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Chapter 1

INTRODUCTION

A compiler provides the ability to program/specify/design in a notation which is more elegant,

abstract, or expressive than any which is native to a given piece of hardware.  The concomitant gains are

real only if the compilation process provides a correct translation from the source language to the target

language—that is, one which generates semantically equivalent target language code for any given source

language program.  An incorrect compiler frustrates the effort a programmer invests in writing,

debugging, and even verifying his source language program.

The compiler is one of a number of modules in a system of software and hardware support upon

which the reliability of program execution depends.  Others include the assembler, linker, loader, and

runtime software support.  Each of these can be designed with fair reliability following the best current

software engineering practices.  It is our contention that a higher degree of system reliability can be

attained by modeling system software within mathematical logic and formally proving its correctness.

The most highly reliable software systems will be those in which all of the software components have

been proved correct. If additionally we can apply formal verification techniques to user-level software,

we gain the ability to build applications on top of our verified support system with a much higher level of

assurance than is available from current software engineering techniques.

In this paper we describe the implementation and proof of a code generator, a major component of a

compiler. The source language is a subset of Gypsy (version 2.05) [10] and the target language is the

Piton [21] assembly level language.  Our code generator is one level of a stack of verified system

components including an assembler and linking loader for Piton and a microprocessor design verified at

the register transfer level [13]. Parallel research addresses the issue of verified operating system

functionality [2]. The integration of these components into a vertically verified system is addressed in a

companion paper [3].
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Because our source language is a subset of Gypsy, we have the option of verifying the correctness

of user-level programs in the Gypsy Verification Environment [11]. Verified programs are compiled into

Piton using the code generator; the resulting programs are then assembled into a load image for the

FM8502 microprocessor.  Thus the semantics of the verified high-level program is provably preserved

through several translation steps to an implementation at the hardware level.

The official arbiter of our claim that we have provided a rigorous formal proof of a code generator

for a significant subset of Gypsy is a list of "events" in the computational logic of Boyer and Moore [4, 5].

That list is sufficient to lead the Boyer-Moore theorem prover enhanced with an interactive interface by

Matt Kaufmann [14] to the proof of our main theorem. This paper is a summary of a much longer

report [26] which contains that list and in which we

• present a language recognizer and operational semantics for a subset of Gypsy which we call
Micro-Gypsy,

• describe the operational semantics for a subset of the Piton assembly level language,

• implement as functions in the Boyer-Moore logic a code generator translating Micro-Gypsy
programs and data into Piton,

• state formally the correctness of the translator, and

• describe a mechanically checked proof of the correctness of the translator.

In the current paper we briefly discuss each of these issues.  Our major goal is to give the reader enough

information to understand and access our claim that we have verified a code generator for a subset of

Gypsy.

In the following chapter we describe the Micro-Gypsy programming language and the abstract

prefix syntax which is the input of our verified code generator.  In subsequent chapters we sketch the

Piton assembly language which is the target language of our code generator, state and explain the

correctness theorem for the Micro-Gypsy code generator, and explain the implementation and proof of the

correctness result.  A significant and necessary byproduct of our proof is a formal semantics for our

Micro-Gypsy source language.  We illustrate how this semantics can be used to prove the correctness of

Micro-Gypsy programs and contrast this to proofs of these programs using the Gypsy Verification

Environment.
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Chapter 2

MICRO-GYPSY

The source language for our code generator is an abstract syntax form of Micro-Gypsy, a subset of

Gypsy. Gypsy is a combined programming and specification language descended from Pascal.  It includes

dynamic types such as sequences and sets, permits procedural and data abstraction, and supports

concurrency. The specification component of Gypsy contains the full first order predicate calculus and

the ability to define recursive functions.  Programs can be specified with Hoare style annotations,

algebraically, or axiomatically.  Proof rules exist for each component of the language.  The Gypsy

Verification Environment (GVE) is a collection of software tools which allow Gypsy programs to be

developed, specified, and proved.

Micro-Gypsy contains a significant portion of the executable component of Gypsy including the

simple data types and arrays, most of the Gypsy flow of control operations, and predefined and user-

defined procedures including recursive procedures.  It does not include Gypsy’s dynamic data types, data

abstraction, or concurrency.  Figure 2-1 summarizes features of the language.  Our intent in defining the

Micro-Gypsy subset was a language sufficient for coding simple applications of the variety for which

Gypsy has been used yet of a manageable size to permit constructing a mechanically verified code

generator. We believe that the subset is adequate to validate our overall approach to proving the

correctness of a code generator but needs to be extended in a variety of ways to make it a useful

programming tool.  Future research will be directed toward extending Micro-Gypsy.

Gypsy programs may be annotated using the specification component of the language and verified

in the GVE.  The Micro-Gypsy Lisp-like syntax which is the input to the code generator is not acceptable

to the GVE.  However, this abstract syntax could easily be generated from Gypsy-style syntax by a

1preprocessor. Thus, Micro-Gypsy programs can be annotated and verified using all of the mechanical

1Such a preprocessor was written for an earlier version of Micro-Gypsy by Ann Siebert.  There is no such preprocessor for the
current version of Micro-Gypsy, however; the abstract syntax is generated by hand from Gypsy-style text.
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Types BOOLEAN, INTEGER, CHARACTER,
one-dimensional ARRAY

Control IF, LOOP, BEGIN-WHEN, SIGNAL
Abstraction

Procedural user-defined PROCEDURE, predefined PROCEDURE
Abstraction

Figure 2-1: Features of Micro-Gypsy

tools available for verifying programs in Gypsy. Verified programs are then preprocessed into a form

acceptable to our verified code generator and translated into semantically equivalent Piton programs. An

alternative approach to proving the correctness of Micro-Gypsy programs is to verify them directly in the

Boyer-Moore logic using the semantics defined by the Micro-Gypsy interpreter.  Both approaches are

discussed and illustrated in chapter 7.

Micro-Gypsy is characterized by a recognizer and an interpreter.  The recognizer is a predicate

which ensures that the language satisfies a minimal set of syntactic constraints required for our proof. The

interpreter provides an operational semantics for the language.  The formal definition of Micro-Gypsy is

embodied in a collection of function definitions written in the Boyer-Moore logic defining the recognizer

and interpreter.

The abstract syntax of Micro-Gypsy is a simple and expressive, but inelegant program description

language. Much of the inelegance arises from the fact the abstract syntax allows only variables and

simple literals as expressions.  Complex expressions are translated in preprocessing into a sequence of

calls to predefined procedures. The syntax is fully described in [26]. Figure 2-2 displays an annotated

Micro-Gypsy program for computing the product of two numbers.  The translation of this into the

Micro-Gypsy abstract syntax form yields the two procedures shown in figure 2-3.

The semantics of Micro-Gypsy programs is defined with respect to an execution environment

consisting of:

• a sequence of procedures,

• an entry point (a Micro-Gypsy statement), and

• a Micro-Gypsy state or mg-state.

An mg-state bundles together the dynamic components of the execution environment which can be
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scope MULTIPLICATION_ROUTINES =
begin

const MININT := -2147483648;

const MAXINT := 2147483647;

type INT = integer [MININT .. MAXINT];

procedure MULTIPLY (var ANS: INT;
I, J: INT) =

begin
exit ANS = I * J;
if J ge 0

then MULTIPLY_BY_POSITIVE (ANS, I, J)
else MULTIPLY_BY_POSITIVE (ANS, I, -J);

ANS := - ANS
end; {if}

end; {multiply}

procedure MULTIPLY_BY_POSITIVE (var ANS: INT;
I, J: INT) =

begin
entry J ge 0;
exit ANS = I * J;
var K: INT := 0;
K := J;
ANS := 0;
loop

assert J ge 0
& K in [0 .. j]
& ANS = (J-K) * I;

if K le 0 then leave end;
ANS := ANS + I;
K := K - 1;

end;
end; {multiply_by_positive}

end; {scope multiplication_routines}

Figure 2-2: A Micro-Gypsy Multiplication Routine

affected by program execution. It contains a list of variable bindings, a single condition variable

containing the current condition, and a program status word or psw.  The psw is normally RUN but may

also be RESOURCE-ERROR or TIMED-OUT, indicating some aberrant condition which cannot be

handled by the program.  A sample mg-state is

(MG-STATE ’NORMAL ; current condition
’((B BOOLEAN-MG (BOOLEAN-MG TRUE-MG)) ; variable alist
(I INT-MG (INT-MG -24))
(J INT-MG (INT-MG 20))
(K INT-MG (INT-MG 0))
(A (ARRAY-MG CHARACTER-MG 3) ((CHARACTER-MG 78)

(CHARACTER-MG 73)
(CHARACTER-MG 76))))

’RUN) ; psw

With respect to this mg-state, a potential entry point for our multiplication routine is the Micro-Gypsy

statement (PROC-CALL-MG MG_MULTIPLY (K I J) NIL).
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(MG_MULTIPLY
((ANS INT-MG)

(I INT-MG)
(J INT-MG))

NIL
((K INT-MG (INT-MG 0))
(ZERO INT-MG (INT-MG 0))
(B BOOLEAN-MG (BOOLEAN-MG FALSE-MG)))
NIL
(PROG2-MG
(PREDEFINED-PROC-CALL-MG MG-INTEGER-LE (B ZERO J))
(IF-MG B

(PROC-CALL-MG MG_MULTIPLY_BY_POSITIVE (ANS I J) NIL)
(PROG2-MG
(PREDEFINED-PROC-CALL-MG MG-INTEGER-UNARY-MINUS (K J))
(PROG2-MG
(PROC-CALL-MG MG_MULTIPLY_BY_POSITIVE (ANS I K) NIL)
(PREDEFINED-PROC-CALL-MG
MG-INTEGER-UNARY-MINUS (ANS ANS)))))))

(MG_MULTIPLY_BY_POSITIVE
((ANS INT-MG)
(I INT-MG)
(J INT-MG))

NIL
((K INT-MG (INT-MG 0))
(ZERO INT-MG (INT-MG 0))
(ONE INT-MG (INT-MG 1))
(B BOOLEAN-MG (BOOLEAN-MG FALSE-MG)))

NIL
(PROG2-MG
(PREDEFINED-PROC-CALL-MG

MG-SIMPLE-CONSTANT-ASSIGNMENT (ANS (INT-MG 0)))
(PROG2-MG
(PREDEFINED-PROC-CALL-MG

MG-SIMPLE-VARIABLE-ASSIGNMENT (K J))
(LOOP-MG
(PROG2-MG
(PREDEFINED-PROC-CALL-MG MG-INTEGER-LE (B K ZERO))
(PROG2-MG
(IF-MG B (SIGNAL-MG LEAVE) (NO-OP-MG))
(PROG2-MG
(PREDEFINED-PROC-CALL-MG MG-INTEGER-ADD (ANS ANS I))
(PREDEFINED-PROC-CALL-MG

MG-INTEGER-SUBTRACT (K K ONE)))))))))

Figure 2-3: The Multiplication Routine in Abstract Prefix

The semantics of Micro-Gypsy statements is given via an interpreter expressed as a recursive

function in the Boyer-Moore logic. This function, called MG-MEANING, takes four arguments—the three

components of the execution environment and a clock argument N. N bears a rather complicated and

unintuitive relation to the number of "steps" executed; it is primarily an artiface to assure that all

2computations terminate. Figure 2-4 summarizes the semantics of the eight statement types and one of the

2Because Micro-Gypsy programs may be non-terminating, the most natural Micro-Gypsy interpreter would not be a total function.
The version of the Boyer-Moore logic in which MG-MEANING was constructed requires that all functions be total. "Ticking down"
the clock argument on each recursive call in the interpreter forces termination.
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predefined procedures of the Micro-Gypsy abstract syntax.  Much of the expressive power of the language

resides in the collection of predefined procedures. The prototype code generator handles only 13

predefined’s, though adding additional ones is straightforward.

Micro-Gypsy Statement Types:
(NO-OP-MG)

No effect on the state.

(SIGNAL-MG condition)
Set the current-condition to condition.

(PROG2-MG left right)
Execute right in the state resulting from executing left.

(LOOP-MG body)
Execute body and then execute (LOOP-MG body) in the
resulting state.  The loop is exited if the condition LEAVE,
is ever signaled.

(IF-MG test left right)
If test is true in the current state, execute left;
otherwise execute right.

(BEGIN-MG body cond-list handler)
Execute body; if any of the conditions in cond-list is
signalled, reset the current-condition and execute handler.

(PROC-CALL-MG name actuals conds)
Execute the body of procedure name in the state created
by bindings actuals for formals.  Then copy out the var
parameters into the calling environment.

(PREDEFINED-PROC-CALL-MG name actuals)
Apply the semantics of the predefined operation name.

Example of Predefined:
(PREDEFINED-PROC-CALL-MG MG-INTEGER-ADD (X Y Z))

if (Y + Z) is a representable integer, then X := Y + Z;
otherwise, set current condition to ROUTINEERROR.

Figure 2-4: Semantics of Micro-Gypsy Statement Types

There are actually two interpreter functions defined for Micro-Gypsy. MG-MEANING provides a

semantics of Micro-Gypsy which is largely independent of its implementation in Piton.  However,

because a Piton abstract machine has explicit resource limitations, it is trivial to write Micro-Gypsy

programs whose translations will not execute correctly because they exhaust the available resources in the

implementation. The interpreter function MG-MEANING-R is structurally identical to MG-MEANING
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except that it "reflects" the resource limitations of the Piton implementation up into the Micro-Gypsy

world. MG-MEANING-R terminates with psw set equal to RESOURCE-ERROR if the resources of the

underlying Piton machine are inadequate for the computation.  Our proof of correctness of the

implementation is predicated on the assumption that no resource error occurs. A key lemma which we

have proved about our interpreters is that in the absence of resource errors MG-MEANING and

MG-MEANING-R return identical results.

Given the sample Micro-Gypsy state above, the Micro-Gypsy procedure list consisting of the two

procedures in figure 2-3, and a sufficiently large clock value, the meaning assigned by our interpreter to

the entry point statement (PROC-CALL-MG MG_MULTIPLY (K I J) NIL) is the following Micro-

Gypsy state.

(MG-STATE ’NORMAL
’((B BOOLEAN-MG (BOOLEAN-MG TRUE-MG))

(I INT-MG (INT-MG -24))
(J INT-MG (INT-MG 20))
(K INT-MG (INT-MG -480))
(A (ARRAY-MG CHARACTER-MG 3) ((CHARACTER-MG 78)

(CHARACTER-MG 73)
(CHARACTER-MG 76))))

’RUN)

Notice that this is identical to our initial state except that the value of the variable K has been set equal to

the product of the values of variables I and J, as expected. It is possible to specify formally what it

means for such a program in our abstract syntax to be correct and to prove this result.  We discuss this

further in chapter 7.
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Chapter 3

PITON

Piton is a high-level assembly language designed for verified applications and as the target language

for high-level language compilers.  It provides execute-only programs, recursive subroutine call and

return, stack based parameter passing, local variables, global variables and arrays, a user-visible stack for

intermediate computations, and seven abstract data types including integers, data addresses, program

addresses and subroutine names.  The feature which perhaps most clearly distinguishes Piton from

conventional assembly languages is the distinct program and data spaces; it is impossible for a Piton

program to overwrite itself.

The Micro-Gypsy code generator uses only a portion of the 65 available Piton instructions.  Some

data types—bit vectors and program addresses, for example—are not used at all.  Figure 3-1 lists the

Piton instructions used by the code generator.

The semantics of Piton is defined with respect to a nine-component Piton state or p-state. A p-state

contains:

• a program segment, defining a system of Piton programs or subroutines;

• a data segment, defining a collection of disjoint named indexed data spaces (i.e., global
arrays);

• a temporary stack;

• three control fields, consisting of
• a control stack, consisting of a stack of frames, the top-most frame describing the

currently active subroutine invocation and the successive frames describing the
hierarchy of suspended invocations;

• a program counter, indicating which instruction in which subroutine is the next to be
executed;

• a program status word (psw); and

• three resource limitation fields,
• a word size, which governs the size of numeric constants and bit vectors,

• a maximum control stack size, and

• a maximum temporary stack size.
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Control Integers Natural Numbers

CALL ADD-INT ADD-NAT
JUMP ADD1-INT ADD-NAT-WITH-CARRY
JUMP-CASE EQ ADD1-NAT
NO-OP INT-TO-NAT EQ
RET LT-INT LT-NAT
TEST-BOOL-AND-JUMP NEG-INT SUB-NAT
TEST-INT-AND-JUMP SUB-INT SUB-NAT-WITH-CARRY
TEST-NAT-AND-JUMP SUB-INT-WITH-CARRY SUB1-NAT

SUB1-INT

Variables Booleans Data Addresses

POP-GLOBAL AND-BOOL DEPOSIT
POP-LOCAL EQ FETCH
PUSH-GLOBAL NOT-BOOL SUB-ADDR
PUSH-LOCAL OR-BOOL

Stack

DEPOSIT-TEMP-STK
FETCH-TEMP-STK
POP
POP*
POPN
PUSH-CONSTANT
PUSH-TEMP-STK-INDEX

Figure 3-1: Piton Instructions Used by Code Generator

The semantics is given via an interpreter function P in the Boyer-Moore logic which takes as arguments a

p-state and natural number N. The value of P applied to its arguments is the p-state obtained by beginning

in our input p-state and "stepping" forward N Piton instructions (or until the psw is no longer RUN). At

each step, a Piton instruction is fetched from the program segment according to the current value of the

program counter and executed in the current state.

The Piton instruction set, its semantics, its implementation on the FM8502 microprocessor, and the

proof of the correctness of this implementation is fully described in [22] and summarized in [21].
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Chapter 4

THE CORRECTNESS OF THE MICRO-GYPSY CODE GENERATOR

The translator from Micro-Gypsy to Piton takes a Micro-Gypsy execution environment (including

the program) and creates a Piton state.  This is implemented as a function MAP-DOWN in the Boyer-Moore

logic.

The correctness of the translation is stated as a formalization of the following commutative diagram.

MG-Init ial MG-Final

P - In i t i a l P-Final

MG-Meaning

k Piton steps

Map-Down
Map-Up

The intuition is simple. Given a Micro-Gypsy program (execution environment), we wish to

discover the result of executing that program.  We can invoke our Micro-Gypsy interpreter MG-MEANING

directly. However, if our translation to Piton is correct, we can also translate our initial Micro-Gypsy state

to a equivalent p-state, execute this p-state with the Piton interpreter, and extract from the final Piton state

the same information we would get from our final mg-state.  The general strategy for defining such

interpreter equivalence theorems and some potential pitfalls are discussed in the companion paper [3].

The actual correctness result for the Micro-Gypsy translator is the following theorem in the Boyer-

Moore logic:
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Theorem. TRANSLATION-IS-CORRECT
(IMPLIES
(AND (OK-EXEC-ENVIRONMENT STMT COND-LIST PROC-LIST MG-STATE SUBR N)

(NOT (RESOURCE-ERRORP
(MG-MEANING-R STMT PROC-LIST MG-STATE N

(LIST (DATA-LENGTH (MG-ALIST MG-STATE))
(PLUS 2 (LENGTH (MG-ALIST MG-STATE))))))))

(EQUAL (MAP-UP (P (MAP-DOWN MG-STATE PROC-LIST COND-LIST SUBR STMT)
(CLOCK STMT PROC-LIST MG-STATE N))

(SIGNATURE (MG-ALIST MG-STATE))
COND-LIST)

(MG-MEANING STMT PROC-LIST MG-STATE N)))).

This can be interpreted as follows:  if the initial Micro-Gypsy execution is well-formed and if we have

provided adequate resources for execution of our Micro-Gypsy program, then the diagram "commutes".

That is, it is possible to obtain the final Micro-Gypsy state either by running the Micro-Gypsy interpreter

MG-MEANING directly or via Piton as follows.

• Down. Create an initial Piton state with the translator function MAP-DOWN.

• Across. Obtain the final p-state by running the Piton interpreter for k steps, where k is a
number obtained from the Micro-Gypsy execution environment and clock by the
constructive function CLOCK.

• Up. Extract from the final Piton state using the constructive function MAP-UP values
corresponding to the values of variables in the Micro-Gypsy variable association list and the
Piton representation of the Micro-Gypsy current condition.

The hypotheses of our correctness theorem place several requirements on our initial Micro-Gypsy

state and on its execution including the following.

1. The entry point STMT is a Micro-Gypsy statement legal in the current execution environment.

2. PROC-LIST is a legal list of Micro-Gypsy user-defined procedures.

3. The current Micro-Gypsy state MG-STATE has appropriate structure and its various
components have legal values.

4. COND-LIST is a list of legal Micro-Gypsy condition names and is not more than a fixed
maximum length.

35. SUBR is a legal procedure name not used in the user program.

6. Execution of our Micro-Gypsy program does not exhaust either time or space resources; i.e.,
the final Micro-Gypsy psw is RUN.

Several aspects of the correctness theorem are rather subtle.  First, our MAP-UP function extracts

only that part of the final Piton state corresponding to the Micro-Gypsy variable values and current

condition. These are, in fact, the only dynamic aspects of the Micro-Gypsy execution environment and

4hence the only ones which could have been changed by execution.

3MAP-DOWN constructs a Micro-Gypsy procedure whose body is just the entry point statement. SUBR becomes the name of this
new procedure and is required to be distinct from any predefined or user-defined procedure name.

4The psw can also change but our hypotheses assume that the final psw is RUN.
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Also, notice that the call to MAP-UP takes as one argument the expression

(SIGNATURE (MG-ALIST MG-STATE)). This is a list associating the Micro-Gypsy variable names

with their types. Why should the MAP-UP function need information about the Micro-Gypsy level? The

map down from Micro-Gypsy data to Piton data is not injective.  Hence, there is not enough information

in the Piton state to recover the final Micro-Gypsy variable alist without some additional type information.

This is typical of compilers; all high-level data is ultimately represented as bit strings which may have a

variety of interpretations.  It is necessary to supply an interpretation to be able to extract the data.

Finally, we are concerned only with computations in which there are no resource errors, i.e., in

which the final psw is RUN. But, in general the user of Micro-Gypsy cannot determine whether an error

occurs without running the interpreter MG-MEANING-R; this seems like an unreasonable restriction to

place on the useability of a code generator.  The answer is that we can apply the Micro-Gypsy code

generator to programs which have been proved to execute without run-time errors.  Consider the

multiplication program MG_MULTIPLY_BY_POSITIVE discussed above.  We can show formally that,

for arbitrary inputs, execution of the program will not cause resource errors if we allocate amounts of

storage and time above a certain threshold parameterized by the input values.  This is part of a proof of the

correctness of the MG_MULTIPLY_BY_POSITIVE program. This result, along with the general

correctness result for the code generator, allows us to conclude that we can use our Piton translation of

MG_MULTIPLY_BY_POSITIVE to perform multiplication by a non-negative integer and that the result

extracted from the final Piton state will be the correct product of the input multiplicands.  The correctness

theorem for MG_MULTIPLY_BY_POSITIVE is discussed further in chapter 7.
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Chapter 5

THE IMPLEMENTATION

In this section we discuss the implementation of Micro-Gypsy in Piton.  This mainly involves

explaining the function MAP-DOWN. MAP-DOWN has the task not only of translating Micro-Gypsy code

into Piton, but also of translating data structures, establishing the initial program counter, temporary and

control stacks, and establishing the resource limitations of the new Piton state.

We construct our p-state with an awareness that Piton is ultimately implemented on the FM8502

verified microprocessor [13]. We fix the word size at 32, for example, in Micro-Gypsy and in the p-states

we generate because that is the word size of the verified Piton implementation.  Such considerations are

needed to assure that our implementation of Micro-Gypsy on Piton will stack atop the implementation of

Piton on the FM8502.

We now describe how the nine fields of the Piton state are constructed from the Micro-Gypsy initial

execution environment.

5.1 Data Storage

All data items in the Piton implementation of a Micro-Gypsy program are accessed by reference.

For each data structure to which it has access, a program maintains a local pointer to the beginning of a

block of storage on the Piton temporary stack. This permits a very uniform treatment of data; each data

parameter to a procedure expects a single pointer value, even if the Micro-Gypsy formal parameter is of

array type.

An interesting feature of our project is that the formal semantics of Micro-Gypsy uses call by

value-result parameter passing and the implementation uses call by reference. To our knowledge, there

has been no previous compiler proof in which the formal semantics and implementation used different

parameter passing mechanisms.
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To implement call by reference MAP-DOWN represents the Micro-Gypsy data structures as values

on the initial temporary stack and stores pointers to these structures in the bindings component of the

topmost frame on the Piton control stack.

5.1.1 The Temporary Stack

Suppose that our Micro-Gypsy execution environment contains the following variable bindings.

((B1 BOOLEAN-MG (BOOLEAN-MG FALSE-MG))
(CH CHARACTER-MG (CHARACTER-MG 25))
(A (ARRAY-MG INT-MG 5) ((INT-MG -294)

(INT-MG 38)
(INT-MG 0)
(INT-MG 12)
(INT-MG 25)))

(B2 BOOLEAN-MG (BOOLEAN-MG TRUE-MG))
(I INT-MG (INT-MG 4202))).

The initial value of the temporary stack in our Piton execution environment would be:

index contents represents

9 unused above here
8 (INT 4202) I
7 (BOOL T) B2
6 (INT 25) A[4]
5 (INT 12) A[3]
4 (INT 0) A[2]
3 (INT 38) A[1]
2 (INT -294) A[0]
1 (INT 25) CH
0 (BOOL F) B1

Piton contains instructions for storing and retrieving elements at arbitrary positions in the temporary stack.

Thus the temporary stack serves as a random access "memory" in the implementation.  Notice that the

values of both character variable CH and the integer array element A[4] are represented by the same

Piton INT value at the Piton level.  This illustrates the loss of information in mapping down; this requires

that the MAP-UP function have information about the types of Micro-Gypsy variables as mentioned in

Section 4 above.

5.1.2 The Control Stack

The Piton control stack is a list of frames containing the local variable bindings and return program

counter (pc) for each procedure invocation in the current call tree.  Piton execution terminates when the

last frame is popped, i.e., when control returns from the main program. Because of this the final return pc

is irrelevant. MAP-DOWN creates a control stack containing a single frame with a dummy pc and list of

bindings containing pointers to all of the data in the temporary stack.

For the example above, the bindings component created is

((B1 . 0) (CH . 1) (A  . 2) (B2 . 7) (I  . 8)).
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Thus, the program can access elements of array A at an appropriate offset from the value of local variable

A (in this case the natural number 2) in the temporary stack.

Program execution uses the top of the temporary stack for temporary storage, computation, and as

storage for local variables at procedure call time.

5.1.3 The Data Segment

The Piton data segment is a list of global arrays.  Two uses are made of the data segment.  During

program execution, the Piton representation of the Micro-Gypsy current condition is maintained in the

global variable (data segment element) C-C. The current condition in Micro-Gypsy is a literal atom

which may be NORMAL, LEAVE, ROUTINEERROR, or any element of an initial list of conditions

COND-LIST. This is translated into a Piton natural number (essentially using the index of the condition

in COND-LIST) and stored in the Piton Data Segment element C-C.

Another use is made of the data segment.  At the end of program execution, the final values of the

Piton analogues of the Micro-Gypsy data structures are copied from the temporary stack into the data

segment. This is necessary because the proof of the implementation of Piton on FM8502 guarantees only

the value of the final data segment.  Therefore, to make the Micro-Gypsy proof "stack" on top of the Piton

proof, it is necessary that the final answers be in the data segment rather than on the temporary stack.

MAP-DOWN creates dummy locations with zero values for all of the Micro-Gypsy data structures to

accommodate this final move.

An initial data segment corresponding to the variable bindings above would be

((C-C (NAT 2)) (B1 (NAT 0)) (CH (NAT 0))
(A (NAT 0) (NAT 0) (NAT 0) (NAT 0) (NAT 0))
(B2 (NAT 0)) (I (NAT 0)))

At the end of execution, this would contain representation of the final values of each of the Micro-Gypsy

data structures and the final value of the current condition.

5.2 Code Generation

5The translation of Micro-Gypsy statements into Piton is very naive; no optimization is attempted.

Figure 5-1 displays the Piton procedure which results from translating the

5We are currently investigating verifying an optimizer for a subset of Piton.  Optimizing full Piton would be difficult because it is
possible in Piton to dynamically create program addresses and jump to them.  Since no use is made of this feature by the
Micro-Gypsy code generator, we could insert a verified optimizer into our stack between the Micro-Gypsy and Piton implementation
levels.
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MG_MULTIPLY_BY_POSITIVE routine in figure 2-3.  The reader interested in the full details of

translation should consult [26].

(MG_MULTIPLY_BY_POSITIVE
(K ZERO ONE B ANS I J) ; formals
NIL ; locals
(PUSH-LOCAL ANS) ; ans := 0;
(PUSH-CONSTANT (INT 0))
(CALL MG-SIMPLE-CONSTANT-ASSIGNMENT)
(PUSH-LOCAL K) ; k := j;
(PUSH-LOCAL J)
(CALL MG-SIMPLE-VARIABLE-ASSIGNMENT)
(DL 1 NIL (NO-OP)) ; loop
(PUSH-LOCAL B) ; b := k le 0
(PUSH-LOCAL K)
(PUSH-LOCAL ZERO)
(CALL MG-INTEGER-LE)
(PUSH-LOCAL B) ; if b then leave
(FETCH-TEMP-STK)
(TEST-BOOL-AND-JUMP FALSE 3)
(PUSH-CONSTANT (NAT 0))
(POP-GLOBAL C-C)
(JUMP 2)
(JUMP 4)
(DL 3 NIL (NO-OP))
(DL 4 NIL (NO-OP))
(PUSH-LOCAL ANS) ; ans := ans + i;
(PUSH-LOCAL ANS)
(PUSH-LOCAL I)
(CALL MG-INTEGER-ADD)
(PUSH-GLOBAL C-C)
(SUB1-NAT)
(TEST-NAT-AND-JUMP ZERO 0)
(PUSH-LOCAL K) ; k := k - 1;
(PUSH-LOCAL K)
(PUSH-LOCAL ONE)
(CALL MG-INTEGER-SUBTRACT)
(PUSH-GLOBAL C-C)
(SUB1-NAT)
(TEST-NAT-AND-JUMP ZERO 0)
(JUMP 1)
(DL 2 NIL (PUSH-CONSTANT (NAT 2)))
(POP-GLOBAL C-C) ; end; {loop}
(DL 0 NIL (NO-OP))
(POP* 4)
(RET)))

Figure 5-1: The Translation of the Procedure

5.2.1 The Program Segment

The Micro-Gypsy execution environment contains a list of Micro-Gypsy procedures and a Micro-

Gypsy statement which is the entry point. Piton does not have a similar notion of an entry point

statement; it is the program counter which gives the current point of execution in the Piton program

segment. To handle this disparity, we create a new Micro-Gypsy procedure whose body is the entry point,
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compile the extended procedure list into a list of Piton procedures, and set the program counter to begin

execution at the first statement in the translation of our entry point procedure. It is also necessary to affix

to our Piton procedure list the list of (hand-coded) implementations of the Micro-Gypsy predefined

operations. The structure of the resulting Piton program segment for our multiplication example is given

below:

’(<translation of MG-SIMPLE-VARIABLE-ASSIGNMENT>
<translation of MG-SIMPLE-CONSTANT-ASSIGNMENT>
... ;; 11 more predefineds
(SUBR (B I J K A) NIL ....) ;; entry point procedure
(MG_MULTIPLY (K ZERO B ANS I J) NIL ...)
(MG_MULTIPLY_BY_POSITIVE (K ZERO ONE B ANS I J) ...))

5.2.2 The Program Counter

Execution should begin at the point in the Piton program segment corresponding to the Micro-

Gypsy entry point.  This is the first statement of the special procedure constructed around the entry point.

The name of this procedure, say SUBR, is given as a parameter by the user.  Hence, the initial value of the

Piton program counter is (PC (SUBR . 0)).

5.3 The Resource Limits

The fields P-MAX-CTRL-STK-SIZE and P-MAX-TEMP-STK-SIZE define the resource

limitations of the Piton machine.  Recall that we reflected the resource limitations of the Piton machine up

to the Micro-Gypsy level so that we could track resource errors.  This meant adopting some specific

values—we actually use unspecified constants—for these constants in the Micro-Gypsy definition.

These same values are used in the Piton state.  The FM8502 implementation of Piton allows the

programmer to allocate available resources among several structures.  In general, it is not possible to

know until load time whether particular choices for these two constants will be acceptable.

5.4 The Word Size

Cognizant of the implementation of Piton on the FM8502, the word size is fixed at 32 in the

Micro-Gypsy definition.  The P-WORD-SIZE field in the p-state is set to 32 as well.

5.5 The Program Status Word

The initial psw in the Piton state is RUN. It is shown as part of the code generator proof that

exceptional conditions cannot be raised by the target program. Consequently, the psw remains RUN

during the entire execution.
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Figure 5-2 illustrates the p-state generated by a call to MAP-DOWN on our multiplication program

with an appropriate initial state. The resource limits (P-MAX-TEMP-STK-SIZE and

P-MAX-CTRL-STK-SIZE) are each set to 100. SUBR is a new procedure name supplied by the user.

(P-STATE ’(PC (SUBR . 0)) ;; pc
’((((B NAT 0) (I NAT 1) ;; ctrl-stk

(J NAT 2) (K NAT 3)
(A NAT 4))

(PC (SUBR . 0))))
’((INT 76) ;; temp-stk
(INT 73)
(INT 78)
(INT 0)
(INT 20)
(INT -24)
(BOOL T))

’(<13 predefined ops> ;; prog-segment
(SUBR (B I J K A) NIL ....)
(MG_MULTIPLY (K ZERO B ANS I J) NIL ...)
(MG_MULTIPLY_BY_POSITIVE (K ZERO ONE B ANS I J) ...))

’((C-C (NAT 1)) ;; data-segment
(B (NAT 0))
(I (NAT 0))
(J (NAT 0))
(K (NAT 0))
(A (NAT 0) (NAT 0) (NAT 0) (NAT 0) (NAT 0)))

100 100 ;; resource limitations
32 ’RUN) ;; word size and psw

Figure 5-2: Piton State Generated by the Code Generator
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Chapter 6

THE PROOF

The correctness theorem for the Micro-Gypsy code generator has been checked mechanically by the

Boyer-Moore theorem prover enhanced with an interactive interface by Matt Kaufmann [14]. In this

chapter we describe the overall structure of the proof.  The interested reader is directed to [26] for more

details.

Recall that our main theorem is a formalization of the following commuting diagram.

MG-Init ial MG-Final

P - In i t i a l P-Final

MG-Meaning

k Piton steps

Map-Down
Map-Up

If the MAP-UP function is a left inverse of MAP-DOWN, it is easy to see that the theorem follows

whenever the following diagram commutes.

MG-Init ial MG-Final

P - In i t i a l P-Final

MG-Meaning

k Piton steps

Map-Down Map-Down

The formal analog of this diagram is much more accessible to an inductive proof.  Our proof stategy then

was:

61. Show that MAP-UP is an appropriate left inverse for MAP-DOWN.

6This assumes that the additional signature information is available.
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2. Establish the formal analog of this second commuting diagram.  This was stated in a
conjecture we called the EXACT-TIME-LEMMA.

The first step was straightforward from the definitions of MAP-DOWN and MAP-UP.

The second step was more difficult because the version of MAP-DOWN described in chapter 5 is a

very specific function unsuitable for inductive proof; it refers to an initial Micro-Gypsy execution

environment, not to an arbitrary execution environment which might arise during program execution.  We

formulated a more general version called MAP-DOWN1 which allows us to refer to the translation of an

arbitrary Micro-Gypsy statement whereever it happens to fall within the Micro-Gypsy procedure list.

EXACT-TIME-LEMMA is stated in terms of this more general mapping.

EXACT-TIME-LEMMA may be paraphrased as follows.  Suppose that STMT is an arbitrary Micro-

Gypsy statement somewhere within one of the procedures in PROC-LIST. Now consider an execution

environment at just the moment at which we’re to begin executing STMT. We should obtain identical

results if we

1. MAP-DOWN1 the execution environment and step forward in Piton k steps, or

2. interpret the environment with the Micro-Gypsy interpreter and MAP-DOWN1 the result.

Here k is exactly the number of steps required for the translation of STMT.

Because the statement of the result is very general, it is amenable to proof by induction on the

structure of Micro-Gypsy statements.  Consider, for example, a Micro-Gypsy (PROG2 left right)

statement somewhere within a Micro-Gypsy program.  The commuting diagram for the PROG2 statement

is really the composition of the commuting diagrams for left and right as illustrated below.

MG-Init ial

P - In i t i a l

MG-State1

P-State1

MG-State2

P-State2

MG-Final

P-Final

Prog2 Left Prog2 Right

In the PROG2 case of the inductive proof of EXACT-TIME-LEMMA, we have inductive hypotheses which

characterize the commuting diagrams for left and right. The key to the proof is formulating the

induction such that the inductive hypotheses fit together to yield a proof of the theorem for PROG2. Some

measure of the complexity of the induction is that the induction hint, given in the form of a definition in

the Boyer-Moore logic, has 12 parameters and is over 250 lines long.  See interested reader should see

[26] for the details.
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We use EXACT-TIME-LEMMA by showing that our MAP-DOWN function is a special instance of

MAP-DOWN1 and that the various structures in our initial state satisfy the various hypotheses of the

EXACT-TIME-LEMMA.
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Chapter 7

PROVING CORRECTNESS OF MICRO-GYPSY PROGRAMS

In this chapter we return to our simple Micro-Gypsy multiplication program and demonstate how it

can be proved correct in either of two ways.

1. We can verify the annotated program in Gypsy-style syntax using the GVE.

2. We can prove the program in abstract prefix form directly using the interpreter semantics.

We discuss the advantages and disadvantages of each approach.

Recall our MULTIPLY_BY_POSITIVE routine in figure 2-2.  The formal specification of the

program is given in the form of program annotations indicated by the keywords entry, exit, and

assert. The external specification asserts that, for non-negative values of parameter I, the final value

of var parameter ANS will be the product of I and J. Notice that this specification is weaker than it might

be. In particular, the exit specification is

exit ans = i * j

This is really an abbreviation for

exit case (is normal: ans = i * j;
is routineerror: true);

indicating that the only cases of interest to the programmer are those in which no condition is raised. Such

incomplete specifications are quite common for Gypsy programs.  Gypsy is quite flexible in allowing the

programmer to specify the program in more or less detail.  We deliberately chose an incomplete

specification to see how this is reflected in our two proofs.

7.1 The GVE Approach

Ours is a legal Gypsy program and hence we have available all of the facilities of the Gypsy

Verification Environment for reasoning about it.  The GVE implements the traditional Floyd-Hoare

approach to verification.  Verification conditions sufficient to guarantee the conformance of the program

with its specification are generated and these are then proven interactively using the GVE proof checker.
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For the routine multiply_by_positive four verification conditions (vc’s) are generated, two of

which are proven automatically by the vc generator.  The remaining two vc’s are show below.

Verification condition MULTIPLY_BY_POSITIVE#3
H1: ANS + I * K = I * J
H2: ANS + I in [MININT..MAXINT]
H3: K - 1 in [MININT..MAXINT]
H4: K in [0..J]
H5: 1 le K
H6: 0 le J

-->
C1: K - 1 in [0..J]

Verification condition MULTIPLY_BY_POSITIVE#4
H1: ANS + I * K = I * J
H2: K in [0..J]
H3: 0 le - K
H4: 0 le J

-->
C1: ANS = I * J

These are proven very easily in the GVE proof checker.

Using the GVE in this fashion has several advantages.  Mechanical assistance is available for

constructing and maintaining annotated Gypsy programs, generating verification conditions, proving them

with the assistance of a proof checker with specialized knowledge of Gypsy structures, and maintaining a

database of proved lemmas, vc’s, and units.  This renders the proof of a routine such as

MULTIPLY_BY_POSITIVE extremely easy.  From starting the GVE to having a completely verified

routine took no more than 10 minutes on this example.

The strong disadvantage of this approach is that the semantics of Gypsy embodied in the GVE

verification condition generator and the GVE prover’s algebraic simplifier may be different than the

interpreter semantics used in the code generator proof.  Care was taken to assure that our interpreter

semantics is matched the "official" semantics of Gypsy, but we have no formal assurance that this is so.

The upshot is that if we consider the verified program as being yet another level in our verified stack there

is an assurance gap arising from the potential disparity in the semantics at the interface of the two levels.

7.2 Verifying Against the Interpreter Semantics

We can avoid this potential disparity by verifying our program directly using the semantics

provided by our interpreter definition.  This essentially involves generating the appropriate verification

conditions by hand.  An abbreviated version of the correctness theorem for MULTIPLY_BY_POSITIVE

is shown in figure 7-1.  The conclusion asserts that a call of the form

’(PROC-CALL-MG MG_MULTIPLY_BY_POSITIVE (ANS X Y) NIL)

has the effect of setting ANS to the Micro-Gypsy representation of the integer product of the values of

integer variables X and Y in the current state.
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Theorem. MG-MULTIPLY-BY-POSITIVE-CORRECTNESS
(IMPLIES
(AND
(OK-MG-STATEMENT ; 1
’(PROC-CALL-MG MG_MULTIPLY_BY_POSITIVE (ANS X Y) NIL)
COND-LIST (MG-ALIST MG-STATE) PROC-LIST)

(OK-MG-STATEP MG-STATE NIL) ; 2
(NORMAL MG-STATE) ; 3
(EQUAL ; 4
(FETCH-DEF ’MG_MULTIPLY_BY_POSITIVE PROC-LIST)
’(MG_MULTIPLY_BY_POSITIVE ...

<abstract prefix version of the routine>))
(LESSP (PLUS 4 ; 5

(TIMES 4 (ADD1 (UNTAG (GET-M-VALUE
’Y (MG-ALIST MG-STATE))))))

N)
(NUMBERP (UNTAG (GET-M-VALUE ’Y (MG-ALIST MG-STATE)))) ; 6
(SMALL-INTEGERP ; 7

(ITIMES (UNTAG (GET-M-VALUE ’Y (MG-ALIST MG-STATE)))
(UNTAG (GET-M-VALUE ’X (MG-ALIST MG-STATE))))

(MG-WORD-SIZE)))

(EQUAL
(MG-MEANING ’(PROC-CALL-MG MG_MULTIPLY_BY_POSITIVE

(ANS X Y) NIL)
PROC-LIST MG-STATE N)

(MG-STATE
’NORMAL
(SET-ALIST-VALUE
’ANS
(TAG ’INT-MG

(ITIMES (UNTAG (get-m-value ’Y (MG-ALIST MG-STATE)))
(UNTAG (get-m-value ’X (MG-ALIST MG-STATE)))))

(MG-ALIST MG-STATE))
(MG-PSW MG-STATE))))

Figure 7-1: MG-MULTIPLY-BY-POSITIVE-CORRECTNESS

The hypotheses formalize the following assumptions.

1. Our call statement is a legal Micro-Gypsy statement.

2. The state in which we are interpreting is well-formed.

3. The CC is ’NORMAL.

4. The definition of MG_MULTIPLY_BY_POSITIVE in the procedure list is exactly that given
in figure 2-3.

5. The clock parameter N to the interpreter is adequate to carry out the multiplication without
timing out.  Calculating an appropriate lower bound is one of the most difficult aspects of
formulating this theorem.

6. The multiplicand Y has a non-negative value.  This corresponds to the entry specification
entry j ge 0 of MULTIPLY_BY_POSITIVE.

7. The product of X and Y is representable as a Micro-Gypsy INT-MG value and can be stored
in the variable ANS.

The lemma MG-MULTIPLY-BY-POSITIVE-CORRECTNESS has been proven in the Kaufmann-
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enhanced Boyer-Moore theorem prover.  Refining the lemma, proving the supporting lemmas, and

completing the proof took approximately two days of fairly intense effort.

Notice that the specification provided by this theorem is much more complete than that supplied by

the annotated program.

1. Proof of the Gypsy specification only assures partial correctness; the proof might still
succeed in cases where the routine was non-terminating.  Our proofs in the Boyer-Moore
framework are easier if we require totality and perform the awkward computation of an
adequate clock value.

2. The MULTIPLY_BY_POSITIVE exit specification says (implicitly) that the programmer is
not concerned with cases in which conditions are signaled.  In the GVE proof, paths
corresponding to such cases are handled by the vc generator and generate trivial vc’s. In the
Boyer-Moore formalism, it is necessary to characterize explicitly the situation in which
conditions will not arise.

Despite the apparent extra complexity, proving the program with respect to the semantics provided

by MG-MEANING has three very strong advantages over using the GVE to prove Micro-Gypsy programs.

1. The semantics assumed in the proof is exactly the semantics assumed in the compiler.

2. The GVE accepts programs in standard Gypsy syntax.  Compiling these programs with our
7verified translator means an error-prone hand translation to our abstract prefix form.

3. Soundness of the logic and the care with which it is implemented in the theorem prover are
strong advantages of the Boyer-Moore proof system over the GVE. There is empirical
evidence over 15 years for virtually bug-free performance of the Boyer-Moore prover that has

8not been matched by the Gypsy implementation.

Some of the benefits of a GVE-style proof could be gained while retaining these advantages by writing a

verification condition generator for Micro-Gypsy within the Boyer-Moore framework.  This is a separate

research topic which we have not investigated in detail, though some research has been aimed in this

direction [24].

7We intend to write a verified preprocessor, but this has not yet been done.

8We in fact used Matt Kaufmann’s interactive interface to the Boyer-Moore prover in our proofs.  However, this uses the same
logic and is a relatively benign set of enhancements.
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Chapter 8

RELATED WORK

We have followed a long tradition in defining our languages in an operational style.  McCarthy [17]

seems to have been the first to define a language (LISP) operationally. It was realized quite early that

operational (interpreter) style definitions provided a means of investigating a variety of implementations

and opened the possibility of proving the equivalence of interpreters [15, 12].

The first attempt to prove compilation correct via an interpreter equivalence proof seems to be the

proof of McCarthy and Painter [18] of a simple expression compiler.  Various extensions to this work

have been reported [6, 19, 7, 1, 4]. Other interpreter equivalence proofs of direct relevance to ours are

reported in [13, 21, 2].

Several compiler proofs have used axiomatic semantics [8, 16] and much work has been directed

toward specifying and proving compilers using denotational semantics [20, 9],

The most notable previous mechanical compiler proof is by Polak [23]. Polak uses denotational

semantics to describe both the source and target languages.  His work is less rigorous than ours; his proof

has as a basis a large collection of unproved assumptions within the formal theory.  Polak’s work also

does not have the larger context of the verified stack.

See [26] for a more extensive discussion of the literature of compiler verification.
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Chapter 9

CONCLUSIONS

The principle contributions of this project are two-fold.  We have demonstrated the feasibility of

providing a rigorous mechanically-checked proof of a code generator.  We have also contributed to

providing a framework for constructing highly reliable application programs.

9.1 A Rigorous Proof

Micro-Gypsy is a small language but contains enough functionality to illustrate the viability of our

approach. We feel that there is no conceptual difficulty in extending our work in various ways, some of

which we outline below.  Because Micro-Gypsy is a subset of an existing language, Gypsy 2.05, we were

not free to tailor our source language to make the compilation process trivial.  Because our target language

was also pre-existing, we were not free to choose assembly language features which would narrow the

semantic gap between source and target language.

We believe that the implementation is realistic. In particular, though our Micro-Gypsy interpreter

uses call by value-result semantics, the implementation uses the more efficient call by reference. We

believe that our project is the first instance of a mechanically checked proof involving a call by reference

implementation of a call by value-result semantics.

Our translator was entirely specified in the Boyer-Moore logic and the proof carried out using the

Kaufmann-enhanced Boyer-Moore theorem prover. The proof is fully mechanically checked.  There are

two explicit axioms assumed in the proof; these insure that the two declared constants representing the

32maximum sizes for the Piton temporary stack and control stack are numbers less than 2 . The only other

assumptions of the proof are the axioms provided by the Boyer-Moore implementation and the axioms

added as a result of function and shell definitions.  We have been extremely careful in formulating

definitions, but there is always a possibility that our definitions do not reflect the desired intuition.  This,

unfortunately, is a hazard of program verification which can be minimized but never entirely eliminated.
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9.2 Trusted Systems

A frequent criticism of program verification is that there is a large semantic gap between verified

high-level language programs and their ultimate representation in machine language running on real

hardware. The Micro-Gypsy project is a component of a larger project designed to partially bridge this

gap. We have illustrated two ways in which Micro-Gypsy programs could be proved. These programs

and accompanying Micro-Gypsy execution environments can then be compiled using the verified Micro-

Gypsy code generator into Piton execution environments in such a way that the program semantics are

provably preserved.  Piton has been proven to be correctly implemented on the FM8502 microprocessor

which, in turn, has been verified down to the gate level.

The "stack" of verified components--the Micro-Gypsy code generator, Piton assembler, and

FM8502--provides an environment for building verified applications with a much higher degree of

reliability than any methodology previously available.  This environment could be extended in various

ways discussed below, but we believe the Micro-Gypsy code generator to be a significant tool for

furthering our ultimate goal of building highly reliable programs.

9.3 Future Work

There are a number of potentially useful directions for future research building upon the current

work.

The Micro-Gypsy code generator, sitting as it does on the Piton and FM8502 work, provides the

capability of building extremely reliable applications.  However, the usability of the language in its

current form is questionable.  Building some small applications in which correctness is critical would both

show the viability of the methodology and point out deficiencies of the language.

Some deficiencies in the current subset are apparent. The language was pared down to illustrate the

feasibility of constructing a rigorously verified code generator while keeping the project manageable.  The

result is a language with limited functionality but one which we believe can be extended in a number of

ways--additional types, a real expression language, I/O facilities.

There is currently a gap between the syntax of the Micro-Gypsy programs which can be handled in

the Gypsy Verification Environment and the abstract prefix syntax acceptable to the code generator.  We

envision this gap being bridged by a preprocessor.  This should be defined and verified.

The code generator does not currently have an optimization phase.  It would be relatively easy to
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define and prove a peephole optimizer that operated on the code generator output. This would be an

interpreter equivalence proof where both the source and target language interpreters were the Piton

interpreter. An initial study has been done on this [25].
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