unit-set-p (x)
(and (listp x)
(equal (cdr x) nil)))

(defn unit-set-nmenber (x)
(car x))

(defn set-intersection (x y)
(if (listp x)
(if (nmenber (car x) vy)
(cons (car x) (set-intersection (cdr x) y))
(set-intersection (cdr x) y))

nil))

(defn set-union (x y)
(if (listp x)
(if (menmber (car x) vy)
(set-union (cdr x) vy)
(cons (car x) (set-union (cdr x) y)))

¥))

(prove-1l emma nmenber-null-set (rewite)
(equal (menber x (null-set))
(false)))

(prove-l ema nmenber-unit-set (rewite)
(equal (menmber x (unit-set y))
(equal x y)))

(prove-|l emma nmenber-set-intersection (rewite)
(implies (and (set-p x) (set-p y))
(equal (menber a (set-intersection x y))
(and (menber a x)
(nmenber a y)))))

(prove-1l emma menber-set-union (rewite)
(inmplies (and (set-p x) (set-p y))
(equal (menmber a (set-union x y))
(or (nmenber a x)
(menber a y)))))

(prove-lemma unit-set-p-unit-set (rewite)
(unit-set-p (unit-set x)))

(prove-lemma unit-set-p-characterization ()

(equal (unit-set-p x)
(equal x (unit-set (unit-set-nenber x)))))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA 57
The Denotational Semantics of NanoAVA (Version 1)

[11-2.1 Abstract syntax

;;; macros for declaring record-like structures

(defrecord foo (bar baz ...)) expands to

i (defn nk-foo (bar baz ...) (list "foo bar baz ...))
. (defn foo-p (x) (and (listp x) (equal (car x) 'foo0)))
i (defn foo-bar (x) (car (cdr x)))

M (defn foo-baz (x) (car (cdr (cdr x))))

(def macro defrecord (nanme fields)
“(progn
(defn ,(intern (string-upcase (string-append "nk-" (string nane)))) ,fields
(list '",nane ,@ields))
(defn , (intern (string-upcase (string-append (string name) "-p"))) (Xx)
(and (listp x) (equal (car x) ',nane)))
,@declare-fields (string nanme) fields ’'(cdr x))))

(defun declare-fields (nane fields acc)
(if (null fields)
ni
(cons ‘(defn ,(intern (string-upcase (string-append name "-" (string (car fields)))))
(x) (car ,acc))
(decl are-fields name (cdr fields) (list 'cdr acc)))))

;;; abstract syntax

(defrecord opr-eq
(defrecord opr-ne
(defrecord opr-1It
(defrecord opr-le
(defrecord opr-gt
(defrecord opr-ge

A~~~ A~
— — — —

)
)
)
)
)
)
(defrecord exp-ide (ide))

(defrecord exp-rel (lhs opr rhs))

(defrecord stmnull ())
(defrecord stmasg (var exp))

(defrecord ps (ide-list tn))

(defrecord bdi-const (ide-list tmexp))
(defrecord bdi-var (ide-list tmexp))

(defrecord sub (ide ps-list bdi-list stmlist))

[11-2.2 Normalization

(defrecord nps (ide tm)

(defrecord nbdi-const (ide tmexp))
(defrecord nbdi-var (ide tmexp))

(defn n-ps-sub (i-list tm

(if (listpi-list)
(cons (nmk-nps (car i-list) tm
(n-ps-sub (cdr i-list) tm)
nil))

(defn n-ps (x) (n-ps-sub (ps-ide-list x) (ps-tmx)))

(defn n-ps-list (x)

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

58 nanocAVA

(if (listp x)
(append (n-ps (car x)) (n-ps-list (cdr x)))
nil))
(prove-lemm n-ps-alt-def () ; this shows equivalence to the defn in the DS

(equal (n-ps ps)
(if (listp (ps-ide-list ps))
(cons (nk-nps (car (ps-ide-list ps)) (ps-tmps))
(n-ps (nmk-ps (cdr (ps-ide-list ps)) (ps-tmps))))

nil)))
(defn n-bdi-const (i-list tme)
(if (listpi-list)
(cons (nk-nbdi-const (car i-list) tme)
(n-bdi -const (cdr i-list) tme))
nil))
(defn n-bdi-var (i-list tme)
(if (listpi-list)
(cons (nk-nbdi-var (car i-list) tme)
(n-bdi-var (cdr i-list) tme))
nil))

(defn n-bdi (x)
(if (bdi-const-p x)
(n-bdi-const (bdi-const-ide-list x) (bdi-const-tmx) (bdi-const-exp x))
(n-bdi -var (bdi-var-ide-list x) (bdi-var-tmx) (bdi-var-exp x))))

(defn n-bdi-list (x)

(if (listp x)
(append (n-bdi (car x)) (n-bdi-list (cdr x)))
nil))

[11-2.3 Static Domains

declaration info is represented using records

(defrecord di-type ())
(defrecord di-proc ())
(defrecord di-const (tm)
(defrecord di-var (tm)

;;, envs are pairs (set of local, mapping fromide to set of decl info)
using the representations defined above

(defn env-locals (env) (car env))
(defn env-1ookup (i env) (apply-function (cdr env) i))

(defn start-dr (env) (cons (null-set)
(cdr env)))

(defn hi de-honmog (i env) (cons (car env)
(update-function (cdr env) i (null-set))))

(defn add-decl (i di env) (cons (set-union (unit-set i) (env-locals env))
(updat e-function (cdr env)
i
(set-union (unit-set di)
(env-1ookup i env)))))
;; basic properties

(prove-l emua env-local s-start-dr ()
(equal (env-locals (start-dr env))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 59
The Denotational Semantics of NanoAVA (Version 1)

(nul I -set)))

(prove-1l ema env-Ilookup-start-dr ()
(equal (env-lookup i (start-dr env))
(env-1ookup i env)))

(prove-1 emma env-1| ocal s- hi de- honpg ()
(equal (env-locals (hide-honog i env))
(env-locals env)))

(prove-1 emma env-| ookup- hi de- honpg ()
(equal (env-1ookup i (hide-honmbg j env))
(if (equal i j)
(null -set)
(env-1ookup i env))))

(prove-l emma env-1Iocal s-add-decl ()
(equal (env-locals (add-decl i di env))
(set-union (unit-set i) (env-locals env))))

(prove-1 emma env-| ookup-add-decl ()
(equal (env-lookup i (add-decl j di env))
(if (equal i j)
(set-union (unit-set di) (env-lookup i env))
(env-1ookup i env))))

[11-2.4 Well-formedness predicates

X (extension) function

(defn x-nbdi (nbdi env)
(if (nbdi-const-p nbdi)

(add-decl (nbdi-const-ide nbdi)
(k- di - const (nbdi-const-tm nbdi))
(hi de-honpg (nbdi-const-ide nbdi) env))

(add-decl (nbdi-var-ide nbdi)
(mk-di -var (nbdi-var-tmnbdi))
(hi de-honog (nbdi-var-ide nbdi) env))))

(defn x-nbdi-list (nbdi-list env)
(if (listp nbdi-list)
(x-nbdi-list (cdr nbdi-list) (x-nbdi (car nbdi-list) env))
env))

(defn x-bdi-list (bdi-list env)
(x-nbdi-list (n-bdi-list bdi-list) env))

(defn x-nps (nps env)
(add-decl (nps-ide nps)
(mk-di -var (nps-tmnps))
(hi de-honpg (nps-ide nps) env)))

(defn x-nps-list (nps-list env)
(if (listp nps-list)
(x-nps-list (cdr nps-list) (x-nps (car nps-list) env))
env))

(defn x-ps-list (ps-list env)
(x-nps-list (n-ps-list ps-list) env))

(defn x-sub (sub env)
(add-decl (sub-ide sub)
(k- di - proc)
env))

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

60 nanocAVA

W (wel | -formedness) functions

;7 Wexp has been nodified; rather than taking a type-mark and returning a bool ean,
; it returns either nil or (cons 'type tm
so that We(e, tm env) is equivalent to (equal (wexp e env) (cons 'type tn))

(defn wexp (e env)
(if (exp-rel-p e)
(if (and (wexp (exp-rel-1hs e) env)
(equal (wexp (exp-rel-lhs e) env)
(wexp (exp-rel-rhs e) env)))
(cons 'type ’bool ean)
nil)
(if (and (unit-set-p (env-1ookup (exp-ide-ide e) env))
(or (di-const-p (unit-set-nmenber (env-lookup (exp-ide-ide e) env)))
(di-var-p (unit-set-nmenber (env-lookup (exp-ide-ide e) env)))))
(cons 'type
(if (di-const-p (unit-set-menber (env-lookup (exp-ide-ide e) env)))
(di-const-tm (unit-set-nmenber (env-1lookup (exp-ide-ide e) env)))
(di-var-tm (unit-set-nmenber (env-lookup (exp-ide-ide e) env)))))
nil)))
(defn wtm (tm env)
(equal (env-Ilookup tm env)
(unit-set (nk-di-type))))

(defn ws (s env)
(or (stmnull-p s)
(and (stmasg-p s)

(unit-set-p (env-lookup (stmasg-var s) env))

(di-var-p (unit-set-nmenber (env-lookup (stmasg-var s) env)))
(equal (wexp (stmasg-exp s) env)

(cons 'type
(di-var-tm (unit-set-nmenber (env-lookup (stmasg-var s) env))))))))

(defn ws-list (s-list env)
(if (listp s-list)
(and (ws (car s-list) env)
(ws-list (cdr s-list) env))
(equal s-list nil)))

(defn wnbdi (x env)
(if (nbdi-const-p x)
(and (not (nenber (nbdi-const-ide x) (env-locals env)))
(wtm (nbdi-const-tm x) (hide-honmbg (nbdi-const-ide x) env))
(equal (wexp (nbdi-const-exp x) (hide-hombg (nbdi-const-ide x) env))
(cons 'type (nbdi-const-tmx))))
(and (not (nenber (nbdi-var-ide x) (env-locals env)))
(wtm (nbdi-var-tmx) (hide-honpg (nbdi-var-ide x) env))
(equal (wexp (nbdi-var-exp x) (hide-hombg (nbdi-var-ide x) env))
(cons 'type (nbdi-var-tmx))))))

(defn wnbdi-list (nbdi-list env)
(if (listp nbdi-list)
(and (wnbdi (car nbdi-list) env)
(wnbdi -list (cdr nbdi-list) (x-nbdi (car nbdi-list) env)))
(equal nbdi-list nil)))

(defn wbdi-list (bdi-list env) (wnbdi-list (n-bdi-list bdi-list) env))
(defn wnps (nps env)
(and (not (nenber (nps-ide nps) (env-locals env)))
(wtm (nps-tmnps) (hide-honog (nps-ide nps) env))))
(defn wnps-list (nps-list env)

(if (listp nps-list)
(and (wnps (car nps-list) env)

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 61
The Denotational Semantics of NanoAVA (Version 1)

(wnps-list (cdr nps-list) (x-nps (car nps-list) env)))
(equal nps-list nil)))

(defn wps-list (ps-list env) (wnps-list (n-ps-list ps-list) env))

(defn wsub (x env)
(and (not (menmber (sub-ide x) (env-locals env)))
(wps-list (sub-ps-list x)
(hi de-honog (sub-ide x) (start-dr env)))
(wbdi-list (sub-bdi-list x)
(x-ps-1ist (sub-ps-list Xx)
(hi de-honmpg (sub-ide x) (start-dr env))))
(ws-list (sub-stmlist x)
(x-bdi-list (sub-bdi-list x)
(x-ps-1list (sub-ps-list x)
(hi de-honog (sub-ide x) (start-dr env)))))))

(defn wc (c)
(wsub ¢
(add-decl ' bool ean (nk-di-type)
(add-decl 'integer (nk-di-type)

(cons ' (float character ascii natural positive string duration
constraint-error numeric-error programerror
storage-error tasking-error true false)

(constant-function (null-set)))))))

[11-2.5 Test Casesfor the Static Semantics

;.; test cases for the static semantics

(prove ' (wc (nk-sub 'swap
(list (mk-ps "(x y) 'integer))
(list (mk-bdi-const '(tenp) ’'integer (nk-exp-ide 'Xx)))
(list (mk-stmasg 'x (nk-exp-ide 'vy))
(nmk-stmasg 'y (nk-exp-ide "tenp))))))

(prove ' (wc (nk-sub ’swap-2
(list (mk-ps "(x y) 'integer))
(list (nmk-bdi-const ’'(bool ean) 'integer (nk-exp-ide 'x)))
(list (mk-stmasg 'x (nk-exp-ide 'vy))
(nmk-stmasg 'y (nk-exp-ide 'boolean))))))

(prove '(not (wc (mnk-sub ’'swap
(list (mk-ps '"(x y) 'integer))
(l'ist (mk-bdi-const ' (bool ean)

" bool ean ; should fail
(nk-exp-rel (nk-exp-ide’x)
(k- opr - ne)

(nk-exp-ide "y))))
(list (mk-stmasg 'x (nk-exp-ide 'vy))
(nk-stmasg 'y (nk-exp-ide "y)))))))

(prove '(not (wc (nk-sub ’'integer ; should fail
(list (mk-ps '"(x y) 'integer))
(list (mk-bdi-const ’'(tenp) 'integer (nk-exp-ide 'x)))
(list (mk-stmasg 'x (nk-exp-ide 'vy))
(nmk-stmasg 'y (nk-exp-ide "tenp)))))))

(prove '(not (wc (nk-sub ’'swap
(list (mk-ps "(x y) 'float)) ; should fail
(list (mk-bdi-const '(tenp) ’'integer (mnk-exp-ide 'Xx)))
(list (mk-stmasg 'x (nk-exp-ide 'vy))
(nmk-stmasg 'y (nk-exp-ide "tenp)))))))
(prove '(not (wc (nk-sub ’'swap
(list (mk-ps "(x y) 'integer))

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

62

(1ist
(1ist

(prove ' (wc (nk-sub ’swap

(1ist
(1ist
(1ist

(prove '(not (wc (nk-sub

(1ist
(1ist
(1ist

(prove '(not (wc (nk-sub

(1ist
(1ist
(1ist

(prove ' (not (wc (nk-sub

(1ist
(1ist
(1ist

(prove '(not (wc (nk-sub

(1ist
(1ist
(1ist

(k- bdi -const ' (tenp) 'integer (nk-exp-ide
(nmk-stmasg ' x (nk-exp-ide 'y))
(nmk-stmasg 'y (nk-exp-ide "tenp)))))))

(nk-ps ' (swap y) 'integer))

(mk-bdi -const ' (tenp) 'integer (nk-exp-ide
(nmk-stmasg 'swap (nk-exp-ide 'y))
(nmk-stmasg 'y (nk-exp-ide "tenp))))))

' swap

(mk-ps "(x y) 'integer))

(k- bdi -const ' (tenp) ’'integer (nk-exp-ide
(nmk-stmasg 'tenmp (nk-exp-ide 'y)))))))

" swap

(mk-ps ' (x x) ’'integer)) ; should fai
(k- bdi -const ' (tenp) 'integer (nk-exp-ide
(mk-stmasg 'x (nk-exp-ide 'x))
(nmk-stmasg 'x (nk-exp-ide "tenp)))))))

' swap
(mk-ps " (x y) 'integer))

nanoAVA

"tenp))) ; should fai

"swap)))

"x)))

; should fai

"x)))

(nmk-bdi -const " (y) 'integer (nk-exp-ide 'x))) ;

(nmk-stmasg 'x (nk-exp-ide 'y))
(mk-stmasg 'y (nk-exp-ide "y)))))))

' swap
(nk-ps "(x y) 'integer))
(mk-bdi -const ' (tenp) 'integer (nk-exp-ide

X))

(mk-bdi -var ' (tenp) ’'integer (nk-exp-ide 'y)))

(nmk-stmasg 'x (nk-exp-ide 'y))
(nmk-stmasg 'y (nk-exp-ide "tenp)))))))

(prove ' (wc (nk-sub ’'conpare

(1ist
(1ist
(1ist

(mk-ps ' (x y) 'integer)
(nmk-ps ' (b) 'bool ean))
(k- bdi - const ' (tenp)
" bool ean
(nmk-exp-rel (nk-exp-ide ’Xx)
(nmk-opr-1le)

(nk-exp-ide 'y)))

shoul d f ai

shoul d fai

(mk-bdi -var ' (xx yy) ’'bool ean (nk-exp-ide 'tenp)))

(nk-stmasg 'x (nk-exp-ide 'y))
(nk-stmasg 'b (nk-exp-ide ' xx))
(mk-stmnull)

(nk-stmasg 'b (nk-exp-ide 'yy))))))

[11-2.6 Dynamic Semantics

o dynam ¢ semantics

;. states are represented

(defn e-opr (opr vl v2)
(if (opr-eg-p opr) (if (

(if (opr-ne-p opr) (if (
(if (opr-lt-p opr) (if (

(if (opr-le-p opr) (if (

19 Oct 88 at 5:28 p.m.

by finite functions

equal v1 v2) 'true ’'fal se)

not (equal vl v2)) 'true 'false)

or (and (equal v1 'false) (equal v2 'true))
(lessp vl v2))

"true

"fal se)

or (or (equal vl 'false) (equal v2 'true))

DRAF'I’

nancAVA
The Denotational Semantics of NanoAVA (Version 1)

(equal v1 v2)
(lessp vl v2))
"true
'fal se)

(if (opr-gt-p opr) (if (or (and (equal v1 'true) (equal

(lessp v2 vl))
"true
'fal se)

(if (opr-ge-p opr) (if (or (or (equal vl 'true) (equa

(equal v1 v2)
(lessp vl v2))
"true
"fal se)

0)))))))

(defn e-e (x store)
(if (exp-rel-p x)
(e-opr (exp-rel-opr x)
(e-e (exp-rel-lhs x) store)
(e-e (exp-rel-rhs x) store))
(appl y-function store (exp-ide-ide x))))

(defn e-s (x store)
(if (stmnull-p x)
store
(updat e-function store
(stmasg-var x)
(e-e (stmasg-exp x) store))))

(defn e-s-list (x store)
(if (listp x)
(e-s-list (cdr x)
(e-s (car x) store))
store))

(defn e-nbdi (x store)
(if (nbdi-const-p x)
(updat e-function store
(nbdi - const-i de x)
(e-e (nbdi-const-exp x) store))
(updat e-function store
(nbdi -var-ide x)
(e-e (nbdi-var-exp x) store))))

(defn e-nbdi-list (x store)
(if (listp x)
(e-nbdi-list (cdr x)
(e-nbdi (car x) store))
store))

(defn e-bdi-list (x store)
(e-nbdi-list (n-bdi-list x) store))

(defn e-c (x store)

(e-s-list (sub-stmlist x)
(e-bdi-list (sub-bdi-list x) store)))

*kk DRAFT***

v2 'fal se))

v2 'fal se))

63

19 Oct 88 at 5:28 p.m.

[11-2.7 Test Casesfor the Dynamic Semantics

;;; test cases for the dynamic senantics

(prove ' (equa
(appl y-function
(e-c (mk-sub ' swap
(list (mk-ps "(x y) 'integer))
(list (mk-bdi-const '(tenp) 'integer (nk-exp-ide 'x)))
(list (mk-stmasg 'x (nk-exp-ide 'vy))
(nmk-stmasg 'y (nk-exp-ide "tenp))))
store)
" %)
(apply-function store 'vy)))

(prove ' (equa
(appl y-function
(e-c (mk-sub ’'swap
(list (mk-ps "(x y) 'integer))
(list (mk-bdi-const '(tenp) 'integer (nk-exp-ide 'x)))
(list (nmk-stmasg 'x (nk-exp-ide 'vy))
(nmk-stmasg 'y (nk-exp-ide "tenp))))
store)
"Y)
(apply-function store "x)))

(prove-1l enma stmcant-cl obber-const (rewite)
(inmplies (and (equal (env-lookup x env)
(unit-set (nk-di-const tn)))
(ws s env))
(equal (apply-function (e-s s store) x)
(apply-function store x))))

(di sabl e e-s)
(di sabl e ws)

(prove-lemm stmlist-cant-cl obber-const (rewite)

(inmplies (and (equal (env-1ookup x env)

(unit-set (nk-di-const tm))
(ws-list s-list env))
(equal (apply-function (e-s-list s-list store) x)
(appl y-function store x)))
((induct (e-s-list s-list store))
(use (stmcant-clobber-const (s (car s-list))))))

nancAVA
The Lisp Definition

*kk DRAFT***

PART IV: THE LISP DEFINITION

Michael K. Smith

65

19 Oct 88 at 5:28 p.m.

66 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 67
The Lisp Definition

Chapter 1V-1
SYNTAX: THE GRAMMAR

The syntax of these grammar rules should be obvious except for the constructors, which follow the
symbol "==". (Note that as a typing convenience we have used "-" rather than "_" to separate the
component parts of non-terminal names.) A vertical bar separates alternative realizations of a non-
terminal.

The form following "==" is a Lisp form that describes how to compute a representation for the non-
terminal out of its subcomponents. The dollar-signed integers are variables such that $i is bound to the
representation of ith element of the right hand side of the production. An object declaration (see below)
has, according to itsfirst rule, 6 components. Some of these are syntactic sugar of no interest to us

[ARM (3.2)]
object-declaration ::=
identifier-list : type-mark := expression ; ==‘(<VARIABLE-DECL> ,$1 ,$3 ,$5)
| identifier-list : CONSTANT type-mark := expression ;
==‘(<CONSTANT-DECL> ,$1 ,$4 ,$6)

e.g. the colon, semi-colon, and assignment operator. We build a list with the following components: the
first element (normally the operator) indicates what sort of form we have, the second is an identifier list of
the objects to be declared, the third is the type of these objects, and the fourth is the initial value of the
objects. Thus,

a,b : integer := x;

would result in the form:
(<VARI ABLE- DECL> (<ID-LI ST> A B) (<TYPE- MARK> | NTEGER) X)

We are using the Common Lisp [Steele 84] backquote notation extensively, since most of these
constructions are so simple. The backquoted form evaluates to a result that is identical to the original
form, but with all expressions preceded by a comma replaced by the result of evaluating them. The",@"
prefix works similarly to the "," prefix within a backquote, except that the resulting list is spliced into
place. Suppose X = 1.

“(TEST ,(LIST X) 2) => (TEST (1) 2

“(TEST ,@LIST X) 2) => (TEST 1 2)

The grammar depends on the lexical scanner to some extent, in that the scanner distinguishes reserved
words, identifiers, special symbols, and literals. In particular, it is important that while nAVA does not
use the reserved word task, it nonetheless prevents the user from using it as an identifier.

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

68 nanocAVA

IV-1.1 Syntactic Rules

The form of these rules should be fairly clear. Theformis:

[ARM (3.2)]
non-terminal ::= [Defined: 1, Static: 24, Dynamic 35]
pattern; == (function,; $1 $3 $5)
| pattern,, == (function,, $1 $2)
| pattern,, == (function,, $1 $4 $6)

"[ARM (3.2)]" points to the location of the corresponding Ada construct in the Ada Language Reference
Manual. The cross reference we have discussed previoudly (see page 3). It indicates that the non-terminal
is defined informally on page 1 of the reference manual, its static semantics can be found on page 24, and
its dynamic semantics on page 35.

Each pattern after "::=" is one realization of the non-terminal. A pattern is a list of non-terminals,
terminals (in nanoAVA, just identifiers), reserved words and/or special-symbols. The "==" indicates the
constructor for a branch of the rule. This constructor takes as arguments the values produced (recursively)
for each element of the pattern (indicated by the positional variables $1, $2, etc.). Identifiers, reserved
words and special-symbols just return their value (as a symbol). We will use the term operator to refer to
the first element (CAR) of these lists and arguments to refer to the rest of the list (CDR).

[ARM (3.2)]
object-declaration ::=

identifier-list : type-mark := expression ;
=='(<VARIABLE-DECL> ,$1 ,$3 ,$5)
| identifier-list : CONSTANT type-mark := expression ;
==‘(<CONSTANT-DECL> ,$1 ,$4 ,$6)
[ARM (3.2)]

identifier-list ::=
identifier
| identifier , identifier-list

type-mark ::=
name

declarative-part ::=
basic-decls

basic-decls ::=

basic-declarative-item
| basic-declarative-item basic-decls

basic-declarative-item ::=
object-declaration

name ::=
simple-name

simple-name ::=
identifier

19 Oct 88 at 5:28 p.m.

[Defined: 20]
==‘(<ID-LIST> $1)
=='(<ID-LIST> ,$1 ,@(CDR $3))
[ARM (3.3.2)]
[Defined: 21,Static: 76]
=='(<TYPE-MARK> $1)
[ARM (3.9)]
[ARM: 23,Deno: 49,Static: 76,Dynamic: 81]
=="'(<DECLARATIVE-PART> ,@$%$1)

== (LIST $1)
== (CONS $1 $2)
[ARM (3.9)]
[ARM: 23,Deno: 49,Static: 76,Dynamic: 81]

[ARM (4.1)]
[Defined: 25]

=%1
[ARM (4.1)]

=9%1
*%x DRAFT***

nanoAVA 69
The Lisp Definition

[ARM (4.4)]
expression = [ARM: 25,Deno: 49,Static: 78,Dynamic: 81]
relation =%l
[ARM (4.4)]
relation ::= [ARM: 25,Deno: 49,Static: 78,Dynamic: 81]
simple-expression =%l
| simple-expression relational-operator simple-expression
== (LIST $2 $1 $3)
simple-expression ::= term =$1
term = [ARM (4.4)]
factor =81
factor ::= [ARM (4.4)]
primary =%l
primary ::= [ARM (4.9)]
name =%l
[ARM (4.5)]
relational -operator ::= [ARM: 26,Deno: 49,Static: 78,Dynamic: 81]
= =="<EQUAL>
| /= =="<NE>
| < =='<LT>
| <= =="'<LE>
| > =='<GT>
| >= =="'<GE>
[ARM (5.1)]
sequence-of-statements ::= [ARM: 29,Deno: 51,Static: 77,Dynamic: 81]
statements =="'(<SEQ-OF-STMTS> ,@%$1)
statements ::=
statement == (LIST $1)
| statement statements == (CONS $1 $2)
[ARM (5.1)]
statement ::= [ARM: 29,Deno: 49,Static: 77,Dynamic: 81]
simple-statement =81
simple-statement ::= [ARM (5.1)]
null-statement =%l
| assignment-statement =81
;; Documentation for Main Procedure invocation.
;; Not contained in the nanoAV A grammar.
;1 | procedure-call-statement ==$1
[ARM (5.1)]
null-statement ::= [ARM: 29,Deno: 52,Static: 77,Dynamic: 81]
NULL ; =="(<NULL-STMT>)
[ARM (5.2)]
assignment-statement ::= [ARM: 29,Deno: 52,Static: 77,Dynamic: 81]
name := expression ; ==‘(<ASSIGN-STMT> ,$1 ,$3)
[ARM (6.1)]
subprogram-specification ::= [ARM: 31,Static: 76,Dynamic: 81]
PROCEDURE identifier =='(<PROCEDURE-SPEC> ,$2 NIL)
| PROCEDURE identifier formal-part ==‘(<PROCEDURE-SPEC> ,$2 ,$3)
formal-part ::= [ARM (6.1)]
(formal-part2 =='(<FORMAL-PART> ,@%2)

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

70

formal-part2 ::=

parameter-specification)
| parameter-specification ; formal-part2

;; No default value for parameters

parameter-specification ::=
identifier-list : mode type-mark

mode ::=
IN OUT

subprogram-body ::=
subprogram-specification sub-decl
BEGIN sequence-of-statements END ;
sub-decl ::=

IS
| IS declarative-part

compilation ::=
compilation-unit

compilation-unit ::=
library-unit

library-unit ::=
subprogram-body

nancAVA
== (LIST $1)
== (CONS $1 $3)
[ARM (6.1)]
[Defined: 31]
=="'(<PARM-SPEC> $1 $3 $4)
[ARM (6.1)]

[Defined: 31,Static: 76]

=="(<MODE> *IN-OUT*)
[ARM (6.3)]
[ARM: 32,Deno: 49,Static: 76,Dynamic: 81]

=='(,@%1 ,$2 ,$4)

=="(<DECLARATIVE-PART> NIL)

[ARM: 41,Deno: 49,Static: 75,Dynamic: 81]
==‘(<COMPILATION> ,$1)
[ARM (10.1)]
[ARM: 41,Deno: 49,Static: 75,Dynamic: 81]
==‘(<COMPILATION-UNIT> ,$1)
[ARM (10.1)]
[ARM: 41,Static: 75,Dynamic: 81]

The procedure call description below is provided so that we have somewhere to stand when describing the
invocation of the main program. These productions are not part of the nanoAVA grammar.

procedure-call-statement ::=
name;
| name actual -parameter-part ;

actual-parameter-part ::=
(actual-parameter-part2

actual-parameter-part2 ::=

parameter-association)

| parameter-association , actual-parameter-part2

parameter-association ::=
actual-parameter

actual-parameter ;.=
expression

19 Oct 88 at 5:28 p.m.

[ARM (6.4)]
=="'(<PROCEDURE-CALL-STMT> $1 NIL)
==‘(<PROCEDURE-CALL-STMT> ,$1 $2)

[ARM (6.4)]
== (<ACTUAL-PARAMETER-PART> ,@5$2)

== (LIST $1)
== (CONS $1 $3)
[ARM (6.4)]
==*(<PARM-ASSOC> $1)
[ARM (6.4)]
=9%1
*k*k DRAF'I'***

nancAVA 71
The Lisp Definition

IV-1.2 Syntactic Output

The result of a successful syntactic pass is a compilation, whose structure is described below. A "!"
indicates alist of elements. The form (A . B) indicates that A isto be CONSed onto the list B. That is, A
isthefirst element of the list and B contains the rest of thelist.

conpilation =
(<conpi | ati on>
(<conpi |l ation-unit>
(<procedure-spec> identifier
(<formal -part> . paraneter-specification!)
(<decl arative-part> . object-declaration!)
(<seqg-of-stnts> . sinple-statenent!))))

paraneter-specification =
(<parmspec> identifier-list (<nmbde> *in-out*) type)

type =
(<type-mark> identifier)

obj ect-declaration =
(<variabl e-decl > identifier-list type expression)
| (<constant-decl> identifier-list type expression)

identifier-list =
(<id-list> . identifer!)

expression =

identifier
| (<EQUAL> identifier identifier) | (<NE> identifier identifier)
| (<LT> identifier identifier) | (<LE> identifier identifier)
| (<GT> identifier identifier) | (<GE> identifier identifier)

sinpl e-statement =
(<nul I -stmnt>)
| (<assign-stnt> identifier expression)

The procedure call description below is provided so that we can talk about the invocation of the main
program. But it will not be produced by the parser and we do not need to provide static semantic routines
to check it.

si npl e-statenment =
;; previous sinple-statement plus ...
(<procedure-call-stnt> identifier
(<actual - paraneter-part> . paraneter-association!))

paranet er-associ ation = (<parmassoc> expression)

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

72 nanocAVA

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 73
The Lisp Definition

Chapter 1V-2
STATIC SEMANTICS

This section presents the complete functional description of the static semantic checks performed over the
syntactic output. Two basic definitional approaches are used. We define a number of Lisp functions
(using DEFUN) and we define a set of semantic analysis routines (using DEFSEMANTICYS) that key off
of the operators in the syntactic output.

The entry point to static semantic checking is the function semantic-check-and-convert. It takes as
argument the syntactically analyzed program. The function normalizes the input, checks that program is
a compilation and then checks the static semantics of the program by applying the function WF. If
semantically ok, it returns the transformed internal form to pass on to the dynamic semantics.

This input form is the program to be passed to INTERPRET. (For more detail on this process and its
supporting data structures see page 81).

The def semanti cs form is used to define semantic checks and transformations for the syntactic
output. Theform of acall to defsemanticsis:

(defsemantics prefi x-tenpl ate

[Let vl = val uel
[[and] vn = valuen]]
[WF =[test { string }]+]
[Transform = sexpr]
[Declare = sexpr]
[

Normalize = sexpr])

prefix-tenplate ::= (opr arg, ... arg,) | (opr &repeating args)

The prefix-template is a syntactic type descriptor. Its car is the type name (or operator) and itscdr isalist
of argument names. There are two basic forms of prefix, one with a fixed number of arguments, each of
which may be of a different type, and the second with an unspecified number of arguments of a
homogeneous type. The "&repeating" keyword supports the later form. Contrast

(<procedure-spec> swap formal -part decl-part seq-of-stnts)
Vs.
(<id-list> x y 2z)

Defsemantics creates a set of functions that are associated with prefix forms headed by opr. When
evaluating the forms in the definition the following additional bindings will be in effect:

* ENV - the environment in which the semantics of the form are being evaluated.

* OPR - the operator name.

* FORM - the entire prefix form being analyzed.

* arg,, - for each named argument of the prefix template, the corresponding element of the
form being evaluated.

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

74 nanoAVA

Each of the clauses (LET, WF, TRANSFORM, DECLARE, NORMALIZE) are optional.

LET introduces some local variables and their bindings, just to clean up the definition textually, if the user
wishes.

WEF introduces a sequence of predicates and optional associated error message. The convention is that a
form is well formed if al of the predicates evaluate to true. If atest fails and it has an associated string,
the string constitutes its error message.

TRANSFORM provides a means to convert the input form, perhaps without overloading computed, into
an alternative form containing more semantic information.

DECLARE states how this form modifies the environment. The sexpr returns an environment.

The above keywords are aso the names of functions which apply the corresponding operation to a piece
of prefix.

If a component fails its semantic check then prefix of the form (*semantic-error* form
reason) should be returned. (This allows us to continue applying semantic checks after we have
encountered a first error, in an effort to wring as much information out of the input as we can. Thisis
peripheral to the determination of what the dynamic semantics accepts, but the capability for evaluation
provides a useful check on the adequacy of our definition.)

This modified version of the Lisp form is based in large part on the denotational definition of nanoAVA
(see 47).

IV-2.1 Static Semantics Entry Point

Uses support in denotation.lisp.
Tue May 24 19:23:37 1988, by MKSnith

(def un semantic-check-and-convert (progran
Takes the result of the syntactic pass, PROGRAM checks its
static semantics, and converts to interpreter input form The
value returned by this function is the LI BRARY to be passed to
AUGVENT- AND- RUN.

First we nornalize, then nmake sure we are dealing with a full
syntactic conpilation.

El sewhere we check to ensure that no prograns containing
syntactic errors are passed to this function.

(let ((np (normalize program))
(cond ((not (eqopr np ’'<conpilation>))
(semantic-error "Programis not a conpilation" np standard-env))
((wf np standard-env)
(transform np standard-env))
(t (format t "~%Bemantic errors in program~%)
(transformnp standard-env)))))

ENV (the environnent) is a pair of a set of local nanes and an
al i st of declarations.

(def var standard-env
" ((I NTEGER BOOLEAN FLOAT CHARACTER
ASCI | NATURAL PGCsI TI VE STRI NG DURATI ON
CONSTRAI NT_ERROR NUVERI C_ERROR PROGRAM _ERROR
STORAGE_ERROR TASKI NG_ERROR
TRUE FALSE)

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA
The Lisp Definition

((integer *type*)
(bool ean *type*))))

IV-2.2 Basic Support Function Definitions

(defun locals (env) (car env))
(defun M (env) (cadr env))

;; The declarations are stored in an alist. Each entry is of the
;; form
- (nane . declarative-info)
There may not be nmore than one elenent in the cdr of the list that
; contains declarative info. This will change with AVA

Decl arative info nay be one of:
;5 (*var* typenane) (*const* typenane) (*proc*) (*type*)

(defun lookup (id env)
(cdr (assoc id (Menv))))

(defun hide-homograph (nanme env)
;; The neaning of the nanme is changed, to undefined.
(list (locals env) (cons (cons nanme nil) (Menv))))

(def un start-declarative-region (env)
(list nil (Menv))

(defun set-decl (id decl env)
;; The id get decl as its neaning. Overwites. This seens to be
;» ok for nanoAVA
(list (enter id (locals env))
(cons (cons id decl) (Menv))))

(defun kind-in-env (i d env)
;5 Elenents of env are
(*var* typenane) or (*const* typenane) or (*proc*) or (*type*)
;5 Assunes (| ookup id env)
(opr (lookup id env)))

(defun typein-env (id env)
;7 Assunes (| ookup id env)
;; May return NIL for (*proc*) and (*type*).
(argl (lookup id env)))

IV-2.3 Compilation

(def semanti cs (<compilation> unit) [ARM 41, Deno: 49, Syntax: 70, Dynam c:

WF (WF unit env)

Transform= (Transformunit env))
(defsemanti cs (<compilation-unit> unit) [ARM 41, Deno: 49, Syntax: 70, Dynanmi c:
WF (WF unit env)

Transform = (Transformunit env))

;; Note that there is no reason to declare a procedure. |In particular

;; there is no reason to add the procedure declaration to env. It can never be used.

;; It can be replaced in the environment by a formal or |ocal declaration, but

75

81]

81]

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

76 nanocAVA

;; there is no need to distinguish this replacement fromthe declaration of a variable
;; that does not have the same nane as the procedure.

(def semanti cs (<procedure-spec> nane formal -part decl-part seq-of-stnts)

LET envl = (start-declarative-regi on env)

WF = (not (menber nane (locals env)))
"Redefi ni ng STANDARD pr edefi ned nane"
(WF formal -part envl)
(WF decl - part (decl are formal -part envl))
(WF seq-of-stnts (declare decl-part (declare formal-part envl)))
[ARM 32, Deno: 49, Syntax: 70, Dynamic: 81]
Transform = (prefix '*procedure-spec* nane
(transformformal -part envl)
(transform decl - part (declare formal -part envl))
(transform seqg-of-stnts
(decl are decl -part (declare formal-part envl)))))

(def semanti cs (<formal-part> &repeating paraneters) [ARM 31, Syntax: 69, Dynamic: 81]
Normal i ze = (prefix '<fornmal -part> (mapcan # nornalize-parm spec paraneters))

WF = (WF-map paraneters env)

Decl are = (declare-map (args (transformformenv)) env)

Transform= (prefix '*formal-part* (transformmap paraneters env)))

(defsemantics (<singleparm-spec> i d type) [Static: 76]

Mbde is gone
i Type is (<type-nmark> typenane)

WF = (not (menber id (locals env)))
"Attenpt to redefine predefined unit or |ocal nane"
(WF type (hide-honograph id env))

Decl are
Transform

(set-decl id (list "*VAR* (argl type)) env)
(prefix '*single-parmspec* id (transformtype env)))

#| Naming and Visibility: sone exanples.

procedure foo (foo: T) is ... OK, procedure foo hides honographs.

procedure float (x : boolean) is ... NO can't use predefined identifiers for main.
float : boolean : = x; OK, not in sane |ocal declarative region.

begi n

X : bool ean : = foo;

X : integer :=bar; ... Can't redefine within sane declarative region. |#

I\V-2.4 Typesand Declarations

i Already checked node in syntax.

(def semanti cs (<mode> node) [Syntax: 70, Static: 76]
WF = TRUE
Transform = (prefix '*node* (list node)))

(def semantics (<type-mark> id)
[Deno: 49, Syntax: 68, Static: 76]
WF = (menber id (locals env)) "Unknown type"
(equal (lookup id env) '(*TYPE*)) "Not a type"
Transform = id)

(def semanti cs (<declarative-part> & epeati ng obj ects)

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA 77
The Lisp Definition

[ARM 23, Deno: 49, Syntax: 68, Dynamic: 81]
Normal i ze = (prefix ’'<declarative-part> (mapcan # normalize-decl objects))

WF = (WF-map obj ects env)
Transform = (prefix '*declarative-part* (transform map objects env))
Decl are = (declare-map (args (transformformenv)) env))

(def semanti cs (<singlevariable-decl> i d type val ue)

WF = (not (menber id (locals env)))
"Redefining predefined unit or |ocal nane"
(WF type (hide-honograph id env)) i ??

(WF- expression val ue type (hide-honograph id env))

Transform = (prefix '*variable-decl* id

(transformtype env)

(transform expression val ue type env))
Decl are = (set-decl id (list "*VAR* (argl type)) env))

(def semanti cs (<single-constant-decl> i d type val ue)

WF = (not (menber id (locals env)))
"Attenpt to redefine predefined unit or |ocal nane"
(WF type (hide-honograph id env)) v ?2?

(WF- expression val ue type (hide-honograph id env))
Transform = (prefix '*constant-decl* id
(transformtype env)

(transform expression val ue type env))
Decl are = (set-decl id (list '*CONST* (argl type)) env))

IV-2.5 Statements

(defsemantics (<seg-of-stmts> &repeating statenents) [ARM 29, Deno: 51, Syntax: 69, Dynami c: 81]
WF = (W-map statenments env)
Transform= (prefix '*seg-of-stnts* (transformnap statenents env)))
(defsemantics (<null-stmt>) [ARM 29, Deno: 52, Syntax: 69, Dynami c: 81]
WF = true
Transform= (prefix "*null-stnt* nil))
(def semanti cs (<assign-stmt> id val ue) [ARM 29, Deno: 52, Syntax: 69, Dynamic: 81]
WF = (equal (kind-in-env id env) '*VAR")
"Assi gnment can only be to a variable"
(wf - expression value (type-in-env id env) env)

"Value ill-fornmed"

Transform = (prefix '*assign-stnt*
(list id (transformexpression value (type-in-env id env) env))))

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

78 nanocAVA

IV-2.6 Expressions

(def un wf-expression (e type env) [ARM 25, Deno: 49, Syntax: 69, Dynami c: 81]
(if (identifier-p e)
(and (menber e (locals env))
(menber (kind-in-env e env) ’'(*VAR* *CONST*))
(equal (type-in-env e env) type))
(if (lookup (argl e) env)
(let ((type2 (type-in-env (argl e) env)))
(and (equal type 'bool ean)
(wf-expression (argl e) type2 env)
(wf-expression (arg2 e) type2 env)))
FALSE)))

(defun transform-expression (e t env)
(if (identifier-p e)
e
(prefix (unload-type (opr e) (type-in-env (argl e) env))
(argl e) (arg2 e))))

(def un unload-type (op type) [ARM 26, Deno: 49, Syntax: 69, Dynami c: 81]
(if (equal type 'integer)

(case op
(<equal > ' *equal -int*)
(<ne> "*neqg-int*)
(<It> Flt-int*)
(<l e> "*le-int*)
(<gt> T*gt-int*)
(<ge> "*ge-int*))

;; Else must be bool ean

(case op
(<equal > ' *equal - bool *)
(<ne> ' *neqg- bool *)
(<lt> "*|t-bool *)
(<le> " *| e-bool *)
(<gt> ' *gt-bool *)
(<ge> ' *ge-bool *))))

IV-2.7 Normalization Functions

; Unwind nul tiple declarations

(<variabl e-decl > identifier-list (<type-mark> identifier) expression)
; becones
. ((<single-variabl e-decl > identifier (<type-mark> identifier) expression)*)

;7 And simlarly for <constant-decl>

(defun normalize-decl (form
(if (eqopr form'<vari abl e-decl >)
(nornmal i ze-vari abl e-decl form
(nornal i ze-constant-decl form))

(defun normalize-variable-decl (form
;7 (<variabl e-decl > ids type val ue)
(let ((ids (argl form)
(type (arg2 form)
(value (arg3 form))
(mapcar (f-1 (x)
(prefix '<single-variable-decl> (list x type value)))

ids)))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 79
The Lisp Definition

(def un normalize-constant-decl (form
;7 (<constant-decl> ids type val ue)
(let ((ids (argl form)
(type (arg2 form)
(value (arg3 form))
(mapcar (f-1 (x)
(prefix ’'<single-constant-decl> (list x type value)))

ids)))
;; Do the sane for <parm spec>s.
(<parmspec> identifier-list (<mbde> *in-out*) (<type-mark> identifier))

becones
- ((<single-parmspec> identifier (<type-mark> identifier))*)

(def un normalize-parm-spec (form
;7 (<parmspec> ids npde type)
(let ((ids (argl form)
(nmode (arg2 form)
(type (arg3 form))
(mapcar (f-1 (x)
(prefix '<single-parmspec> (list x type)))

ids)))

IV-2.8 Static Semantic Output
We have taken a dlight liberty with parentheses in the interest of readability. The actual internal form
looks like

(opr (arg; ... arg,)) (@nnotation, .. annotation,))

Which we write here as

(opr arg, ... arg,, {annotation, .. annotation,.})

In this version there will be no annotations.

After static semantic analysis the internal form of anAVA program is as follows:

program::=
pr ocedur e- spec

procedure-spec ::=
(* PROCEDURE- SPEC* i dentifier
(*FORMAL- PART* . paraneter-specification!)
(* DECLARATI VE- PART* . obj ect-decl aration!)
(*SEQ OF- STMIS* . sinple-statenment!))

paraneter-specification ::=
(*SI NGLE- PARM SPEC* identifier type)

obj ect-declaration ::=
(*VARI ABLE- DECL* identifier type expression)
(* CONSTANT- DECL* identifier type expression)

expression ::=

si npl e- expr essi on
(op sinpl e-expression sinpl e-expression)

EQUAL- | NT | *EQUAL- BOOL* |
NEQ I NT | *NEQ BOOL* |

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

80 nanocAVA

LT- | NT | *LT-BOOL* |
LE- | NT | *LE- BOOL* |
GT- | NT | *GT-BOOL* |
* GE- | NT* | *GE- BOOL*

si npl e-expression ::=
identifier | TRUE | FALSE | nunber

sinpl e-statement ::=
(*NULL- STMT*)
(*ASSI GN- STMI* identifier expression)

Programs containing semantic errors will contain occurences of an error form. The FORM argument is
the internal representation that was under analysis when the error was detected. The string should contain
a description of the error.

error-form::= (*SEMANTI C- ERROR* form string)

The integer and boolean prefix values below are added to expressions so that the primitive operations can
be defined over literals. This aso alows the calling environment of the main program to provide actual
values for main parameters.

expression ::=

;; previous expression plus
FALSE | TRUE | integer

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 81
The Lisp Definition

Chapter 1V-3
DYNAMIC SEMANTICS: THE INTERPRETER DEFINITION

IV-3.1 Entry Point

The initial state is a list of variable bindings of the form (variable-name . value). Run- program
intreprets the program formini ni ti al - st at e.

(defvar initial-state nil)
(def var programnil)

(def un run-program (program
(interpret programinitial-state))

BASI C | NTERPRETER ENTRY PO NT
(defun INTERPRET (x s)
;; Xis a statenent, Sis a state.

’(;:ase (opr x)

(* PROCEDURE- SPEC* [ARM 32, Deno: 49, Syntax: 70, Static: 76]
(interpret (get-stnts x) (interpret (get-decls x) s)))
(* DECLARATI VE- PART* [ARM 23, Deno: 49, Syntax: 68, Static: 76]

(if (null (args x)) s
(I'nterpret (rest-of-decls x)
(Interpret (argl x) s))))

(* CONSTANT- DECL* (set-value (argl x) (evaluate (arg3 x) s) s))
(* VARl ABLE- DECL* (set-value (argl x) (evaluate (arg3 x) s) s))
(* SEQ OF- STMI'S* [ARM 29, Deno: 51, Syntax: 69, Static: 77]

(if (null (args x)) s
(I'nterpret (rest-of-stnmts x)
(Interpret (argl x) s))))

(*NULL- STMI* s) [ARM 29, Deno: 52, Syntax: 69, Static: 77]
(*ASSI G\- STMT* [ARM 29, Deno: 52, Syntax: 69, Static: 77]
(set-value (argl x) (evaluate (arg2 x) s) s))))

(def un evaluate (exp s) [ARM 25, Deno: 49, Syntax: 69, Static: 78]
(if (identifier-p exp)
(get-val ue exp s)
(eval -fun (opr exp)
(eval uate (argl exp) s)
(evaluate (arg2 exp) s))))

(defun eval-fun (opr x vy)

(case opr
(*equal -int* (if (equal x y) true false))
(*neg-int* (if (not (equal x y)) true false))
(*I't-int* (if (It xy) true false))
(*le-int* (if (le xy) true false))

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

82

(*gt-int* i
(*ge-int*
(*equal - bool *
(*neg- bool *

i
i
(
(
(*1t-bool * (
(
(
(

—_~—

(
(i

f

f (not (equal x

f (and (equal
(*1 e-bool * f
(*gt-bool * f
(*ge-bool * f

X
(or (equal x
(and (equal x
(or (equal x

(def un rest-of-stmts (stntlist)
(if (args stntlist)

gt x y) true false))
ge x y) true false))
(equal x y) true false))

y)) true false))
fal se) (equal
fal se) (equal

true)
true)

(equal
(equal

(prefix '*SEQ OF- STMIS* (cdr (args stntlist)))

(prefix ' *SEQ OF-STMIS* nil)))

(def un rest-of-decls (decl i st)
(if (args decllist)

y true))
y true))
y false))
y false))

(prefix ' *DECLARATI VE- PART* (cdr (args decllist)))

(prefix ' *DECLARATI VE- PART* nil)))
(def un get-decls (proc) (arg3 proc))
(defun get-stmts (proc) (arg4 proc))
(def un normal-state (s)
(not (equal s 'abnormal-state)))

(defun set-value (i d val ue s)
(cons (cons id value) s))

(defun get-value (id s)
(cdr (assoc id s)))
;; Exanpl e
(setg initial-state "((a . 1) (b . 2)))
(setq program

" (*procedur e-spec* swap
(*formal -part*

(*singl e-parm spec* x integer)

(*singl e-parmspec* y integer))
(*decl arative-part*

(*constant-decl* tenp integer X))

(*seq-of -stnt s*
(*assign-stnt*

Xy)

(*assign-stnt* y tenp))))

19 Oct 88 at 5:28 p.m.

true
true
true
true

nancAVA
fal se))
fal se))
fal se))
false))))
DRAF‘I’

nancAVA
The Lisp Definition

Chapter 1V-4
UTILITY AND DENOTATIONAL SUPPORT FUNCTIONS

Denot ati onal Definition Support.

This file provides a harness for defining and evaluating a
denotati onal style of static semantics in Lisp.

Effort inspired by Mark Saaltink’s denotati onal nanoAVA
definition.

I npl enentati on dial ect: Common Lisp
Fri May 27 17:33:35 1988, by MKSnith

(def macr o defsemantics (form & est argunents)

*kk DRAFT***

(def semantics (opr . args)

[Let vl = val uel
[[and] vn = valuen]]
[W =[test { string}]+ 1]
[Transform = sexpr]
[Declare = sexpr]
[Normalize = sexpr])
FORMis a syntactic type descriptor. |Its car is the type nane

(or operator) and its cdr is a list of argunent nanmes. Wen
evaluating the forms in the definition the foll ow ng bindings
will be in effect:

ENV - the environnent in which the senantics of the formare
bei ng eval uat ed

OPR - the operator nane

argn - for each nanmed el ement of args, the correspondi ng
el enent of the form being eval uated.

Each of the clauses (LET, W, TRANSFORM DECLARE, NORMALI ZE) are
optional .

LET i ntroduces sone |ocal variables and their bindings, just to
clean up the definition textually, if the user w shes.

WF i ntroduces a sequence of predicates and optional associated
error nmessage. The convention is that a formis well formed if
all of the predicates evaluate to true. |If a test fails and it
has an associated string, the string constitutes its error
nessage.

TRANSFORM provi des a neans to convert the input form perhaps

wi t hout overl oadi ng conputed, into an alternative form containing
nmore semantic information. The variable TRANSFORM is bound to
the result of evaluating sexpr.

DECLARE states how this form nodifies the environment. The sexpr
returns an environnent.

83

19 Oct 88 at 5:28 p.m.

84 nanocAVA

‘”(Iet ((opr (opr ,form)
; returns a list of binding pairs

(let-clauses (extract-let ,argunents opr))
returns a COND
(W -cl auses (extract-wf ,argunents opr))

(normal i ze-cl ause (extract-normalize ,argunments opr))
(transformcl ause (extract-transform, argunents opr))
(decl are-cl ause (extract-transform, argunents opr)))

(if let-clauses
(put opr 'let-variables | et-clauses))

(i f wf-clauses
(put opr 'wf-function (build-function formw -clauses)))

(if normalize-clause
(put opr 'normalize-function (build-function formnormalize-clause)))

(if transformclause
(put opr 'transformfunction (build-function formtransformclause)))

(i f decl are-cl ause
(put opr 'declare-function (bui I d-function form decl are-clause)))))

(def un extract-wf (I name)
(let ((wf (cdr (nmember "wf 1))))
(if (and wf (equal (car wf) '=)) (setg wf (cdr w)))
(if wf (cons 'cond (build-wf-cond wWf nane)))))

(def un build-wf-cond (Wf nane)
(cond ((null wf) (cons '(t true) nil))
((menber (car wf) ' (LET TRANSFORM DECLARE NORMALI ZE)) (cons '(t true) nil))
((equal (car wf) '=) (format t "~%rror in W conponent of ~A" name) nil)
((stringp (cadr wf))
(cons (list (list "not (car wf)) ‘(semantic-error form,(cadr w)))
(buil d-wf-cond (cddr wf) nane)))
(t (cons (list (list "not (car wf)) ‘(semantic-error form"Error"))
(build-wf-cond (cdr wf) nane)))))

;; Semantic Error
(defvar *semantic-error* ’'*semantic-error*)

(def un semantic-error (nsg form
(prefix *semantic-error* ‘(,form,nmsg)))

(def un extract-let (I nane)
(let ((let (cdr (nenmber 'let 1))))
(if (and let (equal (car let) "=)) (setqg let (cdr let)))
(if let (build-let let nanme))))

(defun build-let (1 et nane)
(cond ((null let) nil)
((menber (car let) ' (TRANSFORM DECLARE NORMALI ZE)) nil)
((equal (car let) '=) (format t "~%rror in LET conponent of ~A" nane) nil)
((equal (car let) "and) (build-let (cdr let) nane))
((equal (car let) "in) (build-let (cdr let) name))
((symbol p (car let))
(cons (list (car let) (extract-let-value (cdr let)))
(build-let (after-let-value let) nane)))

(t (format t "~%rror in LET conponent of ~A" nane) nil)))

(def un extract-let-value (let-tail)
(cond ((equal (car let-tail) '=)
(cadr let-tail))
(t (format t "~%rror in |let conponent of ~A" nane) nil)))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nanoAVA 85
The Lisp Definition

(defun after-let-value (let-tail)
(cond ((equal (car let-tail) '=)
(cddr let-tail))
(t (format t "~%rror in |let conponent of ~A" nane) nil)))

(def un extract-normalize (I nane)
(let ((rest (cdr (menber 'normalize 1))))
(if (and rest (equal (car rest) '=)) (setq rest (cdr rest)))
(cond ((null rest))
((or (null (cdr rest)) (nenmber (cadr rest) '(let wf transformdeclare)))
(car rest))
(t (format t "~%rror in normalize conponent of ~A" nane) nil))))

(def un extract-transform (I nane)
(let ((rest (cdr (menmber 'transforml))))
(if (and rest (equal (car rest) '=)) (setq rest (cdr rest)))
(cond ((null rest))
((or (null (cdr rest)) (nenmber (cadr rest) '(let wf nornalize declare)))
(car rest))
(t (format t "~%rror in transform conponent of ~A" nane) nil))))

(def un extract-declare (I name)
(let ((rest (cdr (menber 'declare 1))))

(if (and rest (equal (car rest) '=)) (setq rest (cdr rest)))

(cond ((null rest))
((or (null (cdr rest))

(menber (cadr rest) '(let wf transformnornalize)))

(car rest))
(t (format t "~%rror in declare conponent of ~A" nanme) nil))))

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

86 nanocAVA

;; In order to apply the WF, Transform or Declare just
;; call themon an object. These functions will get the version
;; appropriate to the type of the expression and apply it.

(defun WF (expr env)

;; For every type of expression that we apply WF to there should be

an associated test. If not, our definition contains an error.
;; So we do not neke the application of the function conditional on
;; It existing. If it isn't there we break.

klstatic-trace-entry expr)
(static-trace-exit (apply (Wkfunction expr) (list expr env)) expr))

(defun WF-map (expr-list env)
(cond ((null expr) true)
((WF (car expr-list) env)
(WF-map (cdr expr-list) (declare (car expr-list) env)))

(t nil)))

(defun Transform (expr env)
;5 If there is no transform |eave it alone.
(let ((fun (Transformfunction expr)))
(if fun
(apply fun (list expr env))
expr)))

(defun Transform-map (expr env)
(if (null expr)
nil
(cons (transform (car expr-list) env)
(transformmap (cdr expr-list) (declare (car expr-list) env)))))

(defun Declare (expr env)

;5 If there is no declare, return env. W do this because declare
;; is applied in places where we don't know if one has been defined
for the type, e.g. the -map functions just above.

(let ((fun (Declare-function expr)))
(if fun
(apply fun (list expr env))
env)))

(defun Declaremap (expr env)
(if (null expr)
env
(decl are-map (cdr expr-list) (declare (car expr-list) env))))

Normal i ze works a differently fromthe others. It is neant to be
;; done before anything else. The entire program should be normalized
;; before any other operation. E.g. (NORMVALIZE progran).

(def un normalize (expr)
(if (opr expr)
(let ((norm (normalize-function (opr expr))))
(if norm
(apply norm (list expr))
(prefix (opr expr) (mapcar # nornmalize (args expr)))))
expr))

(def un WF-function (expr) (get (opr expr) 'wf-function))

(def un Transform-function (expr) (get (opr expr) ’'transformfunction))
(def un Declare-function (expr) (get (opr expr) 'declare-function))
(def un normalize-function (expr) (get (opr expr) 'normalize-function))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA
The Lisp Definition

(defvar *arg-extraction-fns* '(argl arg2 arg3 arg4 argb

arg6 arg7 arg8 arg9 argl0))

(def un build-function (form functi on)

FORM is of the form (opr argl ... argn) or (opr & epeating args).

E.g. (<assign-stnt> id expr) or (<paraneter-list> & epeating paraneters).

W build a formlike
(function (lanbda (form env)
(let ((opr (opr form)
(id (argl form)
(expr (arg2 form))
function)))
And return it. The caller stores it.

The function we conpute has the variables FORM (the whol e
expression), OPR (the operator), the argunent nanes, and ENV (the
environment). We al so provi de TRANSFORM as a vari abl e bound to
(Transform FORM) .

First we bind the variables according of form
The definition nmay have included LET variables. They will be
stored as properties under the car of form

(function (lanbda (form env)

(et ((opr (opr yyy))
,@extract-args (cdr form ’'vyyy))
(let* ,(get (car form ’'*let-variabl es*)
(let ((transform (transformform))
,function))))))

(def un extract-args (args argnane)

Args is either a list of atom c argument names or a repeating group

which is indicated by (& epeating |ist-paraneter).

(cond ((null args) nil)

((equal (car args) '&repeating)
(list (list (cadr args) (list 'args argnane))))
(t (extract-args2 args argnane))))

(def un extract-args2 (args argnane)
(mapcar (function (lanmbda (x argfn) ‘(,x (,argfn ,argnane))))

args *arg-extraction-fns*))

(def paraneter *trace-static-indent* 1)

(def parameter *trace-static* nil)

efun ic-trace-entry (expr
def static-t t
(when *trace-static*

(when (or (menmber 'all *trace-static*)
(menber (opr expr) *trace-static*))
(format t "~%VTEnter Static Semantic: ~A"
trace-static-indent expr)
(incf *trace-static-indent*)

nil)))

(def un static-trace-exit (result expr)
(when *trace-static*

(if (or (menber '"all *trace-static*)
(menber (opr expr) *trace-static*))
(format t "~%VTExit Static Semantic: ~A"
(decf *trace-static-indent*) result)))

result)

(def macro static-trace (& est)

“(let ((127,1))

*kk DRAFT***

(cond ((null 12) *trace-static?*)

87

19 Oct 88 at 5:28 p.m.

88 nanocAVA

((consp (car 12))
(setq *trace-static* (union (car |12) *trace-static*)))
((consp 12)
(setq *trace-static* (union (list 12) *trace-static*)))
(t (format t "~%Bad argunent to static-trace.~%)))))
(def macro static-untrace (& est 1)
(let ((127,1))
(cond ((null 12) *trace-static¥*)
((equal 12 '"(all)) (setq *trace-static* nil))
((consp (car 12))
(setq *trace-static* (set-difference *trace-static* (car 12))))
(t (format t "~%Bad argunent to static-trace.~%)))))

IV-4.1 Parser Utilities

;7 Macros, especially for reading/printing with columm |ocation know edge.
;; Modul e and Package mani pul ation
(i n-package "PRS")
(export "(wite-errors |l=line-errors) ; (export synbols &optional package)
(find-package "PRS"))
;; Conpl et ed nodul e and package mani pul ati on
(eval -when (1l oad conpile eval)
;, Basic. Should be ininit file.
(defmacro memg (a I) ‘(nenber ,a ,I :test # eq))
(def macro nconcl (I a) ‘(nconc ,I (list ,a)))
To record read | ocation.

(def var charcolumn 0) ; 0 means we have not printed a character yet.
(defvar charline 1)

(def var charcolumn-linelength 80)

(def un bump-charcolumn (x &optional (n 0))
(setq charcolum (+ charcolum (flatc x) n)))

(defun ll-terpri () (setq charcolum 0) (incf charline))

(defun ll-tab (n)

;; This is tab-to. After tabbing, the next character wll
;5 print in colum n (O based, i.e. 0 is the beginning of the line).
(cond ((eql n charcol um))

((> n charcol um)

(sloop for i from1l to (- n charcolum)

do (princ '#\ space)))

(t (Il-terpri) (lIl-tab n)))

(setqg charcolum n))

(defun ll-princ (x) (princ x) (bunp-charcolum x))
(defmacro peekc () ‘(peek-char nil *standard-input* nil eof-value))
(def var last-character-read nil)

(def macro tyi ()

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA
The Lisp Definition

"(progn (setq last-character-read
(read-char *standard-input* nil eof-value))
(if echo (wite-char |last-character-read *termnal-io*))
(i ncf charcol um)
(when (new inep | ast-character-read)
(setq charcol um 0)
(setq charline (+ charline 1)))
| ast-character-read))

pyoutility

(def macro if-echo (& est x)
‘(if echo (let ((*standard-output* *termnal-io*))

(progn . ,x))))

(defun string-append (a & est b)
(string-append2 a b))

(defun stringify (a)
(cond ((null a) "")
((consp a)
(concatenate 'string (stringify (car a)) (stringify (cdr a))))
(t (string a))))

(def un string-append2 (a b)
(if (null b)
(stringify a)
(concatenate 'string (stringify a)
(string-append2 (car b) (cdr b)))))

(defun pack2 (a b) (intern (string-append a b)))
(defun flatc (x) (length (princ-to-string x)))
(defun flatsize (x) (length (prinl-to-string x)))

(def un explode (x)
(setqg x (string x))
(sloop for i fromO to (1- (flatc x))
collecting (char x i)))

(def un explodec (x)
(setqg x (string x))
(sloop for i fromO to (1- (flatc x))
collecting (char-code (char x i))))

Parser utilities

(proclaim’ (special Il=line-errors token token-type token-I|oc
previ ous-token previous-token-type previous-token-Iloc))

(def un write-errors ()
;; This was derived fromcode that worked for semantic errors al so.
;5 This function only applies to syntactic errors.
Il=line-errors is of the form

i (((line-of-token colum-of-token) . error-nsg-string) ...)
;; Errors will appear as:
i, foo :=from+ or x;

s i n2
- 1: Expected identifier, parens,
- 2: Expected <expression>
;; 18 COctober 1983 by MKSnmith
(let ((pos 0) nextpos (humO0))
;; First print carats under positions at which tokens in errors begin.
7 NUMindicates the correspondence between token and nsg.
(mapc (function (lanbda (err)
(setq nextpos (cadr (car err)))
(cond ((< pos nextpos)

89

*xx DRAFT*** 19 Oct 88 at 5:28 p.m.

90 nanocAVA

('l -tab nextpos)
(setq pos nextpos)

(I'l-princ '7)
(I'l-princ (incf num)))))
I'l=l'i ne-errors)

;7 NUMindicates the correspondence between token and nsg.
(setg num 0)

(mapc (function (lanbda (err) (format t " ~a: ~a" (incf nun) (cdr err))))
I'l=line-errors)
(setq Il=line-errors nil)))

(defun msg-print (n nsg)
;o Print n: <elements of MSG seperated by spaces>

(let (max)
(setqg max charcol um-1i nel engt h)
(format t "~% ~a: " n)

(mapc (function (lanmbda (entry)
(if (< (+ charcolum (flatc entry)) nax)

(format t " ~a" entry)
(format t "~% ~a" entry))
(bunp-charcol um entry 1)))

nsg)))

(defun ada-error (string)
(format t "~%rror in interpreter: ~A~-% string)
nil)

(defun psl-error (x)
Modified to interact with the array formof Ada |inereading.
;; X should be a string equal to the error nessage.
(decl are (special prs\err))
(setq prs\err t)
(setq Il=line-errors (nconcl |Il=line-errors (cons token-loc x))))

(defun psl-warning (x)

Modified to interact with the array formof Ada |inereading. X
should be a list equal to the error nessage. W do not set

;7 PRS\ERR, so hopefully this will print as a warning, but not

;; destroy the syntactic parse.

(setq Il=line-errors (nconcl Il=line-errors (cons token-loc x))))

19 Oct 88 at 5:28 p.m. ***DRAFT***

nancAVA
The Lisp Definition

Refer ences

[DoD 83] Reference Manual for the Ada Programming Language

United States Department of Defense, New Y ork, 1983.

ANSI/MIL-STD-1815A-1983.

[Steele 84] Guy L. Steele Jr.
Common LISP: The Language.
Digital Press, 1984.

*kk DRAFT***

91

19 Oct 88 at 5:28 p.m.

I ndex

<assign-stmt> 71 denotation 49
<compilation-unit> 71 dynamic 81
<compilation> 71 static 75
<constant-decl> 71 syntax 70
<declarative-part> 71 Constant decl
<EQUAL> 71 dynamic 81
<formal-part> 71
<GE> 71 Declarative part
<GT> 71 defined 23
<id-list> 71 denotation 49
<LE> 71 dynamic 81
<LT> 71 static 76
<NE> 71 syntax 68
<null-stmt> 71 Digits
<parm-spec> 71 defined 13
<procedure-spec> 71
<seg-of-stmts> 71 Expression
<type-mark> 71 defined 25
<variable-decl> 71 denotation 49, 51, 54
dynamic 81
Actual parameter static 78
syntax 70 syntax 69
Actual parameter part
syntax 70 Factor
Actual parameter part2 defined 26
syntax 70 syntax 69
Assignment statement Formal part
defined 29 defined 31
denotation 52 dynamic 81
dynamic 81 static 76
static 77 syntax 69
syntax 69 Formal part2
syntax 69
Basic character
defined 13 Graphic character
Basic declarative item defined 13
defined 23
denotation 49, 51, 54 Identifier
dynamic 81 defined 15
static 76 denotation 49
syntax 68 Identifier list
Basic decls defined 20
syntax 68 syntax 68
Basic graphic character
defined 13 Letter
defined 15
Compilation Letter or digit
defined 41 defined 15
denotation 49, 54 Library unit
dynamic 81 defined 41
static 75 dynamic 81
syntax 70 static 75
Compilation unit syntax 70

defined 41 Lisp Functions

nanocAVA
Index

ada-error 90
after-let-value 84
build-function 87
build-let 84
build-wf-cond 84
bump-charcolumn 88
Declare 86
Declare-function 86
Declare-map 86
defsemantics 83
eva-fun 81

evauate 81

explode 89

explodec 89
extract-args 87
extract-args2 87
extract-declare 85
extract-let 84
extract-let-value 84
extract-normalize 85
extract-transform 85
extract-wf 84

flatc 89

flatsize 89

get-decls 82
get-stmts 82
get-value 82
hide-homograph 75
if-echo 89
INTERPRET 81
kind-in-env 75
[l-princ 88

II-tab 88

[I-terpri 88

locals 75

lookup 75

M 75

memq 88

msg-print 90

nconcl 88
normal-state 82
normalize 86
normalize-constant-decl 79
normalize-decl 78
normalize-function 86
normalize-parm-spec 79
normalize-variable-decl 78
pack2 89

peekc 88

psl-error 90
psl-warning 90
rest-of-decls 82
rest-of-stmts 82
run-program 81
semantic-check-and-convert 74
semantic-error 84
set-decl 75

set-value 82
start-declarative-region 75

93

static-trace-entry 87
static-trace-exit 87
string-append 89
string-append2 89
stringify 89
Transform 86
transform-expression 78
Transform-function 86
Transform-map 86
tyi 88
type-in-env 75
unload-type 78
WF 86
wf-expression 78
WEF-function 86
WF-map 86
write-errors 89

Lisp Variables
charcolumn 88
charcolumn-linelength 88
charline 88
|ast-character-read 88

Lower case |etters
defined 13

Mode
defined 31
static 76
syntax 70

Name
defined 25
syntax 68

Null statement
defined 29
denotation 52
dynamic 81
static 77
syntax 69

Object declaration
defined 20
syntax 68

Other special characters
defined 13

Parameter association
syntax 70
Parameter specification
defined 31
denotation 49, 51
static 76
syntax 70
Primary
defined 26
syntax 69
Procedure call statement
dynamic 81
syntax 70

94

Relation
defined 25
denotation 49
dynamic 81
static 78
syntax 69

Relational operator
defined 26
denotation 49
dynamic 81
static 78
syntax 69

Sequence of statements
defined 29
denotation 51
dynamic 81
static 77
syntax 69

Simple expression
defined 25
syntax 69

Simple name
defined 25
syntax 68

Simple statement
defined 29
dynamic 81
static 77
syntax 69

Single parm spec
static 76

Single variable decl
static 77

Single-constant-decl
static 77

Special characters
defined 13

Statement
defined 29

denotation 49, 51, 54

dynamic 81
static 77
syntax 69
Statements
syntax 69
Sub decl
syntax 70
Subprogram body
defined 32
denotation 49, 51
dynamic 81
static 76
syntax 70

Subprogram specification

defined 31
dynamic 81
static 76
syntax 69

Term
defined 25
syntax 69

Type mark
defined 21
denotation 49, 51
dynamic 81
static 76
syntax 68

Upper case letters
defined 13

Variable decl
dynamic 81

nanoAVA
Index

Table of Contents

PART |
I ntroduction

PART I
Language Reference Manual

Chapter [1-1. IntrodUuCtiono e

[1-1.1. Scopeof theStandardt
1-1.1.1. Extentof theStandard
[1-1.1.2. Conformity of an Implementation Withthe Standard

[1-1.2. Structureof theStandard

[1-1.3. Design Goalsand Sources: Removed

[1-1.4. Language SUMMEIYottt ettt ettt e s

[1-1.5. Method of Description and Syntax Notation

[1-1.6. Classification of Errors

Chapter 11-2. Lexical Elements e

[1-2.0. Charatter SEt ... e
[1-2.2. Lexical Elements, Separators, and Delimiters
H-2.3. Identifiers . ..o e
[1-2.4. NumericaLiteralss Removed
[1-2.5. Character Literals. Removed i
[1-2.6. String Literals: Removed e e
2.7, COMMENES ..t e e e e
[1-2.8. Pragmas . ..ottt
[1-2.9. ReSarved Wordso e
[1-2.10. Allowable Replacements of Characters: Removed

Chapter 11-3. Declarationsand TYPES oot

[1-3.1. DEClarationsS oottt e e e e
[1-3.2. ODJECES . . .ot
[1-3.2.1. ObjeCt DeClarationSottt e e e
[1-3.2.2. Number Declarations: Removed e
=33, TYPES .ot
[1-3.3.1. Type Declarations: Removedt i
[1-3.3.2. Subtype Declarations
[1-3.3.3. Classification of Operationso.uiiiii i
[1-3.4. Derived Types: Removed e
[1-3.5. SCalar TYPES . ot ittt i e e e
[1-3.5.1. ENUMEration TYPESot ittt e e e e e e et
[1-3.5.2. CharaCter TYPES . ..ottt et et e e e e e

N
RPOOWOwowo~N~N =~

=Y
w

RPRRRRERERRERR
~NOOOOOoOO Ul W

[1-3.5.3. BOOIEAN TYPES .« ottt ittt ettt ettt
[-3.5.4. INtEgEr TYPES vttt e e e e e
[1-3.5.5. Operations Of DiSCrete TYPES .« . vt i ettt et ettt
[1-3.5.6. Real Types. REMOVEdo e e e e
[1-3.5.7. Floating Point Types: Removed i
[1-3.5.8. Operations of Floating Point Types Types: Removed
[1-3.5.9. Fixed Point Types: Removed e
[1-3.6. Array Types: Removed i e
[1-3.7. Record Types: Removed,
[1-3.8. Access Types: Removedo e
[1-3.9. Declarative Parts

Chapter [1-4. Names and EXPressionS oo v et

-4, L NaMES . . e e e e e e
[1-4.2. Literals: Removed e
[1-4.3. Aggregates: RemMOVEdt
B v o] =S) 11
[1-4.5. Operators and Expression Evaluation,
[1-4.5.1. Logica Operatiors and Short Circuit Control Forms: Removed
[1-4.5.2. Relational Operatorscoiuiii i e et et et
[1-4.6. 4.6through 4. 10 Removedo e e

Chapter 11-5. Statements e e

[1-5.1. Simple and Compound Statements - Sequences of Statements
[1-5.2. Assignment Statementt e
[1-5.3.5.3through 5.9: Removed i

Chapter 11-6. SUDProgramsov it et et

[1-6.1. Subprogram Specifications i,
[1-6.2. Formal Parameter Modes. Removed ...,
[1-6.3. Subprogram Bodies
[1-6.4. 6.4through 6.7: Removed i

Chapter [1-7. Packages: Removed

Chapter 11-8. ViSiDility RUIES © ..o o oo e et

[1-8.1. DeclaratiVe REgIONot
[1-8.2. Scope of DeClarationsouui
[1-8.3. ViSihility ...
[1-8.4. UseClauses: Removed
[1-8.5. Renaming Declarations: Removed
[1-8.6. ThePackage Standard i,
[1-8.7. Overload ResolUtioNt e

25

25
25
25
25
26
26
26
27

29

29
29
30

31

31
32
32
32

33

35

35
36
36
37
37
37
37

Chapter [1-9. Tasks: Removed e

Chapter 11-10. Program Structure and Compilationlssues....................

[1-10.1. Compilation Units- Library Units i,
[1-10.2. Subunits of Compilation Units: Removed
[1-10.3. Order of Compilation: Removedc.coi ...
[1-10.4. The Program Library: Removed i,
[1-10.5. Elaboration of Library Units i
[1-10.6. Program Optimization: Removed

Appendix A. Predefined Language Attributes: Removed
Appendix B. Predefined Language Pragmas. Removed
Appendix C. Predefined Language Environment

PART 11
The Denotational Semantics of NanoAVA (Version 1)

Chapter 111-1. The Denotational Definition

It I O N) = 1o 1
[1-1.2. AbStract Syntaxo e e e
[-1.3. Static SEemMantiCsoii i e e e
1 0 3 O I o 711 £
[11-1.3.2. Static semanticSfuNCLioNS it e e e
[11-1.3.3. Static Semantic DEfiNitionNst e
[11-1.4. DyNamiCc SEMantiCSuriiie ettt et
1 0 O I o 711
[11-1.4.2. Dynamic FUNCtions (SIgNatUresS)ouuiintneie it ie i
[11-1.4.3. Dynamic Semantics Definitions i
I-1.5. 1nadequaciest e e e

Chapter 111-2. The Boyer Moore Definition

[1-2.1. ABStract SYNtaXo e
[1-2.2. NOrMalizationo e
[1-2.3. Static DOMaAINSo e e
[11-2.4. Well-formednessprediCates
[11-2.5. Test Casesfor the Static Semantics
[11-2.6. DyNamic SEMantiCSttt et
[11-2.7. Test Casesfor the Dynamic Semantics,

PART IV
The Lisp Definition

Chapter IV-1. Syntax: TheGrammar,

IV-1.1. SyntactiCRUIES
IV-1.2. SyntaCtiC QULPULottt e e et

Chapter 1V-2. Static SEmantiCSo

IV-2.1. Static SemanticsSEntry Point
IV-2.2. Basic Support Function Definitions i i,
IV-2.3. Compilation e
IV-2.4. Typesand Declarations i,
V-2 8, S OmMENtS . ..o
[V-2.6. EXPreSSIONS oottt e e
IV-2.7. Normalization FUNCLIONS i
IV-2.8. Static Semantic QULPULot e e e e

Chapter 1V-3. Dynamic Semantics: The Interpreter Definition
IV-3.L Entry POINt

Chapter IV-4. Utility and Denotational Support Functions
IV-4.1. Parser UtIlIties e e

67

68
71

73

74
75
75
76
77
78
78
79

81
81

83
88

List of Figures

List of Tables

Vi

