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Abstract

This report describes a mechanically verified proof system for concurrent programs.  The proof system is
based on Unity [7], but is defined with respect to an operational semantics of the transition system model of
concurrency. All proof rules are justified by this operational semantics.  This methodology makes a clear
distinction between the theorems in the proof system and the logical inference rules and syntax which
define the logic.  The proof system has been implemented on the Boyer-Moore prover.

This proof system is suitable for the mechanical verification of concurrent programs on the Boyer-Moore
prover. This paper presents a mechanically verified proof of an n-processor program satisfying both
mutual exclusion and absence of starvation.  The program and correctness statement are presented, along
with the key lemmas that aided the automatic verification.
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1. Introduction

Since the semantics of a programming language can be precisely specified, programs are mathematical
objects whose correctness can be assured by formal proof.  Mechanical verification, which uses a computer
program to validate a formal proof, greatly increases one’s confidence in the correctness of the validated
proof. This paper describes a mechanically verified proof system for concurrent programs, and
demonstrates the use of this proof system by a mechanically verified proof of an n-processor program
satisfying both mutual exclusion and absence of starvation.

The proof system for concurrent programs presented in this paper is based on Unity [7], which has two
important characteristics:

• Unity provides predicates for specifications, and proof rules to derive specifications directly
from the program text.  This type of proof strategy is often clearer and more succinct than an
argument about a program’s operational behavior.

• Unity separates the concerns of algorithm and architecture.  It defines a general semantics for
concurrent programs that encourages the refinement of architecture independent programs to
architecture specific ones.

The proof system presented here differs from Unity and most other proof systems because its proof rules
are theorems.  All proof rules are justified by an operational definition of concurrency, which has also been
formalized. This methodology makes a clear distinction between the theorems in the proof system and the
logical inference rules and syntax which define the logic.  Since the underlying logic is sound, the resulting
theory is sound.  Furthermore, the proof system is complete (with respect to the underlying logic) because
all properties can be proved directly from the operational semantics, although the proof of certain
properties is simplified by using the provided proof rules.

2. The Boyer-Moore Prover

In a mechanically verified proof, all proof steps are validated by a computer program called a theorem
prover. Hence, whether a mechanically verified proof is correct is really a question of whether the theorem
prover is sound.  This question, which may be difficult to answer, need be answered only once for all
proofs validated by the theorem prover.  The theorem prover used in this work is the Boyer-Moore
prover [3, 5]. This prover has been carefully coded and extensively tested.  The Boyer-Moore logic, which
is mechanized by the Boyer-Moore prover, has been proved sound [10, 4].

The rest of this paper requires some familiarity with the Boyer-Moore logic and its theorem prover.  The
following sections informally describe the logic and the various enhancements to the logic and prover that
were used in this work.

Interaction with the theorem prover is through a sequence of events, the most important of which are
definitions and lemmas.  A definition defines a new function symbol and is accepted if the prover can prove
that the new function terminates.  A lemma is accepted if the prover can prove it, using the logic’s
inference rules, from axioms, definitions and previously proved lemmas.
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2.1 The Boyer-Moore Logic

This proof system is specified in the Nqthm version of the Boyer-Moore logic [5, 6]. Nqthm is a quantifier
free first order logic that permits recursive definitions.  It also defines an interpreter function for the
quotation of terms in the logic.  Nqthm uses a prefix syntax similar to pure Lisp.  This notation is
completely unambiguous, easy to parse, and easy to read after some practice. Informal definitions of
functions used in this paper follow:

• T is an abbreviation for (TRUE) which is not equal to F which is an abbreviation for
(FALSE).

• (EQUAL A B) is T if A=B, F otherwise.

• The value of the term (AND X Y) is T if both X and Y are not F, F otherwise. OR, IMPLIES,
NOT, and IFF are similarly defined.

• The value of the term (IF A B C) is C if A=F, B otherwise.

• (NUMBERP A) tests whether A is a number.

• (ZEROP A) is T if A=0 or (NOT (NUMBERP A)).

• (ADD1 A) returns the successor to A (i.e., A+1). If (NUMBERP A) is false then (ADD1 A) is
1.

• (SUB1 A) returns the predecessor of A (i.e., A-1). If (ZEROP A) is true, then (SUB1 A) is
0.

• (PLUS A B) is A+B, and is defined recursively using ADD1.

• (LESSP A B) is A<B, and is defined recursively using SUB1.

• Literals are quoted.  For example, ’ABC is a literal. NIL is an abbreviation for ’NIL.

• (CONS A B) represents a pair. (CAR (CONS A B)) is A, and (CDR (CONS A B)) is B.
Compositions of car’s and cdr’s can be abbreviated: (CADR A) is read as (CAR (CDR A)).

• (LISTP A) is true if A is a pair.

• (LIST A) is an abbreviation for (CONS A NIL). LIST can take an arbitrary number of
arguments: (LIST A B C) is read as (CONS A (CONS B (CONS C NIL))).

• ’(A) is an abbreviation for (LIST ’A). Similarly, ’(A B C) is an abbreviation for (LIST
1’A ’B ’C).

• (LENGTH L) returns the length of the list L.

• (MEMBER X L) tests whether X is an element of the list L.

2• (APPLY$ FUNC ARGS) is the result of applying the function FUNC to the arguments ARGS.
For example, (APPLY$ ’PLUS (LIST 1 2)) is (PLUS 1 2) which is 3.

Recursive definitions are permitted, provided termination can be proved.  For example, the function
APPEND, which appends two lists, is defined as:

1Actually, the quote mechanism is a facility of the Lisp reader [16].

2This simple definition is only true for total functions but is sufficient for this paper [6].
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Definition.

(APPEND X Y)
=

(IF (LISTP X)
(CONS (CAR X)

(APPEND (CDR X) Y))
Y)

This function terminates because measure (LENGTH X) decreases in each recursive call.

2.2 Eval$

EVAL$ is an interpreter function in Nqthm.  Informally, the term (EVAL$ T TERM ALIST) represents the
value obtained by applying the outermost function symbol in TERM to the EVAL$ of the arguments in TERM.
If TERM is a literal atom, then (EVAL$ T TERM ALIST) is the second element of the first pair in ALIST

whose first element is TERM.

For example, (EVAL$ T ’(PLUS X Y) (LIST (CONS ’X 5) (CONS ’Y 6))) is (PLUS 5 6) which
is 11. (EVAL$ T (LIST ’QUOTE TERM) ALIST) is simply TERM, since EVAL$ does not evaluate
arguments to QUOTE. QUOTE can be used to introduce what looks like free variables into an expression.
For instance, (EVAL$ T (LIST ’PLUS ’X (LIST ’QUOTE Y)) (LIST (CONS ’X 5))) is (PLUS 5
Y). Unfortunately, (EVAL$ T (LIST ’PLUS ’X (LIST ’QUOTE Y)) (LIST (CONS ’X 5))) is
somewhat difficult to read.

3The Lisp backquote syntax [16] can be used to write an equivalent expression. Backquote (‘) is similar to
quote (’) except that under backquote, terms preceded by a comma are not evaluated, which is precisely the
desired effect.  Therefore, the terms ‘(PLUS X (QUOTE ,Y)) and (LIST ’PLUS ’X (LIST ’QUOTE

Y)) are equal.  So, (EVAL$ T (LIST ’PLUS ’X (LIST ’QUOTE Y)) (LIST (CONS ’X 5))) can be
rewritten as (EVAL$ T ‘(PLUS X (QUOTE ,Y)) (LIST (CONS ’X 5))).

2.3 Functional Variables

Functional variables are function symbols characterized by a set of constraints.  A theorem may be
instantiated with substitutions for functional variables if all the constraints about the functional variables
being substituted for can be proved using the same substitutions.

To ensure the consistency of the constraints, one must present one old function symbol as a model for each
functional variable. Every constraint, with each functional variable substituted by its model, must be
provable.

2.4 The Kaufmann Proof Checker

The Boyer-Moore prover automatically proves a lemma by heuristically applying sound inference rules to
simplify it to a value other than F. Sometimes, it is easier to direct the proof process at a lower level.  The
Kaufmann Proof Checker [11] is an interactive enhancement to the Boyer-Moore prover.  It allows the user
to manipulate a formula (the original goal) using sound operations; once all remaining goals have been
proved, the original formula has been proved. The prover will then accept the new theorem, which will be
used as if it were proved automatically.

3Thanks to Matt Kaufmann for showing me how backquote would be useful in this context.
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2.5 Abbreviations

It is often useful to be able to include quantifiers in the body of a definition.  Since the Boyer-Moore logic
does not define quantifiers, this cannot be done directly.  However, using a technique called
skolemization [12], one can derive an equivalent quantifier free formula from a definition.  If the definition
is not recursive, the formula can be added as an axiom, while maintaining the theory’s consistency.

For example, suppose we wish to define:
Definition.

(P X X . . . X )1 2 N
⇔

BODY

where P is a new function symbol of arity N and BODY is a quantified term mentioning only free variables in
the set {X , . . . ,X } and only old function symbols.  Furthermore, the outermost function symbol in BODY1 N

is FORALL, EXISTS, or some other logical connective, and within BODY, FORALL and EXISTS are only
arguments to FORALL, EXISTS, or some other logical connective.

Then, we may consider this definition to be the conjunction of two formulas:

((P X X . . . X )1 2 N
⇒

BODY)
∧
((P X X . . . X )1 2 N

⇐
BODY)

We then skolemize (positive skolemization—to preserve consistency) both conjuncts by substituting for
each existential a skolem function.  The resulting formula is quantifier free and can be added as an axiom.
Consistency is preserved since such a definition is truly an abbreviation (there is no explicit recursion and
no interpreter axioms are added).  Finally, the meaning of the skolemized formula is the same as the
original definition because of the correctness of skolemization.

3. The Operational Semantics

The first level of this proof system formalizes an operational definition of concurrency based on the
transition system model [14, 15, 7]. A transition system is a set of statements that effect transitions on the
system state.  A computation is the sequence of states generated by the composition of an infinite sequence
of transitions on an initial state. Fair computations are computations where every statement is responsible
for an infinite number of transitions.  This type of fairness is often called weak fairness [7]; the
corresponding computations are often called just computations [14].

We are only interested in fair computations, since those permit the proof of liveness properties (if a
statement is ignored forever, certain properties may not be provable).  Notice however, that fairness is a
very weak restriction on the scheduling of statements.  The transition system model accurately depicts an
execution of a concurrent program if all statements are atomic, since the simultaneous execution of atomic
statements is equivalent to some sequential execution of the statements. Since atomicity is implementation
dependent, we will not be concerned with the atomicity of statements here.
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3.1 A Concurrent Program

4To permit non-deterministic program statements, each statement is a relation from previous states to next
states [13]. We define the function N so the term (N OLD NEW E) is true if and only if NEW is a possible
successor state to OLD under the transition specified by E. The definition of N is:
Definition.

(N OLD NEW E)
=

(APPLY$ (CAR E) (APPEND (LIST OLD NEW) (CDR E)))

N applies the CAR of the statement to the previous and next states, along with any other arguments encoded
into the CDR of the statement.  A state can be any data structure.

We restrict ourselves to statements which always specify at least one successor state.  (A transition may be
the identity transition; however, without this restriction, executions may not be infinite.)  Programs
containing only such statements satisfy the predicate TOTAL which is defined as:
Definition.

(TOTAL PRG)
⇔

(FORALL E (IMPLIES (MEMBER E PRG)
(FORALL OLD

(EXISTS NEW (N OLD NEW E)))))

3.2 A Computation

The execution of a concurrent program is an interleaving of statements in the program.  The term (S PRG

IN I) represents the I’th state in the execution of program PRG starting in state IN. The function S is
characterized by the following three constraints:
S-Transition

(IMPLIES (AND (LISTP PRG)
(TOTAL PRG))

(N (S PRG IN I)
(S PRG IN (ADD1 I))
(CHOOSE PRG I)))

This constraint states that if the program is non-empty (i.e., contains at least one statement) and is total,
then consecutive states in the program execution satisfy the successor relation specified by the statement
scheduled by the function CHOOSE at that point in the execution.  We will characterize CHOOSE later.
S-Initial

(IMPLIES (AND (LISTP PRG)
(TOTAL PRG))

(EQUAL (S PRG IN 0)
IN))

This constraint states that the zero’th state in the execution sequence is the initial state.

4In Unity, all statements are deterministic.  Non-determinism sometimes simplifies specification.  As in Unity, fixed points can still
be proved, if all statements preserve the property in question.
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S-Fixes

(IMPLIES (AND (LISTP PRG)
(TOTAL PRG)
(NOT (NUMBERP I)))

(EQUAL (S PRG IN I)
(S PRG IN 0)))

This constraint states that the function S coerces its third argument to a number.

3.3 Fairness

The function CHOOSE is a scheduler.  It is characterized by the following constraints:
Choose-Chooses

(IMPLIES (LISTP PRG)
(MEMBER (CHOOSE PRG I) PRG))

This constraint states that CHOOSE schedules statements from the non-empty program PRG.
Choose-Fixes

(IMPLIES (AND (LISTP PRG)
(NOT (NUMBERP I)))

(EQUAL (CHOOSE PRG I)
(CHOOSE PRG 0)))

As in S, this constraint states that CHOOSE coerces its second argument to a number.

The function S is a computation.  We wish to restrict S to fair computations.  A scheduler is fair if it
schedules every statement an infinite number of times.  An equivalent constraint is that fair schedulers
always schedule each statement again.  This is specified by the function NEXT and its relationship to
CHOOSE:
Next-Is-At-Or-After

(IMPLIES (MEMBER E PRG)
(NOT (LESSP (NEXT PRG E I) I)))

This constraint states that for statements in the program, NEXT returns a value at or after I.
Numberp-Next

(IMPLIES (MEMBER E PRG)
(NUMBERP (NEXT PRG E I)))

Furthermore, NEXT always returns a number.
Choose-Next

(IMPLIES (MEMBER E PRG)
(EQUAL (CHOOSE PRG (NEXT PRG E I))

E))

This constraint states that for a statement in the program, NEXT returns a future point in the schedule when
that statement is scheduled.
Next-Fixes

(IMPLIES (AND (MEMBER E PRG)
(NOT (NUMBERP I)))

(EQUAL (NEXT PRG E I)
(NEXT PRG E 0)))

As with S, NEXT coerces its third argument to a number.

This completes the definition of the operational semantics of concurrency.  Since S, CHOOSE, and NEXT are
characterized only by the constraints listed above, S defines an arbitrary fair computation of a concurrent
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5program. Statements proved about S are true for any fair computation. So theorems in which PRG is a
free variable are really proof rules, and this is the focus of the next sections.

4. Specification Predicates

The interesting properties of concurrent programs are safety and liveness (progress).  Safety properties are
those which state that something bad will never happen [2]; examples are invariant properties such as
mutual exclusion and freedom from deadlock.  Liveness properties guarantee that something good will
eventually happen [1]; examples are termination and freedom from starvation.  Unity defines predicates
which specify subsets of these properties.  Stable properties, a subset of safety properties, are specified
using UNLESS; progress properties, a subset of liveness properties, are specified using ENSURES and
LEADS-TO. We now present definitions for these three predicates in the context of this proof system.

4.1 Unless

The function EVAL evaluates a formula (its first argument) in the context of a state (its second argument).
Its definition is:
Definition.

(EVAL PRED STATE)
=

(EVAL$ T PRED (LIST (CONS ’STATE STATE)))

When EVAL is used, the formula must use ’STATE as the ‘‘variable’’ representing the state.  Notice that
EVAL has the expected property:
Eval-Or.

(EQUAL (EVAL (LIST ’OR P Q) STATE)
(OR (EVAL P STATE)

(EVAL Q STATE)))

That is, EVAL distributes over OR. Similarly, EVAL distributes over the other logical connectives. The
definition of UNLESS is:
Definition.

(UNLESS P Q PRG)
⇔

(AND (TOTAL PRG)
(FORALL OLD

(FORALL NEW
(FORALL E (IMPLIES (AND (MEMBER E PRG)

(N OLD NEW E)
(EVAL P OLD))

(EVAL (LIST ’OR P Q)
NEW))))))

(UNLESS P Q PRG) states that every statement in the program PRG takes P states to states where P or Q
holds. Intuitively, this means that once P holds in a computation, it continues to hold (it is stable), at least

6until Q holds. Notice that if (UNLESS P ’(FALSE) PRG) is true for program PRG and P holds on the
initial state, then P is an invariant of PRG (that is, P is true of every state in the computation).

5That is, S, CHOOSE, and NEXT are functional variables, and theorems proved about them can be instantiated with terms representing
any fair computation.

6Notice the theorem: (UNLESS P ’(FALSE) PRG)=(UNLESS P P PRG).
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4.2 Ensures

The definition of ENSURES is:
Definition.

(ENSURES P Q PRG)
⇔

(AND (UNLESS P Q PRG)
(EXISTS E (AND (MEMBER E PRG)

(FORALL OLD
(FORALL NEW

(IMPLIES (AND (N OLD NEW E)
(EVAL P OLD))

(EVAL Q NEW)))))))

(ENSURES P Q PRG) states that every statement in the program takes P states to P or Q states (that is,
(UNLESS P Q PRG)) and there exists at least one statement that takes all P states to Q states. ENSURES is
defined so the key statement is effective for all states (i.e., the existential is before the universal quantifier).
This is important for program composition (section 5.2, page 11). Ensures specifies a progress property
since (ENSURES P Q PRG) means that once P holds in a computation, it continues to hold for a finite
number of states, after which Q holds.

4.3 Leads-To

LEADS-TO is the general progress predicate.  It is a consequence of ENSURES and is defined as follows:
7Definition.

(LEADS-TO P Q PRG IN)
⇔

(FORALL I (IMPLIES (EVAL P (S PRG IN I))
(EXISTS J (AND (NOT (LESSP J I))

(EVAL Q (S PRG IN J))))))

(LEADS-TO P Q PRG IN) states that if P holds at some point in an execution of program PRG starting
with initial state IN, then Q holds at some later point in the computation.

Theorems about LEADS-TO often use elements of the definition of LEADS-TO in their statement (as
opposed to in their proof).  The skolemization of the abbreviation LEADS-TO, using the technique described
in section 2.5 on page 4, is:

(AND (IMPLIES (AND (LEADS-TO P Q PRG IN)
(EVAL P (S PRG IN I)))

(AND (NOT (LESSP (JLEADS I IN PRG Q) I))
(EVAL Q (S PRG IN (JLEADS I IN PRG Q)))))

(IMPLIES (IMPLIES (EVAL P (S PRG IN (ILEADS IN P PRG Q)))
(AND (NOT (LESSP J (ILEADS IN P PRG Q)))

(EVAL Q (S PRG IN J))))
(LEADS-TO P Q PRG IN)))

The first conjunct states that if LEADS-TO is true and P holds at some state, then Q holds at some later state
and that state is identified using the function JLEADS. Notice that the function JLEADS replaces the
existential EXISTS J in the definition of LEADS-TO. This conjunct is used to derive consequences of

7As with UNLESS and ENSURES, LEADS-TO looks like an abbreviation. However, it is really a functional variable that is constrained
just like an abbreviation defined using the model of S, since abbreviations are defined using axioms and for soundness, functional
variables are not permitted in axioms.
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LEADS-TO.

The second conjunct states that LEADS-TO is true if for an arbitrary starting point in the computation at
which P holds, one can find a later J at which Q holds. The function ILEADS serves to fix the arbitrary
point and it replaces the universal FORALL I in the definition of LEADS-TO. This conjunct is used to prove
LEADS-TO.

4.4 Comparison with Unity Predicates

The definitions of UNLESS, ENSURES, and LEADS-TO presented here differ from Unity’s definitions.  In
Unity, using Hoare triples [8], the definition of UNLESS for a program PRG is:

P UNLESS Q ≡ 〈∀S : S IN PRG :: {P∧¬Q} S {P∨Q}〉

Unity’s definition strengthens the precondition.  However, the two definitions are interchangeable. For a
8program PRG, the Unity specification P UNLESS Q is (UNLESS ‘(AND ,P (NOT ,Q)) Q PRG), and

(UNLESS P Q PRG) is P UNLESS ¬P∧Q.

Unity’s definition of ENSURES differs similarly:

P ENSURES Q ≡ (P UNLESS Q ∧ 〈∃S : S IN PRG :: {P∧¬Q} S {Q}〉)

In this case, the definition presented here is more general: for a program PRG, the Unity specification P

ENSURES Q is (ENSURES ‘(AND ,P (NOT ,Q)) Q PRG).

Finally, Unity does not provide a definition for LEADS-TO. Rather, it presents three proof rules and defines
LEADS-TO to be the strongest predicate satisfying those rules.  In this way, Unity avoids formalizing an
operational semantics that may be used to define LEADS-TO. Furthermore, Unity’s method for defining
LEADS-TO allows one to use induction on the length of proof (structural induction) to prove theorems about
LEADS-TO. The soundness and completeness of Unity’s LEADS-TO are discussed in [9].

However, if an operational semantics is formalized, and LEADS-TO is correctly defined using those
functions, then the definition is sound and completely captures the intuitively desired meaning.  All
theorems about Unity’s LEADS-TO are theorems of the LEADS-TO presented here and are proved by
induction on the third argument to S (the index in the computation).  Such theorems allow the proof of
progress properties without appealing to the operational semantics.

5. Proof Rules

Proof rules facilitate the proof of program properties in much that same way that lemmas aid a
mathematical proof.  In fact, the proof rules presented here are theorems about computations. Some of the
theorems are not stated in the most general way possible because they are more useful in their current form.

8This expression uses the Lisp backquote facility.  See section 2.2, page 3.
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5.1 Liveness

All liveness theorems will be expressed using LEADS-TO. However, we wish to be able to prove such
theorems directly from the statements in a program, without reasoning about the computation. Since
ENSURES is a predicate about program statements, and is itself a progress property, we can deduce simple
progress properties using the following theorem:
Ensures-Proves-Leads-To

(IMPLIES (ENSURES P Q PRG)
(LEADS-TO P Q PRG IN))

LEADS-TO is transitive. This property is especially important since it can be applied repeatedly by
induction.
Leads-To-Transitive

(IMPLIES (AND (LEADS-TO P Q PRG IN)
(LEADS-TO Q R PRG IN))

(LEADS-TO P R PRG IN))

The next two theorems demonstrate how the beginning and ending predicates in LEADS-TO can be
manipulated. Just like an implication, the beginning predicate can be strengthened and the ending predicate
can be weakened.
Leads-To-Strengthen-Left

(IMPLIES (AND (IMPLIES (EVAL Q (S PRG IN (ILEADS IN Q PRG R)))
(EVAL P (S PRG IN (ILEADS IN Q PRG R))))

(LEADS-TO P R PRG IN))
(LEADS-TO Q R PRG IN))

This theorem states that if (LEADS-TO P R PRG IN) holds, and Q is stronger than P, then one can deduce
(LEADS-TO Q R PRG IN). Since the obvious hypothesis, ∀ STATE (IMPLIES (EVAL Q STATE)

(EVAL P STATE)), stating that Q is stronger than P cannot be stated in the Boyer-Moore logic, we must
use a term that is implied by this hypothesis and still makes this statement a theorem.  Such a term is
obtained by taking advantage of the arbitrary initial point in the computation, using the function ILEADS

(section 4.3, page 8).  Notice that when using this theorem, one must still prove that Q is stronger than P.
The next theorem states that the ending predicate can be weakened, using the function JLEADS.
Leads-To-Weaken-Right

(IMPLIES (AND (IMPLIES (EVAL Q (S PRG IN
(JLEADS (ILEADS IN P PRG R)

IN PRG Q)))
(EVAL R (S PRG IN

(JLEADS (ILEADS IN P PRG R)
IN PRG Q))))

(LEADS-TO P Q PRG IN))
(LEADS-TO P R PRG IN))

The next theorem provides one method of proving a disjunction of beginning predicates: simply prove
LEADS-TO for each one.  The analogous theorem for ending predicates is a consequence of
Leads-To-Weaken-Right; the complimentary statement (using AND) for ending predicates is false.
Disjoin-Left

(IMPLIES (AND (LEADS-TO P R PRG IN)
(LEADS-TO Q R PRG IN))

(LEADS-TO (LIST ’OR P Q) R PRG IN))

The cancellation theorem is a twist on transitivity. Leads-To-Weaken-Right is often used prior to this
theorem when it is necessary to commute the term (LIST ’OR Q B) to (LIST ’OR B Q).
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Cancellation-Leads-To

(IMPLIES (AND (LEADS-TO P (LIST ’OR Q B) PRG IN)
(LEADS-TO B R PRG IN))

(LEADS-TO P (LIST ’OR Q R) PRG IN))

The next two proof rules demonstrate that an invariant is preserved throughout a computation.  Therefore, it
can be added as a conjunct to either the beginning or ending predicate in LEADS-TO. Notice that the
program must be non-empty (since the execution of a non-empty program is not defined) and that the
invariance of P is specified by (UNLESS P ’(FALSE) PRG) and (EVAL P IN) where IN is the initial
state.
Invariant-Adds-Left

(IMPLIES (AND (UNLESS P ’(FALSE) PRG)
(EVAL P IN)
(LISTP PRG))

(IFF (LEADS-TO Q R PRG IN)
(LEADS-TO (LIST ’AND P Q) R PRG IN)))

Invariant-Adds-Right

(IMPLIES (AND (UNLESS P ’(FALSE) PRG)
(EVAL P IN)
(LISTP PRG))

(IFF (LEADS-TO Q R PRG IN)
(LEADS-TO Q (LIST ’AND P R) PRG IN)))

The next theorem is extremely useful since it permits conjoining the hypotheses of a LEADS-TO theorem
into the LEADS-TO term. This is necessary when a theorem is governed by typing rules (e.g., a variable is
NUMBERP) and one wishes to use the Disjoin-Left theorem. Notice that the Invariant-Adds-Left theorem
is a consequence of this one.
Insert-Into-Leads-To

(IMPLIES (IMPLIES (EVAL P (S PRG IN
(ILEADS IN (LIST ’AND P Q) PRG R)))

(LEADS-TO Q R PRG IN))
(LEADS-TO (LIST ’AND P Q) R PRG IN))

The last theorem of this section, the PSP theorem, combines a progress and a safety property to yield a
progress property [7].
PSP

(IMPLIES (AND (LEADS-TO P Q PRG IN)
(UNLESS R B PRG)
(LISTP PRG))

(LEADS-TO (LIST ’AND P R) (LIST ’OR (LIST ’AND Q R) B)
PRG IN))

This theorem is proved by induction on the computation.  Intuitively, if some state satisfies both P and R,
the UNLESS hypothesis states that R holds until B holds; furthermore, Q holds eventually.  The only question
is which of Q or B is reached first.

5.2 Program Composition

This section presents several theorems about program composition.  Since programs are simply a list of
statements, the composition of two programs is the concatenation of two lists (using the function APPEND).
The predicates TOTAL, UNLESS, and ENSURES all compose.

The first theorem states that TOTAL composes.
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Total-Union

(IFF (TOTAL (APPEND PRG-1 PRG-2))
(AND (TOTAL PRG-1)

(TOTAL PRG-2)))

A similar fact holds for UNLESS.
Unless-Union

(IFF (UNLESS P Q (APPEND PRG-1 PRG-2))
(AND (UNLESS P Q PRG-1)

(UNLESS P Q PRG-2)))

For ENSURES, the equivalence may be generalized since ENSURES need not hold in both component
programs. But ENSURES must hold for at least one.
Ensures-Union

(IFF (ENSURES P Q (APPEND PRG-1 PRG-2))
(AND (UNLESS P Q PRG-1)

(UNLESS P Q PRG-2)
(OR (ENSURES P Q PRG-1)

(ENSURES P Q PRG-2))))

6. A Sample Program

This section presents a mechanically verified n-processor program satisfying both mutual exclusion and
absence of starvation.  The purpose of this section is to describe, by means of a simple example, how to
mechanically verify a concurrent program on the Boyer-Moore prover using the theorems presented earlier.

Mutual exclusion is a resource allocation problem.  A solution must ensure that only one process may have
the resource at a time.  Absence of starvation requires that any process desiring the resource will eventually
receive it.  The first requirement is an invariance property; the second is a liveness property.

Informally, the program described here defines a ring of processes, each of which differ only by its location
in the ring.  A process can send a message to the next process in the ring and receive a message from the

9previous process in the ring.  Each process has three states:  non-critical, wait, and critical. A non-critical
process non-deterministically becomes waiting and remains waiting until a token becomes available on its
incoming channel.  It then absorbs that token and becomes critical, and remains critical for a finite number
of steps after which it releases a token upon its outgoing channel and becomes non-critical.  A non-critical
process that does not become waiting will pass a token, if one is available, from its incoming to its outgoing
channel.

The following sections are written using a bottom-up approach, where most functions are defined before
they are used.  Section 6.1 formalizes the transitions each process is permitted.  Section 6.2 defines the set
of statements that make up the ring.  Section 6.3 specifies the correctness theorems for a solution to this
mutual exclusion problem.  Finally, sections 6.4 and 6.5 present the proofs of the correctness theorems.

9Actually, the critical state is any of a set of states.  See section 6.1, page 13 for the definition of CRITICAL.
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6.1 The Processes

Each process is a single statement in the program.  Before defining a process, we must define several other
functions.

The state of the system is a list of pairs (an association list or alist) which are accessed by the ASSOC

function. (ASSOC KEY ALIST) returns the first pair in ALIST such that the CAR of that pair is KEY. If no
such pair exists, then ASSOC returns F.

We now define several functions that test which state a process is in, and whether a channel has a token on
it. The function STATUS finds the state of a process.  The key for each process’s status is the pair (CONS
’ME INDEX) where INDEX is the process’s index in the ring.
Definition.

(STATUS STATE INDEX)
=

(CDR (ASSOC (CONS ’ME INDEX) STATE))

A process is non-critical if its status is ’NON-CRITICAL. Similarly, a process is wait if its status is ’WAIT.
Definition.

(NON-CRITICAL STATE INDEX)
=

(EQUAL (STATUS STATE INDEX) ’NON-CRITICAL)

Definition.

(WAIT STATE INDEX)
=

(EQUAL (STATUS STATE INDEX) ’WAIT)

A process is critical if its status is neither non-critical nor wait.
Definition.

(CRITICAL STATE INDEX)
=

(AND (NOT (EQUAL (STATUS STATE INDEX) ’NON-CRITICAL))
(NOT (EQUAL (STATUS STATE INDEX) ’WAIT)))

If a process is critical, then its status is a number representing the maximum number of steps for which the
process may remain critical.  The function FIX coerces non-numbers to zero.
Definition.

(TICKS STATE INDEX)
=

(FIX (CDR (ASSOC (CONS ’ME INDEX) STATE)))

CHANNEL returns the contents of the INDEX’th channel.  The key for a channel is (CONS ’C INDEX). The
INDEX’th process’s incoming channel has key (CONS ’C INDEX) and its outgoing channel has key (CONS

’C (ADD1-MOD N INDEX)) where ADD1-MOD adds one modulo N, where N is the number of processes in
the ring.
Definition.

(CHANNEL STATE INDEX)
=

(CDR (ASSOC (CONS ’C INDEX) STATE))

Finally, TOKEN tests whether a channel has a token on it, by checking whether it is non-empty.  A token is
simply a message on the channel; the message itself is unimportant.
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Definition.

(TOKEN STATE INDEX)
=

(LISTP (CHANNEL STATE INDEX))

The function ME defines a generic process in the ring.  It takes four arguments: INDEX instantiates the
function to be a specific process in the ring of size SIZE; OLD and NEW are old and new states. ME tests
whether NEW is a possible successor state to OLD.
Definition.

(ME OLD NEW INDEX SIZE)
=

(IF (NON-CRITICAL OLD INDEX)
(IF (NON-CRITICAL NEW INDEX)

(IF (TOKEN OLD INDEX)
(IF (EQUAL (ADD1-MOD SIZE INDEX) INDEX)

(AND (EQUAL (LENGTH (CHANNEL NEW INDEX))
(LENGTH (CHANNEL OLD INDEX)))

(UNCHANGED OLD NEW
(LIST (CONS ’C INDEX))))

(AND (EQUAL (CHANNEL NEW INDEX)
(CDR (CHANNEL OLD INDEX)))

(EQUAL (LENGTH (CHANNEL NEW
(ADD1-MOD SIZE

INDEX)))
(ADD1 (LENGTH

(CHANNEL OLD
(ADD1-MOD SIZE

INDEX)))))
(UNCHANGED OLD NEW

(LIST (CONS ’C INDEX)
(CONS ’C (ADD1-MOD

SIZE INDEX))))))
(UNCHANGED OLD NEW NIL))

(AND (WAIT NEW INDEX)
(UNCHANGED OLD NEW (LIST (CONS ’ME INDEX)))))

(IF (WAIT OLD INDEX)
(IF (TOKEN OLD INDEX)

(AND (EQUAL (CHANNEL NEW INDEX)
(CDR (CHANNEL OLD INDEX)))

(CRITICAL NEW INDEX)
(UNCHANGED OLD NEW (LIST (CONS ’ME INDEX)

(CONS ’C INDEX))))
(UNCHANGED OLD NEW NIL))

(OR (AND (LESSP (TICKS NEW INDEX) (TICKS OLD INDEX))
(CRITICAL NEW INDEX)
(UNCHANGED OLD NEW (LIST (CONS ’ME INDEX))))

(AND (NON-CRITICAL NEW INDEX)
(EQUAL (LENGTH (CHANNEL NEW (ADD1-MOD SIZE INDEX)))

(ADD1 (LENGTH (CHANNEL OLD
(ADD1-MOD SIZE

INDEX)))))
(UNCHANGED OLD NEW

(LIST (CONS ’C (ADD1-MOD SIZE INDEX))
(CONS ’ME INDEX)))))))

ME defines precisely what is a legal transition for each process.  It must check whether there is only one
process in the ring; in that case the incoming channel and the outgoing channels are really the same.
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Furthermore, it must specify that although each process changes certain parts of the state, each process
preserves other parts.  This is akin to not disturbing the local variables of other processes.  The term
(UNCHANGED OLD NEW EXCPT) tests whether OLD and NEW agree on every key except for keys in the list
EXCPT. Specifically (UNCHANGED OLD NEW NIL) means that ASSOC cannot infer a difference between
the two lists.  (For the definition of UNCHANGED see page 17.)

There are two places in ME where non-determinacy in used. The first is when the non-critical process may
become wait or remain non-critical.  The second is when the critical process decides whether to remain
critical or become non-critical. ME guarantees only that if the process remains critical the counter on that
process decreases, though it does not specify by how much.  Therefore, if the counter is zero (tested by
ZEROP), the process must become non-critical and release a token.  If the counter is non-zero, the process
can either decrease the counter or become non-critical and release a token.

6.2 The Program

A program is a list of statements.  Each statement is a list (CONS FUNC ARGS) where FUNC is a function
symbol. Recall (page 5) that the definition of the function N, which interprets statements, is:
Definition.

(N OLD NEW E)
=

(APPLY$ (CAR E) (APPEND (LIST OLD NEW) (CDR E)))

In the case of the mutual exclusion program, each statement is of the form (LIST ’ME INDEX SIZE)

where SIZE is the number of processes (i.e., number of statements) and INDEX is some number less than
SIZE. Therefore, (N OLD NEW (LIST ’ME INDEX SIZE)) is (ME OLD NEW INDEX SIZE) which is a
call to the function that determines legal transitions for generic processes in the ring, instantiated to the
index INDEX.

The entire program is a list of such statements where INDEX ranges from 0 to (SUB1 SIZE). This is
accomplished using the function PROGRAM.
Definition.

(PROGRAM INDEX SIZE)
=

(IF (ZEROP INDEX)
NIL

(CONS (LIST ’ME (SUB1 INDEX) SIZE)
(PROGRAM (SUB1 INDEX) SIZE)))

(PROGRAM SIZE SIZE) is the list of statements (LIST (LIST ’ME (SUB1 SIZE) SIZE) . . . (LIST

’ME 0 SIZE)). This is abbreviated with the function ME-PRG, which defines the ring of processes.
Definition.

(ME-PRG SIZE)
=

(PROGRAM SIZE SIZE)

6.3 The Correctness Specification

To prove that the program (ME-PRG SIZE) correctly implements both mutual exclusion and absence of
starvation on a ring of size SIZE, we must state what the invariance and liveness properties are.  The
invariance property must guarantee that no two processes are critical simultaneously.  This is implied by
the property that the sum of the number of tokens in the system and the number of critical processes is
always one. The term (WEIGHT STATE SIZE) recursively adds up the number of tokens and the number
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of critical processes in a ring of size SIZE under state STATE.
Definition.

(WEIGHT STATE SIZE)
=

(IF (ZEROP SIZE)
0

(PLUS (IF (CRITICAL STATE (SUB1 SIZE))
1 0)

(LENGTH (CHANNEL STATE (SUB1 SIZE)))
(WEIGHT STATE (SUB1 SIZE))))

The mutual exclusion property is simply that the weight is always one.  This is defined in the following
function.
Definition.

(MUTUAL-EXCLUSIONP STATE SIZE)
=

(EQUAL (WEIGHT STATE SIZE) 1)

The invariance of mutual exclusion is then the following theorem:
Mutual-Exclusionp-Prg

(UNLESS ‘(MUTUAL-EXCLUSIONP STATE (QUOTE ,SIZE))
’(FALSE)
(ME-PRG SIZE))

This theorem is in the form of invariance statements (all that is missing is whether MUTUAL-EXCLUSIONP
holds on the initial state, and that will subsequently be a hypothesis to every theorem). Since SIZE is a
variable (section 2.2, page 3), mutual exclusion is an invariant for all ring sizes.

The liveness property specifies that any waiting process eventually becomes critical. This is formalized in
the following theorem:
Wait-Leads-To-Critical

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE)
(MUTUAL-EXCLUSIONP IN SIZE))

(LEADS-TO ‘(WAIT STATE (QUOTE ,INDEX))
‘(CRITICAL STATE (QUOTE ,INDEX))
(ME-PRG SIZE)
IN))

The conclusion is a LEADS-TO statement, which specifies that for any process which is waiting during the
computation there exists a later state when that same process is critical.  The hypotheses state that the
invariant MUTUAL-EXCLUSIONP holds on the initial state and that the process’s index must be a number
less than SIZE. (This implies that the program is non-empty.)

The proof of these theorems is discussed in the next sections.

6.4 The Proof of Mutual Exclusion

In this program, all statements are identical, except for an index which ranges between zero and SIZE-1.
Therefore, when proving certain properties, it is simpler to prove that the property holds for an arbitrary
process in the ring, rather than for each process in the ring.  Recall that the definitions of UNLESS (page 7)
and TOTAL (page 5) contain the term (MEMBER E PRG) where e is universally quantified. For this
program, a useful theorem is:
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Member-Me-Prg

(EQUAL (MEMBER STATEMENT (ME-PRG SIZE))
(IF (ZEROP SIZE)

F
(AND (EQUAL (CAR STATEMENT) ’ME)

(NUMBERP (CADR STATEMENT))
(LESSP (CADR STATEMENT) SIZE)
(EQUAL (CADDR STATEMENT) SIZE)
(EQUAL (CDDDR STATEMENT) NIL))))

This theorem rewrites (MEMBER STATEMENT (ME-PRG SIZE)) to a conjunction which states that the
name of the function is ME, the second element in the statement is a number less than SIZE and the last
element in the statement is SIZE. Hence, this theorem rewrites formulas whose proof is inductive (because
of MEMBER) to formulas whose proof is by case analysis on single element of the program.

Another useful theorem is about the function UNCHANGED. The definition of UNCHANGED is:
Definition.

(UNCHANGED OLD NEW EXCPT)
=

(UC NEW OLD (STRIP-CARS (APPEND OLD NEW)) EXCPT)

STRIP-CARS collects the CAR’s of every element in a list.  The function UC is defined as:
Definition.

(UC OLD NEW KEYS EXCPT)
=

(IF (LISTP KEYS)
(IF (MEMBER (CAR KEYS) EXCPT)

(UC OLD NEW (CDR KEYS) EXCPT)
(IF (EQUAL (ASSOC (CAR KEYS) OLD)

(ASSOC (CAR KEYS) NEW))
(UC OLD NEW (CDR KEYS) EXCPT)

F))
T)

(UNCHANGED OLD NEW KEY) checks whether every key not in EXCPT has the same ASSOC value in both
OLD and NEW. The useful theorems about UNCHANGED are best stated with respect to UC. First, UC is
commutative on its first two arguments:
Uc-Commutative

(EQUAL (UC OLD NEW KEYS EXCPT)
(UC NEW OLD KEYS EXCPT))

Second, the order of elements in KEY is unimportant:
Uc-Commutative-2

(EQUAL (UC OLD NEW (APPEND A B) EXCPT)
(UC OLD NEW (APPEND B A) EXCPT))

Finally, the important property of UC equates ASSOC’s.
About-Uc

(IMPLIES (AND (UC A B (APPEND (STRIP-CARS A)
(STRIP-CARS B))

EXCPT)
(NOT (MEMBER KEY EXCPT)))

(EQUAL (ASSOC KEY A)
(ASSOC KEY B)))

This theorem canonicalizes ASSOC’s in a formula if there is a UC in the hypotheses.  Typically, such
formulas will state that values associated with certain KEY’s are changed and those keys will comprise
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EXCPT. The remaining values are unchanged.  This theorem rewrites the ASSOC’s of the unchanged keys to
use the second argument of UC instead of the first.  Remember that the previous two commutative theorems
will have already canonicalized the UC term.

Now, we can prove that the program (ME-PRG SIZE) is total.  This is proved in the following theorem:
Total-Prg

(TOTAL (ME-PRG SIZE))

The key lemma used to prove this theorem is:
Total-Me

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE))

(ME OLD (ME-FUNCTION INDEX SIZE OLD)
INDEX SIZE))

Recall that the definition of TOTAL (page 5) requires that there be a successor state for every previous state.
The function ME-FUNCTION is a witness for these successor states (i.e., it computes a valid NEW state).

The proof of mutual exclusion is done in three steps.  First, one proves that for the execution of any process
the weight of its left channel, status, and right channel is preserved.  Then one proves that the weight of
every other part of the state is unchanged. Finally, one notes that the weight of the entire state is the sum of
the weights of the triple and the rest.  (This proof scheme is not valid for ring of size one, but that is simple
case analysis.)  We present simply the proof that the weight of the triple is constant.
Definition.

(WEIGHT-OF-TRIPLE STATE INDEX SIZE)
=

(PLUS (IF (CRITICAL STATE INDEX)
1 0)

(LENGTH (CHANNEL STATE INDEX))
(LENGTH (CHANNEL STATE (ADD1-MOD SIZE INDEX))))

Weight-Of-Triple-Preserved

(IMPLIES (AND (NUMBERP INDEX)
(LESSP 1 SIZE)
(LESSP INDEX SIZE)
(ME OLD NEW INDEX SIZE))

(EQUAL (WEIGHT-OF-TRIPLE NEW INDEX SIZE)
(WEIGHT-OF-TRIPLE OLD INDEX SIZE)))

These theorems imply the invariance property:
Mutual-Exclusionp-Prg

(UNLESS ‘(MUTUAL-EXCLUSIONP STATE (QUOTE ,SIZE))
’(FALSE)
(ME-PRG SIZE))

6.5 The Proof of Absence of Starvation

The proof of liveness requires three ENSURES properties that demonstrate how a token moves around the
ring. The ENSURES properties are also LEADS-TO properties. The first ENSURES property states that if a
process is non-critical and has a token on its incoming channel, then it either passes the token to its
outgoing channel, or becomes wait and leaves the token on its incoming channel.
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Non-Critical-Left-Ensures-Wait-Left-Or-Right

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE))

(ENSURES ‘(AND (NON-CRITICAL STATE (QUOTE ,INDEX))
(TOKEN STATE (QUOTE ,INDEX)))

‘(OR (AND (WAIT STATE (QUOTE ,INDEX))
(TOKEN STATE (QUOTE ,INDEX)))

(TOKEN STATE (QUOTE ,(ADD1-MOD SIZE
INDEX))))

(ME-PRG SIZE)))

The second ENSURES property states that if a process is waiting and has a token on its left channel, then the
process becomes critical.
Wait-And-Left-Channel-Ensures-Critical

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE))

(ENSURES ‘(AND (WAIT STATE (QUOTE ,INDEX))
(TOKEN STATE (QUOTE ,INDEX)))

‘(CRITICAL STATE (QUOTE ,INDEX))
(ME-PRG SIZE)))

The third ENSURES property says that if a process is critical, then it either remains critical and decreases its
counter, or it releases a token on its outgoing channel.
Critical-Ensures-Less-Critical-Or-Right

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE))

(ENSURES ‘(AND (CRITICAL STATE (QUOTE ,INDEX))
(LESSP (TICKS STATE (QUOTE ,INDEX))

(QUOTE ,(ADD1 TICKS))))
‘(OR (AND (CRITICAL STATE (QUOTE ,INDEX))

(LESSP (TICKS STATE (QUOTE ,INDEX))
(QUOTE ,TICKS)))

(TOKEN STATE (QUOTE ,(ADD1-MOD SIZE
INDEX))))

(ME-PRG SIZE)))

This last ENSURES theorem is especially intersting because we can use induction to show that every critical
process eventually releases a token on its outgoing channel.  This is done by induction on the counter
TICKS, and appealing to the proof rules LEADS-TO-WEAKEN-RIGHT and CANCELLATION-LEADS-TO. The
theorem is:
Critical-Ticks-Leads-To-Right

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE))

(LEADS-TO ‘(AND (CRITICAL STATE (QUOTE ,INDEX))
(LESSP (TICKS STATE (QUOTE ,INDEX))

(QUOTE ,(ADD1 TICKS))))
‘(TOKEN STATE (QUOTE ,(ADD1-MOD SIZE

INDEX)))
(ME-PRG SIZE)
IN))

Using the theorem, LEADS-TO-STRENGTHEN-LEFT, we can simplify this result to a process simply being
critical, not critical with some value on its counter.  This is possible, because every critical process
certainly has some value on its counter.
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Critical-Leads-To-Right

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE))

(LEADS-TO ‘(CRITICAL STATE (QUOTE ,INDEX))
‘(TOKEN STATE (QUOTE ,(ADD1-MOD SIZE INDEX)))
(ME-PRG SIZE)
IN))

The next significant lemma uses induction to prove that the token can move around the ring.  The
hypothesis of mutual exclusion simplifies the proof because it guarantees that if a channel has a token on it,
the neighboring process is not critical.
Any-Leads-To-Right

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE)
(MUTUAL-EXCLUSIONP IN SIZE))

(LEADS-TO ’(TRUE)
‘(TOKEN STATE (QUOTE ,INDEX))
(ME-PRG SIZE)
IN))

We now use the PSP theory to say that a waiting process remains waiting while the token moves around the
ring, or it becomes critical.  This requires proving the following UNLESS property:
Wait-Unless-Critical

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE)
(NOT (ZEROP SIZE)))

(UNLESS ‘(WAIT STATE (QUOTE ,INDEX))
‘(CRITICAL STATE (QUOTE ,INDEX))
(ME-PRG SIZE)))

This lemma and and ANY-LEADS-TO-RIGHT are preconditions for the PSP theorem. The resulting
LEADS-TO is:
Wait-Leads-To-Left-Wait-Or-Critical

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE)
(MUTUAL-EXCLUSIONP IN SIZE))

(LEADS-TO ‘(AND (TRUE)
(WAIT STATE (QUOTE ,INDEX)))

‘(OR (AND (TOKEN STATE (QUOTE ,INDEX))
(WAIT STATE (QUOTE ,INDEX)))

(CRITICAL STATE (QUOTE ,INDEX)))
(ME-PRG SIZE)
IN))

It is simpler to include the unnecessary (TRUE) in (AND (TRUE) . . . ) because of the structure of the
proof. In any case, this simplifies, using CANCELLATION-LEADS-TO and the LEADS-TO theorem derived
from WAIT-AND-LEFT-CHANNEL-ENSURES-CRITICAL to:
Wait-Leads-To-Critical

(IMPLIES (AND (NUMBERP INDEX)
(LESSP INDEX SIZE)
(MUTUAL-EXCLUSIONP IN SIZE))

(LEADS-TO ‘(WAIT STATE (QUOTE ,INDEX))
‘(CRITICAL STATE (QUOTE ,INDEX))
(ME-PRG SIZE)
IN))

This is the liveness result we need to prove correctness.
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All the theorems in this section were verified on the Boyer-Moore prover, with many extra lemmas.
However, much of the case analysis, especially the possible transitions of each statement, was done
automatically by the prover.
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