
Piton:
A Verified Assembly Level Language

by

J Strother Moore

Technical Report 22
September, 1988

This work was supported in part at Computational Logic, Inc., by the Defense Advanced Research Projects Agency, ARPA Orders

6082 and 9151. The views and conclusions contained in this document are those of the author and should not be interpreted as

representing the official policies, either expressed or implied, of Computational Logic, Inc., the Defense Advanced Research Projects

Agency or the U.S. Government.

Computational Logic, Inc.
1717 West Sixth Street, Suite 290

Austin, Texas 78703

Abstract

This report describes a programming language, its implementation on a microprocessor via a compiler,
an assembler, and a linker, and the mechanically checked proof of the correctness of the implementation.
The programming language, called Piton, is a high-level assembly language designed for verified applica-
tions and as the target language for high-level language compilers. It provides execute-only programs,
recursive subroutine call and return, stack based parameter passing, local variables, global variables and
arrays, a user-visible stack for intermediate results, and seven abstract data types including integers, data
addresses, program addresses and subroutine names. Piton is formally specified by an interpreter written
for it in the computational logic of Boyer and Moore. Piton has been implemented on the FM8502, a
general purpose microprocessor whose gate-level design has been mechanically proved to implement its
machine code interpreter. The FM8502 implementation of Piton is via a function in the Boyer-Moore logic
which maps a Piton initial state into an FM8502 binary core image. The compiler, assembler and linker are
all defined as functions in the logic. The implementation requires approximately 36K bytes and 1,400 lines
of prettyprinted source code in the Pure Lisp-like syntax of the logic. The implementation has been
mechanically proved correct. In particular, if a Piton state can be run to completion without error, then the
final values of all the global data structures can be ascertained from an inspection of an FM8502 core
image obtained by running the core image produced by the compiler, assembler, and linker. Thus, verified
Piton programs running on FM8502 can be thought of as having been verified down to the gate level. The
report defines Piton, exhibits a Piton program for big number addition and its correctness proof, describes
the FM8502 implementation of Piton, formalizes the statement of correctness for the implementation, and
describes the proof.

1

1. Introduction and Background

1.1. Motivation

The correctness of mechanically verified software typically rests on several informal assumptions about
the correctness of the underlying subsystems. A correctly specified and accurately verified high-level
language program may still exhibit incorrect behavior because of bugs in the compiler, assembler, linker,
loader, runtime support software or the hardware. But, at least down to the hardware, these other com-
ponents of the system are programs and hence are mathematical objects whose properties are subject to
formal proof. It is the goal of system verification to specify and formally verify all of the components of a
system down to the hardware level.

For our purposes it is convenient to define as software those components of a system accurately
modelled by mathematical logic (as opposed to physics). Even so there is still a question of where to draw
the line between software and hardware. What is the lowest level accurately modelled by mathematical
logic? The machine code? The microcode? The register-transfer level? The layout and timing diagrams?
Models of individual gates? A line must be drawn. The correctness of any physical system ultimately rests
on statistically described assumptions about the properties of physical devices.

But because the software is accurately modelled by mathematical logic, and because mathematical proof
is the ultimate arbiter of mathematical truth, the most reliable software systems will be those in which all
the software components have been proved correct.

1.2. System Verification

The line has been drawn in a variety of places by various verification projects. The vast majority of
verification work (as measured by funding levels) addresses ‘‘design proofs,’’ an activity in which the line
is drawn somewhere above the highest level executable code in the system. Some verification work
addresses ‘‘code proofs,’’ where traditionally the line has been drawn at the definition of a high-level
programming language like Gypsy [7, 8, 9], Pascal [20], Fortran [3], and others [21, 6, 13, 17, 5]. There
has been some work on compiler verification, notably the work of Polak [15] in which a compiler for a
Pascal subset is verified. Finally, there has been some recent work closer to the bottom of the system stack.
For example, Gordon [10] and Hunt [11] draw the line essentially at the register-transfer level and offer
mechanically certified designs for digital hardware.

But the research underlying the construction of the first fully verified system must address more than just
the verification of the individual components. The components of a system are built on top of each other.
To verify a system one must be able to stack verified components. That is, one must be able to use what
was proved about one level to construct the proof of the next.

This paper reports on what we believe is the first instance of stacking two verified components. In 1985
Warren Hunt designed, specified and proved the correctness of the FM8501 microprocessor. The FM8501
is a 16-bit, 8 register general purpose processor implementing a machine language with a conventional
orthogonal instruction set. Hunt formally described the instruction set of the FM8501 by defining an
interpreter for it in the computational logic designed by Boyer and Moore [2, 4]. Hunt also formally
described the combinational logic and a register-transfer model that he claimed implemented the instruction
set. The Boyer-Moore theorem prover was then used to prove that the register-transfer model correctly

2

implemented the machine code interpreter.

The existence of a verified design for a general-purpose processor clearly suggests the idea of using that
processor as the ‘‘delivery vehicle’’ for some ‘‘trusted system’’ such as an encryption box, a verifiable
high-level language, or perhaps even a program verification system. This was an inevitable suggestion
since FM8501 was developed in the same laboratory responsible for the Gypsy Verification
Environment [9] and the Boyer-Moore theorem prover [2, 4], two of the most widely used program
verification systems. But, unless one wants to build such tools in machine language, it is necessary to
implement higher-level languages on FM8501. To maintain the credibility of the system, the implemen-
tation of those languages should be verified all the way down to the FM8501 machine code. Thus was born
our ‘‘system verification’’ project.

1.3. The Piton Project

The first step was to design, implement and verify an assembly-level language on FM8501. We named
the language ‘‘Piton’’ after the spikes driven into rocks by mountain climbers to secure their ropes.

When the Piton project began, the intended hardware base was FM8501. Early in the project we
requested two changes to FM8501, which were implemented and verified by Warren Hunt. The modified
machine was called the ‘‘FM8502.’’ The changes were (a) an increase in the word width from 16 to 32 bits
and (b) the allocation of additional bits in the instruction word format to permit individual control over
which of the alu condition code flags were stored. Because of the nature of the original FM8501 design,
and the specification style, these changes were easy to make and to verify. Indeed, the FM8502 proof was
produced from the FM8501 script without human assistance.

Before proceeding any further let it be clearly understood how far we are from having a verified system.
FM8502 has not been physically realized. Building FM8502 while maintaining its credibility as a verified
design would require much research. The ‘‘combinational logic’’ is described as an expression in proposi-
tional logic, not a gate graph in 3-space. Problems of layout, fanout, timing, etc., have not been addressed.
The FM8502 design has no provision for testing the fabricated device. In short, because FM8502 is at the
bottom of the stack, there is no tension (other than intellectual honesty and knowledge of engineering) to
keep the underlying assumptions reasonable. Much can be done to further reduce our assumptions.

Even if built, FM8502 is inadequate as a practical delivery vehicle. It has no facilities for interrupts,
memory management, or input/output. Even its instruction set is sometimes clumsy to use. Finally,
FM8502 was originally designed as a PhD project to demonstrate the feasibility of hardware verification.
The FM8501 design was very conventional (i.e., old fashioned) so that it was clear that the architectural
style was not what made the design verifiable. Having made that point, we believe it would now be more
cost effective to invest the effort to verify and build a more modern machine.

Another indication that we are far from having a verified system is that the Piton implementation
described here is not an FM8502 program but a function in a computational logic. It can be executed (in
Common Lisp) to generate an FM8502 core image. A goal not yet addressed by our research is how one
might actually load that core image into a physically realized FM8502. A longer term goal is to make the
compiler, assembler, and linker be FM8502 programs themselves. Consider, for example, an FM8502
machine code program impl that transforms Piton source code into an FM8502 core image that allegedly
implements the Piton code. We believe that the best way to verify impl is to prove that its output is
identical to that of a verified functionally defined implementation. This approach factors the correctness

3

problem into three subgoals: (a) describe a suitable core image mathematically as a function on Piton
source code, (b) prove that the mathematical function correctly implements the Piton code, and (c) prove
that impl produces the described core image. The current work can thus be seen as the first two steps in
producing a verified Piton compiler written as an FM8502 program.

These shortcomings notwithstanding, one must begin somewhere. The first fully verified system is
unlikely to be built from perfectly suitable components constructed in one pass from perfectly suitable and
credible hardware. No one has ever stacked two verified components of significant size before; we must
learn how. FM8502 is sufficiently large and realistic to anchor one end of such a research project.

For the other end, we designed Piton, a simple assembly-level programming language. We wanted
Piton’s semantics to be relatively ‘‘clean’’ so that it was straightforward to prove properties of Piton
programs. But the cleanliness could not come by making unrealistic assumptions, since it was our goal to
implement the language and prove the implementation correct. Finally, we wanted the implementation to
be efficient so that one could actually use Piton in verified applications. We imagine using Piton directly to
write encryption programs and indirectly as the target language for verified high-level language compilers.

1.4. Achievements

Among the significant achievements of the Piton project are the following.

Piton truly provides abstract objects and a new programming language on top of a much lower level
machine. Much has been written about this classic problem but the previous attempts to deal with it
formally and mechanically have been unsatisfactory. We have in mind specifically the work related to the
SRI Hierarchical Design Methodology [16] and its use in the Provably Secure Operating System
(PSOS) [14] and the Software Implemented Fault Tolerant (SIFT) operating system [12, 19]. While vir-
tually all of the issues are correctly intuited, we personally find great joy in seeing their formalization.

The commitment to stacking has had several effects. The desire to implement Piton forced into its
design such practical considerations as the finite resources of the host machine. The desire to use Piton
forced us to reflect the resource limits into the language itself—programs that cannot anticipate the
imminent exhaustion of their resources are impractical.

We obtain efficiency in the Piton implementation by exploiting the fact that Piton programs are to be
proved correct. In particular, the Piton semantics identifies ‘‘erroneous’’ computations and the Piton
compiler is proved correct only for non-erroneous computations. By assuming the computation to be
non-erroneous the compiler can generate more efficient code. But the only way to establish that a given
computation is non-erroneous is to prove it from the formal semantics.

Developing the statement of the correctness result for the Piton implementation was very illuminating.
Initially the idea was that the final state produced by a Piton computation could be alternatively produced
by mapping the initial Piton state down to the FM8502, running the FM8502 to obtain a final state, and
then mapping it up. The problem with this, aside from the issue of erroneous computations, is that we
cannot map FM8502 states up to Piton states because not enough information is present. For example, we
do not know how to interpret the FM8502 bit vectors in the data segment of the final FM8502 state: Are
they natural numbers? Integers? Addresses? Because Piton syntax is untyped, it is impossible to deter-
mine the type of the result of a Piton program from a syntactic analysis of the program. Yet untyped
languages are useful. They can be used because the user knows what the type of the result will be and

4

interprets the final bit vectors accordingly. Our correctness result formalizes this notion of
‘‘foreknowledge.’’

The proof of the correctness result was, of course, the hardest task and the place where we learned the
1most. The implementation involves several phases: compilation, assembling, and linking. Each phase is

essentially a form of translation from one programming language to another. The topmost language is
Piton, whose formal definition is part of the statement of the problem. The bottom-most language is
FM8502 machine code, whose formal definition is embodied in an imagined physical machine and which is
the only language that is physically implemented. But the compiler produces assembly code and the
assembler produces symbolically linked machine code. One need not know about, much less formally
define, these intermediate languages to state the correctness result. One need not know about, much less
formally define, these languages to use the FM8502 implementation of Piton. It is even possible to
implement Piton on FM8502 without ever writing down the definitions of these languages. And yet to
prove the implementation correct we had to define these intermediate languages formally. In this sense, the
Piton machine is three layers above FM8502, each layer implementing a Piton abstraction on top of a more
primitive machine. Perhaps the most useful part of the Piton experience was recognizing the need for these
layers and learning what kinds of problems could best be handled at each layer.

1.5. Outline of the Presentation

In Chapter 2 we informally describe the Piton programming language. We essentially adopt the style of
a conventional primer for a programming language. We discuss such basic design issues as procedure call,
errors, the various resources available, etc. We exhibit many examples. We summarily describe each
instruction. The material in Chapter 2 is spiritually correct but, in the manner of most programming

2language primers, most of it is incomplete or technically incorrect.

In Chapter 3 we illustrate Piton and the ideas discussed in Chapter 2 with a thoroughly worked example.
In particular, we deal with the problem of ‘‘big number addition.’’ We explain (both informally and
formally) what ‘‘big numbers’’ are, how to ‘‘add’’ them, and what the relation is between addition and big
number addition. We then exhibit a Piton program that purportedly does big number addition. We exhibit
a Piton initial state in which a particular big number addition computation is set up and we show the state
obtained by running that initial state. We then exhibit the formal specification of the Piton program, we
comment on the utility of our style of specification, and we discuss the mechanically checked proof that the
program satisfies its specification. We return to this example when we discuss the implementation of Piton
on FM8502 and the correctness theorem for the implementation.

In Chapter 4 we briefly sketch FM8502.

In Chapter 5 we state the correctness theorem for the FM8502 implementation of Piton, we informally
characterize the various predicates and functions used in the theorem, and we explain the intended inter-
pretation of the theorem. We then illustrate how the correctness theorem can be applied to the big number
addition program developed in Chapter 3.

1Our implementation does involve three distinct phases, however the assembler and the linker are intertwined in the last phase. The
first phase is what we call ‘‘resource representation’’ in which FM8502 resources are allocated to represent ‘‘system data’’ implicit in
the Piton machine. The second phase is compilation. The third is what we call ‘‘link-assembling.’’ These distinctions are
unimportant to the current discussion but are presented in detail later.

2We advocate formal definition of programming languages, but we recognize the pedagogical importance of informal ones.

5

In Chapter 6 we explain how Piton is implemented on FM8502. We give an example of an FM8502 core
image produced from a Piton state, we explain the basic use of the FM8502 resources in our implemen-
tation, and we then discuss each of the three phases of the implementation: resource allocation, compila-
tion, and link-assembling.

The next four chapters, Chapters 7-10, are the technical heart of this report. Chapter 7 contains the
equations that define Piton. Chapter 8 contains the equations that define the machine language of FM8502.
Chapter 9 contains the equations that define the implementation of Piton on FM8502. Chapter 10 contains
the statement of the correctness result and the definitions of all of the concepts used in that theorem (except
those contained in the foregoing chapters). All four of these chapters begin with brief, informal ‘‘guided
tours’’ through the systems defined.

Finally, in Chapter 11 we briefly discuss the proof of the correctness theorem. Our primary motivation
in this report is to convey accurately what has been proved—i.e., to explain Piton, FM8502, the implemen-
tation, and the correctness theorem—rather than how it was proved. Readers interested in the mechanical
proof should contact the author after thoroughly digesting this report and its description of the proof.

There are two appendices. The first contains a complete list of all of the primitive function symbols
occurring in Chapters 7-10. The second contains some statistics about the Piton project.

This report is exhaustively indexed. Approximately 600 function names are defined in Chapters 7-10.
The index indicates the page number on which each function symbol is defined and lists all of the page
numbers in Chapters 7-10 on which each function is used.

1.6. Notation

This report assumes a basic familiarity with the Boyer-Moore logic [4]. In examples of Piton syntax,
states and data—all of which are explicit values in the logic—we frequently omit the quotation mark
required to distinguish constants from formulas. For example, we sometimes refer to ‘‘the array’’ (3 2 1
0 0) rather than the LISTP object ’(3 2 1 0 0), or the ‘‘Piton instruction’’ (PUSH-LOCAL A)
rather than the LISTP object ’(PUSH-LOCAL A). This sloppiness is intended to make the reader who is
unfamiliar with our notation less burdened by details. It is hoped that the reader who is familiar with the
notation will read these constants as though they were quoted and refer to the formal chapters of this report
if ambiguity has accidentally crept in. When terms other than constants are presented we have adhered to
our usual discipline of writing them in the implemented syntax of our logic.

1.7. Acknowledgements

The Piton project benefited substantially from the contributions of Warren Hunt, Matt Kaufmann, and
Bill Young. Warren showed me how to program in FM8502 machine code, helped write the first version
of the linker, and produced FM8502 from FM8501 in response to my requests. Matt volunteered to help
construct the correctness proof and ‘‘contracted’’ to deliver the proof for one of the three main lemmas. I
can think of no higher testimony to his mathematical and clerical skills than merely to point out that he was
given a formula involving, at some level, about 500 defined function symbols and two months later
delivered his proof—after finding and correcting dozens of bugs. His participation in the proof effort sped
the whole project up far more than suggested by his two months of work. Finally, Bill is the first user of
Piton—it is the target language of his MicroGypsy compiler—and so he has had the burden of being the

6

‘‘bad guy’’ who always needed some (perfectly reasonable) feature I had omitted. Without him, Piton
would be far more of a toy than it is. The historical discussion of the Piton project in Appendix II more
precisely describes the technical contributions of these three people. I would also like to thank Matt
Wilding for his careful reading and constructive criticism of the first draft of this report.

Finally, I thank my wife, Miren, for her love and devotion during a long hard year.

7

2. An Informal Sketch of Piton

Among the features provided by Piton are:

• execute-only program space

• named read/write global data spaces randomly accessed as one-dimensional arrays

• recursive subroutine call and return

• provision of named formal parameters and stack-based parameter passing

• provision of named temporary variables allocated and initialized to constants on call

• a user-visible temporary stack

• seven abstract data types:
• integers

• natural numbers

• bit vectors

• Booleans

• data addresses

• program addresses (labels)

• subroutine names

• stack-based instructions for manipulating the various abstract objects

• standard flow-of-control instructions

• instructions for determining resource limitations

2.1. An Example Piton Program

We begin our presentation of Piton with a simple example. Below we exhibit a Piton program named
DEMO. The program is a list constant in the computational logic of Boyer and Moore [4] and is displayed
in the traditional Lisp-like notation. Comments are written in the right-hand column, bracketed by the
comment delimiters semi-colon and end-of-line. The DEMO program has three formal parameters, X, Y, and
Z, and two temporary variables, A and I.

(DEMO (X Y Z) ; Formals X, Y, and Z
((A (INT -1)) ; Temporary A, initial value -1
(I (NAT 2))) ; Temporary I, initial value 2
(PUSH-LOCAL Y) ; Push the value of Y
(PUSH-CONSTANT (NAT 4)) ; Push the natural number 4
(ADD-NAT) ; Add the top two items
(RET)) ; Return

When DEMO is called, the topmost three items from Piton’s temporary stack are popped off and used as the
actual values of the formals X, Y, and Z. In addition, A is initialized to the integer -1 and I is initialized to
the natural number 2. The values of all five of these ‘‘local’’ variables are restored when DEMO returns to
its caller.

The body of DEMO has four Piton instructions in it. The first, (PUSH-LOCAL Y), pushes the value of
the local variable Y onto the temporary stack. The second, (PUSH-CONSTANT (NAT 4)), pushes the

8

natural number 4 onto the temporary stack. The third, (ADD-NAT), pops the topmost two items off the
temporary stack, adds them together (expecting both to be naturals), and pushes the result onto the tem-
porary stack. The last instruction returns control to the calling environment. The sum just computed is on
top of the stack and is considered the result. In summary, this silly program adds 4 to the value of its
second argument and ignores the other arguments. Its two temporary variables are not used.

Now consider the following sequence of Piton instructions.

(PUSH-CONSTANT (ADDR (DELTA1 . 25)))
(PUSH-CONSTANT (NAT 17))
(PUSH-CONSTANT (BOOL T))
(CALL DEMO)

This sequence pushes three items onto the stack and then calls DEMO. The CALL pops the three objects off
the stack and uses them as the actuals. DEMO’s first formal, X, is bound to the data address (DELTA1 .

th25)—the address of the 25 location of the global array named DELTA1. DEMO’s second argument, Y, is
bound to the natural number 17. Its third argument, Z, is bound to the Boolean value T. The execution of
DEMO pushes 21 (the sum of 17 and 4) and returns. Thus, the net effect of the four instructions
above—barring a variety of runtime errors such as stack overflow—is to push a 21 onto the stack.

2.2. Piton States

The Piton machine is a conventional von Neumann state transition machine. Roughly speaking, a
particular instruction is singled out as the ‘‘current instruction’’ in any Piton state. When ‘‘executed’’ each
instruction changes the state in some way, including changing the identity of the current instruction. The
Piton machine operates on an initial state by iteratively executing the current instruction until some ter-
mination condition is met.

A Piton state, or p-state, is a 9-tuple with the following components:

• a program counter, indicating which instruction in which subroutine is the next to be ex-
ecuted;

• a control stack, recording the hierarchy of subroutine invocations leading to the current state;

• a temporary stack, containing intermediate results as well as the arguments and results of
subroutine calls;

• a program segment, defining a system of Piton programs or subroutines;

• a data segment, defining a collection of disjoint named indexed data spaces (i.e., global
arrays);

• a maximum control stack size;

• a maximum temporary stack size;

• a word size, which governs the size of numeric constants and bit vectors; and

• a program status word (psw).
The formalization of this concept is embodied in the function P-STATE which is defined on page 131.
P-STATE takes nine arguments and returns a p-state with the appropriate nine components. Thus,
(P-STATE PC CSTK TSTK PROGS DATA MAXC MAXT W PSW) is a p-state.

We put a variety of additional restrictions on the components of a p-state. For example, we require that
every instruction in every program is syntactically well-formed and mentions no variables other than the
locals of the containing program or the globals declared in the data segment. We also require that every

9

data object occurring in the state is compatible with the state, e.g., every object tagged ‘‘address’’ is a legal
address in that state, etc. We call such p-states proper p-states. The formalization of this concept is
embodied in the function PROPER-P-STATEP which is defined on page 149.

The program counter of a p-state names one of the programs in the program segment, which we call the
current program, and gives the position of one of the instructions in that program’s body, which we call
the current instruction. We say control is in the current program and at the current instruction.

The control stack of the p-state is a stack of frames, the topmost frame describing the currently active
subroutine invocation and the successive frames describing the hierarchy of suspended invocations. The
topmost frame is the only frame directly accessible to Piton instructions. Each frame has two fields in it.
One contains the bindings of the local variables of the invoked program. The other contains the return

program counter, which is the program counter to which control is to return when the subroutine exits.

When a subroutine is called or invoked, a new frame is pushed onto the control stack. The local
variables of the called subroutine are bound to the appropriate values and the return program counter is
saved. Then control is transferred to the first instruction in the body of the subroutine. All references to
local variables in the instructions of the called subroutine refer implicitly to the current bindings. When the
subroutine returns to its caller, the top frame of the control stack is popped off, thus restoring the current
bindings of the caller extant at the time of call. In short, the values assigned to the local variables of a
subroutine are local to a particular invocation and cannot be accessed or changed by any other subroutine or
recursive invocation. We define ‘‘local variables’’ and what we mean by the ‘‘appropriate values’’ when
we discuss Piton programs.

2.3. Type Checking

Piton programs manipulate seven types of data: integers, natural numbers, Booleans, fixed length bit
vectors, data addresses, program addresses, and subroutine names.

All objects are ‘‘first class’’ in the sense that they can be passed around and stored into arbitrary
variable, stack, and data locations. There is no type checking in the Piton syntax. A variable can hold an
integer value now and a Boolean value later, for example.

Each type comes with a set of Piton instructions designed to manipulate objects of that type. For
example, the ADD-NAT instruction adds two naturals together to produce a natural; the ADD-ADDR instruc-
tion increments a data address by a natural to produce a new data address. The effects of most instructions
are defined only when the operands are of the expected type. For example, the formal definition of Piton
does not specify what the ADD-NAT instruction does if given a non-natural. However, our implementation
of Piton has no runtime type checking facilities. The programmer must know what he is doing.

Such cavalier runtime treatment of types—i.e., no syntactic type checking and no runtime type
checking—would normally be an invitation to disaster. In most programming languages the definition of
the language is embedded in only two mechanical devices: the compiler (where syntactic checks are made)
and the runtime system (where semantic checks are made). If some feature of the language (e.g., correct
use of the type system) is not checked by either of these two devices, then the programmer had better read
the language manual and his program very carefully because he bears the entire responsibility.

But the Piton programmer is relieved of this burden by an unconventional third mechanical device. In

10

addition to a compiler and a run-time system, Piton has a mechanized formal semantics. This
device—actually the Boyer-Moore theorem prover initialized with the formal definition of
Piton—completely embodies the formal semantics of Piton. If a programmer wishes to establish that he
has not violated Piton’s type restrictions, he can undertake to prove it mechanically.

As programmers we find this a marvelous state of affairs. We are relieved of the burden of syntactic
restrictions in the language—objects can be slung around any way we please. We are relieved of the
inefficiency of checking types at runtime. But we don’t have to worry about having made mistakes. The
price, of course, is that we must be willing to prove our programs correct.

2.4. Data Types

As noted, Piton supports seven primitive data types. The syntax of Piton requires that all data objects be
tagged by their type. Thus, (INT 5) is the way we write the integer 5, while (NAT 5) is the way we
write the natural number 5. The question ‘‘are they the same?’’ cannot arise in Piton because no operation
compares them.

Below we characterize all of the legal instances of each type. However, this must be done with respect
to a given p-state, since the p-state determines the resource limitations, legal addresses, etc. We use w as
the word size of the p-state implicit in our discussion. In the examples of this section we assume the word

3size is 8. The formalization of the concept of ‘‘legal Piton data object’’ is embodied in the function
P-OBJECTP which is defined on page 122.

2.4.1. Integers

w-1 w-1Piton provides the integers, i, in the range -2 ≤ i < 2 . We say such integers are representable in the
given p-state. Observe that there is one more representable negative integer than representable positive
integers. Integers are written down in the form (INT i), where i is an optionally signed integer in
decimal notation. For example, (INT -4) and (INT 3) are Piton integers. Piton provides instructions
for adding, subtracting, and comparing integers. It is also possible to convert non-negative integers into
naturals.

2.4.2. Natural Numbers

wPiton provides the natural numbers, n, in the range 0 ≤ n < 2 . We say such naturals are representable in
the given p-state. Naturals are written down in the form (NAT n), where n is an unsigned integer in
decimal notation. For example, (NAT 0) and (NAT 7) are Piton naturals. Piton provides instructions
for adding, subtracting, doubling, halving, and comparing naturals. Naturals also play a role in those
instructions that do address manipulation, random access into the temporary stack, and some control
functions.

3In our FM8502 implementation of Piton we fix the word size at 32.

11

2.4.3. Booleans

4There are two Boolean objects, called T and F. They are written down (BOOL T) and (BOOL F).
Piton provides the logical operations of conjunction, disjunction, negation and equivalence. Several Piton
instructions generate Boolean objects (e.g., the ‘‘less than’’ operators for integers and naturals).

2.4.4. Bit Vectors

A Piton bit vector is an array of 1’s and 0’s as long as the word size. Bit vectors are written in the form
(BITV v) where v is a list of length w, enclosed in parentheses, containing only 1’s and 0’s. For
example (BITV (1 1 1 1 0 0 0 0)) is a bit vector when w is 8. Operations on bit vectors include
componentwise conjunction, disjunction, negation, exclusive-or, left and right shift, and equivalence.

2.4.5. Data Addresses

A Piton data address is a pair consisting of a name and a number. To be legal in a given p-state, the
name must be the name of some data area in the data segment of the state and the number must be
non-negative and less than the length of the array associated with the named data area. Data addresses are

thwritten (ADDR (name . n)). Such an address refers to the n element of array associated with name,
where enumeration is 0 based, starting at the left hand end of the array. For example, if the data segment of
the state contains a data area named DELTA1 that has an associated array of length 128, then (ADDR

(DELTA1 . 122)) is a data address. The operations on data addresses include incrementing,
decrementing, and comparing addresses, fetching the object at an address, and depositing an object at an
address.

2.4.6. Program Addresses

A Piton program address is a pair consisting of a name and a number. To be legal in a given p-state, the
name must be the name of some program in the program segment of the state and the number must be
non-negative and less than the length of the body of the named program. Program addresses are written

th(PC (name . n)). Such an address refers to the n instruction in the body of the program named
name, where enumeration is 0 based starting with the first instruction in the body. For example, if the
program segment of the state contains a program named SETUP that has 200 instructions in its body, then
(PC (SETUP . 27)) is a legal program address. Program addresses can be compared and control can
be transferred to (the instruction at) a program address. Some instructions generate program addresses.
But it is impossible to deposit anything at a program address (just as it is impossible to transfer control to a
data address).

The program counter component of a p-state is an object of this type. For example, to start a computa-
tion at the first instruction of the program named MAIN, the program counter in the state should be set to
(PC (MAIN . 0)).

4Note to those familiar with our logic: The T and F used in the representation of the Piton Booleans are not the (TRUE) and
(FALSE) of the logic but the literal atoms ’T and ’F of the logic.

12

2.4.7. Subroutines

A Piton subroutine name is just a name. To be legal, it must be the name of some program in the
program segment. Subroutine names are written (SUBR name). For example, if SETUP is the name of a
program in the program segment, then (SUBR SETUP) is a subroutine object in Piton. The only opera-
tion on subroutine objects is to call them.

2.5. The Data Segment

The Piton data segment contains all of the global data in a p-state. The data segment is a list of data

areas. Each data area consists of a literal atom data area name followed by one or more Piton objects,
called the array associated with the name. The objects in the array are implicitly indexed from 0, starting
with the leftmost. Using data addresses, which specify a name and an index, Piton programs can access
and change the elements in an array.

We sometimes call a data area name a global variable. Some Piton instructions expect global variables
thas their arguments and operate on the 0 position of the named data area. We define the value of a global

thvariable to be the contents of the 0 location in its associated array. This is a pleasant convention if the
data area only has one element but tends to be confusing otherwise.

Here, for example, is a data segment:

((LEN (NAT 5))
(A (NAT 0)

(NAT 1)
(NAT 2)
(NAT 3)
(NAT 4))

(X (INT -23)
(NAT 256)
(BOOL T)
(BITV (1 0 1 0 1 1 0 0))
(ADDR (A . 3))
(PC (SETUP . 25))
(SUBR MAIN))).

This segment contains three data areas, LEN, A, and X. The LEN area has only one element and so is
naturally thought of as a global variable. Its value is the natural number 5. The A array is of length 5 and
contains the consecutive naturals starting from 0. While A is of homogeneous type as shown, Piton
programs may write arbitrary objects into A. The third data area, X, has an associated array of length 7. It
happens that this array contains one object of every Piton type.

Let addr be the Piton data address object (ADDR (X . 1)). If we fetch from addr we get (NAT
256). If we deposit (NAT 7) at addr the data segment becomes

13

((LEN (NAT 5))
(A (NAT 0)

(NAT 1)
(NAT 2)
(NAT 3)
(NAT 4))

(X (INT -23)
(NAT 7)
(BOOL T)
(BITV (1 0 1 0 1 1 0 0))
(ADDR (A . 3))
(PC (SETUP . 25))
(SUBR MAIN))).

If we increment addr by one and then fetch from addr we get (BOOL T).

The individual data areas are totally isolated from each other. Despite the fact that addresses can be
incremented and decremented, there is no way for a Piton program to manipulate addr, which addresses
the area named X, so as to obtain an address into the area named A.

2.6. The Program Segment

The program segment of a p-state is a list of ‘‘program definitions’’. A program definition (or, inter-
changeably, a subroutine definition) is an object of the following form

(name (v v ... v)0 1 n-1
((v i) (v i) ... (v i))n n n+1 n+1 n+k-1 n+k-1
ins0
ins1
...
ins),m

where name is the name of the program and is some literal atom; v , ..., v are the n≥0 formal0 n-1
parameters of the program and are literal atoms; v , ..., v are the k≥0 temporary variables of then n+k-1
program and are literal atoms; i , ..., i are the initial values of the corresponding temporary vari-n n+k-1
ables and are data objects in the state in which the program occurs; and ins , ... ins are m+1 optionally0 m
labelled Piton instructions, called the body of the program. The body must be non-empty.

The local variables of a program are the formal parameters together with the temporary variables. The
values of the local variables of a subroutine may be accessed and changed by position as well as by name.
For this purpose we enumerate the local variables starting from 0 in the same order they are displayed
above.

As noted previously, upon subroutine call the local variables of the called subroutine are bound to the
‘‘appropriate values’’ in the stack frame created for that invocation. The n formal parameters are initial-
ized from the temporary stack. The topmost n elements of the temporary stacks are called the actuals for
the call. They are removed from the temporary stack and become the values of formals. The association is
in reverse order of the formals; i.e., the last formal, v , is bound to the object on the top of the temporaryn-1
stack at the time of the call and v is bound to the object n down from the top at the time of the call. The k0
temporary variables are bound to their respective initial values at the time of call.

The instructions in the body of a Piton program may be optionally labelled. A label is a literal atom. To

14

attach label lab to an instruction, ins, write

(DL lab comment ins)

where comment is any object in the logic and is totally ignored by the Piton semantics and implemen-
tation. We say lab is defined in a program if the body of the program contains (DL lab ...) as one of
its members. Such a form is called a def-label form because it defines a label. Label definitions are local to
the program in which they occur. Use of the atom LOOP, for example, as a label in some instruction in a
program refers to the (first) point in that program at which LOOP is defined in a def-label form.

Because of the local nature of label definitions it is not possible for one program to jump to a label in
another. A similar effect can be obtained efficiently using the data objects of type PC. The POPJ

instruction transfers control to the program address on the top of the temporary stack—provided that
5 ndaddress is in the current program. Thus, if subroutine MASTER wants to jump to the 22 instruction of

subroutine SLAVE, it could CALL SLAVE and pass it the argument (PC (SLAVE . 22)), and SLAVE
could do a POPJ as its first instruction to branch to the desired location.

The last instruction, ins must be a return or some form of unconditional jump. It is not permitted tom
‘‘fall off’’ the end of a Piton program.

The formalization of the concept of a syntactically well-formed Piton program is embodied in the
function PROPER-P-PROGRAMP which is defined on page 147. Part of the constraints on proper p-states
is that they contain proper Piton programs.

2.7. Instructions

Figure 2-1 lists the Piton instructions. The instructions are organized informally into groups. The
language as currently defined provides 65 instructions. We do not regard the current instruction set as
fixed in granite; we imagine Piton will continue to evolve to suit the needs of its users.

We describe each instruction informally by explaining the syntactic form of the instruction, the precon-
ditions on its execution, and the effects of executing an acceptable instance of the instruction. The
instructions are listed in alphabetical order. Unless otherwise indicated, every instruction increments the
program counter by one so that the next instruction to be executed is the instruction following the current
one in the current subroutine. All references to ‘‘the stack’’ refer to the temporary stack unless otherwise
specified. When we say ‘‘push’’ or ‘‘pop’’ without mentioning a particular stack we mean to push or pop
the temporary stack. The formal section of this document is intended as a readable and precise Piton
manual. The references to page numbers below refer to the formal definitions of the corresponding
functions or predicates. The first section of Chapter 7 is a guide to the formalization.

(ADD-ADDR) Well Formedness (page 140): No additional constraints. Precondition (page 102):
There is a natural, n, on top of the stack and a data address, a, immediately below it.
The result of incrementing a by n is a legal data address. Effect (page 102): Pop twice
and then push the data address obtained by incrementing a by n.

(ADD-INT) Well Formedness (page 140): No additional constraints. Precondition (page 102):
There is an integer, i, on top of the stack and an integer, j, immediately below it. j+i is
representable. Effect (page 103): Pop twice and then push the integer j+i.

5There is no way, in Piton, to transfer control into another subroutine except via the call/return mechanism.

15

Figure 2-1: Piton Instructions

Control Integers Natural Numbers

CALL ADD-INT ADD-NAT
JUMP ADD-INT-WITH-CARRY ADD-NAT-WITH-CARRY
JUMP-CASE ADD1-INT ADD1-NAT
NO-OP EQ DIV2-NAT
RET INT-TO-NAT EQ
TEST-BITV-AND-JUMP LT-INT LT-NAT
TEST-BOOL-AND-JUMP NEG-INT MULT2-NAT
TEST-INT-AND-JUMP SUB-INT MULT2-NAT-WITH-CARRY-OUT
TEST-NAT-AND-JUMP SUB-INT-WITH-CARRY SUB-NAT

SUB1-INT SUB-NAT-WITH-CARRY
SUB1-NAT

Variables Booleans Bit Vectors

LOCN AND-BOOL AND-BITV
POP-GLOBAL EQ EQ
POP-LOCAL NOT-BOOL LSH-BITV
POP-LOCN OR-BOOL NOT-BITV
PUSH-GLOBAL OR-BITV
PUSH-LOCAL RSH-BITV
SET-GLOBAL XOR-BITV
SET-LOCAL

Stack Data Addresses Subroutines

DEPOSIT-TEMP-STK ADD-ADDR EQ
FETCH-TEMP-STK DEPOSIT POP-CALL
POP EQ
POP* FETCH
POPN LT-ADDR Program Addresses
PUSH-CONSTANT SUB-ADDR
PUSH-TEMP-STK-INDEX EQ

POPJ
Resources PUSHJ

JUMP-IF-TEMP-STK-EMPTY
JUMP-IF-TEMP-STK-FULL
PUSH-CTRL-STK-FREE-SIZE
PUSH-TEMP-STK-FREE-SIZE

(ADD-INT-WITH-CARRY)
Well Formedness (page 140): No additional constraints. Precondition (page 103):
There is an integer, i, on top of the stack, an integer, j, immediately below it, and a
Boolean, c, below that. Effect (page 103): Pop three times. Let k be 1 if c is T and 0
otherwise. Let sum be i+j+k. If sum is representable in the word size, w, of this
p-state, push the Boolean F and then the integer sum; if sum is not representable and is

wnegative, push the Boolean T and the integer sum+2 ; if sum is not representable and
wpositive, push the Boolean T and the integer sum-2 .

16

(ADD-NAT) Well Formedness (page 140): No additional constraints. Precondition (page
104):There is a natural, i, on top of the stack and a natural, j, immediately below it. j+i
is representable. Effect (page 104): Pop twice and then push the natural j+i.

(ADD-NAT-WITH-CARRY)
Well Formedness (page 140): No additional constraints. Precondition (page 104):
There is a natural, i, on top of the stack, a natural, j, immediately below it, and a
Boolean, c, immediately below that. Effect (page 105): Pop three times. Let k be 1 if c
is T and 0 otherwise. Let sum be the natural i+j+k. If sum is representable in the word
size, w, of this p-state, push the Boolean F and then natural sum; if sum is not

wrepresentable, push the Boolean T and the natural sum-2 .

(ADD1-INT) Well Formedness (page 141): No additional constraints. Precondition (page 105):
There is an integer, i, on top of the stack and i+1 is representable. Effect (page 105):
Pop once and then push the integer i+1.

(ADD1-NAT) Well Formedness (page 141): No additional constraints. Precondition (page 106):
There is a natural, i, on top of the stack and i+1 is representable. Effect (page 106):
Pop once and then push the natural i+1.

(AND-BITV) Well Formedness (page 141): No additional constraints. Precondition (page 106):
There is a bit vector, v1, on top of the stack and a bit vector, v2, immediately below it.
Effect (page 106): Pop twice and then push the bit vector result of the componentwise
conjunction of v1 and v2.

(AND-BOOL) Well Formedness (page 141): No additional constraints. Precondition (page 107):
There is a Boolean, b1, on top of the stack and a Boolean, b2, immediately below it.
Effect (page 107): Pop twice and then push the Boolean conjunction of b1 and b2.

(CALL subr) Well Formedness (page 141): subr is the name of a program in the program segment.
Precondition (page 107): Suppose that subr has n formal variables and k temporary
variables. Then the temporary stack must contain at least n items and the control stack
must have at least 2+n+k free slots. Effect (page 108): Transfer control to the first
instruction in the body of subr after removing the topmost n elements from the
temporary stack and constructing a new frame on the control stack. In the new frame
the formals of subr are bound to the n elements removed from the temporary stack, in
reverse order, the temporaries of subr are bound to their declared initial values, and
the return program counter points to the instruction after the CALL.

(DEPOSIT) Well Formedness (page 142): No additional constraints. Precondition (page 108):
There is a data address, a, on top of the stack and an arbitrary object, val, immediately
below it. Effect (page 109): Pop twice and then deposit val into the location addressed
by a.

(DEPOSIT-TEMP-STK)
Well Formedness (page 142): No additional constraints. Precondition (page 109):
There is a natural number, n, on top of the stack and some object, val, immediately
below it. Furthermore, n is less than the length of the stack after popping two elements.

thEffect (page 109): Pop twice and then deposit val at the n position in the temporary
stack, where positions are enumerated from 0 starting at the bottom.

(DIV2-NAT) Well Formedness (page 142): No additional constraints. Precondition (page 109):
There is a natural, i, on top of the stack and room to push at least one more item. Effect
(page 110): Pop once and then push the natural floor of the quotient of i divided by 2
and then push the natural i mod 2.

17

(EQ) Well Formedness (page 142): No additional constraints. Precondition (page 110): The
temporary stack contains at least two items and the top two are of the same type. Effect
(page 110): Pop twice and then push the Boolean T if they are the same and the
Boolean F if they are not.

(FETCH) Well Formedness (page 142): No additional constraints. Precondition (page 110):
There is a data address, a, on top of the stack. Effect (page 111): Pop once and then
push the contents of address a.

(FETCH-TEMP-STK)
Well Formedness (page 142): No additional constraints. Precondition (page 111):
There is a natural number, n, on top of the stack and n is less than the length of the

thstack. Effect (page 111): Let val be the n element of the stack, where elements are
enumerated from 0 starting at the bottom-most element. Pop once and then push val.

(INT-TO-NAT) Well Formedness (page 144): No additional constraints. Precondition (page 114):
There is a non-negative integer, i, on top of the stack. Effect (page 115): Pop and then
push the natural i.

(JUMP lab) Well Formedness (page 145): lab is a label in the containing program. Precondition
(page 116): None. Effect (page 116): Jump to lab.

(JUMP-CASE lab0 lab1 ... labn)
Well Formedness (page 144): Each of the labi is a label in the containing program.
Precondition (page 115): There is a natural, i, on top of the stack and i ≤ n. Effect
(page 115): Pop once and then jump to labi.

(JUMP-IF-TEMP-STK-EMPTY lab)
Well Formedness (page 145): lab is a label in the containing program. Precondition
(page 115): None. Effect (page 115): Jump to lab if the temporary stack is empty.

(JUMP-IF-TEMP-STK-FULL lab)
Well Formedness (page 145): lab is a label in the containing program. Precondition
(page 116): None. Effect (page 116): Jump to lab if the temporary stack is full.

(LOCN lvar) Well Formedness (page 145): lvar is a local variable of the containing program.
Precondition (page 116): The value, n, of lvar is a natural number less than the

thnumber of locals of the current program. Effect (page 117): Push the value of the n
local variable of the current program.

(LSH-BITV) Well Formedness (page 145): No additional constraints. Precondition (page 117):
There is a bit vector, v, on top of the stack. Effect (page 117): Pop once and then push
the bit vector result of left shifting each bit of v, bringing in a 0 on the right.

(LT-ADDR) Well Formedness (page 145): No additional constraints. Precondition (page 117):
There is a data address, a1, on top of the stack and a data address, a2, immediately
below it. a1 and a2 address the same data area. Effect (page 118): Pop twice and then
push the Boolean T if a2 < a1 (i.e., the position addressed by a2 is to the left of that
addressed by a1) and push the Boolean F otherwise.

(LT-INT) Well Formedness (page 145): No additional constraints. Precondition (page 118):
There is an integer, i, on top of the stack and an integer, j, immediately below it. Effect
(page 118): Pop twice and then push the Boolean T if j < i and the Boolean F
otherwise.

18

(LT-NAT) Well Formedness (page 145): No additional constraints. Precondition (page 118):
There is a natural, i, on top of the stack and a natural, j, immediately below it. Effect
(page 119): Pop twice and then push the Boolean T if j < i and the Boolean F
otherwise.

(MULT2-NAT) Well Formedness (page 145): No additional constraints. Precondition (page 119):
There is a natural, i, on top of the stack and 2*i is representable. Effect (page 119):
Pop once and then push the natural 2*i.

(MULT2-NAT-WITH-CARRY-OUT)
Well Formedness (page 145): No additional constraints. Precondition (page 119):
There is a natural, i, on top of the stack and room to push at least one more item. Effect
(page 120): Pop once. Then, if the natural 2*i is representable, push the Boolean F

wand then the natural 2*i. Otherwise, push the Boolean T and the natural 2*i-2 , where
w is the word size of this p-state.

(NEG-INT) Well Formedness (page 146): No additional constraints. Precondition (page 120):
There is an integer, i, on top of the stack and -i is representable. Effect (page 120): Pop
once and then push the integer -i.

(NO-OP) Well Formedness (page 146): No additional constraints. Precondition (page 120):
None. Effect (page 121): Do nothing; continue execution.

(NOT-BITV) Well Formedness (page 146): No additional constraints. Precondition (page 121):
There is a bit vector, v, on top of the stack. Effect (page 121): Pop once and then push
the bit vector result of the componentwise logical negation of v.

(NOT-BOOL) Well Formedness (page 146): No additional constraints. Precondition (page 121):
There is a Boolean, b, on top of the stack. Effect (page 121): Pop once and then push
the Boolean negation of b.

(OR-BITV) Well Formedness (page 146): No additional constraints. Precondition (page 122):
There is a bit vector, v1, on top of the stack and a bit vector, v2, immediately below it.
Effect (page 122): Pop twice and then push the bit vector result of the componentwise
disjunction of v1 and v2.

(OR-BOOL) Well Formedness (page 146): No additional constraints. Precondition (page 123):
There is a Boolean, b1, on top of the stack and a Boolean, b2, immediately below it.
Effect (page 123): Pop twice and then push the Boolean disjunction of b1 and b2.

(POP) Well Formedness (page 146): No additional constraints. Precondition (page 125):
There is at least one item on the stack. Effect (page 126): Pop and discard the top of
the stack.

(POP* n) Well Formedness (page 146): n is a natural number. Note: (POP* 3) is well formed;
(POP* (NAT 3)) is not. Precondition (page 123): there are at least n items on the
stack. Effect (page 123): Pop and discard the topmost n items.

(POP-CALL) Well Formedness (page 146): No additional constraints. Precondition (page 124): A
subroutine name, subr, is on top of the stack and, after removing that name, it is legal to
CALL subr (i.e., sufficient arguments are on the temporary stack and the control stack
has room for the new frame). Effect (page 124): Pop once and then execute (CALL
subr).

19

(POP-GLOBAL gvar)
Well Formedness (page 146): gvar is a global variable, i.e., the name of a data area in
the data segment of the containing p-state. Precondition (page 124): There is an

thobject, val, on top of the stack. Effect (page 124): Pop and assign val to the (0
position of the array associated with the) global variable gvar.

(POP-LOCAL lvar)
Well Formedness (page 146): lvar is a local variable of the containing program.
Precondition (page 124): There is an object, val, on top of the stack. Effect (page
125): Pop and assign val to the local variable lvar.

(POP-LOCN lvar)
Well Formedness (page 147): lvar is a local variable of the containing program.
Precondition (page 125): The value, n, of lvar is less than the number of local
variables of the current program and there is an object, val, on top of the stack. Effect

th(page 125): Pop and assign val to the n local variable.

(POPJ) Well Formedness (page 147): No additional constraints. Precondition (page 126):
There is a program counter object, pc, on top of the stack and pc addresses the current
program. Effect (page 126): Pop once and then transfer control to pc.

(POPN) Well Formedness (page 147): No additional constraints. Precondition (page 126):
There is a natural, n, on top of the stack and there are at least n items on the stack
below it. Effect (page 126): Pop and discard n+1 items. Thus, to pop n items off the
stack, push n onto the stack and execute (POPN).

(PUSH-CONSTANT const)
Well Formedness (page 147): const is either a legal Piton object in the containing
p-state, the atom PC, or a label in the containing program. Precondition (page 127):
There is room to push at least one item. Effect (page 127): If const is a Piton object,
push const; if const is the atom PC, push the program counter of the next instruc-
tion; otherwise push the program counter corresponding to the label const.

(PUSH-CTRL-STK-FREE-SIZE)
Well Formedness (page 147): No additional constraints. Precondition (page 127):
There is room to push at least one item. Effect (page 127): Push the natural number
indicating how many more cells can be created on the control stack before the max-
imum control stack size is exceeded.

(PUSH-GLOBAL gvar)
Well Formedness (page 148): gvar is a global variable, i.e., the name of a data area in
the data segment of the containing p-state. Precondition (page 127): There is room to
push at least one item. Effect (page 128): Push the value of the global variable gvar,
i.e., the contents of position 0 in the array associated with gvar.

(PUSH-LOCAL lvar)
Well Formedness (page 148): lvar is a local variable of the containing program.
Precondition (page 128): There is room to push at least one item. Effect (page 128):
Push the value of the local variable lvar.

(PUSH-TEMP-STK-FREE-SIZE)
Well Formedness (page 148): No additional constraints. Precondition (page 128):
There is room to push at least one item. Effect (page 128): Push the natural number
indicating how many more cells can be created on the temporary stack before the
maximum temporary stack size is exceeded.

20

(PUSH-TEMP-STK-INDEX n)
Well Formedness (page 148): n is a natural number. Note: n here must not be tagged;
(PUSH-TEMP-STK-INDEX 3) is well formed and (PUSH-TEMP-STK-INDEX
(NAT 3)) is not. Precondition (page 129): n is less than the length of the temporary
stack and there is room to push at least one item. Effect (page 129): Push the natural
number (length-n)-1, where length is the current length of the temporary stack. Note:
We permit the temporary stack to be accessed randomly as an array. The elements in
the stack are enumerated from 0 starting at the bottom-most so that pushes and pops do
not change the positions of undisturbed elements. This instruction converts from a
topmost-first enumeration to our enumeration. That is, it pushes onto the temporary
stack the index of the element n removed from the top. See also FETCH-TEMP-STK
and DEPOSIT-TEMP-STK.

(PUSHJ lab) Well Formedness (page 148): lab is a label in the containing program. Precondition
(page 129): There is room to push at least one item. Effect (page 129): Push the
program counter addressing the next instruction and then jump to lab.

(RET) Well Formedness (page 148): No additional constraints. Precondition (page 129):
None. Effect (page 130): If the control stack contains only one frame (i.e., if the
current invocation is the top-level entry into Piton) HALT the machine. Otherwise, set
the program counter to the return program counter in the topmost frame of the control
stack and pop that frame off the control stack.

(RSH-BITV) Well Formedness (page 148): No additional constraints. Precondition (page 130):
There is a bit vector, v, on top of the stack. Effect (page 130): Pop once and then push
the bit vector result of right shifting each bit in v, bringing in a 0 on the left.

(SET-GLOBAL gvar)
Well Formedness (page 148): gvar is a global variable, i.e., the name of a data area in
the data segment of the containing p-state. Precondition (page 130): There is an

thobject, val, on top of the stack. Effect (page 130): Assign val to the (0 position of the
array associated with the) global variable gvar. The stack is not popped.

(SET-LOCAL lvar)
Well Formedness (page 148): lvar is a local variable in the containing program.
Precondition (page 131): There is an object, val, on top of the stack. Effect (page
131): Assign val to the local variable lvar. The stack is not popped.

(SUB-ADDR) Well Formedness (page 149): No additional constraints. Precondition (page 131):
There is a natural, n, on top of the stack and a data address, a, immediately below it.
The result of decrementing a by n is a legal data address. Effect (page 132): Pop twice
and then push the data address obtained by decrementing a by n.

(SUB-INT) Well Formedness (page 149): No additional constraints. Precondition (page 132):
There is an integer, i, on top of the stack and an integer, j, immediately below it. j-i is
representable. Effect (page 132): Pop twice and then push the integer j-i.

(SUB-INT-WITH-CARRY)
Well Formedness (page 149): No additional constraints. Precondition (page 133):
There is an integer, i, on top of the stack, an integer, j, immediately below it, and a
Boolean, c, below that. Effect (page 133): Pop three times. Let k be 1 if c is T and 0
otherwise. Let diff be the integer j-(i+k). If diff is representable in the word size, w, of
this p-state, push the Boolean F and the integer diff; if diff is not representable and is

wnegative, push the Boolean T and the integer diff+2 ; if diff is not representable and is
wpositive, push the Boolean T and the integer diff-2 .

21

(SUB-NAT) Well Formedness (page 149): No additional constraints. Precondition (page 134):
There is a natural, i, on top of the stack and natural, j, immediately below it. Further-
more, j ≥ i. Effect (page 134): Pop twice and then push the natural j-i.

(SUB-NAT-WITH-CARRY)
Well Formedness (page 149): No additional constraints. Precondition (page 134):
There is a natural, i, on top of the stack, a natural, j, immediately below it, and a
Boolean, c, immediately below that. Effect (page 135): Pop three times. Let k be 1 if c
is T and 0 otherwise. If j ≥ i+k, then push the Boolean F and the natural j-(i+k).

wOtherwise, push the Boolean T and the natural 2 -((i+k)-j), where w is the word size of
this p-state.

(SUB1-INT) Well Formedness (page 149): No additional constraints. Precondition (page 135):
There is an integer, i, on top of the stack and i-1 is representable. Effect (page 136):
Pop once and then push the integer i-1.

(SUB1-NAT) Well Formedness (page 150): No additional constraints. Precondition (page 136):
There is a non-zero natural, i, on top of the stack. Effect (page 136): Pop and then
push the natural i-1.

(TEST-BITV-AND-JUMP test lab)
Well Formedness (page 150): test is either ALL-ZERO or NOT-ALL-ZERO and
lab is a label in the containing program. Precondition (page 137): There is a bit
vector, v, on top of the stack. Effect (page 137): Pop once and then jump to lab if
test is satisfied, as indicated below.

test condition tested
ALL-ZERO every component of v is 0
NOT-ALL-ZERO some component of v is 1

(TEST-BOOL-AND-JUMP test lab)
Well Formedness (page 150): test is either T or F and lab is a label in the contain-
ing program. Precondition (page 137): There is a Boolean, b, on top of the stack.
Effect (page 138): Pop once and then jump to lab if test is satisfied, as indicated
below.

test condition tested
T b = T
F b = F

(TEST-INT-AND-JUMP test lab)
Well Formedness (page 150): test is one of NEG, NOT-NEG, ZERO, NOT-ZERO,
POS or NOT-POS, and lab is a label in the containing program. Precondition (page
138): There is an integer, i, on top of the stack. Effect (page 138): Pop once and then
jump to lab if test is satisfied, as indicated below.

test condition tested
NEG i < 0
NOT-NEG i ≥ 0
ZERO i = 0
NOT-ZERO i ≠ 0
POS i > 0
NOT-POS i ≤ 0

22

(TEST-NAT-AND-JUMP test lab)
Well Formedness (page 150): test is either ZERO or NOT-ZERO and lab is a label

6in the containing program. Precondition (page 138): There is a natural, n, on top of
the stack. Effect (page 138): Pop once and then jump to lab if test is satisfied, as
indicated below.

test condition tested

ZERO n = 0
NOT-ZERO n ≠ 0

(XOR-BITV) Well Formedness (page 150): No additional constraints. Precondition (page 139):
There is a bit vector, v1, on top of the stack and a bit vector, v2, immediately below it.
Effect (page 139): Pop twice and then push the bit vector result of the componentwise
exclusive-or of v1 and v2.

2.8. The Piton Interpreter

Associated with each instruction is a predicate on p-states called the ok predicate or the precondition for
the instruction. This predicate insures that it is legal to execute the instruction in the current p-state.
Generally speaking, the precondition of an instruction checks that the operands exist, have the appropriate
types and do not cause the machine to exceed its resource limits.

Also associated with each instruction is a function from p-states to p-states called the step or effects

function. The step function for an instruction defines the state produced by executing the instruction,
provided the precondition is satisfied. Most of the step functions increment the program counter by one
and manipulate the stacks and/or global data segment.

The Piton interpreter is a typical von Neumann state transition machine. The interpreter iteratively
constructs the new current state by applying the step function for the current instruction to the current state,
provided the precondition is satisfied. This process stops, if at all, either when a precondition is unsatisfied

7or a top-level return instruction is executed. The property of being a proper p-state is preserved by the
Piton interpreter. That is, if the initial state is proper, so is the final state. The formalization of the Piton
interpreter is the function P which is defined on page 102. (P s n) is the p-state obtained by executing
n instructions starting in p-state s.

2.9. Erroneous States

What does the Piton machine do when the precondition for the current instruction is not satisfied? This
brings us to the role of the program status word, psw, in the state and its use in error handling. This has
important consequences in the design, implementation, and proof of Piton.

The psw is normally set to the literal atom RUN, which indicates that the computation is proceeding
normally. The psw is set to HALT by the RET (return) instruction when executed in the top level program;
the HALT psw indicates successful termination of the computation. The psw is set to one of a many error

6Technically, test may be anything whatsoever. If it is not ZERO it is treated as though it were NOT-ZERO.

7We formalize this machine constructively by defining the function that iterates the process a given number of times.

23

conditions whenever the precondition for the current instruction is not satisfied. Any state with a psw
other than RUN or HALT is called an erroneous state. The Piton interpreter is defined as an identity
function on erroneous states.

No Piton instruction (i.e., no precondition or step function) inspects the psw. It is impossible for a Piton
program to trap or mask an error. The psw and the notion of erroneous states are metatheoretic concepts in
Piton; they are used to define the language but are not part of the language.

We consider an implementation of Piton correct if it has the property that it can successfully carry out
every computation that produces a non-erroneous state. This is made formal when we present our correct-
ness theorem. But the consequences to the implementation should be clear now. For example, the
ADD-NAT instruction requires that two natural numbers be on top of the stack and that their sum is
representable. This need not be checked at run-time by the implementation of Piton. The run-time code for
ADD-NAT can simply add together the top two elements of the stack and increment the program counter. If
the Piton machine produces a non-erroneous state on the ADD-NAT instruction, then the implementation
follows it faithfully. If the Piton machine produces an erroneous state, then it does not matter what the
implementation does. For example, our implementation of ADD-NAT does not check that the stack has two
elements, that the top two elements are naturals, or that their sum is representable. It is difficult even to
characterize the damage that might be caused if these conditions are not satisfied when our code is
executed. As noted in our discussion of type checking, mechanical proof can be used to certify that no such
errors occur.

The language contains adequate facilities to program explicit checks for all resource errors. For ex-
ample, ADD-NAT-WITH-CARRY will not only add two naturals together, it will push a Boolean which
indicates whether the result is the true sum. If you have to test whether the sum is representable, use
ADD-NAT-WITH-CARRY. On the other hand, if you know the result is representable, use ADD-NAT.

But, unless you are adding constants together, how can you possibly know the result is representable?
That is, under what conditions can you to use ADD-NAT and still prove the absence of errors? This brings
us to the crux of the problem. When you write a Piton program and prove it non-erroneous you do not have
to prove the total absence of errors. You do have to state the conditions under which the program may be
called and prove the absence of errors under those conditions. For example, a typical hypothesis about the
initial state might be that the sum of the top two elements of the stack is representable and the stack
contains at least 5 free cells. These conditions are expressed in the logic, not in Piton. We illustrate the
handling of errors in the next chapter.

Most of the rest of this report concerns the implementation of Piton on verified hardware and the proof
of the correctness of the implementation. With three exceptions, this material is not relevant to the reader
who simply wishes to use Piton. The three exceptions are Chapters 3, 5 and 7. Chapter 3 illustrates the use
of Piton as a verifiable programming language: we specify, implement, and prove the correctness of a big
number addition algorithm. Chapter 5 informally describes what was proved about the FM8502 implemen-
tation of Piton and can be regarded as the warranty that comes with the FM8502 Piton implementation.
Chapter 7 gives the formal definition of Piton and thus serves as a precise reference manual for the
language.

24

25

3. Big Number Addition

In this chapter we consider an example programming problem and its solution in Piton. The problem is
to specify, implement, and verify a program for doing ‘‘big number addition.’’ This chapter is a rather long
but instructive detour from our main goal of implementing Piton on FM8502 and proving the implemen-
tation correct.

3.1. An Informal Explanation of Big Number Addition

A ‘‘big number’’ is a fixed length array of ‘‘digits,’’ each digit being a natural number less than a fixed
‘‘base.’’ The intended interpretation of such an array is that it represents the natural number obtained by
summing the product of the successive digits and successive powers of the base. In our representation of
big numbers we put the least significant digit in position 0. For example, a big number array of length 5
representing the number 123 in base 10 is (3 2 1 0 0). Of course, normally the base of a big number
system is the first unrepresentable natural on the host machine. For example, in a 32-bit wide machine, the

32natural base for big number arithmetic is 2 , so that each digit is a full word.

Big number addition is the process that takes as input two big number arrays and produces as output the
big number array representing their sum. For example, the table below shows two naturals, their cor-
responding base 100 big-number arrays of length 5 and the two sums (the natural sum and the correspond-
ing big number sum).

12, 345, 678 (78 56 34 12 0)
+ 70, 005, 020 (20 50 0 70 0)

82, 350, 698 (98 6 35 82 0)

Given our representation of big numbers one adds corresponding digits starting at the leftmost, carrying to
the right.

3.2. A Formal Explanation of Big Number Addition

A big number (in base base) is an object a satisfying the predicate (BIGNP a base), where

Definition.
(BIGNP A BASE)

=
(IF (NLISTP A)

(EQUAL A NIL)
(AND (LISTP (CAR A))

(EQUAL (TYPE (CAR A)) ’NAT)
(NUMBERP (UNTAG (CAR A)))
(LESSP (UNTAG (CAR A)) BASE)
(EQUAL (CDDR (CAR A)) NIL)
(BIGNP (CDR A) BASE))).

The function TYPE is defined on page 153 as part of the formal definition of Piton. (TYPE x) returns the
tag of the Piton object x. UNTAG, defined on page 153, strips off the tag of a Piton object. Thus, a big
number is a proper list of tagged naturals, each of which is less than the base. An example big number in
base 100 is ’((NAT 78) (NAT 56) (NAT 34) (NAT 12) (NAT 0)).

The natural number represented by a big number a in base base is (BIGN->NAT a base).

26

Definition.
(BIGN->NAT A BASE)

=
(IF (NLISTP A)

0
(PLUS (UNTAG (CAR A))

(TIMES BASE (BIGN->NAT (CDR A) BASE))))

For example, the natural represented by ’((NAT 78) (NAT 56) (NAT 34) (NAT 12) (NAT

0)) in base 100 is

78 + 100*(56 + 100*(34 + 100*(12 + 100*(0 + 0))))
=

2 3 478 + 56*100 + 34*100 + 12*100 + 0*100
=

78 + 5600 + 340000 + 12000000
=

12345678.

We define big number addition by the pair of functions shown below.

Definition.
(BIG-ADD-ARRAY A B C BASE)

=
(IF (NLISTP A)

NIL
(CONS (TAG ’NAT (REMAINDER (PLUS (UNTAG (CAR A))

(UNTAG (CAR B))
(TV->NAT C))

BASE))
(BIG-ADD-ARRAY (CDR A)

(CDR B)
(NOT (LESSP (PLUS (UNTAG (CAR A))

(UNTAG (CAR B))
(TV->NAT C))

BASE))
BASE)))

Definition.
(BIG-ADD-CARRY-OUT A B C BASE)

=
(IF (NLISTP A)

(BOOL C)
(BIG-ADD-CARRY-OUT (CDR A)

(CDR B)
(NOT (LESSP (PLUS (UNTAG (CAR A))

(UNTAG (CAR B))
(TV->NAT C))

BASE))
BASE))

Both functions take as input two big numbers, A and B, an ‘‘input carry flag’’, C, and the specified base,
BASE. We assume A and B are both of length n. The first function, BIG-ADD-ARRAY, produces a big
number of length n. The second function, BIG-ADD-CARRY-OUT, produces a truth value, called the
carry out, which indicates whether the sum is too big to be represented in n digits. The functions TAG and
BOOL used above are defined on pages 153 and 97 as part of the formal definition of Piton. (TAG ’NAT

n) produces the tagged object ’(NAT n) and (BOOL c) produces a tagged Piton Boolean from a truth

27

value, e.g., (BOOL T) is ’(BOOL T). The subsidiary function TV->NAT converts a truth value to a
natural and is defined as (TV->NAT C) = (IF C 1 0).

Recall the previously shown example of big number addition.

12, 345, 678 (78 56 34 12 0)
+ 70, 005, 020 (20 50 0 70 0)

82, 350, 698 (98 6 35 82 0)

We display the formal version of this example in two parts, the five digit addition,

(BIG-ADD-ARRAY
’((NAT 78) (NAT 56) (NAT 34) (NAT 12) (NAT 0))
’((NAT 20) (NAT 50) (NAT 0) (NAT 70) (NAT 0))
F 100)

=
’((NAT 98) (NAT 6) (NAT 35) (NAT 82) (NAT 0)),

and the determination that there is no carry out,

(BIG-ADD-CARRY-OUT
’((NAT 78) (NAT 56) (NAT 34) (NAT 12) (NAT 0))
’((NAT 20) (NAT 50) (NAT 0) (NAT 70) (NAT 0))
F 100)

=
F.

We can package BIG-ADD-ARRAY and BIG-ADD-CARRY-OUT into a single function, here called
BIG-PLUS, which takes two big numbers of length n and returns the big number sum of length n+1
obtained by concatenating to the BIG-ADD-ARRAY a single high order digit obtained from the carry out.

Definition.
(BIG-PLUS A B C BASE)

=
(APPEND (BIG-ADD-ARRAY A B C BASE)

(LIST (TAG ’NAT
(BOOL-TO-NAT
(UNTAG (BIG-ADD-CARRY-OUT A B C BASE)))))).

BOOL-TO-NAT (page 97) is defined as part of the formal definition of Piton and converts the Piton
Booleans T and F to 1 and 0, respectively. On the two input big numbers shown above, BIG-PLUS
returns ’((NAT 98) (NAT 6) (NAT 35) (NAT 82) (NAT 0) (NAT 0)). Note the extra
high order 0 indicating that carry out did not occur.

Calling this the ‘‘sum’’ of the two big numbers is justified by the observation that the natural represented
by the big number sum of A and B is the Peano sum of the naturals represented by A and B. This holds for
all big numbers A and B of equal length, provided the base is a natural number greater than 1. The formal
rendering of this general remark is

28

Theorem. Numeric Interpretation of Big Number Addition.
(IMPLIES (AND (BIGNP A BASE)

(BIGNP B BASE)
(EQUAL (LENGTH A) (LENGTH B))
(NUMBERP BASE)
(LESSP 1 BASE))

(EQUAL (BIGN->NAT (BIG-PLUS A B C BASE)
BASE)

(PLUS (BIGN->NAT A BASE)
(BIGN->NAT B BASE)
(TV->NAT C)))).

We have proved the theorem above mechanically.

This concludes the formal discussion of the abstract concept of big number addition. We can summarize
this section as follows. We defined what a big number (in a given base) is. We defined the natural
represented by a given big number. We defined the big number sum of two big numbers. We justified the
use of the word ‘‘sum’’ by relating big number addition to Peano addition.

3.3. A Piton Program for Big Number Addition

Our objective is to implement a Piton program that computes BIG-ADD-ARRAY and
BIG-ADD-CARRY-OUT in the special case in which the input carry flag is F. We are not interested in
implementing BIG-PLUS because our envisioned applications of big number arithmetic use fixed length
big numbers. For our purposes, BIG-PLUS is simply a mathematical abstraction that is useful in justifying
our interest in BIG-ADD-ARRAY and BIG-ADD-CARRY-OUT. In Figure 3-1 we show the Piton program
named BIG-ADD. It expects three arguments: A, the address of the least significant digit in the first big
number array; B, the address of the least significant digit in the second big number array; and N, the length
of the two big number arrays. The base of the big number system is implicitly the first unrepresentable
natural on the Piton machine. The subroutine sums the two arrays, overwriting the first big number. It
leaves a Piton Boolean on the stack indicating whether the sum ‘‘carried out’’ of the array. More precisely,
at the conclusion of the program, the data area addressed by the input value of A will contain the successive
digits of BIG-ADD-ARRAY and on top of the temporary stack we will find BIG-ADD-CARRY-OUT. We
will exhibit a formal specification of this program later.

3.4. An Initial State for Big Number Addition

Most of the work of specifying BIG-ADD was done when we defined BIGNP, BIG-ADD-ARRAY and
BIG-ADD-CARRY-OUT and such English phrases as ‘‘big number addition.’’ It remains however to cast
into a formula the remark that BIG-ADD ‘‘adds the two big numbers together, overwrites the first, and
leaves the carry out flag on the stack.’’ This necessarily involves the notions of Piton states, the Piton
interpreter, resource errors, etc. Before we embark on this formalization we simply illustrate the behavior
of BIG-ADD—and in so doing familiarize the reader with the structure of Piton states.

To execute BIG-ADD we will call it from the MAIN program shown below. The program assumes that
the data segment of our initial p-state contains at least four data areas: arrays BNA and BNB (‘‘Big Number
A’’ and ‘‘Big Number B’’), each of which is of length n, a global variable N, whose value is n, and another
global variable C. MAIN pushes the starting address of both BNA and BNB onto the stack, pushes their
length on the stack, and calls BIG-ADD. The call will overwrite BNA. Upon termination of BIG-ADD,

29

Figure 3-1: A Piton Program for Big Number Addition

(BIG-ADD (A B N) ; Formal parameters
NIL ; Temporary variables

; Body
(PUSH-CONSTANT (BOOL F)) ; Push the input carry flag for

; the first ADD-NAT-WITH-CARRY
(PUSH-LOCAL A) ; Push the address A

(DL LOOP () ; This is the top level loop.
; Every time we get here the carry
; flag from the last addition and
; the current value of A will be
; on the stack.

(FETCH)) ; Fetch next digit from A
(PUSH-LOCAL B) ; Push the address B
(FETCH) ; Fetch next digit from B
(ADD-NAT-WITH-CARRY) ; Add the two digits and flag
(PUSH-LOCAL A) ; Deposit the sum digit in A
(DEPOSIT) ; (but leave carry flag)
(PUSH-LOCAL N) ; Decrement N by 1
(SUB1-NAT)
(SET-LOCAL N) ; (but leave N on the stack)
(TEST-NAT-AND-JUMP ZERO DONE) ; If N=0, go to DONE
(PUSH-LOCAL B) ; Increment B by 1
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(POP-LOCAL B)
(PUSH-LOCAL A) ; Increment A by 1
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(SET-LOCAL A) ; (but leave A on the stack)
(JUMP LOOP) ; goto LOOP

(DL DONE ()
(RET))) ; Exit.

MAIN pops the output carry flag off the temporary stack and into the global variable C and halts. MAIN has
no formals and no temporary variables.

(MAIN NIL NIL
(PUSH-CONSTANT (ADDR (BNA . 0)))
(PUSH-CONSTANT (ADDR (BNB . 0)))
(PUSH-GLOBAL N)
(CALL BIG-ADD)
(POP-GLOBAL C)
(RET))

Suppose we wished to use MAIN to solve the big number version of

786,433,689,351,873,913,098,236,738
+ 141,915,430,937,733,100,148,932,872

?

32In base 2 (which is 4,294,967,296) these two naturals can be represented by the following big numbers of
length 4:

30

’((NAT 246838082) (NAT 3116233281) (NAT 42632655) (NAT 0))

and

’((NAT 3579363592) (NAT 3979696680) (NAT 7693250) (NAT 0)).

A suitable Piton initial state for adding together these two big numbers is shown in Figure 3-2.

The nine fields of the p-state in Figure 3-2 are enumerated and named in the comments of the figure. We
discuss each field in turn. Field (1) is the program counter. Note that it is a tagged address. The PC tag
indicates that it is an address into the program segment. The pair (MAIN . 0) is an address, pointing to

ththe the 0 instruction in the MAIN program. Field (2) is the control stack. In this example it contains only
one frame and so is of the form ’((bindings return-pc)). Since the current program counter is in
MAIN, the single frame on the control stack describes the invocation of MAIN. Since MAIN has no local
variables, the frame has the empty list, NIL, as the local variable bindings. Since there is only one frame
on the stack, it describes the top-level entry into Piton and hence the return program counter is completely
irrelevant. If control is ever ‘‘returned’’ from this invocation of MAIN the Piton machine will halt rather
than ‘‘return control’’ outside of Piton. However, despite the fact that the initial return program counter is
irrelevant we insist that it be a legal program counter and so in this example we chose (PC (MAIN .
0)). Field (3) is the temporary stack. In this example it is empty. Field (4) is the program segment. It
contains two programs, MAIN and BIG-ADD. Field (5) is the data segment. It contains four ‘‘global
arrays’’ named, respectively, BNA, BNB, N and C. BNA and BNB are both arrays of length four. N and C

are each arrays of length one. We think of N and C simply as global variables. The BNA array contains the
first of the two big numbers we wish to add, namely ((NAT 246838082) (NAT 3116233281)

(NAT 42632655) (NAT 0)). The BNB array contains the second big number. N contains the
(tagged) length of the two arrays. C contains the (tagged) natural number 0; the initial value of C is
irrelevant however. Fields (6)-(8) are, respectively, the maximum control stack size, 10, the maximum
temporary stack size, 8, and the word size, 32. The stack sizes declared in this example are unusually small
but sufficient for the computation described. Finally, field (9) is the program status word RUN.

Let p be the p-state in Figure 3-2. If one steps this p-state forward 76 times the result is the p-state0
shown in Figure 3-3. That is, the p-state in Figure 3-3 is equal to (P p 76).0

Observe that the psw in Figure 3-3 is HALT. This tells us the computation terminated without error.
Because the Piton interpreter is a no-op on states with psw HALT, we would get the same result had we
stepped p more than 76 times. The program counter points to the RET statement in the MAIN program,0
the last instruction executed. The control stack and the temporary stack are exactly as they were in the
initial state. The program segment and resource limits are exactly as they were in the initial state—they
are never changed. The final value of the A array in the data segment is now the big number ((NAT
3826201674) (NAT 2800962665) (NAT 50325906) (NAT 0)). The final value of the
global variable C is the Boolean value F, indicating that the addition did not carry out of the array. A little
arithmetic will confirm that the natural represented by the final values of BNA and C is
928,349,120,289,607,013,247,169,610, which is the sum of 786,433,689,351,873,913,098,236,738 and
141,915,430,937,733,100,148,932,872, as desired.

3.5. The Formal Specification of BIG-ADD

We now develop a formula that expresses the idea that BIG-ADD computes the big number sum of its
two arguments, i.e., overwrites its first argument with the BIG-ADD-ARRAY and pushes

31

Figure 3-2: An Initial Piton State for Big Number Addition

(P-STATE ’(PC (MAIN . 0)) ; (1) program counter
’((NIL (PC (MAIN . 0)))) ; (2) control stack
NIL ; (3) temporary stack

’((MAIN NIL NIL ; (4) program segment
(PUSH-CONSTANT (ADDR (BNA . 0)))
(PUSH-CONSTANT (ADDR (BNB . 0)))
(PUSH-GLOBAL N)
(CALL BIG-ADD)
(POP-GLOBAL C)
(RET))

(BIG-ADD (A B N) NIL
(PUSH-CONSTANT (BOOL F))
(PUSH-LOCAL A)

(DL LOOP NIL (FETCH))
(PUSH-LOCAL B)
(FETCH)
(ADD-NAT-WITH-CARRY)
(PUSH-LOCAL A)
(DEPOSIT)
(PUSH-LOCAL N)
(SUB1-NAT)
(SET-LOCAL N)
(TEST-NAT-AND-JUMP ZERO DONE)
(PUSH-LOCAL B)
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(POP-LOCAL B)
(PUSH-LOCAL A)
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(SET-LOCAL A)
(JUMP LOOP)

(DL DONE NIL (RET))))

’((BNA (NAT 246838082) ; (5) data segment
(NAT 3116233281)
(NAT 42632655)
(NAT 0))

(BNB (NAT 3579363592)
(NAT 3979696680)
(NAT 7693250)
(NAT 0))

(N (NAT 4))
(C (NAT 0)))

10 ; (6) max ctrl stk size
8 ; (7) max temp stk size
32 ; (8) word size
’RUN) ; (9) psw

32

Figure 3-3: A Final Piton State for Big Number Addition

(P-STATE ’(PC (MAIN . 5)) ; program counter
’((NIL (PC (MAIN . 0)))) ; control stack
NIL ; temporary stack
’((MAIN NIL NIL ; program segment

(PUSH-CONSTANT (ADDR (BNA . 0)))
(PUSH-CONSTANT (ADDR (BNB . 0)))
(PUSH-GLOBAL N)
(CALL BIG-ADD)
(POP-GLOBAL C)
(RET))

(BIG-ADD (A B N) NIL
(PUSH-CONSTANT (BOOL F))
(PUSH-LOCAL A)

(DL LOOP NIL (FETCH))
(PUSH-LOCAL B)
(FETCH)
(ADD-NAT-WITH-CARRY)
(PUSH-LOCAL A)
(DEPOSIT)
(PUSH-LOCAL N)
(SUB1-NAT)
(SET-LOCAL N)
(TEST-NAT-AND-JUMP ZERO DONE)
(PUSH-LOCAL B)
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(POP-LOCAL B)
(PUSH-LOCAL A)
(PUSH-CONSTANT (NAT 1))
(ADD-ADDR)
(SET-LOCAL A)
(JUMP LOOP)

(DL DONE NIL (RET))))
’((BNA (NAT 3826201674) ; data segment

(NAT 2800962665)
(NAT 50325906)
(NAT 0))

(BNB (NAT 3579363592)
(NAT 3979696680)
(NAT 7693250)
(NAT 0))

(N (NAT 4))
(C (BOOL F)))

10 ; max ctrl stk size
8 ; max temp stk size
32 ; word size
’HALT) ; psw

33

BIG-ADD-CARRY-OUT onto the stack.

3.5.1. Preliminary Definitions

We will need to talk about the arrays associated with given data area names in a given data segment. We
will also need to discuss the data segment obtained from another by changing the array associated with a
given name. These concepts are easily expressed in terms of functions defined in the formalization of Piton
(Chapter 7) but because the names used there are unfamiliar we will define slightly more memorable names
here.

Definition.
(ARRAY NAME SEGMENT) = (CDR (ASSOC NAME SEGMENT))

defines the function that returns the array associated with NAME in a given data segment SEGMENT.
ASSOC is a primitive function in our logic.

Definition.
(PUT-ARRAY A NAME SEGMENT) = (PUT-ASSOC A NAME SEGMENT)

defines the function that returns a new data segment obtained from SEGMENT by associating the array A

with data area name NAME and leaving all other data areas unchanged. PUT-ASSOC is defined on page
151.

So that we can describe the program segment succinctly we will define the constant function
BIG-ADD-PROGRAM to be the list constant corresponding to Figure 3-1, page 29.

Definition.
(BIG-ADD-PROGRAM)

=
’(BIG-ADD (A B N) ; Formal parameters

NIL ; Temporary variables
; Body

(PUSH-CONSTANT (BOOL F)) ; Push the input carry flag for
... ; ...

(DL DONE ()
(RET))). ; Exit.

3.5.2. The Initial State

To develop the specification of BIG-ADD we will consider an ‘‘arbitrary’’ initial p-state in which the
current instruction is a legal CALL of BIG-ADD and we will describe the final p-state produced by
executing that CALL statement and all of the BIG-ADD computation up to and including the return.

The ‘‘arbitrary’’ initial state will be

34

(P-STATE PC
CTRL-STK
(APPEND (LIST (TAG ’NAT N)

(TAG ’ADDR (CONS B 0))
(TAG ’ADDR (CONS A 0)))

TEMP-STK)
PROG-SEGMENT
DATA-SEGMENT
MAX-CTRL-STK-SIZE
MAX-TEMP-STK-SIZE
WORD-SIZE
’RUN),

where PC is assumed to point to the instruction (CALL BIG-ADD) and BIG-ADD is defined as in Figure
3-1. Let P0 be the p-state above. Then the additional constraints mentioned can be formalized by saying

(EQUAL (P-CURRENT-INSTRUCTION P0) ’(CALL BIG-ADD))

and

(EQUAL (DEFINITION ’BIG-ADD PROG-SEGMENT)
(BIG-ADD-PROGRAM)).

Observe that the psw of P0 is ’RUN. Note also that that the temporary stack in P0 consists of some
arbitrary TEMP-STK with three additional items pushed onto it. The items (in the order in which they were
pushed) are a tagged data address to location 0 of the data area A, a tagged data address to location 0 of the
data area B, and a tagged natural N. Note carefully that the ‘‘A,’’ ‘‘B,’’ and ‘‘N’’used here are variable
symbols which are so far unconstrained. In summary, P0 is an arbitrary p-state poised to execute a CALL
of our BIG-ADD on three arguments that are tagged in accordance with our expectations. However, much
more needs to said about those arguments.

3.5.3. The Preconditions

The ‘‘expected’’ values of A and B are the names of data areas that contain big numbers of equal length
and the ‘‘expected’’ value of N is the length of those big numbers. These ‘‘expectations’’ are part of the
‘‘input conditions’’ of BIG-ADD (which heretofore have been implicit in our discussions) and can be
expressed formally as the conjunction of

(DEFINEDP A (P-DATA-SEGMENT P0))
(DEFINEDP B (P-DATA-SEGMENT P0))
(NOT (EQUAL A B))
(BIGNP (ARRAY A (P-DATA-SEGMENT P0)) (EXP 2 (P-WORD-SIZE P0)))
(BIGNP (ARRAY B (P-DATA-SEGMENT P0)) (EXP 2 (P-WORD-SIZE P0)))
(EQUAL N (LENGTH (ARRAY A (P-DATA-SEGMENT P0))))

and

(EQUAL N (LENGTH (ARRAY B (P-DATA-SEGMENT P0)))).

The function P-DATA-SEGMENT is one of the accessors of the P-STATE shell constructor and returns the
data segment of the state (see page 131). The function DEFINEDP checks that its first argument is the
name of a data area in its second argument and is defined on page 97. Observe that we explicitly assume
that A is different from B, i.e., that the program is operating on two distinct data areas. (Of course, they
may contain the same big number.) This is not technically necessary; BIG-ADD performs in a meaningful
way even if it is passed the same address in both arguments. But by ruling out this possibility we simplify
our analysis of the program somewhat.

35

The above conditions are the obvious preconditions for BIG-ADD. However, if BIG-ADD is to run
without error there are several more details we must consider. We address them in roughly the order in
which they arise in the execution of the code for BIG-ADD.

In order for the CALL statement to execute without error, we must know that there is enough room on the
control stack to build the new frame. Inspection of the definition of P-CTRL-STK-SIZE (page 108)
shows that the frame we will build has size five (three for the local variables of BIG-ADD plus two more).
Thus, we must assume

(NOT (LESSP (P-MAX-CTRL-STK-SIZE P0)
(PLUS 5 (P-CTRL-STK-SIZE (P-CTRL-STK P0))))).

We must similarly worry about the temporary stack overflowing during the BIG-ADD computation.
Once we enter BIG-ADD the temporary stack will be TEMP-STK (because the three actuals will have been
popped off). By how far will we extend TEMP-STK during the computation? Inspection will show that we
need at most three more slots. For example, once we have executed the first (PUSH-LOCAL B) we have
pushed three items onto the stack. At no point do we have more than three items pushed. It is just a
coincidence that the amount of temporary stack needed by BIG-ADD’s body is the same as the number of
actuals on the stack at the time of the CALL. In any case, we must know

(NOT (LESSP (P-MAX-TEMP-STK-SIZE P0)
(PLUS 3 (LENGTH (P-TEMP-STK P0))))).

If this assumption is violated, some push in the body of BIG-ADD causes a stack overflow error.

Once we enter the LOOP in BIG-ADD we fetch the first digit from A. But this assumes there is a first
digit, i.e., that the argument arrays have nonzero length. BIG-ADD could have been coded to work for
empty big numbers, by checking N before the first FETCH. But as it is coded, BIG-ADD assumes the big
numbers are nonempty and does not check N until it has added the low order digits together and
decremented N. Thus, we must assume

(NOT (ZEROP N)).

If this assumption is violated, BIG-ADD causes an addressing error.

When we decrement N with SUB1-NAT we must know that N is a representable natural. Thus,

(LESSP N (EXP 2 (P-WORD-SIZE P0))).

If this assumption is violated, BIG-ADD causes an arithmetic error. We can prove from the foregoing
assumptions that we will not get addressing errors when we increment A and B N times.

Finally, when we execute the RET statement at the conclusion of BIG-ADD we must know that the
initial control stack was nonempty. Thus,

(LISTP (P-CTRL-STK P0)).

No Piton state should have an empty control stack.

For convenience, we collect all of these conditions together into a single predicate.

36

Definition.
(BIG-ADD-INPUT-CONDITIONP A B N P0)

=
(AND (DEFINEDP A (P-DATA-SEGMENT P0))

(DEFINEDP B (P-DATA-SEGMENT P0))
(NOT (EQUAL A B))
(BIGNP (ARRAY A (P-DATA-SEGMENT P0)) (EXP 2 (P-WORD-SIZE P0)))
(BIGNP (ARRAY B (P-DATA-SEGMENT P0)) (EXP 2 (P-WORD-SIZE P0)))
(EQUAL N (LENGTH (ARRAY A (P-DATA-SEGMENT P0))))
(EQUAL N (LENGTH (ARRAY B (P-DATA-SEGMENT P0))))
(NOT (LESSP (P-MAX-CTRL-STK-SIZE P0)

(PLUS 5 (P-CTRL-STK-SIZE (P-CTRL-STK P0)))))
(NOT (LESSP (P-MAX-TEMP-STK-SIZE P0)

(PLUS 3 (LENGTH (P-TEMP-STK P0)))))
(NOT (ZEROP N))
(LESSP N (EXP 2 (P-WORD-SIZE P0)))
(LISTP (P-CTRL-STK P0)))

In our correctness theorem we will assume that (BIG-ADD-INPUT-CONDITIONP A B N P0) holds.

3.5.4. The Final State

Next we wish to characterize the state obtained by executing the above CALL of BIG-ADD. Because of
8the constructive nature of our logic, it will be necessary to say how many instructions we wish to execute.

For the moment though, let clock stand for some expression that determines the number of Piton instruc-
tions executed from the CALL above to the RET instruction at the end of that invocation of BIG-ADD,
inclusive. We will define clock in the next section. Then the final state obtained by executing clock

instructions starting at P0 is (P P0 clock). We would like to characterize (P P0 clock) com-
pletely.

The program counter of the final state will be one greater than PC. The control stack will be exactly the
control stack of P0. The temporary stack will be TEMP-STK with one additional item pushed onto it. The
item will be

(BIG-ADD-CARRY-OUT (ARRAY A DATA-SEGMENT)
(ARRAY B DATA-SEGMENT)
F
(EXP 2 WORD-SIZE)).

The program segment of the final state will be the same as the program segment of P0. The data segment
of the final state will be the same as the data segment of P0 with one exception: the array associated with
the data area A will be

(BIG-ADD-ARRAY (ARRAY A DATA-SEGMENT)
(ARRAY B DATA-SEGMENT)
F
(EXP 2 WORD-SIZE)).

The resource limitations of the final state will be the same as those of the initial state and the psw will still
be ’RUN. Thus, (P P0 clock) is equal to

8This is not strictly true. It is possible to phrase partial correctness theorems by including among the hypotheses the assumption
that K is a number such that the psw of (P P0 K) is HALT. We do not pursue this here.

37

(P-STATE (ADD1-ADDR PC)
CTRL-STK
(PUSH (BIG-ADD-CARRY-OUT (ARRAY A DATA-SEGMENT)

(ARRAY B DATA-SEGMENT)
F
(EXP 2 WORD-SIZE))

TEMP-STK)
PROG-SEGMENT
(PUT-ARRAY (BIG-ADD-ARRAY (ARRAY A DATA-SEGMENT)

(ARRAY B DATA-SEGMENT)
F
(EXP 2 WORD-SIZE))

A
DATA-SEGMENT)

MAX-CTRL-STK-SIZE
MAX-TEMP-STK-SIZE
WORD-SIZE
’RUN).

The function ADD1-ADDR is defined on page 95 as part of the formalization of Piton.

3.5.5. The Clock

It remains only to say what clock is. We derive a function, BIG-ADD-CLOCK, which determines the
number of instructions necessary to execute any legal CALL of BIG-ADD. In the case of BIG-ADD this
derived function is a function only of the length, N, of the big numbers being added. The CALL itself costs
one instruction. Inspection of the the code for BIG-ADD (page 29) shows that we then execute two more
instructions before arriving at the label LOOP. Suppose that BIG-ADD-LOOP-CLOCK is defined to be the
number of instructions it takes to complete the loop and return. Then

Definition.
(BIG-ADD-CLOCK N) = (PLUS 3 (BIG-ADD-LOOP-CLOCK N)).

To define BIG-ADD-LOOP-CLOCK we walk through the code symbolically again. If N is 1 we execute
11 instructions from LOOP through the RET at DONE. If N is not 1, we execute 19 instructions and arrive
back at LOOP with N decremented by 1. Thus, a suitable definition of BIG-ADD-LOOP-CLOCK is:

Definition.
(BIG-ADD-LOOP-CLOCK N)

=
(IF (ZEROP N)

0
(IF (EQUAL N 1)

11
(PLUS 19 (BIG-ADD-LOOP-CLOCK (SUB1 N))))).

The case in which N is 0 never arises but is included in the above definition to insure that the function
defined is total. Of course, it is easy to see that (BIG-ADD-LOOP-CLOCK N) is 11+19(N-1), when N is
non-0. While such an algebraic expression of the clock is pleasing, we prefer the recursive formulation in
general because it mirrors the exploration of the code and more easily accomodates special cases (e.g.,
interior branches).

38

3.5.6. The Correctness Theorem

The correctness theorem for BIG-ADD can now be written down completely. It is shown in Figure 3-4
and should be self-explanatory. The formula is a theorem. It can be proved from the foregoing definitions
and the formal definition of Piton. In fact, we have proved it mechanically. We discuss the proof later.

Figure 3-4: The Specification of BIG-ADD

Theorem. Correctness of BIG-ADD.
(IMPLIES (AND (EQUAL P0 (P-STATE PC

CTRL-STK
(APPEND (LIST (TAG ’NAT N)

(TAG ’ADDR (CONS B 0))
(TAG ’ADDR (CONS A 0)))

TEMP-STK)
PROG-SEGMENT
DATA-SEGMENT
MAX-CTRL-STK-SIZE
MAX-TEMP-STK-SIZE
WORD-SIZE
’RUN))

(EQUAL (P-CURRENT-INSTRUCTION P0) ’(CALL BIG-ADD))
(EQUAL (DEFINITION ’BIG-ADD PROG-SEGMENT)

(BIG-ADD-PROGRAM))
(BIG-ADD-INPUT-CONDITIONP A B N P0))

(EQUAL (P P0 (BIG-ADD-CLOCK N))
(P-STATE (ADD1-ADDR PC)

CTRL-STK
(PUSH (BIG-ADD-CARRY-OUT (ARRAY A DATA-SEGMENT)

(ARRAY B DATA-SEGMENT)
F
(EXP 2 WORD-SIZE))

TEMP-STK)
PROG-SEGMENT
(PUT-ARRAY

(BIG-ADD-ARRAY (ARRAY A DATA-SEGMENT)
(ARRAY B DATA-SEGMENT)
F
(EXP 2 WORD-SIZE))

A
DATA-SEGMENT)

MAX-CTRL-STK-SIZE
MAX-TEMP-STK-SIZE
WORD-SIZE
’RUN)))

The theorem of Figure 3-4 is very powerful. It can be applied to any legal call of BIG-ADD, no matter
what other programs are in the program segment and no matter what data areas are defined in the data
segment. It specifies exactly how many instructions will be executed on behalf of the call. For example, to
add together two big numbers of length 4 will take 71 Piton instructions. To add together two big numbers
of length 100 will take 1,895 Piton instructions. The theorem tells us exactly how to obtain the final state:
pop the arguments off the stack, push the output carry on the stack, deposit the big number sum in the data
area of the first argument, and keep the psw RUN. Note that since we know the final psw is RUN we know

39

that no run-time errors occur if the preconditions are satisfied. The beauty of the theorem in Figure 3-4 is
that all intents and purposes it allows us to treat (CALL BIG-ADD) as a Piton primitive. We illustrate
this in the next section.

3.6. Using The Correctness Theorem

In this section we discuss how to ‘‘stack’’ correctness proofs for Piton programs. We explain how the
above theorem about BIG-ADD can be used to construct a correctness proof for a program that uses
BIG-ADD. This may help some readers understand why we chose the above form for our correctness
theorem. In addition, it suggests that we can verify systems of Piton programs by verifying the individual
subroutines—which of course we can but which we have not yet done for systems of nontrivial com-
plexity. We here define a trivial two-layered ‘‘system,’’ consisting simply of BIG-ADD and a top-level
main program which uses BIG-ADD, together with a particular data segment. We prove the correctness of
that system, assuming the above theorem about BIG-ADD. The style of our proof illustrates how to go
about proving the correctness of any program (top-level or not) which uses BIG-ADD.

Recall the MAIN program on page 29 which uses BIG-ADD to add BNA and BNB. Define the constant
function MAIN-PROGRAM to be equal to the list constant describing MAIN.

Definition.
(MAIN-PROGRAM)

=
’(MAIN NIL

NIL
(PUSH-CONSTANT (ADDR (BNA . 0)))
(PUSH-CONSTANT (ADDR (BNB . 0)))
(PUSH-GLOBAL N)
(CALL BIG-ADD)
(POP-GLOBAL C)
(RET)).

Our earlier use of MAIN was in Figure 3-2 (page 31) where it was the top-level program in a p-state
configured to add together two specific big numbers.

Now consider the function

Definition.
(SYSTEM-INITIAL-STATE A B)

=
(P-STATE ’(PC (MAIN . 0))

’((NIL (PC (MAIN . 0))))
NIL
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA A)

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (TAG ’NAT 0))))

10
8
32
’RUN).

32If given two big numbers (base 2) of equal length, this function creates an initial p-state suitable for

40

adding them together and storing the answers in BNA and C. The p-state shown in Figure 3-2 was actually
created by applying SYSTEM-INITIAL-STATE to the particular big numbers used in the earlier ex-
ample. We would like to prove the correctness of the system of Piton programs and data described by
SYSTEM-INITIAL-STATE.

We claim that the state produced by SYSTEM-INITIAL-STATE is suitable for adding big numbers
32 32together provided A and B are both nonempty big numbers (base 2) of length n, where n is less than 2 .

We define the following predicate to check these conditions.

Definition.
(SYSTEM-INITIAL-STATE-OKP A B)

=
(AND (BIGNP A (EXP 2 32))

(BIGNP B (EXP 2 32))
(EQUAL (LENGTH A) (LENGTH B))
(NOT (ZEROP (LENGTH A)))
(LESSP (LENGTH A) (EXP 2 32)))

How long does it take for this system to run to completion? The answer is provided by the function

Definition.
(SYSTEM-INITIAL-STATE-CLOCK A B)

=
(PLUS 5 (BIG-ADD-CLOCK (LENGTH A))).

That is, MAIN executes five instructions in addition to the CALL of BIG-ADD.

The following formula describes the correctness of the system:

Theorem. Correctness of a BIG-ADD System
(IMPLIES
(SYSTEM-INITIAL-STATE-OKP A B)
(EQUAL (P (SYSTEM-INITIAL-STATE A B)

(SYSTEM-INITIAL-STATE-CLOCK A B))
(P-STATE
’(PC (MAIN . 5))
’((NIL (PC (MAIN . 0))))
NIL
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA (BIG-ADD-ARRAY A B F (EXP 2 32)))

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (BIG-ADD-CARRY-OUT A B F (EXP 2 32)))))

10 8 32 ’HALT))).

That is, if A and B satisfy SYSTEM-INITIAL-STATE-OKP then the result of running
SYSTEM-INITIAL-STATE for SYSTEM-INITIAL-STATE-CLOCK instructions is a HALTed p-state
in which the array named BNA has the value (BIG-ADD-ARRAY A B F (EXP 2 32)) and the global
variable C has the value (BIG-ADD-CARRY-OUT A B F (EXP 2 32)).

To prove this we must first observe an important theorem about the Piton interpreter P.

Theorem. Sequential Execution.
(EQUAL (P S (PLUS I J))

(P (P S I) J))

41

This theorem says that running forward I+J steps is the same as running forward I steps and then running
forward J steps from there. The proof is trivial by induction on S and I.

We now present the proof of the correctness of our BIG-ADD system. Readers interested in constructing
the proof formally should first read Chapter 7, where we present the formal definition of Piton. Because
this is the first Piton proof we have discussed, we will go very slowly. The proof is in fact immediate from
the correctness of BIG-ADD.

Proof. We will prove the correctness of our BIG-ADD system by reducing the left-hand side of the
conclusion, which we’ll call p , to the right-hand side, which we’ll call p . Let p beleft right 0
(SYSTEM-INITIAL-STATE A B). Then p isleft

(P p (SYSTEM-INITIAL-STATE-CLOCK A B)).0

But (SYSTEM-INITIAL-STATE-CLOCK A B) is 5+(BIG-ADD-CLOCK (LENGTH A)), which
can be written as 3+(BIG-ADD-CLOCK (LENGTH A))+2. Thus, by the sequential execution theorem,
p can be equivalently obtained by composing three smaller runs of P. The first run, which we will callleft
Run 1 starts from p , takes three steps, and produces a state we’ll call p . The second run, Run 2, starts at0 3
p , takes (BIG-ADD-CLOCK (LENGTH A)) steps, and produces a state we’ll call p . The third run,3 3+c
Run 3, starts at p , takes two steps, and produces a state we’ll call p . p is equal to p by3+c done left done
the sequential execution lemma. It will turn out that p is identical to p , as desired. We proceeddone right
by working on each of the three runs in turn.

Run 1. Our starting state, p , is (SYSTEM-INITIAL-STATE A B), which is0

(P-STATE ’(PC (MAIN . 0))
’((NIL (PC (MAIN . 0))))
NIL
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA A)

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (TAG ’NAT 0))))

10
8
32
’RUN)

by the definition of SYSTEM-INITIAL-STATE. We wish to obtain p , which is (P p 3). Recall3 0
how P is defined: if the precondition of the current instruction is satisfied, the next state is that obtained by

thapplying the current step function to the old state. The program counter of p points to the 0 instruction0
of MAIN. Thus, the current instruction is (PUSH-CONSTANT (ADDR (BNA . 0))). The precon-
ditions of PUSH-CONSTANT are satisfied: there is room to push at least one item on the temporary stack
because the maximum stack length is 8 and the stack is currently empty. Thus, (P p 3) is equal to (P0
p 2), where p is the result of stepping p with the PUSH-CONSTANT step function. The1 1 0
PUSH-CONSTANT step function increments the program counter by one and pushes the given constant
onto the temporary stack. Thus, p is1

42

(P-STATE ’(PC (MAIN . 1))
’((NIL (PC (MAIN . 0))))
’((ADDR (BNA . 0)))
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA A)

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (TAG ’NAT 0))))

10
8
32
’RUN).

The derivation of p from p illustrates the most fundamental Piton proof technique: determine the current1 0
instruction, check that the precondition is satisfied, and apply the step function. This technique is called
symbolic execution of Piton.

We can compute (P p 2) by two more applications of symbolic execution, first running the1
PUSH-CONSTANT instruction at (PC (MAIN . 1)) (which increments the program counter and
pushes the BNB address) and then running the PUSH-GLOBAL instruction at (PC (MAIN . 2)) (which
increments the program counter and pushes the current value of N). The result is

(P-STATE ’(PC (MAIN . 3))
’((NIL (PC (MAIN . 0))))
(LIST (TAG ’NAT (LENGTH A))

’(ADDR (BNB . 0))
’(ADDR (BNA . 0)))

(LIST (MAIN-PROGRAM)
(BIG-ADD-PROGRAM))

(LIST (CONS ’BNA A)
(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (TAG ’NAT 0))))

10 8 32 ’RUN).

The above p-state is p . This completes the first run.3

Run 2. We now wish to obtain p , which by definition is (P p (BIG-ADD-CLOCK (LENGTH3+c 3
A))). Observe that the current instruction of p is (CALL BIG-ADD). If we used symbolic execution3
here we would next investigate the precondition for CALL and apply the CALL step function, taking us into
the body of BIG-ADD. That would be a strategic mistake. Instead, we will appeal to the correctness
theorem for BIG-ADD.

First, observe that the temporary stack of p can be equivalently written as an APPEND of three TAGged3
objects to the empty stack. That is, p above is equivalent to:3

43

(P-STATE ’(PC (MAIN . 3))
’((NIL (PC (MAIN . 0))))
(APPEND (LIST (TAG ’NAT (LENGTH A))

(TAG ’ADDR ’(BNB . 0))
(TAG ’ADDR ’(BNA . 0)))

NIL)
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA A)

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (TAG ’NAT 0))))

10 8 32 ’RUN).

But now we see we are in exactly the situation handled by the theorem stating the correctness of BIG-ADD:
we have a state whose current instruction is a call to our BIG-ADD program on legal input and we wish to
run forward (BIG-ADD-CLOCK (LENGTH A)) steps. Thus, p is obtained by instantiating the3+c
right-hand side of the conclusion of the correctness of BIG-ADD,

(P-STATE ’(PC (MAIN . 4))
’((NIL (PC (MAIN . 0))))
(PUSH (BIG-ADD-CARRY-OUT A B F (EXP 2 32))

NIL)
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA (BIG-ADD-ARRAY A B F (EXP 2 32)))

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (TAG ’NAT 0))))

10 8 32 ’RUN)

This concludes the second run.

Run 3. We obtain p by stepping forward from p two more steps. We use symbolic executiondone 3+c
again, running the POP-GLOBAL at (PC (MAIN . 4)) and then the RET at (PC (MAIN . 5)).
The result is

(P-STATE ’(PC (MAIN . 5))
’((NIL (PC (MAIN . 0))))
NIL
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA (BIG-ADD-ARRAY A B F (EXP 2 32)))

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (BIG-ADD-CARRY-OUT A B F (EXP 2 32))))

10 8 32 ’HALT),

which is the desired final state, p . Q.E.D.right

The point of this exercise is that the correctness theorem for BIG-ADD permitted us to prove MAIN

correct without ever considering the code for BIG-ADD. Observe that all of the program counters in the
states mentioned in the proof above are in MAIN. Observe also that our correctness result for BIG-ADD
readily applied to a state containing another program (i.e., MAIN) and data areas irrelevant to BIG-ADD

(i.e., C). Finally, observe that the sequential execution theorem freed us from having to consider exactly
how many clock ticks were available when we encountered the call of BIG-ADD. If there are at least

44

(BIG-ADD-CLOCK n), where n is the length of the big numbers in question, then we can step past the
CALL and decrement the clock by (BIG-ADD-CLOCK n). In essence, the correctness theorem for
BIG-ADD permits us to treat (CALL BIG-ADD) as though it were a primitive instruction; in one proof
step we obtain the state produced by any successful execution.

3.7. The Proof of the Correctness of BIG-ADD

We sketch the proof of the correctness of the BIG-ADD program very briefly. As seen in the proof
above, it is relatively straightforward to deal with ‘‘straight line’’ Piton code. One merely symbolically
executes the definition of Piton, accumulating into the state the successive changes. BIG-ADD is more
subtle because it has a loop in it. The presence of the loop immediately suggests induction, which in turn
suggests that we need some more general concepts with which to discuss the ‘‘invariants’’ maintained at
intermediate arrivals at the top of the loop. So much for generalities.

The key to our proof of the correctness of BIG-ADD is to define two functions derived from the loop in
BIG-ADD that compute the final big number array and the final carry out ‘‘in the same way’’ that the Piton
loop does. We call these derived functions BIG-ADD-ARRAY-LOOP and
BIG-ADD-CARRY-OUT-LOOP. We then prove that the derived functions are (a) computed by the loop in
BIG-ADD and (b) are equivalent to those used in the abstract specification.

3.7.1. The Derived Specification Functions

The following function can be thought of as the essence of the loop in BIG-ADD vis-a-vis its effect on
the array stored in the A data area. In the function below, I is a natural number that is the location in the A
array at which the A address is pointing. A-ARRAY and B-ARRAY are the arrays associated with the A and
B data areas of BIG-ADD. N plays the same role as in BIG-ADD, namely, it is the distance from the
current location, I, to the end of the arrays. That is, N is the number of iterations we are to perform. C is
the truth value corresponding to the current input carry flag and BASE is the base of the big number system.

45

Definition.
(BIG-ADD-ARRAY-LOOP I A-ARRAY B-ARRAY N C BASE)

=
(IF (ZEROP (SUB1 N))

(PUT (TAG ’NAT
(REMAINDER (PLUS (UNTAG (GET I A-ARRAY))

(UNTAG (GET I B-ARRAY))
(TV->NAT C))

BASE))
I
A-ARRAY)

(BIG-ADD-ARRAY-LOOP (ADD1 I)
(PUT (TAG ’NAT

(REMAINDER
(PLUS (UNTAG (GET I A-ARRAY))

(UNTAG (GET I B-ARRAY))
(TV->NAT C))

BASE))
I
A-ARRAY)

B-ARRAY
(SUB1 N)
(NOT (LESSP (PLUS (UNTAG (GET I A-ARRAY))

(UNTAG (GET I B-ARRAY))
(TV->NAT C))

BASE))
BASE))

The function PUT is defined on page 151 as part of the definition of Piton. (PUT val i a) puts val at
ththe i location of the array a and returns the resulting array. Observe that BIG-ADD-ARRAY-LOOP

iterates N times, considering successive array positions starting at position I, and PUTs into each position
the corresponding digit of the big number sum of the two arrays.

We also define the analogous derived function which describes the final carry out computed by the loop
and call it BIG-ADD-CARRY-OUT-LOOP. We do not exhibit its definition here.

These derived functions let us separate the problem of what the Piton program computes from the
problem of whether it computes the specified quantities. We discuss these two problems in the next two
sections.

3.7.2. The Equivalence of the Derived Functions and the Piton Code

The next step in our proof is to establish that the derived functions indeed describe the effects of the loop
in BIG-ADD. This immediately raises another Piton specification challenge.

In Figure 3-5 we specify the loop in BIG-ADD. The formula, which is very reminiscent of the specifica-
tion of BIG-ADD itself, is of the form (IMPLIES hyp (EQUAL (P p k) p)) where p is the0 k 0
initial state of a Piton computation of length k and p is the final state. In this theorem, the initial statek
describes an ‘‘arbitrary’’ legal arrival at LOOP in BIG-ADD and k measures a run up through the execution
of the RET statement in BIG-ADD. Note that the hypothesis is basically that part of
BIG-ADD-INPUT-CONDITIONP that is needed to get us through the loop without error. The program
counter in the initial state is (PC (BIG-ADD . 2)), which points to the instruction labelled LOOP. The
‘‘shape’’ of the control stack in the initial state is as constructed by any legal call of BIG-ADD, that is, the

46

Figure 3-5: The Specification of the Loop in BIG-ADD

Theorem.
(IMPLIES
(AND (LESSP (LENGTH (ARRAY A DATA-SEGMENT)) (EXP 2 WORD-SIZE))

(NOT (ZEROP WORD-SIZE))
(LISTP CTRL-STK)
(BIGNP (ARRAY A DATA-SEGMENT) (EXP 2 WORD-SIZE))
(BIGNP (ARRAY B DATA-SEGMENT) (EXP 2 WORD-SIZE))
(NOT (LESSP MAX-TEMP-STK-SIZE

(ADD1 (ADD1 (ADD1 (LENGTH TEMP-STK))))))
(EQUAL (DEFINITION ’BIG-ADD PROG-SEGMENT) (BIG-ADD-PROGRAM))
(DEFINEDP A DATA-SEGMENT)
(DEFINEDP B DATA-SEGMENT)
(NOT (EQUAL A B))
(NUMBERP I)
(LESSP I N)
(EQUAL N (LENGTH (ARRAY A DATA-SEGMENT)))
(EQUAL N (LENGTH (ARRAY B DATA-SEGMENT)))
(BOOLEANP C))

(EQUAL (P (P-STATE
’(PC (BIG-ADD . 2))
(PUSH (P-FRAME

(LIST (CONS ’A (TAG ’ADDR (CONS A I)))
(CONS ’B (TAG ’ADDR (CONS B I)))
(CONS ’N (TAG ’NAT (DIFFERENCE N I))))

RET-PC)
CTRL-STK)

(PUSH (TAG ’ADDR (CONS A I))
(PUSH (TAG ’BOOL C)

TEMP-STK))
PROG-SEGMENT
DATA-SEGMENT
MAX-CTRL-STK-SIZE
MAX-TEMP-STK-SIZE
WORD-SIZE
’RUN)
(BIG-ADD-LOOP-CLOCK (DIFFERENCE N I)))

(P-STATE RET-PC
CTRL-STK
(PUSH (BIG-ADD-CARRY-OUT-LOOP I

(ARRAY A DATA-SEGMENT)
(ARRAY B DATA-SEGMENT)
(DIFFERENCE N I)
(TV C)
(EXP 2 WORD-SIZE))

TEMP-STK)
PROG-SEGMENT
(PUT-ARRAY (BIG-ADD-ARRAY-LOOP I

(ARRAY A DATA-SEGMENT)
(ARRAY B DATA-SEGMENT)
(DIFFERENCE N I)
(TV C)
(EXP 2 WORD-SIZE))

A
DATA-SEGMENT)

MAX-CTRL-STK-SIZE
MAX-TEMP-STK-SIZE
WORD-SIZE
’RUN)))

47

top frame contains bindings for the three locals A, B, and N, and the usual return program counter. The
values of the three locals are consistent with the idea that we are considering an arbitrary legal arrival at

thLOOP, not just the first arrival. That is, A and B point to the I words of their respective data areas and N
has been decremented by I from its original value of (LENGTH A). The temporary stack is also con-
figured as though we were at an arbitrary arrival at LOOP. We see two things pushed onto it, a running
carry and the current value of A. Finally, the instruction count controlling how many instructions we
execute is (BIG-ADD-LOOP-CLOCK (DIFFERENCE N I)), just enough instructions to take us right
through the loop and out via the RET instruction.

The final state described by the theorem in Figure 3-5 is similar to that for BIG-ADD except that we
used the derived functions BIG-ADD-CARRY-OUT-LOOP and BIG-ADD-ARRAY-LOOP. Furthermore,
it is consistent with the idea that we started at an arbitrary arrival at LOOP. Thus, the carry flag on the stack
is that obtained by starting at position I and iterating N-I times and the final value of A is the analogous
big number array computed from position I onwards.

Because we used BIG-ADD-CARRY-OUT-LOOP and BIG-ADD-ARRAY-LOOP in this specification it
is relatively straightforward to prove this theorem. The induction is on I up to N by ADD1. In the base
case, when the difference between N and I is 1, the proof requires the symbolic execution of 11 Piton
instructions (from LOOP through the RET statement) to reduce the left-hand side to the right-hand side. In
the inductive step, the proof requires the symbolic execution of 19 instructions (once around the LOOP) to
reduce the induction conclusion to the induction hypothesis. No deep (big number specific) problems arise
in the proof since BIG-ADD-CARRY-OUT-LOOP and BIG-ADD-ARRAY-LOOP do exactly the same
sequence of PUTs as the code. Basically this entire proof is devoted merely to checking that all the
preconditions of all the Piton instructions are satisfied under the hypotheses listed and that the step
functions compose as claimed by the derived functions. We do not discuss the proof of the theorem
further. Instead, we turn to the proof of the correctness of BIG-ADD given this theorem about its LOOP.

Recall that the correctness of BIG-ADD describes an initial state in which we are about to CALL

BIG-ADD on arguments satisfying the input condition of BIG-ADD. We are asked to execute
3+(BIG-ADD-LOOP-CLOCK N) instructions. The first instruction is a CALL and we build a standard

thBIG-ADD frame with the initial values of A, B, and N. In that frame, A and B both point to the 0 position
of their respective arrays. We then enter the body of BIG-ADD and execute two more instructions. These
push two things onto the temporary stack, an initial input carry of F and the value of A. We then arrive at
LOOP with (BIG-ADD-LOOP-CLOCK N) ticks left on the clock. The theorem of Figure 3-5 applies if
we let I be 0 and C be F. We therefore conclude that the final state is the corresponding instance of the
final p-state of Figure 3-5. Note that this instance is exactly the state described in the correctness of
BIG-ADD except that in the instance at hand we see the derived functions instead of the original specifica-
tion functions. That is, the proof would be finished if we just knew that (BIG-ADD-CARRY-OUT-LOOP
0 A B (LENGTH A) F BASE) was the same as (BIG-ADD-CARRY-OUT A B F BASE) and that
(BIG-ADD-ARRAY-LOOP 0 A B (LENGTH A) F BASE) was the same as (BIG-ADD-ARRAY A
B F BASE).

3.7.3. The Equivalence of the Derived and Original Functions

To complete the proof is remains only to show the equivalence of the derived and original specification
functions. We will focus on the BIG-ADD-ARRAY versus BIG-ADD-ARRAY-LOOP and leave the carry
out case for the reader.

48

The theorem we wish to prove is

Theorem. BIG-ADD-ARRAY is BIG-ADD-ARRAY-LOOP
(IMPLIES (AND (LISTP A)

(BIGNP A BASE)
(NUMBERP BASE)
(LESSP 1 BASE))

(EQUAL (BIG-ADD-ARRAY A B F BASE)
(BIG-ADD-ARRAY-LOOP 0 A B (LENGTH A) F BASE))).

This formula asserts that if BIG-ADD-ARRAY-LOOP iterates (LENGTH A) times starting from position
0 the result is the same big number as that produced by BIG-ADD-ARRAY.

To prove the theorem above we formulate a more general lemma that can be proved by induction. One
hint that this is necessary is that one must inductively unfold BIG-ADD-ARRAY-LOOP but when the first
argument is 0 it is impossible to have an inductive instance of the theorem with the first argument being
one greater. We therefore prove

Lemma.
(IMPLIES (AND (NUMBERP I)

(LESSP I (LENGTH A))
(BIGNP A BASE)
(NUMBERP BASE)
(LESSP 1 BASE))

(EQUAL (BIG-ADD-ARRAY (NTH-CDR I A)
(NTH-CDR I B)
C
BASE)

(NTH-CDR I (BIG-ADD-ARRAY-LOOP I A B
(DIFFERENCE (LENGTH A) I)
C BASE)))).

iThe expression (NTH-CDR i x) is defined so that it is (CDR x). The lemma above says that if you
thuse BIG-ADD-ARRAY to get the sum of the I CDRs of A and B you get the same thing as using

thBIG-ADD-ARRAY-LOOP on all of A and B but starting at the I position and iterating (LENGTH A)-I
thtimes and then looking at the I CDR of the result. Note that we also generalized the input carry flag from

F to any C. The theorem can be proved by induction on I up to (LENGTH A) by ADD1. The proof is not
entirely trivial. For example, we here deal with the question of whether the computation is ‘‘messed up’’
by the repeated ‘‘destruction’’ of A. That is, each time BIG-ADD-ARRAY-LOOP iterates the A it uses
subsequently is altered by a PUT at the location just inspected. ‘‘Fortunately’’ the alteration occurs to the
left of that portion of A that the subsequent computation inspects.

The theorem that BIG-ADD-ARRAY is BIG-ADD-ARRAY-LOOP follows immediately from the lemma
by instantiating I above with 0 and C with F and then simplifying (NTH-CDR 0 x) to x and (LENGTH
A)-0 to (LENGTH A).

The corresponding equivalence theorem for the carry out case is similar. Once both of these equivalence
theorems are proved the proof of the correctness of BIG-ADD follows immediately.

49

3.8. Summary

We can summarize this chapter as follows. We formally defined big number addition. We showed a
Piton program for doing big number addition and built a simple system that called the program. We
illustrated Piton states by setting up an addition problem and running it on the Piton machine. We
illustrated how Piton programs can be formally specified by theorems in the logic. We showed how
specifications in the style proposed can be used, together with symbolic execution, to prove the correctness
of Piton programs and systems.

This concludes our discussion of BIG-ADD. Please recall that this chapter was essentially a detour
intended to familiarize the reader with Piton and with how it is possible to specify and prove the correct-
ness of Piton programs from the formal semantics of Piton. However, this report is not about big number
arithmetic, how to prove Piton programs correct or even how to program in Piton. It is about how we
implemented Piton on the FM8502, how we specified the correctness of that implementation, and how we
proved it. Now that the semantics of Piton are clearer, we return to the mainstream of this report.

50

51

4. A Sketch of FM8502

We wish to implement Piton on FM8502. In this chapter we explain how FM8502 works and the sense
in which it has been implemented correctly in hardware.

The FM8502 is a 32-bit general purpose microprocessor with word addressing. The machine has eight
general purpose 32-bit wide registers, numbered 0 through 7. Register 0 serves as the program counter.

The machine has four 1-bit condition code registers, designated ‘‘carry,’’ ‘‘zero,’’ ‘‘overflow,’’ and
‘‘negative.’’

The alu supports the standard operations on 32-bit wide vectors interpreted as twos complement integers,
natural numbers and simple bit vectors. It takes as input an opcode, two 32-bit wide operands, and the
contents of the four condition code registers and yields as output a 32-bit wide bit vector and four new
condition codes.

The instruction word contains a 5-bit opcode field, specifying some operation to be performed; an
interrupt-enabled bit (currently unused by the processor); a 4-bit condition code mask; a 5-bit operand b

field, logically divided into a 3-bit field specifying a register number and a 2-bit field specifying an address
mode; and a 5-bit operand a field, logically divided into a 3-bit field specifying a register number and a
2-bit field specifying an address mode.

The FM8502 fetch-execute cycle is as follows:
1. Register 0 is used as the program counter. Its contents is treated as a memory address. The

value of that address is fetched and decoded into an opcode, condition code mask, and
operands b and a, as described above. Register 0 is incremented by one.

2. The pre-decrement computation (defined below) is performed on operand a.

3. The effective address (defined below), e , specified by a is determined;2

4. The contents, x , of e is fetched;2 2

5. The pre-decrement computation is performed on b;

6. The effective address, e , specified by b is determined;1

7. The contents, x , of e , is fetched;1 1

8. The operation indicated by opcode is performed by the alu on x and x and the contents of1 2
the four condition code registers, yielding an output bit vector, y, and four condition codes;

9. The four condition codes are stored into their respective condition code registers provided the
corresponding bit in the condition code mask is set;

10. The output bit vector, y, is stored into address e ;1

11. The post-increment computation (defined below) is performed on a.

12. The post-increment computation is performed on b.

The four address modes are: register, register-indirect, register-indirect with pre-decrement, and register-
indirect with post-increment.

The pre-decrement computation on a register number and an address mode decrements the contents of
the register if the address mode is ‘‘register-indirect with pre-decrement’’ and does nothing otherwise.

52

The effective address specified by a register number and an address mode is the indicated register if the
address mode is ‘‘register’’ and is the contents of the indicated register otherwise.

The post-increment computation on a register number and an address mode increments the contents of
the register if the address mode is ‘‘register-indirect with post-increment’’ and does nothing otherwise.

The opcodes can be divided into two groups: arithmetic/logical opcodes and conditional move opcodes.
The arithmetic/logical opcodes are unconditional move, increment, add with carry, add, negate, decrement,
subtract with borrow, subtract, rotate right through carry, arithmetic shift right, logical shift right, exclusive
or, or, and, and not. The eight conditional move opcodes permit the second operand to be moved into the
address specified by the first conditionally on the setting of any single condition code register. A jump or
conditional jump can be coded as a move or conditional move into register 0. Left shifting can be
performed by adding a quantity to itself.

It should be noted that the only quantities stored in the FM8502’s memory and registers are 32-bit wide
bit vectors. The FM8502 alu operates on such bit vectors. The machine does not contain integers or
natural numbers, despite the fact that it has instructions with mnemonics like ‘‘add’’ and ‘‘subtract.’’
However, Hunt proves that the bit vectors produced by the alu are correct with respect to the various
expected interpretations of the input vectors. For example, the output of the add instruction, if interpreted
as a natural number, is the natural number sum of the natural interpretations (in binary notation) of the
input, with suitable accounting for the input and output carry flags. However, the same output can also be
interpreted as the integer sum of the integer interpretation of the inputs (in twos complement notation), with
suitable accounting for the input carry and the output overflow and negative flags.

FM8502 is formalized in the function FM8502 which is defined on page 163. The state of the FM8502
machine is a six-tuple called an m-state which contains the register file, the four condition code bits, and
the memory. The function FM8502 takes two arguments, an m-state and a natural number n and returns
the m-state obtained by executing n machine instructions. FM8502 does not halt or cause errors—every
bit vector in its memory can be interpreted as a legitimate instruction.

While it is not important to Piton, the reader may well wonder in what sense FM8502 is verified.
FM8502 is verified in exactly the same sense that FM8501 is verified in Hunt’s dissertation [11]. We will
briefly discuss Hunt’s FM8501 work and then return to FM8502.

Hunt described FM8501 by defining a function called SOFT (for ‘‘software’’). SOFT is an interpreter
for the machine code of a 16-bit wide general purpose computer. The function takes as its arguments a
collection of 16-bit wide bit vectors denoting the values of some ‘‘registers,’’ ‘‘flags,’’ and ‘‘memory,’’
and a list called the oracle which determines how many instructions are to be executed. SOFT delivers as
its answer a corresponding collection of bit vectors produced after executing the specified number of
machine code instructions fetched from the memory.

Hunt then implemented SOFT at the gate level by exhibiting another function, named BIG-MACHINE,
which is a formal register-transfer model. BIG-MACHINE has 20 arguments. Fourteen are either fixed
length bit vectors or fixed-length lists of fixed-length bit vectors; these arguments, called the internal

registers, represent the internal state-holding components of the FM8502 implementation (e.g., the register
file as well as ‘‘hidden’’ resources such as the microcode address register). Three more arguments are also
either fixed-length bit vectors or fixed-length lists of fixed-length bit vectors and are called input latch

registers. The last three arguments of BIG-MACHINE are formal models of external devices such as the

53

sequence of inputs that impinge upon FM8501’s data acknowledgment input latch register during a given
interval of time.

Roughly speaking, BIG-MACHINE recurses once for each discrete time point in the given interval. On
each iteration, the external devices are used to determine the new values of the input latch registers; the old
values of the input latch registers and the internal registers are used to compute the new values of internal
registers. Furthermore, the new values of the internal registers are determined entirely by combinational

9logic expressions.

Reflection shows that BIG-MACHINE can be built as follows: Allocate a physical register (of the
appropriate size) to each internal register and input latch. Wire these registers with the combinational logic
shown by Hunt so that on each clock pulse the new value of each internal register is computed and stored
back into the appropriate register. Wire the input latches so that on each clock pulse they are written by the
input lines to FM8501. Thus, each clock pulse causes the hardware to step forward once in the recursion of
BIG-MACHINE.

Hunt then proved that any computation carried out by SOFT can be carried out on BIG-MACHINE. In
particular, he proved that the state returned by SOFT by stepping forward n steps from some initial state
may be alternatively computed by mapping the state down to an initial state of BIG-MACHINE, stepping
that machine forward some k steps, and then projecting out of BIG-MACHINE’s state those six com-
ponents that represent a SOFT state.

The number of steps, k, taken by BIG-MACHINE, is a function of the oracle used in SOFT. Because
BIG-MACHINE is microcoded, a single instruction at the SOFT level takes many instructions at the
BIG-MACHINE level. Hunt defined a constructive function that determines how many microcycles
BIG-MACHINE takes to carry out a computation performed by SOFT from a given initial state and oracle.
The situation is more complicated than one might at first expect because the microcode machine must enter
wait states while waiting, for example, for the memory to respond to read requests. In order to say how
many microcycles elapse it is necessary to say how much time is spent in each such wait state—a question
that cannot be answered from the model Hunt develops since, quite rightly, the external devices are not
implemented in his model. The role of the oracle in SOFT is to specify, for each instruction executed, how
many cycles are spent in each of the possible wait states. This is why the oracle is a list of length n rather
than simply n. The actual choices for the lengths of the wait states are unimportant to the final answer
delivered, a fact easily proved from the observation that the definition of SOFT makes no reference to the
CAR of the oracle, it only CDRs it until it is no longer a LISTP.

In summary, Hunt defined two machines, SOFT and a register transfer model, and proved them equiv-
alent. ‘‘FM8501’’ (which is a term not formally defined in [11]) can be thought of as the machine these
two functions describe.

‘‘FM8502’’ has been produced in a similar fashion. In particular, there is a 32-bit wide version of SOFT
describing the machine used here and a corresponding register transfer model that has been proved equiv-

9This summary of Hunt’s work completely ignores what is perhaps the key contribution of his dissertation. The combinational
logic used in the FM8501 specification is actually generated from recursive functions that operate on bit vectors of arbitrary word size.
Proving such logic correct was inductive. Thus Hunt was able to avoid the combinatoric explosion usually associated with proving
the correctness of large logic expressions. The gate graph for FM8501 is obtained after the proof of correctness, by instantiating the
word size to 16 and unfolding the recursive functions. If one ignores our change in the handling of condition codes, FM8502 is
obtained by instantiating the same functions to word size 32.

54

alent. The 32-bit wide version of SOFT, its gate-level description and the equivalence proof were con-
structed by Warren Hunt. The 32-bit wide SOFT is formally defined on page 167. We do not include the
register transfer model of SOFT in this report. For our purposes it was inconvenient that SOFT takes seven
arguments (six representing the input state and one representing the oracle) and returned a list of six items
(representing the output state). We therefore defined the symbol FM8502 to be a packaging of SOFT that
takes an initial m-state and a number of steps and returns a final m-state. See Chapter 8.

55

5. The Correctness of Piton on FM8502

The implementation of Piton on FM8502 is via what might be called a ‘‘cross-loader’’ written as a
function, LOAD, in the logic. The function takes a Piton state and generates an FM8502 state or ‘‘core
image.’’

The correctness theorem is a formalization of the following classic commutative diagram:

n Piton steps
p -------------------> p0 n
| |
| |

LOAD | | DISPLAY-M-DATA-SEGMENT
| |
| |
m -------------------> m0 k

k FM8502 steps

The basic idea is that one has some initial Piton state, p , and one wishes to obtain the state produced by0
running Piton forward n steps. However, depending on one’s point of view, the abstract Piton machine
does not ‘‘really’’ exist or is too expensive or inefficient to use. The correctness theorem tells us there is
another way: map the Piton state ‘‘down’’ to an FM8502 state, run FM8502, and then map the resulting
state back ‘‘up.’’ However, the situation is much more subtle than suggested by the diagram.

The correctness theorem may be paraphrased as follows. Suppose p is some proper p-state that is0
loadable on FM8502 and has word size 32. Let p be the p-state obtained by running the Piton machine nn
steps on p . Suppose p is not erroneous. Suppose furthermore that the ‘‘type specification’’ (see below)0 n
for the data segment of p is ts. Then it is possible to obtain the data segment of p via FM8502 asn n
follows:

• Down. Let the initial FM8502 state, m , be (LOAD p).0 0

• Across. Obtain a final FM8502 state, m , by running FM8502 k steps on m , where k is ak 0
number obtained from p and n by the constructive function FM8502-CLOCK.0

• Up. Apply the constructive function DISPLAY-M-DATA-SEGMENT to (a) the final FM8502
state, m , (b) the final type specification, ts, and (c) the link tables (computed by the construc-k
tive function LINK-TABLES from p).0

This is formalized as

Theorem. FM8502 Piton is Correct
(IMPLIES (AND (PROPER-P-STATEP P0)

(P-LOADABLEP P0)
(EQUAL (P-WORD-SIZE P0) 32)
(EQUAL PN (P P0 N))
(NOT (ERRORP (P-PSW PN)))
(EQUAL TS (TYPE-SPECIFICATION (P-DATA-SEGMENT PN))))

(EQUAL (P-DATA-SEGMENT PN)
(DISPLAY-M-DATA-SEGMENT
(FM8502 (LOAD P0) (FM8502-CLOCK P0 N))
TS
(LINK-TABLES P0)))).

We believe this theorem is merely a formalization of what is usually meant by the informal remark that a
programming language is implemented correctly on given hardware base. Nevertheless (or perhaps,

56

because it is an accurate formalization), as a correctness result the theorem is very subtle. What does this
statement tell the user of FM8502 Piton? The rest of this chapter is devoted to a discussion of the meaning
of this theorem. We discuss each of the hypotheses of the theorem and then what the conclusion tells us.
We then apply the theorem to the BIG-ADD program of Chapter 3 to answer the question ‘‘Can we use
FM8502 to add big numbers?’’ During that discussion we reconsider each of the hypotheses and the
conclusion again.

5.1. The Hypotheses of the Correctness Result

5.1.1. Proper P-States

In the first place, we are interested only in proper p-states. Those are the p-states in which all com-
ponents are syntactically well-formed and compatible.

We could have chosen to specialize the correctness theorem still further and require that P0 be an
‘‘initial’’ state. Without loss of computing power, we could define an initial state to be one in which the
temporary stack is empty and we are about to execute the first instruction in the subroutine named MAIN,
(which has no local variables). We did not do this only because the proof requires a more general treatment
of the mapping down from Piton to FM8502 and having paid for it we decided to provide it to the user.

5.1.2. Loadable

P0 must be ‘‘loadable’’ in the sense that the total size of the compiled programs, stacks, and data must
not exceed the memory capacity of the FM8502. Thus, the FM8502 implementation of Piton is correct
only for a subset of the abstract Piton state space.

It should be understood that the determination of whether a particular state is loadable is dependent not
just on the resource limitations declared by the user (in the form of the maximum stack sizes) but also on
the amount of code generated by our compiler. This immediately contaminates the hypothesis of the
correctness theorem with implementation details. Ideally one would like the correctness theorem for a
programming language implementation to read something like ‘‘if the abstract state satisfies these con-
ditions (all expressed in familiar abstract terms), then the computation can be carried out on the concrete
machine as follows ...’’ But here we have a condition on the abstract state that, if one delves into its formal
definition, involves such implementation details as how many words of machine code are generated for the
PUSH-CONSTANT instruction. We find this unaesthetic but unavoidable. The abstract Piton machine has
no inherent resource limitations—the user is free to specify any desired stack sizes. The concrete FM8502,

32on the other hand, is fundamentally limited to at most 2 words of memory. How quickly those finite
resources are exhausted depends on how they are used by the implementation.

5.1.3. Word Size 32

Recall that the definition of Piton is parameterized by the word size. The word size is an explicit part of
the Piton state and the abstract Piton machine is sensibly defined for all word sizes. However, the
correctness theorem hypothesizes that the word size is 32. That is, the FM8502 implementation of Piton is
correct only for word size 32.

57

This reflects the fact that the FM8502 is a 32-bit wide machine. Of course, our implementation could
have allotted two FM8502 words to each Piton object and thus implemented word size 64. Indeed, the
implementation could have been a nontrivial function of the word size and allotted as many FM8502 words
as necessary to accommodate the user’s declared word size, with the concomitant complications in the
implementation of arithmetic and all other operations. We mention these possibilities only to alert the
reader to the fact that the FM8502 implementation of Piton is unnecessarily restricted to a slice of the
abstract state space. Nevertheless, such restrictions are standard practice in language implementations.

5.1.4. Non-Erroneous Final State

The theorem next assumes that the final Piton state is non-erroneous. That is, were this program run on
the abstract Piton machine, the final psw would be either RUN or HALT. But we are imagining that the
program was run on FM8502, not the abstract Piton machine. Can we tell by looking at the FM8502 core
image whether the abstract machine would have caused an error? No. The only way this hypothesis can be
relieved is for the user to have proved that (a) his program runs without error on data satisfying its input
conditions and (b) the data used in this particular run satisfies those conditions.

5.1.5. Knowledge of the Final Type Specification

The next assumption is that TS is the type specification of the final Piton state. We have not discussed
type specifications before. A type specification for a data segment is a structure isomorphic to the data
segment except that where the data segment has a data object the type specification has just the type of the
object. For example, the type specification for the data segment

((LEN (NAT 5))
(A (NAT 0) (NAT 1) (NAT 2) (NAT 3) (NAT 4))
(X (INT -23)

(NAT 7)
(BOOL T)
(BITV (1 0 1 0 1 1 0 0))
(ADDR (A . 3))
(PC (SETUP . 25))
(SUBR MAIN)))

is

((LEN NAT)
(A NAT NAT NAT NAT NAT)
(X INT

NAT
BOOL
BITV
ADDR
PC
SUBR)).

In order to reconstruct the data segment of the final Piton state, the user must know the type specification of
that state. ‘‘Whoa! Do you mean the programmer has to know the type of every location in his final Piton
data segment to read the answers from the FM8502 core image?’’ Yes, he does. ‘‘The FM8502 core
image doesn’t tell him what the types of the objects are?’’ No, it doesn’t. ‘‘Then if he doesn’t have an
abstract Piton machine, how can he know what the final types are?’’ Proof.

58

This is not a new idea, but it looks a little startling when expressed formally. When the assembly
language programmer inspects word 27,349 of his final machine state and sees

B11111111111011010010100101111001

he knows that it might be the integer -1,234,567 in twos complement notation, or the natural 4,293,732,729
in binary notation, or a bit mask, or the address of some subroutine or data word. He knows how to
interpret it because he understands his program.

The idea of TS is startling because it is defined in terms of PN, the supposedly unknown final state. A
naive view of the correctness theorem suggests the following paradoxical reading: to determine the final
data segment the programmer must obtain the final data segment, get its type specification, and then inspect
the core image. This is not the recommended approach!

How can one know the final type specification without obtaining the final data segment? One can prove
that one’s interpretation of the final state is correct. For a Piton program to be useful via the FM8502
implementation, one must not only prove that it does not cause errors when called as expected but that it
delivers a final data segment with the expected type specification. This is not an onerous task. It is usually
part of the specification anyway. We illustrate this when we apply the correctness result to BIG-ADD later
in this chapter (page 60).

If Piton had a strongly typed syntax—so that it was impossible to change the type of a variable or data
location—then the final type specification would be the same as the initial one and the theorem would no
longer even suggest that PN is needed to recover the data segment of PN. This suggests another approach
using FM8502 Piton: The Piton programmer could constrain himself to those Piton programs that do not
change their type specifications and prove that he has done so.

5.2. The Conclusion of the Correctness Result

The above discussion may be summarized as follows: The Piton programmer must know that his
program is proper, that the static size of the FM8502 image is not excessive, and that the word size is 32.
He must know that the final state is non-erroneous on this execution and he must know the final type
specification of the data segment. What does the conclusion tell him?

5.2.1. The Final Data Segment

First of all, it does not permit him to reconstruct the entire final state, only its data segment. For
example, we do not say how to recover from the final FM8502 state the program segment of the final
p-state. This is impossible (without some additional information) since, for example, the symbolic names
of the Piton programs, data areas, variables, and labels are all discarded by LOAD. Furthermore, it is
pointless to reconstruct the program segment: it never changes anyway. More questionable, perhaps, is that
we do not show how to recover the final control or temporary stacks.

We felt it was sufficient to handle the data segment alone. If the programmer has a program whose final
answer is left on one of the stacks, he could add the additional code that moves that answer into the data
area, simply to get total reassurance that what he sees in FM8502’s final state is correct. That is what we
did in the MAIN program (page 29): after calling BIG-ADD we pop the ‘‘carry out’’ flag off the temporary
stack and store it into the global variable C. Thus, the implementation correctness theorem enables us to
get both of BIG-ADD’s answers (the final array and the flag) out of the FM8502 core image.

59

5.2.2. The FM8502 Route

If all of the hypotheses are true for a particular run and the user is happy to see just the final data
segment, this theorem tells him how to get it from FM8502 and the initial state, P0 and N. In particular, it
is

(DISPLAY-M-DATA-SEGMENT (FM8502 (LOAD P0)
(FM8502-CLOCK P0 N))

TS
(LINK-TABLES P0)).

The functions, LOAD, LINK-TABLES, and DISPLAY-M-DATA-SEGMENT are all defined in the formal
treatment of the correctness result. FM8502-CLOCK is discussed below and on page 205.

Informally, LOAD constructs an FM8502 binary core image from a Piton state by compiling, assembling
and linking the Piton programs and data areas. FM8502-CLOCK determines how many clock ticks it takes
FM8502 to carry out the computation performed by Piton in N ticks—a determination made by carrying
out the computation with the abstract Piton machine and counting how many FM8502 instructions are used
in our implementation. This may strike some readers as problematic and we will return to it below.
LINK-TABLES is part of the LOAD function. It takes a Piton state and computes several tables that tell the
linker where each program, label, stack, and data area is to be located in absolute memory space.

DISPLAY-M-DATA-SEGMENT reconstructs the Piton data segment by scanning the type specification
TS to determine the names of the data areas, using the link tables to determine the absolute location at
which each data area was allocated, scanning the memory of the final state from those locations to recover
bit vectors, and finally using the type specification again to convert the individual bit vectors back into
Piton data objects of the appropriate type. The formalization of this concept is embodied in the function
DISPLAY-M-DATA-SEGMENT which is defined on page 207.

We suggest that this is exactly what the assembly language programmer (or debugger) does when
inspecting a core dump.

5.3. The Termination of FM8502

Our handling of the termination of Piton programs on FM8502 leaves something to be desired. As
ththings stand now, the correctness theorem tells you that if you inspect the FM8502 state on the k clock

tick, where k is (FM8502-CLOCK P0 N), then it ‘‘maps up’’ as described. But the theorem says
stnothing about what FM8502 does on the k+1 clock tick. Furthermore, the only way to determine k is to

use FM8502-CLOCK, which runs the computation on the abstract Piton machine.

The preferred way to read the correctness theorem is that it tells us ‘‘there exists a number k such that if
you run FM8502 k ticks you get a suitable state.’’ FM8502-CLOCK is a ‘‘witness function’’ that exhibits
a suitable k. Its definition is very dependent upon our implementation and proof. We do not exhibit a
definition of FM8502-CLOCK in this report, though we discuss it again on page 205.

If FM8502 were built as it now stands and the Piton implementation were left as is, it could still provide
a practical means of carrying out computation: The user could write his top-level Piton program to set the
global variable TERMINATED to true and enter an infinite loop when the actual computation has com-
pleted. Then, he should prove that when TERMINATED is true the answer is correct. He can then execute
his program on FM8502 and periodically map up to see if TERMINATED is true.

60

The main reason that the issue of the clock has not been more conveniently addressed in our correctness
theorem is that FM8502 does not yet actually exist. When it does, there will be some kind of monitor to
which Piton returns when complete, and some kind of output lines upon which either Piton or FM8502 will
signal completion. When we have a practical means of interfacing FM8502 to the world, we will imple-
ment a suitable reflection of it for Piton and modify the correctness theorem appropriately.

5.4. Applying the Correctness Result to BIG-ADD

Recall that in Chapter 3 we defined a small system of two Piton programs for doing big number addition.
Suppose we are now interested in running that system on the FM8502 implementation of Piton. What does
the correctness result tell us?

The system in question is constructed by the function

Definition.
(SYSTEM-INITIAL-STATE A B)

=
(P-STATE ’(PC (MAIN . 0))

’((NIL (PC (MAIN . 0))))
NIL
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA A)

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (TAG ’NAT 0))))

10
8
32
’RUN).

We defined the acceptable values of A and B with

Definition.
(SYSTEM-INITIAL-STATE-OKP A B)

=
(AND (BIGNP A (EXP 2 32))

(BIGNP B (EXP 2 32))
(EQUAL (LENGTH A) (LENGTH B))
(NOT (ZEROP (LENGTH A)))
(LESSP (LENGTH A) (EXP 2 32))).

We proved the following theorem about this Piton system:

61

Theorem. Correctness of a BIG-ADD System
(IMPLIES
(SYSTEM-INITIAL-STATE-OKP A B)
(EQUAL (P (SYSTEM-INITIAL-STATE A B)

(SYSTEM-INITIAL-STATE-CLOCK A B))
(P-STATE
’(PC (MAIN . 5))
’((NIL (PC (MAIN . 0))))
NIL
(LIST (MAIN-PROGRAM)

(BIG-ADD-PROGRAM))
(LIST (CONS ’BNA (BIG-ADD-ARRAY A B F (EXP 2 32)))

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (BIG-ADD-CARRY-OUT A B F (EXP 2 32)))))

10 8 32 ’HALT))).

Suppose we have in mind some particular big numbers a and b such that
(SYSTEM-INITIAL-STATE-OKP a b) holds. We know how to add them together with the abstract
Piton machine: let p be (SYSTEM-INITIAL-STATE a b) and let p be the result of running the0 n
Piton machine (SYSTEM-INITIAL-STATE-CLOCK a b) steps starting from p . Then by the correct-0
ness of the BIG-ADD system (above) we know that the data segment of p contains the correct big numbern
sum. Can we get that same answer via FM8502?

It is not at all obvious that FM8502 Piton can do the job for us, given the complexity of our theorem
stating the correctness of FM8502 Piton. We must know five things. First, we must know that p is a0
proper p-state. Second, we must know that p is loadable. Third, we must know that the word size of p is0 0
32. Fourth, we must know that the final state, p , is non-erroneous. Fifth, we must know the typen
specification of the data segment of p . We deal with each of these issues in turn. Recall that p isn 0
(SYSTEM-INITIAL-STATE a b) and we know (SYSTEM-INITIAL-STATE-OKP a b).

5.4.1. Proper P-States

We can prove that p is proper from the assumption that a and b satisfy0
SYSTEM-INITIAL-STATE-OKP. In particular,

Theorem.
(IMPLIES (SYSTEM-INITIAL-STATE-OKP A B)

(PROPER-P-STATEP (SYSTEM-INITIAL-STATE A B))).

This theorem is straightforward to prove. Recall that PROPER-P-STATEP is concerned with such issues
as whether the programs in the program segment are syntactically well-formed and mention no global data
other than that declared in the data segment and that all of the Piton objects involved in the state are legal.
But the program segment in this case is a constant, namely the list containing the MAIN program and
BIG-ADD, and the data segment is ‘‘almost’’ a constant—the names of the areas are explicitly given and
their contents are derived from A and B. So it is easy to confirm that our programs are proper and only
refer to declared data. It is interesting that this is the first place in the BIG-ADD exercise where we are
concerned with the question of whether our programs are syntactically well-formed. This is because the
abstract Piton semantics gives some meaning even to ill-formed programs and we proved that BIG-ADD
was correct with respect to that semantics. Only when we contemplate compiling it do we need to make
sure the program is well-formed, since there is no guarantee in our implementation correctness theorem that
the compiler agrees with the abstract semantics on ill-formed programs. In addition to the syntactic checks

62

discussed above, PROPER-P-STATEP checks that all Piton objects in the initial state are legal. The proof
that this is true for (SYSTEM-INITIAL-STATE A B) appeals to the
SYSTEM-INITIAL-STATE-OKP hypothesis, which guarantees that A and B are big numbers, and hence
the BNA and BNB data areas contain legal Piton natural numbers.

5.4.2. Loadable

The next question is whether p is loadable. That depends on how big A and B are. If each is of length0
100 1002 , p is certainly not loadable since its data segment contains two areas each of which require 20

words. On the other hand, for ‘‘small’’ A and B the system initial state is loadable. We have proved
mechanically

Theorem.
(IMPLIES (AND (SYSTEM-INITIAL-STATE-OKP A B)

(LESSP (LENGTH A) 1000))
(P-LOADABLEP (SYSTEM-INITIAL-STATE A B))),

which guarantees that if a has fewer than a thousand digits then p is loadable. We could have proved a0
much higher bound on the size of A and B but we felt that this bound makes the point that we can do
significantly large additions with this system.

Recall that P-LOADABLE is implementation dependent. Thus, the proof of the above theorem actually
involves reasoning about the data representation and the compiler. We sketch the proof here simply to
reassure the reader that this ‘‘implementation dependent’’ reasoning does not require undue familiarity with
the FM8502 implementation of Piton. The program segment created by SYSTEM-INITIAL-STATE is
constant and so its FM8502 size is constant and may be determined by computation to be 97. (That is, if
you call the compiler on MAIN and BIG-ADD and add the lengths of the resulting programs you get 97.)
The space allocated to the Piton stacks in this example is also constant and is seen to be 23. The data
segment constructed by SYSTEM-INITIAL-STATE has four areas, one each for A and B (each contain-
ing (LENGTH A) words) and a word each for N and C. Thus the total size of the loaded system is
97+23+2+2n, where n is (LENGTH A). The theorem has thus been reduced to showing that if n<1000

32then 122+2n < 2 . This is trivial.

5.4.3. Word Size 32

The third issue is the word size of p . It is easy to prove0

Theorem.
(EQUAL (P-WORD-SIZE (SYSTEM-INITIAL-STATE A B)) 32).

5.4.4. Non-Erroneous Final State

The fourth issue is establishing that the final state, p , is non-erroneous. Recall that p isn n

(P (SYSTEM-INITIAL-STATE a b)
(SYSTEM-INITIAL-STATE-CLOCK a b)).

However, from the correctness of the BIG-ADD system we know that the final psw of this state is in fact
HALT and so the state is non-erroneous. More generally we can prove mechanically

63

Theorem.
(IMPLIES (SYSTEM-INITIAL-STATE-OKP A B)

(NOT (ERRORP (P-PSW (P (SYSTEM-INITIAL-STATE A B)
(SYSTEM-INITIAL-STATE-CLOCK A B)))))).

Thus, the fact that the FM8502 implementation of Piton is correct only for non-erroneous computations is
not a problem because we are using it to run verified code and we proved that our code does not cause
errors when run on input satisfying our input conditions.

5.4.5. Knowledge of the Final Type Specification

The fifth issue is knowledge of the type specification of the final data segment. This was perhaps the
most problematic aspect of our implementation correctness theorem. Recall that the problem is that to
recover the final data segment from the final FM8502 core image it is necessary to know the types of the
objects in the final data segment. But it is clearly impractical to obtain that knowledge by computing the
final data segment with the abstract Piton semantics since there would then be no need to compute with
FM8502. We argued that the final type specification could be obtained via proof.

The following mechanically proved theorem illustrates this argument.

Theorem.
(IMPLIES (SYSTEM-INITIAL-STATE-OKP A B)

(EQUAL (TYPE-SPECIFICATION
(P-DATA-SEGMENT
(P (SYSTEM-INITIAL-STATE A B)

(SYSTEM-INITIAL-STATE-CLOCK A B))))
(LIST (CONS ’BNA (FOR X IN A COLLECT ’NAT))

(CONS ’BNB (FOR X IN B COLLECT ’NAT))
(CONS ’N (LIST ’NAT))
(CONS ’C (LIST ’BOOL))))).

This theorem tells us that for A and B satisfying SYSTEM-INITIAL-STATE-OKP the type specification
of the data segment of the final abstract p-state is

(LIST (CONS ’BNA (FOR X IN A COLLECT ’NAT))
(CONS ’BNB (FOR X IN B COLLECT ’NAT))
(CONS ’N (LIST ’NAT))
(CONS ’C (LIST ’BOOL))).

That is, the final value of the BNA array is a list of natural numbers. The final value of the BNB array is
also a list of natural numbers. The final value of N is a natural. The final value of C is a Boolean. Note
that C changed type in the computation. Its initial value was a natural. This theorem is easy to prove given
the correctness of the BIG-ADD system. After all, the final value of BNA is a big number and so is a list of
naturals, the final value of C is the carry out, which is a Boolean, and BNB and N are unchanged by the
computation. Since the system is correct, we know the final type specification even without knowing the
final data segment.

5.4.6. Using FM8502 to Add Big Numbers

Given all of the foregoing we know that if A and B satisfy SYSTEM-INITIAL-STATE-OKP then
FM8502 can be used to add them together. Another way to view the situation is that we can combine the
correctness of the BIG-ADD system with the correctness of the FM8502 implementation of Piton and
eliminate entirely the semantics of Piton.

64

The theorem is

Theorem.
(IMPLIES
(AND (SYSTEM-INITIAL-STATE-OKP A B)

(LESSP (LENGTH A) 1000))
(EQUAL (DISPLAY-M-DATA-SEGMENT

(FM8502 (LOAD (SYSTEM-INITIAL-STATE A B))
(FM8502-CLOCK (SYSTEM-INITIAL-STATE A B)

(SYSTEM-INITIAL-STATE-CLOCK A B)))
(LIST (CONS ’BNA (FOR X IN A COLLECT ’NAT))

(CONS ’BNB (FOR X IN B COLLECT ’NAT))
(CONS ’N (LIST ’NAT))
(CONS ’C (LIST ’BOOL)))

(LINK-TABLES (SYSTEM-INITIAL-STATE A B)))
(LIST (CONS ’BNA (BIG-ADD-ARRAY A B F (EXP 2 32)))

(CONS ’BNB B)
(CONS ’N (LIST (TAG ’NAT (LENGTH A))))
(CONS ’C (LIST (BIG-ADD-CARRY-OUT A B F (EXP 2 32))))))).

Observe that the theorem does not mention P, proper p-states, erroneous computations or type specifica-
tions. It says that if you have acceptable big numbers A and B then you can add them together by creating
an FM8502 state, running FM8502, and then applying DISPLAY-M-DATA-SEGMENT to the final state.

As stated above the theorem is slightly unsatisfying because the second and third arguments to
DISPLAY-M-DATA-SEGMENT still involve A and B. In fact, the expressions in those argument positions
are functions only of the the length of A. That is, given the length of A we can construct the type
specification and the link tables without any further knowledge of A or B. We can thus define the function
DISPLAY-ANSWERS so that it takes only the final m-state and the length of the big number system and
returns the list consisting of the sum and carry out. DISPLAY-ANSWERS has built into it the types and
absolute locations of the answers in the final core image. We can then repackage the above into

Theorem.
(IMPLIES (AND (SYSTEM-INITIAL-STATE-OKP A B)

(LESSP (LENGTH A) 1000))
(EQUAL
(DISPLAY-ANSWERS
(FM8502 (LOAD (SYSTEM-INITIAL-STATE A B))

(FM8502-CLOCK (SYSTEM-INITIAL-STATE A B)
(SYSTEM-INITIAL-STATE-CLOCK A B)))

(LENGTH A))
(LIST (BIG-ADD-ARRAY A B F (EXP 2 32))

(BIG-ADD-CARRY-OUT A B F (EXP 2 32))))).

The above theorems demonstrating that FM8502 can do big number arithmetic would be hard to prove in
the absence of our results on Piton, of course. Indeed, the beauty of the current arrangment of theorems is
that the difficult, problem specific reasoning that establishes our programs correct is done with respect to
the elegant abstract semantics of Piton. But our programs can be efficiently carried out by the concrete
FM8502.

It is often difficult to ascertain whether a given formal sentence adequately captures the informal notions
offered in explanation. Does our correctness result for the FM8502 implementation of Piton actually
capture the alleged idea? Without a formal ‘‘theory of implementations’’ that question cannot be
answered. However, we can ‘‘stack’’ the correctness of a given Piton program on top of the correctness of

65

FM8502 Piton to get a theorem that eliminates the intermediate level, i.e., Piton. We offer this as evidence
that our correctness theorems are adequate.

5.4.7. Concrete Data

We now return to the question that started our analysis of BIG-ADD versus the correctness result.
Imagine that we have two particular big numbers we wish to add, say ’((NAT 246838082) (NAT

3116233281) (NAT 42632655) (NAT 0)) and ’((NAT 3579363592) (NAT

3979696680) (NAT 7693250) (NAT 0)). Can we use FM8502 to add them? We now know the
answer is ‘‘yes’’ provided the two numbers satisfy SYSTEM-INITIAL-STATE-OKP and the numbers
have fewer than one thousand digits. It is a theorem that

Theorem.
(AND (SYSTEM-INITIAL-STATE-OKP ’((NAT 246838082)

(NAT 3116233281)
(NAT 42632655)
(NAT 0))

’((NAT 3579363592)
(NAT 3979696680)
(NAT 7693250)
(NAT 0)))

(LESSP (LENGTH ’((NAT 246838082)
(NAT 3116233281)
(NAT 42632655)
(NAT 0)))

1000)).

(Observe that this theorem is trivial to prove by computation.) Thus, if we run FM8502 on the correspond-
ing initial state and extract the answers they will be correct. The point is that despite all our analysis and
proofs, we know that the final answer is correctly only if we know we are using the program in accordance
with its specifications.

One last point deserves to be made here. Since we did not design the big number addition system to
signal its own termination we must know, for each concrete input data set, how long to let the machine run.
For big numbers A and B, the FM8502 must run for

(FM8502-CLOCK (SYSTEM-INITIAL-STATE A B)
(SYSTEM-INITIAL-STATE-CLOCK A B))

instructions. For the concrete data above, this expression is equal to 190.

66

67

6. The Implementation of Piton on FM8502

To implement Piton on FM8502 we must define LOAD. LOAD takes a p-state as its input and produces
an m-state as its output. LOAD is defined on page 198.

We implement LOAD in three steps.

• The first is the resource representation phase. In this step we are concerned with using the
resources of the FM8502 to represent the stacks and other resources of the Piton machine. The
principal output of this phase is a symbolic description of the contents of the FM8502 registers
and that portion of the memory containing the stacks. This symbolic description will be
subjected to ‘‘linking’’ (below). The formalization of this concept is embodied in the function
P->R which is defined on page 199.

• Second, we translate Piton instructions into FM8502 instructions. We call this compiling the
Piton programs. In our implementation, the compiler does not produce binary machine code;
instead it produces what we call ‘‘i-code,’’ an assembly code for FM8502 containing symbolic
program names, labels, and abstract Piton objects. The principal output of this phase is a new
program segment in which each program name is associated with its i-code. The formalization
of this concept is embodied in the function R->I which is defined on page 202.

• Third, we replace all of the symbolic objects—in the stacks, in the assembled programs, and in
the data segment—by bit vectors. This is called link-assembling. The i-code instructions are
assembled into their machine code counterparts. Piton data objects are linked to (i.e., replaced
by) the corresponding bit vectors. We are justified in calling this process ‘‘linking’’ because
our compiled i-code uses Piton data objects (e.g., program addresses) for all references. Thus,
the link phase is responsible for tying the system of programs and data together with absolute
addresses. The formalization of this concept is embodied in the function I->M which is
defined on page 181.

The organization of this chapter is as follows. We first present an example p-state and the corresponding
m-state. This is offered primarily as proof that our implementation ultimately produces a ‘‘core image’’ as
it is traditionally understood, despite the fact that the compiler and link-assembler are written in a computa-
tional logic. Next we sketch the implementation, primarily to establish terminology. Then we describe
each of the three phases of the implementation: resource representation, compiling, and link-assembling.

6.1. An Example

Recall the program BIG-ADD and the initial state illustrated in Figure 3-2 on page 31.

10The result of LOADing this state is FM8502 m-state shown in Figure 6-1. There is absolutely no
expectation on our part that this core dump is understandable. We only expect it to impress upon the reader
that LOAD does indeed produce a core image, despite our early fascination with abstractions such as
‘‘resource representation.’’

10In this paper we use the standard notation for bit vectors, with the least significant digit to the right and the entire string of binary
digits prefixed by the letter B. In Hunt’s formalization of FM8501—to which we actually map—bit vectors are shells constructed
from T and F by the function BITV and the empty bit vector (BTM). The least significant bit is the outermost in the nest. For
example, the formal term denoted by B011 is (BITV T (BITV T (BITV F (BTM)))). Readers familiar with our logic will
recognize ’B011 as a LITATOM. To display the bit vectors in this report we simply defined the function in the logic that converts a
BITV shell object into the appropriate literal atom.

68

Figure 6-1: The FM8502 Core Image for Big Number Addition

(M-STATE ’(B00000000000000000000000000000010 B00000000000000000000000001110011
B00000000000000000000000001110011 B00000000000000000000000001111110
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000000000000)

F F F F
’(B00000000000011111000001001000001 B00000000000011111000000000100010
B00000000000011111000001001111000 B00000000000000000000000001100001
B00000000000011111000001001111000 B00000000000000000000000001100101
B00000000000011111000000010011000 B00000000000000000000000001101001
B00000000000011111000001001101100 B00000000000011111000001001011000
B00000000000000000000000000001101 B00000000000011111000000000001000
B00000000000000000000000000010101 B00000000000011111000000010011000
B00000000000000000000000001101010 B00000000000011111000000110011011
B00000000000011111000000000001000 B00000000000000000000000000010010
B00000000000011111000000001000001 B00000000000011111000000000111010
B00000000000011111000000000011010 B00000000000011111000001001000001
B00000000000011111000000000100010 B00000000000011111000001001011011
B00000000000011111000001001011011 B00000000000011111000001001011011
B00000000000011111000001001111000 B00000000000000000000000000000000
B00000000000011111000000010011000 B00000000000000000000000000000000
B00000000000000110000000010000010 B00000000000011111000001001101100
B00000000000011111000000010011011 B00000000000011111000001001101100
B00000000000011111000000010011000 B00000000000000000000000000000001
B00000000000000110000000010000010 B00000000000011111000001001101100
B00000000000011111000000010011011 B00000000000011111000001001101100
B00000000000011111000000010011011 B00000000000011111000000010111011
B00000000000010010010000101101011 B00000000000000100010000010000101
B00000000000000011000000101111000 B00000000000000000000000000000001
B00000000000011111000001001100100 B00000000000011111000000010011000
B00000000000000000000000000000000 B00000000000000110000000010000010
B00000000000011111000001001101100 B00000000000011111000000010011011
B00000000000011111000000110011011 B00000000000011111000000010011000
B00000000000000000000000000000010 B00000000000000110000000010000010
B00000000000011111000001001101100 B00000000000001010000000101101011
B00000000000011111000000010011000 B00000000000000000000000000000010
B00000000000000110000000010000010 B00000000000011111000000110001011
B00000000000011111000010010111011 B00000000000011111000000010011000
B00000000000000000000000001011100 B00000000000001011000000000000100
B00000000000011111000000010011000 B00000000000000000000000000000001
B00000000000000110000000010000010 B00000000000011111000001001101100
B00000000000011111000001001111000 B00000000000000000000000000000001
B00000000000011111000000010011011 B00000000000000110000000101100100
B00000000000011111000000010011000 B00000000000000000000000000000001
B00000000000000110000000010000010 B00000000000011111000000110011011
B00000000000011111000000010011000 B00000000000000000000000000000000
B00000000000000110000000010000010 B00000000000011111000001001101100
B00000000000011111000001001111000 B00000000000000000000000000000001
B00000000000011111000000010011011 B00000000000000110000000101100100
B00000000000011111000000010011000 B00000000000000000000000000000000
B00000000000000110000000010000010 B00000000000011111000000110001011
B00000000000011111000000000001000 B00000000000000000000000000100000
B00000000000011111000000000001000 B00000000000000000000000001011110
B00000000000011111000000001000001 B00000000000011111000000000111010
B00000000000011111000000000011010 B00001110101101100111001101000010
B10111001101111011111001001000001 B00000010100010101000010111001111
B00000000000000000000000000000000 B11010101010110001100000100001000
B11101101001101010101101000101000 B00000000011101010110001111000010
B00000000000000000000000000000000 B00000000000000000000000000000100
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000001110011
B00000000000000000000000000000010 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000000000000
B00000000000000000000000000000000 B00000000000000000000000001101011
B00000000000000000000000001110110 B00000000000000000000000001111110))

69

6.2. A Sketch of the FM8502 Implementation

Our implementation of Piton partitions the memory of FM8502 into three parts. The first holds the
binary programs and is called the program segment. The second holds the data segment of the Piton
machine and is called the user data segment of the FM8502 memory. The third holds the control and
temporary stacks and three words of data used to implement the stack resource instructions. This segment
of the FM8502 memory is called the system data segment. In addition, the implementation uses six of the
eight registers of FM8502 and the four condition code flags.

6.2.1. The Registers

We give symbolic names to six of the FM8502’s registers. The actual register numbers allocated are 0-5,
in the order listed.

• pc (program counter).

• cfp (control stack frame pointer): determines the extent of the topmost frame on the control
stack.

• csp (control stack pointer): addresses the top of the control stack.

• tsp (temporary stack pointer): addresses the top of the temporary stack.

• x and y: used as temporaries in the machine code implementing Piton instructions: no
assumptions are made about the values of these registers when (the machine code for) a Piton
instruction begins execution and no promises are offered about the values at the conclusion of
execution.

6.2.2. The Condition Codes

Recall the four condition code registers of FM8502: carry, overflow, negative, and zero. These can be
set by any instruction according to the operation performed by the alu during that instruction. The
condition codes are tested by the conditional move instructions.

The implementation of certain Piton instructions, namely the ‘‘test and jump’’ family and the ‘‘arith-
metic with carry’’ family, load and test the condition code registers of FM8502. However, these registers
are also treated as temporaries in the machine code.

6.2.3. The Program Segment

The program segment of the FM8502 memory is logically divided into separate areas. Each area
corresponds to a Piton program. The contents of such an area is the binary machine code obtained by
compiling the corresponding Piton program and then link-assembling it. To compile a Piton program we
compile each individual instruction in it, concatenate the results, and sandwich the resulting code between a
‘‘prelude’’ and a ‘‘postlude’’ that implements procedure call and return. We are much more specific later.
However, the generated code is easily imagined once we have explained how the abstract stacks and data
areas of Piton are concretely implemented.

70

6.2.4. User Data Segment

The user data segment of the FM8502 machine is isomorphic to the data segment of the Piton machine.
The data segment is allocated in the FM8502 memory space immediately above the program segment.
Each array in the data segment is allocated a block of words as long as the array. The arrays are laid out
successively, each immediately adjacent to its neighbors.

6.2.5. The System Data Segment

Immediately above the data segment we allocate the system data segment. This segment contains five
‘‘areas,’’ comparable to the areas (arrays) of the user data segment. In the control stack area we represent
the Piton control stack, using, in addition, the cfp and csp registers. In the temporary stack area we
represent the Piton temporary stack, using, in addition, the tsp register. The other three system data areas
contain resource bounds used in the implementation of such instructions as
JUMP-IF-TEMP-STK-EMPTY.

The amount of space allocated to each stack is one greater than the maximum stack size for that stack, as
specified in the Piton state.

Because of the addressing modes in FM8502 it was decided that the stacks should grow ‘‘downwards’’
(i.e., toward absolute address 0). When a push is performed, the stack pointer is decremented and then the
operand is deposited into the memory location indicated by the new stack pointer; when a pop is per-
formed, the contents of the indicated memory location is fetched and then the pointer is incremented.
When a stack is empty its stack pointer addresses the high word in its area; the contents of this word is

11never read or written and hence the allocation of the word is actually a waste of one word.

6.2.5.1. The Temporary Stack

Consider the following Piton temporary stack containing four Piton data objects:

(obj1
obj2
obj3
obj).4

obj is the topmost element of the stack. Suppose the maximum temporary stack size is 6.1

At the FM8502 level, this temporary stack is represented by a block of 7 words in the system data
segment, together with the tsp register. Suppose, for concreteness, that the temporary stack data area is
allocated beginning at absolute address 1000. In Figure 6-2 we show how the above stack is represented.
Of course, the contents of the memory locations are not the Piton objects themselves but bit vectors
representing them. We deal with this problem later. A push on the stack above would decrement tsp and
write into address 1001. A pop would fetch from the current tsp and then increment tsp to 1003. If
the stack is popped four times it is empty and tsp would be 1006. Because we allocated an extra word to
the temporary stack area, the empty stack pointer is still an address into the temporary stack area. Because
we will never pop the empty stack, the contents of the extra word is irrelevant.

11The implementation could have made the empty stack pointer be an address ‘‘just outside’’ the stack area. However, by
allocating the extra word we slightly simplified the correctness proof because we maintained the invariant that the stack pointers were
always addresses into the appropriate system data area.

71

Figure 6-2: An FM8502 Temporary Stack

memory registers
address contents name contents

1006 unused tsp 1002
1005 obj4
1004 obj3
1003 obj2
1002 obj1
1001 inactive
1000 inactive

6.2.5.2. The Control Stack

The Piton control stack is a stack of frames, each frame containing the bindings for the local variables of
the current subroutine and the return program counter. At the FM8502 level, each frame contains the
values of the local variables (but not the names) and the return program counter; the machine code
references the values by position within the frame. Because the FM8502 frames are just blocks of words
laid out consecutively in the control stack area, each frame contains an additional word that points to the
‘‘beginning’’ of the previous frame.

We explain the exact layout of the control stack by example. Below we show a Piton control stack
containing three frames.

(LIST
(LIST ’((X . val) ;Frame 1 - currentx

(Y . val)y
(Z . val))z

ret-pc)1
(LIST ’((A . val) ;Frame 2a

(B . val))b
ret-pc)2

(LIST ’((U . val) ;Frame 3u
(V . val))v

ret-pc))3

Suppose the maximum control stack size is 16. Then the stack above is represented as a block of 17
consecutive words in the system data segment, together with two registers, the csp register and the cfp
register.

For the sake of concreteness, suppose the control stack area begins at address 5000. Then the relevant
portion of the FM8502 state is shown in Figure 6-3.

Frame 1 of the Piton stack is represented in memory locations 5003-5007 of Figure 6-3. In particular,
the return program counter, ret-pc , is in ‘‘first’’ word of the top frame (where we enumerate the words in1
the same order in which they were pushed), location 5007. The second word of the top frame, location
5006, contains the address of the frame that was current at the time this frame was built. We call this the
old cfp word of the frame, for reasons that will become apparent. The bindings are in the last n words of
the frame, locations 5003-5005.

72

Figure 6-3: An FM8502 Control Stack

memory registers
address contents name contents

5016 unused cfp 5006
5015 ret-pc csp 50033
5014 5014
5013 valv
5012 valu
5011 ret-pc2
5010 5014
5009 valb
5008 vala
5007 ret-pc1
5006 5010
5005 valz
5004 valy
5003 valx
5002 inactive
5001 inactive
5000 inactive

The csp register contains 5003, the ‘‘top’’ of the control stack. The values of the successive local
thvariables are obtained by indexing up from csp. The value of the 0 local is at csp+0, i.e., 5003, the

stvalue of the 1 local is at csp+1, i.e., 5004, etc.

The cfp register contains 5006. This is the address of the old cfp word in the top frame. That word
contains the address of the old cfp word in the previous frame. By starting at cfp and threading through
the old cfp words one can identify each frame.

Frame 2 of the Piton stack, the one extant when frame 1 was created, is in locations 5008-5011.
Frame 3 is in locations 5012-5015.

Locations 5000-5002 of the area above are currently unused but will be filled if a new frame is
pushed. Location 5016, the high word in the control stack area, is wasted.

Finally, it should be noted that the deepest frame on the stack, frame 3 in our example, is somewhat
pathological. First, its return program counter is irrelevant. This is a peculiarity of Piton, not our
implementation. When RET is executed in the context of this frame (the top-level entry into the Piton
system) the Piton machine halts rather than transfer control out of Piton. So the user of Piton, who starts
the machine on some initial state, may select any value he wishes for the initial return pc. Second, the old
cfp word of that frame is irrelevant for the same reason. In our implementation, the old cfp word of the last
frame always points to itself.

6.2.5.3. Stack Resource Limits

In addition to the two stack areas, the system data segment contains three words used to implement the
stack resource instructions. These three words each comprise a named area within the system data seg-
ment.

73

The names and contents of the three additional areas are

• full control stack address: the address of the lowest word in the control stack area. In our
example, it is 5000. When the control stack pointer is equal to this value, the control stack is
full; an additional push would cause the pointer to overflow the control stack area.

• full temporary stack address: the address of the lowest word in the temporary stack area. In
our example, it is 1000.

• empty temporary stack address: the address of the highest word in the temporary stack area.
In our example, it is 1006. When the temporary stack pointer is equal to this value, the
temporary stack is empty.

This completes our sketch of the implementation. In the next three sections we discuss each phase of the
implementation in more detail.

6.3. Resource Representation

The first phase of LOAD, P->R, constructs a symbolic description of the layout of the system data
segment and the initial values of the registers. We describe these resources symbolically first, instead of
mapping directly to bit vectors, because the stacks and registers contain Piton data objects (such as data and
program addresses) whose bit vector representations are not known until link time.

6.3.1. The System Data Segment and System Addresses

The symbolic description of the system data segment is a list structure similar to Piton’s data segment.
In particular, the system data segment is described by a list of length five. Each element describes a system

data area by listing the name of the area and the array of objects associated with it. We give the following
literal atom names to the areas in the system data segment: CSTK, TSTK, FULL-CTRL-STK-ADDR,
FULL-TEMP-STK-ADDR, and EMPTY-TEMP-STK-ADDR.

Intuitively, the array associated with each area is just a list of tagged Piton objects. This is not
completely accurate because it is necessary for the control stack to contain addresses into itself, namely the
old cfp words, and no Piton data object addresses the system data segment. We therefore introduce an
eighth type of object, called a system data address, which is a pair of the form (name . n), where
name is one of the area names above and n is a natural number less than the length of the associated

12area. Thus, (FULL-CTRL-STK-ADDR . 0) is the symbolic address of the full control stack address
word in the system data segment. Recall that that word contains the address of the lowest word in the
control stack area. In fact we can now write that address down symbolically too. It is (CSTK . 0).

System addresses will be tagged with the literal atom SYS-ADDR, exactly analogous to the way data
addresses are tagged with ADDR. Thus, if we write (SYS-ADDR (CSTK . 25)) we are referring to the

th25 word in the control stack area in the system data segment. If we write (ADDR (CSTK . 25)) we
thare referring to the 25 word in a global data area named CSTK (supposing one exists) in the Piton data

segment. We usually omit the tag in informal text and simply say ‘‘the system address (CSTK . 25)’’
or ‘‘the data address (CSTK . 25).’’

12The implied motivation for system addresses was to represent the old cfp words in the control stack. We have implemented a
general purpose system addressing notation because system addresses are used throughout the implementation. For example, they
may be found in the compiler output.

74

The arrays associated with each of the five area names are simply lists of either Piton objects or system
addresses. The previous section sketching the layout of the stacks should make it clear how we load these
arrays.

We conclude with a simple example. Suppose the maximum control stack size is 11 and the maximum
temporary stack size is 8. Suppose the control stack of the Piton state is

((((X . (NAT 0)) ; Frame 1 - current
(Y . (NAT 1))
(Z . (NAT 2)))
(PC (MAIN . 4)))
(((A . (INT 1)) ; Frame 2
(B . (INT 2)))
(PC (MAIN . 0)))).

Suppose the temporary stack is

((ADDR (A . 3)) ; topmost element
(BOOL T)
(NAT 27)).

The symbolic description of the corresponding system data segment is shown in Figure 6-4.

Figure 6-4: A System Data Segment

offset comment

((CSTK (NAT 0) ; 0 inactive
(NAT 0) ; 1 value of X - Frame 1
(NAT 1) ; 2 value of Y
(NAT 2) ; 3 value of Z
(SYS-ADDR (CSTK . 8)) ; 4 old cfp
(PC (MAIN . 4)) ; 5 return pc
(INT 1) ; 6 value of A - Frame 2
(INT 2) ; 7 value of B
(SYS-ADDR (CSTK . 8)) ; 8 old cfp
(PC (MAIN . 0)) ; 9 return pc
(NAT 0)) ;10 unused

(TSTK (NAT 0) ; 0 inactive
(NAT 0) ; 1 inactive
(NAT 0) ; 2 inactive
(NAT 0) ; 3 inactive
(NAT 0) ; 4 inactive
(ADDR (A . 3)) ; 5 topmost element
(BOOL T) ; 6
(NAT 27) ; 7 btm-most element
(NAT 0)) ; 8 unused

(FULL-CTRL-STK-ADDR (SYS-ADDR (CSTK . 0)))
(FULL-TEMP-STK-ADDR (SYS-ADDR (TSTK . 0)))
(EMPTY-TEMP-STK-ADDR (SYS-ADDR (TSTK . 8))))

75

6.3.2. The Registers

The resource representation phase also specifies the symbolic value of each of the registers. This is
necessary since the registers participate in the representation of the stacks. The pc register is exactly the
same as in the Piton state. The cfp, csp and tsp registers are set to the appropriate system addresses.
For the system data segment in Figure 6-4 the register values are

cfp: (SYS-ADDR (CSTK . 4))
csp: (SYS-ADDR (CSTK . 1))
tsp: (SYS-ADDR (TSTK . 5))

The initial values of the x and y registers and of the condition code flags are irrelevant.

The system addresses, along with all the other data objects in the resource representation description,
will be turned into bit vectors by the link phase, when we know where, in absolute terms, the system data
segment will be located.

6.4. Compiling

The next phase of the LOAD process, R->I, is compilation. The compiler scans the program segment of
the Piton state and pairs each program name with the assembly code for that program. Observe that
compilation of each program is independent of the other programs and of the other components of the Piton
state. It is the link phase that worries about references between programs and data.

The assembly code for a Piton program is logically divided into three parts. The first part, called the
prelude, is executed as part of subroutine CALL. The prelude builds the new control stack frame for the
invocation and removes the actuals from the temporary stack. The second part, called the body, is the
translation of the successive instructions in the body of the Piton program. The third part, called the
postlude, is executed as part of the RET instruction and pops the top frame off the control stack, returning
control to the indicated pc.

We exhibit a simple compilation below. Consider the following silly Piton program:

(DEMO (X Y Z) ; Formals X, Y, and Z
((A (INT -1)) ; Temporaries A and I
(I (NAT 2)))
(PUSH-LOCAL Y) ; pc 0
(PUSH-CONSTANT (NAT 4)) ; pc 1
(ADD-NAT) ; pc 2
(RET)) ; pc 3

The program, named DEMO, has three formals and two locals. It adds 4 to the value of the second formal
and leaves the result on the stack.

The output of the compiler on this program is shown in Figure 6-5. The output is in a symbolic,
annotated version of FM8502 machine code, called ‘‘i-code.’’ I-code is similar to assembly code in that
instructions are written in symbolic form and translate 1:1 into FM8502 machine code. We discuss i-code
at greater length later.

In Figure 6-5 we have printed the compiler’s output in a four column format to make its structure clearer.

76

The first column consists entirely of labels. Note that our symbolic code uses the same DL construct used
13by Piton. The second column contains i-code instructions and data. The third column contains the Piton

source code used as input to the compiler. The compiler uses the comment field of the DL construct to
annotate each block of i-code with the high level instruction that generated it. The fourth column consists
of manually inserted comments that enumerate the successive values of the i-code program counter.

Figure 6-5: Compiler Output for DEMO

i-code Piton
label instruction instruction pc

(DEMO
(DL (DEMO PRELUDE) (PRELUDE)

(CPUSH_CFP)) ; 0
(MOVE_CFP_CSP) ; 1
(CPUSH_*) ; 2
(NAT 2) ; 3
(CPUSH_*) ; 4
(INT -1) ; 5
(CPUSH_<TSP>+) ; 6
(CPUSH_<TSP>+) ; 7
(CPUSH_<TSP>+) ; 8

(DL (DEMO . 0) (PUSH-LOCAL Y)
(MOVE_X_*)) ; 9
(NAT 1) ;10
(ADD_X{N}_CSP) ;11
(TPUSH_<X{S}>) ;12

(DL (DEMO . 1) (PUSH-CONSTANT (NAT 4))
(TPUSH_*)) ;13
(NAT 4) ;14

(DL (DEMO . 2) (ADD-NAT)
(TPOP_X)) ;15
(ADD_<TSP>{N}_X{N}) ;16

(DL (DEMO . 3) (RET)
(JUMP_*)) ;17
(PC (DEMO . 4)) ;18

(DL (DEMO . 4) (POSTLUDE)
(MOVE_CSP_CFP)) ;19
(CPOP_CFP) ;20
(CPOP_PC)) ;21

The prelude for the code in Figure 6-5 consists of instructions 0 through 8. The prelude is labelled by
the label (DEMO PRELUDE), a list object in the logic and guaranteed to be unique among the labels used
by the assembler. All labels, of course, are eventually removed by the linker and merely serve as unique
entries in the link table.

The prelude builds a new frame on the control stack. The construction of the frame begins before the
prelude is entered, when the CALL instruction is executed. CALL pushes the return program counter onto

13FM8502 machine code instructions can take ‘‘immediate’’ data from the next word in the instruction stream using the
post-increment addressing mode with the program counter register, as explained later. In our i-code, such double-word instructions
have names ending in a ‘‘*.’’

77

the control stack and jumps to the prelude of the called subroutine. Recall that the first word in the new
frame is the return program counter (which has just been pushed). The prelude builds the rest of the frame
by pushing more words onto the control stack.

Below we display the prelude for DEMO.

(CPUSH_CFP) ; 0
(MOVE_CFP_CSP) ; 1
(CPUSH_*) ; 2
(NAT 2) ; 3
(CPUSH_*) ; 4
(INT -1) ; 5
(CPUSH_<TSP>+) ; 6
(CPUSH_<TSP>+) ; 7
(CPUSH_<TSP>+) ; 8

At instruction 0 the current frame pointer register, cfp, is pushed onto the control stack. That sets the
old cfp word of the frame. At instruction 1 the current csp, which now points to the old cfp word just
pushed, is moved into the cfp register. Thus, the cfp register points to the old cfp word of the frame
under construction. The instruction at 2 is a double-word instruction that pushes the natural number 2 onto
the control stack. This is the initial value of the temporary variable I. At instruction 4 the initial value of
the temporary variable A is pushed. The last three instructions of the prelude, 6-8, each pop one thing off
the temporary stack and push the result onto the control stack. These instructions move the actuals into the
new frame. This completes the construction of the frame. Note that the csp register points to the top of
the stack and the cfp register points to the old cfp word as required.

The first executable Piton instruction in the program, (PUSH-LOCAL Y), is compiled as instructions
9-12. That block of code is labelled in the assembly language by (DEMO . 0) which happens to be the
Piton program address of the Piton instruction for which the code was generated. Each program address at

the Piton level is defined as a label in the i-code. It is via this identification of Piton program address
objects with i-code labels that the linker is able to replace each PC object by its absolute address. However,
there may be objects tagged PC in our i-code that are not legal program address objects in Piton, e.g.,
(DEMO PRELUDE). In general, the tag PC in i-code means ‘‘i-code label,’’ not Piton program counter.

The instructions for (PUSH-LOCAL Y) are

(MOVE_X_*) ; 9
(NAT 1) ;10
(ADD_X{N}_CSP) ;11
(TPUSH_<X{S}>) ;12

The basic idea is to fetch a certain element from the top frame and push it onto the temporary stack. The
element is the one in the slot for the local variable Y, which is in position 1 of the locals. Recall that the

thlocals are numbered from 0 and X is thus the 0 local of the program; the value of X is thus at the address
indicated by csp. The value of Y is at the address one greater than csp. The code above may be
explained as follows: (9) move the index, 1, of the local variable into the x register. (11) add the contents
of the csp register to x and store the result in x; this is the address of the appropriate slot in the control
stack. (12) fetch indirect through the x register and push the result onto the temporary stack.

In our symbolic code, we use angle brackets, e.g., <X>, around a register to indicate register-indirect
addressing mode. We use set braces, e.g., {S}, to indicate the type of object in the register. Thus, the
instruction ADD_X{N}_CSP means ‘‘add the contents of csp to the natural number in x’’ and

78

TPUSH_<X{S}> means ‘‘indirect through the system data address in x.’’ We discuss the data type
annotations later.

The next instruction in the Piton program is (PUSH-CONSTANT (NAT 4)) and the code generated is

(TPUSH_*) ;13
(NAT 4) ;14

This code pushes the natural number 4 onto the temporary stack.

The next Piton instruction is (ADD-NAT), which is supposed to pop two naturals off the temporary
stack, add them together, and push the result. The generated code is

(TPOP_X) ;15
(ADD_<TSP>{N}_X{N}) ;16

The code pops one thing off the temporary stack into x. Then it adds the natural in x to the natural fetched
indirect through tsp (the top item on the stack), and deposits the result indirect through tsp (back onto
the top of the stack).

The last executable instruction in the Piton code is the return instruction. It compiles into

(JUMP_*) ;17
(PC (DEMO . 4)) ;18

14This is just an unconditional jump to the label (DEMO . 4), which is where the postlude is located.

The postlude is

(MOVE_CSP_CFP) ;19
(CPOP_CFP) ;20
(CPOP_PC)) ;21

The postlude must remove the top frame from the stack, restore the cfp register to the value it had at the
time of the CALL, and restore the program counter to the return pc. The first instruction moves the contents
of the cfp register into csp. This effectively pops all the bindings of this frame and makes the top of the
stack be the old cfp word. The next instruction pops the control stack into the cfp register, restoring cfp
and exposing the return pc at the top of the stack. The last instruction pops the control stack into the pc,
completing the return and removing the last vestige of the now popped frame.

thNow consider the following segment of a Piton program MAIN that calls DEMO on the address of the 25
element of the array DELTA1, the natural number 17, and the Boolean value T. Suppose the CALL

instruction is located at program address (MAIN . 3).

(PUSH-CONSTANT (ADDR (DELTA1 . 25)))
(PUSH-CONSTANT (NAT 17))
(PUSH-CONSTANT (BOOL T))
(CALL DEMO)

The i-code generated for this segment is shown below. We have stripped out the label definitions.

14Our compiler has much room for improvement. The instruction at 17 jumps to the next executable instruction, and so could be
eliminated. We do not do any such optimizations.

79

(TPUSH_*) ;Push first actual on temp
(ADDR (DELTA1 . 25))
(TPUSH_*) ;Push second actual on temp
(NAT 17)
(TPUSH_*) ;Push third actual on temp
(BOOL T)
(CPUSH_*) ;Push return pc on ctrl
(PC (MAIN . 4))
(JUMP_*) ;Jump to (DEMO PRELUDE)
(PC (DEMO PRELUDE))

Observe that all addresses, both program and data, are represented in the i-code by extended data

objects—i.e., either Piton data objects, system data address objects, or i-code labels tagged PC. This is
true regardless of how the address originated. For example, (DELTA . 25) was originally a data object
in the source program. The reference to DEMO occurred in the CALL instruction and has been transformed
into the i-code data object (DEMO PRELUDE) of type PC. The return pc (MAIN . 4) above was only
implicit in the source program.

The next example compilation illustrates our handling of labels. Consider the following program, PTZ
(‘‘Pop till Zero’’), which pops the temporary stack until it pops a 0.

(PTZ NIL
NIL

(DL LOOP ()
(TEST-NAT-AND-JUMP ZERO END))
(JUMP LOOP)

(DL END ()
(RET)))

In Figure 6-6 we show the compiler output for PTZ.

Let us look carefully at the code generated for the TEST-NAT-AND-JUMP instruction. It is supposed to
pop the stack and jump to the label END if the result is the natural number 0. The i-code is in locations
2-5. The first instruction pops the stack into the y register and sets the z condition code (according to
whether the result is 0). Next, we move into the x register the PC data object (PTZ . 2). Then we jump
to the contents of x if the z condition code is set. Inspection will show that (PTZ . 2) is the i-code
label marking the point labelled END in the Piton source code.

Similarly, observe the compilation of the (JUMP LOOP) instruction. The i-code is at locations 6-7
above. It reads: Jump to i-code label (PTZ . 0).

In general, references to labels in Piton are compiled into references to PC type data objects.

As noted above, all program and data addresses, no matter how they originate, are explicitly mentioned
extended data objects (of type PC, ADDR, SYS-ADDR, or SUBR) in the i-code produced by the Piton
compiler. It is the job of the linker, discussed next, to replace these objects by the corresponding absolute
addresses. Until this is done, the code and the data segment are relocatable.

Recall that we have introduced a new type of object, the system address, which exists in our implemen-
tation of Piton but is not one of the types in Piton. When the compiler must make a reference to a word in
the system data segment it uses these symbolic addresses so that the code is relocatable with respect to
where the system data segment is laid out.

80

Figure 6-6: Compiler Output for PTZ

i-code Piton
label instruction instruction pc

(PTZ
(DL (PTZ PRELUDE) (PRELUDE)

(CPUSH_CFP)) ; 0
(MOVE_CFP_CSP) ; 1

(DL (PTZ . 0) (DL LOOP NIL
(TEST-NAT-AND-JUMP ZERO

END))
(TPOP{N}_<Z>_Y)) ; 2
(MOVE_X_*) ; 3
(PC (PTZ . 2)) ; 4
(JUMP-Z_X) ; 5

(DL (PTZ . 1) (JUMP LOOP)
(JUMP_*)) ; 6
(PC (PTZ . 0)) ; 7

(DL (PTZ . 2) (DL END NIL (RET))
(JUMP_*)) ; 8
(PC (PTZ . 3)) ; 9

(DL (PTZ . 3) (POSTLUDE)
(MOVE_CSP_CFP)) ;10
(CPOP_CFP) ;11
(CPOP_PC)) ;12

To illustrate the use of these internal addresses, consider the compilation of

(JUMP-IF-TEMP-STK-FULL ERROR)

and suppose that the label ERROR is defined at PC (MAIN . 152). The i-code generated for this
instruction is

(MOVE_X_TSP) ;0
(MOVE_Y_*) ;1
(SYS-ADDR (FULL-TEMP-STK-ADDR . 0)) ;2
(MOVE_Y_<Y{S}>) ;3
(SUB_<Z>_X{S}_Y{S}) ;4
(MOVE_X_*) ;5
(PC (MAIN . 152)) ;6
(JUMP-Z_X) ;7

The code first puts the temporary stack pointer into the x register so we can do some arithmetic on it.
Then, in lines 1-3 above, the code fetches into the y register the address of the first word in the temporary
stack area. This is done in two instructions. First (in lines 1-2), we load into y the system address
(FULL-TEMP-STK-ADDR . 0). In our implementation, the contents of this address is the address of
the first word in the temporary stack area. On line 3 we fetch indirect through the system address in y and

15put the result in y. This loads y with the address of the first location on the temporary stack area.

15In fact, the code for JUMP-IF-TEMP-STK-FULL could be shortened by eliminating the indirection through
FULL-TEMP-STK-ADDR and simply loading (SYS-ADDR (TSTK . 0)) into the y register. We introduced
FULL-TEMP-STK-ADDR primarily to force our proof to deal with such common implementation invariants as ‘‘the contents of this
fixed address is the address of this more fluid boundary.’’

81

On line 4 we subtract the system address in y from the system address in x and set the z condition code
register. Thus, the z register is T iff x and y were equal. On lines 5-6 we move into x the address to
which we wish to jump. On line 7 we jump if z is true.

The examples shown in this section are fairly representative of the code generated by the Piton compiler.
A complete listing of the compiler—which essentially is just an enumeration of the Piton instructions and
the code generators for them—is given in the appendix.

6.5. The Link-Assembler

Traditionally, compilers produce relocatable assembly code, which is then turned into relocatable
machine code by an ‘‘assembler’’, and then into absolute machine code by a ‘‘linker.’’ In addition,
assemblers and linkers must traditionally consider the user’s data declarations and initialization too. We do
not follow this paradigm rigidly but the basic concepts are still present in our ‘‘link-assembler.’’

By the time the link-assembler is invoked the first two phases of LOAD have been carried out: the
resource representation phase has produced symbolic descriptions of the registers and the system data
segment; the compiler has produced the i-code version of the program segment. The user data segment is
symbolically described by the Piton data segment. The job of our ‘‘link-assembler,’’ I->M, is to replace
the symbolic instructions and data objects by concrete bit vectors.

To do so, the link-assembler first builds a collection of ‘‘link tables’’ which indicate where each
program, label, system data area and user data area are located in absolute terms. This is done by the
function I-LINK-TABLES which is defined on page 181. Note that by the time we build the link tables,
the three segments of the FM8502 memory are symbolically described by the i-code program segment, the
Piton data segment, and the system data segment. All three of these symbolic descriptions have the same
form: each is a list of pairs consisting of the name of the program or area and an array listing the contents
of the area. Each element of the array is either an (optionally labelled) i-code instruction or an extended
data object. Each element can be mapped to a single word in FM8502. Thus, the number of words to be
allocated to each area is just the length of the associated array. The absolute location of each name can be
determined by summing the lengths of the areas preceding the definition of the name. The absolute
location of each label can be similarly determined by counting the number of items in each i-code program
preceding the label definition.

Once the link tables have been created, the link-assembler scans each of the three memory segments in
turn. Each i-code instruction is replaced by the corresponding FM8502 machine code instruction, by a
function which can be thought of as the basic component of an assembler. Each data object is replaced by
the corresponding bit vector, using the link tables as appropriate.

We present the link-assembler in three subsections. First, we describe how individual i-code instructions
are assembled into FM8502 machine code instructions. Then we discuss how we generate the link tables.
Finally, we describe how we transform each of the data objects.

6.5.1. The Instruction Assembler

The instruction assembler converts a single i-code instruction into an FM8502 machine code instruction,
i.e., a 32-bit wide bit vector. The conversion is done in two steps and explicitly involves an assembly
language for FM8502. In essence, each i-code instruction is taken as a ‘‘pseudo-instruction’’ that is

82

mapped first into an assembly instruction and then into a bit vector. The formalization of this concept is
embodied in the function LINK-INSTR-WORD which is defined on page 195.

6.5.1.1. Expanding I-code into Assembly Code

Each i-code instruction is of the form (opcode), where opcode is a literal atom in the logic and
completely describes the instruction. Our i-code instructions do not have operands, even though their
names e.g., ADD_<TSP>{N}_X{N}, suggest more structure. We explain the design of i-code when we
discuss the proof of the correctness of our implementation.

The following table, which is an association list, is the map from i-code opcodes to assembly instruc-
tions. This table lists all i-code opcodes and gives a good idea of the structure of our assembly code for
FM8502.

Map from I-code to Assembly Code

i-code assembly code

((ADD_<C>_X_X{N} (ADD (C) X X))
(ADD_<TSP>_<TSP>{V} (ADD () (TSP) (TSP)))
(ADD_<TSP>_<TSP>{N} (ADD () (TSP) (TSP)))
(ADD_<TSP>{A}_X{N} (ADD () (TSP) X))
(ADD_TSP_*{N} (ADD () TSP (PC +1)))
(ADD_TSP_X{N} (ADD () TSP X))
(ADD_<TSP>{I}_X{I} (ADD () (TSP) X))
(ADD_<TSP>{N}_X{N} (ADD () (TSP) X))
(ADD_PC_X{N} (ADD () PC X))
(ADD_X_X{N} (ADD () X X))
(ADD_X{N}_CSP (ADD () X CSP))
(ADDC_<C>_X{N}_Y{N} (ADDC (C) X Y))
(ADDC_<V>_X{I}_Y{I} (ADDC (V) X Y))
(AND_<TSP>{V}_X{V} (AND () (TSP) X))
(AND_<TSP>{B}_X{B} (AND () (TSP) X))
(ASR_<C>_<TSP>_<TSP>{B} (ASR (C) (TSP) (TSP)))
(CPOP_CFP (MOVE () CFP (CSP +1)))
(CPOP_PC (MOVE () PC (CSP +1)))
(CPUSH_* (MOVE () (-1 CSP) (PC +1)))
(CPUSH_<TSP>+ (MOVE () (-1 CSP) (TSP +1)))
(CPUSH_CFP (MOVE () (-1 CSP) CFP))
(DECR_<TSP>_<TSP>{I} (DECR () (TSP) (TSP)))
(DECR_<TSP>_<TSP>{N} (DECR () (TSP) (TSP)))
(INCR_<TSP>_<TSP>{I} (INCR () (TSP) (TSP)))
(INCR_<TSP>_<TSP>{N} (INCR () (TSP) (TSP)))
(INCR_Y_Y{N} (INCR () Y Y))
(INT-TO-NAT (MOVE () X X))
(JUMP-N_X (MOVE-N () PC X))
(JUMP-NN_X (MOVE-NN () PC X))
(JUMP-NZ_X (MOVE-NZ () PC X))
(JUMP-Z_X (MOVE-Z () PC X))
(JUMP_* (MOVE () PC (PC)))
(JUMP_X{SUBR} (MOVE () PC X))
(LSR_<C>_X_X{N} (LSR (C) X X))
(LSR_<TSP>_<TSP>{V} (LSR () (TSP) (TSP)))
(MOVE-C_<TSP>_* (MOVE-C () (TSP) (PC +1)))
(MOVE-V_<TSP>_* (MOVE-V () (TSP) (PC +1)))

83

(MOVE-Z_<TSP>_* (MOVE-Z () (TSP) (PC +1)))
(MOVE-N_X_* (MOVE-N () X (PC +1)))
(MOVE_<TSP>_* (MOVE () (TSP) (PC +1)))
(MOVE_<X{A}>_<TSP> (MOVE () (X) (TSP)))
(MOVE_<X{S}>_<TSP> (MOVE () (X) (TSP)))
(MOVE_CFP_CSP (MOVE () CFP CSP))
(MOVE_CSP_CFP (MOVE () CSP CFP))
(MOVE_X_* (MOVE () X (PC +1)))
(MOVE_X_<X{S}> (MOVE () X (X)))
(MOVE_X_TSP (MOVE () X TSP))
(MOVE_X_X (MOVE () X X))
(MOVE_Y_* (MOVE () Y (PC +1)))
(MOVE_Y_<Y{S}> (MOVE () Y (Y)))
(MOVE_Y_TSP (MOVE () Y TSP))
(NEG_<TSP>_<TSP>{I} (NEG () (TSP) (TSP)))
(NOT_<TSP>_<TSP>{V} (NOT () (TSP) (TSP)))
(OR_<TSP>{V}_X{V} (OR () (TSP) X))
(OR_<TSP>{B}_X{B} (OR () (TSP) X))
(SUB_<C>_<TSP>{A}_X{A} (SUB (C) (TSP) X))
(SUB_<C>_<TSP>{N}_X{N} (SUB (C) (TSP) X))
(SUB_<NV>_<TSP>{I}_X{I} (SUB (N V) (TSP) X))
(SUB_<TSP>{A}_X{N} (SUB () (TSP) X))
(SUB_X{S}_Y{N} (SUB () X Y))
(SUB_<TSP>{I}_X{I} (SUB () (TSP) X))
(SUB_<TSP>{N}_X{N} (SUB () (TSP) X))
(SUB_<TSP>{S}_X{S} (SUB () (TSP) X))
(SUB_<Z>_X{S}_Y{S} (SUB (Z) X Y))
(SUBB_<C>_X{N}_Y{N} (SUBB (C) X Y))
(SUBB_<V>_X{I}_Y{I} (SUBB (V) X Y))
(TPOP_<C>_X (MOVE (C) X (TSP +1)))
(TPOP_<X{A}> (MOVE () (X) (TSP +1)))
(TPOP_<X{S}> (MOVE () (X) (TSP +1)))
(TPOP_PC (MOVE () PC (TSP +1)))
(TPOP_X (MOVE () X (TSP +1)))
(TPOP_Y (MOVE () Y (TSP +1)))
(TPOP{V}_<Z>_Y (MOVE (Z) Y (TSP +1)))
(TPOP{B}_<Z>_Y (MOVE (Z) Y (TSP +1)))
(TPOP{I}_<ZN>_Y (MOVE (Z N) Y (TSP +1)))
(TPOP{N}_<Z>_Y (MOVE (Z) Y (TSP +1)))
(TPUSH_* (MOVE () (-1 TSP) (PC +1)))
(TPUSH_<X{A}> (MOVE () (-1 TSP) (X)))
(TPUSH_<X{S}> (MOVE () (-1 TSP) (X)))
(TPUSH_CSP (MOVE () (-1 TSP) CSP))
(TPUSH_TSP (MOVE () (-1 TSP) TSP))
(TPUSH_X (MOVE () (-1 TSP) X))
(XOR_<TSP>_<TSP> (XOR () (TSP) (TSP)))
(XOR_<TSP>{V}_X{V} (XOR () (TSP) X))
(XOR_<TSP>{B}_*{B} (XOR () (TSP) (PC +1)))
(XOR_<TSP>{B}_X{B} (XOR () (TSP) X))
(XOR_<Z>_<TSP>_X (XOR (Z) (TSP) X)))

There are a total of 87 i-code opcodes. But some distinct i-code opcodes map to the same assembly
language instruction. For example, both XOR_<TSP>{V}_X{V} and XOR_<TSP>{B}_X{B} map to
(XOR () (TSP) X). As is suggested by the annotations ‘‘{V}’’ and ‘‘{B}’’ in the opcode names, the

84

first instruction deals with bit vectors and the second deals with Booleans. As manifested by the fact that
they both map to a single instruction, no such distinction exists at the concrete level of FM8502. Why then
do we have two different i-code instructions? The answer, for the moment, is that the type annotations
serve the useful mnemonic role of helping us keep straight the types of objects we are manipulating.
However, as we explain when we discuss the correctness proof, the annotations play a much deeper role:
they let us factor the proof into a compiler proof and a link-assembler proof.

6.5.1.2. The Assembly Language

There are only 69 distinct assembly language instructions in the i-code table above. These could have
been converted into the corresponding bit vectors by hand and listed in the table. However, it was less
error-prone to implement a general purpose assembler for FM8502.

The structure of the assembly language should be pretty obvious from the examples above. The form of
an assembly instruction is

(opcode c-codes operand-b operand-a),

where

• opcode determines the opcode of the FM8502 instruction and is any of following literal
atoms INCR, ADDC, ADD, NEG, DECR, SUBB, SUB, ROR, ASR, LSR, XOR, OR, AND, NOT,
MOVE, MOVE-NC, MOVE-C, MOVE-NV, MOVE-V, MOVE-NZ, MOVE-Z, MOVE-NN or
MOVE-N;

• c-codes determines which of the condition code registers are set by the instruction and is a
list containing any subset of {C, V, N, Z}; and

• operand-b and operand-a determine the two operands of the instruction and are each of
one of the following forms: reg, (reg), (-1 reg) or (reg +1) where reg is one of the
following literal atoms: PC, CFP, CSP, TSP, X or Y.

The four different forms of operands describe both a register and an address mode. The address modes
described are, respectively, register direct, register indirect, register indirect with pre-decrement, and
register indirect with post-increment.

To assemble an FM8502 instruction, e.g., 32-bit wide bit vector, from an assembly instruction, the
instruction assembler uses various tables to map the literal atoms above to numbers. For example, the LSR
opcode is mapped to the number 10, which in binary is B10100, the FM8502 opcode/move bits for the
‘‘logical shift right, top bit zero’’ instruction. The condition codes and register names are similarly mapped
to particular bit positions and register numbers. The FM8502 instruction is then assembled by arithmetic
and finally converted to a bit vector. The details are given in the definition of MCI, page 198.

6.5.1.3. An Example

Consider the i-code instruction (TPUSH_X). This instruction is mapped by the i-code table into the
assembly instruction (MOVE () (-1 TSP) X). This in turn is assembled into the natural number
1016420, which when converted to a bit vector in standard 32-bit binary notation is

85

B00000000000011111000001001100100.

Decoding this vector as an FM8502 instruction yields

opcode: 1111
move: 1
i-bit: 0
cvnz: 0000
mode-b: 10
reg-b: 011
mode-a: 00
reg-a: 100

That is, the instruction is an unconditional (cvnz: B0000) move (opcode/move: B11111).
Operand-a, the source of the move, is register 4 (B100) in register-direct mode (B00). Operand-b, the
destination of the move, is register 3 (B011), in register-indirect with pre-decrement mode (B10). The
effect of the instruction is to (a) increment the program counter, register 0, by 1; (b) fetch the contents, x,
of register 4; (c) decrement the contents of register 3 by 1 and store the result in 3; (d) deposit x at the
address contained in register 3. Observe that if register 3 contains a stack pointer and one uses the
conventions that the stack pointer points to the topmost element of the stack and stacks grown downward,
then this instruction pushes x onto the stack pointed to by register 3.

6.5.1.4. Use of the Addressing Modes

As the i-code table shows, the assembler makes extensive use of all four addressing modes. The effects
achieved with the various combinations of modes is sometimes subtle. We explain our use of the modes
here.

Pushes onto the stacks are achieved by using pre-decrement addressing mode on the stack pointer. Thus,
as we saw above, (TPUSH_X)—which pushes the x register onto the temporary stack—is implemented
by (MOVE () (-1 TSP) X).

Pops are achieved by using post-increment addressing mode. Thus, (TPOP_X)—which pops the top of
the temporary stack into the x register—is implemented with (MOVE () X (TSP +1)). The effect of
this instruction is to (a) increment the program counter by 1; (b) fetch indirect through the address in the
TSP register (obtaining the topmost element of the stack) ; (c) deposit the result into the X register; and (d)
increment the TSP register by 1 (popping the stack).

When we move the actuals from the temporary stack to the control stack we can move each with one
instruction: (CPUSH_<TSP>+) which maps to (MOVE () (-1 CSP) (TSP +1)). This instruction
fetches the topmost element of TSP, pushes it onto CSP, and pops TSP.

Perhaps the most confusing addressing mode combination is when we use post-increment mode on the
program counter. Consider the i-code instruction (TPUSH_*). This instruction is supposed to push onto
the temporary stack the next word in the instruction stream. Thus, the i-code sequence

(TPUSH_*)
(NAT 27)
(ADD_TSP_X{N})

will push 27 onto the temporary stack and then execute the (ADD_TSP_X{N}) instruction. How do we
fetch the next word in the instruction stream as data and how do we increment the program counter by 2 so
that we do not also execute that word?

86

(TPUSH_*) is mapped into (MOVE () (-1 TSP) (PC +1)). The effect of this instruction is to
(a) increment the program counter by 1, as usual; (b) fetch indirect through the pc register, which because
of step (a) now points to the word after this instruction; (c) push the result onto the temporary stack; and (d)
increment the pc register by 1, which makes it point to the instruction two words past the one being
executed.

This completes our discussion of how i-code instructions are assembled into FM8502 machine code
instructions. The details can be gleaned by reading the definition of LINK-INSTR-WORD, defined on
page 195.

6.5.2. The Link Tables

We use four link tables. The first, called the program link table, maps each program name to the
absolute location of the beginning of the program. The second table, called the label tables, maps each
each program name to its ‘‘label table.’’ The label table for a program name maps the i-code labels to the
absolute position of the definition of the label in the i-code program. We illustrate this in a moment. The
third table, called the user data link table, maps each global data area name to the absolute location of the
beginning of the associated array. The fourth table, called the system data link table, maps each of the five
system data area names to the absolute location of the beginning of the associated area.

Here is a simple example. Below is a system of two Piton programs, PTZ, discussed above, and a main
program that simply calls PTZ.

((MAIN NIL NIL
(CALL PTZ)
(RET))

(PTZ NIL NIL
(DL LOOP ()

(TEST-NAT-AND-JUMP ZERO END))
(JUMP LOOP)

(DL END ()
(RET))))

The i-code produced by compiling the above system is shown in Figure 6-7. We load these programs in
the low part of memory, starting at address 0. Thus, the program link table produced from the i-code is

((MAIN . 0)
(PTZ . 11)).

That is, the MAIN program is loaded starting at absolute address 0 and the PTZ program is loaded
immediately after the last instruction in MAIN and hence starts at absolute location 11.

The label tables table for the i-code in Figure 6-7 is

((MAIN ((MAIN PRELUDE) . 0)
((MAIN . 0) . 2)
((MAIN . 1) . 6)
((MAIN . 2) . 8))

(PTZ ((PTZ PRELUDE) . 11)
((PTZ . 0) . 13)
((PTZ . 1) . 17)
((PTZ . 2) . 19)
((PTZ . 3) . 21))).

87

Figure 6-7: Compiler Output for MAIN and PTZ

i-code Piton
label instruction instruction pc

((MAIN
(DL (MAIN PRELUDE) (PRELUDE)

(CPUSH_CFP)) ; 0
(MOVE_CFP_CSP) ; 1

(DL (MAIN . 0) (CALL PTZ)
(CPUSH_*)) ; 2
(PC (MAIN . 1)) ; 3
(JUMP_*) ; 4
(PC (PTZ PRELUDE)) ; 5

(DL (MAIN . 1) (RET)
(JUMP_*)) ; 6
(PC (MAIN . 2)) ; 7

(DL (MAIN . 2) (POSTLUDE)
(MOVE_CSP_CFP)) ; 8
(CPOP_CFP) ; 9
(CPOP_PC)) ;10

(PTZ
(DL (PTZ PRELUDE) (PRELUDE)

(CPUSH_CFP)) ; 0
(MOVE_CFP_CSP) ; 1

(DL (PTZ . 0) (DL LOOP NIL
(TEST-NAT-AND-JUMP ZERO

END))
(TPOP{N}_<Z>_Y)) ; 2
(MOVE_X_*) ; 3
(PC (PTZ . 2)) ; 4
(JUMP-Z_X) ; 5

(DL (PTZ . 1) (JUMP LOOP)
(JUMP_*)) ; 6
(PC (PTZ . 0)) ; 7

(DL (PTZ . 2) (DL END NIL (RET))
(JUMP_*)) ; 8
(PC (PTZ . 3)) ; 9

(DL (PTZ . 3) (POSTLUDE)
(MOVE_CSP_CFP)) ;10
(CPOP_CFP) ;11
(CPOP_PC))) ;12

For example, the i-code instruction to which the label (MAIN . 1) is attached will be loaded at absolute
position 6. That is, the absolute location defined by (MAIN . 1) is 6.

Our convention is to load the data segment immediately after the program segment. Thus, if the data
segment were

((A (NAT 0)
(NAT 1)
(NAT 2)
(NAT 3)
(NAT 4))

(B (INT -2)

88

(INT -1)
(INT 0))

(A-LEN (NAT 5))
(B-LEN (NAT 3))),

then the user data link table would be

((A . 24)
(B . 29)
(A-LEN . 32)
(B-LEN . 33)).

thFor example, the 0 word in the array B is at absolute location 29.

Finally, it is our convention to allocate the system data segment immediately after the user data segment.
If the maximum control stack size were 10 and the maximum temporary stack size were 8, then the system
data link table would be

((CSTK . 34)
(TSTK . 45)
(FULL-CTRL-STK-ADDR . 54)
(FULL-TEMP-STK-ADDR . 55)
(EMPTY-TEMP-STK-ADDR . 56)).

The computation of the four link tables is straightforward. See I-LINK-TABLES, page 181.

6.5.3. Linking Data Objects

Data objects are linked by the function LINK-DATA-WORD which is defined on page 195. Eight types
of data objects are encountered by the linker: the seven Piton data types, NAT, INT, BITV, BOOL, ADDR,
PC and SUBR, and the implementation-internal type SYS-ADDR. The linker uses the tag word to deter-
mine the type of the object and then maps it into a bit vector accordingly. We discuss each in turn.

6.5.3.1. Naturals

Natural numbers are represented in the standard binary notation. Thus, (NAT 3) is mapped to the
32-bit wide vector B00000000000000000000000000000011

6.5.3.2. Integers

We use the standard twos-complement representation of integers. Thus, (INT 3) maps to the same
thing as (NAT 3), above, and (INT -3) maps to B11111111111111111111111111111101.

6.5.3.3. Bit Vectors

Piton’s bit vector objects are mapped directly to FM8502 bit vectors. Thus,

(BITV (0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1))

is mapped to B00001111000011110000000011111111.

89

6.5.3.4. Booleans

(BOOL F) is mapped to B00000000000000000000000000000000 and (BOOL T) is mapped
to B00000000000000000000000000000001.

6.5.3.5. Data Addresses

An object of the form (ADDR (name . n)) is mapped first to a natural number and then to the bit
vector representing that natural in binary notation. To map such a data address to a natural number we look
in the data link table to get the base address of name and add n to it. For example, in the link tables shown
above, B is assigned location 29, so (ADDR (B . 2)) maps to the bit vector representing 31,
B00000000000000000000000000011111.

6.5.3.6. Program Addresses

An object of the form (PC (name . x)) is mapped first to a natural number and then to the cor-
responding bit vector. The natural number is obtained by finding the label table for name in the label
tables and then looking up (name . x) in that table. For example, given the example link tables shown
above, (PC (PTZ PRELUDE)) maps to the natural number 11 and thence to
B00000000000000000000000000001011.

6.5.3.7. Subroutines

An object of the form (SUBR name) is mapped first to the natural number associated with name in the
program link table and then to the corresponding bit vector.

6.5.3.8. System Data Addresses

An object of the form (SYS-ADDR (name . n)) is mapped analogously to data addresses except
that the base address of name is obtained from the system link table.

90

91

7. The Formal Definition of Piton

This chapter contains all of the formulas involved in the formal definition of Piton. The chapter is
divided into two sections. The second section is simply a listing, in alphabetical order, of all of the
definitions involved. These definitions are indexed and exhaustively cross-indexed in the Index of this
report. The first section here is a guide to the second section. It briefly mentions each of the important
‘‘entry points’’ into the list of definitions.

7.1. A Guide to the Formal Definition of Piton

7.1.1. Proper P-States

P-states are formally represented by the P-STATE shell

Shell Definition.
Add the shell P-STATE of 9 arguments, with
recognizer function symbol P-STATEP, and
accessors P-PC, P-CTRL-STK, P-TEMP-STK, P-PROG-SEGMENT,
P-DATA-SEGMENT, P-MAX-CTRL-STK-SIZE, P-MAX-TEMP-STK-SIZE,
P-WORD-SIZE and P-PSW.

The proper p-states are described by PROPER-P-STATEP,

Definition.
(PROPER-P-STATEP P)

=
(AND (P-STATEP P) ; (1)

(P-OBJECTP-TYPE ’PC (P-PC P) P) ; (2)
(LISTP (P-CTRL-STK P)) ; (3)
(PROPER-P-FRAMEP (TOP (P-CTRL-STK P)) ; (4)

(AREA-NAME (P-PC P))
P)

(PROPER-P-CTRL-STKP (POP (P-CTRL-STK P)) ; (5)
(AREA-NAME (RET-PC (TOP (P-CTRL-STK P))))
P)

(NOT (LESSP (P-MAX-CTRL-STK-SIZE P) ; (6)
(P-CTRL-STK-SIZE (P-CTRL-STK P))))

(PROPER-P-TEMP-STKP (P-TEMP-STK P) P) ; (7)
(NOT (LESSP (P-MAX-TEMP-STK-SIZE P) ; (8)

(LENGTH (P-TEMP-STK P))))
(PROPER-P-PROG-SEGMENTP (P-PROG-SEGMENT P) ; (9)

P)
(PROPER-P-DATA-SEGMENTP (P-DATA-SEGMENT P) ;(10)

P)
(NUMBERP (P-MAX-CTRL-STK-SIZE P)) ;(11)
(NUMBERP (P-MAX-TEMP-STK-SIZE P)) ;(12)
(NUMBERP (P-WORD-SIZE P)) ;(13)
(LESSP (P-MAX-CTRL-STK-SIZE P) ;(14)

(EXP 2 (P-WORD-SIZE P)))
(LESSP (P-MAX-TEMP-STK-SIZE P) ;(15)

(EXP 2 (P-WORD-SIZE P)))
(LESSP 0 (P-WORD-SIZE P))). ;(16)

92

The sixteen conjuncts of this definition may be paraphrased as follows. (1) P is a p-state (see P-STATE,
page 131); (2) the program counter of P is a legal Piton object of type PC (see P-OBJECTP-TYPE, page
122); (3) the control stack is non-empty; (4) the topmost frame of the control stack is a proper frame for the
current program counter and state (see PROPER-P-FRAMEP, page 142); (5) the rest of the control stack is
similarly proper (see PROPER-P-CTRL-STKP, page 141); (6) the ‘‘size’’ of the control stack does not
exceed the specified limit (see P-CTRL-STK-SIZE, page 108); (7) the temporary stack is proper in the
current state, which means it consists entirely of legal Piton objects (see PROPER-P-TEMP-STKP, page
150); (8) the length of the temporary stack does not exceed the specified limit; (9) the program segment is
well-formed (see PROPER-P-PROG-SEGMENTP, page 147 and below); (10) the data segment is well-
formed (see PROPER-P-DATA-SEGMENTP, page 142); (11-13) the maximum control stack size, the
maximum temporary stack size, and the word size, w, are all natural numbers; (14) the maximum control

w wstack size is less than 2 ; (15) the maximum temporary stack size is less than 2 ; and (16) the word-size is
greater than 0.

The reader is encouraged to pursue each of the references above. We will briefly elaborate on the
definition of PROPER-P-PROG-SEGMENTP.

Definition.
(PROPER-P-PROG-SEGMENTP SEGMENT P)

=
(IF (NLISTP SEGMENT)

(EQUAL SEGMENT NIL)
(AND (PROPER-P-PROGRAMP (CAR SEGMENT) P)

(PROPER-P-PROG-SEGMENTP (CDR SEGMENT)
P)))

This function is recursive. It requires that the (program) SEGMENT on which it was called be a list ending
in NIL, every element of which is a PROPER-P-PROGRAMP with respect to the current p-state.

Looking up PROPER-P-PROGRAMP in the index, we find that it is defined on page 147, as follows:

Definition.
(PROPER-P-PROGRAMP PROG P)

=
(AND (LITATOM (NAME PROG))

(ALL-LITATOMS (FORMAL-VARS PROG))
(PROPER-P-TEMP-VAR-DCLSP (TEMP-VAR-DCLS PROG) P)
(PROPER-P-PROGRAM-BODYP (PROGRAM-BODY PROG)

(NAME PROG)
P)).

This function checks that the name of the program is a literal atom, the formal variable field contains a list
of literal atoms, the temporary variable declaration field contains a proper list of declarations (in particular,
each specifies a literal atom as a variable and a legal Piton object as its initial value), and the body of the
program is proper.

On page 147 we see

Definition.
(PROPER-P-PROGRAM-BODYP LST NAME P)

=
(AND (LISTP LST)

(PROPER-LABELED-P-INSTRUCTIONSP LST NAME P)
(FALL-OFF-PROOFP LST)).

93

That is, a proper Piton program body is a non-empty list of properly labeled Piton instructions that is ‘‘fall
off proof.’’ The latter term means that the last instruction in the list is an unconditional transfer of
control—i.e., it is not possible to ‘‘fall off the end’’ of the list by executing the instructions.

We continue our dive by looking at PROPER-LABELED-P-INSTRUCTIONSP

Definition.
(PROPER-LABELED-P-INSTRUCTIONSP LST NAME P)

=
(IF (NLISTP LST)

(EQUAL LST NIL)
(AND (LEGAL-LABELP (CAR LST))

(PROPER-P-INSTRUCTIONP (UNLABEL (CAR LST)) NAME P)
(PROPER-LABELED-P-INSTRUCTIONSP (CDR LST) NAME P))).

This recursive function checks that each element of the body is legally labelled (if at all) and that the result
of unlabelling the element is a PROPER-P-INSTRUCTIONP as defined on page 143

Definition.
(PROPER-P-INSTRUCTIONP INS NAME P)

=
(AND
(PROPERP INS)
(CASE
(CAR INS)
(CALL (PROPER-P-CALL-INSTRUCTIONP INS NAME P))
(RET (PROPER-P-RET-INSTRUCTIONP INS NAME P))
(LOCN (PROPER-P-LOCN-INSTRUCTIONP INS NAME P))
(PUSH-CONSTANT (PROPER-P-PUSH-CONSTANT-INSTRUCTIONP INS NAME P))
...
(OR-BOOL (PROPER-P-OR-BOOL-INSTRUCTIONP INS NAME P))
(AND-BOOL (PROPER-P-AND-BOOL-INSTRUCTIONP INS NAME P))
(NOT-BOOL (PROPER-P-NOT-BOOL-INSTRUCTIONP INS NAME P))
(OTHERWISE F))).

The CASE construct is an abbreviation for an IF nest. (CASE x (key val) ...) abbreviates (IF
(EQUAL x ’key) val (CASE x ...)) and (CASE x (OTHERWISE val)) abbreviates val.
Thus, PROPER-P-INSTRUCTIONP splits on the opcode of the Piton instruction and for each opcode calls
the appropriate predicate to check that the instruction is well-formed.

Consider, for example, the PUSH-CONSTANT instruction. The predicate that checks whether it is
well-formed is named PROPER-P-PUSH-CONSTANT-INSTRUCTIONP

Definition.
(PROPER-P-PUSH-CONSTANT-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(OR (P-OBJECTP (CADR INS) P)
(EQUAL (CADR INS) ’PC)
(FIND-LABELP (CADR INS)

(PROGRAM-BODY (DEFINITION NAME
(P-PROG-SEGMENT P)))))).

This predicate checks that the instruction is of length 2, i.e., has the form (PUSH-CONSTANT x), and
that x is either a legal Piton object in the state containing the instruction, or is the atom ’PC, or is a label in
the program containing the instruction.

94

In general, to determine the syntactic restrictions on an instruction named opcode, look at the definition
of the function named PROPER-P-opcode-INSTRUCTIONP.

This completes our brief tour through the definition of proper p-states. The serious student of Piton
should use the index to trace out the entire tree of definitions.

7.1.2. The Piton Interpreter

The Piton interpreter is the function named P.

Definition.
(P P N)

=
(IF (ZEROP N)

P
(P (P-STEP P) (SUB1 N)))

This function steps the proper p-state P a specified number of times, N.

The single-stepper for Piton is

Definition.
(P-STEP P)

=
(IF (EQUAL (P-PSW P) ’RUN)

(P-STEP1 (P-CURRENT-INSTRUCTION P) P)
P).

Note that P-STEP is a no-op if the psw is not ’RUN. If the psw is ’RUN we use the function P-STEP1 on
the current instruction and the current p-state.

Definition.
(P-STEP1 INS P)

=
(IF (P-INS-OKP INS P)

(P-INS-STEP INS P)
(P-HALT P (X-Y-ERROR-MSG ’P (CAR INS))))

P-STEP1 first checks the precondition of the current instruction, using P-INS-OKP. If the precondition
is satisfied, P-INS-STEP is used to compute the next state. Otherwise, the psw of the current state is set
to an error message.

The two functions, P-INS-OKP and P-INS-STEP are defined as CASE splits on the opcode of the
current instruction. For each opcode there is a function that checks the precondition and another that
computes the step. To determine the precondition of an the instruction opcode look up the function
P-opcode-OKP. To determine the step function for that instruction, see P-opcode-STEP.

Consider the PUSH-CONSTANT instruction again. The precondition for that instruction is encoded in

Definition.
(P-PUSH-CONSTANT-OKP INS P)

=
(LESSP (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P)).

This function merely checks that there is room on the temporary stack to do one more push. The syntactic
constraints on proper p-states assures us that the object to be pushed is a legal Piton object (given our

95

treatment of the special token PC and of labels). The syntactic constraints also assure us that it is legal to
increment the program counter by one (it is impossible to fall off the end of a proper Piton program).

The step function for PUSH-CONSTANT is

Definition.
(P-PUSH-CONSTANT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (UNABBREVIATE-CONSTANT (CADR INS) P)

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN).

Note that the step function increments the program counter by one, pushes one thing onto the temporary
stack (obtained by ‘‘unabbreviating’’ the operand of the instruction, and does not alter any other com-
ponent of the current state.

The precondition and effects of all other Piton instructions are defined similarly. The formal definitions
below (accessed via the Index or via the P-opcode-OKP/P-opcode-STEP naming convention) are
offered as a precise reference manual for Piton.

Readers uninterested in pursuing the formal definition at this time should skip to page 155.

7.2. Alphabetical Listing of the Piton Definition

Definition.
(ADD-ADDR ADDR N)

=
(TAG (TYPE ADDR)

(ADD-ADP (UNTAG ADDR) N))

Definition.
(ADD-ADP ADP N)

=
(CONS (ADP-NAME ADP)

(PLUS (ADP-OFFSET ADP) N))

Definition.
(ADD1-ADDR ADDR)

=
(ADD-ADDR ADDR 1)

Definition.
(ADD1-P-PC P)

=
(ADD1-ADDR (P-PC P))

Definition.
(ADP-NAME ADP)

=
(CAR ADP)

96

Definition.
(ADP-OFFSET ADP)

=
(CDR ADP)

Definition.
(ADPP X SEGMENT)

=
(AND (LISTP X)

(NUMBERP (ADP-OFFSET X))
(DEFINEDP (ADP-NAME X) SEGMENT)
(LESSP (ADP-OFFSET X)

(LENGTH (VALUE (ADP-NAME X) SEGMENT))))

Definition.
(ALL-BUT-LAST A)

=
(COND ((NLISTP A) NIL)

((NLISTP (CDR A)) NIL)
(T (CONS (CAR A)

(ALL-BUT-LAST (CDR A)))))

Definition.
(ALL-FIND-LABELP LAB-LST LST)

=
(IF (NLISTP LAB-LST)

T
(AND (FIND-LABELP (CAR LAB-LST) LST)

(ALL-FIND-LABELP (CDR LAB-LST) LST)))

Definition.
(ALL-LITATOMS LST)

=
(IF (NLISTP LST)

(EQUAL LST NIL)
(AND (LITATOM (CAR LST))

(ALL-LITATOMS (CDR LST))))

Definition.
(ALL-P-OBJECTPS LST P)

=
(IF (NLISTP LST)

(EQUAL LST NIL)
(AND (P-OBJECTP (CAR LST) P)

(ALL-P-OBJECTPS (CDR LST) P)))

Definition.
(ALL-ZERO-BITVP A)

=
(IF (LISTP A)

(AND (EQUAL (CAR A) 0)
(ALL-ZERO-BITVP (CDR A)))

T)

Definition.
(AND-BIT BIT1 BIT2)

=
(COND ((EQUAL BIT1 0) 0)

((EQUAL BIT2 0) 0)
(T 1))

97

Definition.
(AND-BITV A B)

=
(IF (NLISTP A)

NIL
(CONS (AND-BIT (CAR A) (CAR B))

(AND-BITV (CDR A) (CDR B))))

Definition.
(AND-BOOL X Y)

=
(IF (EQUAL X ’F) ’F Y)

Definition.
(AREA-NAME X)

=
(ADP-NAME (UNTAG X))

Definition.
(BINDINGS FRAME)

=
(CAR FRAME)

Definition.
(BIT-VECTORP X N)

=
(IF (NLISTP X)

(AND (EQUAL X NIL) (ZEROP N))
(AND (NOT (ZEROP N))

(BITP (CAR X))
(BIT-VECTORP (CDR X) (SUB1 N))))

Definition.
(BITP X)

=
(OR (EQUAL X 0) (EQUAL X 1))

Definition.
(BOOL X)

=
(TAG ’BOOL (IF X ’T ’F))

Definition.
(BOOL-TO-NAT FLG)

=
(IF (EQUAL FLG ’F) 0 1)

Definition.
(BOOLEANP X)

=
(OR (EQUAL X ’T) (EQUAL X ’F))

Definition.
(DEFINEDP NAME ALIST)

=
(COND ((NLISTP ALIST) F)

((EQUAL NAME (CAAR ALIST)) T)
(T (DEFINEDP NAME (CDR ALIST))))

98

Definition.
(DEFINITION NAME ALIST)

=
(ASSOC NAME ALIST)

Definition.
(DEPOSIT VAL ADDR SEGMENT)

=
(DEPOSIT-ADP VAL (UNTAG ADDR) SEGMENT)

Definition.
(DEPOSIT-ADP VAL ADP SEGMENT)

=
(PUT-VALUE (PUT VAL

(ADP-OFFSET ADP)
(VALUE (ADP-NAME ADP) SEGMENT))

(ADP-NAME ADP)
SEGMENT)

Definition.
(EXP I J)

=
(IF (ZEROP J)

1
(TIMES I (EXP I (SUB1 J))))

Definition.
(FALL-OFF-PROOFP LST)

=
(MEMBER (CAR (UNLABEL (GET (SUB1 (LENGTH LST)) LST)))

’(RET JUMP JUMP-CASE POPJ))

Definition.
(FETCH ADDR SEGMENT)

=
(FETCH-ADP (UNTAG ADDR) SEGMENT)

Definition.
(FETCH-ADP ADP SEGMENT)

=
(GET (ADP-OFFSET ADP)

(VALUE (ADP-NAME ADP) SEGMENT))

Definition.
(FIND-LABEL X LST)

=
(COND ((NLISTP LST) 0)

((AND (LABELLEDP (CAR LST))
(EQUAL X (CADAR LST)))

0)
(T (ADD1 (FIND-LABEL X (CDR LST)))))

Definition.
(FIND-LABELP X LST)

=
(COND ((NLISTP LST) F)

((AND (LABELLEDP (CAR LST))
(EQUAL X (CADAR LST)))

T)
(T (FIND-LABELP X (CDR LST))))

99

Definition.
(FIRST-N N X)

=
(IF (ZEROP N)

NIL
(CONS (CAR X)

(FIRST-N (SUB1 N) (CDR X))))

Definition.
(FIX-SMALL-INTEGER I WORD-SIZE)

=
(COND ((SMALL-INTEGERP I WORD-SIZE) I)

((NEGATIVEP I)
(IPLUS I (EXP 2 WORD-SIZE)))
(T (IPLUS I (MINUS (EXP 2 WORD-SIZE)))))

Definition.
(FIX-SMALL-NATURAL N WORD-SIZE)

=
(REMAINDER N (EXP 2 WORD-SIZE))

Definition.
(FORMAL-VARS D)

=
(CADR D)

Definition.
(GET N LST)

=
(IF (ZEROP N)

(CAR LST)
(GET (SUB1 N) (CDR LST)))

Definition.
(IDIFFERENCE I J)

=
(IPLUS I (INEGATE J))

Definition.
(ILESSP I J)

=
(COND ((NEGATIVEP I)

(IF (NEGATIVEP J)
(LESSP (NEGATIVE-GUTS J)

(NEGATIVE-GUTS I))
T))

((NEGATIVEP J) F)
(T (LESSP I J)))

Definition.
(INEGATE I)

=
(COND ((NEGATIVEP I) (NEGATIVE-GUTS I))

((ZEROP I) 0)
(T (MINUS I)))

100

Definition.
(INTEGERP I)

=
(OR (NUMBERP I)

(AND (NEGATIVEP I)
(NOT (EQUAL (NEGATIVE-GUTS I) 0))))

Definition.
(IPLUS I J)

=
(COND ((NEGATIVEP I)

(COND ((NEGATIVEP J)
(MINUS (PLUS (NEGATIVE-GUTS I)

(NEGATIVE-GUTS J))))
((LESSP J (NEGATIVE-GUTS I))
(MINUS (DIFFERENCE (NEGATIVE-GUTS I) J)))
(T (DIFFERENCE J (NEGATIVE-GUTS I)))))

((NEGATIVEP J)
(IF (LESSP I (NEGATIVE-GUTS J))

(MINUS (DIFFERENCE (NEGATIVE-GUTS J) I))
(DIFFERENCE I (NEGATIVE-GUTS J))))

(T (PLUS I J)))

Definition.
(LABELLEDP X)

=
(EQUAL (CAR X) ’DL)

Definition.
(LEGAL-LABELP INS)

=
(IMPLIES (LABELLEDP INS)

(LITATOM (CADR INS)))

Definition.
(LENGTH X)

=
(IF (NLISTP X)

0
(ADD1 (LENGTH (CDR X))))

Definition.
(LOCAL-VAR-VALUE VAR CTRL-STK)

=
(VALUE VAR (BINDINGS (TOP CTRL-STK)))

Definition.
(LOCAL-VARS D)

=
(APPEND (FORMAL-VARS D)

(STRIP-CARS (TEMP-VAR-DCLS D)))

Definition.
(LSH-BITV A)

=
(APPEND (CDR A) ’(0))

101

Definition.
(MAKE-P-CALL-FRAME FORMAL-VARS TEMP-STK TEMP-VAR-DCLS RET-PC)

=
(P-FRAME (APPEND (PAIR-FORMAL-VARS-WITH-ACTUALS FORMAL-VARS

TEMP-STK)
(PAIR-TEMPS-WITH-INITIAL-VALUES TEMP-VAR-DCLS))

RET-PC)

Definition.
(NAME D)

=
(CAR D)

Definition.
(NOT-BIT BIT)

=
(IF (EQUAL BIT 0) 1 0)

Definition.
(NOT-BITV A)

=
(IF (NLISTP A)

NIL
(CONS (NOT-BIT (CAR A))

(NOT-BITV (CDR A))))

Definition.
(NOT-BOOL X)

=
(IF (EQUAL X ’F) ’T ’F)

Definition.
(OFFSET X)

=
(ADP-OFFSET (UNTAG X))

Definition.
(OR-BIT BIT1 BIT2)

=
(IF (EQUAL BIT1 0)

(IF (EQUAL BIT2 0) 0 1)
1)

Definition.
(OR-BITV A B)

=
(IF (NLISTP A)

NIL
(CONS (OR-BIT (CAR A) (CAR B))

(OR-BITV (CDR A) (CDR B))))

Definition.
(OR-BOOL X Y)

=
(IF (EQUAL X ’F) Y ’T)

102

Definition.
(P P N)

=
(IF (ZEROP N)

P
(P (P-STEP P) (SUB1 N)))

Definition.
(P-ADD-ADDR-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’NAT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’ADDR
(TOP1 (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’ADDR
(ADD-ADDR (TOP1 (P-TEMP-STK P))

(UNTAG (TOP (P-TEMP-STK P))))
P))

Definition.
(P-ADD-ADDR-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (ADD-ADDR (TOP1 (P-TEMP-STK P))

(UNTAG (TOP (P-TEMP-STK P))))
(POP (POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-ADD-INT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’INT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’INT
(TOP1 (P-TEMP-STK P))
P)

(SMALL-INTEGERP (IPLUS (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P))))

(P-WORD-SIZE P)))

103

Definition.
(P-ADD-INT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’INT

(IPLUS (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-ADD-INT-WITH-CARRY-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(LISTP (POP (POP (P-TEMP-STK P))))
(P-OBJECTP-TYPE ’INT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’INT
(TOP1 (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BOOL
(TOP2 (P-TEMP-STK P))
P))

Definition.
(P-ADD-INT-WITH-CARRY-STEP INS P)

=
(P-STATE
(ADD1-P-PC P)
(P-CTRL-STK P)
(PUSH
(TAG ’INT

(FIX-SMALL-INTEGER
(IPLUS (BOOL-TO-NAT (UNTAG (TOP2 (P-TEMP-STK P))))

(IPLUS (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(P-WORD-SIZE P)))
(PUSH
(BOOL (NOT (SMALL-INTEGERP

(IPLUS (BOOL-TO-NAT (UNTAG (TOP2 (P-TEMP-STK P))))
(IPLUS (UNTAG (TOP1 (P-TEMP-STK P)))

(UNTAG (TOP (P-TEMP-STK P)))))
(P-WORD-SIZE P))))

(POP (POP (POP (P-TEMP-STK P))))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

104

Definition.
(P-ADD-NAT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’NAT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’NAT
(TOP1 (P-TEMP-STK P))
P)

(SMALL-NATURALP (PLUS (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P))))

(P-WORD-SIZE P)))

Definition.
(P-ADD-NAT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(PLUS (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-ADD-NAT-WITH-CARRY-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(LISTP (POP (POP (P-TEMP-STK P))))
(P-OBJECTP-TYPE ’NAT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’NAT
(TOP1 (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BOOL
(TOP2 (P-TEMP-STK P))
P))

105

Definition.
(P-ADD-NAT-WITH-CARRY-STEP INS P)

=
(P-STATE
(ADD1-P-PC P)
(P-CTRL-STK P)
(PUSH
(TAG ’NAT

(FIX-SMALL-NATURAL
(PLUS (BOOL-TO-NAT (UNTAG (TOP2 (P-TEMP-STK P))))

(UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P))))

(P-WORD-SIZE P)))
(PUSH
(BOOL (NOT (SMALL-NATURALP

(PLUS (BOOL-TO-NAT (UNTAG (TOP2 (P-TEMP-STK P))))
(UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P))))

(P-WORD-SIZE P))))
(POP (POP (POP (P-TEMP-STK P))))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-ADD1-INT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’INT
(TOP (P-TEMP-STK P))
P)

(SMALL-INTEGERP (IPLUS 1 (UNTAG (TOP (P-TEMP-STK P))))
(P-WORD-SIZE P)))

Definition.
(P-ADD1-INT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’INT

(IPLUS 1
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (P-TEMP-STK P)))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

106

Definition.
(P-ADD1-NAT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’NAT
(TOP (P-TEMP-STK P))
P)

(SMALL-NATURALP (ADD1 (UNTAG (TOP (P-TEMP-STK P))))
(P-WORD-SIZE P)))

Definition.
(P-ADD1-NAT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(ADD1 (UNTAG (TOP (P-TEMP-STK P)))))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-AND-BITV-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’BITV

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BITV
(TOP1 (P-TEMP-STK P))
P))

Definition.
(P-AND-BITV-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BITV

(AND-BITV (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

107

Definition.
(P-AND-BOOL-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’BOOL

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BOOL
(TOP1 (P-TEMP-STK P))
P))

Definition.
(P-AND-BOOL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BOOL

(AND-BOOL (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-CALL-OKP INS P)

=
(AND
(NOT
(LESSP
(P-MAX-CTRL-STK-SIZE P)
(P-CTRL-STK-SIZE
(PUSH (MAKE-P-CALL-FRAME (FORMAL-VARS

(DEFINITION (CADR INS)
(P-PROG-SEGMENT P)))

(P-TEMP-STK P)
(TEMP-VAR-DCLS
(DEFINITION (CADR INS)

(P-PROG-SEGMENT P)))
(ADD1-ADDR (P-PC P)))

(P-CTRL-STK P)))))
(NOT (LESSP (LENGTH (P-TEMP-STK P))

(LENGTH (FORMAL-VARS
(DEFINITION (CADR INS)

(P-PROG-SEGMENT P)))))))

108

Definition.
(P-CALL-STEP INS P)

=
(P-STATE
(TAG ’PC (CONS (CADR INS) 0))
(PUSH (MAKE-P-CALL-FRAME (FORMAL-VARS

(DEFINITION (CADR INS)
(P-PROG-SEGMENT P)))

(P-TEMP-STK P)
(TEMP-VAR-DCLS
(DEFINITION (CADR INS)

(P-PROG-SEGMENT P)))
(ADD1-ADDR (P-PC P)))

(P-CTRL-STK P))
(POPN (LENGTH (FORMAL-VARS

(DEFINITION (CADR INS)
(P-PROG-SEGMENT P))))

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-CTRL-STK-SIZE CTRL-STK)

=
(IF (NLISTP CTRL-STK)

0
(PLUS (P-FRAME-SIZE (TOP CTRL-STK))

(P-CTRL-STK-SIZE (CDR CTRL-STK))))

Definition.
(P-CURRENT-INSTRUCTION P)

=
(UNLABEL (GET (OFFSET (P-PC P))

(PROGRAM-BODY (P-CURRENT-PROGRAM P))))

Definition.
(P-CURRENT-PROGRAM P)

=
(DEFINITION (AREA-NAME (P-PC P))

(P-PROG-SEGMENT P))

Definition.
(P-DEPOSIT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’ADDR

(TOP (P-TEMP-STK P))
P))

109

Definition.
(P-DEPOSIT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(POP (POP (P-TEMP-STK P)))
(P-PROG-SEGMENT P)
(DEPOSIT (TOP1 (P-TEMP-STK P))

(TOP (P-TEMP-STK P))
(P-DATA-SEGMENT P))

(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-DEPOSIT-TEMP-STK-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’NAT

(TOP (P-TEMP-STK P))
P)

(LESSP (UNTAG (TOP (P-TEMP-STK P)))
(LENGTH (POP (POP (P-TEMP-STK P))))))

Definition.
(P-DEPOSIT-TEMP-STK-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(RPUT (TOP1 (P-TEMP-STK P))

(UNTAG (TOP (P-TEMP-STK P)))
(POP (POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-DIV2-NAT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’NAT
(TOP (P-TEMP-STK P))
P)

(LESSP (LENGTH (P-TEMP-STK P))
(P-MAX-TEMP-STK-SIZE P)))

110

Definition.
(P-DIV2-NAT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(REMAINDER (UNTAG (TOP (P-TEMP-STK P)))
2))

(PUSH (TAG ’NAT
(QUOTIENT (UNTAG (TOP (P-TEMP-STK P)))

2))
(POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-EQ-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(EQUAL (TYPE (TOP (P-TEMP-STK P)))

(TYPE (TOP1 (P-TEMP-STK P)))))

Definition.
(P-EQ-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (BOOL (EQUAL (UNTAG (TOP1 (P-TEMP-STK P)))

(UNTAG (TOP (P-TEMP-STK P)))))
(POP (POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-FETCH-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’ADDR
(TOP (P-TEMP-STK P))
P))

111

Definition.
(P-FETCH-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (FETCH (TOP (P-TEMP-STK P))

(P-DATA-SEGMENT P))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-FETCH-TEMP-STK-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’NAT
(TOP (P-TEMP-STK P))
P)

(LESSP (UNTAG (TOP (P-TEMP-STK P)))
(LENGTH (P-TEMP-STK P))))

Definition.
(P-FETCH-TEMP-STK-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (RGET (UNTAG (TOP (P-TEMP-STK P)))

(P-TEMP-STK P))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-FRAME BINDINGS RET-PC)

=
(LIST BINDINGS RET-PC)

Definition.
(P-FRAME-SIZE FRAME)

=
(PLUS 2 (LENGTH (BINDINGS FRAME)))

112

Definition.
(P-HALT P PSW)

=
(P-STATE (P-PC P)

(P-CTRL-STK P)
(P-TEMP-STK P)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
PSW)

Definition.
(P-INS-OKP INS P)

=
(CASE (CAR INS)

(CALL (P-CALL-OKP INS P))
(RET (P-RET-OKP INS P))
(LOCN (P-LOCN-OKP INS P))
(PUSH-CONSTANT (P-PUSH-CONSTANT-OKP INS P))
(PUSH-LOCAL (P-PUSH-LOCAL-OKP INS P))
(PUSH-GLOBAL (P-PUSH-GLOBAL-OKP INS P))
(PUSH-CTRL-STK-FREE-SIZE (P-PUSH-CTRL-STK-FREE-SIZE-OKP INS P))
(PUSH-TEMP-STK-FREE-SIZE (P-PUSH-TEMP-STK-FREE-SIZE-OKP INS P))
(PUSH-TEMP-STK-INDEX (P-PUSH-TEMP-STK-INDEX-OKP INS P))
(JUMP-IF-TEMP-STK-FULL (P-JUMP-IF-TEMP-STK-FULL-OKP INS P))
(JUMP-IF-TEMP-STK-EMPTY (P-JUMP-IF-TEMP-STK-EMPTY-OKP INS P))
(POP (P-POP-OKP INS P))
(POP* (P-POP*-OKP INS P))
(POPN (P-POPN-OKP INS P))
(POP-LOCAL (P-POP-LOCAL-OKP INS P))
(POP-GLOBAL (P-POP-GLOBAL-OKP INS P))
(POP-LOCN (P-POP-LOCN-OKP INS P))
(POP-CALL (P-POP-CALL-OKP INS P))
(FETCH-TEMP-STK (P-FETCH-TEMP-STK-OKP INS P))
(DEPOSIT-TEMP-STK (P-DEPOSIT-TEMP-STK-OKP INS P))
(JUMP (P-JUMP-OKP INS P))
(JUMP-CASE (P-JUMP-CASE-OKP INS P))
(PUSHJ (P-PUSHJ-OKP INS P))
(POPJ (P-POPJ-OKP INS P))
(SET-LOCAL (P-SET-LOCAL-OKP INS P))
(SET-GLOBAL (P-SET-GLOBAL-OKP INS P))
(TEST-NAT-AND-JUMP (P-TEST-NAT-AND-JUMP-OKP INS P))
(TEST-INT-AND-JUMP (P-TEST-INT-AND-JUMP-OKP INS P))
(TEST-BOOL-AND-JUMP (P-TEST-BOOL-AND-JUMP-OKP INS P))
(TEST-BITV-AND-JUMP (P-TEST-BITV-AND-JUMP-OKP INS P))
(NO-OP (P-NO-OP-OKP INS P))
(ADD-ADDR (P-ADD-ADDR-OKP INS P))
(SUB-ADDR (P-SUB-ADDR-OKP INS P))
(EQ (P-EQ-OKP INS P))
(LT-ADDR (P-LT-ADDR-OKP INS P))
(FETCH (P-FETCH-OKP INS P))
(DEPOSIT (P-DEPOSIT-OKP INS P))
(ADD-INT (P-ADD-INT-OKP INS P))
(ADD-INT-WITH-CARRY (P-ADD-INT-WITH-CARRY-OKP INS P))
(ADD1-INT (P-ADD1-INT-OKP INS P))
(SUB-INT (P-SUB-INT-OKP INS P))

113

(SUB-INT-WITH-CARRY (P-SUB-INT-WITH-CARRY-OKP INS P))
(SUB1-INT (P-SUB1-INT-OKP INS P))
(NEG-INT (P-NEG-INT-OKP INS P))
(LT-INT (P-LT-INT-OKP INS P))
(INT-TO-NAT (P-INT-TO-NAT-OKP INS P))
(ADD-NAT (P-ADD-NAT-OKP INS P))
(ADD-NAT-WITH-CARRY (P-ADD-NAT-WITH-CARRY-OKP INS P))
(ADD1-NAT (P-ADD1-NAT-OKP INS P))
(SUB-NAT (P-SUB-NAT-OKP INS P))
(SUB-NAT-WITH-CARRY (P-SUB-NAT-WITH-CARRY-OKP INS P))
(SUB1-NAT (P-SUB1-NAT-OKP INS P))
(LT-NAT (P-LT-NAT-OKP INS P))
(MULT2-NAT (P-MULT2-NAT-OKP INS P))
(MULT2-NAT-WITH-CARRY-OUT (P-MULT2-NAT-WITH-CARRY-OUT-OKP INS P))
(DIV2-NAT (P-DIV2-NAT-OKP INS P))
(OR-BITV (P-OR-BITV-OKP INS P))
(AND-BITV (P-AND-BITV-OKP INS P))
(NOT-BITV (P-NOT-BITV-OKP INS P))
(XOR-BITV (P-XOR-BITV-OKP INS P))
(RSH-BITV (P-RSH-BITV-OKP INS P))
(LSH-BITV (P-LSH-BITV-OKP INS P))
(OR-BOOL (P-OR-BOOL-OKP INS P))
(AND-BOOL (P-AND-BOOL-OKP INS P))
(NOT-BOOL (P-NOT-BOOL-OKP INS P))
(OTHERWISE F))

Definition.
(P-INS-STEP INS P)

=
(CASE (CAR INS)

(CALL (P-CALL-STEP INS P))
(RET (P-RET-STEP INS P))
(LOCN (P-LOCN-STEP INS P))
(PUSH-CONSTANT (P-PUSH-CONSTANT-STEP INS P))
(PUSH-LOCAL (P-PUSH-LOCAL-STEP INS P))
(PUSH-GLOBAL (P-PUSH-GLOBAL-STEP INS P))
(PUSH-CTRL-STK-FREE-SIZE (P-PUSH-CTRL-STK-FREE-SIZE-STEP INS P))
(PUSH-TEMP-STK-FREE-SIZE (P-PUSH-TEMP-STK-FREE-SIZE-STEP INS P))
(PUSH-TEMP-STK-INDEX (P-PUSH-TEMP-STK-INDEX-STEP INS P))
(JUMP-IF-TEMP-STK-FULL (P-JUMP-IF-TEMP-STK-FULL-STEP INS P))
(JUMP-IF-TEMP-STK-EMPTY (P-JUMP-IF-TEMP-STK-EMPTY-STEP INS P))
(POP (P-POP-STEP INS P))
(POP* (P-POP*-STEP INS P))
(POPN (P-POPN-STEP INS P))
(POP-LOCAL (P-POP-LOCAL-STEP INS P))
(POP-GLOBAL (P-POP-GLOBAL-STEP INS P))
(POP-LOCN (P-POP-LOCN-STEP INS P))
(POP-CALL (P-POP-CALL-STEP INS P))
(FETCH-TEMP-STK (P-FETCH-TEMP-STK-STEP INS P))
(DEPOSIT-TEMP-STK (P-DEPOSIT-TEMP-STK-STEP INS P))
(JUMP (P-JUMP-STEP INS P))
(JUMP-CASE (P-JUMP-CASE-STEP INS P))
(PUSHJ (P-PUSHJ-STEP INS P))
(POPJ (P-POPJ-STEP INS P))
(SET-LOCAL (P-SET-LOCAL-STEP INS P))
(SET-GLOBAL (P-SET-GLOBAL-STEP INS P))
(TEST-NAT-AND-JUMP (P-TEST-NAT-AND-JUMP-STEP INS P))
(TEST-INT-AND-JUMP (P-TEST-INT-AND-JUMP-STEP INS P))

114

(TEST-BOOL-AND-JUMP (P-TEST-BOOL-AND-JUMP-STEP INS P))
(TEST-BITV-AND-JUMP (P-TEST-BITV-AND-JUMP-STEP INS P))
(NO-OP (P-NO-OP-STEP INS P))
(ADD-ADDR (P-ADD-ADDR-STEP INS P))
(SUB-ADDR (P-SUB-ADDR-STEP INS P))
(EQ (P-EQ-STEP INS P))
(LT-ADDR (P-LT-ADDR-STEP INS P))
(FETCH (P-FETCH-STEP INS P))
(DEPOSIT (P-DEPOSIT-STEP INS P))
(ADD-INT (P-ADD-INT-STEP INS P))
(ADD-INT-WITH-CARRY (P-ADD-INT-WITH-CARRY-STEP INS P))
(ADD1-INT (P-ADD1-INT-STEP INS P))
(SUB-INT (P-SUB-INT-STEP INS P))
(SUB-INT-WITH-CARRY (P-SUB-INT-WITH-CARRY-STEP INS P))
(SUB1-INT (P-SUB1-INT-STEP INS P))
(NEG-INT (P-NEG-INT-STEP INS P))
(LT-INT (P-LT-INT-STEP INS P))
(INT-TO-NAT (P-INT-TO-NAT-STEP INS P))
(ADD-NAT (P-ADD-NAT-STEP INS P))
(ADD-NAT-WITH-CARRY (P-ADD-NAT-WITH-CARRY-STEP INS P))
(ADD1-NAT (P-ADD1-NAT-STEP INS P))
(SUB-NAT (P-SUB-NAT-STEP INS P))
(SUB-NAT-WITH-CARRY (P-SUB-NAT-WITH-CARRY-STEP INS P))
(SUB1-NAT (P-SUB1-NAT-STEP INS P))
(LT-NAT (P-LT-NAT-STEP INS P))
(MULT2-NAT (P-MULT2-NAT-STEP INS P))
(MULT2-NAT-WITH-CARRY-OUT (P-MULT2-NAT-WITH-CARRY-OUT-STEP INS P))
(DIV2-NAT (P-DIV2-NAT-STEP INS P))
(OR-BITV (P-OR-BITV-STEP INS P))
(AND-BITV (P-AND-BITV-STEP INS P))
(NOT-BITV (P-NOT-BITV-STEP INS P))
(XOR-BITV (P-XOR-BITV-STEP INS P))
(RSH-BITV (P-RSH-BITV-STEP INS P))
(LSH-BITV (P-LSH-BITV-STEP INS P))
(OR-BOOL (P-OR-BOOL-STEP INS P))
(AND-BOOL (P-AND-BOOL-STEP INS P))
(NOT-BOOL (P-NOT-BOOL-STEP INS P))
(OTHERWISE (P-HALT P ’RUN)))

Definition.
(P-INT-TO-NAT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’INT
(TOP (P-TEMP-STK P))
P)

(NOT (NEGATIVEP (UNTAG (TOP (P-TEMP-STK P))))))

115

Definition.
(P-INT-TO-NAT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(UNTAG (TOP (P-TEMP-STK P))))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-JUMP-CASE-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’NAT
(TOP (P-TEMP-STK P))
P)

(LESSP (UNTAG (TOP (P-TEMP-STK P)))
(LENGTH (CDR INS))))

Definition.
(P-JUMP-CASE-STEP INS P)

=
(P-STATE (PC (GET (UNTAG (TOP (P-TEMP-STK P)))

(CDR INS))
(P-CURRENT-PROGRAM P))

(P-CTRL-STK P)
(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-JUMP-IF-TEMP-STK-EMPTY-OKP INS P)

=
T

Definition.
(P-JUMP-IF-TEMP-STK-EMPTY-STEP INS P)

=
(P-STATE (IF (ZEROP (LENGTH (P-TEMP-STK P)))

(PC (CADR INS) (P-CURRENT-PROGRAM P))
(ADD1-P-PC P))

(P-CTRL-STK P)
(P-TEMP-STK P)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

116

Definition.
(P-JUMP-IF-TEMP-STK-FULL-OKP INS P)

=
T

Definition.
(P-JUMP-IF-TEMP-STK-FULL-STEP INS P)

=
(P-STATE (IF (EQUAL (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P))
(PC (CADR INS) (P-CURRENT-PROGRAM P))
(ADD1-P-PC P))

(P-CTRL-STK P)
(P-TEMP-STK P)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-JUMP-OKP INS P)

=
T

Definition.
(P-JUMP-STEP INS P)

=
(P-STATE (PC (CADR INS) (P-CURRENT-PROGRAM P))

(P-CTRL-STK P)
(P-TEMP-STK P)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-LOCN-OKP INS P)

=
(AND (P-OBJECTP-TYPE ’NAT

(LOCAL-VAR-VALUE (CADR INS)
(P-CTRL-STK P))

P)
(LESSP (UNTAG (LOCAL-VAR-VALUE (CADR INS)

(P-CTRL-STK P)))
(LENGTH (BINDINGS (TOP (P-CTRL-STK P)))))

(LESSP (LENGTH (P-TEMP-STK P))
(P-MAX-TEMP-STK-SIZE P)))

117

Definition.
(P-LOCN-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (CDR (GET (UNTAG (LOCAL-VAR-VALUE (CADR INS)

(P-CTRL-STK P)))
(BINDINGS (TOP (P-CTRL-STK P)))))

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-LSH-BITV-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’BITV
(TOP (P-TEMP-STK P))
P))

Definition.
(P-LSH-BITV-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BITV

(LSH-BITV (UNTAG (TOP (P-TEMP-STK P)))))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-LT-ADDR-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’ADDR

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’ADDR
(TOP1 (P-TEMP-STK P))
P)

(EQUAL (AREA-NAME (TOP (P-TEMP-STK P)))
(AREA-NAME (TOP1 (P-TEMP-STK P)))))

118

Definition.
(P-LT-ADDR-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (BOOL (LESSP (OFFSET (TOP1 (P-TEMP-STK P)))

(OFFSET (TOP (P-TEMP-STK P)))))
(POP (POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-LT-INT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’INT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’INT
(TOP1 (P-TEMP-STK P))
P))

Definition.
(P-LT-INT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (BOOL (ILESSP (UNTAG (TOP1 (P-TEMP-STK P)))

(UNTAG (TOP (P-TEMP-STK P)))))
(POP (POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-LT-NAT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’NAT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’NAT
(TOP1 (P-TEMP-STK P))
P))

119

Definition.
(P-LT-NAT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (BOOL (LESSP (UNTAG (TOP1 (P-TEMP-STK P)))

(UNTAG (TOP (P-TEMP-STK P)))))
(POP (POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-MULT2-NAT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’NAT
(TOP (P-TEMP-STK P))
P)

(SMALL-NATURALP (TIMES 2 (UNTAG (TOP (P-TEMP-STK P))))
(P-WORD-SIZE P)))

Definition.
(P-MULT2-NAT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(TIMES 2
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (P-TEMP-STK P)))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-MULT2-NAT-WITH-CARRY-OUT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’NAT
(TOP (P-TEMP-STK P))
P)

(LESSP (LENGTH (P-TEMP-STK P))
(P-MAX-TEMP-STK-SIZE P)))

120

Definition.
(P-MULT2-NAT-WITH-CARRY-OUT-STEP INS P)

=
(P-STATE
(ADD1-P-PC P)
(P-CTRL-STK P)
(PUSH
(TAG ’NAT

(FIX-SMALL-NATURAL (TIMES 2 (UNTAG (TOP (P-TEMP-STK P))))
(P-WORD-SIZE P)))

(PUSH
(BOOL (NOT (SMALL-NATURALP (TIMES 2 (UNTAG (TOP (P-TEMP-STK P))))

(P-WORD-SIZE P))))
(POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-NEG-INT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’INT
(TOP (P-TEMP-STK P))
P)

(SMALL-INTEGERP (INEGATE (UNTAG (TOP (P-TEMP-STK P))))
(P-WORD-SIZE P)))

Definition.
(P-NEG-INT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’INT

(INEGATE (UNTAG (TOP (P-TEMP-STK P)))))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-NO-OP-OKP INS P)

=
T

121

Definition.
(P-NO-OP-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(P-TEMP-STK P)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-NOT-BITV-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’BITV
(TOP (P-TEMP-STK P))
P))

Definition.
(P-NOT-BITV-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BITV

(NOT-BITV (UNTAG (TOP (P-TEMP-STK P)))))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-NOT-BOOL-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’BOOL
(TOP (P-TEMP-STK P))
P))

Definition.
(P-NOT-BOOL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BOOL

(NOT-BOOL (UNTAG (TOP (P-TEMP-STK P)))))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

122

Definition.
(P-OBJECTP X P)

=
(AND (LISTP X)

(EQUAL (CDDR X) NIL)
(CASE (TYPE X)

(NAT (SMALL-NATURALP (UNTAG X) (P-WORD-SIZE P)))
(INT (SMALL-INTEGERP (UNTAG X) (P-WORD-SIZE P)))
(BITV (BIT-VECTORP (UNTAG X) (P-WORD-SIZE P)))
(BOOL (BOOLEANP (UNTAG X)))
(ADDR (ADPP (UNTAG X) (P-DATA-SEGMENT P)))
(PC (PCPP (UNTAG X) (P-PROG-SEGMENT P)))
(SUBR (DEFINEDP (UNTAG X) (P-PROG-SEGMENT P)))
(OTHERWISE F)))

Definition.
(P-OBJECTP-TYPE TYPE X P)

=
(AND (EQUAL (TYPE X) TYPE)

(P-OBJECTP X P))

Definition.
(P-OR-BITV-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’BITV

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BITV
(TOP1 (P-TEMP-STK P))
P))

Definition.
(P-OR-BITV-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BITV

(OR-BITV (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

123

Definition.
(P-OR-BOOL-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’BOOL

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BOOL
(TOP1 (P-TEMP-STK P))
P))

Definition.
(P-OR-BOOL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BOOL

(OR-BOOL (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-POP*-OKP INS P)

=
(NOT (LESSP (LENGTH (P-TEMP-STK P))

(CADR INS)))

Definition.
(P-POP*-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(POPN (CADR INS) (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

124

Definition.
(P-POP-CALL-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’SUBR
(TOP (P-TEMP-STK P))
P)

(P-CALL-OKP (LIST ’CALL
(UNTAG (TOP (P-TEMP-STK P))))

(P-STATE (P-PC P)
(P-CTRL-STK P)
(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)))

Definition.
(P-POP-CALL-STEP INS P)

=
(P-CALL-STEP (LIST ’CALL

(UNTAG (TOP (P-TEMP-STK P))))
(P-STATE (P-PC P)

(P-CTRL-STK P)
(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN))

Definition.
(P-POP-GLOBAL-OKP INS P)

=
(LISTP (P-TEMP-STK P))

Definition.
(P-POP-GLOBAL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(DEPOSIT (TOP (P-TEMP-STK P))

(TAG ’ADDR (CONS (CADR INS) 0))
(P-DATA-SEGMENT P))

(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-POP-LOCAL-OKP INS P)

=
(LISTP (P-TEMP-STK P))

125

Definition.
(P-POP-LOCAL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(SET-LOCAL-VAR-VALUE (TOP (P-TEMP-STK P))
(CADR INS)
(P-CTRL-STK P))

(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-POP-LOCN-OKP INS P)

=
(AND (P-OBJECTP-TYPE ’NAT

(LOCAL-VAR-VALUE (CADR INS)
(P-CTRL-STK P))

P)
(LESSP (UNTAG (LOCAL-VAR-VALUE (CADR INS)

(P-CTRL-STK P)))
(LENGTH (BINDINGS (TOP (P-CTRL-STK P)))))

(LISTP (P-TEMP-STK P)))

Definition.
(P-POP-LOCN-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(SET-LOCAL-VAR-INDIRECT (TOP (P-TEMP-STK P))
(UNTAG
(LOCAL-VAR-VALUE (CADR INS)

(P-CTRL-STK P)))
(P-CTRL-STK P))

(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-POP-OKP INS P)

=
(LISTP (P-TEMP-STK P))

126

Definition.
(P-POP-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-POPJ-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’PC
(TOP (P-TEMP-STK P))
P)

(EQUAL (AREA-NAME (TOP (P-TEMP-STK P)))
(AREA-NAME (P-PC P))))

Definition.
(P-POPJ-STEP INS P)

=
(P-STATE (TOP (P-TEMP-STK P))

(P-CTRL-STK P)
(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-POPN-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’NAT
(TOP (P-TEMP-STK P))
P)

(NOT (LESSP (LENGTH (P-TEMP-STK P))
(ADD1 (UNTAG (TOP (P-TEMP-STK P)))))))

Definition.
(P-POPN-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(POPN (UNTAG (TOP (P-TEMP-STK P)))

(POP (P-TEMP-STK P)))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

127

Definition.
(P-PUSH-CONSTANT-OKP INS P)

=
(LESSP (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P))

Definition.
(P-PUSH-CONSTANT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (UNABBREVIATE-CONSTANT (CADR INS) P)

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-PUSH-CTRL-STK-FREE-SIZE-OKP INS P)

=
(LESSP (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P))

Definition.
(P-PUSH-CTRL-STK-FREE-SIZE-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(DIFFERENCE (P-MAX-CTRL-STK-SIZE P)
(P-CTRL-STK-SIZE (P-CTRL-STK P))))

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-PUSH-GLOBAL-OKP INS P)

=
(LESSP (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P))

128

Definition.
(P-PUSH-GLOBAL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (FETCH (TAG ’ADDR (CONS (CADR INS) 0))

(P-DATA-SEGMENT P))
(P-TEMP-STK P))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-PUSH-LOCAL-OKP INS P)

=
(LESSP (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P))

Definition.
(P-PUSH-LOCAL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (LOCAL-VAR-VALUE (CADR INS)

(P-CTRL-STK P))
(P-TEMP-STK P))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-PUSH-TEMP-STK-FREE-SIZE-OKP INS P)

=
(LESSP (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P))

Definition.
(P-PUSH-TEMP-STK-FREE-SIZE-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(DIFFERENCE (P-MAX-TEMP-STK-SIZE P)
(LENGTH (P-TEMP-STK P))))

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

129

Definition.
(P-PUSH-TEMP-STK-INDEX-OKP INS P)

=
(AND (LESSP (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P))
(LESSP (CADR INS)

(LENGTH (P-TEMP-STK P))))

Definition.
(P-PUSH-TEMP-STK-INDEX-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(SUB1 (DIFFERENCE (LENGTH (P-TEMP-STK P))
(CADR INS))))

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-PUSHJ-OKP INS P)

=
(LESSP (LENGTH (P-TEMP-STK P))

(P-MAX-TEMP-STK-SIZE P))

Definition.
(P-PUSHJ-STEP INS P)

=
(P-STATE (PC (CADR INS) (P-CURRENT-PROGRAM P))

(P-CTRL-STK P)
(PUSH (ADD1-P-PC P) (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-RET-OKP INS P)

=
T

130

Definition.
(P-RET-STEP INS P)

=
(IF (LISTP (POP (P-CTRL-STK P)))

(P-STATE (RET-PC (TOP (P-CTRL-STK P)))
(POP (P-CTRL-STK P))
(P-TEMP-STK P)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

(P-HALT P ’HALT))

Definition.
(P-RSH-BITV-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’BITV
(TOP (P-TEMP-STK P))
P))

Definition.
(P-RSH-BITV-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BITV

(RSH-BITV (UNTAG (TOP (P-TEMP-STK P)))))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-SET-GLOBAL-OKP INS P)

=
(LISTP (P-TEMP-STK P))

Definition.
(P-SET-GLOBAL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(P-TEMP-STK P)
(P-PROG-SEGMENT P)
(DEPOSIT (TOP (P-TEMP-STK P))

(TAG ’ADDR (CONS (CADR INS) 0))
(P-DATA-SEGMENT P))

(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

131

Definition.
(P-SET-LOCAL-OKP INS P)

=
(LISTP (P-TEMP-STK P))

Definition.
(P-SET-LOCAL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(SET-LOCAL-VAR-VALUE (TOP (P-TEMP-STK P))
(CADR INS)
(P-CTRL-STK P))

(P-TEMP-STK P)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Shell Definition.
Add the shell P-STATE of 9 arguments, with
recognizer function symbol P-STATEP, and
accessors P-PC, P-CTRL-STK, P-TEMP-STK, P-PROG-SEGMENT,
P-DATA-SEGMENT, P-MAX-CTRL-STK-SIZE, P-MAX-TEMP-STK-SIZE,
P-WORD-SIZE and P-PSW.

Definition.
(P-STEP P)

=
(IF (EQUAL (P-PSW P) ’RUN)

(P-STEP1 (P-CURRENT-INSTRUCTION P) P)
P)

Definition.
(P-STEP1 INS P)

=
(IF (P-INS-OKP INS P)

(P-INS-STEP INS P)
(P-HALT P

(X-Y-ERROR-MSG ’P (CAR INS))))

Definition.
(P-SUB-ADDR-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’NAT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’ADDR
(TOP1 (P-TEMP-STK P))
P)

(NOT (LESSP (OFFSET (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P))))))

132

Definition.
(P-SUB-ADDR-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (SUB-ADDR (TOP1 (P-TEMP-STK P))

(UNTAG (TOP (P-TEMP-STK P))))
(POP (POP (P-TEMP-STK P))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-SUB-INT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’INT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’INT
(TOP1 (P-TEMP-STK P))
P)

(SMALL-INTEGERP (IDIFFERENCE (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P))))

(P-WORD-SIZE P)))

Definition.
(P-SUB-INT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’INT

(IDIFFERENCE (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

133

Definition.
(P-SUB-INT-WITH-CARRY-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(LISTP (POP (POP (P-TEMP-STK P))))
(P-OBJECTP-TYPE ’INT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’INT
(TOP1 (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BOOL
(TOP2 (P-TEMP-STK P))
P))

Definition.
(P-SUB-INT-WITH-CARRY-STEP INS P)

=
(P-STATE
(ADD1-P-PC P)
(P-CTRL-STK P)
(PUSH
(TAG ’INT
(FIX-SMALL-INTEGER

(IDIFFERENCE (UNTAG (TOP1 (P-TEMP-STK P)))
(IPLUS (UNTAG (TOP (P-TEMP-STK P)))

(BOOL-TO-NAT
(UNTAG (TOP2 (P-TEMP-STK P))))))

(P-WORD-SIZE P)))
(PUSH
(BOOL
(NOT
(SMALL-INTEGERP

(IDIFFERENCE (UNTAG (TOP1 (P-TEMP-STK P)))
(IPLUS (UNTAG (TOP (P-TEMP-STK P)))

(BOOL-TO-NAT
(UNTAG (TOP2 (P-TEMP-STK P))))))

(P-WORD-SIZE P))))
(POP (POP (POP (P-TEMP-STK P))))))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

134

Definition.
(P-SUB-NAT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’NAT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’NAT
(TOP1 (P-TEMP-STK P))
P)

(NOT (LESSP (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P))))))

Definition.
(P-SUB-NAT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(DIFFERENCE (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-SUB-NAT-WITH-CARRY-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(LISTP (POP (POP (P-TEMP-STK P))))
(P-OBJECTP-TYPE ’NAT

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’NAT
(TOP1 (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BOOL
(TOP2 (P-TEMP-STK P))
P))

135

Definition.
(P-SUB-NAT-WITH-CARRY-STEP INS P)

=
(P-STATE
(ADD1-P-PC P)
(P-CTRL-STK P)
(PUSH
(TAG ’NAT
(IF
(LESSP (UNTAG (TOP1 (P-TEMP-STK P)))

(PLUS (UNTAG (TOP (P-TEMP-STK P)))
(BOOL-TO-NAT (UNTAG (TOP2 (P-TEMP-STK P))))))

(DIFFERENCE (EXP 2 (P-WORD-SIZE P))
(DIFFERENCE
(PLUS
(UNTAG (TOP (P-TEMP-STK P)))
(BOOL-TO-NAT (UNTAG (TOP2 (P-TEMP-STK P)))))
(UNTAG (TOP1 (P-TEMP-STK P)))))

(DIFFERENCE (UNTAG (TOP1 (P-TEMP-STK P)))
(PLUS
(UNTAG (TOP (P-TEMP-STK P)))
(BOOL-TO-NAT (UNTAG (TOP2 (P-TEMP-STK P))))))))

(PUSH (BOOL (LESSP (UNTAG (TOP1 (P-TEMP-STK P)))
(PLUS
(UNTAG (TOP (P-TEMP-STK P)))
(BOOL-TO-NAT (UNTAG (TOP2 (P-TEMP-STK P)))))))

(POP (POP (POP (P-TEMP-STK P))))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-SUB1-INT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’INT
(TOP (P-TEMP-STK P))
P)

(SMALL-INTEGERP (IDIFFERENCE (UNTAG (TOP (P-TEMP-STK P)))
1)

(P-WORD-SIZE P)))

136

Definition.
(P-SUB1-INT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’INT

(IDIFFERENCE (UNTAG (TOP (P-TEMP-STK P)))
1))

(POP (P-TEMP-STK P)))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-SUB1-NAT-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE ’NAT
(TOP (P-TEMP-STK P))
P)

(NOT (ZEROP (UNTAG (TOP (P-TEMP-STK P))))))

Definition.
(P-SUB1-NAT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’NAT

(SUB1 (UNTAG (TOP (P-TEMP-STK P)))))
(POP (P-TEMP-STK P)))

(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(P-TEST-AND-JUMP-OKP INS TYPE TEST P)

=
(AND (LISTP (P-TEMP-STK P))

(P-OBJECTP-TYPE TYPE
(TOP (P-TEMP-STK P))
P))

137

Definition.
(P-TEST-AND-JUMP-STEP TEST LAB P)

=
(IF TEST

(P-STATE (PC LAB (P-CURRENT-PROGRAM P))
(P-CTRL-STK P)
(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

(P-STATE (ADD1-P-PC P)
(P-CTRL-STK P)
(POP (P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN))

Definition.
(P-TEST-BITV-AND-JUMP-OKP INS P)

=
(P-TEST-AND-JUMP-OKP INS ’BITV

(P-TEST-BITVP (CADR INS)
(UNTAG (TOP (P-TEMP-STK P))))

P)

Definition.
(P-TEST-BITV-AND-JUMP-STEP INS P)

=
(P-TEST-AND-JUMP-STEP (P-TEST-BITVP (CADR INS)

(UNTAG (TOP (P-TEMP-STK P))))
(CADDR INS)
P)

Definition.
(P-TEST-BITVP FLG X)

=
(IF (EQUAL FLG ’ALL-ZERO)

(ALL-ZERO-BITVP X)
(NOT (ALL-ZERO-BITVP X)))

Definition.
(P-TEST-BOOL-AND-JUMP-OKP INS P)

=
(P-TEST-AND-JUMP-OKP INS ’BOOL

(P-TEST-BOOLP (CADR INS)
(UNTAG (TOP (P-TEMP-STK P))))

P)

138

Definition.
(P-TEST-BOOL-AND-JUMP-STEP INS P)

=
(P-TEST-AND-JUMP-STEP (P-TEST-BOOLP (CADR INS)

(UNTAG (TOP (P-TEMP-STK P))))
(CADDR INS)
P)

Definition.
(P-TEST-BOOLP FLG X)

=
(IF (EQUAL FLG ’T)

(EQUAL X ’T)
(EQUAL X ’F))

Definition.
(P-TEST-INT-AND-JUMP-OKP INS P)

=
(P-TEST-AND-JUMP-OKP INS ’INT

(P-TEST-INTP (CADR INS)
(UNTAG (TOP (P-TEMP-STK P))))

P)

Definition.
(P-TEST-INT-AND-JUMP-STEP INS P)

=
(P-TEST-AND-JUMP-STEP (P-TEST-INTP (CADR INS)

(UNTAG (TOP (P-TEMP-STK P))))
(CADDR INS)
P)

Definition.
(P-TEST-INTP FLG X)

=
(CASE FLG

(ZERO (EQUAL X 0))
(NOT-ZERO (NOT (EQUAL X 0)))
(NEG (NEGATIVEP X))
(NOT-NEG (NOT (NEGATIVEP X)))
(POS (AND (NUMBERP X) (NOT (EQUAL X 0))))
(OTHERWISE (OR (EQUAL X 0) (NEGATIVEP X))))

Definition.
(P-TEST-NAT-AND-JUMP-OKP INS P)

=
(P-TEST-AND-JUMP-OKP INS ’NAT

(P-TEST-NATP (CADR INS)
(UNTAG (TOP (P-TEMP-STK P))))

P)

Definition.
(P-TEST-NAT-AND-JUMP-STEP INS P)

=
(P-TEST-AND-JUMP-STEP (P-TEST-NATP (CADR INS)

(UNTAG (TOP (P-TEMP-STK P))))
(CADDR INS)
P)

139

Definition.
(P-TEST-NATP FLG X)

=
(IF (EQUAL FLG ’ZERO)

(EQUAL X 0)
(NOT (EQUAL X 0)))

Definition.
(P-XOR-BITV-OKP INS P)

=
(AND (LISTP (P-TEMP-STK P))

(LISTP (POP (P-TEMP-STK P)))
(P-OBJECTP-TYPE ’BITV

(TOP (P-TEMP-STK P))
P)

(P-OBJECTP-TYPE ’BITV
(TOP1 (P-TEMP-STK P))
P))

Definition.
(P-XOR-BITV-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (TAG ’BITV

(XOR-BITV (UNTAG (TOP1 (P-TEMP-STK P)))
(UNTAG (TOP (P-TEMP-STK P)))))

(POP (POP (P-TEMP-STK P))))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN)

Definition.
(PAIR-FORMAL-VARS-WITH-ACTUALS FORMAL-VARS TEMP-STK)

=
(PAIRLIST FORMAL-VARS

(REVERSE (FIRST-N (LENGTH FORMAL-VARS)
TEMP-STK)))

Definition.
(PAIR-TEMPS-WITH-INITIAL-VALUES TEMP-VAR-DCLS)

=
(IF (NLISTP TEMP-VAR-DCLS)

NIL
(CONS (CONS (CAAR TEMP-VAR-DCLS)

(CADAR TEMP-VAR-DCLS))
(PAIR-TEMPS-WITH-INITIAL-VALUES (CDR TEMP-VAR-DCLS))))

Definition.
(PC LAB PROGRAM)

=
(TAG ’PC

(CONS (NAME PROGRAM)
(FIND-LABEL LAB

(PROGRAM-BODY PROGRAM))))

140

Definition.
(PCPP X SEGMENT)

=
(AND (LISTP X)

(NUMBERP (ADP-OFFSET X))
(DEFINEDP (ADP-NAME X) SEGMENT)
(LESSP (ADP-OFFSET X)

(LENGTH (PROGRAM-BODY (DEFINITION (ADP-NAME X) SEGMENT)))))

Definition.
(POP STK)

=
(CDR STK)

Definition.
(POPN N X)

=
(IF (ZEROP N)

X
(POPN (SUB1 N) (CDR X)))

Definition.
(PROGRAM-BODY D)

=
(CDDDR D)

Definition.
(PROPER-LABELED-P-INSTRUCTIONSP LST NAME P)

=
(IF (NLISTP LST)

(EQUAL LST NIL)
(AND (LEGAL-LABELP (CAR LST))

(PROPER-P-INSTRUCTIONP (UNLABEL (CAR LST))
NAME P)

(PROPER-LABELED-P-INSTRUCTIONSP (CDR LST)
NAME P)))

Definition.
(PROPER-P-ADD-ADDR-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-ADD-INT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-ADD-INT-WITH-CARRY-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-ADD-NAT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-ADD-NAT-WITH-CARRY-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

141

Definition.
(PROPER-P-ADD1-INT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-ADD1-NAT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-ALISTP ALIST P)

=
(IF (NLISTP ALIST)

(EQUAL ALIST NIL)
(AND (LISTP (CAR ALIST))

(LITATOM (CAAR ALIST))
(P-OBJECTP (CDAR ALIST) P)
(PROPER-P-ALISTP (CDR ALIST) P)))

Definition.
(PROPER-P-AND-BITV-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-AND-BOOL-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-AREA AREA P)

=
(AND (LITATOM (CAR AREA))

(LISTP (CDR AREA))
(ALL-P-OBJECTPS (CDR AREA) P))

Definition.
(PROPER-P-CALL-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(DEFINEDP (CADR INS)
(P-PROG-SEGMENT P)))

Definition.
(PROPER-P-CTRL-STKP CTRL-STK NAME P)

=
(IF (NLISTP CTRL-STK)

(EQUAL CTRL-STK NIL)
(AND (PROPER-P-FRAMEP (TOP CTRL-STK)

NAME P)
(PROPER-P-CTRL-STKP (POP CTRL-STK)

(AREA-NAME (RET-PC (TOP CTRL-STK)))
P)))

142

Definition.
(PROPER-P-DATA-SEGMENTP DATA-SEGMENT P)

=
(IF (NLISTP DATA-SEGMENT)

(EQUAL DATA-SEGMENT NIL)
(AND (PROPER-P-AREA (CAR DATA-SEGMENT) P)

(NOT (DEFINEDP (CAAR DATA-SEGMENT)
(CDR DATA-SEGMENT)))

(PROPER-P-DATA-SEGMENTP (CDR DATA-SEGMENT)
P)))

Definition.
(PROPER-P-DEPOSIT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-DEPOSIT-TEMP-STK-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-DIV2-NAT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-EQ-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-FETCH-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-FETCH-TEMP-STK-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-FRAMEP FRAME NAME P)

=
(AND (LISTP FRAME)

(LISTP (CDR FRAME))
(EQUAL (CDDR FRAME) NIL)
(PROPER-P-ALISTP (BINDINGS FRAME) P)
(EQUAL (STRIP-CARS (BINDINGS FRAME))

(LOCAL-VARS (DEFINITION NAME (P-PROG-SEGMENT P))))
(P-OBJECTP-TYPE ’PC

(RET-PC FRAME)
P))

143

Definition.
(PROPER-P-INSTRUCTIONP INS NAME P)

=
(AND
(PROPERP INS)
(CASE
(CAR INS)
(CALL (PROPER-P-CALL-INSTRUCTIONP INS NAME P))
(RET (PROPER-P-RET-INSTRUCTIONP INS NAME P))
(LOCN (PROPER-P-LOCN-INSTRUCTIONP INS NAME P))
(PUSH-CONSTANT (PROPER-P-PUSH-CONSTANT-INSTRUCTIONP INS NAME P))
(PUSH-LOCAL (PROPER-P-PUSH-LOCAL-INSTRUCTIONP INS NAME P))
(PUSH-GLOBAL (PROPER-P-PUSH-GLOBAL-INSTRUCTIONP INS NAME P))

(PUSH-CTRL-STK-FREE-SIZE
(PROPER-P-PUSH-CTRL-STK-FREE-SIZE-INSTRUCTIONP

INS NAME P))
(PUSH-TEMP-STK-FREE-SIZE

(PROPER-P-PUSH-TEMP-STK-FREE-SIZE-INSTRUCTIONP
INS NAME P))

(PUSH-TEMP-STK-INDEX
(PROPER-P-PUSH-TEMP-STK-INDEX-INSTRUCTIONP

INS NAME P))
(JUMP-IF-TEMP-STK-FULL

(PROPER-P-JUMP-IF-TEMP-STK-FULL-INSTRUCTIONP
INS NAME P))

(JUMP-IF-TEMP-STK-EMPTY
(PROPER-P-JUMP-IF-TEMP-STK-EMPTY-INSTRUCTIONP

INS NAME P))
(POP (PROPER-P-POP-INSTRUCTIONP INS NAME P))
(POP* (PROPER-P-POP*-INSTRUCTIONP INS NAME P))
(POPN (PROPER-P-POPN-INSTRUCTIONP INS NAME P))
(POP-LOCAL (PROPER-P-POP-LOCAL-INSTRUCTIONP INS NAME P))
(POP-GLOBAL (PROPER-P-POP-GLOBAL-INSTRUCTIONP INS NAME P))
(POP-LOCN (PROPER-P-POP-LOCN-INSTRUCTIONP INS NAME P))
(POP-CALL (PROPER-P-POP-CALL-INSTRUCTIONP INS NAME P))
(FETCH-TEMP-STK (PROPER-P-FETCH-TEMP-STK-INSTRUCTIONP INS NAME P))
(DEPOSIT-TEMP-STK (PROPER-P-DEPOSIT-TEMP-STK-INSTRUCTIONP INS NAME P))
(JUMP (PROPER-P-JUMP-INSTRUCTIONP INS NAME P))
(JUMP-CASE (PROPER-P-JUMP-CASE-INSTRUCTIONP INS NAME P))
(PUSHJ (PROPER-P-PUSHJ-INSTRUCTIONP INS NAME P))
(POPJ (PROPER-P-POPJ-INSTRUCTIONP INS NAME P))
(SET-LOCAL (PROPER-P-SET-LOCAL-INSTRUCTIONP INS NAME P))
(SET-GLOBAL (PROPER-P-SET-GLOBAL-INSTRUCTIONP INS NAME P))
(TEST-NAT-AND-JUMP

(PROPER-P-TEST-NAT-AND-JUMP-INSTRUCTIONP
INS NAME P))

(TEST-INT-AND-JUMP
(PROPER-P-TEST-INT-AND-JUMP-INSTRUCTIONP

INS NAME P))
(TEST-BOOL-AND-JUMP

(PROPER-P-TEST-BOOL-AND-JUMP-INSTRUCTIONP
INS NAME P))

(TEST-BITV-AND-JUMP
(PROPER-P-TEST-BITV-AND-JUMP-INSTRUCTIONP

INS NAME P))
(NO-OP (PROPER-P-NO-OP-INSTRUCTIONP INS NAME P))

144

(ADD-ADDR (PROPER-P-ADD-ADDR-INSTRUCTIONP INS NAME P))
(SUB-ADDR (PROPER-P-SUB-ADDR-INSTRUCTIONP INS NAME P))
(EQ (PROPER-P-EQ-INSTRUCTIONP INS NAME P))
(LT-ADDR (PROPER-P-LT-ADDR-INSTRUCTIONP INS NAME P))
(FETCH (PROPER-P-FETCH-INSTRUCTIONP INS NAME P))
(DEPOSIT (PROPER-P-DEPOSIT-INSTRUCTIONP INS NAME P))
(ADD-INT (PROPER-P-ADD-INT-INSTRUCTIONP INS NAME P))
(ADD-INT-WITH-CARRY

(PROPER-P-ADD-INT-WITH-CARRY-INSTRUCTIONP
INS NAME P))

(ADD1-INT (PROPER-P-ADD1-INT-INSTRUCTIONP INS NAME P))
(SUB-INT (PROPER-P-SUB-INT-INSTRUCTIONP INS NAME P))
(SUB-INT-WITH-CARRY

(PROPER-P-SUB-INT-WITH-CARRY-INSTRUCTIONP
INS NAME P))

(SUB1-INT (PROPER-P-SUB1-INT-INSTRUCTIONP INS NAME P))
(NEG-INT (PROPER-P-NEG-INT-INSTRUCTIONP INS NAME P))
(LT-INT (PROPER-P-LT-INT-INSTRUCTIONP INS NAME P))
(INT-TO-NAT (PROPER-P-INT-TO-NAT-INSTRUCTIONP INS NAME P))
(ADD-NAT (PROPER-P-ADD-NAT-INSTRUCTIONP INS NAME P))
(ADD-NAT-WITH-CARRY

(PROPER-P-ADD-NAT-WITH-CARRY-INSTRUCTIONP
INS NAME P))

(ADD1-NAT (PROPER-P-ADD1-NAT-INSTRUCTIONP INS NAME P))
(SUB-NAT (PROPER-P-SUB-NAT-INSTRUCTIONP INS NAME P))
(SUB-NAT-WITH-CARRY

(PROPER-P-SUB-NAT-WITH-CARRY-INSTRUCTIONP
INS NAME P))

(SUB1-NAT (PROPER-P-SUB1-NAT-INSTRUCTIONP INS NAME P))
(LT-NAT (PROPER-P-LT-NAT-INSTRUCTIONP INS NAME P))
(MULT2-NAT (PROPER-P-MULT2-NAT-INSTRUCTIONP INS NAME P))
(MULT2-NAT-WITH-CARRY-OUT

(PROPER-P-MULT2-NAT-WITH-CARRY-OUT-INSTRUCTIONP
INS NAME P))

(DIV2-NAT (PROPER-P-DIV2-NAT-INSTRUCTIONP INS NAME P))
(OR-BITV (PROPER-P-OR-BITV-INSTRUCTIONP INS NAME P))
(AND-BITV (PROPER-P-AND-BITV-INSTRUCTIONP INS NAME P))
(NOT-BITV (PROPER-P-NOT-BITV-INSTRUCTIONP INS NAME P))
(XOR-BITV (PROPER-P-XOR-BITV-INSTRUCTIONP INS NAME P))
(RSH-BITV (PROPER-P-RSH-BITV-INSTRUCTIONP INS NAME P))
(LSH-BITV (PROPER-P-LSH-BITV-INSTRUCTIONP INS NAME P))
(OR-BOOL (PROPER-P-OR-BOOL-INSTRUCTIONP INS NAME P))
(AND-BOOL (PROPER-P-AND-BOOL-INSTRUCTIONP INS NAME P))
(NOT-BOOL (PROPER-P-NOT-BOOL-INSTRUCTIONP INS NAME P))
(OTHERWISE F)))

Definition.
(PROPER-P-INT-TO-NAT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-JUMP-CASE-INSTRUCTIONP INS NAME P)

=
(AND (LISTP (CDR INS))

(ALL-FIND-LABELP (CDR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

145

Definition.
(PROPER-P-JUMP-IF-TEMP-STK-EMPTY-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(FIND-LABELP (CADR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-JUMP-IF-TEMP-STK-FULL-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(FIND-LABELP (CADR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-JUMP-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(FIND-LABELP (CADR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-LOCN-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(MEMBER (CADR INS)
(LOCAL-VARS (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-LSH-BITV-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-LT-ADDR-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-LT-INT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-LT-NAT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-MULT2-NAT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-MULT2-NAT-WITH-CARRY-OUT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

146

Definition.
(PROPER-P-NEG-INT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-NO-OP-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-NOT-BITV-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-NOT-BOOL-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-OR-BITV-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-OR-BOOL-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-POP*-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(SMALL-NATURALP (CADR INS)
(P-WORD-SIZE P)))

Definition.
(PROPER-P-POP-CALL-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-POP-GLOBAL-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(DEFINEDP (CADR INS)
(P-DATA-SEGMENT P)))

Definition.
(PROPER-P-POP-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-POP-LOCAL-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(MEMBER (CADR INS)
(LOCAL-VARS (DEFINITION NAME

(P-PROG-SEGMENT P)))))

147

Definition.
(PROPER-P-POP-LOCN-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(MEMBER (CADR INS)
(LOCAL-VARS (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-POPJ-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-POPN-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-PROG-SEGMENTP SEGMENT P)

=
(IF (NLISTP SEGMENT)

(EQUAL SEGMENT NIL)
(AND (PROPER-P-PROGRAMP (CAR SEGMENT) P)

(PROPER-P-PROG-SEGMENTP (CDR SEGMENT)
P)))

Definition.
(PROPER-P-PROGRAM-BODYP LST NAME P)

=
(AND (LISTP LST)

(PROPER-LABELED-P-INSTRUCTIONSP LST NAME P)
(FALL-OFF-PROOFP LST))

Definition.
(PROPER-P-PROGRAMP PROG P)

=
(AND (LITATOM (NAME PROG))

(ALL-LITATOMS (FORMAL-VARS PROG))
(PROPER-P-TEMP-VAR-DCLSP (TEMP-VAR-DCLS PROG)

P)
(PROPER-P-PROGRAM-BODYP (PROGRAM-BODY PROG)

(NAME PROG)
P))

Definition.
(PROPER-P-PUSH-CONSTANT-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(OR (P-OBJECTP (CADR INS) P)
(EQUAL (CADR INS) ’PC)
(FIND-LABELP (CADR INS)

(PROGRAM-BODY (DEFINITION NAME
(P-PROG-SEGMENT P))))))

Definition.
(PROPER-P-PUSH-CTRL-STK-FREE-SIZE-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

148

Definition.
(PROPER-P-PUSH-GLOBAL-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(DEFINEDP (CADR INS)
(P-DATA-SEGMENT P)))

Definition.
(PROPER-P-PUSH-LOCAL-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(MEMBER (CADR INS)
(LOCAL-VARS (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-PUSH-TEMP-STK-FREE-SIZE-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-PUSH-TEMP-STK-INDEX-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(SMALL-NATURALP (CADR INS)
(P-WORD-SIZE P)))

Definition.
(PROPER-P-PUSHJ-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(FIND-LABELP (CADR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-RET-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-RSH-BITV-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-SET-GLOBAL-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(DEFINEDP (CADR INS)
(P-DATA-SEGMENT P)))

Definition.
(PROPER-P-SET-LOCAL-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 2)

(MEMBER (CADR INS)
(LOCAL-VARS (DEFINITION NAME

(P-PROG-SEGMENT P)))))

149

Definition.
(PROPER-P-STATEP P)

=
(AND (P-STATEP P)

(P-OBJECTP-TYPE ’PC (P-PC P) P)
(LISTP (P-CTRL-STK P))
(PROPER-P-FRAMEP (TOP (P-CTRL-STK P))

(AREA-NAME (P-PC P))
P)

(PROPER-P-CTRL-STKP (POP (P-CTRL-STK P))
(AREA-NAME (RET-PC (TOP (P-CTRL-STK P))))
P)

(NOT (LESSP (P-MAX-CTRL-STK-SIZE P)
(P-CTRL-STK-SIZE (P-CTRL-STK P))))

(PROPER-P-TEMP-STKP (P-TEMP-STK P) P)
(NOT (LESSP (P-MAX-TEMP-STK-SIZE P)

(LENGTH (P-TEMP-STK P))))
(PROPER-P-PROG-SEGMENTP (P-PROG-SEGMENT P)

P)
(PROPER-P-DATA-SEGMENTP (P-DATA-SEGMENT P)

P)
(NUMBERP (P-MAX-CTRL-STK-SIZE P))
(NUMBERP (P-MAX-TEMP-STK-SIZE P))
(NUMBERP (P-WORD-SIZE P))
(LESSP (P-MAX-CTRL-STK-SIZE P)

(EXP 2 (P-WORD-SIZE P)))
(LESSP (P-MAX-TEMP-STK-SIZE P)

(EXP 2 (P-WORD-SIZE P)))
(LESSP 0 (P-WORD-SIZE P)))

Definition.
(PROPER-P-SUB-ADDR-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-SUB-INT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-SUB-INT-WITH-CARRY-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-SUB-NAT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-SUB-NAT-WITH-CARRY-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-SUB1-INT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

150

Definition.
(PROPER-P-SUB1-NAT-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

Definition.
(PROPER-P-TEMP-STKP TEMP-STK P)

=
(IF (NLISTP TEMP-STK)

(EQUAL TEMP-STK NIL)
(AND (P-OBJECTP (TOP TEMP-STK) P)

(PROPER-P-TEMP-STKP (POP TEMP-STK)
P)))

Definition.
(PROPER-P-TEMP-VAR-DCLSP TEMP-VAR-DCLS P)

=
(IF (NLISTP TEMP-VAR-DCLS)

T
(AND (LITATOM (CAAR TEMP-VAR-DCLS))

(P-OBJECTP (CADAR TEMP-VAR-DCLS) P)
(PROPER-P-TEMP-VAR-DCLSP (CDR TEMP-VAR-DCLS)

P)))

Definition.
(PROPER-P-TEST-BITV-AND-JUMP-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 3)

(FIND-LABELP (CADDR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-TEST-BOOL-AND-JUMP-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 3)

(FIND-LABELP (CADDR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-TEST-INT-AND-JUMP-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 3)

(FIND-LABELP (CADDR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-TEST-NAT-AND-JUMP-INSTRUCTIONP INS NAME P)

=
(AND (EQUAL (LENGTH INS) 3)

(FIND-LABELP (CADDR INS)
(PROGRAM-BODY (DEFINITION NAME

(P-PROG-SEGMENT P)))))

Definition.
(PROPER-P-XOR-BITV-INSTRUCTIONP INS NAME P)

=
(EQUAL (LENGTH INS) 1)

151

Definition.
(PROPERP X)

=
(IF (NLISTP X)

(EQUAL X NIL)
(PROPERP (CDR X)))

Definition.
(PUSH X STK)

=
(CONS X STK)

Definition.
(PUT VAL N LST)

=
(IF (ZEROP N)

(IF (LISTP LST)
(CONS VAL (CDR LST))
(LIST VAL))

(CONS (CAR LST)
(PUT VAL (SUB1 N) (CDR LST))))

Definition.
(PUT-ASSOC VAL NAME ALIST)

=
(COND ((NLISTP ALIST) ALIST)

((EQUAL NAME (CAAR ALIST))
(CONS (CONS NAME VAL) (CDR ALIST)))
(T (CONS (CAR ALIST)

(PUT-ASSOC VAL NAME (CDR ALIST)))))

Definition.
(PUT-VALUE VAL NAME ALIST)

=
(PUT-ASSOC VAL NAME ALIST)

Definition.
(PUT-VALUE-INDIRECT VAL N LST)

=
(IF (LISTP LST)

(IF (ZEROP N)
(CONS (CONS (CAAR LST) VAL) (CDR LST))
(CONS (CAR LST)

(PUT-VALUE-INDIRECT VAL
(SUB1 N)
(CDR LST))))

LST)

Definition.
(RET-PC FRAME)

=
(CADR FRAME)

Definition.
(REVERSE X)

=
(IF (NLISTP X)

NIL
(APPEND (REVERSE (CDR X))

(LIST (CAR X))))

152

Definition.
(RGET N LST)

=
(GET (SUB1 (DIFFERENCE (LENGTH LST) N))

LST)

Definition.
(RPUT VAL N LST)

=
(PUT VAL

(SUB1 (DIFFERENCE (LENGTH LST) N))
LST)

Definition.
(RSH-BITV A)

=
(CONS 0 (ALL-BUT-LAST A))

Definition.
(SET-LOCAL-VAR-INDIRECT VAL INDEX CTRL-STK)

=
(PUSH (P-FRAME (PUT-VALUE-INDIRECT VAL INDEX

(BINDINGS (TOP CTRL-STK)))
(RET-PC (TOP CTRL-STK)))

(POP CTRL-STK))

Definition.
(SET-LOCAL-VAR-VALUE VAL VAR CTRL-STK)

=
(PUSH (P-FRAME (PUT-VALUE VAL VAR

(BINDINGS (TOP CTRL-STK)))
(RET-PC (TOP CTRL-STK)))

(POP CTRL-STK))

Definition.
(SMALL-INTEGERP I WORD-SIZE)

=
(AND (INTEGERP I)

(NOT (ILESSP I
(MINUS (EXP 2 (SUB1 WORD-SIZE)))))

(ILESSP I (EXP 2 (SUB1 WORD-SIZE))))

Definition.
(SMALL-NATURALP I WORD-SIZE)

=
(AND (NUMBERP I)

(LESSP I (EXP 2 WORD-SIZE)))

Definition.
(SUB-ADDR ADDR N)

=
(TAG (TYPE ADDR)

(SUB-ADP (UNTAG ADDR) N))

Definition.
(SUB-ADP ADP N)

=
(CONS (ADP-NAME ADP)

(DIFFERENCE (ADP-OFFSET ADP) N))

153

Definition.
(TAG TYPE OBJ)

=
(LIST TYPE OBJ)

Definition.
(TEMP-VAR-DCLS D)

=
(CADDR D)

Definition.
(TOP STK)

=
(CAR STK)

Definition.
(TOP1 STK)

=
(TOP (POP STK))

Definition.
(TOP2 STK)

=
(TOP (POP (POP STK)))

Definition.
(TYPE CONST)

=
(CAR CONST)

Definition.
(UNABBREVIATE-CONSTANT C P)

=
(COND ((EQUAL C ’PC) (ADD1-P-PC P))

((NLISTP C)
(PC C (P-CURRENT-PROGRAM P)))
(T C))

Definition.
(UNLABEL X)

=
(IF (LABELLEDP X) (CADDDR X) X)

Definition.
(UNTAG CONST)

=
(CADR CONST)

Definition.
(VALUE NAME ALIST)

=
(CDR (DEFINITION NAME ALIST))

Definition.
(X-Y-ERROR-MSG X Y)

=
(PACK (APPEND (UNPACK ’ILLEGAL-)

(APPEND (UNPACK Y)
(CDR (UNPACK ’G-INSTRUCTION)))))

154

Definition.
(XOR-BIT BIT1 BIT2)

=
(COND ((EQUAL BIT1 0)

(IF (EQUAL BIT2 0) 0 1))
((EQUAL BIT2 0) 1)
(T 0))

Definition.
(XOR-BITV A B)

=
(IF (NLISTP A)

NIL
(CONS (XOR-BIT (CAR A) (CAR B))

(XOR-BITV (CDR A) (CDR B))))

155

8. The Formal Definition of FM8502

In this chapter we present the formal definition of the FM8502. As before, the definitions are presented
in alphabetical order and are fully indexed and cross-indexed.

The exponentiation function, EXP, is displayed both here and in the preceding formal definition of Piton,
simply so that both chapters are self-contained. EXP is the only function defined by both of these chapters.

8.1. A Guide to the Formal Definition of FM8502

The state of the FM8502 is formally represented by the shell objects of type M-STATE

Shell Definition.
Add the shell M-STATE of 6 arguments, with
recognizer function symbol M-STATEP, and
accessors M-REGS, M-C-FLG, M-V-FLG, M-N-FLG, M-Z-FLG

and M-MEM.

The six components of an M-STATE are, respectively, the list of eight registers, the four flags, and the
memory.

The formal definition of FM8502 is

Definition.
(FM8502 STATE N)

=
(FM8502->M (SOFT (M-REGS STATE)

(M-MEM STATE)
(M-C-FLG STATE)
(M-V-FLG STATE)
(M-Z-FLG STATE)
(M-N-FLG STATE)
(FM8502-ORACLE N))).

FM8502 is given an initial m-state, STATE, and a natural number N indicating how many machine
instructions to execute. FM8502 first ‘‘destructures’’ the state into its six components. It uses
FM8502-ORACLE to convert the natural number N into a list of N zeros—this is used to specify how
many instructions are to be executed by the ‘‘software’’ machine SOFT; the elements of the list are

16unimportant and do not affect SOFT’s final answer. FM8502 then uses SOFT to determine the values of
the six components of the final state. Finally, FM8502->M is used to package up the six values into a
single m-state again.

Our SOFT is so similar to Hunt’s, which is explained in detail in [11], that we do not further elaborate.
We do include the entire tree of definitions in this report. We did so for three reasons. First, we thus enter
it into the historical record. Second, by glancing through it the reader can see that FM8502 is a radically
more primitive machine than the Piton machine. (Just look at all those bit vector operations!) Third, by
simply measuring the thickness of this Chapter the reader can confirm that FM8502 is (in some technical
sense) a simple machine.

16That SOFT takes a list instead of a number as its last argument is a reflection of the fact that SOFT is proved correct with respect
to a gate level implementation. In that proof the elements of the oracle are used to specify the lengths of the various wait states the
machine enters.

156

Readers uninterested in pursuing the formal definition of the FM8502 at this time should skip to page
169.

8.2. Alphabetical Listing of the FM8502 Definitions

Definition.
(A-VALUE-FOR-ALU-AFTER-OPRD-A-PRE-DECREMENT REG-FILE REAL-MEM)

=
(COND
((B-DIRECT-REG-A (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(V-NTH (BV-OPRD-A (CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(REG-FILE-AFTER-PC-INCREMENT REG-FILE)))
((B-INDIRECT-REG-A-DEC (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(V-NTH
(V-NAT-DEC
(V-NTH (BV-OPRD-A (CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(REG-FILE-AFTER-PC-INCREMENT REG-FILE)))
REAL-MEM))

(T (V-NTH
(V-NTH (BV-OPRD-A (CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(REG-FILE-AFTER-PC-INCREMENT REG-FILE))
REAL-MEM)))

Definition.
(B-AND X Y)

=
(AND X Y)

Definition.
(B-C-SET I-REG)

=
(BITN I-REG 14)

Definition.
(B-DIRECT-REG-A I-REG)

=
(B-NOR (BITN I-REG 4) (BITN I-REG 5))

Definition.
(B-DIRECT-REG-B I-REG)

=
(B-NOR (BITN I-REG 9) (BITN I-REG 10))

Definition.
(B-EQUV X Y)

=
(COND (X (IF Y T F)) (Y F) (T T))

Definition.
(B-IF C A B)

=
(B-NAND (B-NAND C A)

(B-NAND (B-NOT C) B))

Definition.
(B-INDIRECT-REG-A-DEC I-REG)

=
(B-AND (B-NOT (BITN I-REG 4))

(BITN I-REG 5))

157

Definition.
(B-INDIRECT-REG-A-INC I-REG)

=
(B-AND (BITN I-REG 4) (BITN I-REG 5))

Definition.
(B-INDIRECT-REG-B-DEC I-REG)

=
(B-AND (B-NOT (BITN I-REG 9))

(BITN I-REG 10))

Definition.
(B-INDIRECT-REG-B-INC I-REG)

=
(B-AND (BITN I-REG 9) (BITN I-REG 10))

Definition.
(B-MOVE-OP I-REG)

=
(BITN I-REG 16)

Definition.
(B-N-SET I-REG)

=
(BITN I-REG 12)

Definition.
(B-NAND X Y)

=
(IF X (IF Y F T) T)

Definition.
(B-NOR X Y)

=
(COND (X F) (Y F) (T T))

Definition.
(B-NOT X)

=
(IF X F T)

Definition.
(B-OR X Y)

=
(OR X Y)

Definition.
(B-STORE-ALU-RESULT-WITH-IFS C-FLAG V-FLAG Z-FLAG N-FLAG I-REG)

=
(OR (NOT (B-MOVE-OP I-REG))

(BITN (BV-OP-CODE I-REG) 4)
(EQUAL (BV-OP-CODE I-REG)

(NAT-TO-BV (IF C-FLAG 1 0) 4))
(EQUAL (BV-OP-CODE I-REG)

(NAT-TO-BV (IF V-FLAG 3 2) 4))
(EQUAL (BV-OP-CODE I-REG)

(NAT-TO-BV (IF Z-FLAG 5 4) 4))
(EQUAL (BV-OP-CODE I-REG)

(NAT-TO-BV (IF N-FLAG 7 6) 4)))

158

Definition.
(B-V-SET I-REG)

=
(BITN I-REG 13)

Definition.
(B-VALUE-FOR-ALU-AFTER-OPRD-B-PRE-DECREMENT REG-FILE REAL-MEM)

=
(COND
((B-DIRECT-REG-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(V-NTH (BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(REG-FILE-AFTER-OPRD-A-PRE-DECREMENT REG-FILE REAL-MEM)))
((B-INDIRECT-REG-B-DEC (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(V-NTH
(V-NAT-DEC
(V-NTH (BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(REG-FILE-AFTER-OPRD-A-PRE-DECREMENT REG-FILE REAL-MEM)))
REAL-MEM))

(T (V-NTH
(V-NTH (BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(REG-FILE-AFTER-OPRD-A-PRE-DECREMENT REG-FILE REAL-MEM))
REAL-MEM)))

Definition.
(B-XOR X Y)

=
(COND (X (IF Y F T)) (Y T) (T F))

Definition.
(B-Z-SET I-REG)

=
(BITN I-REG 11)

Definition.
(BITN X N)

=
(COND ((ZEROP N) F)

((EQUAL N 1) (BIT X))
(T (BITN (VEC X) (SUB1 N))))

Shell Definition.
Add the shell BITV of 2 arguments, with
base function symbol BTM,
recognizer function symbol BITVP,
accessors BIT and VEC,
type restrictions (ONE-OF TRUEP FALSEP) and (ONE-OF BITVP), and
default function symbols FALSE and BTM.

Definition.
(BTMP A)

=
(IF (BITVP A) (EQUAL A (BTM)) T)

159

Definition.
(BV-ADDER C A B)

=
(IF (BITVP A)

(IF (EQUAL A (BTM))
(BITV C (BTM))
(BITV (B-XOR C (B-XOR (BIT A) (BIT B)))

(BV-ADDER (B-OR (B-AND (BIT A) (BIT B))
(B-OR (B-AND (BIT A) C)

(B-AND (BIT B) C)))
(VEC A)
(VEC B))))

(BITV C (BTM)))

Definition.
(BV-ADDER-CARRY-OUT C A B)

=
(BITN (BV-ADDER C A B)

(ADD1 (SIZE A)))

Definition.
(BV-ADDER-OUTPUT C A B)

=
(TRUNC (BV-ADDER C A B) (SIZE A))

Definition.
(BV-ADDER-OVERFLOWP C A B)

=
(B-AND (B-EQUV (BITN A (SIZE A))

(BITN B (SIZE B)))
(B-XOR (BITN A (SIZE A))

(BITN (BV-ADDER-OUTPUT C A B)
(SIZE A))))

Definition.
(BV-ALU-CV A B C OP-CODE)

=
(BV-CV-IF (BITN OP-CODE 4)

(BV-CV-IF (BITN OP-CODE 3)
(BV-CV-IF (BITN OP-CODE 2)

(BV-CV-IF (BITN OP-CODE 1)
(BV-CV A F F)
(BV-CV (BV-NOT A) F F))

(BV-CV-IF (BITN OP-CODE 1)
(BV-CV (BV-AND A B) F F)
(BV-CV (BV-OR A B) F F)))

(BV-CV-IF (BITN OP-CODE 2)
(BV-CV-IF (BITN OP-CODE 1)

(BV-CV (BV-XOR A B) F F)
(BV-CV (BV-LSR A) (BITN A 1) F))

(BV-CV-IF (BITN OP-CODE 1)
(BV-CV (BV-ASR A) (BITN A 1) F)
(BV-CV (BV-ROR A C)

(IF (ZEROP (SIZE A))
C
(BITN A 1))

F))))
(BV-CV-IF (BITN OP-CODE 3)

(BV-CV-IF (BITN OP-CODE 2)

160

(BV-CV-IF
(BITN OP-CODE 1)
(BV-CV (BV-SUBTRACTER-OUTPUT F A B)

(BV-SUBTRACTER-CARRY-OUT F A B)
(BV-SUBTRACTER-OVERFLOWP F A B))

(BV-CV (BV-SUBTRACTER-OUTPUT C A B)
(BV-SUBTRACTER-CARRY-OUT C A B)
(BV-SUBTRACTER-OVERFLOWP C A B)))

(BV-CV-IF
(BITN OP-CODE 1)
(BV-CV (BV-SUBTRACTER-OUTPUT

T (NAT-TO-BV 0 (SIZE A)) A)
(BV-SUBTRACTER-CARRY-OUT
T (NAT-TO-BV 0 (SIZE A)) A)
(BV-SUBTRACTER-OVERFLOWP
T (NAT-TO-BV 0 (SIZE A)) A))

(BV-CV (BV-SUBTRACTER-OUTPUT
F A (NAT-TO-BV 0 (SIZE A)))
(BV-SUBTRACTER-CARRY-OUT
F A (NAT-TO-BV 0 (SIZE A)))
(BV-SUBTRACTER-OVERFLOWP
F A (NAT-TO-BV 0 (SIZE A))))))

(BV-CV-IF (BITN OP-CODE 2)
(BV-CV-IF
(BITN OP-CODE 1)
(BV-CV (BV-ADDER-OUTPUT F A B)

(BV-ADDER-CARRY-OUT F A B)
(BV-ADDER-OVERFLOWP F A B))

(BV-CV (BV-ADDER-OUTPUT C A B)
(BV-ADDER-CARRY-OUT C A B)
(BV-ADDER-OVERFLOWP C A B)))

(BV-CV-IF
(BITN OP-CODE 1)
(BV-CV (BV-ADDER-OUTPUT

T A (NAT-TO-BV 0 (SIZE A)))
(BV-ADDER-CARRY-OUT
T A (NAT-TO-BV 0 (SIZE A)))
(BV-ADDER-OVERFLOWP
T A (NAT-TO-BV 0 (SIZE A))))

(BV-CV A F F)))))

Definition.
(BV-ALU-CV-RESULTS REG-FILE REAL-MEM C-FLAG)

=
(BV-ALU-CV

(A-VALUE-FOR-ALU-AFTER-OPRD-A-PRE-DECREMENT REG-FILE REAL-MEM)
(B-VALUE-FOR-ALU-AFTER-OPRD-B-PRE-DECREMENT REG-FILE REAL-MEM)
C-FLAG
(BV-ALU-OP-CODE (CURRENT-INSTRUCTION REG-FILE REAL-MEM)))

161

Definition.
(BV-ALU-OP-CODE I-REG)

=
(BV-IF (B-MOVE-OP I-REG)

(NAT-TO-BV 0 4)
(BV-OP-CODE I-REG))

Definition.
(BV-AND A B)

=
(IF (BTMP A)

(BTM)
(BITV (B-AND (BIT A) (BIT B))

(BV-AND (VEC A) (VEC B))))

Definition.
(BV-ASR A)

=
(V-ASR A)

Shell Definition.
Add the shell BV-CV of 3 arguments, with
recognizer function symbol BV-CVP,
accessors BV, C and V,
type restrictions (ONE-OF BITVP), (ONE-OF TRUEP FALSEP) and
(ONE-OF TRUEP FALSEP), and

default function symbols BTM, FALSE and FALSE.

Definition.
(BV-CV-IF C A B)

=
(BV-CV (BV-IF C (BV A) (BV B))

(B-IF C (C A) (C B))
(B-IF C (V A) (V B)))

Definition.
(BV-IF C A B)

=
(IF (BTMP A)

(BTM)
(BITV (B-IF C (BIT A) (BIT B))

(BV-IF C (VEC A) (VEC B))))

Definition.
(BV-LSR A)

=
(V-LSR A)

Definition.
(BV-NOT A)

=
(IF (BTMP A)

(BTM)
(BITV (B-NOT (BIT A))

(BV-NOT (VEC A))))

162

Definition.
(BV-OP-CODE I-REG)

=
(BITV (BITN I-REG 17)

(BITV (BITN I-REG 18)
(BITV (BITN I-REG 19)

(BITV (BITN I-REG 20) (BTM)))))

Definition.
(BV-OPRD-A I-REG)

=
(BITV (BITN I-REG 1)

(BITV (BITN I-REG 2)
(BITV (BITN I-REG 3) (BTM))))

Definition.
(BV-OPRD-B I-REG)

=
(BITV (BITN I-REG 6)

(BITV (BITN I-REG 7)
(BITV (BITN I-REG 8) (BTM))))

Definition.
(BV-OR A B)

=
(IF (BTMP A)

(BTM)
(BITV (B-OR (BIT A) (BIT B))

(BV-OR (VEC A) (VEC B))))

Definition.
(BV-ROR A C)

=
(V-ROR A C)

Definition.
(BV-SUBTRACTER-CARRY-OUT C A B)

=
(B-NOT (BV-ADDER-CARRY-OUT (B-NOT C)

(BV-NOT A)
B))

Definition.
(BV-SUBTRACTER-OUTPUT C A B)

=
(BV-ADDER-OUTPUT (B-NOT C)

(BV-NOT A)
B)

Definition.
(BV-SUBTRACTER-OVERFLOWP C A B)

=
(BV-ADDER-OVERFLOWP (B-NOT C)

(BV-NOT A)
B)

163

Definition.
(BV-TO-NAT X)

=
(IF (BTMP X)

0
(PLUS (IF (BIT X) 1 0)

(TIMES 2 (BV-TO-NAT (VEC X)))))

Definition.
(BV-TO-TC X)

=
(IF (BITN X (SIZE X))

(MINUS (BV-TO-NAT (INCR T (COMPL X))))
(BV-TO-NAT X))

Definition.
(BV-XOR A B)

=
(IF (BTMP A)

(BTM)
(BITV (B-XOR (BIT A) (BIT B))

(BV-XOR (VEC A) (VEC B))))

Definition.
(COMPL X)

=
(IF (BITVP X)

(IF (EQUAL X (BTM))
(BTM)
(BITV (NOT (BIT X)) (COMPL (VEC X))))

(BTM))

Definition.
(CURRENT-INSTRUCTION REG-FILE REAL-MEM)

=
(V-NTH (NTH 0 REG-FILE) REAL-MEM)

Definition.
(EXP I J)

=
(IF (ZEROP J)

1
(TIMES I (EXP I (SUB1 J))))

Definition.
(FM8502 STATE N)

=
(FM8502->M (SOFT (M-REGS STATE)

(M-MEM STATE)
(M-C-FLG STATE)
(M-V-FLG STATE)
(M-Z-FLG STATE)
(M-N-FLG STATE)
(FM8502-ORACLE N)))

164

Definition.
(FM8502->M TUPLE)

=
(M-STATE (NTH 0 TUPLE)

(NTH 2 TUPLE)
(NTH 3 TUPLE)
(NTH 5 TUPLE)
(NTH 4 TUPLE)
(NTH 1 TUPLE))

Definition.
(FM8502-ORACLE N)

=
(IF (ZEROP N)

NIL
(CONS 0 (FM8502-ORACLE (SUB1 N))))

Definition.
(INCR C X)

=
(IF (BITVP X)

(IF (EQUAL X (BTM))
(BTM)
(BITV (XOR C (BIT X))

(INCR (AND C (BIT X)) (VEC X))))
(BTM))

Shell Definition.
Add the shell M-STATE of 6 arguments, with
recognizer function symbol M-STATEP, and
accessors M-REGS, M-C-FLG, M-V-FLG, M-N-FLG, M-Z-FLG

and M-MEM.

Definition.
(NAT-TO-BV N SIZE)

=
(IF (ZEROP SIZE)

(BTM)
(BITV (IF (ZEROP (REMAINDER N 2)) F T)

(NAT-TO-BV (QUOTIENT N 2)
(SUB1 SIZE))))

Definition.
(NTH N LST)

=
(IF (ZEROP N)

(CAR LST)
(NTH (SUB1 N) (CDR LST)))

165

Definition.
(REAL-MEM-AFTER-ALU-WRITE REG-FILE REAL-MEM

C-FLAG V-FLAG Z-FLAG N-FLAG)
=

(UPDATE-V-NTH
(AND (B-STORE-ALU-RESULT-WITH-IFS

C-FLAG V-FLAG Z-FLAG N-FLAG
(CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(NOT (B-DIRECT-REG-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))))
(V-NTH (BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(REG-FILE-AFTER-OPRD-B-PRE-DECREMENT REG-FILE REAL-MEM))
REAL-MEM
(BV (BV-ALU-CV-RESULTS REG-FILE REAL-MEM C-FLAG)))

Definition.
(REG-FILE-AFTER-ALU-WRITE REG-FILE REAL-MEM

C-FLAG V-FLAG Z-FLAG N-FLAG)
=

(UPDATE-V-NTH
(AND (B-STORE-ALU-RESULT-WITH-IFS

C-FLAG V-FLAG Z-FLAG N-FLAG
(CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(B-DIRECT-REG-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM)))
(BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(REG-FILE-AFTER-OPRD-B-PRE-DECREMENT REG-FILE REAL-MEM)
(BV (BV-ALU-CV-RESULTS REG-FILE REAL-MEM C-FLAG)))

Definition.
(REG-FILE-AFTER-OPRD-A-POST-INCREMENT REG-FILE REAL-MEM

C-FLAG V-FLAG Z-FLAG N-FLAG)
=

(UPDATE-V-NTH
(B-INDIRECT-REG-A-INC (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(BV-OPRD-A (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(REG-FILE-AFTER-ALU-WRITE REG-FILE REAL-MEM

C-FLAG V-FLAG Z-FLAG N-FLAG)
(V-NAT-INC (V-NTH (BV-OPRD-A (CURRENT-INSTRUCTION REG-FILE REAL-MEM))

(REG-FILE-AFTER-ALU-WRITE
REG-FILE REAL-MEM
C-FLAG V-FLAG Z-FLAG N-FLAG))))

Definition.
(REG-FILE-AFTER-OPRD-A-PRE-DECREMENT REG-FILE REAL-MEM)

=
(UPDATE-V-NTH
(B-INDIRECT-REG-A-DEC (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(BV-OPRD-A (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(REG-FILE-AFTER-PC-INCREMENT REG-FILE)
(V-NAT-DEC (V-NTH (BV-OPRD-A (CURRENT-INSTRUCTION REG-FILE

REAL-MEM))
(REG-FILE-AFTER-PC-INCREMENT REG-FILE))))

166

Definition.
(REG-FILE-AFTER-OPRD-B-POST-INCREMENT REG-FILE REAL-MEM

C-FLAG V-FLAG Z-FLAG N-FLAG)
=

(UPDATE-V-NTH
(B-INDIRECT-REG-B-INC (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(REG-FILE-AFTER-OPRD-A-POST-INCREMENT REG-FILE REAL-MEM

C-FLAG V-FLAG Z-FLAG N-FLAG)
(V-NAT-INC (V-NTH (BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE

REAL-MEM))
(REG-FILE-AFTER-OPRD-A-POST-INCREMENT REG-FILE

REAL-MEM
C-FLAG
V-FLAG
Z-FLAG
N-FLAG))))

Definition.
(REG-FILE-AFTER-OPRD-B-PRE-DECREMENT REG-FILE REAL-MEM)

=
(UPDATE-V-NTH
(B-INDIRECT-REG-B-DEC (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
(REG-FILE-AFTER-OPRD-A-PRE-DECREMENT REG-FILE REAL-MEM)
(V-NAT-DEC (V-NTH (BV-OPRD-B (CURRENT-INSTRUCTION REG-FILE

REAL-MEM))
(REG-FILE-AFTER-OPRD-A-PRE-DECREMENT REG-FILE

REAL-MEM))))

Definition.
(REG-FILE-AFTER-PC-INCREMENT REG-FILE)

=
(UPDATE-NTH T

0
REG-FILE
(V-NAT-INC (NTH 0 REG-FILE)))

Definition.
(SIZE A)

=
(IF (BITVP A)

(IF (EQUAL A (BTM))
0
(ADD1 (SIZE (VEC A))))

0)

167

Definition.
(SOFT REG-FILE REAL-MEM C-FLAG V-FLAG Z-FLAG N-FLAG LST)

=
(IF (NLISTP LST)

(LIST REG-FILE REAL-MEM C-FLAG V-FLAG Z-FLAG N-FLAG)
(SOFT (REG-FILE-AFTER-OPRD-B-POST-INCREMENT

REG-FILE REAL-MEM
C-FLAG V-FLAG Z-FLAG N-FLAG)

(REAL-MEM-AFTER-ALU-WRITE REG-FILE REAL-MEM
C-FLAG V-FLAG Z-FLAG N-FLAG)

(UPDATE-V (B-C-SET (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
C-FLAG
(C (BV-ALU-CV-RESULTS REG-FILE REAL-MEM C-FLAG)))

(UPDATE-V (B-V-SET (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
V-FLAG
(V (BV-ALU-CV-RESULTS REG-FILE REAL-MEM C-FLAG)))

(UPDATE-V (B-Z-SET (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
Z-FLAG
(ZEROP (BV-TO-NAT (BV (BV-ALU-CV-RESULTS REG-FILE

REAL-MEM
C-FLAG)))))

(UPDATE-V (B-N-SET (CURRENT-INSTRUCTION REG-FILE REAL-MEM))
N-FLAG
(NEGATIVEP
(BV-TO-TC (BV (BV-ALU-CV-RESULTS REG-FILE

REAL-MEM
C-FLAG)))))

(CDR LST)))

Definition.
(TRUNC A N)

=
(IF (ZEROP N)

(BTM)
(BITV (BIT A)

(TRUNC (VEC A) (SUB1 N))))

Definition.
(UPDATE-NTH C N LST VALUE)

=
(IF (AND (TRUEP C) (LISTP LST))

(IF (ZEROP N)
(CONS VALUE (CDR LST))
(CONS (CAR LST)

(UPDATE-NTH C
(SUB1 N)
(CDR LST)
VALUE)))

LST)

Definition.
(UPDATE-V C CELL VALUE)

=
(IF (TRUEP C) VALUE CELL)

168

Definition.
(UPDATE-V-NTH C V-N LST VALUE)

=
(UPDATE-NTH C

(BV-TO-NAT V-N)
LST VALUE)

Definition.
(V-APPEND A B)

=
(IF (BTMP A)

B
(BITV (BIT A) (V-APPEND (VEC A) B)))

Definition.
(V-ASR A)

=
(IF (BTMP A)

(BTM)
(V-APPEND (VEC A)

(BITV (BITN A (SIZE A)) (BTM))))

Definition.
(V-LSR A)

=
(IF (BTMP A)

(BTM)
(V-APPEND (VEC A) (BITV F (BTM))))

Definition.
(V-NAT-DEC A)

=
(IF (ZEROP (BV-TO-NAT A))

(NAT-TO-BV (SUB1 (EXP 2 (SIZE A)))
(SIZE A))

(NAT-TO-BV (SUB1 (BV-TO-NAT A))
(SIZE A)))

Definition.
(V-NAT-INC A)

=
(NAT-TO-BV (ADD1 (BV-TO-NAT A))

(SIZE A))

Definition.
(V-NTH V-N LST)

=
(NTH (BV-TO-NAT V-N) LST)

Definition.
(V-ROR A C)

=
(IF (BTMP A)

(BTM)
(V-APPEND (VEC A) (BITV C (BTM))))

Definition.
(XOR X Y)

=
(COND (X (IF Y F T)) (Y T) (T F))

169

9. The Formal Implementation

In this chapter we formally present the implementation of Piton on the FM8502. As before, we divide
the chapter into two parts: a guide to the formal listing and then the listing itself.

To make this chapter self-contained we have included here the definitions of approximately three dozen
minor utility functions that are also displayed in the formal presentation of Piton or in the formal presen-
tation of FM8502. The functions in the first category are: ADP-NAME, ADP-OFFSET, AREA-NAME,
BINDINGS, DEFINITION, EXP, FIND-LABEL, FORMAL-VARS, LABELLEDP, LENGTH,
LOCAL-VARS, NAME, P-CTRL-STK-SIZE, P-FRAME-SIZE, P-STATE, PC, POP, PROGRAM-BODY,
RET-PC, REVERSE, SUB-ADDR, SUB-ADP, TAG, TEMP-VAR-DCLS, TOP, TYPE, UNLABEL and
UNTAG. The functions in the second category are: BITV, BTMP, COMPL, EXP, INCR, M-STATE,
NAT-TO-BV, V-APPEND, and XOR. These redundant definitions consume about 180 lines of text, less
than 3 pages.

9.1. A Guide to the Formal Implementation

The FM8502 implementation of Piton is expressed in the function LOAD,

Definition.
(LOAD P)

=
(I->M (R->I (P->R P))).

Observe that LOAD is the composition of three functions. The innermost, called P->R, is the implemen-
tation of the resource representation phase; it maps a p-state into what we call an r-state. In the next phase
we compile the Piton source code into symbolic i-code. This is implemented by the function R->I, which
maps an r-state into what we call an i-state. The final phase, implemented by I->M, does link-assembling
and maps i-states into m-states.

We discuss each phase in turn.

9.1.1. The Formal Definition of Resource Representation

R-states are represented by the new shell class

Shell Definition.
Add the shell R-STATE of 15 arguments, with
recognizer function symbol R-STATEP, and
accessors R-PC, R-CFP, R-CSP, R-TSP, R-X, R-Y,
R-C-FLG, R-V-FLG, R-N-FLG, R-Z-FLG,
R-PROG-SEGMENT, R-USR-DATA-SEGMENT, R-SYS-DATA-SEGMENT,
R-WORD-SIZE and R-PSW.

The r-state corresponding to a given p-state has exactly the same program counter, program segment, data
segment (here called ‘‘user data segment’’), word size and psw. However, r-states also have five additional
‘‘registers’’ (the cfp, csp, tsp, x and y registers), four ‘‘flag registers,’’ and a ‘‘system data segment.’’
These components of an r-state specify how the corresponding resources of the underlying FM8502
machine will be used to implement the resources of the Piton machine.

The r-state corresponding to a given p-state is produced by the function P->R, which implements the

170

resource representation phase of LOAD.

Definition.
(P->R P)

=
(R-STATE (P-PC P)

(P->R_CFP (P-CTRL-STK P)
(P-MAX-CTRL-STK-SIZE P))

(P->R_CSP (P-CTRL-STK P)
(P-MAX-CTRL-STK-SIZE P))

(P->R_TSP (P-TEMP-STK P)
(P-MAX-TEMP-STK-SIZE P))

’(NAT 0)
’(NAT 0)
’(BOOL F)
’(BOOL F)
’(BOOL F)
’(BOOL F)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P->R_SYS-DATA-SEGMENT (P-CTRL-STK P)

(P-MAX-CTRL-STK-SIZE P)
(P-TEMP-STK P)
(P-MAX-TEMP-STK-SIZE P))

(P-WORD-SIZE P)
(P-PSW P))

Observe that the program counter, program segment, data segment, word size and psw of the given p-state
are copied as is into the r-state. The three stack registers are initialized by the three functions P->R_CFP,
P->R_CSP, and P->R_TSP. The two temporary registers are initialized to the natural number 0 and the
four flags are all initially F. The system data segment of the r-state is determined by
P->R_SYS-DATA-SEGMENT.

We will look in detail at the handling of the temporary stack, since it is the simpler of the two stacks.
The initial stack pointer, the tsp register, is computed by

Definition.
(P->R_TSP STK MAX)

=
(TAG ’SYS-ADDR

(CONS ’TSTK
(DIFFERENCE MAX (LENGTH STK)))).

Note that this function yields a system data address into the TSTK area. The arithmetic accounts for the
fact that the stack is loaded into the high end of the TSTK area.

The system data segment itself is constructed by

171

Definition.
(P->R_SYS-DATA-SEGMENT CTRL-STK MAX-CTRL-STK-SIZE

TEMP-STK MAX-TEMP-STK-SIZE)
=

(LIST (P->R_CTRL-STK CTRL-STK MAX-CTRL-STK-SIZE)
(P->R_TEMP-STK TEMP-STK MAX-TEMP-STK-SIZE)
(LIST ’FULL-CTRL-STK-ADDR

(TAG ’SYS-ADDR ’(CSTK . 0)))
(LIST ’FULL-TEMP-STK-ADDR

(TAG ’SYS-ADDR ’(TSTK . 0)))
(LIST ’EMPTY-TEMP-STK-ADDR

(TAG ’SYS-ADDR
(CONS ’TSTK MAX-TEMP-STK-SIZE)))),

which describes a segment with five areas. The second one is the temporary stack area, constructed by

Definition.
(P->R_TEMP-STK TEMP-STK MAX-TEMP-STK-SIZE)

=
(CONS ’TSTK

(APPEND (NAT-0S (DIFFERENCE MAX-TEMP-STK-SIZE
(LENGTH TEMP-STK)))

(APPEND TEMP-STK
(LIST (TAG ’NAT 0))))).

Observe that the temporary stack area is named TSTK and is associated with an array of length
MAX-TEMP-STK-SIZE+1. The array is initialized with the temporary stack from the p-state, padded at
the high end of the area by a single natural number 0 and padded on the low end by as many 0’s as
necessary to make the array the correct length.

The construction of the control stack area is much more subtle but easily followed from the informal
discussion.

9.1.2. The Formal Definition of the Compiler

The compilation phase translates Piton to i-code. The state transformation associated with this is
implemented by R->I, which converts an r-state into an i-state, where

Shell Definition.
Add the shell I-STATE of 15 arguments, with
recognizer function symbol I-STATEP, and
accessors I-PC, I-CFP, I-CSP,I-TSP, I-X, I-Y,
I-C-FLG, I-V-FLG, I-N-FLG,I-Z-FLG,
I-PROG-SEGMENT, I-USR-DATA-SEGMENT,I-SYS-DATA-SEGMENT,
I-WORD-SIZE and I-PSW.

The i-state corresponding to a given r-state is identical in all components except the program counter, the
program segment, and the psw. The code in the i-state program segment is produced by compiling the
Piton code in the r-state program segment. The program counter of the i-state is arranged to point to the
beginning of the i-code block for the current instruction in the r-state. The psw of the i-state is either RUN
or an error—HALT is coerced to RUN.

The definition of R->I is

172

Definition.
(R->I R)

=
(I-STATE (R->I_PC (R-PC R) (R-PROG-SEGMENT R))

(R-CFP R)
(R-CSP R)
(R-TSP R)
(R-X R)
(R-Y R)
(R-C-FLG R)
(R-V-FLG R)
(R-N-FLG R)
(R-Z-FLG R)
(ICOMPILE (R-PROG-SEGMENT R))
(R-USR-DATA-SEGMENT R)
(R-SYS-DATA-SEGMENT R)
(R-WORD-SIZE R)
(R->I_PSW (R-PSW R))).

The compiler is ICOMPILE.

Definition.
(ICOMPILE PROGRAMS)

=
(IF (NLISTP PROGRAMS)

NIL
(CONS (ICOMPILE-PROGRAM (CAR PROGRAMS))

(ICOMPILE (CDR PROGRAMS))))

This function maps over the list of programs and compiles each with ICOMPILE-PROGRAM.

Definition.
(ICOMPILE-PROGRAM PROGRAM)

=
(CONS (NAME PROGRAM)

(APPEND (GENERATE-PRELUDE PROGRAM)
(APPEND (ICOMPILE-PROGRAM-BODY (PROGRAM-BODY PROGRAM)

0 PROGRAM)
(GENERATE-POSTLUDE PROGRAM))))

ICOMPILE-PROGRAM conses the program name onto the result of compiling the body of the program and
sandwiching it between the prelude and the postlude. The cons pair returned becomes the definition of a
program area in the program segment of the i-state.

The prelude is generated with GENERATE-PRELUDE,

Definition.
(GENERATE-PRELUDE PROGRAM)

=
(APPEND (LIST (DL (CONS (NAME PROGRAM) ’(PRELUDE))

’(PRELUDE)
’(CPUSH_CFP))

’(MOVE_CFP_CSP))
(APPEND (GENERATE-PRELUDE1 (REVERSE (TEMP-VAR-DCLS PROGRAM)))

(GENERATE-PRELUDE2 (FORMAL-VARS PROGRAM)))).

Note that the block of code generated by GENERATE-PRELUDE begins with a def-label form defining a
label of the form (name PRELUDE). The first instruction is the CPUSH_CFP that pushes the old cfp

173

word of the new frame. The next instruction saves csp in cfp. Then we lay down the code to initialize
the temporary variables (generated by GENERATE-PRELUDE1) and the formals
(GENERATE-PRELUDE2).

Below is GENERATE-PRELUDE1. It generates a list of CPUSH_* instructions, each of which is
followed by the initial value specified in the temporary variable declaration of the program being compiled.

Definition.
(GENERATE-PRELUDE1 TEMP-VAR-DCLS)

=
(IF (NLISTP TEMP-VAR-DCLS)

NIL
(CONS ’(CPUSH_*)

(CONS (CADAR TEMP-VAR-DCLS)
(GENERATE-PRELUDE1 (CDR TEMP-VAR-DCLS)))))

GENERATE-PRELUDE2 generates a list of CPUSH_<TSP>+ instructions as long as the formals of the
program. These instructions move the actual parameters from the temporary stack to the control stack.

Definition.
(GENERATE-PRELUDE2 FORMAL-VARS)

=
(IF (NLISTP FORMAL-VARS)

NIL
(CONS ’(CPUSH_<TSP>+)

(GENERATE-PRELUDE2 (CDR FORMAL-VARS))))

The generation of the postlude is similar in spirit to the examples given here.

The body of each program is compiled with

Definition.
(ICOMPILE-PROGRAM-BODY LST PCN PROGRAM)

=
(IF (NLISTP LST)

NIL
(APPEND (ICODE (CAR LST) PCN PROGRAM)

(ICOMPILE-PROGRAM-BODY (CDR LST)
(ADD1 PCN)
PROGRAM))).

The function ICODE takes a Piton instruction, together with the offset (PCN) at which it occurs in the
body and the entire program (PROGRAM) containing the instruction, and generates the i-code for the given
instruction. ICODE works by using ICODE1 to generate the i-code and then attaching a label to that block
to mark the location at which the corresponding Piton PC begins. (The definition of ICODE is on page
181). ICODE1 is simply another big case statement on the opcode of the Piton instruction.

Each Piton instruction has an i-code generator. Our naming convention is that the code for the Piton
instruction with name opcode is generated by the function named ICODE-opcode.

Below we show the generator for the PUSH-CONSTANT instruction, i.e., ICODE-PUSH-CONSTANT.

174

Definition.
(ICODE-PUSH-CONSTANT INS PCN PROGRAM)

=
(LIST ’(TPUSH_*)

(COND ((EQUAL (CADR INS) ’PC)
(TAG ’PC

(CONS (NAME PROGRAM) (ADD1 PCN))))
((NLISTP (CADR INS))
(PC (CADR INS) PROGRAM))
(T (CADR INS))))

Observe that the i-code generated for PUSH-CONSTANT contains two items. The first is a TPUSH_*

instruction. The second is the Piton object to be used as immediate data for the TPUSH_*.

A more interesting instruction, perhaps, is PUSH-LOCAL.

Definition.
(ICODE-PUSH-LOCAL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’NAT
(OFFSET-FROM-CSP (CADR INS) PROGRAM))

’(ADD_X{N}_CSP)
’(TPUSH_<X{S}>))

This function generates a list of four i-code instructions and data, using OFFSET-FROM-CSP to determine
the position within the local variables of the local variable to be pushed.

This completes our tour through the compilation phase. The reader is invited to study the i-code
generators for each of the Piton instructions.

9.1.3. The Formal Definition of the Link-Assembler

The link-assembler converts an i-state to an m-state by replacing all the i-code instructions in the
program segment by bit vectors and all the symbolic data objects (in the stacks, programs, registers and
data) by bit vectors. The implementation of the link-assembler is the function

175

Definition.
(I->M I)

=
(M-STATE (LIST (LINK-WORD (I-PC I) LINK-TABLES (I-WORD-SIZE I))

(LINK-WORD (I-CFP I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD (I-CSP I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD (I-TSP I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD (I-X I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD (I-Y I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD ’(NAT 0) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD ’(NAT 0) LINK-TABLES (I-WORD-SIZE I)))

(BOOL-TO-LOGICAL (UNTAG (I-C-FLG I)))
(BOOL-TO-LOGICAL (UNTAG (I-V-FLG I)))
(BOOL-TO-LOGICAL (UNTAG (I-N-FLG I)))
(BOOL-TO-LOGICAL (UNTAG (I-Z-FLG I)))
(LINK-MEM (I-PROG-SEGMENT I)

(I-USR-DATA-SEGMENT I)
(I-SYS-DATA-SEGMENT I)
(I-LINK-TABLES I)
(I-WORD-SIZE I))).

The LIST-expression in the first argument of the m-state describes the 8 registers. Next come the four
condition code registers. Finally, comes the memory. The memory is produced by mapping over the
program, user data, and system data segments and appending together the results of linking every word
with the function LINK-WORD. Before this is done the link tables are computed by I-LINK-TABLES.

LINK-WORD operates by first determining whether the word is an i-code instruction or a data word and
using the appropriate linker.

Definition.
(LINK-WORD X LINK-TABLES WORD-SIZE)

=
(IF (ICODE-INSTRUCTIONP X)

(LINK-INSTR-WORD X WORD-SIZE)
(LINK-DATA-WORD X LINK-TABLES WORD-SIZE))

I-code instructions are linked with

Definition.
(LINK-INSTR-WORD INS WORD-SIZE)

=
(MCI (CADR (ASSOC (CAR INS)

(LINK-INSTRUCTION-ALIST)))
WORD-SIZE).

The ASSOC above looks up the i-code opcode in the table (LINK-INSTRUCTION-ALIST) that expands
it into an assembly instruction. Then MCI (Machine Code Instruction) assembles the instruction into a bit
vector.

176

Definition.
(MCI INS WORD-SIZE)

=
(PACK-INSTRUCTION (EXTRACT-OP (CAR INS))

(EXTRACT-MOVE-BIT (CAR INS))
0
(EXTRACT-CVNZ (CADR INS))
(EXTRACT-MODE (CADDR INS))
(EXTRACT-REG (CADDR INS))
(EXTRACT-MODE (CADDDR INS))
(EXTRACT-REG (CADDDR INS))
WORD-SIZE)

If, on the other hand, the word to be linked is a data word, LINK-DATA-WORD is used. It case splits on
the type of the data word and uses the appropriate mapping to bit vectors.

Definition.
(LINK-DATA-WORD X LINK-TABLES WORD-SIZE)

=
(CASE (TYPE X)

(NAT (NAT-TO-BV (UNTAG X) WORD-SIZE))
(INT (TC-TO-BV (UNTAG X) WORD-SIZE))
(BITV (BITV-TO-BV (UNTAG X) WORD-SIZE))
(BOOL (BOOL-TO-BV (UNTAG X) WORD-SIZE))
(ADDR (ADDR-TO-BV (UNTAG X)

(USR-DATA-LINKS LINK-TABLES)
WORD-SIZE))

(SUBR (SUBR-TO-BV (UNTAG X)
(PROG-LINKS LINK-TABLES)
WORD-SIZE))

(SYS-ADDR (SYS-ADDR-TO-BV (UNTAG X)
(SYS-DATA-LINKS LINK-TABLES)
WORD-SIZE))

(PC (LABEL-TO-BV (UNTAG X)
(PROG-LABEL-TABLES LINK-TABLES)
WORD-SIZE))

(IPC (IPC-TO-BV (UNTAG X)
(PROG-LINKS LINK-TABLES)
WORD-SIZE))

(OTHERWISE (NAT-TO-BV 0 WORD-SIZE)))

This completes our tour through the link-assembler. The reader is urged to read the code for assembling
instructions and mapping each type of data object into bit vectors.

Reader uninterested in pursuing the formal definition of the implementation should skip to page 205.

9.2. Alphabetical Listing of the Implementation

Definition.
(ABSOLUTE-ADDRESS ADP LINK-TABLE)

=
(PLUS (BASE-ADDRESS (ADP-NAME ADP)

LINK-TABLE)
(ADP-OFFSET ADP))

177

Definition.
(ADDR-TO-BV ADP USR-DATA-LINKS WORD-SIZE)

=
(NAT-TO-BV (ABSOLUTE-ADDRESS ADP USR-DATA-LINKS)

WORD-SIZE)

Definition.
(ADP-NAME ADP)

=
(CAR ADP)

Definition.
(ADP-OFFSET ADP)

=
(CDR ADP)

Definition.
(AREA-NAME X)

=
(ADP-NAME (UNTAG X))

Definition.
(BASE-ADDRESS NAME LINK-TABLE)

=
(CDR (ASSOC NAME LINK-TABLE))

Definition.
(BINDINGS FRAME)

=
(CAR FRAME)

Shell Definition.
Add the shell BITV of 2 arguments, with
base function symbol BTM,
recognizer function symbol BITVP,
accessors BIT and VEC,
type restrictions (ONE-OF TRUEP FALSEP) and (ONE-OF BITVP), and
default function symbols FALSE and BTM.

Definition.
(BITV-TO-BV LST WORD-SIZE)

=
(IF (ZEROP WORD-SIZE)

(BTM)
(V-APPEND (BITV-TO-BV (CDR LST)

(SUB1 WORD-SIZE))
(BITV (IF (EQUAL (CAR LST) 0) F T)

(BTM))))

Definition.
(BOOL-TO-BV B WORD-SIZE)

=
(IF (EQUAL B ’F)

(NAT-TO-BV 0 WORD-SIZE)
(NAT-TO-BV 1 WORD-SIZE))

Definition.
(BOOL-TO-LOGICAL B)

=
(IF (EQUAL B ’F) F T)

178

Definition.
(BTMP A)

=
(IF (BITVP A) (EQUAL A (BTM)) T)

Definition.
(COMPL X)

=
(IF (BITVP X)

(IF (EQUAL X (BTM))
(BTM)
(BITV (NOT (BIT X)) (COMPL (VEC X))))

(BTM))

Definition.
(DEFINITION NAME ALIST)

=
(ASSOC NAME ALIST)

Definition.
(DL LAB COMMENT INS)

=
(LIST ’DL LAB COMMENT INS)

Definition.
(DL-BLOCK LAB COMMENT BLOCK)

=
(CONS (DL LAB COMMENT (CAR BLOCK))

(CDR BLOCK))

Definition.
(EXP I J)

=
(IF (ZEROP J)

1
(TIMES I (EXP I (SUB1 J))))

Definition.
(EXTRACT-CVNZ FLG-NAMES)

=
(PLUS (TIMES (IF (MEMBER ’C FLG-NAMES) 1 0)

(EXP 2 3))
(TIMES (IF (MEMBER ’V FLG-NAMES) 1 0)

(EXP 2 2))
(TIMES (IF (MEMBER ’N FLG-NAMES) 1 0)

(EXP 2 1))
(TIMES (IF (MEMBER ’Z FLG-NAMES) 1 0)

(EXP 2 0)))

Definition.
(EXTRACT-MODE REG-SPEC)

=
(COND ((LITATOM REG-SPEC) 0)

((EQUAL (CDR REG-SPEC) NIL) 1)
((EQUAL (CAR REG-SPEC) -1) 2)
(T 3))

179

Definition.
(EXTRACT-MOVE-BIT OPCODE)

=
(IF (MEMBER OPCODE

’(MOVE MOVE-NC MOVE-C MOVE-NV MOVE-V MOVE-NZ MOVE-Z MOVE-NN
MOVE-N))

1 0)

Definition.
(EXTRACT-OP OPCODE)

=
(CADR (ASSOC OPCODE

’((INCR 1)
(ADDC 2)
(ADD 3)
(NEG 4)
(DECR 5)
(SUBB 6)
(SUB 7)
(ROR 8)
(ASR 9)
(LSR 10)
(XOR 11)
(OR 12)
(AND 13)
(NOT 14)
(MOVE 15)
(MOVE-NC 0)
(MOVE-C 1)
(MOVE-NV 2)
(MOVE-V 3)
(MOVE-NZ 4)
(MOVE-Z 5)
(MOVE-NN 6)
(MOVE-N 7))))

Definition.
(EXTRACT-REG REG-SPEC)

=
(CADR (ASSOC (EXTRACT-REG1 REG-SPEC)

’((PC 0)
(CFP 1)
(CSP 2)
(TSP 3)
(X 4)
(Y 5))))

Definition.
(EXTRACT-REG1 REG-SPEC)

=
(COND ((LITATOM REG-SPEC) REG-SPEC)

((EQUAL (CDR REG-SPEC) NIL)
(CAR REG-SPEC))
((EQUAL (CAR REG-SPEC) -1)
(CADR REG-SPEC))
(T (CAR REG-SPEC)))

180

Definition.
(FIND-LABEL X LST)

=
(COND ((NLISTP LST) 0)

((AND (LABELLEDP (CAR LST))
(EQUAL X (CADAR LST)))

0)
(T (ADD1 (FIND-LABEL X (CDR LST)))))

Definition.
(FIND-POSITION-OF-VAR VAR LST)

=
(COND ((NLISTP LST) 0)

((EQUAL VAR (CAR LST)) 0)
(T (ADD1 (FIND-POSITION-OF-VAR VAR

(CDR LST)))))

Definition.
(FORMAL-VARS D)

=
(CADR D)

Definition.
(GENERATE-POSTLUDE PROGRAM)

=
(LIST (DL (CONS (NAME PROGRAM)

(LENGTH (PROGRAM-BODY PROGRAM)))
’(POSTLUDE)
’(MOVE_CSP_CFP))

’(CPOP_CFP)
’(CPOP_PC))

Definition.
(GENERATE-PRELUDE PROGRAM)

=
(APPEND (LIST (DL (CONS (NAME PROGRAM) ’(PRELUDE))

’(PRELUDE)
’(CPUSH_CFP))

’(MOVE_CFP_CSP))
(APPEND (GENERATE-PRELUDE1 (REVERSE (TEMP-VAR-DCLS PROGRAM)))

(GENERATE-PRELUDE2 (FORMAL-VARS PROGRAM))))

Definition.
(GENERATE-PRELUDE1 TEMP-VAR-DCLS)

=
(IF (NLISTP TEMP-VAR-DCLS)

NIL
(CONS ’(CPUSH_*)

(CONS (CADAR TEMP-VAR-DCLS)
(GENERATE-PRELUDE1 (CDR TEMP-VAR-DCLS)))))

Definition.
(GENERATE-PRELUDE2 FORMAL-VARS)

=
(IF (NLISTP FORMAL-VARS)

NIL
(CONS ’(CPUSH_<TSP>+)

(GENERATE-PRELUDE2 (CDR FORMAL-VARS))))

181

Definition.
(I->M I)

=
(M-STATE (LIST (LINK-WORD (I-PC I) LINK-TABLES (I-WORD-SIZE I))

(LINK-WORD (I-CFP I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD (I-CSP I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD (I-TSP I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD (I-X I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD (I-Y I) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD ’(NAT 0) LINK-TABLES (I-WORD-SIZE I))
(LINK-WORD ’(NAT 0) LINK-TABLES (I-WORD-SIZE I)))

(BOOL-TO-LOGICAL (UNTAG (I-C-FLG I)))
(BOOL-TO-LOGICAL (UNTAG (I-V-FLG I)))
(BOOL-TO-LOGICAL (UNTAG (I-N-FLG I)))
(BOOL-TO-LOGICAL (UNTAG (I-Z-FLG I)))
(LINK-MEM (I-PROG-SEGMENT I)

(I-USR-DATA-SEGMENT I)
(I-SYS-DATA-SEGMENT I)
(I-LINK-TABLES I)
(I-WORD-SIZE I)))

Definition.
(I-LINK-TABLES I)

=
(LIST
(LINK-TABLE-FOR-SEGMENT (I-PROG-SEGMENT I)

0)
(LINK-TABLE-FOR-PROG-LABELS (I-PROG-SEGMENT I)

0)
(LINK-TABLE-FOR-SEGMENT (I-USR-DATA-SEGMENT I)

(SEGMENT-LENGTH (I-PROG-SEGMENT I)))
(LINK-TABLE-FOR-SEGMENT (I-SYS-DATA-SEGMENT I)

(PLUS
(SEGMENT-LENGTH (I-PROG-SEGMENT I))
(SEGMENT-LENGTH (I-USR-DATA-SEGMENT I)))))

Shell Definition.
Add the shell I-STATE of 15 arguments, with
recognizer function symbol I-STATEP, and
accessors I-PC, I-CFP, I-CSP, I-TSP, I-X, I-Y,
I-C-FLG, I-V-FLG, I-N-FLG, I-Z-FLG,
I-PROG-SEGMENT, I-USR-DATA-SEGMENT, I-SYS-DATA-SEGMENT,
I-WORD-SIZE and I-PSW.

Definition.
(ICODE INS PCN PROGRAM)

=
(DL-BLOCK (CONS (NAME PROGRAM) PCN)

INS
(ICODE1 (UNLABEL INS) PCN PROGRAM))

Definition.
(ICODE-ADD-ADDR INS PCN PROGRAM)

=
’((TPOP_X) (ADD_<TSP>{A}_X{N}))

182

Definition.
(ICODE-ADD-INT INS PCN PROGRAM)

=
’((TPOP_X) (ADD_<TSP>{I}_X{I}))

Definition.
(ICODE-ADD-INT-WITH-CARRY INS PCN PROGRAM)

=
’((TPOP_X)
(TPOP_Y)
(ASR_<C>_<TSP>_<TSP>{B})
(ADDC_<V>_X{I}_Y{I})
(MOVE-V_<TSP>_*)
(BOOL T)
(TPUSH_X))

Definition.
(ICODE-ADD-NAT INS PCN PROGRAM)

=
’((TPOP_X) (ADD_<TSP>{N}_X{N}))

Definition.
(ICODE-ADD-NAT-WITH-CARRY INS PCN PROGRAM)

=
’((TPOP_X)
(TPOP_Y)
(ASR_<C>_<TSP>_<TSP>{B})
(ADDC_<C>_X{N}_Y{N})
(MOVE-C_<TSP>_*)
(BOOL T)
(TPUSH_X))

Definition.
(ICODE-ADD1-INT INS PCN PROGRAM)

=
’((INCR_<TSP>_<TSP>{I}))

Definition.
(ICODE-ADD1-NAT INS PCN PROGRAM)

=
’((INCR_<TSP>_<TSP>{N}))

Definition.
(ICODE-AND-BITV INS PCN PROGRAM)

=
’((TPOP_X) (AND_<TSP>{V}_X{V}))

Definition.
(ICODE-AND-BOOL INS PCN PROGRAM)

=
’((TPOP_X) (AND_<TSP>{B}_X{B}))

183

Definition.
(ICODE-CALL INS PCN PROGRAM)

=
(LIST ’(CPUSH_*)

(TAG ’PC
(CONS (NAME PROGRAM) (ADD1 PCN)))

’(JUMP_*)
(TAG ’PC

(CONS (CADR INS) ’(PRELUDE))))

Definition.
(ICODE-DEPOSIT INS PCN PROGRAM)

=
’((TPOP_X) (TPOP_<X{A}>))

Definition.
(ICODE-DEPOSIT-TEMP-STK INS PCN PROGRAM)

=
’((TPOP_Y)
(INCR_Y_Y{N})
(MOVE_X_*)
(SYS-ADDR (EMPTY-TEMP-STK-ADDR . 0))
(MOVE_X_<X{S}>)
(SUB_X{S}_Y{N})
(TPOP_<X{S}>))

Definition.
(ICODE-DIV2-NAT INS PCN PROGRAM)

=
’((TPOP_<C>_X)
(LSR_<C>_X_X{N})
(TPUSH_X)
(TPUSH_*)
(NAT 0)
(MOVE-C_<TSP>_*)
(NAT 1))

Definition.
(ICODE-EQ INS PCN PROGRAM)

=
’((TPOP_X)
(XOR_<Z>_<TSP>_X)
(XOR_<TSP>_<TSP>)
(MOVE-Z_<TSP>_*)
(BOOL T))

Definition.
(ICODE-FETCH INS PCN PROGRAM)

=
’((TPOP_X) (TPUSH_<X{A}>))

184

Definition.
(ICODE-FETCH-TEMP-STK INS PCN PROGRAM)

=
’((TPOP_Y)
(INCR_Y_Y{N})
(MOVE_X_*)
(SYS-ADDR (EMPTY-TEMP-STK-ADDR . 0))
(MOVE_X_<X{S}>)
(SUB_X{S}_Y{N})
(TPUSH_<X{S}>))

Definition.
(ICODE-INSTRUCTIONP INS)

=
(EQUAL (CDR INS) NIL)

Definition.
(ICODE-INT-TO-NAT INS PCN PROGRAM)

=
’((INT-TO-NAT))

Definition.
(ICODE-JUMP INS PCN PROGRAM)

=
(LIST ’(JUMP_*)

(PC (CADR INS) PROGRAM))

Definition.
(ICODE-JUMP-CASE INS PCN PROGRAM)

=
(APPEND ’((TPOP_X) (ADD_X_X{N}) (ADD_PC_X{N}))

(JUMP_*-LST (CDR INS) PROGRAM))

Definition.
(ICODE-JUMP-IF-TEMP-STK-EMPTY INS PCN PROGRAM)

=
(LIST ’(MOVE_Y_TSP)

’(MOVE_X_*)
’(SYS-ADDR (EMPTY-TEMP-STK-ADDR . 0))
’(MOVE_X_<X{S}>)
’(SUB_<Z>_X{S}_Y{S})
’(MOVE_X_*)
(PC (CADR INS) PROGRAM)
’(JUMP-Z_X))

Definition.
(ICODE-JUMP-IF-TEMP-STK-FULL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_TSP)

’(MOVE_Y_*)
’(SYS-ADDR (FULL-TEMP-STK-ADDR . 0))
’(MOVE_Y_<Y{S}>)
’(SUB_<Z>_X{S}_Y{S})
’(MOVE_X_*)
(PC (CADR INS) PROGRAM)
’(JUMP-Z_X))

185

Definition.
(ICODE-LOCN INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’NAT
(OFFSET-FROM-CSP (CADR INS) PROGRAM))

’(ADD_X{N}_CSP)
’(MOVE_X_<X{S}>)
’(ADD_X{N}_CSP)
’(TPUSH_<X{S}>))

Definition.
(ICODE-LSH-BITV INS PCN PROGRAM)

=
’((ADD_<TSP>_<TSP>{V}))

Definition.
(ICODE-LT-ADDR INS PCN PROGRAM)

=
’((TPOP_X)
(SUB_<C>_<TSP>{A}_X{A})
(XOR_<TSP>_<TSP>)
(MOVE-C_<TSP>_*)
(BOOL T))

Definition.
(ICODE-LT-INT INS PCN PROGRAM)

=
’((TPOP_X)
(SUB_<NV>_<TSP>{I}_X{I})
(MOVE_<TSP>_*)
(BOOL F)
(MOVE-V_<TSP>_*)
(BOOL T)
(MOVE_X_*)
(BOOL F)
(MOVE-N_X_*)
(BOOL T)
(XOR_<TSP>{B}_X{B}))

Definition.
(ICODE-LT-NAT INS PCN PROGRAM)

=
’((TPOP_X)
(SUB_<C>_<TSP>{N}_X{N})
(XOR_<TSP>_<TSP>)
(MOVE-C_<TSP>_*)
(BOOL T))

Definition.
(ICODE-MULT2-NAT INS PCN PROGRAM)

=
’((ADD_<TSP>_<TSP>{N}))

186

Definition.
(ICODE-MULT2-NAT-WITH-CARRY-OUT INS PCN PROGRAM)

=
’((TPOP_X)
(ADD_<C>_X_X{N})
(TPUSH_*)
(BOOL F)
(MOVE-C_<TSP>_*)
(BOOL T)
(TPUSH_X))

Definition.
(ICODE-NEG-INT INS PCN PROGRAM)

=
’((NEG_<TSP>_<TSP>{I}))

Definition.
(ICODE-NO-OP INS PCN PROGRAM)

=
’((MOVE_X_X))

Definition.
(ICODE-NOT-BITV INS PCN PROGRAM)

=
’((NOT_<TSP>_<TSP>{V}))

Definition.
(ICODE-NOT-BOOL INS PCN PROGRAM)

=
’((XOR_<TSP>{B}_*{B}) (BOOL T))

Definition.
(ICODE-OR-BITV INS PCN PROGRAM)

=
’((TPOP_X) (OR_<TSP>{V}_X{V}))

Definition.
(ICODE-OR-BOOL INS PCN PROGRAM)

=
’((TPOP_X) (OR_<TSP>{B}_X{B}))

Definition.
(ICODE-POP INS PCN PROGRAM)

=
’((TPOP_X))

Definition.
(ICODE-POP* INS PCN PROGRAM)

=
(LIST ’(ADD_TSP_*{N})

(TAG ’NAT (CADR INS)))

Definition.
(ICODE-POP-CALL INS PCN PROGRAM)

=
(LIST ’(TPOP_X)

’(CPUSH_*)
(TAG ’PC

(CONS (NAME PROGRAM) (ADD1 PCN)))
’(JUMP_X{SUBR}))

187

Definition.
(ICODE-POP-GLOBAL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’ADDR (CONS (CADR INS) 0))
’(TPOP_<X{A}>))

Definition.
(ICODE-POP-LOCAL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’NAT
(OFFSET-FROM-CSP (CADR INS) PROGRAM))

’(ADD_X{N}_CSP)
’(TPOP_<X{S}>))

Definition.
(ICODE-POP-LOCN INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’NAT
(OFFSET-FROM-CSP (CADR INS) PROGRAM))

’(ADD_X{N}_CSP)
’(MOVE_X_<X{S}>)
’(ADD_X{N}_CSP)
’(TPOP_<X{S}>))

Definition.
(ICODE-POPJ INS PCN PROGRAM)

=
’((TPOP_PC))

Definition.
(ICODE-POPN INS PCN PROGRAM)

=
’((TPOP_X) (ADD_TSP_X{N}))

Definition.
(ICODE-PUSH-CONSTANT INS PCN PROGRAM)

=
(LIST ’(TPUSH_*)

(COND ((EQUAL (CADR INS) ’PC)
(TAG ’PC

(CONS (NAME PROGRAM) (ADD1 PCN))))
((NLISTP (CADR INS))
(PC (CADR INS) PROGRAM))
(T (CADR INS))))

Definition.
(ICODE-PUSH-CTRL-STK-FREE-SIZE INS PCN PROGRAM)

=
’((MOVE_X_*)
(SYS-ADDR (FULL-CTRL-STK-ADDR . 0))
(MOVE_X_<X{S}>)
(TPUSH_CSP)
(SUB_<TSP>{S}_X{S}))

188

Definition.
(ICODE-PUSH-GLOBAL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’ADDR (CONS (CADR INS) 0))
’(TPUSH_<X{A}>))

Definition.
(ICODE-PUSH-LOCAL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’NAT
(OFFSET-FROM-CSP (CADR INS) PROGRAM))

’(ADD_X{N}_CSP)
’(TPUSH_<X{S}>))

Definition.
(ICODE-PUSH-TEMP-STK-FREE-SIZE INS PCN PROGRAM)

=
’((MOVE_X_*)
(SYS-ADDR (FULL-TEMP-STK-ADDR . 0))
(MOVE_X_<X{S}>)
(TPUSH_TSP)
(SUB_<TSP>{S}_X{S}))

Definition.
(ICODE-PUSH-TEMP-STK-INDEX INS PCN PROGRAM)

=
(LIST ’(MOVE_Y_TSP)

’(MOVE_X_*)
’(SYS-ADDR (EMPTY-TEMP-STK-ADDR . 0))
’(MOVE_X_<X{S}>)
’(SUB_<Z>_X{S}_Y{S})
’(TPUSH_X)
’(MOVE_X_*)
(TAG ’NAT (ADD1 (CADR INS)))
’(SUB_<TSP>{N}_X{N}))

Definition.
(ICODE-PUSHJ INS PCN PROGRAM)

=
(LIST ’(TPUSH_*)

(TAG ’PC
(CONS (NAME PROGRAM) (ADD1 PCN)))

’(JUMP_*)
(PC (CADR INS) PROGRAM))

Definition.
(ICODE-RET INS PCN PROGRAM)

=
(LIST ’(JUMP_*)

(TAG ’PC
(CONS (NAME PROGRAM)

(LENGTH (PROGRAM-BODY PROGRAM)))))

Definition.
(ICODE-RSH-BITV INS PCN PROGRAM)

=
’((LSR_<TSP>_<TSP>{V}))

189

Definition.
(ICODE-SET-GLOBAL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’ADDR (CONS (CADR INS) 0))
’(MOVE_<X{A}>_<TSP>))

Definition.
(ICODE-SET-LOCAL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’NAT
(OFFSET-FROM-CSP (CADR INS) PROGRAM))

’(ADD_X{N}_CSP)
’(MOVE_<X{S}>_<TSP>))

Definition.
(ICODE-SUB-ADDR INS PCN PROGRAM)

=
’((TPOP_X) (SUB_<TSP>{A}_X{N}))

Definition.
(ICODE-SUB-INT INS PCN PROGRAM)

=
’((TPOP_X) (SUB_<TSP>{I}_X{I}))

Definition.
(ICODE-SUB-INT-WITH-CARRY INS PCN PROGRAM)

=
’((TPOP_Y)
(TPOP_X)
(ASR_<C>_<TSP>_<TSP>{B})
(SUBB_<V>_X{I}_Y{I})
(MOVE-V_<TSP>_*)
(BOOL T)
(TPUSH_X))

Definition.
(ICODE-SUB-NAT INS PCN PROGRAM)

=
’((TPOP_X) (SUB_<TSP>{N}_X{N}))

Definition.
(ICODE-SUB-NAT-WITH-CARRY INS PCN PROGRAM)

=
’((TPOP_Y)
(TPOP_X)
(ASR_<C>_<TSP>_<TSP>{B})
(SUBB_<C>_X{N}_Y{N})
(MOVE-C_<TSP>_*)
(BOOL T)
(TPUSH_X))

Definition.
(ICODE-SUB1-INT INS PCN PROGRAM)

=
’((DECR_<TSP>_<TSP>{I}))

190

Definition.
(ICODE-SUB1-NAT INS PCN PROGRAM)

=
’((DECR_<TSP>_<TSP>{N}))

Definition.
(ICODE-TEST-BITV-AND-JUMP INS PCN PROGRAM)

=
(IF (EQUAL (CADR INS) ’ALL-ZERO)

(LIST ’(TPOP{V}_<Z>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-Z_X))

(LIST ’(TPOP{V}_<Z>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-NZ_X)))

Definition.
(ICODE-TEST-BOOL-AND-JUMP INS PCN PROGRAM)

=
(IF (EQUAL (CADR INS) ’T)

(LIST ’(TPOP{B}_<Z>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-NZ_X))

(LIST ’(TPOP{B}_<Z>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-Z_X)))

191

Definition.
(ICODE-TEST-INT-AND-JUMP INS PCN PROGRAM)

=
(CASE (CAR (CDR INS))

(ZERO (LIST ’(TPOP{I}_<ZN>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-Z_X)))

(NOT-ZERO (LIST ’(TPOP{I}_<ZN>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-NZ_X)))

(NEG (LIST ’(TPOP{I}_<ZN>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-N_X)))

(NOT-NEG (LIST ’(TPOP{I}_<ZN>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-NN_X)))

(POS (LIST ’(TPOP{I}_<ZN>_Y)
’(MOVE_X_*)
(TAG ’PC

(CONS (NAME PROGRAM) (ADD1 PCN)))
’(JUMP-N_X)
’(JUMP-Z_X)
’(JUMP_*)
(PC (CADDR INS) PROGRAM)))

(OTHERWISE (LIST ’(TPOP{I}_<ZN>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-N_X)
’(JUMP-Z_X))))

Definition.
(ICODE-TEST-NAT-AND-JUMP INS PCN PROGRAM)

=
(IF (EQUAL (CADR INS) ’ZERO)

(LIST ’(TPOP{N}_<Z>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-Z_X))

(LIST ’(TPOP{N}_<Z>_Y)
’(MOVE_X_*)
(PC (CADDR INS) PROGRAM)
’(JUMP-NZ_X)))

Definition.
(ICODE-XOR-BITV INS PCN PROGRAM)

=
’((TPOP_X) (XOR_<TSP>{V}_X{V}))

192

Definition.
(ICODE1 INS PCN PROG)

=
(CASE (CAR INS)

(CALL (ICODE-CALL INS PCN PROG))
(RET (ICODE-RET INS PCN PROG))
(LOCN (ICODE-LOCN INS PCN PROG))
(PUSH-CONSTANT (ICODE-PUSH-CONSTANT INS PCN PROG))
(PUSH-LOCAL (ICODE-PUSH-LOCAL INS PCN PROG))
(PUSH-GLOBAL (ICODE-PUSH-GLOBAL INS PCN PROG))

(PUSH-CTRL-STK-FREE-SIZE
(ICODE-PUSH-CTRL-STK-FREE-SIZE INS PCN PROG))

(PUSH-TEMP-STK-FREE-SIZE
(ICODE-PUSH-TEMP-STK-FREE-SIZE INS PCN PROG))

(PUSH-TEMP-STK-INDEX
(ICODE-PUSH-TEMP-STK-INDEX INS PCN PROG))

(JUMP-IF-TEMP-STK-FULL
(ICODE-JUMP-IF-TEMP-STK-FULL INS PCN PROG))

(JUMP-IF-TEMP-STK-EMPTY
(ICODE-JUMP-IF-TEMP-STK-EMPTY INS PCN PROG))

(POP (ICODE-POP INS PCN PROG))
(POP* (ICODE-POP* INS PCN PROG))
(POPN (ICODE-POPN INS PCN PROG))
(POP-LOCAL (ICODE-POP-LOCAL INS PCN PROG))
(POP-GLOBAL (ICODE-POP-GLOBAL INS PCN PROG))
(POP-LOCN (ICODE-POP-LOCN INS PCN PROG))
(POP-CALL (ICODE-POP-CALL INS PCN PROG))
(FETCH-TEMP-STK (ICODE-FETCH-TEMP-STK INS PCN PROG))
(DEPOSIT-TEMP-STK (ICODE-DEPOSIT-TEMP-STK INS PCN PROG))
(JUMP (ICODE-JUMP INS PCN PROG))
(JUMP-CASE (ICODE-JUMP-CASE INS PCN PROG))
(PUSHJ (ICODE-PUSHJ INS PCN PROG))
(POPJ (ICODE-POPJ INS PCN PROG))
(SET-LOCAL (ICODE-SET-LOCAL INS PCN PROG))
(SET-GLOBAL (ICODE-SET-GLOBAL INS PCN PROG))
(TEST-NAT-AND-JUMP (ICODE-TEST-NAT-AND-JUMP INS PCN PROG))
(TEST-INT-AND-JUMP (ICODE-TEST-INT-AND-JUMP INS PCN PROG))
(TEST-BOOL-AND-JUMP (ICODE-TEST-BOOL-AND-JUMP INS PCN PROG))
(TEST-BITV-AND-JUMP (ICODE-TEST-BITV-AND-JUMP INS PCN PROG))
(NO-OP (ICODE-NO-OP INS PCN PROG))
(ADD-ADDR (ICODE-ADD-ADDR INS PCN PROG))
(SUB-ADDR (ICODE-SUB-ADDR INS PCN PROG))
(EQ (ICODE-EQ INS PCN PROG))
(LT-ADDR (ICODE-LT-ADDR INS PCN PROG))
(FETCH (ICODE-FETCH INS PCN PROG))
(DEPOSIT (ICODE-DEPOSIT INS PCN PROG))
(ADD-INT (ICODE-ADD-INT INS PCN PROG))
(ADD-INT-WITH-CARRY (ICODE-ADD-INT-WITH-CARRY INS PCN PROG))
(ADD1-INT (ICODE-ADD1-INT INS PCN PROG))
(SUB-INT (ICODE-SUB-INT INS PCN PROG))
(SUB-INT-WITH-CARR (ICODE-SUB-INT-WITH-CARRY INS PCN PROG))
(SUB1-INT (ICODE-SUB1-INT INS PCN PROG))
(NEG-INT (ICODE-NEG-INT INS PCN PROG))
(LT-INT (ICODE-LT-INT INS PCN PROG))
(INT-TO-NAT (ICODE-INT-TO-NAT INS PCN PROG))
(ADD-NAT (ICODE-ADD-NAT INS PCN PROG))

193

(ADD-NAT-WITH-CARRY (ICODE-ADD-NAT-WITH-CARRY INS PCN PROG))
(ADD1-NAT (ICODE-ADD1-NAT INS PCN PROG))
(SUB-NAT (ICODE-SUB-NAT INS PCN PROG))
(SUB-NAT-WITH-CARRY (ICODE-SUB-NAT-WITH-CARRY INS PCN PROG))
(SUB1-NAT (ICODE-SUB1-NAT INS PCN PROG))
(LT-NAT (ICODE-LT-NAT INS PCN PROG))
(MULT2-NAT (ICODE-MULT2-NAT INS PCN PROG))
(MULT2-NAT-WITH-CARRY-OUT

(ICODE-MULT2-NAT-WITH-CARRY-OUT INS PCN PROG))
(DIV2-NAT (ICODE-DIV2-NAT INS PCN PROG))
(OR-BITV (ICODE-OR-BITV INS PCN PROG))
(AND-BITV (ICODE-AND-BITV INS PCN PROG))
(NOT-BITV (ICODE-NOT-BITV INS PCN PROG))
(XOR-BITV (ICODE-XOR-BITV INS PCN PROG))
(RSH-BITV (ICODE-RSH-BITV INS PCN PROG))
(LSH-BITV (ICODE-LSH-BITV INS PCN PROG))
(OR-BOOL (ICODE-OR-BOOL INS PCN PROG))
(AND-BOOL (ICODE-AND-BOOL INS PCN PROG))
(NOT-BOOL (ICODE-NOT-BOOL INS PCN PROG))
(OTHERWISE ’((ERROR))))

Definition.
(ICOMPILE PROGRAMS)

=
(IF (NLISTP PROGRAMS)

NIL
(CONS (ICOMPILE-PROGRAM (CAR PROGRAMS))

(ICOMPILE (CDR PROGRAMS))))

Definition.
(ICOMPILE-PROGRAM PROGRAM)

=
(CONS (NAME PROGRAM)

(APPEND (GENERATE-PRELUDE PROGRAM)
(APPEND (ICOMPILE-PROGRAM-BODY (PROGRAM-BODY PROGRAM)

0 PROGRAM)
(GENERATE-POSTLUDE PROGRAM))))

Definition.
(ICOMPILE-PROGRAM-BODY LST PCN PROGRAM)

=
(IF (NLISTP LST)

NIL
(APPEND (ICODE (CAR LST) PCN PROGRAM)

(ICOMPILE-PROGRAM-BODY (CDR LST)
(ADD1 PCN)
PROGRAM)))

Definition.
(INCR C X)

=
(IF (BITVP X)

(IF (EQUAL X (BTM))
(BTM)
(BITV (XOR C (BIT X))

(INCR (AND C (BIT X)) (VEC X))))
(BTM))

194

Definition.
(IPC-TO-BV PCPP PROG-LINKS WORD-SIZE)

=
(NAT-TO-BV (ABSOLUTE-ADDRESS PCPP PROG-LINKS)

WORD-SIZE)

Definition.
(JUMP_*-LST LST PROGRAM)

=
(IF (NLISTP LST)

NIL
(CONS ’(JUMP_*)

(CONS (PC (CAR LST) PROGRAM)
(JUMP_*-LST (CDR LST) PROGRAM))))

Definition.
(LABEL-ADDRESS LABEL PROG-LABEL-TABLES)

=
(BASE-ADDRESS LABEL

(LABEL-LINKS LABEL PROG-LABEL-TABLES))

Definition.
(LABEL-LINKS LABEL PROG-LABEL-TABLES)

=
(CDR (ASSOC (ADP-NAME LABEL)

PROG-LABEL-TABLES))

Definition.
(LABEL-TO-BV ILAB PROG-LABEL-TABLES WORD-SIZE)

=
(NAT-TO-BV (LABEL-ADDRESS ILAB PROG-LABEL-TABLES)

WORD-SIZE)

Definition.
(LABELLEDP X)

=
(EQUAL (CAR X) ’DL)

Definition.
(LENGTH X)

=
(IF (NLISTP X)

0
(ADD1 (LENGTH (CDR X))))

Definition.
(LINK-AREA LST LINK-TABLES WORD-SIZE)

=
(IF (NLISTP LST)

NIL
(CONS (LINK-WORD (UNLABEL (CAR LST))

LINK-TABLES WORD-SIZE)
(LINK-AREA (CDR LST)

LINK-TABLES WORD-SIZE)))

195

Definition.
(LINK-DATA-WORD X LINK-TABLES WORD-SIZE)

=
(CASE (TYPE X)

(NAT (NAT-TO-BV (UNTAG X) WORD-SIZE))
(INT (TC-TO-BV (UNTAG X) WORD-SIZE))
(BITV (BITV-TO-BV (UNTAG X) WORD-SIZE))
(BOOL (BOOL-TO-BV (UNTAG X) WORD-SIZE))
(ADDR (ADDR-TO-BV (UNTAG X)

(USR-DATA-LINKS LINK-TABLES)
WORD-SIZE))

(SUBR (SUBR-TO-BV (UNTAG X)
(PROG-LINKS LINK-TABLES)
WORD-SIZE))

(SYS-ADDR (SYS-ADDR-TO-BV (UNTAG X)
(SYS-DATA-LINKS LINK-TABLES)
WORD-SIZE))

(PC (LABEL-TO-BV (UNTAG X)
(PROG-LABEL-TABLES LINK-TABLES)
WORD-SIZE))

(IPC (IPC-TO-BV (UNTAG X)
(PROG-LINKS LINK-TABLES)
WORD-SIZE))

(OTHERWISE (NAT-TO-BV 0 WORD-SIZE)))

Definition.
(LINK-INSTR-WORD INS WORD-SIZE)

=
(MCI (CADR (ASSOC (CAR INS)

(LINK-INSTRUCTION-ALIST)))
WORD-SIZE)

Definition.
(LINK-INSTRUCTION-ALIST)

=
’((ADD_<C>_X_X{N} (ADD (C) X X))
(ADD_<TSP>_<TSP>{V} (ADD NIL (TSP) (TSP)))
(ADD_<TSP>_<TSP>{N} (ADD NIL (TSP) (TSP)))
(ADD_<TSP>{A}_X{N} (ADD NIL (TSP) X))
(ADD_TSP_*{N} (ADD NIL TSP (PC 1)))
(ADD_TSP_X{N} (ADD NIL TSP X))
(ADD_<TSP>{I}_X{I} (ADD NIL (TSP) X))
(ADD_<TSP>{N}_X{N} (ADD NIL (TSP) X))
(ADD_PC_X{N} (ADD NIL PC X))
(ADD_X_X{N} (ADD NIL X X))
(ADD_X{N}_CSP (ADD NIL X CSP))
(ADDC_<C>_X{N}_Y{N} (ADDC (C) X Y))
(ADDC_<V>_X{I}_Y{I} (ADDC (V) X Y))
(AND_<TSP>{V}_X{V} (AND NIL (TSP) X))
(AND_<TSP>{B}_X{B} (AND NIL (TSP) X))
(ASR_<C>_<TSP>_<TSP>{B} (ASR (C) (TSP) (TSP)))
(CPOP_CFP (MOVE NIL CFP (CSP 1)))
(CPOP_PC (MOVE NIL PC (CSP 1)))
(CPUSH_* (MOVE NIL (-1 CSP) (PC 1)))
(CPUSH_<TSP>+ (MOVE NIL (-1 CSP) (TSP 1)))
(CPUSH_CFP (MOVE NIL (-1 CSP) CFP))
(DECR_<TSP>_<TSP>{I} (DECR NIL (TSP) (TSP)))
(DECR_<TSP>_<TSP>{N} (DECR NIL (TSP) (TSP)))

196

(INCR_<TSP>_<TSP>{I} (INCR NIL (TSP) (TSP)))
(INCR_<TSP>_<TSP>{N} (INCR NIL (TSP) (TSP)))
(INCR_Y_Y{N} (INCR NIL Y Y))
(INT-TO-NAT (MOVE NIL X X))
(JUMP-N_X (MOVE-N NIL PC X))
(JUMP-NN_X (MOVE-NN NIL PC X))
(JUMP-NZ_X (MOVE-NZ NIL PC X))
(JUMP-Z_X (MOVE-Z NIL PC X))
(JUMP_* (MOVE NIL PC (PC)))
(JUMP_X{SUBR} (MOVE NIL PC X))
(LSR_<C>_X_X{N} (LSR (C) X X))
(LSR_<TSP>_<TSP>{V} (LSR NIL (TSP) (TSP)))
(MOVE-C_<TSP>_* (MOVE-C NIL (TSP) (PC 1)))
(MOVE-V_<TSP>_* (MOVE-V NIL (TSP) (PC 1)))
(MOVE-Z_<TSP>_* (MOVE-Z NIL (TSP) (PC 1)))
(MOVE-N_X_* (MOVE-N NIL X (PC 1)))
(MOVE_<TSP>_* (MOVE NIL (TSP) (PC 1)))
(MOVE_<X{A}>_<TSP> (MOVE NIL (X) (TSP)))
(MOVE_<X{S}>_<TSP> (MOVE NIL (X) (TSP)))
(MOVE_CFP_CSP (MOVE NIL CFP CSP))
(MOVE_CSP_CFP (MOVE NIL CSP CFP))
(MOVE_X_* (MOVE NIL X (PC 1)))
(MOVE_X_<X{S}> (MOVE NIL X (X)))
(MOVE_X_TSP (MOVE NIL X TSP))
(MOVE_X_X (MOVE NIL X X))
(MOVE_Y_* (MOVE NIL Y (PC 1)))
(MOVE_Y_<Y{S}> (MOVE NIL Y (Y)))
(MOVE_Y_TSP (MOVE NIL Y TSP))
(NEG_<TSP>_<TSP>{I} (NEG NIL (TSP) (TSP)))
(NOT_<TSP>_<TSP>{V} (NOT NIL (TSP) (TSP)))
(OR_<TSP>{V}_X{V} (OR NIL (TSP) X))
(OR_<TSP>{B}_X{B} (OR NIL (TSP) X))
(SUB_<C>_<TSP>{A}_X{A} (SUB (C) (TSP) X))
(SUB_<C>_<TSP>{N}_X{N} (SUB (C) (TSP) X))
(SUB_<NV>_<TSP>{I}_X{I} (SUB (N V) (TSP) X))
(SUB_<TSP>{A}_X{N} (SUB NIL (TSP) X))
(SUB_X{S}_Y{N} (SUB NIL X Y))
(SUB_<TSP>{I}_X{I} (SUB NIL (TSP) X))
(SUB_<TSP>{N}_X{N} (SUB NIL (TSP) X))
(SUB_<TSP>{S}_X{S} (SUB NIL (TSP) X))
(SUB_<Z>_X{S}_Y{S} (SUB (Z) X Y))
(SUBB_<C>_X{N}_Y{N} (SUBB (C) X Y))
(SUBB_<V>_X{I}_Y{I} (SUBB (V) X Y))
(TPOP_<C>_X (MOVE (C) X (TSP 1)))
(TPOP_<X{A}> (MOVE NIL (X) (TSP 1)))
(TPOP_<X{S}> (MOVE NIL (X) (TSP 1)))
(TPOP_PC (MOVE NIL PC (TSP 1)))
(TPOP_X (MOVE NIL X (TSP 1)))
(TPOP_Y (MOVE NIL Y (TSP 1)))
(TPOP{V}_<Z>_Y (MOVE (Z) Y (TSP 1)))
(TPOP{B}_<Z>_Y (MOVE (Z) Y (TSP 1)))
(TPOP{I}_<ZN>_Y (MOVE (Z N) Y (TSP 1)))
(TPOP{N}_<Z>_Y (MOVE (Z) Y (TSP 1)))
(TPUSH_* (MOVE NIL (-1 TSP) (PC 1)))
(TPUSH_<X{A}> (MOVE NIL (-1 TSP) (X)))
(TPUSH_<X{S}> (MOVE NIL (-1 TSP) (X)))
(TPUSH_CSP (MOVE NIL (-1 TSP) CSP))

197

(TPUSH_TSP (MOVE NIL (-1 TSP) TSP))
(TPUSH_X (MOVE NIL (-1 TSP) X))
(XOR_<TSP>_<TSP> (XOR NIL (TSP) (TSP)))
(XOR_<TSP>{V}_X{V} (XOR NIL (TSP) X))
(XOR_<TSP>{B}_*{B} (XOR NIL (TSP) (PC 1)))
(XOR_<TSP>{B}_X{B} (XOR NIL (TSP) X))
(XOR_<Z>_<TSP>_X (XOR (Z) (TSP) X)))

Definition.
(LINK-MEM PROG-SEGMENT USR-DATA-SEGMENT SYS-DATA-SEGMENT LINK-TABLES

WORD-SIZE)
=

(APPEND (LINK-SEGMENT PROG-SEGMENT
LINK-TABLES WORD-SIZE)

(APPEND (LINK-SEGMENT USR-DATA-SEGMENT LINK-TABLES WORD-SIZE)
(LINK-SEGMENT SYS-DATA-SEGMENT LINK-TABLES WORD-SIZE)))

Definition.
(LINK-SEGMENT SEGMENT LINK-TABLES WORD-SIZE)

=
(IF (NLISTP SEGMENT)

NIL
(APPEND (LINK-AREA (CDAR SEGMENT)

LINK-TABLES WORD-SIZE)
(LINK-SEGMENT (CDR SEGMENT)

LINK-TABLES WORD-SIZE)))

Definition.
(LINK-TABLE-FOR-LABELS LST ADDR0)

=
(COND ((NLISTP LST) NIL)

((LABELLEDP (CAR LST))
(CONS (CONS (CADAR LST) ADDR0)

(LINK-TABLE-FOR-LABELS (CDR LST)
(ADD1 ADDR0))))

(T (LINK-TABLE-FOR-LABELS (CDR LST)
(ADD1 ADDR0))))

Definition.
(LINK-TABLE-FOR-PROG-LABELS SEGMENT ADDR0)

=
(IF (NLISTP SEGMENT)

NIL
(CONS (CONS (CAAR SEGMENT)

(LINK-TABLE-FOR-LABELS (CDAR SEGMENT)
ADDR0))

(LINK-TABLE-FOR-PROG-LABELS (CDR SEGMENT)
(PLUS ADDR0

(LENGTH (CDAR SEGMENT))))))

Definition.
(LINK-TABLE-FOR-SEGMENT SEGMENT ADDR0)

=
(IF (NLISTP SEGMENT)

NIL
(CONS (CONS (CAAR SEGMENT) ADDR0)

(LINK-TABLE-FOR-SEGMENT (CDR SEGMENT)
(PLUS ADDR0

(LENGTH (CDAR SEGMENT))))))

198

Definition.
(LINK-WORD X LINK-TABLES WORD-SIZE)

=
(IF (ICODE-INSTRUCTIONP X)

(LINK-INSTR-WORD X WORD-SIZE)
(LINK-DATA-WORD X LINK-TABLES WORD-SIZE))

Definition.
(LOAD P)

=
(I->M (R->I (P->R P)))

Definition.
(LOCAL-VARS D)

=
(APPEND (FORMAL-VARS D)

(STRIP-CARS (TEMP-VAR-DCLS D)))

Shell Definition.
Add the shell M-STATE of 6 arguments, with
recognizer function symbol M-STATEP, and
accessors M-REGS, M-C-FLG, M-V-FLG, M-N-FLG, M-Z-FLG

and M-MEM.

Definition.
(MCI INS WORD-SIZE)

=
(PACK-INSTRUCTION (EXTRACT-OP (CAR INS))

(EXTRACT-MOVE-BIT (CAR INS))
0
(EXTRACT-CVNZ (CADR INS))
(EXTRACT-MODE (CADDR INS))
(EXTRACT-REG (CADDR INS))
(EXTRACT-MODE (CADDDR INS))
(EXTRACT-REG (CADDDR INS))
WORD-SIZE)

Definition.
(NAME D)

=
(CAR D)

Definition.
(NAT-0S N)

=
(IF (ZEROP N)

NIL
(CONS (TAG ’NAT 0)

(NAT-0S (SUB1 N))))

Definition.
(NAT-TO-BV N SIZE)

=
(IF (ZEROP SIZE)

(BTM)
(BITV (IF (ZEROP (REMAINDER N 2)) F T)

(NAT-TO-BV (QUOTIENT N 2)
(SUB1 SIZE))))

199

Definition.
(OFFSET-FROM-CSP VAR PROGRAM)

=
(FIND-POSITION-OF-VAR VAR

(LOCAL-VARS PROGRAM))

Definition.
(P->R P)

=
(R-STATE (P-PC P)

(P->R_CFP (P-CTRL-STK P)
(P-MAX-CTRL-STK-SIZE P))

(P->R_CSP (P-CTRL-STK P)
(P-MAX-CTRL-STK-SIZE P))

(P->R_TSP (P-TEMP-STK P)
(P-MAX-TEMP-STK-SIZE P))

’(NAT 0)
’(NAT 0)
’(BOOL F)
’(BOOL F)
’(BOOL F)
’(BOOL F)
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P->R_SYS-DATA-SEGMENT (P-CTRL-STK P)

(P-MAX-CTRL-STK-SIZE P)
(P-TEMP-STK P)
(P-MAX-TEMP-STK-SIZE P))

(P-WORD-SIZE P)
(P-PSW P))

Definition.
(P->R_CFP STK MAX)

=
(SUB-ADDR (P->R_CSP (POP STK) MAX) 2)

Definition.
(P->R_CSP STK MAX)

=
(TAG ’SYS-ADDR

(CONS ’CSTK
(DIFFERENCE MAX

(P-CTRL-STK-SIZE STK))))

Definition.
(P->R_CTRL-STK STK MAX)

=
(CONS ’CSTK

(APPEND (NAT-0S (DIFFERENCE MAX
(P-CTRL-STK-SIZE STK)))

(APPEND (P->R_CTRL-STK1 STK MAX)
(LIST (TAG ’NAT 0)))))

200

Definition.
(P->R_CTRL-STK1 STK MAX)

=
(IF (NLISTP STK)

NIL
(APPEND (P->R_P-FRAME (TOP STK) (POP STK) MAX)

(P->R_CTRL-STK1 (POP STK) MAX)))

Definition.
(P->R_P-FRAME PFRAME STK MAX)

=
(APPEND (STRIP-CDRS (BINDINGS PFRAME))

(LIST (P->R_CFP STK MAX)
(RET-PC PFRAME)))

Definition.
(P->R_SYS-DATA-SEGMENT CTRL-STK MAX-CTRL-STK-SIZE TEMP-STK

MAX-TEMP-STK-SIZE)
=

(LIST (P->R_CTRL-STK CTRL-STK MAX-CTRL-STK-SIZE)
(P->R_TEMP-STK TEMP-STK MAX-TEMP-STK-SIZE)
(LIST ’FULL-CTRL-STK-ADDR

(TAG ’SYS-ADDR ’(CSTK . 0)))
(LIST ’FULL-TEMP-STK-ADDR

(TAG ’SYS-ADDR ’(TSTK . 0)))
(LIST ’EMPTY-TEMP-STK-ADDR

(TAG ’SYS-ADDR
(CONS ’TSTK MAX-TEMP-STK-SIZE))))

Definition.
(P->R_TEMP-STK TEMP-STK MAX-TEMP-STK-SIZE)

=
(CONS ’TSTK

(APPEND (NAT-0S (DIFFERENCE MAX-TEMP-STK-SIZE
(LENGTH TEMP-STK)))

(APPEND TEMP-STK
(LIST (TAG ’NAT 0)))))

Definition.
(P->R_TSP STK MAX)

=
(TAG ’SYS-ADDR

(CONS ’TSTK
(DIFFERENCE MAX (LENGTH STK))))

Definition.
(P-CTRL-STK-SIZE CTRL-STK)

=
(IF (NLISTP CTRL-STK)

0
(PLUS (P-FRAME-SIZE (TOP CTRL-STK))

(P-CTRL-STK-SIZE (CDR CTRL-STK))))

Definition.
(P-FRAME-SIZE FRAME)

=
(PLUS 2 (LENGTH (BINDINGS FRAME)))

201

Shell Definition.
Add the shell P-STATE of 9 arguments, with
recognizer function symbol P-STATEP, and
accessors P-PC, P-CTRL-STK, P-TEMP-STK, P-PROG-SEGMENT,
P-DATA-SEGMENT, P-MAX-CTRL-STK-SIZE, P-MAX-TEMP-STK-SIZE,
P-WORD-SIZE and P-PSW.

Definition.
(PACK-INSTRUCTION OP MOVE-BIT INT-BIT CVNZ MODE-B REG-B MODE-A REG-A

WORD-SIZE)
=

(NAT-TO-BV (PLUS (TIMES OP (EXP 2 16))
(TIMES MOVE-BIT (EXP 2 15))
(TIMES INT-BIT (EXP 2 14))
(TIMES CVNZ (EXP 2 10))
(TIMES MODE-B (EXP 2 8))
(TIMES REG-B (EXP 2 5))
(TIMES MODE-A (EXP 2 3))
REG-A)

WORD-SIZE)

Definition.
(PC LAB PROGRAM)

=
(TAG ’PC

(CONS (NAME PROGRAM)
(FIND-LABEL LAB

(PROGRAM-BODY PROGRAM))))

Definition.
(POP STK)

=
(CDR STK)

Definition.
(PROG-LABEL-TABLES LINK-TABLES)

=
(CADR LINK-TABLES)

Definition.
(PROG-LINKS LINK-TABLES)

=
(CAR LINK-TABLES)

Definition.
(PROGRAM-BODY D)

=
(CDDDR D)

202

Definition.
(R->I R)

=
(I-STATE (R->I_PC (R-PC R) (R-PROG-SEGMENT R))

(R-CFP R)
(R-CSP R)
(R-TSP R)
(R-X R)
(R-Y R)
(R-C-FLG R)
(R-V-FLG R)
(R-N-FLG R)
(R-Z-FLG R)
(ICOMPILE (R-PROG-SEGMENT R))
(R-USR-DATA-SEGMENT R)
(R-SYS-DATA-SEGMENT R)
(R-WORD-SIZE R)
(R->I_PSW (R-PSW R)))

Definition.
(R->I_PC PC PROGRAMS)

=
(TAG ’IPC

(CONS (AREA-NAME PC)
(FIND-LABEL (UNTAG PC)

(CDR (ICOMPILE-PROGRAM (DEFINITION (AREA-NAME PC)
PROGRAMS))))))

Definition.
(R->I_PSW PSW)

=
(IF (EQUAL PSW ’HALT) ’RUN PSW)

Shell Definition.
Add the shell R-STATE of 15 arguments, with
recognizer function symbol R-STATEP, and
accessors R-PC, R-CFP, R-CSP, R-TSP, R-X, R-Y,
R-C-FLG, R-V-FLG, R-N-FLG, R-Z-FLG,
R-PROG-SEGMENT, R-USR-DATA-SEGMENT, R-SYS-DATA-SEGMENT,
R-WORD-SIZE and R-PSW.

Definition.
(RET-PC FRAME)

=
(CADR FRAME)

Definition.
(REVERSE X)

=
(IF (NLISTP X)

NIL
(APPEND (REVERSE (CDR X))

(LIST (CAR X))))

203

Definition.
(SEGMENT-LENGTH SEGMENT)

=
(IF (NLISTP SEGMENT)

0
(PLUS (LENGTH (CDAR SEGMENT))

(SEGMENT-LENGTH (CDR SEGMENT))))

Definition.
(STRIP-CDRS ALIST)

=
(IF (NLISTP ALIST)

NIL
(CONS (CDAR ALIST)

(STRIP-CDRS (CDR ALIST))))

Definition.
(SUB-ADDR ADDR N)

=
(TAG (TYPE ADDR)

(SUB-ADP (UNTAG ADDR) N))

Definition.
(SUB-ADP ADP N)

=
(CONS (ADP-NAME ADP)

(DIFFERENCE (ADP-OFFSET ADP) N))

Definition.
(SUBR-TO-BV SUBR PROG-LINKS WORD-SIZE)

=
(NAT-TO-BV (BASE-ADDRESS SUBR PROG-LINKS)

WORD-SIZE)

Definition.
(SYS-ADDR-TO-BV ADP SYS-DATA-LINKS WORD-SIZE)

=
(NAT-TO-BV (ABSOLUTE-ADDRESS ADP SYS-DATA-LINKS)

WORD-SIZE)

Definition.
(SYS-DATA-LINKS LINK-TABLES)

=
(CADDDR LINK-TABLES)

Definition.
(TAG TYPE OBJ)

=
(LIST TYPE OBJ)

Definition.
(TC-TO-BV X SIZE)

=
(IF (NEGATIVEP X)

(INCR T
(COMPL (NAT-TO-BV (NEGATIVE-GUTS X) SIZE)))

(NAT-TO-BV X SIZE))

204

Definition.
(TEMP-VAR-DCLS D)

=
(CADDR D)

Definition.
(TOP STK)

=
(CAR STK)

Definition.
(TYPE CONST)

=
(CAR CONST)

Definition.
(UNLABEL X)

=
(IF (LABELLEDP X) (CADDDR X) X)

Definition.
(UNTAG CONST)

=
(CADR CONST)

Definition.
(USR-DATA-LINKS LINK-TABLES)

=
(CADDR LINK-TABLES)

Definition.
(V-APPEND A B)

=
(IF (BTMP A)

B
(BITV (BIT A) (V-APPEND (VEC A) B)))

Definition.
(XOR X Y)

=
(COND (X (IF Y F T)) (Y T) (T F))

205

10. The Formal Correctness Theorem

The correctness theorem for the FM8502 implementation of Piton is

Theorem. FM8502 Piton is Correct
(IMPLIES (AND (PROPER-P-STATEP P0)

(P-LOADABLEP P0)
(EQUAL (P-WORD-SIZE P0) 32)
(EQUAL PN (P P0 N))
(NOT (ERRORP (P-PSW PN)))
(EQUAL TS (TYPE-SPECIFICATION

(P-DATA-SEGMENT PN))))
(EQUAL (P-DATA-SEGMENT PN)

(DISPLAY-M-DATA-SEGMENT
(FM8502 (LOAD P0)

(FM8502-CLOCK P0 N))
TS
(LINK-TABLES P0)))).

We have already presented the formal definitions of PROPER-P-STATEP, P, FM8502, LOAD and the
accessors for the P-STATE shell, including P-WORD-SIZE, P-PSW, P-DATA-SEGMENT. The remain-
ing functions used in the statement of correctness are P-LOADABLEP, ERRORP,
TYPE-SPECIFICATION, DISPLAY-M-DATA-SEGMENT, LINK-TABLES, and FM8502-CLOCK. All
but the last are defined in this chapter.

Recall our discussion of the correctness theorem and in particular of the clock expression,
(FM8502-CLOCK P0 N). We regard FM8502-CLOCK as a ‘‘witness function’’ for what is informally
understood as existential quantification on the number of steps that FM8502 must be run to duplicate a
Piton computation. We do not exhibit the definition of FM8502-CLOCK in this document because we
think of it as a definition specific to our particular proof. Suffice it to say that FM8502-CLOCK can be
constructively defined—indeed, it is constructively defined in our proof. Its definition is somewhat larger
than that of P itself and is structurally isomorphic. (FM8502-CLOCK P0 N) steps forward from P0.
On each iteration FM8502-CLOCK uses a user-defined function specific to our implementation to deter-
mine how many FM8502 machine instructions are executed for the current Piton instruction in the current

17environment. FM8502-CLOCK sums the instruction counts and iterates until either N steps are taken or
the Piton computation halts normally or with an error. With the exception of the footnote on page 221 we
do not discuss FM8502-CLOCK further in this document.

The rest of this chapter is an alphabetical listing of the remaining functions used in the correctness
theorem. The ‘‘entry points’’ into the definitions are the functions P-LOADABLEP, ERRORP,
TYPE-SPECIFICATION, DISPLAY-M-DATA-SEGMENT and LINK-TABLES. It is noteworthy that all
of the definitions listed in the preceding Chapters 7-9, plus those of this chapter, are necessary simply to

state the correctness result. The proof of the correctness result requires the definition of FM8502-CLOCK
and of hundreds of other functions.

Reader uninterested in pursuing the formal definitions of the concepts involved in the correctness
theorem should skip to page 211.

17Sometimes the number of machine code instructions varies according to which path is taken through the i-code generated.

206

Definition.
(AREA-TYPE-SPECIFICATION AREA)

=
(CONS (CAR AREA)

(TYPE-LST (CDR AREA)))

Definition.
(ASSOC-CDRP N ALIST)

=
(COND ((NLISTP ALIST) F)

((EQUAL N (CDAR ALIST)) T)
(T (ASSOC-CDRP N (CDR ALIST))))

Definition.
(BV-TO-ADDR BV USR-DATA-LINKS)

=
(INVERT-ABSOLUTE-ADDRESS (BV-TO-NAT BV)

USR-DATA-LINKS)

Definition.
(BV-TO-BITV BV)

=
(IF (OR (NOT (BITVP BV)) (EQUAL BV (BTM)))

NIL
(APPEND (BV-TO-BITV (VEC BV))

(LIST (IF (BIT BV) 1 0))))

Definition.
(BV-TO-BOOL BV)

=
(IF (BIT BV) ’T ’F)

Definition.
(BV-TO-LABEL BV PROG-LABEL-TABLES)

=
(INVERT-LABEL-ADDRESS (BV-TO-NAT BV)

PROG-LABEL-TABLES)

Definition.
(BV-TO-SUBR BV PROG-LINKS)

=
(INVERT-BASE-ADDRESS (BV-TO-NAT BV)

PROG-LINKS)

Definition.
(BV-TO-SYS-ADDR BV SYS-DATA-LINKS)

=
(INVERT-ABSOLUTE-ADDRESS (BV-TO-NAT BV)

SYS-DATA-LINKS)

207

Definition.
(DISPLAY-ARRAY TYPE-LST M-ADDR M-MEM LINK-TABLES)

=
(IF (NLISTP TYPE-LST)

NIL
(CONS (UNLINK-DATA-WORD (CAR TYPE-LST)

(GET M-ADDR M-MEM)
LINK-TABLES)

(DISPLAY-ARRAY (CDR TYPE-LST)
(ADD1 M-ADDR)
M-MEM LINK-TABLES)))

Definition.
(DISPLAY-DATA-AREA AREA-TYPE-SPEC M-MEM LINK-TABLES)

=
(CONS (CAR AREA-TYPE-SPEC)

(DISPLAY-ARRAY (CDR AREA-TYPE-SPEC)
(BASE-ADDRESS (CAR AREA-TYPE-SPEC)

(USR-DATA-LINKS LINK-TABLES))
M-MEM LINK-TABLES))

Definition.
(DISPLAY-DATA-SEGMENT TYPE-SPEC M-MEM LINK-TABLES)

=
(IF (NLISTP TYPE-SPEC)

NIL
(CONS (DISPLAY-DATA-AREA (CAR TYPE-SPEC)

M-MEM LINK-TABLES)
(DISPLAY-DATA-SEGMENT (CDR TYPE-SPEC)

M-MEM LINK-TABLES)))

Definition.
(DISPLAY-M-DATA-SEGMENT M TYPE-SPEC LINK-TABLES)

=
(DISPLAY-DATA-SEGMENT TYPE-SPEC

(M-MEM M)
LINK-TABLES)

Definition.
(ERRORP PSW)

=
(AND (NOT (EQUAL PSW ’RUN))

(NOT (EQUAL PSW ’HALT)))

Definition.
(FIND-CONTAINING-AREA-NAME N LINK-TABLE)

=
(COND ((NLISTP LINK-TABLE) 0)

((NLISTP (CDR LINK-TABLE))
(CAAR LINK-TABLE))
((AND (NOT (LESSP N (CDAR LINK-TABLE)))

(LESSP N (CDADR LINK-TABLE)))
(CAAR LINK-TABLE))
(T (FIND-CONTAINING-AREA-NAME N

(CDR LINK-TABLE))))

208

Definition.
(FIND-CONTAINING-LABEL-TABLE N LABEL-TABLES)

=
(COND ((NLISTP LABEL-TABLES) F)

((ASSOC-CDRP N (CDAR LABEL-TABLES))
(CDAR LABEL-TABLES))
(T (FIND-CONTAINING-LABEL-TABLE N

(CDR LABEL-TABLES))))

Definition.
(INVERT-ABSOLUTE-ADDRESS N LINK-TABLE)

=
(CONS (FIND-CONTAINING-AREA-NAME N

LINK-TABLE)
(DIFFERENCE N

(BASE-ADDRESS (FIND-CONTAINING-AREA-NAME N LINK-TABLE)
LINK-TABLE)))

Definition.
(INVERT-BASE-ADDRESS N LINK-TABLE)

=
(FIND-CONTAINING-AREA-NAME N

LINK-TABLE)

Definition.
(INVERT-LABEL-ADDRESS N PROG-LABEL-TABLES)

=
(INVERT-BASE-ADDRESS N

(FIND-CONTAINING-LABEL-TABLE N PROG-LABEL-TABLES))

Definition.
(LINK-TABLES P)

=
(I-LINK-TABLES (R->I (P->R P)))

Definition.
(P-LOADABLEP P)

=
(LESSP (TOTAL-P-SYSTEM-SIZE P)

(EXP 2 (P-WORD-SIZE P)))

Definition.
(TOTAL-P-SYSTEM-SIZE P)

=
(PLUS (SEGMENT-LENGTH (ICOMPILE (P-PROG-SEGMENT P)))

(SEGMENT-LENGTH (P-DATA-SEGMENT P))
(ADD1 (P-MAX-CTRL-STK-SIZE P))
(ADD1 (P-MAX-TEMP-STK-SIZE P))
3)

Definition.
(TYPE-LST LST)

=
(IF (NLISTP LST)

NIL
(CONS (TYPE (CAR LST))

(TYPE-LST (CDR LST))))

209

Definition.
(TYPE-SPECIFICATION SEGMENT)

=
(IF (NLISTP SEGMENT)

NIL
(CONS (AREA-TYPE-SPECIFICATION (CAR SEGMENT))

(TYPE-SPECIFICATION (CDR SEGMENT))))

Definition.
(UNLINK-DATA-WORD TYPE BV LINK-TABLES)

=
(CASE TYPE

(NAT (TAG ’NAT (BV-TO-NAT BV)))
(INT (TAG ’INT (BV-TO-TC BV)))
(BITV (TAG ’BITV (BV-TO-BITV BV)))
(BOOL (TAG ’BOOL (BV-TO-BOOL BV)))
(ADDR (TAG ’ADDR

(BV-TO-ADDR BV
(USR-DATA-LINKS LINK-TABLES))))

(SUBR (TAG ’SUBR
(BV-TO-SUBR BV

(PROG-LINKS LINK-TABLES))))
(SYS-ADDR (TAG ’SYS-ADDR

(BV-TO-SYS-ADDR BV
(SYS-DATA-LINKS LINK-TABLES))))

(PC (TAG ’PC
(BV-TO-LABEL BV

(PROG-LABEL-TABLES LINK-TABLES))))
(OTHERWISE ’(UNRECOGNIZED I-LEVEL TYPE)))

210

211

11. Proof of the Correctness Theorem

The FM8502 implementation of Piton is embodied in the function LOAD, which is defined as the
composition of three functions,

Definition.
(LOAD P)

=
(I->M (R->I (P->R P))),

one for each of the phases: resource representation (P->R), compilation (R->I) and link-assembling
(I->M).

The key to our proof of the correctness of the implementation is to prove the correctness of each of the
three phases separately. We then combine these three lemmas to get our main correctness proof.

But what does it mean to say that the resource representation phase is correct? What does it mean to say
that the compiler is correct, in isolation from the link-assembler and FM8502? To formalize the correct-
ness of these phases independently we must formally specify two abstract machines intermediate between
Piton and FM8502. We call the first of these machines the ‘‘R’’ machine, which interprets r-states, and the
second the ‘‘I’’ machine, which interprets i-states. In addition, we define a third machine, called the ‘‘M’’
machine, which is just FM8502, but defined in the same style as our other machines rather than via SOFT.

The organization of this description of our proof is as follows. First we describe R, I, and M. Then we
state the fundamental properties relating the various machines via the functions P->R, R->I and I->M

and sketch the proofs of each relation. Finally, we use these fundamental properties (along with several
other properties) to prove the main correctness result.

11.1. The R Machine

The R machine is very similar to the P machine in that its programming language is Piton. However, its
resources (namely the stacks) are represented in terms of the system data segment and the registers. For
example, where the P machine implements a push by CONSing, the R machine does it via decrementing the
stack pointer and depositing into the indicated position of the stack array.

Let us consider the Piton PUSH-CONSTANT instruction. The P machine specification for this instruc-
tion is that it increments the program counter and pushes the unabbreviated operand onto the temporary
stack. Formally this is rendered

212

Definition.
(P-PUSH-CONSTANT-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (UNABBREVIATE-CONSTANT (CADR INS) P)

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN).

The function PUSH here is just CONS; the temporary stack is a list and the new object is consed onto the
front of that list.

The R machine specification of PUSH-CONSTANT is

Definition.
(R-PUSH-CONSTANT-STEP INS R)

=
(R-STATE (ADD1-R-PC R)

(R-CFP R)
(R-CSP R)
(PUSH-STK (R-TSP R))
(R-X R)
(R-Y R)
(R-C-FLG R)
(R-V-FLG R)
(R-N-FLG R)
(R-Z-FLG R)
(R-PROG-SEGMENT R)
(R-USR-DATA-SEGMENT R)
(DEPOSIT (IF (EQUAL (CADR INS) ’PC)

(ADD1-R-PC R)
(IF (NLISTP (CADR INS))

(PC (CADR INS)
(R-CURRENT-PROGRAM R))

(CADR INS)))
(PUSH-STK (R-TSP R))
(R-SYS-DATA-SEGMENT R))

(R-WORD-SIZE R)
’RUN).

The function PUSH-STK used above decrements a tagged address pair by one, e.g., (PUSH-STK
’(SYS-ADDR (TSTK . 25))) is equal to ’(SYS-ADDR (TSTK . 24)). (DEPOSIT obj

addr segment) writes obj into address addr of segment, where addr is a tagged address pair
(specifying a name and an offset) and segment is an association list pairing area names with arrays.

Observe that the R machine specification of PUSH-CONSTANT increments the program counter, decre-
ments the R-TSP register, and writes the unabbreviated operand to the system data segment location
addressed by the decremented R-TSP register. That is, the R machine implements the Piton instructions
using the resources of FM8502.

The situation is a little more subtle than this example might suggest. Consider the Piton PUSH-LOCAL

213

instruction. The P machine specification is

Definition.
(P-PUSH-LOCAL-STEP INS P)

=
(P-STATE (ADD1-P-PC P)

(P-CTRL-STK P)
(PUSH (LOCAL-VAR-VALUE (CADR INS) (P-CTRL-STK P))

(P-TEMP-STK P))
(P-PROG-SEGMENT P)
(P-DATA-SEGMENT P)
(P-MAX-CTRL-STK-SIZE P)
(P-MAX-TEMP-STK-SIZE P)
(P-WORD-SIZE P)
’RUN).

The R machine specification is

Definition.
(R-PUSH-LOCAL-STEP INS R)

=
(R-STATE (ADD1-R-PC R) ; (a)

(R-CFP R)
(R-CSP R)
(PUSH-STK (R-TSP R)) ; (b)
(ADD-ADDR (R-CSP R) ; (c)

(OFFSET-FROM-CSP
(CADR INS)
(R-CURRENT-PROGRAM R)))

(R-Y R)
(R-C-FLG R)
(R-V-FLG R)
(R-N-FLG R)
(R-Z-FLG R)
(R-PROG-SEGMENT R)
(R-USR-DATA-SEGMENT R)
(DEPOSIT (FETCH (ADD-ADDR (R-CSP R) ; (d)

(OFFSET-FROM-CSP
(CADR INS)
(R-CURRENT-PROGRAM R)))

(R-SYS-DATA-SEGMENT R))
(PUSH-STK (R-TSP R))
(R-SYS-DATA-SEGMENT R))

(R-WORD-SIZE R)
’RUN).

The ADD-ADDR expression, which occurs twice above (in lines (c) and (d)), computes the address at which
the value of the indicated local variable is stored. The address is computed by adding to the current control
stack pointer—the contents of the R-CSP register—the offset of the local variable among the current
program’s local variables. Call that address addr.

An informal reading of the R machine specification for PUSH-LOCAL is that it (a) increments the
program counter, (b) decrements the R-TSP register, (c) sets the R-X register to addr and (d) deposits
into the system data area at the new top of the temporary stack the contents of addr. Steps (a), (b), and (d)
are intuitively necessary and sufficient.

Why, however, does the R machine set the R-X register? It turns out that no R machine instruction

214

inspects the values of the temporary registers, R-X, R-Y and the four flags. However, many of the
instructions set those registers and flags. Why? The answer is that the R machine does more than just
implement the Piton instructions with the FM8502 resources. It implements the Piton instructions with the
FM8502 resources in exactly the same way our compiler does.

For example, the compiled code for PUSH-LOCAL is generated by

Definition.
(ICODE-PUSH-LOCAL INS PCN PROGRAM)

=
(LIST ’(MOVE_X_*)

(TAG ’NAT (OFFSET-FROM-CSP (CADR INS) PROGRAM))
’(ADD_X{N}_CSP)
’(TPUSH_<X{S}>)).

Observe that this code moves into the x register the offset of the required local, then adds the csp register
to that, leaving the result in x, and then pushes the contents of the address in x onto the temporary stack.
Thus, the implementation of PUSH-LOCAL has the additional side-effect on FM8502 of setting the x

register to the address of the local pushed. The R machine specification of PUSH-LOCAL faithfully
describes this implementation of PUSH-LOCAL.

Formally, (R R N) is defined to step forward from the r-state R N times, using the function R-STEP.
R-STEP checks the precondition of the current instruction and, if it is satisfied, produces the next state
with the step function for the current instruction.

The R machine can thus be imagined by starting with the P machine and modifying every precondition
and step function in two ways. First, replace all references to the abstract stacks by fetches and deposits on
the registers and system data segment so as to mimic at the R-level what the P machine does. Second, add
the six temporary registers and flags so that the R machine correctly describes the final values of those
FM8502 resources at the conclusion of the i-code generated for each instruction.

11.2. The I Machine

The I machine operates on i-states. Recall that i-states are like r-states except that the programs are
written in i-code, not Piton. Thus, the I machine interprets i-code using the same stack representation as
the R machine. The I machine is defined in a style very similar to our other interpreters. (I I N) steps
the i-state I forward N times, using the precondition and step functions specific to the current instruction.
We illustrate the I machine by simply exhibiting the step functions for four of the 87 i-code instructions.

Here is the step function for the i-code instruction MOVE_X_*, which moves the next word of the
instruction stream into register x and increments the program counter by two:

215

Definition.
(I-MOVE_X_*-STEP I)

=
(I-STATE (ADD2-I-PC I)

(I-CFP I)
(I-CSP I)
(I-TSP I)
(I-NEXTWORD I)
(I-Y I)
(I-C-FLG I)
(I-V-FLG I)
(I-N-FLG I)
(I-Z-FLG I)
(I-PROG-SEGMENT I)
(I-USR-DATA-SEGMENT I)
(I-SYS-DATA-SEGMENT I)
(I-WORD-SIZE I)
’RUN).

The function I-NEXTWORD, used above, fetches the contents of the program segment address one greater
than the current program counter,

Definition.
(I-NEXTWORD I)

=
(UNLABEL (FETCH (ADD1-I-PC I) (I-PROG-SEGMENT I))).

Next we exhibit the step function for TPUSH_<X{S}>, which pushes onto the temporary stack the
contents of the system address contained in the x register.

Definition.
(I-TPUSH_<X{S}>-STEP I)

=
(I-STATE (ADD1-I-PC I)

(I-CFP I)
(I-CSP I)
(PUSH-STK (I-TSP I))
(I-X I)
(I-Y I)
(I-C-FLG I)
(I-V-FLG I)
(I-N-FLG I)
(I-Z-FLG I)
(I-PROG-SEGMENT I)
(I-USR-DATA-SEGMENT I)
(DEPOSIT (FETCH (I-X I)

(I-SYS-DATA-SEGMENT I))
(PUSH-STK (I-TSP I))
(I-SYS-DATA-SEGMENT I))

(I-WORD-SIZE I)
’RUN)

Here is the instruction ADD_<TSP>{N}_X{N}, which replaces the top of the temporary stack by the
natural number sum of the current top and the contents of the x register, both of which must be naturals.
The precondition for the instruction checks that both operands of the addition are tagged naturals and that
their sum is representable.

216

Definition.
(I-ADD_<TSP>{N}_X{N}-STEP I)

=
(I-STATE (ADD1-I-PC I)

(I-CFP I)
(I-CSP I)
(I-TSP I)
(I-X I)
(I-Y I)
(I-C-FLG I)
(I-V-FLG I)
(I-N-FLG I)
(I-Z-FLG I)
(I-PROG-SEGMENT I)
(I-USR-DATA-SEGMENT I)
(DEPOSIT
(TAG ’NAT

(PLUS (UNTAG (FETCH (I-TSP I)
(I-SYS-DATA-SEGMENT I)))

(UNTAG (I-X I))))
(I-TSP I)
(I-SYS-DATA-SEGMENT I))
(I-WORD-SIZE I)
’RUN)

Recall that i-code instructions are mapped into machine code via the table shown on page 82. Some
distinct i-code instructions are mapped to the same assembly instruction (and hence to the same machine
instruction). For example, both ADD_<TSP>{N}_X{N}, shown above, and its integer counterpart,
ADD_<TSP>{I}_X{I}, are mapped to (ADD () (TSP) X). The I machine differentiates these two
i-code instructions. In particular, the I machine semantics for the integer version of the instruction uses
integer addition, IPLUS, and tags the result with INT rather than NAT. Similarly, the previously discussed
pair, XOR_<TSP>{V}_X{V} and XOR_<TSP>{B}_X{B} (page 83), both of which are mapped to (XOR
() (TSP) X), are distinct at the I level. The first computes the componentwise exclusive-or of two bit
vectors. The second computes the exclusive-or of two Booleans.

The main point is that the I machine provides abstract data types, even though its instruction set is in 1:1
correspondence with FM8502. The compiler will be proved correct with respect to the I machine. It is not
until we drop down through the linker that addition on the naturals becomes the same operation as addition
on the integers (through the wonders of twos complement representation). Similarly, after dropping
through the linker, componentwise exclusive-or becomes the same operation as Boolean exclusive-or
(because the Booleans T and F will be represented as bit vectors). Thus, the ‘‘mnemonic device’’ of
annotating otherwise identical i-code instructions with data type information is really fundamental to our
strategy of separating the compiler proof from the link-assembly proof.

This is an important point that bears repeating because it impacts the way compilers should be written.
Suppose the compiler had been defined so as to generate assembly language directly rather than the
annotated assembly language of i-code. For example, suppose the compiler generated (ADD () (TSP)
X) both where it now generates ADD_<TSP>{N}_X{N} and where it generates ADD_<TSP>{I}_X{I}.
This is certainly adequate if we simply intend to link-assemble the output of the compiler and run it. But if
we intend to prove the compiler correct we must either (a) prove it in conjunction with the link-assembler
or (b) give semantics to the assembly code independent of the link-assembler. Adopting strategy (a) vastly
complicates the compiler proof. The complication does not come solely from the introduction of the

217

bit-vector representation of integers and naturals but also from the bit-vector representation of data and
program addresses. These addresses are readily related to the (now intermediate) assembly code but
difficult to relate to the Piton source code. Adopting strategy (b), namely, giving semantics to the assembly
code independent of the linker is not always possible.

In our example of addition strategy (b) works: define the ADD instruction to do a tagged integer addition
if the operands are both tagged integers and a tagged natural addition otherwise (the preconditions on the
Piton instructions can be used to insure that ADD is only executed when both operands are of the same
numeric type). But there is not always enough information in the operands (or the state) to decide which of
two high-level operations is to be performed. For example, both the i-code instruction MOVE_X_X and the
i-code instruction INT-TO-NAT map to (MOVE NIL X X). The former instruction is a no-op. The
latter instruction changes the top of the temporary stack from from a tagged INT to a tagged NAT. It is
impossible to give a semantics to (MOVE NIL X X) so that it does the appropriate thing when a tagged
INT is on top of the stack. Thus, our device of generating annotations seems necessary to factor the
correctness proof.

To reinforce the idea that the I machine deals with abstract types, here is the instruction
ADD_X{N}_CSP, which adds the system address in csp to the natural number in x and stores the
resulting system address in x.

Definition.
(I-ADD_X{N}_CSP-STEP I)

=
(I-STATE (ADD1-I-PC I)

(I-CFP I)
(I-CSP I)
(I-TSP I)
(ADD-ADDR (I-CSP I)

(UNTAG (I-X I)))
(I-Y I)
(I-C-FLG I)
(I-V-FLG I)
(I-N-FLG I)
(I-Z-FLG I)
(I-PROG-SEGMENT I)
(I-USR-DATA-SEGMENT I)
(I-SYS-DATA-SEGMENT I)
(I-WORD-SIZE I)
’RUN)

The function ADD-ADDR used above is defined so that, for example, (ADD-ADDR ’(SYS-ADDR
(CSTK . 25)) 7) is ’(SYS-ADDR (CSTK . 32)).

In some ways the I machine is similar to FM8502. The main similarity comes from the fact that each
i-code instruction translates into a single FM8502 instruction. Unlike FM8502, i-code instructions are
symbolically represented (rather than encoded as bit vectors) and all data, addresses, and program counters
are tagged and represented symbolically (rather than as bit vectors). Unlike FM8502, i-code instructions
check for violations of type and resource preconditions and produce erroneous states when violations are
found. This insures that program space is not overwritten and that no operation is done that exposes the
concrete representation of the data objects.

218

11.3. The M Machine

Recall that FM8502 was defined in terms of the function SOFT which was proved to correspond to a
gate graph.

Definition.
(FM8502 STATE N)

=
(FM8502->M (SOFT (M-REGS STATE)

(M-MEM STATE)
(M-C-FLG STATE)
(M-V-FLG STATE)
(M-Z-FLG STATE)
(M-N-FLG STATE)
(FM8502-ORACLE N)))

However, our other machines are all defined as iterated single step functions. We therefore recast the
definition of FM8502 as an iterated single stepper. The new function is called M.

Definition.
(M STATE N)

=
(IF (ZEROP N)

STATE
(M (M-STEP STATE) (SUB1 N)))

We define M-STEP in such a way that if STATE is an m-state then (M STATE N) is equal to (FM8502
STATE N). The only motivation behind this definition is so that during certain proofs we can con-
veniently talk about single-stepping the lowest level machine.

Observe that on the M machine, instructions and data objects are indistinguishable, the memory is not
structured into segments and areas, and the read/write/execute access to the memory is uniform.

11.4. The One-Way Correspondence Lemmas

We now have five machines, P, R, I, M and FM8502. The last pair of machines are easily related.

Theorem. FM8502-EQUAL-M
(IMPLIES (M-STATEP M)

(EQUAL (FM8502 M N)
(M M N)))

What are the relations among the other adjacent pairs of machines?

11.4.1. P->R

Our description of the R machine makes it intuitively clear that it is, in some informal sense, equivalent
to the P machine, under a certain mapping between the two different ways the stacks are represented. That
mapping, or at least the half of it that goes from the abstract representation used by P to the more concrete
representation used by R, is in fact just P->R.

Consider two alternative r-states. The first, which we shall call r , is obtained by running the P machine1
on some p-state P and then mapping down with P->R. The second, which we shall call r , is obtained by2
mapping P down with P->R and then running the R machine.

219

n P-steps

P -------------------> *
| |
| |

P->R | | P->R
| |
| * r1
*--------------------> * r2

n R-steps

What is the relation between r and r ?1 2

They are not always equal. Consider the x register. In r the x register is set to the natural number 01
because that is how P->R initializes it. But in r , the value of the x register is determined by the last2
instruction executed which set that temporary register.

Are r and r equal if we ignore the six temporary registers and flags? No. Consider the temporary stack1 2
area, in particular, that region of the area beyond the current tsp register—the ‘‘inactive’’ region
‘‘above’’ the top-of-stack. In r that region consists entirely of 0’s, because that is how P->R initializes it.1
In r that region contains whatever data was put there by the instructions executed by the R machine. How2
can data be put above the top of the stack? On the R machine that is possible, by pushing the data onto the
temporary stack and then popping the stack.

Are r and r equal if we ignore the six temporary registers and flags and the two stack regions beyond1 2
their respective stack pointers? Yes. We define the predicate R-EQUAL to be this sense of weak equality.
We say that the x and y registers, the condition code registers, and the inactive stack regions of an r-state
are invisible resources of the R machine. We say that the rest of the r-state is visible. Two r-states are
R-EQUAL iff their visible resources are identical.

The Piton machine can be related to the R machine via P->R as follows:

Theorem. ONE-WAY-CORRESPONDENCE-P-R
(IMPLIES (AND (PROPER-P-STATEP P)

(P-LOADABLEP P)
(NOT (ERRORP (P-PSW (P P N)))))

(R-EQUAL (P->R (P P N))
(R (P->R P) N))).

This theorem may be read as follows. Suppose P is a proper p-state that is loadable. Let r and r be as1 2
above and suppose r is non-erroneous. Then r is R-EQUAL to r .1 1 2

We call this a ‘‘one-way correspondence’’ theorem because it captures the ‘‘equality’’ of the P and R
18machines while mapping states only in one direction (in this case, from the P level down to the R level).

The proof of the one-way correspondence theorem for P and R is by induction on N. The induction step
requires two key lemmas. The first is that the one-way correspondence holds for the single steppers of the
two machines,

18We considered alternative formulations in which we mapped r up to a p-state, with the inverse of P->R but rejected it because it2
involved the definition of many otherwise unused concepts.

220

Theorem. ONE-WAY-CORRESPONDENCE-P-R-STEP
(IMPLIES (AND (PROPER-P-STATEP P)

(NOT (ERRORP (P-PSW (P-STEP P)))))
(R-EQUAL (P->R (P-STEP P))

(R-STEP (P->R P)))).

The second is that R-EQUAL is a congruence relation for R,

Theorem. R-EQUAL-CONGRUENCE
(IMPLIES (AND (PROPER-R-STATEP R1)

(PROPER-R-STATEP R2)
(R-EQUAL R2 R1))

(R-EQUAL (R R2 N)
(R R1 N))),

i.e., if two proper r-states are R-EQUAL then so are the states produced by running each with R. We have
not discussed proper r-states before. Suffice it to say that they are to r-states what loadable proper p-states
are to p-states. That is, the proper r-states are those loadable r-states in which all the components are
well-formed and compatible, where all the checks are made on the R-level representation of the stacks
instead of the P-level.

Other lemmas used in the proof of the one-way correspondence theorem include

• If a p-state is proper and can be stepped non-erroneously then the result is proper.

• If a proper p-state is loadable and can be stepped non-erroneously then the result is loadable.

• If a p-state is erroneous then running it with the P machine is erroneous.

• If a p-state is proper its image under P->R is proper (at the R-level).

• If an r-state is proper (at the R-level) then stepping it is proper (at the R-level).

• R-EQUAL is reflexive and transitive.
We leave the proof of the one-way correspondence theorem to the reader. We urge the reader to construct
it.

We briefly discuss the proof of the two key lemmas, ONE-WAY-CORRESPONDENCE-P-R-STEP and
R-EQUAL-CONGRUENCE.

The proof of the first lemma, ONE-WAY-CORRESPONDENCE-P-R-STEP, is by case analysis on the
current instruction of P. For each of the Piton instructions we prove the corresponding one-way correspon-
dence lemma. Here, for example, is the one-way correspondence lemma for the PUSH-CONSTANT

instruction.

Theorem. PUSH-CONSTANT-ONE-WAY-CORRESPONDENCE-P-R
(IMPLIES (AND (EQUAL (P-PSW P) ’RUN)

(EQUAL (CAR (P-CURRENT-INSTRUCTION P))
’PUSH-CONSTANT)

(PROPER-P-STATEP P)
(P-PUSH-CONSTANT-OKP (P-CURRENT-INSTRUCTION P)

P))
(R-EQUAL (P->R (P-PUSH-CONSTANT-STEP (P-CURRENT-INSTRUCTION P)

P))
(R-PUSH-CONSTANT-STEP (P-CURRENT-INSTRUCTION P)

(P->R P))))

These instruction-level lemmas are really the heart of the proof of the one-way correspondence theorem.
To prove these lemmas we had to prove the basic facts relating the abstract representation of stacks to the

221

concrete one. For example, we had to prove such facts as

• Pushing an object onto a stack and then mapping that stack down to the R-level produces the
same thing as mapping the original stack down to the R-level and then decrementing the stack
pointer address and writing the object at the indicated location.

• Popping an object from a stack and then mapping that stack down produces the same thing as
mapping the original stack down and then incrementing the stack pointer.

• Building a new frame as specified by the CALL instruction, pushing it onto the control stack
and then mapping that stack down produces the same thing as mapping the stack down and
then pushing a certain sequence of objects.

• Finding the value of a local variable by looking in the bindings field of the top-frame of the
control stack produces the same object as mapping the control stack down to the R-level and
fetching the object at a certain offset from csp.

Of course, the first three ‘‘facts’’ are not actually valid unless by the phrase ‘‘produces the same thing as’’
we mean ‘‘produces the same active stack region as.’’

The proof of the second key lemma, R-EQUAL-CONGRUENCE, was broken down first into the
analogous fact that R-EQUAL is a congruence relation for R-STEP and then into a case for each Piton
instruction.

It is interesting to note that for the P->R proofs it is not important what the R-level machine does with
the invisible resources. It is only important that the values of the invisible resources never affect the values
of the visible ones.

11.4.2. R->I

We now move down one step and consider the relation between the R machine and the I machine. This
can be formalized with R->I. Recall that the difference between r-states and i-states is that the former
contain Piton programs and the latter contain i-code programs. R->I is the compiler. The appropriate
lemma is

Theorem. ONE-WAY-CORRESPONDENCE-R-I
(IMPLIES (AND (PROPER-R-STATEP R)

(NOT (ERRORP (R-PSW (R R N)))))
(EQUAL (R->I (R R N))

(I (R->I R)
(CLOCK R N)))).

This theorem may be read as follows: Suppose R is a proper r-state and that the result of running R N steps
is non-erroneous. Then consider two alternative i-states. The first is obtained by running R N steps and
mapping down with R->I. The second is obtained by mapping R down to an i-state and then running it
(CLOCK R N) steps forward. Then these two i-states are actually equal.

The CLOCK function is just a modification of the R machine that counts the number of i-code instruc-
19tions executed on behalf of each Piton instruction.

The one-way correspondence result for R->I is beautiful because it is a strict equality, not a weak

19The previously discussed expression (FM8502-CLOCK P N) is in fact defined to be (CLOCK (P->R P) N). The remarks
made earlier suggesting that FM8502-CLOCK was derived from P were true in the sense that CLOCK is derived from R and R is
derived from P. We could not say this earlier because the R machine had not been introduced.

222

equality as in the P->R case. This is so because the R machine accurately accounts for the use of all the
resources of FM8502—even the invisible ones. However, the proof is complicated because the I machine
has to take many steps for each single step of the R machine.

The proof is by induction on N again and the key lemma is the one-way correspondence theorem for
R-STEP,

Theorem. ONE-WAY-CORRESPONDENCE-R-I-STEP
(IMPLIES (AND (PROPER-R-STATEP R)

(NOT (ERRORP (R-PSW (R-STEP R)))))
(EQUAL (R->I (R-STEP R))

(I (R->I R)
(R-STEP-CLOCK R)))).

Note that on the left-hand side of the conclusion we have a single R-STEP, while on the right-hand side we
run I a certain number of steps, namely (R-STEP-CLOCK R).

To use this R-STEP lemma to prove the one-way correspondence theorem we need the observation

Theorem. I-SEQUENTIAL-EXECUTION
(EQUAL (I I (PLUS X Y))

(I (I I X) Y)).

Intuitively, this lemma lets us piece together many short runs of I—each over the block of compiled code
corresponding to one Piton instruction—into a single long run of I. This lemma is easy to prove and we
do not discuss it further.

We turn instead to the proof of the one-way correspondence theorem for R-STEP. That theorem is the
heart of the compiler proof. Once again, we split the theorem into a separate case for each Piton instruc-
tion. Here is the case for PUSH-LOCAL.

Theorem. PUSH-LOCAL-ONE-WAY-CORRESPONDENCE-R-I
(IMPLIES (AND (EQUAL (R-PSW R) ’RUN)

(EQUAL (CAR (R-CURRENT-INSTRUCTION R))
’PUSH-LOCAL)

(PROPER-R-STATEP R)
(R-PUSH-LOCAL-OKP (R-CURRENT-INSTRUCTION R)

R))
(EQUAL (R->I (R-PUSH-LOCAL-STEP (R-CURRENT-INSTRUCTION R)

R))
(I (R->I R)

(R-PUSH-LOCAL-STEP-CLOCK
(R-CURRENT-INSTRUCTION R)
R))))

Observe that the hypotheses include the assumption that the opcode of the current instruction at the R-level
is PUSH-LOCAL. The conclusion involves running the I machine for a certain number of clock ticks on
the i-state (R->I R). The function R-PUSH-LOCAL-STEP-CLOCK determines the number of i-code
instructions executed for this particular PUSH-LOCAL execution. In the case of PUSH-LOCAL the number
of i-code instructions is 3 (since there are no branches in the i-code generated for PUSH-LOCAL the
number of clock ticks for that instruction is constant). Thus, the right-hand side of the conclusion of the
above theorem is equivalent to (I (R->I R) 3).

The proof of the theorem requires the ability to do two kinds of reasoning. First, given a particular Piton
instruction as the current instruction at the R-level, we must be able to deduce which i-code instructions

223

will be executed when we run the I-level image of the r-state. Second, given the current I-level instruc-
tion, we must be able to symbolically step an i-state. The second kind of reasoning is not hard—it is just
expanding the definition of I—provided we can deduce what the current I-level instruction of an i-state is.
The initial i-state in which we are interested is always the image of an r-state. But after we have executed
the first i-code instruction in that state, we generally have an i-state that is not the image of any r-state. We
must be able to deduce what the next i-code instruction is from the fact that (a) we started with the image of
an r-state, (b) we knew the opcode of the current instruction of that r-state, and (c) we are executing only as
many instructions as generated for that opcode.

For example, from the assumption that the current instruction at the R level is a PUSH-LOCAL we must
be able to show that the next three i-code instructions to be executed will be (MOVE_X_*),
(ADD_X{N}_CSP), and (TPUSH_<X{S}>).

The generalized version of this is that in the image of an r-state the program counter points to the
beginning of the block of i-code instructions generated for the current R-level instruction. We formalize
this as

Theorem. FETCH-ADP-ADD-ADP-UNTAG-R->I
(IMPLIES
(AND (PROPER-R-STATEP R)

(LESSP N
(LENGTH
(ICODE (GET (OFFSET (R-PC R))

(PROGRAM-BODY
(DEFINITION (ADP-NAME (UNTAG (R-PC R)))

(R-PROG-SEGMENT R))))
(OFFSET (R-PC R))
(DEFINITION (ADP-NAME (UNTAG (R-PC R)))

(R-PROG-SEGMENT R))))))
(EQUAL (FETCH-ADP (ADD-ADP (UNTAG (R->I_PC (R-PC R)

(R-PROG-SEGMENT R)))
N)

(ICOMPILE (R-PROG-SEGMENT R)))
(GET N

(ICODE (GET (OFFSET (R-PC R))
(PROGRAM-BODY
(DEFINITION (ADP-NAME (UNTAG (R-PC R)))

(R-PROG-SEGMENT R))))
(OFFSET (R-PC R))
(DEFINITION (ADP-NAME (UNTAG (R-PC R)))

(R-PROG-SEGMENT R)))))).

This theorem, while apparently complicated, is really very beautiful. First, observe that the
ICODE-expression above occurs twice. We will abbreviate that expression by icode. It can be infor-
mally read as ‘‘the i-code generated for the current instruction of the r-state R.’’ Second, the expression
(UNTAG (R->I_PC ...)) will be abbreviated i-pc and can be informally read as ‘‘the address pair
pointing to the current instruction in the image of R under R->I.’’ Third, the ICOMPILE-expression can
be read as ‘‘the program segment of the image of R under R->I’’ and will be abbreviated
i-prog-segment. Making these abbreviations, the theorem becomes

224

Theorem. FETCH-ADP-ADD-ADP-UNTAG-R->I
(IMPLIES
(AND (PROPER-R-STATEP R)

(LESSP N (LENGTH icode)))
(EQUAL (FETCH-ADP (ADD-ADP i-pc N)

i-prog-segment)
(GET N icode))).

An informal reading of this is now easy: Let R be a proper r-state. Suppose N is a natural number less than
the length of the i-code generated for the current instruction, ins, of R. Let i be the image of R under
R->I. Increment the program counter of i by N and fetch from the program segment of i. What do you

thget? The N instruction in the i-code generated for ins.

This theorem lets us determine the i-code instruction to be executed in any i-state produced by stepping
forward from the image of an r-state, provided one has not stepped so far forward that the program counter
has been pushed beyond the block of code generated for the current R-level instruction. The theorem is the
key to our R->I level proofs.

Our proof also relies on such lemmas as

• The fundamental properties of fetch and deposit, e.g., that (FETCH A1 (DEPOSIT VAL
A2 SEGMENT)) is VAL if A1 is A2 and is (FETCH A1 SEGMENT) otherwise. These
lemmas enable the i-code to create a complicated state by performing several simpler transfor-
mations sequentially.

• If x is a legal R-level object in some r-state then it is also a legal I-level object in the image of
that r-state. This theorem let us establish the I-level preconditions from the R-level precon-
ditions.

In addition, there were many facts that were needed to handle the compiled code for specific instructions.

For example, the i-code for the TEST-INT-AND-JUMP instruction in the case where the test is POS is
generated by

(LIST ’(TPOP{I}_<ZN>_Y) ;1
’(MOVE_X_*) ;2
(TAG ’PC (CONS (NAME PROGRAM) (ADD1 PCN))) ;3
’(JUMP-N_X) ;4
’(JUMP-Z_X) ;5
’(JUMP_*) ;6
(PC (CADDR INS) PROGRAM)). ;7

This code may be read as follows: (1) Pop the stack into y and set both the zero and negative flags. (2-3)
Move into x the address of the beginning of the next Piton instruction. (4) Jump to the address in x if the
negative flag is on. (5) Jump to the address in x if the zero flag is on. (6-7) Jump unconditionally to the
label in the TEST-INT-AND-JUMP instruction. The claim is that this code jumps to the indicated label iff
the top of the stack is positive. The proof of correctness requires the (trivial) fact that an integer is positive
iff it is neither zero nor negative.

More interesting is the i-code for the LT-INT instruction. It is supposed to determine if the top two
elements of the stack are in the ‘‘less than’’ relation (where the deeper element is the lesser). This
instruction is supposed to work correctly for any two representable integers. The i-code is

225

’((TPOP_X) ; 1
(SUB_<NV>_<TSP>{I}_X{I}) ; 2
(MOVE_<TSP>_*) ; 3
(BOOL F) ; 4
(MOVE-V_<TSP>_*) ; 5
(BOOL T) ; 6
(MOVE_X_*) ; 7
(BOOL F) ; 8
(MOVE-N_X_*) ; 9
(BOOL T) ;10
(XOR_<TSP>{B}_X{B})). ;11

This code (1) pops the stack into x and then (2) subtracts x from the new top of the stack, storing the result
on top of the stack and setting both the negative and the overflow flags. Instruction (3-4) writes F to the
top of the stack and instruction (5-6) overwrites it with T if if the overflow flag is on. Instruction (7-8) puts
an F in x, which is overwritten with T by instruction (9-10) if the negative flag is set. Finally, at (11) the
code computes the exclusive-or of the top of the stack and x, leaving the result on the top of the stack. The
claim is: the stack has been popped twice and a T or an F has been pushed according to whether the two
popped elements were in the required less than relation. This is a non-trivial claim and depends upon the
fact that after computing i-j in the twos-complement representation, the exclusive-or the negative and
overflow flags is equivalent to i<j.

The hardest instruction to handle was, of course, CALL, where an arbitrary number of i-code instructions
must be executed. The proof of the one-way correspondence lemma for CALL required two inductively
proved lemmas, one to show that the execution of the code generated by GENERATE-PRELUDE1

correctly pushes the initial values of the temporaries and the other to show that the execution of the code
generated by GENERATE-PRELUDE2 correctly pushes the actual values of the formals and removes them
from the temporary stack.

It was the need to cope with the hidden resources that caused us to introduce the R-level machine. At
first sight the R-level machine is present to let us separate the issue of stack representation from the issue of
instruction set. This is certainly a useful service performed. Had we tried to do the proof of the correctness
of the compiler directly from the P-level down to the I-level, it would have been complicated by the need
both to grapple with the representation of stacks as arrays and registers while simultaneously grappling
with the change of instruction set. But that simplification was not the driving force behind the introduction
of R. The main contribution of the R-level machine is that it separates the hidden resources from the visible
ones and it establishes that the hidden ones can be used arbitrarily within the ‘‘basic block’’ of a Piton
instruction. We elaborate this point below.

Consider the attempt to go directly from the P level to the I level via what we shall call P->I.

n P steps

P -------------------> *
| |
| |

P->I | | P->I
| |
| * i1
*--------------------> * i2

k I steps

226

It is not the case that i is the same as i , because of hidden resources. Tackling the problem as before, we1 2
introduce the notion of ‘‘i-equivalence,’’ which checks that the visible part of two i-states are equal. The
one-way correspondence formula relating P to I states the i-equivalence of i and i . The proof requires1 2
induction on the number, n, of Piton instructions executed. The induction hypothesis establishes that the
i-states are i-equivalent after n-1 Piton steps. We need to prove the i-equivalence for n Piton steps. The
key is what might be called the ‘‘i-equivalence congruence’’ lemma, which states that i-equivalent states
are produced by running the I machine on i-equivalent states. But this relationship is not valid!

A computation on the I machine can distinguish two i-equivalent states. More precisely, it is possible to
step from two i-equivalent states to two states that are not i-equivalent. For example, suppose the instruc-
tion to be executed is TPUSH_X, which pushes onto the temporary stack the contents of the x register.
Note that this instruction moves the contents of an invisible resource into a visible one. We call this
exposing the invisible resource. The TPUSH_X instruction exposes x and if two i-equivalent states differ
on x, then the execution of TPUSH_X produces non-i-equivalent states.

However, consider a block of i-code in which x is initialized from visible resources and then a
TPUSH_X is done. The execution of that block of i-code in arbitrary i-equivalent states produces i-
equivalent states, even though TPUSH_X exposes invisible resources. The i-code for each Piton instruction
has the property that the hidden resources are all set before they are referenced—i.e., the hidden resources
are all treated as temporaries within each block of i-code. The ‘‘i-equivalence congruence’’ lemma could
be restated correctly by restricting our attention to i-code sequences with this property. However, it is
difficult (though not impossible) to characterize such sequences.

We leapt over the whole question of such defining such sequences by introducing the R machine. In one
clock tick the R machine carries out one Piton instruction and side-effects all the hidden resources ap-
propriately. Proving the r-equivalence congruence lemma is straightforward because the R machine does
not reference the hidden resources, it only sets them. When we move down from R to I—running Piton
instructions at the R-level and running the generated i-code at the I-level—we find the state diagram
actually commutes—i.e., we do not need i-equivalence but can use equality—because the R machine sets
the invisible resources exactly as set by the generated i-code.

11.4.3. I->M

We now move down one step further and relate the I machine to the M machine. Recall that the I

machine executes symbolic i-code on tagged data objects. The M machine is equivalent to FM8502; its
memory and registers contain only bit vectors. The relation between I and M is explained with I->M,
which is the link-assembler.

Theorem. ONE-WAY-CORRESPONDENCE-I-M
(IMPLIES (AND (EQUAL (I-PSW (I I N)) ’RUN)

(EQUAL (I-WORD-SIZE I) 32))
(EQUAL (I->M (I I N))

(M (I->M I) N)))

If we simply read M as FM8502, this theorem says that the FM8502 image of any non-erroneous I-level
computation from some initial i-state can be alternatively obtained by running FM8502 on the image of the
initial state. Note that there is no sense of hidden resources or basic blocks of i-code here. We prove that
the image of any i-code program executes correctly on FM8502.

Here, as in the P->R proof, we see each machine taking the same number of steps. The proof of this

227

one-way correspondence theorem thus breaks down immediately to the proof of the single step version for
each machine, and that in turn breaks down to the case for each i-code instruction.

Below we exhibit the lemma for the i-code instruction ADD_<TSP>{N}_X{N}.

Theorem. ADD_<TSP>{N}_X{N}-ONE-WAY-CORRESPONDENCE-I-M-STEP
(IMPLIES (AND (I-STATE-OKP I)

(EQUAL (I-PSW I) ’RUN)
(EQUAL (I-WORD-SIZE I) 32)
(I-ADD_<TSP>{N}_X{N}-OKP I)
(EQUAL (I-CURRENT-INSTRUCTION I) ’(ADD_<TSP>{N}_X{N})))

(EQUAL (I->M (I-ADD_<TSP>{N}_X{N}-STEP I))
(M-STEP (I->M I))))

To prove this theorem, consider first the left-hand side of the conclusion. Symbolically expanding
(I-ADD_<TSP>{N}_X{N}-STEP I) produces an i-state in which the topmost element of the tem-
porary stack has been replaced by the tagged natural number obtained by summing the (untagged) old value
on the stack and the (untagged) value of register x. Then symbolically evaluating the I->M on that i-state
produces an FM8502 core image. The key property of this core image is that the bit vector at the address
pointed to by register 3 (the tsp register) is the binary representation of the natural number sum described
above.

Now consider the right-hand side of the conclusion, (M-STEP (I->M I)). The first issue that must
be faced in this proof is to determine what is the current instruction in the m-state (I->M I), given that
the current instruction in the i-state I is (ADD_<TSP>{N}_X{N}). The answer is that it is the bit vector
obtained by calling LINK-INSTR-WORD on (ADD_<TSP>{N}_X{N}), i.e., the bit vector correspond-
ing to the assembly instruction (ADD NIL (TSP) X), which is
B00000000000000110000000101100100. Then one can symbolically execute M-STEP, the single
stepper for the M machine (FM8502). The result is a new m-state in which the bit vector at the address in
register 3 (B011, the tsp register) is now the ‘‘binary-sum’’ of the old bit vector in that location and the
contents of register 4 (B100, the x register). By ‘‘binary-sum’’ we mean the bit vector produced by the
arithmetic-logical unit when the opcode is B00110.

We see that the left-hand and right-hand m-states are equivalent if we simply know that the binary
representation of the sum of two naturals is the binary-sum of the binary representations of the two
naturals. This is true if the sum is representable, which is assured by the -OKP predicate above.

In general the key lemmas that had to be proved to construct the I->M level proofs had to do with

• the correspondence between the current instruction at the I-level and the current instruction at
the M-level, as illustrated above;

• the commutativity of the fundamental data type operators and the bit-vector representations, as
illustrated above; and

• the correspondence between name-offset address pairs into a structured memory segment at the
I-level and the bit-vector addresses into a linear memory at the M-level.

The latter issue was actually involved in the illustration above. For example, when we fetched the
current instruction of the m-state, we first inspected the program counter (register 0) and found there a
bit-vector. That bit-vector, produced by I->M, was constructed by linking the data word which was the
program counter at the I-level. That data word was an address pair that named a program and an offset. It
was linked by computing a natural number indicating the analogous location in the linked memory and then
converted to a bit-vector. When the M machine fetches from that bit-vector address it gets the bit-vector

228

produced by linking the instruction word found in the i-state at the address indicated by the original address
pair.

Perhaps the most interesting instruction to prove correct at this level was the trivial i-code instruction
(INT-TO-NAT), which is the only instruction used in the compiled version of the Piton instruction
(INT-TO-NAT). At the i-code (and Piton) level, (INT-TO-NAT) pops an integer off the stack and
pushes the corresponding natural, provided the integer was non-negative. At the machine code level,
(INT-TO-NAT) is mapped into a no-op.

The one-way correspondence lemma for that instruction is proved by the following steps. On the
left-hand side, the I-level step retags the top of the stack from INT to NAT and then the I->M maps it
down, mapping the top of the stack as though it were an integer (since it is so tagged). On the the
right-hand side, I->M maps down the original top of the stack as though it were a natural (since it is so
tagged) and then the M-level step does nothing. The two m-states are equal because the bit-vector
representing a small non-negative integer is the same as that representing the same natural.

11.5. The Correctness Proof

In this section we prove the correctness of the FM8502 implementation of Piton. We have already
displayed four of the key lemmas, the one-way correspondence theorems relating the adjacent pairs of
machines. We display them again below and give them each a number for future reference. During the
proof of the correctness result we will mention several other theorems but we will not discuss their proofs.

Theorem 1. ONE-WAY-CORRESPONDENCE-P-R
(IMPLIES (AND (PROPER-P-STATEP P)

(P-LOADABLEP P)
(NOT (ERRORP (P-PSW (P P N)))))

(R-EQUAL (P->R (P P N))
(R (P->R P) N)))

Theorem 2. ONE-WAY-CORRESPONDENCE-R-I
(IMPLIES (AND (PROPER-R-STATEP R)

(NOT (ERRORP (R-PSW (R R N)))))
(EQUAL (R->I (R R N))

(I (R->I R)
(CLOCK R N))))

Theorem 3. ONE-WAY-CORRESPONDENCE-I-M
(IMPLIES (AND (EQUAL (I-PSW (I I N)) ’RUN)

(EQUAL (I-WORD-SIZE I) 32))
(EQUAL (I->M (I I N))

(M (I->M I) N)))

Theorem 4. FM8502-EQUAL-M
(IMPLIES (M-STATEP M)

(EQUAL (FM8502 M N)
(M M N)))

The correctness theorem is

229

Theorem. FM8502 Piton is Correct
(IMPLIES (AND (PROPER-P-STATEP P0)

(P-LOADABLEP P0)
(EQUAL (P-WORD-SIZE P0) 32)
(EQUAL PN (P P0 N))
(NOT (ERRORP (P-PSW PN)))
(EQUAL TS (TYPE-SPECIFICATION

(P-DATA-SEGMENT PN))))
(EQUAL (P-DATA-SEGMENT PN)

(DISPLAY-M-DATA-SEGMENT
(FM8502 (LOAD P0)

(FM8502-CLOCK P0 N))
TS
(LINK-TABLES P0)))).

By expanding the occurrences of LOAD, FM8502-CLOCK, and LINK-TABLES according to their defini-
tions, and replacing TS and PN by the terms to which they are equated in the hypothesis this theorem
reduces to

Theorem. FM8502 Piton is Correct
(IMPLIES (AND (PROPER-P-STATEP P0)

(P-LOADABLEP P0)
(EQUAL (P-WORD-SIZE P0) 32)
(EQUAL PN (P P0 N))
(NOT (ERRORP (P-PSW (P P0 N))))
(EQUAL TS (TYPE-SPECIFICATION

(P-DATA-SEGMENT (P P0 N)))))
(EQUAL (P-DATA-SEGMENT (P P0 N))

(DISPLAY-M-DATA-SEGMENT
(FM8502 (I->M (R->I (P->R P0)))

(CLOCK (P->R P0) N))
(TYPE-SPECIFICATION
(P-DATA-SEGMENT (P P0 N)))
(I-LINK-TABLES (R->I (P->R P0)))))).

Therefore, assume P0 is a loadable proper p-state with word size 32 that when run forward N steps at the
P level produces a non-erroneous state PN.

Using these assumptions and the four correspondence theorems above we draw the following diagram to
name a collection of states. For example, the diagram establishes the convention that PN is (P P0 N),
R0 is (P->R P0), RN is (R R0 N), RN’ is (P->R PN) and that RN and RN’ are R-EQUAL.

230

NP
P0 -------------------------> PN
| \
| \

P->R | \ P->R
| \
| |

N| R |
R0 -------------------------> RN RN’
| \ R-EQUAL
| \

R->I | \ R->I
| \

c| I |
I0 ------------------------------> Ic
| |

I->M | | I->M
| |
| |

c| M |
M0 ------------------------------> Mc
\ /

c\ FM8502 /

To interpret the diagram, c should be read as (CLOCK (P->R P0) N).

Observe that the diagram suggests two equivalent definitions of Ic: it is the result of running R0

forward N steps and mapping down with R->I, and it is the result of mapping R0 down with R->I and
then running that state c steps forward at the I level.

To derive this diagram from the above theorems one must know certain other lemmas. In some sense the
topmost box above captures Theorem 1 (ONE-WAY-CORRESPONDENCE-P-R, page 219) and the box
below that captures Theorem 2 (ONE-WAY-CORRESPONDENCE-R-I, page 221). But nothing we have
mentioned so far allows us to draw the boxes so that they share the r-states R0 and RN. That is, the
suggestion that Ic may be derived by either of the two routes shown above is valid only if we know that
the hypotheses of Theorem 2 are true when we instantiate its high-level states with the lower level states of
Theorem 1.

More precisely, we can usefully compose Theorems 1 and 2 only if we know that the image of P0 under
P->R, i.e., R0, is a proper r-state and that R0 can be run at the R-level non-erroneously. The first we get
from

Theorem 5. PROPER-P-STATEP-IMPLIES-PROPER-R-STATEP
(IMPLIES (AND (PROPER-P-STATEP P)

(P-LOADABLEP P))
(PROPER-R-STATEP (P->R P))).

The second we get from a corollary of Theorem 1 (ONE-WAY-CORRESPONDENCE-P-R, page 219),
namely that the R-PSW of (R (P->R P) N) is the same as the P-PSW of (P P N). This follows from
the definitions of R-EQUAL and P->R.

The third box above captures Theorem 3 (ONE-WAY-CORRESPONDENCE-I-M, page 226). That
theorem has two hypotheses also. The first requires that the initial i-state, I0 in the diagram, have word

231

size 32, which follows from the assumption that P0 has word size 32 and thus so does R0 and I0 (given
the definitions of our mapping functions). The second requires that the psw of the final i-state, Ic in the
diagram, is ’RUN, which follows from the definition of R->I and the previous observation that RN is
non-erroneous.

Finally, the fourth box above captures Theorem 4 (FM8502-EQUAL-M, page 218), which requires only
that the initial state, M0 in the diagram, be an m-state. This follows from the definition of I->M.

Thus, we claim that we are justified in using the diagram above to establish naming conventions for the
various states.

We are interested in (P-DATA-SEGMENT PN). But this is equal to (R-USR-DATA-SEGMENT

RN’) (by the definition of P->R), which in turn is equal to (R-USR-DATA-SEGMENT RN) (by the
R-EQUALity of RN and RN’ and the definition of R-EQUAL), which is equal to
(I-USR-DATA-SEGMENT Ic) (by the definition of R->I).

Using these observations and the names established by the diagram, the conclusion of the main theorem
becomes

(EQUAL (I-USR-DATA-SEGMENT Ic)
(DISPLAY-M-DATA-SEGMENT

(I->M Ic)
(TYPE-SPECIFICATION (I-USR-DATA-SEGMENT Ic))
(I-LINK-TABLES I0))).

Running the I machine does not affect the link tables computed for an i-state, i.e.,

Theorem 6. I-LINK-TABLES-I
(IMPLIES (AND (EQUAL (I-PSW (I I0 C)) ’RUN)

(EQUAL (I-WORD-SIZE I0) 32))
(EQUAL (I-LINK-TABLES (I I0 C))

(I-LINK-TABLES I0))).

Thus, (I-LINK-TABLES I0) is the same as (I-LINK-TABLES Ic). The hypotheses of Theorem 6,
above, have already been shown to hold of our particular I0 and c.

Thus, the conclusion of the main result is

(EQUAL (I-USR-DATA-SEGMENT Ic)
(DISPLAY-M-DATA-SEGMENT

(I->M Ic)
(TYPE-SPECIFICATION (I-USR-DATA-SEGMENT Ic))
(I-LINK-TABLES Ic))).

The proof is then completed by appealing to the following theorem, which essentially says that
DISPLAY-M-DATA-SEGMENT inverts I->M on the data segment:

232

Theorem 7. DISPLAY-M-DATA-SEGMENT-INVERTS-I->M
(IMPLIES (AND (PROPER-I-USR-DATA-SEGMENTP (I-USR-DATA-SEGMENT I) I)

(I-STATE-OKP I))
(EQUAL
(DISPLAY-M-DATA-SEGMENT
(I->M I)
(TYPE-SPECIFICATION (I-USR-DATA-SEGMENT I))
(I-LINK-TABLES I))
(I-USR-DATA-SEGMENT I))).

It remains only to establish the two hypotheses of Theorem 7. The first is that the user data segment of
Ic is proper. But Ic is the same state as (R->I RN) and so its user data segment is proper, by

Theorem 8. PROPER-R-STATEP-IMPLIES-PROPER-I-USER-DATA-SEGMENTP
(IMPLIES (PROPER-R-STATEP R)

(PROPER-I-USR-DATA-SEGMENTP (R-USR-DATA-SEGMENT R)
(R->I R))),

provided we could show that RN is a proper r-state. We have already argued that R0 is proper and it turns
out therefore that RN is proper because proper r-states are preserved by R,

Theorem 9. PROPER-R-STATEP-R
(IMPLIES (PROPER-R-STATEP R)

(PROPER-R-STATEP (R R N))).

The second hypothesis of Theorem 7 is (I-STATE-OKP Ic). (I-STATE-OKP is the I-level
analogue of the proper state invariant.) The following theorem establishes that proper r-states map down to
proper i-states:

Theorem 10. PROPER-R-STATEP-IMPLIES-I-STATE-OKP-R->I
(IMPLIES (AND (PROPER-R-STATEP R)

(NOT (ERRORP (R-PSW R))))
(I-STATE-OKP (R->I R))).

We do not discuss the proofs of Theorems 5-10. All of the theorems cited have been proved mechani-
cally.

233

Appendix I. Primitive Functions

The following primitive function symbols are used in this document: ADD1, AND, APPEND, ASSOC,
CAR, CDR, CONS, DIFFERENCE, EQUAL, IF, IMPLIES, LESSP, LISTP, LITATOM, MEMBER,
MINUS, NEGATIVE-GUTS, NEGATIVEP, NLISTP, NOT, NUMBERP, OR, PACK, PAIRLIST,
PLUS, QUOTIENT, REMAINDER, STRIP-CARS, SUB1, TIMES, TRUEP, UNPACK, ZERO and
ZEROP.

See [4] for the axioms defining these functions.

Appendix II. Statistics

II.1. History of the Project

The project originally started in September, 1986. At that time, Warren Hunt, of Computational Logic,
Inc., and the author sketched out a stack based assembly language for FM8501 and implemented an
assembler and linker for a small subset of it containing about 10 instructions. This was done without
defining the formal semantics of the language; such an assembler would be merely a convenient way to
produce machine code. Properties of the machine code programs would be proved directly from the
FM8502 definition. This view of an assembler level language is exactly that taken by Bevier in [1]. If the
machine code programs thus produced can overwrite themselves, as is possible with all conventional
assemblers, this is the only view possible. The instructions of the program must be bit vectors rather than
symbolic expressions since data can be treated as instructions.

The desire to prove theorems about our programs at a higher level than the FM8501 definition forced us
to define the semantics formally and lift the language somewhat. Hunt and the author then designed a ‘‘toy
language’’ that contained only four instructions: a simplified CALL (with no provision for formals), RET, a
variable-to-variable MOVE, and an increment-by-2 instruction, ADD2. This language was called H (for High
level). We defined a 10 instruction low-level machine, called L which was a simplified FM8501, on which
it was just possible to implement H. We implemented H via a compiler and link-assembler and formulated
what was meant by the correctness of the implementation. During this period we came up with the idea of
the psw and erroneous states.

We then began the task of trying to prove the correctness of the implementation. Around this time, Hunt
began working on other hardware verification efforts and the project became the sole concern of the author.

In the first attempt to prove the correctness of the L implementation of H, a single intermediate machine
was introduced, comparable to our I. The proof from I down to L was completed and the proof from H to
I was begun. Soon afterwards we recognized the ‘‘hidden resource’’ problem and introduced the R

machine, R-EQUAL and the congruence properties.

The entire proof of the correctness of the L implementation of H was completed by September, 1987, a
year after we began work on the assembly language design. During the first seven months of that year, the
project was staffed by 2 men working roughly 8 hours per week. During the last 5 months, the project was
staffed by 1 man working roughly 8 hours a day, less about one month of time off. Thus, 7 man-months
were devoted to what might be called the ‘‘Piton feasibility study.’’ The importance of this early phase of
the project cannot be overemphasized. The identification of the hidden resource problem and the formal

234

methods for coping with it (the R machine and R-EQUAL) would have been enormously more costly had it
occurred in the middle of the Piton project.

Work on the full-blown language, implementation and proof began in September, 1987. This work was
done by the author alone.

The style of the Piton language definition was heavily influenced by the experience with H. This is not
to say that the definition was in the style of H! Rather, in the definition of Piton we tried to avoid the
mistakes we had made in the definition of H. One of the main improvements was the isolation of each
instruction’s -OKP and -STEP function so that the language could grow very large without complicating
the proof. Another was the uniform handling of the psw and errors. Many new issues had to be addressed,
including the handling of multiple data types, type checking, and the role of the TYPE-SPECIFICATION
in the correctness result.

It was also decided to define the R and I machines as part of the initial specification process. While
these intermediate machines were not technically necessary for the implementation we knew they were
needed for the proof and (accurately) felt that their definitions would serve as valuable specifications for
the internal forms to be produced by the implementation.

Bill Young of Computational Logic, Inc., and a graduate student in the Computer Sciences Department
of the University of Texas at Austin, began using a simplified version of the evolving Piton as the target
language for a MicroGypsy compiler. Young’s requirements caused several changes in Piton during the
course of its proof, necessitating the modification of previously completed modules. In December Matt
Kaufmann, of Computational Logic, Inc., volunteered do some of the Piton proofs with his interactive
enhancement to the Boyer-Moore theorem prover.

II.2. Manpower Requirements

The time-line below shows the progress on the full-blown Piton project. The numbers 1-8 below
indicate specific subtasks enumerated below.

1987 1988
Sep Oct Nov Dec Jan Feb Mar Apr May

| | | | | | | | | |

Moore 1111 1111 1122 2222 4445 6678
Kaufmann 3333 3333 4455

Task 1: Definition of Piton, FM8502, the implementation, the concepts used in the correctness
theorem, and all of the intermediate machines.

Task 2: Proof of the one-way correspondence theorem for the I->M step and the equivalence of
FM8502 and M.

Task 3: Proof of the one-way correspondence theorem for the P->R step.

Task 4: Proof of the one-way correspondence theorem for the R->I step.

Task 5: Proof of the other supporting lemmas for the top-level theorem and the proof of the
top-level theorem itself.

Task 6: A new proof of the P->R step, after revising the the definition of Piton to distinguish
the static preconditions from the dynamic ones. See below.

Task 7: A consolidation and cleaning up of all of the proofs.

235

Task 8: The addition of seven new Piton instructions, LT-INT, PUSH-TEMP-STK-INDEX,
FETCH-TEMP-STK, DEPOSIT-TEMP-STK, POP*, POPN, and INT-TO-NAT and
the replaying of all the proofs to accommodate changes in every machine.

During the course of the proof many ‘‘bugs’’ were discovered in the definitions of the various machines
and invariants. These bugs sometimes rippled out to other machines and invariants. For example, an
omitted precondition in P might also be omitted from R without jeopardizing the P->R step; the R->I step
might fail because of the omitted check. Such a bug would be found in the R->I proof and then require
changes to both R and P and reconsideration of the P->R step.

The time line above is misleading because it does not accurately reflect the effort expended in modifying
and reconsidering previously ‘‘completed’’ proofs. The fact that we had two proof efforts running in
parallel mitigated this problem somewhat. When one of us had to change any definition, the change was
communicated to the other and one of us would informally investigate whether that change needed to be
propagated to other levels. If the change impacted the other proof effort, the person managing that effort
would wait until he got to a nice stopping place, would make the change, reconstruct his proof to that point,
and then continue. This was much less expensive (in terms of user ‘‘context switching’’) than it would
have been had the proofs been constructed sequentially.

By May the entire proof had been mechanically checked, but some proofs had been done with the
Boyer-Moore theorem prover and others had been done by the Kaufmann enhancement (according to
whether Moore or Kaufmann had managed the task).

Task 6, the revision of Piton and the reconstruction of the P->R proof, was necessitated by the kind of
sloppy iteration described above. By the time the three one-way correspondence theorems had been proved
a lot of incremental modifications had been made. These had rippled up to the P level and showed up as ad

hoc restrictions in the dynamic preconditions. Many of these restrictions could have been moved into the
static checks enforced by PROPER-P-STATEP or were strictly unnecessary because of checks made there.
In Task 6 we carefully segregated the static and dynamic checks and pared down the dynamic checks as
much as possible. (Since the dynamic checks are part of the Piton interpreter, they complicate proofs about

Piton programs.)

Because Moore managed Task 6 a side-effect of that task was to carry out the P->R step proof with the
Boyer-Moore theorem prover. In a narrow sense, all of the lemmas and proof commands developed by
Kaufmann in Task 3 were discarded and the new proof was constructed from scratch. But in a much more
meaningful sense, the new proof was just a modification of the Kaufmann proof because the earlier proof
had debugged the statement of the theorem and gotten correct the hundreds of definitions involved in the P
and R machines.

By the time Task 7 had been completed, the entire proof was constructed by the Boyer-Moore theorem
prover.

Task 8 was motivated by accumulated requests from Bill Young for additional language features. We
were encouraged by the fact that seven new instructions could be added, necessitating the change of every
machine except FM8502, and the entire proof reconstructed in less than a week. This was the case
primarily because each level of the proof first develops a powerful library of rules for dealing with the
concepts at that level and so minor changes to theorems were accommodated automatically. The new
instructions were added by choosing a similar old instruction and visiting every occurrence of that old
name in the proof event files. For each formula involving the old instruction an analogous formula

236

involving the new instruction was inserted. With minor exceptions the resulting transcripts were automati-
cally processed. When the automatic processing failed it was because of some relatively deep problem
specific to the new instruction (e.g., that integer less than can be computed by taking the exclusive-or of the
negative and overflow flags after a subtraction).

The experience of adding seven new instructions in less than a week has made us optimistic that Piton
can evolve to suit the needs of its users. We cannot yet answer the commonly asked questions ‘‘how hard
would it be to implement Piton on a different hardware base and prove that correct?’’ and ‘‘how hard
would it be to implement and prove the correctness of a different language?’’ Whatever the answers, we
know those problems are made significantly simpler because of our Piton experience.

For what it is worth, a total of 9 man-months was spent on the full-blown Piton project. Nine months
elapsed from start to finish. This of course ignores the 7 man-months devoted during the preceding 12
months to the ‘‘feasibility’’ study. This report has taken two man-months to assemble.

II.3. Sizes of the Formal Systems

The following table shows the number of bytes and the number of lines of user-supplied pretty-printed
formal text involved in the definition, implementation and proof of Piton.

bytes lines

FM8502 49K 1706
Piton 73K 2825
Implementation 38K 1400
Proof 960K 29859

However, these measures are misleading since long identifiers and short lines tend to inflate the counts.
In addition, because of the wonders of GNU Emacs key board macros [18], many of the characters
allegedly typed were not actually typed at all but were generated from previous type-in. For readers
unfamiliar with text editing we give two examples. Recall that the one-way correspondence theorem at
each level is proved by proving a single-step version, which in turn is proved via a single-step lemma for
each instruction. In the case of the P->R proof, there are 65 instructions and hence 65 lemmas. The first
one was typed manually. The remaining ones were obtained mechanically by commanding the text editor
to successively replace the first opcode by each of the other opcodes. In GNU Emacs this operation can be
defined as a single command and used repeatedly thereafter. Another way keystrokes are eliminated is by
editing the theorem prover’s output on unsuccessful proof attempts. The typical sequence of actions is: a
formula is submitted, the proof fails, the user reads the proof attempt and realizes that the theorem prover
needs to know a new lemma, and the lemma is then textually constructed by editing the formula in which it
will be used. For example, the user may realize ‘‘This (click) AND this (click) IMPLY that this (click) is
equal to this (click),’’ where each ‘‘click’’ signifies a keystroke or two that picks up a term on the screen
and deposits it into the emerging lemma. The point is that the size of the formula thus constructed is
independent of the number of keystrokes. We therefore prefer to count the number of logical ‘‘events’’
(ADD-SHELL, DEFN, and PROVE-LEMMA commands of the theorem-prover) involved in a system.

Below we enumerate several different subsystems within the entire Piton definition, implementation and
proof. For each we show the number of shell definitions, function definitions, and lemmas proved ‘‘for’’
that subsystem.

237

There are a total of 2,764 names involved in the entire system. Every name has been assigned to exactly
one of the subsystems in which it is used—though many names are used in many subsystems.

Shells Definitions Theorems

Statement of the Problem
FM8502 3 78
Piton 1 320
Implementation

Resource Phase 1 11
Compiler 1 82
Link-assembler 39
Load 1
Totals (Implementation) (2) (133)

Correctness Theorem 24

Totals 6 555

Proof of Correctness
Statement of the Problem 6 555
R Machine 173
I Machine 197
M Machine 12
Theorem 1 (P->R) 27 690
Theorem 2 (R->I) 74 245
Theorem 3 (I->M) 19 385
Theorem 4 (FM8502-EQUAL-M) 4
Theorems 5-10 23 364

Totals 6 1080 1688

The proof of Theorem 1 is clearly the most difficult. This is intuitively surprising since Theorem 1 only
involves a change of representation. Theorems 2 and 3 are much more interesting since they concern
compilation and link-assembling. What makes Theorem 1 difficult is that it is dealing with the hidden
resource problem.

Recall our discussion of the proof of Theorem 1. We noted two key lemmas,
ONE-WAY-CORRESPONDENCE-P-R-STEP (page 219), and R-EQUAL-CONGRUENCE (page 220), and
informally mentioned six others. The proof of ONE-WAY-CORRESPONDENCE-P-R-STEP cost 283
lemmas. This cost alone would make the cost of Theorem 1 comparable to that of Theorem 2 and simpler
than Theorem 3. Thus, the difficulty of Theorem 1 would correspond intuitively to the idea that it was just
a change of representation.

But while all three Theorems 1-3 involve a single-step one-way-correspondence lemma, Theorems 2 and
3 need no other major lemmas while Theorem 1 does. The second key lemma in the proof of Theorem 1 is
R-EQUAL-CONGRUENCE, which costs 191 lemmas. Observe that this is an inductively proved fact about
the lower level machine; in Theorems 2 and 3 the only facts needed about the lower level machines are how
to run them on symbolic data. The six other lemmas involved in Theorem 1 have a combined cost of 216
lemmas and involve such complicated observations as that proper p-states map down to proper r-states and
that the R machine preserves proper r-states. Unlike the proofs of Theorems 2 and 3, the proof of Theorem
1 intimately involves invariants about the lower level machine, not just invariants about the upper level
machine (i.e., that proper states are preserved by the upper level single stepper). These invariants primarily
concern resource hiding.

238

The total time taken to reproduce the proofs on a 12 megabyte Sun 3/60 running the Austin Kyoto
Common Lisp implementation of the Boyer-Moore theorem prover [4] is 16 hours.

239

References

1. W. Bevier. A Verified Operating System Kernel. Ph.D. Th., University of Texas at Austin, 1987.

2. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, 1979.

3. R. S. Boyer and J S. Moore. A Verification Condition Generator for FORTRAN. In The Correctness
Problem in Computer Science, R. S. Boyer and J S. Moore, Eds., Academic Press, London, 1981.

4. R. S. Boyer and J S. Moore. A User’s Manual for A Computational Logic. Tech. Rept. Technical
Report 18, Computational Logic, Inc., Suite 290, 1717 West Sixth Street, Austin, TX 78703, 1988.

5. Dan Craigen. A Description of m-Verdi [Working Draft]. I. P. Sharp Associates, Ltd., 1986.

6. S. L. Gerhart, D. R. Musser, D. H. Thompson, D. A. Baker, R. L. Bates, R. W. Erickson, R. L. London,
D. G. Taylor and D. S. Wile. An Overview of AFFIRM: A Specification and Verification System.
Information Processing 80, S. H. Lavington (Ed.), October, 1980, pp. 343-348. North Holland Publishing
Company.

7. Donald I. Good. Mechanical Proofs about Computer Programs. In C. A. R. Hoare and
J. C. Shepherdson, Ed., Mathematical Logic and Programming Languages, Prentice-Hall International
Series in Computer Science., 1985, pp. 55-75.

8. Donald I. Good, Robert L. Akers, Lawrence M. Smith. Report on Gypsy 2.05 - January 1986.
Computational Logic, Inc., Suite 290, 1717 West Sixth Street, Austin, TX 78703., 1986.

9. Michael K. Smith, Donald I. Good, Benedetto L. DiVito. Using the Gypsy Methodology. Computa-
tional Logic, Inc., Suite 290, 1717 West Sixth Street, Austin, TX 78703., 1988. Revised January 1988.

10. Mike Gordon. Proving a Computer Correct. Tech. Rept. TR 42, University of Cambridge, Computer
Laboratory, 1983.

11. Warren A. Hunt, Jr. FM8501: A Verified Microprocessor. Ph.D. Th., University of Texas at Austin,
1985.

12. P. M. Melliar-Smith and R. Schwartz. Hierarchical Specification of the SIFT Fault-Tolerant Flight
Control System. Tech. Rept. CSL-123, Computer Science Laboratory, SRI International, Menlo Park, Ca.,
1981.

13. David R. Musser and David A. Cyrluk. AFFIRM-85 Installation Guide and Reference Manual Update.
General Electric Corporate Research and Development, 1985.

14. P. G. Neumann, L. Robinson, K. Levitt, R. Boyer, A. Saxena. A Provably Secure Operating System.
Tech. Rept. CSL-116, Computer Science Laboratory, SRI International, 1977.

15. W. Polak. Compiler Specification and Verification. Springer-Verlag, Berlin, 1981.

16. L. Robinson and K. Levitt. "Proof Techniques for Hierarchically Structured Programs". Comm. ACM
20, 4 (April 1977).

17. Mark Saaltink. The Verdi Logic [Working Draft]. I. P. Sharp Associates, Ltd., 1986.

18. Richard M. Stallman. GNU Emacs Manual. Free Software Foundation, 1000 Massachusetts Avenue,
Cambridge, MA 02138, 1987.

19. D.F. Stanat, T.A. Thomas, and J.R. Dunham. Proceedings of a Formal Verification/Design Proof Peer
Review. Tech. Rept. RTI/2094/13-01F, Research Triangle Institute, P.O. Box 12194, Research Triangle
Park, N.C., 27709, 1984.

20. Stanford Verification Group. Stanford Pascal Verifier User Manual. Stanford University, 1979.

21. D. Thompson and W. Erikson. AFFIRM Reference Manual. USC Information Sciences Institute,
4676 Admiralty Way, Marina Del Rey, Ca. 90291, 1981.

240

241

Index

The numbers associated with each entry of this index are page numbers. Each number is in one of three
fonts. Bold face numbers, such as 27 and 135, indicate the defining occurrence of the symbol or phrase.
Numbers in Roman font, such as 27 and 135, indicate significant occurrences of the symbol or phrase in
text. Not every occurrence of the symbol or phrase in text is deemed "significant." Numbers in typewriter
font, such as 27 and 135, indicate occurrences of the given symbol in the definitions listed in Chapters
7-10 of this report. Every such occurrence is noted. Such page numbers indicate the beginning of the
containing definition, rather than the page on which the occurrence is found.

A

A-VALUE-FOR-ALU-AFTER-OPRD-A-PRE-DECREMENT 156, 160
ABSOLUTE-ADDRESS 176, 176, 193, 203
Actuals 13
ADD-ADDR 95, 95, 102
ADD-ADDR instruction, effects 102
ADD-ADDR instruction, i-code 181
ADD-ADDR instruction, precondition 102
ADD-ADDR instruction, summary 14
ADD-ADDR instruction, syntax 140
ADD-ADP 95, 95
ADD-INT instruction, effects 102
ADD-INT instruction, i-code 181
ADD-INT instruction, precondition 102
ADD-INT instruction, summary 14
ADD-INT instruction, syntax 140
ADD-INT-WITH-CARRY instruction, effects 103
ADD-INT-WITH-CARRY instruction, i-code 182
ADD-INT-WITH-CARRY instruction, precondition 103
ADD-INT-WITH-CARRY instruction, summary 15
ADD-INT-WITH-CARRY instruction, syntax 140
ADD-NAT instruction, effects 104
ADD-NAT instruction, i-code 182
ADD-NAT instruction, precondition 103
ADD-NAT instruction, summary 15
ADD-NAT instruction, syntax 140
ADD-NAT-WITH-CARRY instruction, effects 104
ADD-NAT-WITH-CARRY instruction, i-code 182
ADD-NAT-WITH-CARRY instruction, precondition 104
ADD-NAT-WITH-CARRY instruction, summary 16
ADD-NAT-WITH-CARRY instruction, syntax 140
ADD1 98, 100, 105, 106, 126, 159, 166, 168, 179, 180, 182, 186, 187, 188, 190, 193, 194, 197, 206, 208,

233
ADD1-ADDR 95, 95, 107
ADD1-INT instruction, effects 105
ADD1-INT instruction, i-code 182
ADD1-INT instruction, precondition 105
ADD1-INT instruction, summary 16
ADD1-INT instruction, syntax 140
ADD1-NAT instruction, effects 106
ADD1-NAT instruction, i-code 182
ADD1-NAT instruction, precondition 105
ADD1-NAT instruction, summary 16
ADD1-NAT instruction, syntax 141
ADD1-P-PC 95, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 139, 153
ADDR-TO-BV 176, 194
ADP-NAME 95, 95, 96, 97, 98, 139, 152, 176, 177, 177, 194, 203
ADP-OFFSET 95, 95, 96, 98, 101, 139, 152, 176, 177, 203

242

ADPP 96, 121
ALL-BUT-LAST 96, 152
ALL-FIND-LABELP 96, 144
ALL-LITATOMS 96, 147
ALL-P-OBJECTPS 96, 141
ALL-ZERO-BITVP 96, 137
AND 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 125, 126, 128, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 144,
145, 146, 147, 148, 150, 152, 156, 164, 165, 167, 179, 193, 207, 233

AND-BIT 96, 96
AND-BITV 96, 106
AND-BITV instruction, effects 106
AND-BITV instruction, i-code 182
AND-BITV instruction, precondition 106
AND-BITV instruction, summary 16
AND-BITV instruction, syntax 141
AND-BOOL 97, 107
AND-BOOL instruction, effects 107
AND-BOOL instruction, i-code 182
AND-BOOL instruction, precondition 106
AND-BOOL instruction, summary 16
AND-BOOL instruction, syntax 141
APPEND 100, 151, 153, 180, 184, 193, 197, 198, 199, 200, 202, 206, 233
AREA-NAME 97, 108, 117, 126, 141, 148, 177, 202
AREA-TYPE-SPECIFICATION 205, 208
Array 12
ARRAY 33
Assembler 67
ASSOC 97, 177, 178, 179, 194, 195, 233
ASSOC-CDRP 206, 207

B

B-AND 156, 156, 157, 158, 159, 161
B-C-SET 156, 166
B-DIRECT-REG-A 156, 156
B-DIRECT-REG-B 156, 158, 164, 165
B-EQUV 156, 159
B-IF 156, 161
B-INDIRECT-REG-A-DEC 156, 156, 165
B-INDIRECT-REG-A-INC 156, 165
B-INDIRECT-REG-B-DEC 157, 158, 166
B-INDIRECT-REG-B-INC 157, 165
B-MOVE-OP 157, 157, 160
B-N-SET 157, 166
B-NAND 156, 157
B-NOR 156, 157
B-NOT 156, 157, 157, 161, 162
B-OR 157, 158, 162
B-STORE-ALU-RESULT-WITH-IFS 157, 164, 165
B-V-SET 157, 166
B-VALUE-FOR-ALU-AFTER-OPRD-B-PRE-DECREMENT 158, 160
B-XOR 158, 158, 159, 163
B-Z-SET 158, 166
BASE-ADDRESS 176, 177, 194, 203, 207, 208
Big number (in base base) 25
Big number addition 25, 26
BIG-ADD-ARRAY 26
BIG-ADD-ARRAY-LOOP 44
BIG-ADD-CARRY-OUT 26
BIG-ADD-CLOCK 37
BIG-ADD-INPUT-CONDITIONP 35
BIG-ADD-LOOP-CLOCK 37
BIG-ADD-PROGRAM 33
BIG-PLUS 27
BIGN->NAT 25
BIGNP 25
Bindings 9
BINDINGS 97, 100, 111, 116, 125, 142, 152, 177, 200
BIT 158, 158, 161, 162, 163, 164, 167, 168, 177, 178, 193, 204, 206

243

BIT-VECTORP 97, 121
BITN 156, 157, 158, 158, 159, 161, 162, 163, 168
BITP 97, 97
BITV 158, 158, 161, 162, 163, 164, 167, 168, 177, 177, 178, 193, 198, 204
BITV-TO-BV 177, 194
BITVP 158, 158, 163, 164, 166, 177, 177, 178, 193, 206
Body 13, 75
BOOL 97, 103, 104, 110, 117, 118, 119, 133, 134
BOOL-TO-BV 177, 194
BOOL-TO-LOGICAL 177, 180
BOOL-TO-NAT 97, 103, 104, 133, 134
BOOLEANP 97, 121
BTM 158, 177
BTMP 158, 161, 162, 163, 168, 177, 204
BV 161, 161, 164, 165, 166
BV-ADDER 158, 159
BV-ADDER-CARRY-OUT 159, 159, 162
BV-ADDER-OUTPUT 159, 159, 162
BV-ADDER-OVERFLOWP 159, 159, 162
BV-ALU-CV 159, 160
BV-ALU-CV-RESULTS 160, 164, 165, 166
BV-ALU-OP-CODE 160, 160
BV-AND 159, 161
BV-ASR 159, 161
BV-CV 159, 161, 161
BV-CV-IF 159, 161
BV-CVP 161
BV-IF 160, 161, 161
BV-LSR 159, 161
BV-NOT 159, 161, 162
BV-OP-CODE 157, 160, 161
BV-OPRD-A 156, 162, 165
BV-OPRD-B 158, 162, 164, 165, 166
BV-OR 159, 162
BV-ROR 159, 162
BV-SUBTRACTER-CARRY-OUT 159, 162
BV-SUBTRACTER-OUTPUT 159, 162
BV-SUBTRACTER-OVERFLOWP 159, 162
BV-TO-ADDR 206, 209
BV-TO-BITV 206, 209
BV-TO-BOOL 206, 209
BV-TO-LABEL 206, 209
BV-TO-NAT 162, 163, 166, 167, 168, 206, 209
BV-TO-SUBR 206, 209
BV-TO-SYS-ADDR 206, 209
BV-TO-TC 163, 166, 209
BV-XOR 159, 163

C

C 161, 161, 166
CALL instruction, effects 107, 225
CALL instruction, i-code 182
CALL instruction, precondition 107
CALL instruction, summary 16
CALL instruction, syntax 141
CAR 95, 96, 97, 98, 99, 100, 101, 107, 112, 113, 115, 116, 123, 124, 125, 127, 128, 129, 130, 131, 137,

138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 151, 153, 154, 164, 167, 177, 178, 179,
180, 182, 184, 186, 187, 188, 189, 190, 191, 193, 194, 195, 197, 198, 201, 202, 203, 204, 205,
206, 207, 208, 233

Carry out 26
CASE 93
CDR 95, 96, 97, 98, 99, 100, 101, 107, 108, 115, 116, 121, 123, 124, 125, 127, 128, 129, 130, 131, 137,

138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 151, 153, 154, 164, 166, 167, 177, 178,
179, 180, 182, 184, 186, 187, 188, 189, 190, 191, 193, 194, 195, 197, 198, 200, 201, 202, 203,
204, 205, 206, 207, 208, 233

Cfp register 69
CLOCK 221
Compiler 67
COMPL 163, 163, 178, 203

244

CONS 95, 96, 98, 101, 107, 111, 123, 124, 127, 130, 139, 151, 152, 154, 164, 166, 167, 178, 180, 181,
182, 184, 186, 187, 188, 189, 190, 191, 193, 194, 197, 198, 199, 200, 201, 202, 203, 205, 206,
207, 208, 233

Control stack 8
Control stack area 70
Correctness of FM8502 Piton 55, 228
Csp register 69
Current instruction 9
Current program 9
CURRENT-INSTRUCTION 156, 158, 160, 163, 164, 165, 166

D

Data area 12
Data segment 8
Def-label form 14
DEFINEDP 96, 97, 121, 139, 141, 146, 147, 148
DEFINITION 97, 107, 108, 139, 142, 144, 145, 146, 147, 148, 150, 153, 178, 202
DEPOSIT 98, 108, 124, 130
DEPOSIT instruction, effects 108
DEPOSIT instruction, i-code 183
DEPOSIT instruction, precondition 108
DEPOSIT instruction, summary 16
DEPOSIT instruction, syntax 142
DEPOSIT-ADP 98, 98
DEPOSIT-TEMP-STK instruction, effects 109
DEPOSIT-TEMP-STK instruction, i-code 183
DEPOSIT-TEMP-STK instruction, precondition 109
DEPOSIT-TEMP-STK instruction, summary 16
DEPOSIT-TEMP-STK instruction, syntax 142
DIFFERENCE 100, 127, 128, 129, 134, 151, 152, 199, 200, 203, 208, 233
DISPLAY-ARRAY 206, 207
DISPLAY-DATA-AREA 207, 207
DISPLAY-DATA-SEGMENT 207, 207
DISPLAY-M-DATA-SEGMENT 59, 207
DISPLAY-M-DATA-SEGMENT-INVERTS-I->M 231
DIV2-NAT instruction, effects 109
DIV2-NAT instruction, i-code 183
DIV2-NAT instruction, precondition 109
DIV2-NAT instruction, summary 16
DIV2-NAT instruction, syntax 142
DL 178, 178, 180
DL-BLOCK 178, 181

E

Effective address 51
Effects function 22
Empty temporary stack address 73
EQ instruction, effects 110
EQ instruction, i-code 183
EQ instruction, precondition 110
EQ instruction, summary 16
EQ instruction, syntax 142
EQUAL 96, 97, 98, 99, 100, 101, 110, 112, 113, 116, 117, 121, 122, 126, 131, 137, 138, 140, 141, 142,

144, 145, 146, 147, 148, 149, 150, 151, 153, 157, 158, 163, 164, 166, 177, 178, 179, 180, 184,
187, 190, 191, 193, 194, 202, 206, 207, 209, 233

Erroneous 23
Error conditions 22
ERRORP 207
EXP 98, 99, 134, 148, 152, 163, 168, 178, 178, 201, 208
Exposing invisible resources 226
Extended data object 79
EXTRACT-CVNZ 178, 198
EXTRACT-MODE 178, 198
EXTRACT-MOVE-BIT 178, 198
EXTRACT-OP 179, 198
EXTRACT-REG 179, 198
EXTRACT-REG1 179, 179

245

F

FALL-OFF-PROOFP 98, 147
FETCH 98, 110, 127
FETCH instruction, effects 110
FETCH instruction, i-code 183
FETCH instruction, precondition 110
FETCH instruction, summary 17
FETCH instruction, syntax 142
FETCH-ADP 98, 98
FETCH-TEMP-STK instruction, effects 111
FETCH-TEMP-STK instruction, i-code 183
FETCH-TEMP-STK instruction, precondition 111
FETCH-TEMP-STK instruction, summary 17
FETCH-TEMP-STK instruction, syntax 142
FIND-CONTAINING-AREA-NAME 207, 208
FIND-CONTAINING-LABEL-TABLE 207, 208
FIND-LABEL 98, 139, 179, 201, 202
FIND-LABELP 96, 98, 144, 145, 147, 148, 150
FIND-POSITION-OF-VAR 180, 198
FIRST-N 98, 139
FIX-SMALL-INTEGER 99, 103, 133
FIX-SMALL-NATURAL 99, 104, 119
FM8502 52, 163
FM8502->M 163, 163
FM8502-CLOCK 59, 205, 221
FM8502-EQUAL-M 218, 228
FM8502-ORACLE 163, 164
Formal parameters 13
FORMAL-VARS 99, 100, 107, 147, 180, 180, 198
Frame 9
Full control stack address 73
Full temporary stack address 73

G

GENERATE-POSTLUDE 180, 193
GENERATE-PRELUDE 180, 193
GENERATE-PRELUDE1 180, 180, 225
GENERATE-PRELUDE2 180, 180, 225
GET 98, 99, 108, 115, 116, 151, 206
Global variable 12

I

I 214
I->M 67, 81, 174, 180, 198
I-C-FLG 180, 181
I-CFP 180, 181
I-CSP 180, 181
I-LINK-TABLES 81, 180, 181, 208
I-LINK-TABLES-I 231
I-N-FLG 180, 181
I-PC 180, 181
I-PROG-SEGMENT 180, 181, 181
I-PSW 181
I-STATE 171, 181, 201
I-STATEP 181
I-SYS-DATA-SEGMENT 180, 181, 181
I-TSP 180, 181
I-USR-DATA-SEGMENT 180, 181, 181
I-V-FLG 180, 181
I-WORD-SIZE 180, 181
I-X 180, 181
I-Y 180, 181
I-Z-FLG 180, 181
ICODE 181, 193
ICODE-ADD-ADDR 181, 191
ICODE-ADD-INT 181, 191
ICODE-ADD-INT-WITH-CARRY 182, 191

246

ICODE-ADD-NAT 182, 191
ICODE-ADD-NAT-WITH-CARRY 182, 191
ICODE-ADD1-INT 182, 191
ICODE-ADD1-NAT 182, 191
ICODE-AND-BITV 182, 191
ICODE-AND-BOOL 182, 191
ICODE-CALL 182, 191
ICODE-DEPOSIT 183, 191
ICODE-DEPOSIT-TEMP-STK 183, 191
ICODE-DIV2-NAT 183, 191
ICODE-EQ 183, 191
ICODE-FETCH 183, 191
ICODE-FETCH-TEMP-STK 183, 191
ICODE-INSTRUCTIONP 184, 197
ICODE-INT-TO-NAT 184, 191
ICODE-JUMP 184, 191
ICODE-JUMP-CASE 184, 191
ICODE-JUMP-IF-TEMP-STK-EMPTY 184, 191
ICODE-JUMP-IF-TEMP-STK-FULL 184, 191
ICODE-LOCN 184, 191
ICODE-LSH-BITV 185, 191
ICODE-LT-ADDR 185, 191
ICODE-LT-INT 185, 191
ICODE-LT-NAT 185, 191
ICODE-MULT2-NAT 185, 191
ICODE-MULT2-NAT-WITH-CARRY-OUT 185, 191
ICODE-NEG-INT 186, 191
ICODE-NO-OP 186, 191
ICODE-NOT-BITV 186, 191
ICODE-NOT-BOOL 186, 191
ICODE-OR-BITV 186, 191
ICODE-OR-BOOL 186, 191
ICODE-POP 186, 191
ICODE-POP* 186, 191
ICODE-POP-CALL 186, 191
ICODE-POP-GLOBAL 186, 191
ICODE-POP-LOCAL 187, 191
ICODE-POP-LOCN 187, 191
ICODE-POPJ 187, 191
ICODE-POPN 187, 191
ICODE-PUSH-CONSTANT 187, 191
ICODE-PUSH-CTRL-STK-FREE-SIZE 187, 191
ICODE-PUSH-GLOBAL 187, 191
ICODE-PUSH-LOCAL 188, 191
ICODE-PUSH-TEMP-STK-FREE-SIZE 188, 191
ICODE-PUSH-TEMP-STK-INDEX 188, 191
ICODE-PUSHJ 188, 191
ICODE-RET 188, 191
ICODE-RSH-BITV 188, 191
ICODE-SET-GLOBAL 188, 191
ICODE-SET-LOCAL 189, 191
ICODE-SUB-ADDR 189, 191
ICODE-SUB-INT 189, 191
ICODE-SUB-INT-WITH-CARRY 189, 191
ICODE-SUB-NAT 189, 191
ICODE-SUB-NAT-WITH-CARRY 189, 191
ICODE-SUB1-INT 189, 191
ICODE-SUB1-NAT 189, 191
ICODE-TEST-BITV-AND-JUMP 190, 191
ICODE-TEST-BOOL-AND-JUMP 190, 191
ICODE-TEST-INT-AND-JUMP 190, 191
ICODE-TEST-NAT-AND-JUMP 191, 191
ICODE-XOR-BITV 191, 191
ICODE1 181, 191
ICOMPILE 172, 193, 201, 208
ICOMPILE-PROGRAM 193, 193, 202
ICOMPILE-PROGRAM-BODY 193, 193
IDIFFERENCE 99, 132, 133, 135
IF 96, 97, 98, 99, 100, 101, 108, 112, 113, 115, 116, 121, 129, 131, 134, 136, 137, 138, 139, 140, 141,

142, 147, 150, 151, 153, 154, 156, 157, 158, 159, 161, 162, 163, 164, 166, 167, 168, 177, 178,

247

179, 180, 187, 190, 191, 193, 194, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 233
ILESSP 99, 118, 152
IMPLIES 100, 233
INCR 163, 164, 193, 203
INEGATE 99, 99, 120
Initial value 13
INT-TO-NAT instruction, effects 114
INT-TO-NAT instruction, i-code 184
INT-TO-NAT instruction, precondition 114
INT-TO-NAT instruction, summary 17
INT-TO-NAT instruction, syntax 144
INTEGERP 99, 152
INVERT-ABSOLUTE-ADDRESS 206, 208
INVERT-BASE-ADDRESS 206, 208, 208
INVERT-LABEL-ADDRESS 206, 208
Invisible resources 219
IPC-TO-BV 193, 194
IPLUS 99, 100, 102, 103, 105, 133

J

JUMP instruction, effects 116
JUMP instruction, i-code 184
JUMP instruction, precondition 116
JUMP instruction, summary 17
JUMP instruction, syntax 145
JUMP-CASE instruction, effects 115
JUMP-CASE instruction, i-code 184
JUMP-CASE instruction, precondition 115
JUMP-CASE instruction, summary 17
JUMP-CASE instruction, syntax 144
JUMP-IF-TEMP-STK-EMPTY instruction, effects 115
JUMP-IF-TEMP-STK-EMPTY instruction, i-code 184
JUMP-IF-TEMP-STK-EMPTY instruction, precondition 115
JUMP-IF-TEMP-STK-EMPTY instruction, summary 17
JUMP-IF-TEMP-STK-EMPTY instruction, syntax 144
JUMP-IF-TEMP-STK-FULL instruction, effects 116
JUMP-IF-TEMP-STK-FULL instruction, i-code 184
JUMP-IF-TEMP-STK-FULL instruction, precondition 115
JUMP-IF-TEMP-STK-FULL instruction, summary 17
JUMP-IF-TEMP-STK-FULL instruction, syntax 145
JUMP_*-LST 184, 194

L

Label 13
Label table 86
Label tables 86
LABEL-ADDRESS 194, 194
LABEL-LINKS 194, 194
LABEL-TO-BV 194, 194
LABELLEDP 98, 100, 100, 153, 179, 194, 197, 204
LEGAL-LABELP 100, 140
LENGTH 96, 98, 100, 107, 109, 111, 115, 116, 119, 123, 125, 126, 127, 128, 129, 139, 140, 141, 142, 144,

145, 146, 147, 148, 149, 150, 151, 152, 180, 188, 194, 197, 200, 202
LESSP 96, 99, 100, 107, 109, 111, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 131, 133, 134,

139, 148, 152, 207, 208, 233
LINK-AREA 194, 197
Link-assembler 67
LINK-DATA-WORD 88, 176, 194, 197
LINK-INSTR-WORD 82, 175, 195, 197
LINK-INSTRUCTION-ALIST 195, 195
LINK-MEM 180, 197
LINK-SEGMENT 197, 197
LINK-TABLE-FOR-LABELS 197, 197
LINK-TABLE-FOR-PROG-LABELS 181, 197
LINK-TABLE-FOR-SEGMENT 181, 197
LINK-TABLES 208
LINK-WORD 175, 180, 194, 197
LISTP 96, 102, 103, 104, 105, 106, 108, 109, 110, 111, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124,

248

125, 126, 129, 130, 131, 132, 133, 134, 135, 136, 139, 141, 142, 144, 147, 148, 151, 167, 233
LITATOM 96, 100, 141, 147, 150, 178, 179, 233
LOAD 67, 169, 198
Local variables 13
LOCAL-VAR-VALUE 100, 116, 125, 128
LOCAL-VARS 100, 142, 145, 146, 148, 198, 198
LOCN instruction, effects 116
LOCN instruction, i-code 184
LOCN instruction, precondition 116
LOCN instruction, summary 17
LOCN instruction, syntax 145
LSH-BITV 100, 117
LSH-BITV instruction, effects 117
LSH-BITV instruction, i-code 185
LSH-BITV instruction, precondition 117
LSH-BITV instruction, summary 17
LSH-BITV instruction, syntax 145
LT-ADDR instruction, effects 117
LT-ADDR instruction, i-code 185
LT-ADDR instruction, precondition 117
LT-ADDR instruction, summary 17
LT-ADDR instruction, syntax 145
LT-INT instruction, effects 118
LT-INT instruction, i-code 185
LT-INT instruction, precondition 118
LT-INT instruction, summary 17
LT-INT instruction, syntax 145
LT-NAT instruction, effects 118
LT-NAT instruction, i-code 185
LT-NAT instruction, precondition 118
LT-NAT instruction, summary 17
LT-NAT instruction, syntax 145

M

M 218
M-C-FLG 163, 164, 198
M-MEM 163, 164, 198, 207
M-N-FLG 163, 164, 198
M-REGS 163, 164, 198
M-state 52
M-STATE 163, 164, 180, 198
M-STATEP 164, 198
M-V-FLG 163, 164, 198
M-Z-FLG 163, 164, 198
MAIN-PROGRAM 39
MAKE-P-CALL-FRAME 100, 107
Maximum control stack size 8
Maximum temporary stack size 8
MCI 195, 198
MEMBER 98, 145, 146, 148, 178, 233
MINUS 99, 100, 152, 163, 233
MULT2-NAT instruction, effects 119
MULT2-NAT instruction, i-code 185
MULT2-NAT instruction, precondition 119
MULT2-NAT instruction, summary 18
MULT2-NAT instruction, syntax 145
MULT2-NAT-WITH-CARRY-OUT instruction, effects 119
MULT2-NAT-WITH-CARRY-OUT instruction, i-code 185
MULT2-NAT-WITH-CARRY-OUT instruction, precondition 119
MULT2-NAT-WITH-CARRY-OUT instruction, summary 18
MULT2-NAT-WITH-CARRY-OUT instruction, syntax 145

N

NAME 101, 139, 147, 180, 181, 182, 186, 187, 188, 190, 193, 198, 201
Name (of a program) 13
NAT-0S 198, 199, 200
NAT-TO-BV 157, 159, 160, 164, 168, 176, 177, 193, 194, 198, 201, 203
NEG-INT instruction, effects 120

249

NEG-INT instruction, i-code 186
NEG-INT instruction, precondition 120
NEG-INT instruction, summary 18
NEG-INT instruction, syntax 145
NEGATIVE-GUTS 99, 100, 203, 233
NEGATIVEP 99, 100, 114, 138, 166, 203, 233
NLISTP 96, 97, 98, 100, 101, 108, 139, 140, 141, 147, 150, 151, 153, 154, 166, 179, 180, 187, 193, 194,

197, 199, 200, 202, 203, 206, 207, 208, 233
NO-OP instruction, effects 120
NO-OP instruction, i-code 186
NO-OP instruction, precondition 120
NO-OP instruction, summary 18
NO-OP instruction, syntax 146
NOT 97, 99, 103, 104, 107, 114, 119, 123, 126, 131, 133, 136, 137, 138, 141, 148, 152, 157, 163, 164,

178, 206, 207, 233
NOT-BIT 101, 101
NOT-BITV 101, 121
NOT-BITV instruction, effects 121
NOT-BITV instruction, i-code 186
NOT-BITV instruction, precondition 121
NOT-BITV instruction, summary 18
NOT-BITV instruction, syntax 146
NOT-BOOL 101, 121
NOT-BOOL instruction, effects 121
NOT-BOOL instruction, i-code 186
NOT-BOOL instruction, precondition 121
NOT-BOOL instruction, summary 18
NOT-BOOL instruction, syntax 146
NTH 163, 164, 166, 168
NUMBERP 96, 99, 138, 139, 148, 152, 233

O

OFFSET 101, 108, 117, 131
OFFSET-FROM-CSP 184, 187, 188, 189, 198
Ok predicate 22
Old cfp 71
ONE-WAY-CORRESPONDENCE-I-M 226, 228
ONE-WAY-CORRESPONDENCE-P-R 219, 228
ONE-WAY-CORRESPONDENCE-R-I 221, 228
OR 97, 99, 138, 147, 157, 206, 233
OR-BIT 101, 101
OR-BITV 101, 122
OR-BITV instruction, effects 122
OR-BITV instruction, i-code 186
OR-BITV instruction, precondition 122
OR-BITV instruction, summary 18
OR-BITV instruction, syntax 146
OR-BOOL 101, 123
OR-BOOL instruction, effects 123
OR-BOOL instruction, i-code 186
OR-BOOL instruction, precondition 122
OR-BOOL instruction, summary 18
OR-BOOL instruction, syntax 146
Oracle 52

P

P 22, 101
P->R 67, 73, 169, 198, 199, 208
P->R_CFP 199, 199, 200
P->R_CSP 199, 199
P->R_CTRL-STK 199, 200
P->R_CTRL-STK1 199, 199
P->R_P-FRAME 199, 200
P->R_SYS-DATA-SEGMENT 199, 200
P->R_TEMP-STK 200, 200
P->R_TSP 199, 200
P-ADD-ADDR-OKP 102, 112
P-ADD-ADDR-STEP 102, 113

250

P-ADD-INT-OKP 102, 112
P-ADD-INT-STEP 102, 113
P-ADD-INT-WITH-CARRY-OKP 103, 112
P-ADD-INT-WITH-CARRY-STEP 103, 113
P-ADD-NAT-OKP 103, 112
P-ADD-NAT-STEP 104, 113
P-ADD-NAT-WITH-CARRY-OKP 104, 112
P-ADD-NAT-WITH-CARRY-STEP 104, 113
P-ADD1-INT-OKP 105, 112
P-ADD1-INT-STEP 105, 113
P-ADD1-NAT-OKP 105, 112
P-ADD1-NAT-STEP 106, 113
P-AND-BITV-OKP 106, 112
P-AND-BITV-STEP 106, 113
P-AND-BOOL-OKP 106, 112
P-AND-BOOL-STEP 107, 113
P-CALL-OKP 107, 112, 123
P-CALL-STEP 107, 113, 124
P-CTRL-STK 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 131, 132, 133, 134, 135, 136, 139, 148, 199, 200
P-CTRL-STK-SIZE 107, 108, 127, 148, 199, 200
P-CURRENT-INSTRUCTION 108, 131
P-CURRENT-PROGRAM 108, 108, 115, 116, 129, 136, 153
P-DATA-SEGMENT 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 131, 132, 133, 134, 135, 136, 139, 146,
147, 148, 199, 200, 208

P-DEPOSIT-OKP 108, 112
P-DEPOSIT-STEP 108, 113
P-DEPOSIT-TEMP-STK-OKP 109, 112
P-DEPOSIT-TEMP-STK-STEP 109, 113
P-DIV2-NAT-OKP 109, 112
P-DIV2-NAT-STEP 109, 113
P-EQ-OKP 110, 112
P-EQ-STEP 110, 113
P-FETCH-OKP 110, 112
P-FETCH-STEP 110, 113
P-FETCH-TEMP-STK-OKP 111, 112
P-FETCH-TEMP-STK-STEP 111, 113
P-FRAME 100, 111, 152
P-FRAME-SIZE 108, 111, 200, 200
P-HALT 111, 113, 129, 131
P-INS-OKP 112, 131
P-INS-STEP 113, 131
P-INT-TO-NAT-OKP 112, 114
P-INT-TO-NAT-STEP 113, 114
P-JUMP-CASE-OKP 112, 115
P-JUMP-CASE-STEP 113, 115
P-JUMP-IF-TEMP-STK-EMPTY-OKP 112, 115
P-JUMP-IF-TEMP-STK-EMPTY-STEP 113, 115
P-JUMP-IF-TEMP-STK-FULL-OKP 112, 115
P-JUMP-IF-TEMP-STK-FULL-STEP 113, 116
P-JUMP-OKP 112, 116
P-JUMP-STEP 113, 116
P-LOADABLEP 208
P-LOCN-OKP 112, 116
P-LOCN-STEP 113, 116
P-LSH-BITV-OKP 112, 117
P-LSH-BITV-STEP 113, 117
P-LT-ADDR-OKP 112, 117
P-LT-ADDR-STEP 113, 117
P-LT-INT-OKP 112, 118
P-LT-INT-STEP 113, 118
P-LT-NAT-OKP 112, 118
P-LT-NAT-STEP 113, 118
P-MAX-CTRL-STK-SIZE 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119,

120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 131, 132, 133, 134, 135, 136, 139,
148, 199, 200, 208

P-MAX-TEMP-STK-SIZE 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 131, 132, 133, 134, 135, 136, 139,
148, 199, 200, 208

251

P-MULT2-NAT-OKP 112, 119
P-MULT2-NAT-STEP 113, 119
P-MULT2-NAT-WITH-CARRY-OUT-OKP 112, 119
P-MULT2-NAT-WITH-CARRY-OUT-STEP 113, 119
P-NEG-INT-OKP 112, 120
P-NEG-INT-STEP 113, 120
P-NO-OP-OKP 112, 120
P-NO-OP-STEP 113, 120
P-NOT-BITV-OKP 112, 121
P-NOT-BITV-STEP 113, 121
P-NOT-BOOL-OKP 112, 121
P-NOT-BOOL-STEP 113, 121
P-OBJECTP 10, 96, 121, 122, 141, 147, 150
P-OBJECTP-TYPE 102, 103, 104, 105, 106, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121,

122, 122, 123, 125, 126, 130, 131, 132, 133, 134, 135, 136, 139, 142, 148
P-OR-BITV-OKP 112, 122
P-OR-BITV-STEP 113, 122
P-OR-BOOL-OKP 112, 122
P-OR-BOOL-STEP 113, 123
P-PC 95, 107, 108, 111, 123, 124, 126, 131, 148, 199, 200
P-POP*-OKP 112, 123
P-POP*-STEP 113, 123
P-POP-CALL-OKP 112, 123
P-POP-CALL-STEP 113, 124
P-POP-GLOBAL-OKP 112, 124
P-POP-GLOBAL-STEP 113, 124
P-POP-LOCAL-OKP 112, 124
P-POP-LOCAL-STEP 113, 124
P-POP-LOCN-OKP 112, 125
P-POP-LOCN-STEP 113, 125
P-POP-OKP 112, 125
P-POP-STEP 113, 125
P-POPJ-OKP 112, 126
P-POPJ-STEP 113, 126
P-POPN-OKP 112, 126
P-POPN-STEP 113, 126
P-PROG-SEGMENT 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 131, 132, 133, 134, 135, 136, 139, 141,
142, 144, 145, 146, 147, 148, 150, 199, 200, 208

P-PSW 131, 131, 199, 200
P-PUSH-CONSTANT-OKP 112, 126
P-PUSH-CONSTANT-STEP 113, 127
P-PUSH-CTRL-STK-FREE-SIZE-OKP 112, 127
P-PUSH-CTRL-STK-FREE-SIZE-STEP 113, 127
P-PUSH-GLOBAL-OKP 112, 127
P-PUSH-GLOBAL-STEP 113, 127
P-PUSH-LOCAL-OKP 112, 128
P-PUSH-LOCAL-STEP 113, 128
P-PUSH-TEMP-STK-FREE-SIZE-OKP 112, 128
P-PUSH-TEMP-STK-FREE-SIZE-STEP 113, 128
P-PUSH-TEMP-STK-INDEX-OKP 112, 128
P-PUSH-TEMP-STK-INDEX-STEP 113, 129
P-PUSHJ-OKP 112, 129
P-PUSHJ-STEP 113, 129
P-RET-OKP 112, 129
P-RET-STEP 113, 129
P-RSH-BITV-OKP 112, 130
P-RSH-BITV-STEP 113, 130
P-SET-GLOBAL-OKP 112, 130
P-SET-GLOBAL-STEP 113, 130
P-SET-LOCAL-OKP 112, 130
P-SET-LOCAL-STEP 113, 131
P-STATE 8, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 131, 132, 133, 134, 135, 136, 139, 200
P-STATEP 131, 148, 200
P-STEP 101, 131
P-STEP1 131, 131
P-SUB-ADDR-OKP 112, 131
P-SUB-ADDR-STEP 113, 131
P-SUB-INT-OKP 112, 132

252

P-SUB-INT-STEP 113, 132
P-SUB-INT-WITH-CARRY-OKP 112, 132
P-SUB-INT-WITH-CARRY-STEP 113, 133
P-SUB-NAT-OKP 112, 133
P-SUB-NAT-STEP 113, 134
P-SUB-NAT-WITH-CARRY-OKP 112, 134
P-SUB-NAT-WITH-CARRY-STEP 113, 134
P-SUB1-INT-OKP 112, 135
P-SUB1-INT-STEP 113, 135
P-SUB1-NAT-OKP 112, 136
P-SUB1-NAT-STEP 113, 136
P-TEMP-STK 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 131, 132, 133, 134, 135, 136, 137, 138, 139,
148, 199, 200

P-TEST-AND-JUMP-OKP 136, 137, 138
P-TEST-AND-JUMP-STEP 136, 137, 138
P-TEST-BITV-AND-JUMP-OKP 112, 137
P-TEST-BITV-AND-JUMP-STEP 113, 137
P-TEST-BITVP 137, 137
P-TEST-BOOL-AND-JUMP-OKP 112, 137
P-TEST-BOOL-AND-JUMP-STEP 113, 137
P-TEST-BOOLP 137, 138
P-TEST-INT-AND-JUMP-OKP 112, 138
P-TEST-INT-AND-JUMP-STEP 113, 138
P-TEST-INTP 138, 138
P-TEST-NAT-AND-JUMP-OKP 112, 138
P-TEST-NAT-AND-JUMP-STEP 113, 138
P-TEST-NATP 138, 138
P-WORD-SIZE 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 131, 132, 133, 134, 135, 136, 139, 146, 148,
199, 200, 208

P-XOR-BITV-OKP 112, 139
P-XOR-BITV-STEP 113, 139
PACK 153, 233
PACK-INSTRUCTION 198, 201
PAIR-FORMAL-VARS-WITH-ACTUALS 100, 139
PAIR-TEMPS-WITH-INITIAL-VALUES 100, 139
PAIRLIST 139, 233
PC 115, 116, 129, 136, 139, 153, 184, 187, 188, 190, 191, 194, 201
Pc register 69
PCPP 121, 139
PLUS 95, 100, 103, 104, 108, 111, 134, 162, 176, 178, 181, 197, 200, 201, 202, 208, 233
POP 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124,

125, 126, 129, 130, 131, 132, 133, 134, 135, 136, 139, 140, 141, 148, 150, 152, 153, 199, 201
POP instruction, effects 125
POP instruction, i-code 186
POP instruction, precondition 125
POP instruction, summary 18
POP instruction, syntax 146
POP* instruction, effects 123
POP* instruction, i-code 186
POP* instruction, precondition 123
POP* instruction, summary 18
POP* instruction, syntax 146
POP-CALL instruction, effects 124
POP-CALL instruction, i-code 186
POP-CALL instruction, precondition 123
POP-CALL instruction, summary 18
POP-CALL instruction, syntax 146
POP-GLOBAL instruction, effects 124
POP-GLOBAL instruction, i-code 186
POP-GLOBAL instruction, precondition 124
POP-GLOBAL instruction, summary 18
POP-GLOBAL instruction, syntax 146
POP-LOCAL instruction, effects 124
POP-LOCAL instruction, i-code 187
POP-LOCAL instruction, precondition 124
POP-LOCAL instruction, summary 19
POP-LOCAL instruction, syntax 146
POP-LOCN instruction, effects 125

253

POP-LOCN instruction, i-code 187
POP-LOCN instruction, precondition 125
POP-LOCN instruction, summary 19
POP-LOCN instruction, syntax 146
POPJ instruction, effects 126
POPJ instruction, i-code 187
POPJ instruction, precondition 126
POPJ instruction, summary 19
POPJ instruction, syntax 147
POPN 107, 123, 126, 140
POPN instruction, effects 126
POPN instruction, i-code 187
POPN instruction, precondition 126
POPN instruction, summary 19
POPN instruction, syntax 147
Post-increment computation 52
Postlude 75
Pre-decrement computation 51
Precondition 22
Prelude 75
PROG-LABEL-TABLES 194, 201, 209
PROG-LINKS 194, 201, 209
Program counter 8
Program definition 13
Program link table 86
Program segment 8, 69
Program status word 8
PROGRAM-BODY 108, 139, 140, 144, 145, 147, 148, 150, 180, 188, 193, 201, 201
Proper p-state 9
PROPER-LABELED-P-INSTRUCTIONSP 140, 147
PROPER-P-ADD-ADDR-INSTRUCTIONP 140, 142
PROPER-P-ADD-INT-INSTRUCTIONP 140, 142
PROPER-P-ADD-INT-WITH-CARRY-INSTRUCTIONP 140, 142
PROPER-P-ADD-NAT-INSTRUCTIONP 140, 142
PROPER-P-ADD-NAT-WITH-CARRY-INSTRUCTIONP 140, 142
PROPER-P-ADD1-INT-INSTRUCTIONP 140, 142
PROPER-P-ADD1-NAT-INSTRUCTIONP 141, 142
PROPER-P-ALISTP 141, 142
PROPER-P-AND-BITV-INSTRUCTIONP 141, 142
PROPER-P-AND-BOOL-INSTRUCTIONP 141, 142
PROPER-P-AREA 141, 141
PROPER-P-CALL-INSTRUCTIONP 141, 142
PROPER-P-CTRL-STKP 141, 148
PROPER-P-DATA-SEGMENTP 141, 148
PROPER-P-DEPOSIT-INSTRUCTIONP 142, 142
PROPER-P-DEPOSIT-TEMP-STK-INSTRUCTIONP 142, 142
PROPER-P-DIV2-NAT-INSTRUCTIONP 142, 142
PROPER-P-EQ-INSTRUCTIONP 142, 142
PROPER-P-FETCH-INSTRUCTIONP 142, 142
PROPER-P-FETCH-TEMP-STK-INSTRUCTIONP 142, 142
PROPER-P-FRAMEP 141, 142, 148
PROPER-P-INSTRUCTIONP 140, 142
PROPER-P-INT-TO-NAT-INSTRUCTIONP 142, 144
PROPER-P-JUMP-CASE-INSTRUCTIONP 142, 144
PROPER-P-JUMP-IF-TEMP-STK-EMPTY-INSTRUCTIONP 142, 144
PROPER-P-JUMP-IF-TEMP-STK-FULL-INSTRUCTIONP 142, 145
PROPER-P-JUMP-INSTRUCTIONP 142, 145
PROPER-P-LOCN-INSTRUCTIONP 142, 145
PROPER-P-LSH-BITV-INSTRUCTIONP 142, 145
PROPER-P-LT-ADDR-INSTRUCTIONP 142, 145
PROPER-P-LT-INT-INSTRUCTIONP 142, 145
PROPER-P-LT-NAT-INSTRUCTIONP 142, 145
PROPER-P-MULT2-NAT-INSTRUCTIONP 142, 145
PROPER-P-MULT2-NAT-WITH-CARRY-OUT-INSTRUCTIONP 142, 145
PROPER-P-NEG-INT-INSTRUCTIONP 142, 145
PROPER-P-NO-OP-INSTRUCTIONP 142, 146
PROPER-P-NOT-BITV-INSTRUCTIONP 142, 146
PROPER-P-NOT-BOOL-INSTRUCTIONP 142, 146
PROPER-P-OR-BITV-INSTRUCTIONP 142, 146
PROPER-P-OR-BOOL-INSTRUCTIONP 142, 146

254

PROPER-P-POP*-INSTRUCTIONP 142, 146
PROPER-P-POP-CALL-INSTRUCTIONP 142, 146
PROPER-P-POP-GLOBAL-INSTRUCTIONP 142, 146
PROPER-P-POP-INSTRUCTIONP 142, 146
PROPER-P-POP-LOCAL-INSTRUCTIONP 142, 146
PROPER-P-POP-LOCN-INSTRUCTIONP 142, 146
PROPER-P-POPJ-INSTRUCTIONP 142, 147
PROPER-P-POPN-INSTRUCTIONP 142, 147
PROPER-P-PROG-SEGMENTP 147, 148
PROPER-P-PROGRAM-BODYP 147, 147
PROPER-P-PROGRAMP 14, 147, 147
PROPER-P-PUSH-CONSTANT-INSTRUCTIONP 142, 147
PROPER-P-PUSH-CTRL-STK-FREE-SIZE-INSTRUCTIONP 142, 147
PROPER-P-PUSH-GLOBAL-INSTRUCTIONP 142, 147
PROPER-P-PUSH-LOCAL-INSTRUCTIONP 142, 148
PROPER-P-PUSH-TEMP-STK-FREE-SIZE-INSTRUCTIONP 142, 148
PROPER-P-PUSH-TEMP-STK-INDEX-INSTRUCTIONP 142, 148
PROPER-P-PUSHJ-INSTRUCTIONP 142, 148
PROPER-P-RET-INSTRUCTIONP 142, 148
PROPER-P-RSH-BITV-INSTRUCTIONP 142, 148
PROPER-P-SET-GLOBAL-INSTRUCTIONP 142, 148
PROPER-P-SET-LOCAL-INSTRUCTIONP 142, 148
PROPER-P-STATEP 9, 148
PROPER-P-STATEP-IMPLIES-PROPER-R-STATEP 230
PROPER-P-SUB-ADDR-INSTRUCTIONP 142, 149
PROPER-P-SUB-INT-INSTRUCTIONP 142, 149
PROPER-P-SUB-INT-WITH-CARRY-INSTRUCTIONP 142, 149
PROPER-P-SUB-NAT-INSTRUCTIONP 142, 149
PROPER-P-SUB-NAT-WITH-CARRY-INSTRUCTIONP 142, 149
PROPER-P-SUB1-INT-INSTRUCTIONP 142, 149
PROPER-P-SUB1-NAT-INSTRUCTIONP 142, 149
PROPER-P-TEMP-STKP 148, 150
PROPER-P-TEMP-VAR-DCLSP 147, 150
PROPER-P-TEST-BITV-AND-JUMP-INSTRUCTIONP 142, 150
PROPER-P-TEST-BOOL-AND-JUMP-INSTRUCTIONP 142, 150
PROPER-P-TEST-INT-AND-JUMP-INSTRUCTIONP 142, 150
PROPER-P-TEST-NAT-AND-JUMP-INSTRUCTIONP 142, 150
PROPER-P-XOR-BITV-INSTRUCTIONP 142, 150
PROPER-R-STATEP-IMPLIES-I-STATE-OKP-R->I 232
PROPER-R-STATEP-IMPLIES-PROPER-I-USER-DATA-SEGMENTP 232
PROPER-R-STATEP-R 232
PROPERP 142, 150
Psw 8
PUSH 102, 103, 104, 105, 106, 107, 109, 110, 111, 114, 116, 117, 118, 119, 120, 121, 122, 123, 127, 128,

129, 130, 131, 132, 133, 134, 135, 136, 139, 151, 152
PUSH-CONSTANT instruction, effects 127
PUSH-CONSTANT instruction, i-code 187
PUSH-CONSTANT instruction, precondition 126
PUSH-CONSTANT instruction, summary 19
PUSH-CONSTANT instruction, syntax 147
PUSH-CTRL-STK-FREE-SIZE instruction, effects 127
PUSH-CTRL-STK-FREE-SIZE instruction, i-code 187
PUSH-CTRL-STK-FREE-SIZE instruction, precondition 127
PUSH-CTRL-STK-FREE-SIZE instruction, summary 19
PUSH-CTRL-STK-FREE-SIZE instruction, syntax 147
PUSH-GLOBAL instruction, effects 127
PUSH-GLOBAL instruction, i-code 187
PUSH-GLOBAL instruction, precondition 127
PUSH-GLOBAL instruction, summary 19
PUSH-GLOBAL instruction, syntax 147
PUSH-LOCAL instruction, effects 128
PUSH-LOCAL instruction, i-code 188
PUSH-LOCAL instruction, precondition 128
PUSH-LOCAL instruction, summary 19
PUSH-LOCAL instruction, syntax 148
PUSH-TEMP-STK-FREE-SIZE instruction, effects 128
PUSH-TEMP-STK-FREE-SIZE instruction, i-code 188
PUSH-TEMP-STK-FREE-SIZE instruction, precondition 128
PUSH-TEMP-STK-FREE-SIZE instruction, summary 19
PUSH-TEMP-STK-FREE-SIZE instruction, syntax 148

255

PUSH-TEMP-STK-INDEX instruction, effects 129
PUSH-TEMP-STK-INDEX instruction, i-code 188
PUSH-TEMP-STK-INDEX instruction, precondition 128
PUSH-TEMP-STK-INDEX instruction, summary 19
PUSH-TEMP-STK-INDEX instruction, syntax 148
PUSHJ instruction, effects 129
PUSHJ instruction, i-code 188
PUSHJ instruction, precondition 129
PUSHJ instruction, summary 20
PUSHJ instruction, syntax 148
PUT 98, 151, 152
PUT-ARRAY 33
PUT-ASSOC 151, 151
PUT-VALUE 98, 151, 152
PUT-VALUE-INDIRECT 151, 152

Q

QUOTIENT 109, 164, 198, 233

R

R 211
R->I 67, 75, 171, 198, 201, 208
R->I_PC 201, 202
R->I_PSW 201, 202
R-C-FLG 201, 202
R-CFP 201, 202
R-CSP 201, 202
R-EQUAL 219
R-N-FLG 201, 202
R-PC 201, 202
R-PROG-SEGMENT 201, 202
R-PSW 201, 202
R-STATE 169, 199, 202
R-STATEP 202
R-SYS-DATA-SEGMENT 201, 202
R-TSP 201, 202
R-USR-DATA-SEGMENT 201, 202
R-V-FLG 201, 202
R-WORD-SIZE 201, 202
R-X 201, 202
R-Y 201, 202
R-Z-FLG 201, 202
REAL-MEM-AFTER-ALU-WRITE 164, 166
REG-FILE-AFTER-ALU-WRITE 165, 165
REG-FILE-AFTER-OPRD-A-POST-INCREMENT 165, 165
REG-FILE-AFTER-OPRD-A-PRE-DECREMENT 158, 165, 166
REG-FILE-AFTER-OPRD-B-POST-INCREMENT 165, 166
REG-FILE-AFTER-OPRD-B-PRE-DECREMENT 164, 165, 166
REG-FILE-AFTER-PC-INCREMENT 156, 165, 166
REMAINDER 99, 109, 164, 198, 233
Representable 10
Resource representation 67
RET instruction, effects 129
RET instruction, i-code 188
RET instruction, precondition 129
RET instruction, summary 20
RET instruction, syntax 148
RET-PC 129, 141, 142, 148, 151, 152, 200, 202
Return program counter 9
REVERSE 139, 151, 180, 202
RGET 111, 151
RPUT 109, 152
RSH-BITV 130, 152
RSH-BITV instruction, effects 130
RSH-BITV instruction, i-code 188
RSH-BITV instruction, precondition 130
RSH-BITV instruction, summary 20
RSH-BITV instruction, syntax 148

256

S

SEGMENT-LENGTH 181, 202, 208
SET-GLOBAL instruction, effects 130
SET-GLOBAL instruction, i-code 188
SET-GLOBAL instruction, precondition 130
SET-GLOBAL instruction, summary 20
SET-GLOBAL instruction, syntax 148
SET-LOCAL instruction, effects 131
SET-LOCAL instruction, i-code 189
SET-LOCAL instruction, precondition 130
SET-LOCAL instruction, summary 20
SET-LOCAL instruction, syntax 148
SET-LOCAL-VAR-INDIRECT 125, 152
SET-LOCAL-VAR-VALUE 124, 131, 152
SIZE 159, 163, 166, 168
SMALL-INTEGERP 99, 102, 103, 105, 120, 121, 132, 133, 135, 152
SMALL-NATURALP 103, 104, 105, 119, 121, 146, 148, 152
SOFT 163, 166
Step function 22
STRIP-CARS 100, 142, 198, 233
STRIP-CDRS 200, 203
SUB-ADDR 131, 152, 199, 203
SUB-ADDR instruction, effects 131
SUB-ADDR instruction, i-code 189
SUB-ADDR instruction, precondition 131
SUB-ADDR instruction, summary 20
SUB-ADDR instruction, syntax 149
SUB-ADP 152, 152, 203, 203
SUB-INT instruction, effects 132
SUB-INT instruction, i-code 189
SUB-INT instruction, precondition 132
SUB-INT instruction, summary 20
SUB-INT instruction, syntax 149
SUB-INT-WITH-CARRY instruction, effects 133
SUB-INT-WITH-CARRY instruction, i-code 189
SUB-INT-WITH-CARRY instruction, precondition 132
SUB-INT-WITH-CARRY instruction, summary 20
SUB-INT-WITH-CARRY instruction, syntax 149
SUB-NAT instruction, effects 134
SUB-NAT instruction, i-code 189
SUB-NAT instruction, precondition 133
SUB-NAT instruction, summary 20
SUB-NAT instruction, syntax 149
SUB-NAT-WITH-CARRY instruction, effects 134
SUB-NAT-WITH-CARRY instruction, i-code 189
SUB-NAT-WITH-CARRY instruction, precondition 134
SUB-NAT-WITH-CARRY instruction, summary 21
SUB-NAT-WITH-CARRY instruction, syntax 149
SUB1 97, 98, 99, 101, 129, 136, 140, 151, 152, 158, 163, 164, 167, 168, 177, 178, 198, 233
SUB1-INT instruction, effects 135
SUB1-INT instruction, i-code 189
SUB1-INT instruction, precondition 135
SUB1-INT instruction, summary 21
SUB1-INT instruction, syntax 149
SUB1-NAT instruction, effects 136
SUB1-NAT instruction, i-code 189
SUB1-NAT instruction, precondition 136
SUB1-NAT instruction, summary 21
SUB1-NAT instruction, syntax 149
SUBR-TO-BV 194, 203
Subroutine definition 13
Symbolic execution 42
SYS-ADDR-TO-BV 194, 203
SYS-DATA-LINKS 194, 203, 209
System data address 73
System data area 73
System data link table 86
System data segment 69
System verification 1

257

SYSTEM-INITIAL-STATE 39
SYSTEM-INITIAL-STATE-CLOCK 40
SYSTEM-INITIAL-STATE-OKP 40

T

TAG 95, 97, 102, 103, 104, 105, 106, 107, 109, 114, 117, 119, 120, 121, 122, 123, 124, 127, 128, 129,
130, 132, 133, 134, 135, 136, 139, 152, 152, 182, 184, 186, 187, 188, 189, 190, 198, 199, 200,
201, 202, 203, 203, 209

TC-TO-BV 194, 203
TEMP-VAR-DCLS 100, 107, 147, 153, 180, 198, 203
Temporary stack 8
Temporary stack area 70
Temporary variables 13
TEST-AND-JUMP instruction, precondition 136
TEST-BITV-AND-JUMP instruction, effects 137
TEST-BITV-AND-JUMP instruction, i-code 190
TEST-BITV-AND-JUMP instruction, precondition 137
TEST-BITV-AND-JUMP instruction, summary 21
TEST-BITV-AND-JUMP instruction, syntax 150
TEST-BOOL-AND-JUMP instruction, effects 137
TEST-BOOL-AND-JUMP instruction, i-code 190
TEST-BOOL-AND-JUMP instruction, precondition 137
TEST-BOOL-AND-JUMP instruction, summary 21
TEST-BOOL-AND-JUMP instruction, syntax 150
TEST-INT-AND-JUMP instruction, effects 138
TEST-INT-AND-JUMP instruction, i-code 190
TEST-INT-AND-JUMP instruction, precondition 138
TEST-INT-AND-JUMP instruction, summary 21
TEST-INT-AND-JUMP instruction, syntax 150
TEST-NAT-AND-JUMP instruction, effects 138
TEST-NAT-AND-JUMP instruction, i-code 191
TEST-NAT-AND-JUMP instruction, summary 21
TEST-NAT-AND-JUMP instruction, syntax 150
Theorem 1 228
Theorem 10 232
Theorem 2 228
Theorem 3 228
Theorem 4 228
Theorem 5 230
Theorem 6 231
Theorem 7 231
Theorem 8 232
Theorem 9 232
TIMES 98, 119, 162, 163, 178, 201, 233
TOP 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122,

123, 124, 125, 126, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 148, 150, 152,
153, 153, 199, 200, 204

TOP1 102, 103, 104, 106, 107, 108, 109, 110, 117, 118, 122, 123, 131, 132, 133, 134, 139, 153
TOP2 103, 104, 132, 133, 134, 153
TOTAL-P-SYSTEM-SIZE 208, 208
TRUEP 167, 233
TRUNC 159, 167
Tsp register 69
TV->NAT 27
TYPE 95, 110, 121, 122, 152, 153, 194, 203, 204, 208
Type specification 57
TYPE-LST 205, 208
TYPE-SPECIFICATION 208

U

UNABBREVIATE-CONSTANT 127, 153
UNLABEL 98, 108, 140, 153, 181, 194, 204
UNLINK-DATA-WORD 206, 209
UNPACK 153, 233
UNTAG 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120,

121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 152, 153, 177,
180, 194, 202, 203, 204

UPDATE-NTH 166, 167, 167

258

UPDATE-V 166, 167
UPDATE-V-NTH 164, 165, 166, 167
User data link table 86
User data segment 69
USR-DATA-LINKS 194, 204, 207, 209

V

V 161, 161, 166
V-APPEND 168, 168, 177, 204
V-ASR 161, 168
V-LSR 161, 168
V-NAT-DEC 156, 158, 165, 166, 168
V-NAT-INC 165, 166, 168
V-NTH 156, 158, 163, 164, 165, 166, 168
V-ROR 162, 168
Value 12
VALUE 96, 98, 100, 153
VEC 158, 158, 161, 162, 163, 164, 166, 167, 168, 177, 178, 193, 204, 206
Visible resources 219

W

Word size 8

X

X register 69
X-Y-ERROR-MSG 131, 153
XOR 164, 168, 193, 204
XOR-BIT 153, 154
XOR-BITV 139, 154
XOR-BITV instruction, effects 139
XOR-BITV instruction, i-code 191
XOR-BITV instruction, precondition 139
XOR-BITV instruction, summary 22
XOR-BITV instruction, syntax 150

Y

Y register 69

Z

ZERO 233
ZEROP 97, 98, 99, 101, 115, 136, 140, 151, 158, 159, 163, 164, 166, 167, 168, 177, 178, 198, 233

i

Table of Contents

1. Introduction and Background 1
1.1. Motivation 1
1.2. System Verification 1
1.3. The Piton Project 2
1.4. Achievements 3
1.5. Outline of the Presentation 4
1.6. Notation 5
1.7. Acknowledgements 5

2. An Informal Sketch of Piton 7
2.1. An Example Piton Program 7
2.2. Piton States 8
2.3. Type Checking 9
2.4. Data Types 10

2.4.1. Integers 10
2.4.2. Natural Numbers 10
2.4.3. Booleans 11
2.4.4. Bit Vectors 11
2.4.5. Data Addresses 11
2.4.6. Program Addresses 11
2.4.7. Subroutines 12

2.5. The Data Segment 12
2.6. The Program Segment 13
2.7. Instructions 14
2.8. The Piton Interpreter 22
2.9. Erroneous States 22

3. Big Number Addition 25
3.1. An Informal Explanation of Big Number Addition 25
3.2. A Formal Explanation of Big Number Addition 25
3.3. A Piton Program for Big Number Addition 28
3.4. An Initial State for Big Number Addition 28
3.5. The Formal Specification of BIG-ADD 30

3.5.1. Preliminary Definitions 33
3.5.2. The Initial State 33
3.5.3. The Preconditions 34
3.5.4. The Final State 36
3.5.5. The Clock 37
3.5.6. The Correctness Theorem 38

3.6. Using The Correctness Theorem 39
3.7. The Proof of the Correctness of BIG-ADD 44

3.7.1. The Derived Specification Functions 44
3.7.2. The Equivalence of the Derived Functions and the Piton Code 45
3.7.3. The Equivalence of the Derived and Original Functions 47

3.8. Summary 49

4. A Sketch of FM8502 51
5. The Correctness of Piton on FM8502 55

5.1. The Hypotheses of the Correctness Result 56
5.1.1. Proper P-States 56
5.1.2. Loadable 56
5.1.3. Word Size 32 56
5.1.4. Non-Erroneous Final State 57

ii

5.1.5. Knowledge of the Final Type Specification 57
5.2. The Conclusion of the Correctness Result 58

5.2.1. The Final Data Segment 58
5.2.2. The FM8502 Route 59

5.3. The Termination of FM8502 59
5.4. Applying the Correctness Result to BIG-ADD 60

5.4.1. Proper P-States 61
5.4.2. Loadable 62
5.4.3. Word Size 32 62
5.4.4. Non-Erroneous Final State 62
5.4.5. Knowledge of the Final Type Specification 63
5.4.6. Using FM8502 to Add Big Numbers 63
5.4.7. Concrete Data 65

6. The Implementation of Piton on FM8502 67
6.1. An Example 67
6.2. A Sketch of the FM8502 Implementation 69

6.2.1. The Registers 69
6.2.2. The Condition Codes 69
6.2.3. The Program Segment 69
6.2.4. User Data Segment 70
6.2.5. The System Data Segment 70

6.2.5.1. The Temporary Stack 70
6.2.5.2. The Control Stack 71
6.2.5.3. Stack Resource Limits 72

6.3. Resource Representation 73
6.3.1. The System Data Segment and System Addresses 73
6.3.2. The Registers 75

6.4. Compiling 75
6.5. The Link-Assembler 81

6.5.1. The Instruction Assembler 81
6.5.1.1. Expanding I-code into Assembly Code 82
6.5.1.2. The Assembly Language 84
6.5.1.3. An Example 84
6.5.1.4. Use of the Addressing Modes 85

6.5.2. The Link Tables 86
6.5.3. Linking Data Objects 88

6.5.3.1. Naturals 88
6.5.3.2. Integers 88
6.5.3.3. Bit Vectors 88
6.5.3.4. Booleans 89
6.5.3.5. Data Addresses 89
6.5.3.6. Program Addresses 89
6.5.3.7. Subroutines 89
6.5.3.8. System Data Addresses 89

7. The Formal Definition of Piton 91
7.1. A Guide to the Formal Definition of Piton 91

7.1.1. Proper P-States 91
7.1.2. The Piton Interpreter 94

7.2. Alphabetical Listing of the Piton Definition 95

8. The Formal Definition of FM8502 155
8.1. A Guide to the Formal Definition of FM8502 155
8.2. Alphabetical Listing of the FM8502 Definitions 156

iii

9. The Formal Implementation 169
9.1. A Guide to the Formal Implementation 169

9.1.1. The Formal Definition of Resource Representation 169
9.1.2. The Formal Definition of the Compiler 171
9.1.3. The Formal Definition of the Link-Assembler 174

9.2. Alphabetical Listing of the Implementation 176

10. The Formal Correctness Theorem 205
11. Proof of the Correctness Theorem 211

11.1. The R Machine 211
11.2. The I Machine 214
11.3. The M Machine 218
11.4. The One-Way Correspondence Lemmas 218

11.4.1. P->R 218
11.4.2. R->I 221
11.4.3. I->M 226

11.5. The Correctness Proof 228

Appendix I. Primitive Functions 233
Appendix II. Statistics 233

II.1. History of the Project 233
II.2. Manpower Requirements 234
II.3. Sizes of the Formal Systems 236

Index 241

iv

v

List of Figures

Figure 2-1: Piton Instructions 15
Figure 3-1: A Piton Program for Big Number Addition 29
Figure 3-2: An Initial Piton State for Big Number Addition 31
Figure 3-3: A Final Piton State for Big Number Addition 32
Figure 3-4: The Specification of BIG-ADD 38
Figure 3-5: The Specification of the Loop in BIG-ADD 46
Figure 6-1: The FM8502 Core Image for Big Number Addition 68
Figure 6-2: An FM8502 Temporary Stack 71
Figure 6-3: An FM8502 Control Stack 72
Figure 6-4: A System Data Segment 74
Figure 6-5: Compiler Output for DEMO 76
Figure 6-6: Compiler Output for PTZ 80
Figure 6-7: Compiler Output for MAIN and PTZ 87

