A Parallel Version of
the Boyer-M oor e Prover

Matt Kaufmann
Matt Wilding

Technical Report 39 February 1989

This research was supported in part by ONR Contract NO0014-88-C-0454. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of Computational Logic, Inc., the Office of Naval Research
or the U.S. Government.

1. Acknowledgements

We'd like to thank Bob Boyer and Ross Overbeek for their help. Ross wrote a program that gave us the
idea to build this system. Bob created the "nuke-all" shell script for us and suggested the basic paradigms

for processing ngthm events and for compiling ngthm in paralel. Both provided advice and
encouragement throughout the project.

2. Introduction

The idea of this system is to use idle processors to increase the speed of NQTHM. There were many
design considerations, including:
* No shared file system. We want to allow the dispatcher to use processors besides the ones

connected to our file system. This also allows us to implement a distributed system that has
a chance to recover from any problems that occur.

» Easy to kill jobs on a given host. Ultimately, if al else fails, we want a way to kill ALL
processes we have created. This also gives machine users some measure of control.

» Easy to prevent job assignment on a given host. Machine users must be able to remove
their processor from the shared pool if they wish.

* Robust. The system should be able to recover from most kinds of processor or network
problems.

* Nice user interface. Plenty of flexibility with reasonable defaults, output that tells the user
what he needs to know, etc.

We wish to use the system to process an NQTHM event list in parallel, with a given "granularity”. If we
have a granularity of n, then the first job will process the first n PROVE-LEMMASs. Each subsequent job
will process n PROVE-LEMMAS. Since an arbitrary subsequence of PROVE-LEMMAS may require a
previous definition, each job will process all previous definitions. A subsequence of PROVE-LEMMAS
may also require PROVE-LEMMAS from a previous subsequence, so each job will process all PROVE-
LEMMASs from previous subsequences, treating each PROVE-LEMMA as an ADD-AXIOM.

This system allows the user to run a job on multiple machines in parallel. The issue of machine use has
been discussed at Computational Logic and a preliminary policy adopted. It is the policy at
Computational Logic to allow users to run parallel jobs using the dispatcher. Spawned jobs are to be run
at the default (nice) priority level, and it is OK for any user to "kick" spawned parallel jobs off his local
machineif he wishes (without feeling bad about it!)

Most users will only need or want to read Subsection 2.1.

Section 2 is a User's Manual for the system. Section 2.1 describes basic use of the system and includes
everything most people will need to use the system. Section 2.2 describes options to the system. Section
2.3 describes some hooks that allow customization of the system. Section 2.4 describes the use of the
dispatcher, the part of the system that distributes the work to other processors that may be used on work
other than NQTHM jobs.

Section 3 is a System Guide. Section 3.1 describes how the dispatcher is implemented. Section 3.2
describes how events files are broken up and how the dispatcher is applied to this problem.

Section 4 includes results and conclusions. Section 4.1 compares the system’s performance against
sequential runs. Section 4.2 suggests future work. Section 4.3 summarizes our conclusions.

Appendix A describes the instrumentation added to the system to keep track of its use. Appendix B
describes an experiment where the dispatcher is used to compile code in parallel. Appendix C isthe code.

3. A Usar'sManual
3.1 Basic Use

3.1-A An example

The following example shows how the function DO-FILE-PARALLEL may be called to run NQTHM
eventsin parallel. Comments are inserted in italics. Later subsections explain which directories and files
need to be present for this function to execute successfully, and some commands that control parallel jobs.

cli:w | ding[46] % akcl {start up Lisp}
AKCL (Austin Kyoto Conmon Lisp) Version(1l.57) Thu Sep 29 21:27:15 CDT 1988
Cont ai ns Enhancenents by W Schelter

>(load "/usr/local/src/parallel/top.lsp") {Loadintheparallel NQTHM-manipulation code}
Loadi ng /usr/local/src/parallel/top.|sp

Loadi ng /usr/local/src/parallel/fromnqthmo

start address -T 191000 Fi ni shed | oading /usr/local/src/parallel/fromngthmo
Fi ni shed | oading /usr/local/src/parallel/top.|sp

T

>(| oad- di spatcher) {Loadin parallel NQTHM code}

Loadi ng /1l ocal /src/parallel/dispatch.o

start address -T 1c8800 Fi ni shed | oading /local/src/parallel/dispatch.o
Loading /1l ocal/src/parallel/bmo

start address -T 1d0800 Finished | oading /local/src/parallel/bmo

NI L

>(do-file-parallel "/usr/honme/kaufmann/deno-pernutationp.events" 2)
{Execute eventsin file with 2 PROVE-LEMMA events per job}

Clearing directory jobs/.

Creating jobs files... done.

I nvoki ng di spat cher.

Initializing job infornation... done.
Clearing directory output/.

Clearing directory tenp/.

Hosts requested: ("clientl12" "cli" "anderson" "jingles" "scarab"
"decaf" "client13" "elgin" "oscar").
Hosts currently bl ocked: NONE.

starting>> client12 : DELETE (job# 1) 0: 00
starting>> cli : DELETE- COMMUTATI VI TY (j ob# 2) 0: 00
starting>> anderson : PERMJTATI ONP- PRESERVES- MEMBER (j ob# 3) 0: 00
starting>> jingles : PERMUTATI ONP- TRANSI TI VE (j ob# 4) 0: 00
conpl et ed>> anderson : PERMJTATI ONP- PRESERVES- MEMBER (] ob# 3) 0: 01
conpl eted>> client12 : DELETE (job# 1) 0: 01
conpl eted>> cli : DELETE- COWUTATI VITY (j ob# 2) 0: 01
conpl eted>> jingles : PERMUTATI ONP- TRANSI TI VE (j ob# 4) 0: 01

Al'l events have been run successfully.
T
>

3.1-B Environmental requirements

j obs/ temp/ out put/ hosts (optional)

<event1l> finish.1 <event 1>. out put

<event 2> finish.2 <event 1>. st at us
S <event 2>. out put
output.1 <event 2>. st at us
out put . 2

status. 1
status. 2

The system uses files in three subdirectories of the current working directory. By default, these
subdirectories are called jobs/, temp/, and output/. A user may also optionally have afile named hostsin
the current working directory.

The jobg/ subdirectory contains the input file associated with each of the processes to be executed. It is
created automatically from the input events file and the granularity (the number of PROVE-LEMMAS
requested per job). The jobs are assigned to processors in alphabetical order. The name of each job isthe
name of the first PROVE-LEMMA in thefile.X

cli:wilding[47]% s jobs

DELETE- COWUTATI VI TY PERMUTATI ONP- PRESERVES- MEMBER

MEMBER- APPEND PERMUTATI ONP- TRANSI TI VE

The temp/ subdirectory contains files used temporarily during the execution of the jobs. Each scheduled
job is assigned a unique number. There are three files associated with each scheduled job contained in the
temp/ subdirectory. The output.n file is the output created by job n. The status.n file communicates
whether the ngthm events were successfully (or unsuccessfully) processed to completion, or whether the
job was terminated before it could complete. Thefinish.n fileis created when the remote job finishes.

By default, when the finish.n file is created the output.n and status.n files are moved to the output/
subdirectory described below. Note that if the system does not have to recover from errors, there will be
as many scheduled jobs as there are files in the jobs/ directory.

cli:wilding[48]%I|s tenp

finish.1 finish.4 out put . 2 status. 1 status. 4
finish.2 junk.Isp out put. 3 status. 2
finish.3 output.1 out put . 4 status. 3

The output/ subdirectory contains the output from jobs, and information about the status of each job. If
scheduled job n executes job X from the jobs/ subdirectory without error, then X.output in the output/
directory isidentical to output.n in the temp/ directory and X.status in the output/ directory is identical to
status.n in the temp/ directory.

1if the file contains BOOT-STRAPs or NOTE-LIBs, then job naming and assigning is slightly different. Events of that type are
aways the first eventsin ajob, so the previous job may have fewer than PROVE-LEMMAS than the granularity. Job names are the
first event name in the job followed by a"." followed by a number that is the location in the file of the most recent BOOT-STRAP
or NOTE-LIB. Thisis necessary since an events file with BOOT-STRAPs or NOTE-LIBs may have duplicate event names.

cli:wilding[49] % s output

DELETE- COMWUTATI VI TY. out put PERMUTATI ONP- PRESERVES- MEMBER. out put
DELETE- COWUTATI VI TY. st at us PERMUTATI ONP- PRESERVES- MEMBER st at us
MEMBER- APPEND. out put PERMUTATI ONP- TRANSI Tl VE. out put
MEMBER- APPEND. st at us PERMUTATI ONP- TRANSI Tl VE. st at us

If the current directory contains afile named (by default) "hosts’, then it is used to find hosts upon which
to run. Each host name must appear on a separate line. The number of times a hostname appears in the
host file will be the number of processes that may be simultaneously placed on it. (For example, if "cli"
appears twicein the host file, then the host cli may have two simultaneous processes running on it.)

If a hosts file does not exist in the local directory, a system default is used.

cli:wlding[50]%cat hosts
client12

cli

ander son

jingles

scarab

decaf

client13

elgin

oscar

3.1-C Problems That are Detected

There are two kinds of errors that are detected by the system. First, if ajob finishes but does not produce
the appropriate output, then the system concludes that the remote job ended abnormally and reschedules
the work. (To construct the following example, one remote process was killed. The system detected the
problem and rescheduled the job.)

>(do-file-parallel "/usr/home/kaufmann/ deno- pernutationp. events" 3
ckill-if-no-progress 60)

Clearing directory jobs/.

Creating jobs files... done.

I nvoki ng di spat cher.

Initializing job information... done.
Clearing directory output/.

Clearing directory tenp/.

Hosts requested: ("clientl12" "cli" "anderson" "jingles" "scarab"
"decaf" "client13" "elgin" "oscar").
Hosts currently bl ocked: NONE.

starting>> client12 : DELETE (job# 1)

starting>> cli : MEMBER- DELETE- OTHER (j ob# 2)

starting>> anderson : PERMJTATI ONP- TRANSI Tl VE (j ob# 3)

***NOT conpl et ed>> anderson : PERMUTATI ONP- TRANSI Tl VE (j ob# 3)
starting>> anderson : PERMJTATI ONP- TRANSI Tl VE (j ob# 4)

conpl eted>> client12 : DELETE (job# 1)

conpl eted>> cli : MEMBER- DELETE- OTHER (] ob# 2)

conpl et ed>> anderson : PERMJTATI ONP- TRANSI Tl VE (j ob# 4)

Al'l events have been run successfully.

T

eeeeeeee
o
s

>

The other type of error detected by the system is when no progress is made. If the output file is not
written to for too long, the system kills the local process (in case it is not already dead) and restarts the
job. (To construct this example, all local processes related to parallel jobs were killed on the local host.

After awhile the system detected the problem and took action.)

>(do-file-parallel "/usr/honme/kaufmann/deno-pernutationp.events" 3

ckill-if-no-progress 60)
Clearing directory jobs/.
Creating jobs files... done.

I nvoki ng di spat cher.

Initializing job infornation... done.
Clearing directory output/.

Clearing directory tenp/.

Hosts requested: ("clientl12" "cli" "anderson" "jingles" "scarab"
"decaf" "client13" "elgin" "oscar").
Hosts currently bl ocked: NONE.

starting>> clientl12 : DELETE (job# 1)

starting>> cli : MEMBER- DELETE- OTHER (j ob# 2)
starting>> anderson : PERMJTATI ONP- TRANSI Tl VE (j ob# 3)
**% KILLED>> client12 : DELETE (job# 1)

**% KILLED>> cli : MEMBER- DELETE- OTHER (j ob# 2)

**% KI LLED>> anderson : PERMJTATI ONP- TRANSI TI VE (j ob# 3)
starting>> clientl12 : DELETE (job# 4)

starting>> cli : MEMBER- DELETE- OTHER (] ob# 5)
starting>> anderson : PERMJTATI ONP- TRANSI Tl VE (j ob# 6)
conpl eted>> client12 : DELETE (j ob# 4)

conpl eted>> cli : MEMBER- DELETE- OTHER (j ob# 5)

conpl et ed>> anderson : PERMUTATI ONP- TRANSI Tl VE (j ob# 6)
Al'l events have been run successfully.

T

LRIl
o
N

>

3.1-D ThePar commands

There are several commands that are useful for controlling parallel jobs. They are used from the shell,
and none of them has arguments. Note that it is the policy at Computational Logic that it is OK for any
user to do execute any of these commands whenever he wishes.

 parstop -- block the local machine from getting more par jobs assigned to it (blocks are
removed at 8PM and 8AM every day) and kill all par jobs already running on this machine.?

« parblock -- block the local machine from getting more par jobs assigned to it (blocks are
removed at 8PM and 8AM every day)

* parunblock -- free the local machine for par jobs

* parshowblocked -- show which machines are currently blocked

« parkill -- kill al par jobs on this machine

* parcount -- give the number of jobs owned by user par on the local processor (this is
usually twice the number of rsh’s on the local machine)

Here' s an example of these commandsin action:

2This command is simply a parblock followed by a parkill

client12: wilding[11] % par showbl ocked
jingles

client12:w | ding[12] % par st op
client12 bl ocked

Al PAR jobs killed on client12
client12: w | ding[13] % par showbl ocked
clientl2 jingles

client12: wilding[14] % par unbl ock
client12 unbl ocked

client12: wilding[15] % par count

3 PAR j obs executing

client12: wil ding[16] % parki || kill the current jobs but allow later ones
client12: wilding[17] % par count

0 PAR j obs executing

client12: wi | di ng[18] % par count

2 PAR jobs executing

client12: wilding[19] % parstop kill the current jobs and prohibit later ones
client12 bl ocked

Al PAR jobs killed on client12
client12: w | di ng[20] % par count

0 PAR jobs executing

client12: wi | ding[21] %

3.2 DO-FILE-PARALLEL options

There are several options available when using DO-FILE-PARALLEL to run NQTHM jobs in parallél.
They are passed as key parameters in the function invocation. The general form of an invocation of
DO-FILE-PARALLEL is:

(do-file-parallel infile granularity
:jobs-directory-nane <directory-nanme>
sout put-directory-nane <directory-name>
chosts-file-nane <fil e-nane>
:local -host-first <t | nil>
ckill-if-no-progress <nunber of seconds>
: command- nane <conmand- nane>
:front-end <fil e-nane>
:delay <nil | nunber of seconds>
‘nice-flag <t | nil>)

3.2-A :jobs-directory-name

Default: "jobs/"

The jobs directory name is a string that contains the name of the subdirectory that is to be used to hold the
input files for the dispatcher. If the parameter given is not a rea subdirectory name for the current
directory, or if the parameter does not end with a '/ character, then an error is reported. The job-
directory-name subdirectory is cleared with every run of DO-FILE-PARALLEL.

3.2-B :output-directory-name
Default: "output/"

The output directory name is a string that contains the name of the subdirectory that is to be used to hold
the output files from the jobs. If the parameter given is not a real subdirectory name for the current
directory, or if the parameter does not end with a '/’ character, then an error is reported. The output-
directory-name subdirectory is cleared with every run of DO-FILE-PARALLEL.

3.2-C :hosts-file-name

Default: "hosts"

The hosts file name is a string that contains the name of a file that contains the hosts upon which to run
the parallel jobs. As described in section 2, if the host file name exists (either the default "hosts" in the
current directory or the file specified with the :hosts-file-name key parameter) then it is used to provide
thelist of host names. If the host file name does not exist, than a system-wide default is used instead.

The hosts file contains one host per line. Each host hame should be a valid host accessible to the user

with an rsh command from the local host. A host may have as many processes assigned to it as there are
occurrences of its namein the hostsfile.

3.2-D :local-host-first

Default: t

A list of hosts is maintained by the system for use in assigning jobs when necessary. Since jobs are

assigned to the hosts on this list starting from the beginning, the order of the hosts in the list affects the
job. This is particularly important when one considers system errors - a job that does not complete
successfully is reassigned to the first host on the list that does not have a job assigned to it, even if that
host was the one that just failed! If the first host is inaccessible for some reason, the system will loop
forever reassigning ajob to that host.

Since we are already relying on the local host, in general we want the local host to appear first in the host
list. If :local-host-first is non-nil, then the host list lists the hosts in the same order as was found in the
hosts file, except that occurrences of the local host are moved to the front of the list. If :local-host-first is
nil, then the host list isin the same order as was found in the hosts file.

3.2-E :kill-if-no-progress
Default: 200

As described in section 2, remote jobs that do not produce output for too long are killed and their work
rescheduled. The minimum "safe" time in seconds for before a job may be killed is given with the
parameter :kill-if-no-progress.

If the value of this parameter is n, then the processor checks every n seconds to see if any processes
should be killed. If aprocess has not written to its output file in the last n seconds, then it is killed and the
work rescheduled.3

The garbage collection message is turned on in remote jobs (in the default front-end file - see :front-end

below) when they are set up to guarantee that long periods of time between output updates really means
trouble and is not just NQTHM taking along time.

3.2-F :command-name
Default: "pc-ngthm®

The command name is the command that is to be run on the remote hosts. It must be accessible on the
remote host.

Probably the only time a user would want to change the default command is to use another version of the
theorem prover, for example "ngthm".

3.2-G :front-end

Default: "/local/src/parallel/front-end.Isp”

The front-end is a string that is the name of a file containing forms to be sent to the remote processes
before the job-specific info and the events. The default contains code that hel ps set up the remote process

for running the subsequence of events that need to be run by that job.

Most users will not want to mess with this parameter.

3This means that a process may take longer than n seconds to be killed once it stops producing output, but no longer than 2*n
seconds.

3.2-H :delay

Default: nil

The parameter describes how often the local host will check to see if there are jobs that have completed.
If the number n is provided, then the local host will sleep n seconds between checking for completions.

If nil is provided (or the default is used) then the delay will be set equal to the granularity. Thus, if each

job processes 20 PROVE-LEMMAS and the delay is set to nil, then the local processor will sleep 20
seconds after checking for completed jobs.

3.2-1 :nice-flag

Default: t

If nice-flag is non-nil, then the jobs run on remote machines will be run using "nice". That is, they will
run so that they have a lower priority than most other jobs on the system. If nice-flag is nil, then the

spawned jobs will be run at normal priority.

Note that even nice jobs take resources, so running at a lower priority will not guarantee that running a
parallel job will have no effect on the systems used.

It isthe policy at Computational Logic to run jobs at the default (nice) priority level.

10

3.3 Some Implementation Hooks

This section describes global variables whose values are used by the system. Using them, the user may
customize the system somewhat.

The following variables may be set by the user.

« *output-completed-string* (Default: "Boyer-Moore job terminated") This string appears in
the status file of a job. It signifies that the job completed. Whether the job completed
successfully or with failure is communicated on the line after thisline.

 no-io-in-parallel-flag (Default: nil) Thisflag directs whether the remote processes should
produce the complete NQTHM output or an abbreviated version. If non-nil the abbreviated
version is produced.

» *delete-jobs-flag* (Default: nil) This flag directs whether the job input files should be
deleted after they are al processed. If nil the job input files are retained.

« *clear-query-flag* (Default: nil) This flag directs whether the the user should be queried
before the jobs, temp, and output subdirectories are cleared. If non-nil the query is
performed.

« *|ocal-host-warning* (Default t) This flag directs whether the user should receive a
warning if the first host in the host list is not hislocal host. Thisis checked after the host list
is possibly rearranged to move the local host to the front of the host list (as described in
section 2.2). As noted before, if the first host is inaccessible for some reason, the system
will loop forever reassigning ajob to that host.

» *save-temp-files-flg* (Default nil) This flag directs whether the files in the temp/
subdirectory should be copied or moved to the output directory when a job completes. If
non-nil, the temp files are copied (and therefore saved).

« *kill-dispatcher-upon-seeing-failure* (Default nil) This flag directs whether the parallel
job should finish as soon as failure is detected. If non-nil, the job stops as soon as any of the
jobsreturns afailure.

» *system-par allel-directory* (Default "/loca/src/paralel/") This directory name contains
various files the dispatcher needs to operate. These files are discussed in Section 3.1.

* *parkill-command* (Default "/local/bin/parkill*) This string is submitted to the system if
the system ends abnormally (e.g. the user aborts)

« *protected-hosts-subdirectory* (Default "protected-hosts/") This subdirectory of * system-
parallel-directory* contains the "block" files used by the dispatcher. (See Section 3.1.)

« *lock-file-name* (Default "lock-out-others.par") This is the name of the lock file that is
used to lock the current directory from use as a parallel job current directory for someone
else.

* *output-info-subdirectory* (Default "statistics/rung/™) This subdirectory of *system-
parallel-directory* holds the files that record job progress. These files are designed to help
track system use. (See Appendix A.)

« *all-valid-hosts-names* (Default nil) If non-nil, host names from the hosts file are checked
to make sure that they appear in thislist. If they do not appear, a warning message appears.

11

3.4 Dispatcher Use

This section is intended for someone who wishes to use the dispatcher part of this system independently.
We have tried to keep the dispatcher functionally separate in order to make it applicable to other problems
than parallel NQTHM. If you just want to use this system to run NQTHM jobs in paralel, this subsection
probably will NOT do you any good.

DON'T LET THIS SECTION CONFUSE YOU IF YOU SIMPLY WANT TO USE THIS SYSTEM TO
RUN NQTHM JOBS IN PARALLEL. Itisintended for those who want to build systems to do parallel
work with other kinds of jobs.

Section 3.1 describes the dispatcher’s implementation, and section 3.2 describes how the system is built
on top of the dispatcher. Appendix B contains an example of using the dispatcher to compilein parallel.

Dispatcher Use Overview

The dispatcher takes work and passes that work out to some processors. When a processor is done with a
task, the dispatcher updates its records and assigns a new job to the processor. Eventually all the work
will be completed and the dispatcher will return with a value reflecting whether al the jobs were
successful.

The dispatcher expects there to be in the current directory a jobs directory (default name : "jobg™) that
contains the work to be done. By default, each file in the jobs directory contains the input to the
command to be run remotely.

During the execution of the dispatcher, a temp subdirectory (name: "temp/") is used to keep track of the
jobs as they progress.

After a job completes, its standard output is moved from the temp/ subdirectory to the the output
subdirectory (default name "output/"). If the name of the job file is X, then X.output will contain the
task’s output and will appear in the output directory. X.status will contain the standard error stream
output by the job and will also appear in the output directory.

The hosts to use for remote processing can be found in the hosts file (default name : file "hosts" in the
current directory).

Dispatcher Use Example

cli:wilding[12]% s jobs

jobl j ob2 j ob3 j ob4 j ob5
cli:wlding[13] % nore jobs/job2

host name; date; rsh cli date
cli:wlding[14] % nore hosts

ander son

client12

oscar

cli

cli:wlding[15] % akcl

AKCL (Austin Kyoto Common Lisp) Version(1l.57) Thu Sep 29 21:27:15 CDT 1988
Cont ai ns Enhancenents by W Schelter

>(load "/l ocal/src/parallel/fromngthmlsp")

Loadi ng /local/src/parallel/fromngthmlsp

Fi ni shed | oading /local/src/parallel/fromngthmlsp
T

12

>(load "/l ocal/src/parallel/dispatch")
Loadi ng /1l ocal /src/parallel/dispatch.o
start address -T 1c5800 Finished | oading /local/src/parallel/dispatch.o
25392
>(di spat cher :command-nane "sh" :conpletion-function # (lanbda (x)
(cons ’'success nil))
:front-end "" :back-end "")
Hosts requested: ("cli" "anderson" "client12" "oscar")
Hosts currently bl ocked: NONE

starting>> cli : jobl (job# 1) 00
starting>> anderson : job2 (job# 2) 00
starting>> client12 : job3 (job# 3) 00
starting>> oscar : job4 (job# 4) 00
conpl eted>> cli : jobl (job# 1) 00

conpl et ed>> anderson : job2 (job# 2)
conpl eted>> client12 : job3 (job# 3)

eeleeeeeee
o
S

conpl et ed>> oscar : job4 (job# 4) 00
starting>> cli : job5 (job# 5) 00
conpl eted>> cli : job5 (job# 5) 01

T

>(by)

Bye

cli:wilding[16]% s output

j obl. out put j ob2. out put j ob3. out put j ob4. out put j ob5. out put
jobl.status job2.status job3. status j ob4. status j ob5. status
cli:wlding[18] % nore output/job2. out put

16538

ander son

Tue Feb 21 12:47:45 CST 1989
Tue Feb 21 12:56:29 CST 1989
cli:wlding[19] %

Dispatcher Invocation

A dispatcher invocation has the form

def aul t
(di spatcher :jobs-directory-nane <directory-nanme> "j obs/™"
;output-directory-nane <directory-name> "output/"
chosts-file-name <fil e-nane> "host s"
:local -host-first <t | nil> t
. del ay <nunber > 15
ckill-if-no-progress <number> 600
: command- nanme <command- nane> "pc-ngt hnt
:conpl etion-function <function> # nqt hm conpl et ed
:front-end <fil e-nane> "/local/src/parallel/front-end.|sp"
s back-end <fil e-name> "/l ocal/src/parallel/back-end.|sp"
‘nice-flag <t | nil>) t
cjob-list <job-list | nil>) nil

Most of these parameters are the same as those to DO-FILE-PARALLEL (see section 2.2), with the
following exceptions:

* :host-file-name Like the :host-file-name parameter name to DO-FILE-PARALLEL except
if the file does not exist an error occurs.

« :completion-function This is a function to be applied to the status file of a job to tell
whether it completed successfully or not. The status file contains the output from the
standard error stream of the job. This function will be applied when the remote process
terminates. It is expected to return either nil (the job apparently aborted) or a pair of the
form (" success . message) or (code. message) where code may be anything except ’ success,
and message may either be nil or alist suitable as the arglist for the function FORMAT. If
this function returns nil for a job, that job is rescheduled. If al input jobs eventually
produce status files that indicate success in this sense, then dispatcher returns t, otherwise

13

the dispatcher returnsnil.

« :front-end This file is sent to the remote process as input before the job input file. If the
empty string is used, then no front-end file is sent.

* :back-end This file is sent to the remote process as input after the job input file. If the
empty string is used, then no back-end fileis sent.

« :job-list If non-nil, this provides alist of job names in the jobs subdirectory to be run. This
may be useful if only a subset of the jobs subdirectory is to be used, or if the jobs are to be
assigned in a particular order. If nil, al jobs in the jobs directory will be assigned in
alphabetical order.

14

4. Systemsguide: implementation

This section contains a description of our implementation. Let us re-emphasize that it should be
completely unnecessary to read this section if one simply wants to be able to use the system. Rather, we
have included this section for those who would like to know how this all works at the lower levels,
perhaps so that they can create variants of this system. One might even think of this section as
documentation for the code; the code itself may be found in Appendix C.

The first subsection below is a guide to the implementation of the dispatcher, which has nothing to do
with NQTHM but is a general-purpose program for running independent jobs in parallel. (The
dispatcher's use is documented in Subsection 2.4.) The second subsection below describes the
implementation of the parallel version of the Boyer-Moore prover on top of the dispatcher. We conclude
this section with an explanation of the system front-end file.

4.1 Dispatcher implementation

The main function for the general dispatcher is the Lisp function DISPATCHER. The code and its
comments (see Appendix C) are the ultimate reference. In this section we describe the algorithm it uses
and some of the subsidiary functions.

Dispatcher algorithm:
1. Initialize various environmental variables. These include the starting time, the local host
name, the user name, and the suffix to use for the filename where statistics of the run will be
collected, e.g. the ‘567489’ in "/local/src/parallel/stati stics/runs/wilding.567489".

2. Set up locking. Only one run of the dispatcher is allowed in a given directory at a given
time, in order to avoid clashing use of common directories. The file "lock-out-others.par” is
created in the current working directory whenever the dispatcher is entered. The dispatcher
starts by checking to see if the directory is already "locked" in this sense; if not, it locks the
directory.

3. Check if jobs exist. If ajob-list is provided, make sure that the jobs al exist in the jobs/
subdirectory.

4.Set up the jobs. The job names are simply the file names from the directory
j obs-directory-nane ("jobg" by default), unless they are provided by the :job-list
option.

5. Set up theinitial host s-j obs-al i st. Thisisan association list which associates jobs
with hosts. Initially each host is associated with NI L, indicating that no job has yet been
assigned.

6. Enter main loop.

e Update completed jobs records. Remove the terminated jobs from the
host s-j obs-al i st. Tack those that didn’t complete back on to the end of the
list of unassigned jobs. (More on this below.)

* Possibly look for and Kkill bombed jobs. If it has been longer than
kill-if-no-progress seconds since we last looked for "bombed jobs', then
kill al the jobs which haven't output any characters in the last
kill-if-no-progress seconds and put them back on the list of unassigned
jobs. In such cases, a message headed with "*** KILLED" will appear on the
terminal.

e Assign jobs. Assign jobs to hosts which are currently not busy, appropriately
adjusting the host s-j obs-al i st and the list of unassigned jobs. Avoid hosts
that are currently blocked (except for the local host). Print an appropriate "starting"

15

message to the terminal for each new job started.

* Check for completion. If no hosts are busy, return from the loop. Otherwise sleep
for del ay seconds.

7. Report failed jobs. Return NI L if there are any failed jobs and otherwise return T.

8. Clean up. Removethelock (i.e. delete the file "lock-out-others.par") and report completion
to statistics files. If execution didn’t complete normally then do par ki | | to remove al
local jobs owned by user par .4

One complicated thing about the code is how jobs are started. The Lisp function SYSTEM (as it existsin
KCL and AKCL at CLInc) takes a string which is then given to the Shell to execute. Our function
SYSTEM JOB- COMVAND produces a string that, when given to SYSTEM creates a job. This causes
execution of the Shell command par csh, which calls the Shell on its arguments after changing
ownership of the processto the user par . The argument list for par csh is of the form

PAR <host - nane> <conmand- nane> <uni que- nunber > <front-end> <j ob> <back-end>

PARisac-Shell script (see Appendix C) that:

1. Write the process number to the file temp/output.n, where n is the <unique-number>
supplied above, i.e. the unique job number.

2. Cdl r sh (remote Shell) with host <host-name> and command <command-name>, piping
the concatenation of the files <front-end>, <job>, and <back-end> to its standard input
stream. Send the standard output of this process to the file temp/output.n, and send its error
output to the file temp/status.n, where (as above) n is the <unique-number>.

3. Create the file temp/finish.n (same n as above).

Notice that since we start by writing the process number to the file temp/output.n, we can kill a bombed
job by first reading its process id from the first line of the output file and then issuing the appropriate kill
command.

As mentioned above, we need to update completed jobs records. We have just explained that PAR uses a
remote Shell call (i.e., r sh) to fire up a job on a remote machine, after which it creates a "finish" file.
One may consider a job to be terminated if its corresponding "finish" file has been created. (The Lisp
function j ob- conpl et ed, which should perhaps be called j ob-t er mi nat ed, does this check.)
Such a "terminated" job is to be removed from host s-j obs-al i st. But first it must be decided
whether the job completed or not; if not, it should be put back on the list of unassigned jobs. This
determination is up to the completion function, which by default is the function nqt hm conpl et ed.
Recall from Subsection 2.4 that this function expects a file name, which in this case is the status file
temp/status.n (where n is the job's unique number), and returns either NI L (which means that it was
"unable to give a reliable answer") or a pair of the form (’ success . nessage) or (code
nmessage) . Inthe former case (where NI L is returned) the job is considered to have failed to complete
(and the message "***NOT completed" is printed out), and it is put on the list of unassigned jobs.
Otherwise the job is considered to have completed (and the message "completed” is printed out), the
message (if any) is printed out, and the output and status files are moved to the output/ subdirectory. If
the first component of this pair is anything other than ' success then the job is added to the list
f ai | ed-j ob- nanes. When the dispatcher finally returns, if this list is not NI L then the list is
printed out with an appropriate message and the dispatcher returns NI L. If all jobs succeed, then the
dispatcher returns T.

4In many cases thiswill kill remote par jobs aswell.

16

4.2 Parallel ngthm implementation on top of the dispatcher

As in the previous subsection, we leave to the code documentation the task of giving detailed
specifications. What follows here is an overview of the execution of the main function,
DO FI LE- PARALLEL.
1. Set up locking. Thisworks just as it did in the dispatcher. We want the current working
directory reserved for only this run of DO FI LE- PARALLEL since even before the
dispatcher is called we will be writing to one subdirectory, namely (by default) jobs/.

2.Check that appropriate files and directories exist. These include the system’s
front - end file, the jobs/ subdirectory, the output/ subdirectory, the temp/ subdirectory,
and the host s file (or whatever the user supplied in place of these defaults).

3. Set delay. If the: del ay keyword argument has not been supplied by the user, then set the
delay to the granularity of the call to DO- FI LE- PARALLEL.

4. Reset. Set the *current -j ob- uni que- nunber* back to 0 and clear the relevant
subdirectories (these are jobs/ and output/ by default, together with temp/).

5. Create the jobs files. These are the input files to be shipped to the remote hosts inbetween
the front end and the back end. Note that jobs with events which follow a BOOT-STRAP or
NOTE-LIB in the main file are suffixed with a natural number, i.e. they look like
<i denti fi er>. nwheren isthe position of the applicable BOOT-STRAP or NOTE-LIB
inthemain file.

6. Check directory. Be sure that the current working directory is what we started with; if not,
changetoiit.

7. Remove the locking. Otherwise wewon't be able to run the dispatcher!

8. Run dispatcher. Return what it returns and print a happy message if it returns T. Clean up
by returning to the working directory that we started with in case that differs from the
current working directory.

The dispatcher is called with : back- end set to the filename argument (for the events list) of the call of
DO FI LE- PARALLEL. We'll omit discussion of the defaults, as these are documented earlier (see
Section 2.2, DO-FILE-PARALLEL-OPTIONS), except to discuss briefly the function
NQTHW COVPLETED. Recal from the previous subsection that the : conpl etion-function
argument to the dispatcher takes a filename argument (which is supposed to be the name of a status file)
and returns either NIL or a pair. The function NQTHM COVPLETED in fact looks for a line that equals
the * out put - conpl et ed- stri ng*, "Boyer-Moore job terminated", in the given file, and then reads
the next line. If thefirst 7 characters of that next line are "success" (when converted to lower case), then it
returns the pair (' success . NI L). Otherwise it returnsthelist (" failure . (<line>)),
where <line> isthat line.

Note that the appropriate messages to the status file are placed there by the remote job. The top-level 1oop
function PAR- NQTHM TOP- LEVEL in the system’s front-end file in fact uses a system call to echo2 to
print the string " FAILURE: The event <event-name> failed." to the error stream (and hence to the status
file) in this case, where <event-name> is the name of the failed event; otherwise it prints " Success!!"

4.3 The system front-end file.

Recall that the default “front-end” file for DO FILE- PARALLEL is the file
/local/src/parallel/front-end.Isp. The file /local/src/parallel/front-end-with-doc.Isp is a version of that file
with comments, so complete documentation may be found in that code. In this subsection we give
describe that code (which may be found in Appendix C).

17

Recall that the front-end file is the first file sent into the standard input stream of the nqt hm or
pc- nqt hmprocess. That is, a remote host will be reading in and executing the forms from this file.
After all the formsin thisfile are read, the particular job file will be read in. The last form in the job file
is (PAR- NQTHM TOP- LEVEL) , where the function PAR- NQTHM TOP- LEVEL is defined in the front-
end file. Itisatop-level loop which will process the forms in the back-end file, i.e. thefile of events. The
central thing to understand from the front-end file is the definition of PAR- NQTHM TOP- LEVEL. That
function executes aloop after which it "cleans up"®. Hereiswhat its main loop does.
1. Read the next form.

2. If there are no more events to process, return T. There are no more events to process if
we are either (a) at end-of-file or (b) at theevent *f i ni sh- nane* (setin the job-fileto be
the first event that we should not process).

3. Print the next event, evaluate it, and print its value. However, we turn PROVE-
LEMMASs into ADD-AXIOMs untii we find the starting event. The variable
start - nane isinitialized to the starting event’s name in thejob file. In casethereisa
preceding BOOT-STRAP or NOTE-LIB the variable *st art - posi ti on* isalso set in
that file, and all events before the appropriate BOOT-STRAP or NOTE-LIB are ignored.

4. 1f thevalueisNI L, exit theloop with value NI L.

The first part of the "cleanup" phase has already been described in the subsection above: A success
message is printed to the error stream if all events evaluated to non-NI L, and otherwise a failure message
is printed. (We aso handle the case that a READ fails, i.e. and end-of-file is encountered during the
process of reading the next form.) Finally, we exit in the C language tradition, i.e. with status O if all
events evaluated to non-NI L and 1 otherwise. Our current implementation does not use that status
information, however.

The only dightly tricky part of this strategy is that the "cleanup forms' are not evaluated in Lisp when an
error is caused until control is returned to the built-in top-level loop. Fortunately, in KCL thereisaglobal
variable * br eak- enabl e* which one may initialize to NI L in order to avoid entering the break loop
when an error occurs. Thisisthefirst thing we do in the front-end file.

The front-end file aso contains the form (set q sys:: *notify-gbc* t),which turnson garbage-
collection notification. This feature should make it virtualy impossible for an NQTHM job to "bomb"
simply because it's not putting out characters fast enough; if all other output is slow, till there are likely
to be frequent garbage collection messages!®

5in Lisp jargon, it executes the cleanup-forms of an UNW ND- PROTECT
60ne exception is compilation, where certain phases of the code generation can take a long time without a garbage collect. In this

case one may wish to specify a large number of seconds for the : ki | | -i f-no- progress parameter, as illustrated in the
example in Appendix B, where we use 1200.

18

5. Reaults and Conclusions

5.1 Trial Runs

WEe' ve run several tests to try to break the error handling capability of the system. These included killing
processes in the middle of a job, adding sleep commands to jobs to make them "killable", and even
turning off a remote processor before it finishes. In all these tests the problem was detected and the
parallel job recovered.

The dispatcher’s utility has been demonstrated separately from the problem of doing NQTHM runs in
parallel. It was used to compile codein parallel. That experiment is described in Appendix B.

WEe' ve run severd different ngthm files for testing. The largest ngthm job we've run in parallel so far has
been the events that create the various shared libraries created by Bill Bevier. With 7 Sun 3/60 processors
(including the processor that ran the dispatcher) the job took 2 hr 22 min, compared with 10 hr 31 min for
one dedicated processor running pc-ngthm from the shell.

The speedup of about 4 1/2 is about 63% of the theoretical maximum. The following lines from the
parallel run’s output show that only afairly small portion of of the 37% loss is due to uneven finish times
of the jobs.

conpl et ed>> scarab : T (job# 63) 2: 08
conpl eted>> jingles : PUT-W TH LARGE- | NDEX (j ob# 52) 2: 09
conpl eted>> el gin : TI MES- DI STRI BUTES- OVER- DI FFERENCE (j ob# 64) 2:09
conpl et ed>> decaf : PUTS-W TH LARGE- | NDEX (] ob# 55) 2:10
conpl et ed>> oscar : QUOTI ENT- DI FFERENCE- LESSP- AR& (j ob# 57) 2:17
conpl eted>> client12 : PUTS-PUTS3 (job# 54) 2:21
conpl eted>> client13 : QUOTI ENT- DI FFERENCEL (j ob# 58) 2:21

Al'l events have been run successfully.
T

5.2 FutureWork

There are several things we'd like to do (someday) that would increase the utility of this coarse approach
to paralelism in NQTHM.

* Integratewith J Moor€'slibrary utilities. When NQTHM with efficient library utilitiesis
released, it will have two possible impacts on our system. First, it may alow remote
systems to avoid redoing the DEFNS and old PROVE-LEMMAS for each job. Second, and
more importantly, it will be very desirable for our system to produce endorsed "books".

« Include the notion of dependencies. We should investigate better ways to create the job
files. Some events depend on others, like PROVE-LEMMAS after a BOOT-STRAP, and
some events take longer and should have processing resources devoted to them early.

* Find the bottlenecks. We're not sure right now what is keeping us from getting better
performance. (63% may be as good as it gets, but we should at least know what the
important factors are.)

e Try some big runs. The system has limits. (100 remote hosts would surely fill the
dispatcher’s process table, for example) We should find out what these are.

e Try to run remotely The system has been designed to run on machines that are not in the
local area network. We should try it.

19

5.3 Conclusions

It's not difficult to take advantage of idle processors.
GNU EMACS with KCL running under Unix is awonderful development environment.
The basic idea of running NQTHM event files in parallel by sending remote processors subsequences of

events seems to work fairly well. With large runs we have obtained close to 2/3 of the theoretical
speedup.

20

Appendix A
| nstrumentation

In order to get ahandle on parallel job usage, some instrumentation has been added to the code. There are
several files that are updated when parallel work is done.

A.1 /local/src/parallel/statistics/blocks

This file contains information about the creation and removal of block files. There are 4 types of
messages.
« USER-BLOCK A user has blocked a processor.

* USER-UNBLOCK A user has unblocked a processor.
* USER-UNBLOCK-FAILURE A user tried to unblock an unblocked processor.

* SYSTEM-UNBLOCK The system unblocked some processors. The list of block files
follows.

e SYSTEM-UNBLOCK-FAILURE The system tried to unblock processors but there were
none to unblock.

example block file:

+++02/ 20/ 89 17:13: 10 USER- UNBLOCK kauf mann cl
+++02/ 20/ 89 19:15: 16 USER-BLOCK wi | di ng cl
+++02/ 21/ 89 16:28: 16 SYSTEM UNBLOCK

total 1

Srwrwr-- 1 wilding 2 Feb 20 19:06 cl

+++02/ 21/ 89 16: 28: 47 SYSTEM UNBLOCK- FAI LURE
+++02/ 21/ 89 16: 28: 49 USER-BLOCK wi | di ng cl

A.2 /local/sr c/parallel/statistics/job-info

This file contains information about the parallel jobs run. The information contains the date and time, the
user, the dispatcher host, the run code number (see the next section), the requested hosts, and the blocked
hosts.

example job-info file excerpt:

+++02/ 24/ 89 17:37: 17 PAR- START kaufmann client12 355006
hosts: ("client12" "scarab" "elgin" "clientl1l3" "decaf")
bl ocked: ("anderson" "cli" "jingles")

+++02/ 24/ 89 17: 48: 38 PAR-END kauf mann client12 355006
hosts: ("client12" "scarab" "elgin" "clientl1l3" "decaf")

bl ocked: ("anderson" "cli" "jingles")

+++02/ 26/ 89 16: 15: 17 PAR- START wi | ding client12 522876

hosts: ("client12" "cli" "anderson" "jingles" "scarab" "decaf"
"client13" "elgin" "oscar")

bl ocked: NL

+++02/ 26/ 89 16: 16: 30 PAR-END wi I ding client12 522876

hosts: ("clientl12" "cli" "anderson" "jingles" "scarab" "decaf"
"client13" "elgin" "oscar")

bl ocked: N L

21

A.3 /local/src/parallel/statisticsruns

This directory contains a trace of al runs using the parallel system. Thereisafilein this directory of the
form <user-name>.<code-number> for each parallel run. The code-number is the number found in the
job-info file.” Each file contains the header information of the job-info file plus progress messages that
the user received while he ran the job.

Example runs directory:

cli:wlding[4] % cd ~kaufmann/ di spat cher

cli:wilding[5]%cd /local/src/parallel/statistics/runs
cli:wilding[6]%Is

kauf mann. 345071 kauf mann. 346447 kauf mann. 355006 wi | di ng. 524027
kauf mann. 345195 kauf mann. 348576 wi | di ng. 522876 wi | di ng. 524251
kauf mann. 345253 kauf mann. 352817 wi | di ng. 523562 wi | di ng. 524815
cli:wilding[7]%cat wlding.522876

+++02/ 26/ 89 16: 15: 17 PAR- START wilding client12 522876

hosts: ("client12" "cli" "anderson" "jingles" "scarab" "decaf"
"client13" "elgin" "oscar")
bl ocked: NIL
starting>> client12 : DELETE (job# 1) 00
starting>> cli : DELETE- COWUTATI VI TY (j ob# 2) 00

starting>> anderson : PERMJTATI ONP- PRESERVES- MEMBER (j ob# 3)
starting>> jingles : PERMUTATI ONP- TRANSI Tl VE (] ob# 4)

conpl et ed>> ander son : PERMJTATI ONP- PRESERVES- MEMBER (j ob# 3)
conpl eted>> client12 : DELETE (job# 1)

conpl eted>> cli : DELETE- COMWUTATIVI TY (] ob# 2)

conpl eted>> jingles : PERMUTATI ONP- TRANSI Tl VE (j ob# 4)

+++02/ 26/ 89 16: 16: 30 PAR-END wi |l ding client12 522876

eeeeeeee
o
[

hosts: ("client12" "cli" "anderson" "jingles" "scarab" "decaf"
"client13" "elgin" "oscar")
bl ocked: NL

cli:wlding[8]%

"This code-number is actually the file-server’s "universal time" in seconds, modulo 1,000,000.

22

Appendix B
Parallel compilation

In this appendix we describe an experiment using the dispatcher for parallel compilation of NQTHM.
This method could be generalized to solving the problem of compiling arbitrary systems. However, we've
chosen simply to build a reasonably optimal parallel NQTHM compiler at this point. We describe the
parallel compiler and how fast itis.

B.1 How Parallel Compilation is Done

The NQTHM code is broken into the file oop.lisp (which is Bill Schelter’sloop macro definition) and 10
other files. Three of those 10 must be compiled in sequence first. The remaining 7 files may then be
compiled in parallel. The function COMPILE-NQTHM-SEQ defined below is like the existing function
COMPILE-NQTHM except that it doesn’t compile sloop.lisp or the final 7 files.

(DEFUN COMPI LE- NQTHM seq ()
;7 **** This is all done before saving a core inmge
(FLET ((LF (N
(LOAD (EXTEND- FI LE- NAVE N FI LE- EXTENSI ON-BI N)))
(CF (N
(COVPI LE- FI LE (EXTEND- FI LE- NAVE N FI LE- EXTENSI ON-LI SP))))
(PROCLAI M NQTHM FI LES)
(system "date")
(format t "~&Conpleted proclaimng ngthmfiles. ~&")
;75 (CF "sloop") ***** W assune that sloop exists in any reasonabl e system
(LF "/1ocal/src/nqgthn sl oop")
(CF "basis")
(LF "basis")
(CF "genfact")
(LF "genfact")
(CF "events")
(LF "events")))

We don’t compile sloop.lisp because the object file sloop.o does not change very often (i.e. we view it as
being afile provided by the Lisp system)

The ideais to save a core image after compiling and loading the "sequentia” files, and then run that core
image in parallel, compiling one of the remaining 7 filesin each job. Thetop-level call of this compiler is
a shell command that calls akcl twice: first for the initial sequential compilation of the first 3 files, using
the function COMPILE-NQTHM-SEQ shown above, and then for the parallel compilation of the
remaining 7 files.

The file ngthm-par.lisp is the same as existing Boyer-Moore file ngthm.lisp, except that it includes the
definition of COMPILE-NQTHM-SEQ and contains the following definition.

(DEFUN COWPI LE- one- NQTHM file (fil ename)
;; **** This is all done after saving a core inage from (conpil e-nqgthm seq)
;; Hence we may assune that all the proclamations are al ready around.
(COWPI LE- FI LE (EXTEND- FI LE- NAME fi |l ename FI LE- EXTENSI ON-LI SP)))

Other than ngthm-par.lisp, the following files comprise the crucial parallel compiler code.

23

Thefile conpil e-nqt hm shel | -scri pt:
conpi |l e-ngthm shel | -script:

date

akcl < conpile-ngthmseq.lisp

dat e

rsh scarab w

rsh elgin w

rsh client1l3 w

rsh decaf w

rsh client1l2 w

date

rm /usr/ hone/ kauf mann/ conpi | et est/ out put / *
rm /usr/hone/ kauf mann/ conpi | et est/tenp/ *
akcl < conpile-ngthmpar.lisp

dat e

Thefile conpil e-ngthm seq.|isp:

(when (probe-file "l ock-out-others.par")
(error "Dispatcher won't work -- please renpve | ock-out-others.par"))

;; ngthmopar.lisp is just like nqgthmlisp, except that instead of

;; COWPI LE-NQTHM it has COWPI LE- NQTHM SEQ and COWPI LE- ONE- NQTHM FI LE,
;; and also LOAD-NQTHM is onmtted and sloop is | oaded but not conpil ed.
(load "ngthm par.lisp")

(system "date")
(format t "~%Begin conpiling sequential part of ngthm%)
(conpi | e-nqt hm seq)

(system "date")
(format t "~%Bave core image~%)
(save "/usr/tnp/ ngthm conpilation-mdpoint")

Thefile conpil e-ngthm par.|isp:
(load "/local/src/parallel/top.lsp")
(1 oad-di spat cher)

(system "date")
(format t "~%\ow starting di spatcher run~%)
(setq *output-conpleted-string* "Conpile job term nated")
(di spat cher :command-nane "/usr/tnp/ngthm conpil ati on-m dpoi nt"
use ngt hm conpl etion function
:front-end "conpile-ngthmfront-end.lisp" :back-end ""

ckill-if-no-progress 1200
:job-list '("code-1-a" "code-b-d" "code-e-n "code-n-r" "code-s-z"
"ppr" "io"))

24

Thefile conpil e-nqthmfront-end.lisp
(setq sys::*notify-gbc* t)

(def var *out put - conpl et ed-string*)
(setq *output-conpleted-string* "Conpile job termni nated")

(defun format2 (string & est args)

(system
(concatenate ’'string
"echo2 "
(apply # format nil string args)
"))

(defun format-nqthmstatus (string & est args)
(apply # format2 (concatenate 'string *output-conpleted-string® "~&' string) args))

(SETQ * DEFAULT- NQTHM PATH* "/ usr/ honme/ kauf mann/ conpi | et est/")

Atypical job, eg. jobs/code-1-a:
(conpi | e-one-nqgthmfile "code-1-a")

(cond (*break-enabl e*
(if (probe-file "/usr/hone/kaufmann/conpil et est/code-1-a.0")
(format-nqt hm status "Success!!")
(format-ngthmstatus "FAILURE -- did not end in a break, but file does not
exist.")))
(t (format-ngthmstatus "FAILURE -- ended in a break.")))

B.2 Resultsfrom Using the Parallel Compiler

Sunmary of Tinmes

Total sequential time: 2688 sec

Total parallel tinme: 1191 sec

Real Speedup: (/ 2688 1191.0)) = 2.26

Paral l el run breakdown (tines in seconds)

| oad ngthm par.lisp 4
Procl ai m 109
conpi |l e-1 oad sequential part 226
save core image 124
[rsh ... W 24 {To see which processors were busy -- none were}
| oad di spatcher code 13
Run di spat cher 691
Tot al 1191

An abbreviated shell transcript

17:28: 48

>Loadi ng ngthmpar.lisp

Fi ni shed | oadi ng nqthm par.lisp
17:28:52

25

Begin conpiling sequential part of nqgthm

17:30: 41

Conpl eted proclaimng ngthmfiles.

Loadi ng /1 ocal /src/ ngt hm sl oop. o

start address -T 20e800 Finished | oading /1 ocal/src/ngthn sl oop.o
Conpi ling basis.lisp

start address -T 2b0000 Fini shed | oadi ng events.o

14744

17: 34: 27
Save core inage

17:36: 31

[rsh ... W

17: 36: 55

AKCL (Austin Kyoto Conmon Lisp) Version(1l.57) Thu Sep 29 21:27:15 CDT 1988
Cont ai ns Enhancenents by W Schelter

>Loading /local/src/parallel/top.lsp

17:37: 08

Now starting dispatcher run
NI L

Hosts requested: ("clientl12" "scarab" "elgin" "client13" "decaf")
Hosts currently bl ocked: ("anderson" "cli" "jingles")

starting>> clientl12 : code-1-a (job# 1)
starting>> scarab : code-b-d (job# 2)
starting>> elgin : code-e-m (job# 3)
starting>> clientl1l3 : code-n-r (job# 4)
starting>> decaf : code-s-z (job# 5)
conpl eted>> clientl12 : code-1-a (job# 1)
conpl et ed>> decaf : code-s-z (job# 5)
starting>> client12 : ppr (job# 6)
starting>> decaf : io (job# 7)

conpl eted>> client12 : ppr (job# 6)
conpl et ed>> scarab : code-b-d (job# 2)
conpl eted>> el gin : code-e-m (job# 3)
conpl et ed>> decaf : 0 (job# 7)

conpl eted>> clientl13 : code-n-r (job# 4)
T

eLeeReeLeeeeeee
o
N

>Bye.
17:48: 39

One measure of "efficiency” is in terms of how many total CPU seconds are used in the parallel vs. the
sequential run. That is, this measure should be an indication of the overhead in setting up the dispatcher
run. We measure this kind of efficiency in (A) below, with a slight variation in (B). In part (C) we
measure the actual REAL speedup comparing the parts of the two runs that can actually be made paralle,
i.e. the compilation of the files code-1-a, code-b-d, code-e-m, code-n-r, code-s-z, ppr, io.

(A) From the point of view of total CPU seconds used (on all processors).

First we calculate the expected total CPU seconds for atheoretical "optimal" parallel run. More precisely,
thisis the total seconds for the sequential compilation run together with the additional operations done in
the parallel run that don't correspond to actions taken in the sequentia run. (Notice that our notion of
"additional operations" does not include time required to fire up processes or other overhead incurred in
running the dispatcher.)

26

[total sequential run tine] + [save core image] + [rsh ... w] + [load dispatcher code] =
2688 + 124 + 24 + 13 =
2849

On the other hand, if we note early completions,

conpl eted>> client12 : ppr (job# 6) 0: 08
conpl et ed>> scarab : code-b-d (job# 2) 0: 09
conpl eted>> el gin : code-e-m (job# 3) 0: 09
conpl et ed>> decaf : io (job# 7) 0: 10
conpl eted>> client13 : code-n-r (job# 4) 0:11

we get the estimated total CPU seconds for the entire actual parallel run by subtracting off the minutes
that all but client13 sat idle (note the gross rounding here!):
[{total parallel run tine} - {dispatcher_tine}] + (* 5 {dispatcher_tine})
- (* 60 (3+2+2+1)) =
(- 1191 691) + (* 5 691) - 480 =
3475

Estimated actua efficiency from the point of view of total CPU seconds used:
(/ 2849.0 3475) = 82%

(B) From the poaint of view of total CPU seconds used (on all processors), but only for the part of
compilation potentially donein parallel

Sequential (Real) Time for code-1-a to the end (note ngthm-par.lisp and ngthm.lisp are similar in load
times): Roughly,
[sequential total] - {[load nqthmpar.lisp] + [Proclaini
+ [Conpi |l e-1 0ad sequential part]} =
(- 2688 (+ 4 109 226)) =
2349

Parall el run (as expl ained above, roughly 8 minutes less than (* 5 691)):
(- (* 5691) (* 60 8)) =
2975

Ef ficiency: (/ 2349 2975.0) =
79%

(C) From the point of view of looking at REAL TIME, but only for the compilation potentially done
in paralld:

Sequential run, code-1-a to the end (as shown in (B) above):

2349

Parall el Real Tine for running dispatcher:
691

REAL speedup for code-1l-a to the end:
(/ 2349 691.0) =
3.40

Efficiency for code-1-a to the end:
(/ 3.40 5) = 68%

27

Appendix C
Code

We give here the contents of the following files in directory /local/src/paralel/: bm.lsp, dispatch.lsp,
top.lsp, front-end-with-doc.Isp, and PAR.

;s Here's an exanpl e of what an input streammight |ook |ike (whitespace added here).

#|
front-end.lsp
(defun do-event)
(defun par-nqthmtop-level ...)
;5 [and requisite DEFVARs and auxiliaries]

jobs file
;(defun no-io () nil)
;(setqg io-fn # no-io)
;(setq blurb-flg nil)
(defvar *output-conpl eted-string* "Boyer-More job term nated")
(setq *start-name* ' DELETE)
(setq *finish-name* ' MEMBER- DELETE)
(setq *start-position* 0)
(par-ngthmtop-I|evel)

;; back-end.|sp
[actual events]
| #

(defvar *out put-conpl eted-string* "Boyer-More job terninated")

(defvar *no-io-in-parallel-flag* nil)

(defvar *del ete-jobs-flg* nil) ;if non-NIL, delete the files in JOBS/.

(defun create-jobs-files (infile suc-size jobs-directory-nane)
;; Here INFILE is the list of nqthmevents, SUC-SIZE is the granularity, i.e. the
;5 nunber of events to be run each tine (after bringing the chronology up to speed),
;5 and JOBS- DI RECTORY- NAMVE and OUTPUT- DI RECTORY- NAME are the subdirectories of the
;5 current directory for the input and output files (respectively).
(W TH- OPEN- FI LE
(I NSTREAM | NFI LE
: DI RECTI ON : | NPUT
. | F- DOES- NOT- EXI ST : ERROR)
(let ((start-info (start-info instream suc-size)))
;5 *** We haven’t thought enough about how to handle two jobs with the sane nane.
;5 Perhaps we should put sonething here checking for duplcate file nanes.
But probably that’'s better left for when we deal with books and such.
(iterate for tail on start-info
when ;a bit of error-checking
(if (atom(caar tail)) t
(error "Encountered non-atomin start-names, ~S." (caar tail)))
col | ect
(create-one-job-file (car tail) (cadr tail) jobs-directory-nane)))))

(defun start-name-of (form
(if (newdispatch-call fornm (car form (cadr form))

(defun lemma-form (form
;5 This is a recognizer for the class of forms which deternmine our notion of granularity.
;; For exanple, if CONSTRAIN becones an event then we should include that too.
(nmenber (car fornm) '(prove-lema |enma) :test # eq))

28

(defun newdispatch-call (form
;5 *** Should be nodified when we deal with books and such.
(or (eq (car form ’boot-strap)
(eq (car form) 'note-lib)))

(defun start-info (instream suc-size)
;5 Returns a list of pairs (<event-nane> . n), where n >= 0 indicates the starting
position (froma boot-strap or note-lib call or the beginning of file) for this
;; event-nane. (| could return the position as well, but | want the event-nanes
;; to create nice file names, and then the position ought to be irrelevant.)
M Notice that every suc will end with a | enma, except when the accunul ati on process
;; is aborted by a boot-strap or note-lib.
(iterate for position from1
with formand i = 0 and suffix = 0 and ready-flg =t and ans
i is the nunber of |enmas we’'ve got so far in the suc we're accunul ating
;; when ready-flg is set we know we're ready to start a new suc
while (not (eq (setq form(read instreamnil a-very-rare-cons))
a-very-rare-cons))
do (progn
(cond ((not (and (consp form
(or (null (cdr form)
(consp (cdr form))))
(error " Encountered atomin event file:~& ~S" form)
((newdispatch-call form
(setq ready-flg nil) ;in case we were already ready anyhow
(setq i 0)
(setq suffix position)
(setq ans (cons (cons (start-name-of form suffix) ans)))
(ready-flg
(setq ready-flg nil)
(setq ans (cons (cons (start-name-of form suffix) ans)))
(t nil))
(when (lemma-formform
(setq i (1+ 1))
(when (=i suc-size)
(setq i 0)
(setq ready-flg t))))
finally (return (nreverse ans))))

(defun create-one-job-file
(start-info finish-info jobs-directory-nane
&aux (job-file-nane-frompair (job-file-name-frompair start-info)))

;5 Wites out an input file in the subdirectory JOBS- DI RECTORY- NAVE
;7 which is appropriate for ngthmor pc-nqthm If START-INFO is
;5 (<event-nane> . <position>), that input file is intended for
;5 running events in the file fromthe position <position> in |INFILE
;; up to (but not including) FINISH NAME, with output to be witten
;5 toa file in OQUTPUT- DI RECTORY- NAME. Lenmas before the event
;; nanmed <event-name> (after <position>), however, are to be taken
;; as axioms.
N The function actually returns the new input file' s nane.
(with-open-file
(outstream (concatenate 'string jobs-directory-nane job-file-name-frompair)
:direction :output)

(when *no-io-in-parallel-flag*

(format outstream " (defun no-io () nil)~%)

(format outstream"(setq io-fn # no-io)~%)

(format outstream "(setq blurb-flg nil)~%))
(format outstream "(defvar *output-conpleted-string* ~S)~%

out put - conpl et ed- string)

(format outstream "(setq *start-nane* '~S)~% (car start-info))
(format outstream "(setq *finish-nane* '~S)~% (car finish-info))
(format outstream"(setq *start-position* ~S)~% (cdr start-info))
(format outstream " (par-nqthmtop-level)~% (cdr start-info)))
job-file-nane-frompair)

(defun job-file-name-frompair (start-info)
;; Here, as usual, START-INFOis a pair (synbol . nunber), where synbol is an event-nanme
(if (= (cdr start-info) 0)
(string (car start-info))
(concatenate 'string (string (car start-info)) ".
(prinl-to-string (cdr start-info)))))

29

(defun nqthmconpleted (file-nane)

;5 returns non-nil if we find the header *output-conpleted-string* (which isn't then
;; imediately followed by end-of-file)
(cond

((not (probe-file file-nane))
(cons 'failure
(list "UNUSUAL FAILURE: File ~A should exist, but does not! ~&"
file-name)))
(t
(with-open-file (streamfil e-nane)
(iterate with input-string
do
(if (setq input-string (read-line streamnil nil))
(when (equal input-string *output-conpleted-string*)
(let ((success-string
(read-1ine
streamnil
"UNUSUAL FAILURE: End of status file encountered.")))
(cond
((and (> (length success-string) 6)
(equal (string-downcase (subseq success-string 0 7))
"success"))
(return (cons ’'success nil)))
(t (return (list 'failure success-string))))))

(return nil)))))))

(defun status-file-name-fromstring (directory-nane job-nane)
(concatenate 'string directory-nane job-name ".status"))

(defun current-directory ()
(directory-namestring (truename "")))

(defun reset-directory (target-directory-nane)
(when (not (equal (current-directory) target-directory-nane))
(sys:chdir target-directory-nane)))

(defun do-file-parallel (infile suc-size &key
(j obs-directory-nane "jobs/")
(output-directory-nanme “output/")
(hosts-file-name
(if (probe-file "hosts")
"hosts"
(concatenate 'string *systemparallel-directory*
"hosts.all")))
(local -host-first t)
(kill-if-no-progress 200)
(command- nanme "pc-ngthnt') ;nmight be "nqthnt, etc.
(front-end (concatenate 'string *systemparallel-directory*
"front-end.lsp"))
(delay nil)
(nice-flag t)
&aux (tenp-directory-nane "tenp/")
jobs-files (current-directory (current-directory)))

;; Runs a Boyer-More event list in parallel by creating job files

;5 With CREATE-JOBS-FI LES (each of which calls DO Fl LE- W TH SUCCESS)

;7 and then calling the dispatcher. The first four forms in the PROGN

;; belowrelate only to clearing out the input and output subdirectories.

s Returns T if and only if all jobs cause T to be witten to the ".status"
;; files. (Recall also that DO FI LE-W TH SUCCESS causes T to be thus witten
;; if and only if all of its events conplete successfully.) |If any job fails
;; in this sense, the failed jobs are reported to the standard out put.

S Notice that we do the | ocking on par jobs here because we work with the
;5 jobs subdirectory even before starting up the dispatcher.

(unwi nd- prot ect
(progn

;5 Get control over the current directory right away.
(check-1 ock- on- par - j obs)
(1 ock- on- par - j obs)

;5 Set up the jobs.
(unwi nd- prot ect
(progn

(chk-file-or-directory-exists front-end)
(chk-file-or-directory-exists hosts-file-nane)
(chk-file-or-directory-exists jobs-directory-name t)
(chk-file-or-directory-exists output-directory-nane t)
(chk-file-or-directory-exists tenp-directory-nane t)

30

(when (null delay) (setq delay suc-size))
(clear-directory jobs-directory-name *clear-query-flg*)
(setq *current-job-uni que- nunber* 0)
;; Create jobs files.
(format t "~&Creating jobs files...")
(setq jobs-files (create-jobs-files
infile suc-size jobs-directory-nane))
(format t " done.~%%)
;5 Run jobs in parallel.
(reset-directory current-directory))
(renove-| ock-on-par-j obs))

;; Call the dispatcher.
(format t "~& nvoking dispatcher.~&")
(when (dispatcher :jobs-directory-nanme jobs-directory-nanme
:out put-directory-nanme output-directory-nane
:hosts-file-nane hosts-file-nane
:local -host-first local-host-first
tkill-if-no-progress kill-if-no-progress
: command- nane conmand- name
:del ay del ay
:conpl etion-function # nqgthm conpl et ed
:front-end front-end
:back-end infile
:nice-flag nice-flag)
(format t "~&All events have been run successfully.~%)
t)
)

;; Clean up.
(when *del ete-jobs-fl g*
(iterate for x in jobs-files
do (delete-file x)))
(reset-directory current-directory)))

31

;; dispatch.lsp

;3 This version assunes that ngthmis | oaded.

i (load "/usr/local/src/nqthnfsloop") and

(defmacro iterate (& est args) ‘(sloop::

G herwi se one shoul d

sl oop , @rgs)).

;; There are probably a couple of other functions below that woul d
;5 need to be defined in akcl, e.g. no-duplicatesp.

;5 We assune that only one parallel job is being run in the current

;; directory at any one tine.

;; Here is the only structure we introduce:

(defstruct job
name nunber)

(defvar *local - host-warning* t)

(defvar *save-tenp-files-flg* nil)

(defvar *kill-dispatcher-upon-seeing-failure* nil)

(defvar *clear-query-flg* nil) ;used for

(defvar *fail ed-j ob-names*)

(defvar *systemparallel-directory* "/local/src/parallel/")

(defvar *parkill-command* "/l ocal/bin/parkill")

(defvar *protected-hosts-subdirectory* "protected-hosts/")

; The followi ng nmight have been in /tnp, but

where the | ocking mechani sm shoul d save us.

(defvar *junk-file* "dispatcher-junk.|sp")

CLEAR- DI RECTORY

what if other run dispatcher
; jobs at the sane tine? So we put the "junk" in the current directory,

(defvar *lock-file-name* "l ock-out-others.par")

;; for the run file, e.g. "/local/src/parallel/statistics/runs/wlding.1"

(defvar *long-job-info-filenane*)

;; e.g. the number 1 in the pathname above
(defvar *uni g-val ue*)

(defvar *user-name*) ;e g.

(defvar *short-job-info-fil enane* vi.e.

"statistics/job-info"))

"W | di ng"

"/local/src/parallel/statistics/job-info"
(concatenate 'string *systemparallel-directory*

(defvar *output-info-subdirectory* "statistics/runs/")

(defvar *start-tine*) ; set

in dispatcher when it's called

(def var

(defvar
(def var

(defvar

| ocal - host - nane)

al | -val i d- host - names nil)
current-j ob-uni que- nunber 0)

file-server-tinme-disparity)

;used to make the hosts-jobs-alist and to
; protect against bl ocking spawns on | ocal

;not actually used here, but could be set

host

inaninit-file

;not automatically reset on new dispatcher call

seconds file server’s clock is ahead
; (could be negative if behind)

32

(defun chk-file-or-directory-exists (filenane &optional directory-flg)
(when (not (probe-file filenane))
(if directory-flg
(error "Bad news -- directory ~A doesn’t exist!" filenane)
(error "Bad news -- file ~A doesn't exist!" filenanme)))
(when (and directory-flg
(not (equal (aref filename (1- (length filename))) #\/)))
(error "Bad news -- directory ~Adidn't end with a /" !" filenane)))

(defun non-files-in-directory (directory-nane list-of-files)
(iterate for nane in list-of-files
when (or (not (stringp nane))
(not (probe-file (concatenate 'string directory-nane nane))))
col l ect nane))

(defun system out put (conmand)
;7 Subnmits a shell command wites its output to the "junk file".
;5 Should work if command is in syntax you'd give when typing to the shell.
Probably don't need to clear *junk-file* first because SYSTEM wi || direct SOVETH NG t here.
(system (concatenate 'string “(" command ") > " *junk-file*)))

(defun read-one-form (fil enane)
;; returns NIL if file doesn't exist or if the read fails
(let ((instream (open filenane :direction :input :if-does-not-exist nil)))
(and instream
(unwi nd- prot ect
(read instreamnil nil)
(close instream))))

(defun get-system output (comnmand)
;; assumes output is a single line
(syst em out put conmand)
(with-open-file (infile *junk-file* :direction :input)
(read-line infile)))

(defun lines-from (fil enane)
;7 Returns the list of lines (as strings) fromthe given file.
(with-open-file (streamfil enane)
(iterate with ans and tenp
when
(progn (setq tenp (read-line streamnil nil))
(when (null tenp) (return ans))
(not (equal (setq tenp (string-trim" \t" tenp))
"))

collect tenp into ans)))

(defun format-to-file (filename string & est args)
(with-open-file (outfile filename
:direction :output
rif-does-not-exist :create
cif-exists :newversion)
(apply # format outfile string args)))

(defun princ-to-end-of-file (filenane string)
(with-open-file (streamfilename :direction :output
:if-exists :append
1if-does-not-exist :error)
(princ string stream))

(defun list-directory (directory-nane)
;s ***** W should change this to avoid the problemof two jobs dealing
;; wWith the same junk file, once DI RECTORY works right in AKCL.
;5 Returns the listing (as strings) of the given directory nane,
;; sorted by time, nost recently witten ones being at the end.
(progn (systemoutput (format nil "Is '~A"" directory-nane))
(lines-from*junk-file*)))

(defun clear-directory (directory-name &optional query &aux files)
;7 Returns T unless we decide to abort, and then N L.
(when (setq files (list-directory directory-nane))
(cond
((or (not query)
(y-or-n-p "Directory ~A not enpty! OKto clear it?"
di rectory-nane))
;;(iterate for filein files do
(delete-file (concatenate 'string directory-name file)))
(format t "~&C earing directory ~A ~&" directory-name)
(system (format nil "rm~A/*" directory-nane)))
(t (error "Directory ~A not enpty! Quitting...."
directory-nane)))))

(defun job-file-nane (directory-nane job)
(concatenate 'string directory-name (job-nane job)))

(defun output-file-name (directory-nanme job)
(concatenate 'string directory-name (job-nane job) ".output"))

33

(defun status-file-name (directory-nanme job)
(concatenate 'string directory-nane (job-nanme job) ".status"))

(defun tenp-finish-file-name (directory-nanme job)
(concatenate 'string directory-nane "“finish." (prinl-to-string (job-nunber job))))

(defun tenp-status-file-name (directory-nanme job)
(concatenate 'string directory-nane "status." (prinl-to-string (job-nunber job))))

(defun tenp-output-file-name (directory-nanme job)
(concatenate 'string directory-nane "output." (prinl-to-string (job-nunber job))))

(defun check-1ock-on-par-jobs ()
(when (probe-file *lock-file-name*)
(error "Already |ocked by ~A! ~%%-
[Soneti mes bogus lock files aren’t renpved ---~% ~
If you REALLY want to renmove the lock file (CAREFUL!!!!), ~% ~
(REMOVE- LOCK- ON- PAR- JOBS) . | ~%
(file-author *lock-file-nanme*))))

(defun | ock-on-par-jobs ()
(format-to-file *lock-file-name* "l ocked~%))

(defun renove-| ock-on-par-jobs ()
(delete-file *lock-file-name*))

(defun bl ocked-hosts ()
;5 just for the user, perhaps
(list-directory (concatenate 'string *systemparallel-directory*
pr ot ect ed- host s- subdi rectory)))

(defun hostnane ()
(get-system out put "hostname"))

(defun usernane ()
(get-system out put "whoami "))

(defun set-file-server-tine-disparity ()
(format-to-file *junk-file* "xxx")
(setq *file-server-time-disparity*
(- (file-wite-date *junk-file*) (get-universal-tine))))

efun get-file-server-tine
def fil i
+ *file-server-tine-disparity* (get-universal-tinge
fil) di ’ . L-ti

(defun output-host-job (status host-job)
;; Here STATUS is a string
(let* ((now (- (get-universal-time) *start-time*))
(string (format nil
(concatenate 'string "~&" status
">> ~A : ~A (job# ~D)~70, 0T~D: ~D~D~&")
(car host-job) (job-name (cdr host-job))
(j ob-nunber (cdr host-job)) (floor now 3600)
(rmod (floor now 600) 6) (nod (floor now 60) 10))))
(out put-1ong-job-info string)
(princ string)
(force-output)))

(defun digits-to-string (nunber size)
(subseq
(prinl-to-string (+ (expt 10 size) numnber))
1 (1+ size)))

(defun initialize-job-info ()
(setq *start-time* (get-universal-tine))
(set-file-server-tine-disparity)
(setq *local - host-nane* (hostnane))
(setq *user-nane* (usernane))
(setq *unig-value* (nod (get-file-server-tine) 1000000))
(setq *long-job-info-filename* (concatenate 'string *systemparallel-directory*
out put - i nf o- subdi rect ory
user-name "."
(digits-to-string *unig-val ue* 6)))
(let ((tenp))
(unwi nd- prot ect
(when (not (setq tenp (open *long-job-info-filenane*
:direction :output
rif-exists nil
rif-does-not-exist :create)))
(error (concatenate 'string *long-job-info-filenane* " exists")))
(if temp (close tenp))))

(when (not (probe-file *short-job-info-filenane*))
(error (concatenate 'string *short-job-info-filenane*
does not exist "))))

(defun output-long-job-info (string)
(princ-to-end-of-file *long-job-info-filename* string))

(defun out put-short-job-info (string)
(princ-to-end-of -file *short-job-info-filenane* string))

(defun job-info-nessage (nmessage host-nanes)
;; e.g. if nessage is PAR- START and host-nanes is ("cli" "client12" "anderson"),
;5 and anderson is currently the only bl ocked host, we get:
HH +++02/ 17/ 89 16: 26: 53 PAR- START kaufmann client12 1
- hosts: ("cli" "client12" "anderson")
M bl ocked: ("anderson")
(mul tiple-val ue-bind
(sec min hour date nonth year)
(get - decoded-ti nme)
(format nil
" ~&+++~D~D/ ~D~D/ ~D~D ~D~D: ~D~D: ~D~D ~A ~A ~A ~D~%osts: ~S~%l ocked: ~S~%
(floor nonth 10) (nod nonth 10) ; AKCL bug(?) nmekes us do contortions
(floor date 10) (nod date 10)
(nmod (floor year 10) 10) (nod year 10)
(floor hour 10) (nod hour 10)
(floor min 10) (nod nin 10)
(floor sec 10) (nmod sec 10)
nmessage *user-nane* *|ocal - host-name* *unig-val ue*
host - names
(list-directory (concatenate 'string *systemparallel-directory*
prot ect ed- host s-subdirectory)))))

(defun output-job-info (message host-nanes)
(let ((nmess (job-info-nmessage nessage host-nanes)))
(out put-short-job-info ness)
(out put-1ong-job-info ness)))

;7 The follow ng function, DI SPATCHER,

;; takes input files from JOBS- DI RECTORY- NAVE

;5 and runs COMMAND- NAME on each of these files,

using the hosts in HOSTS-Fl LE- NAVE

;; by enploying a schedul er which engages roughly every DELAY seconds,

;5 and sends the output fromeach job to the directory TEMP- DI RECTORY- NAVE
;3 (using the sane filenames as the input "jobs" files). |If the job

;; conpletes, then the output file in TEMP- DI RECTORY- NAME i s copied

to OUTPUT- DI RECTORY- NAME. Note that COVPLETI ON- FUNCTI ON shoul d return
;; either NIL, which indicates that the job died in the mddl e somehow,

;; or else a pair -- either ('success . <message>) or (<other> . <nmessage>),
;7 Wwhere <nessage> is either NIL or a list suitable for FORMAT, i.e. a |list
;; of the form(string . args).

i, The auxiliary (&AUX) variables may be thought of as follows.

;5 HOSTS-JOBS-ALIST: An association list with one pair (HOST . JOB)

for each occurrence of HOST in the HOSTS-FI LE-NAME. The JOB

i conponent is either NIL, which indicates that the HOST is

B currently idle, or elseis a job built using the nane of the input file
S currently assigned (via the rsh conmand) to HOST.

JOBS- UNASSI GNED: The list of input files which have not yet been

- assigned to any host.

35

(defun make-1ocal -host-first (host-names |ocal-host-nane)
(iterate for x in host-nanes
with ans
when (not (equal x |ocal-host-nane))
collect x into ans
finally (return (nconc (iterate for i from1l to (- (length host-nanes) (length ans))
col l ect |ocal -host-name)

ans))))

(defun make- hosts-jobs-alist (host-names |ocal-host-first)
;; Note that *|ocal -host-nane* is already initialized by the tine this is called.
(cond
((not (consp host-nanes))
(error "Enpty list of hosts"))
(t
(when | ocal -host-first (setq host-names (make-|ocal -host-first host-nanes *|ocal - host-name*)))
(when (and *I ocal - host - war ni ng*
(not (menber *|ocal-host-nanme* host-nanes :test # equal)))
(format t "~%MRNING This run has been set up such that the local host, ~
~A, is NOT~%n the host list.~% *local-host-nanme*))
(iterate for host-nanme in host-nanes
when (cond
((or (null *all-valid-host-nanes*)
(menber host-name *all-valid-host-names* :test 'equal))
t)
(t (format t "~&MARNING Host nane ~A not found in *all-valid-host-nanes*. ~&"
host - nane)
nil))

collect (cons host-name nil)))))

(defun dispatcher (&key (jobs-directory-name "jobs/")

(out put-directory-name "output/")

(hosts-file-nanme "hosts")

(local -host-first t)

(del ay 15)

(kill-if-no-progress 600)

(comand- name " pc-nqt hnt')

(conpl etion-function # nqthm conpl et ed)

(front-end (concatenate 'string *systemparallel-directory*
"front-end.lsp"))

(back-end (concatenate 'string *systemparallel-directory*
"back-end. | sp"))

(nice-flag t)

(job-list nil)

&aux

(tenp-directory-name "tenp/") ;auxiliary because we use it in the shell command

(tine-since-|ast-progress-check 0)

tenp-tine

(bad-jobs nil)

start-time *|ocal - host-name* *user-nane* *uniqg-val ue* *|ong-job-info-filenane*

(*failed-job-names* nil)

host s-j obs-al i st

j obs-unassi gned

(finished-normally nil))

;; set *start-tine*, *|ocal-host-nane*, *user-nane*, *unig-value*, and *long-job-info-filename*
NOTE: Must do these early for the OQUTPUT-JOB-INFO in the unw nd- protect

(format t "~& nitializing job information...")

(initialize-job-info)

(format t " done.~%)

(unwi nd- prot ect
(progn

(check-1 ock- on- par - j obs)
(1 ock-on-par - j obs)

(chk-file-or-directory-exists jobs-directory-name t)
(chk-file-or-directory-exists output-directory-name t)
(chk-file-or-directory-exists tenp-directory-name t)

(clear-directory output-directory-nane *clear-query-flg*)

(clear-directory tenp-directory-nane *clear-query-flg*)
(terpri)

36

(when job-1list
(let ((bad-files
(non-files-in-directory jobs-directory-name job-list)))
(when bad-files
(error "Bad Job File Nanes Provided: ~%-A" bad-files))))

;5 Set up local non-special variables
(when nice-flag

(setq conmand- nane (concatenate 'string "nice
(setq jobs-unassigned

command- nane)))

(if job-list
job-1list
(list-directory jobs-directory-nane)))
(setq hosts-jobs-alist ;uses *|ocal - host - name*

(make- hosts-jobs-ali st
(lines-from hosts-file-nane)
| ocal -host-first))

(format t "~&Hosts requested: ~S. ~%
(iterate for host-job in hosts-jobs-alist
collect (car host-job)))
(format t "~&Hosts currently bl ocked: ~S. ~%%
(let ((x (remove *local - host-name* (bl ocked-hosts) :test # equal)))
(or x 'none)))
(out put-job-info "PAR START"
(iterate for host-job in hosts-jobs-alist
collect (car host-job)))

(1 oop
the first formis ignored for tinme-since-last-progress-check, but that's OK

(let ((tenmp (update-conpleted-jobs-records
conpl etion-function hosts-jobs-alist jobs-unassigned
tenp-directory-name out put-directory-nane)))
(setq hosts-jobs-alist (car tenp))
(setq jobs-unassigned (cdr tenp)))

en (and *kill-dispatcher-upon-seeing-failure* *failed-job-nanes*
wh d *kill-di h i fail failed-job
ormat t "~%- -- if you don't Iike abortion, ~%-
f " ~O%-0 **xx*xx K| LLI NG ENTI RE JOB if don't like aborti %
(SETQ *KI LL- DI SPATCHER- UPON- SEEI NG- FAI LURE* NIL).")
(return nil))

(when (> time-since-last-progress-check kill-if-no-progress)
(setq time-since-|ast-progress-check 0)
(when (setq bad-jobs (find-bonbed-jobs hosts-jobs-alist
kill-if-no-progress tenp-directory-nane))
(kill-processes bad-jobs tenp-directory-nane)
(setq hosts-jobs-alist
(renpve- processes-from hosts-jobs-alist
host s-j obs-al i st bad-jobs))
(setq jobs-unassigned
(append j obs-unassi gned
(iterate for job in bad-jobs
collect (job-nane job))))))

(setq tenp-tine (get-universal-tine))

(let ((tenp (assign-jobs hosts-jobs-alist jobs-unassigned conmand- nanme
jobs-directory-name front-end back-end)))
(setq hosts-jobs-alist (car tenp))
(setq jobs-unassigned (cdr tenp))
(if (all-jobs-conpleted hosts-jobs-alist)
(return t)
(sleep delay)))

(setq tine-since-|ast-progress-check (+ time-since-|ast-progress-check
(- (get-universal-tine) temp-tine))))
;; end of |oop

(setq finished-normally t)

(cond (*fail ed-job-nanes*

(format t "~% %Al LED JOBS ~S~&" *fail ed-j ob- names*)
nil)

(j obs-unassi gned
(format t "~%%OBS LEFT TO BE DONE - NO HOSTS AVAI LABLE!'!")
(format t "~&%obs left to do:~% ~S" jobs-unassigned)
nil)

(t 1))

(renove-| ock-on- par - j obs)
(out put-job-info "PAR END'
(iterate for host-job in hosts-jobs-alist
collect (car host-job)))
(when (not finished-normally)
(format t "~%\Now killing any outstanding ~~par jobs.~%)
(system *parkill-command*))))

37

(defun find-bonbed-jobs (hosts-jobs-alist kill-if-no-progress tenp-directory-nane)

;; returns a list of all jobs which have made no progress since "kill-time"
(let ((kill-tinme (- (get-file-server-tine) Kkill-if-no-progress)))
(iterate for host-job in hosts-jobs-alist
when (and

(cdr host-j ob)
(let ((tenp-output-file (tenp-output-file-nane tenp-directory-name (cdr host-job))))
(or
(not (probe-file tenp-output-file))
(< (file-wite-date tenp-output-file) kill-tine))))
collect (cdr host-job))))

(defun kill (pid)
(system (concatenate 'string "kill -KILL " (prinl-to-string pid))))

(defun get-pid (job tenp-directory)
;5 pidis first line of tenp output file

(iterate for i froml to 2 ;could be greater than 2 if we want to try nore often
with ans
until ans
do
(cond

((setq ans (read-one-form (tenp-output-file-name tenp-directory job)))
(return ans))
(t (format t "~&Trying again to read pid of ~S~&" job)
(sleep 3)))
finally (error "Unable to get pid of ~S" job)))

(defun kill-processes (bad-jobs tenp-directory)
(iterate for job in bad-jobs
do (kill (get-pid job tenp-directory))))

(defun renove- processes-from hosts-jobs-alist (hosts-jobs-alist bad-jobs)
;7 Note that bad-jobs is in same order as hosts-jobs-alist

(iterate for host-job in hosts-jobs-alist

col | ect

(cond

((nul'l bad-jobs) host-job)

((and
(cdr host-j ob)
(eq (job-nunmber (car bad-jobs)) (job-nunber (cdr host-job))))
(setq bad-jobs (cdr bad-jobs))
(out put-host-job "*** KILLED' host-j ob)
(cons (car host-job) nil))

(t host-job))))

(defun bl ock-spawn (host)
(and
(not (equal host *local-host-name*))
(probe-file (concatenate 'string *systemparallel-directory*
prot ect ed- host s- subdi rectory host))))

(defun assign-jobs
(hosts-jobs-alist jobs-unassigned command- nane jobs-directory-nane
front-end back-end)
i This function assunmes that updating of HOSTS-JOBS-ALIST (to reflect conpletion
;5 of jobs) has already been perforned. That is: it's not this function's job
;; to do that updating. At this point we already know that if a job may be
;; assigned to the CAR of the pair then the CDR of the pair is N L, and vice-versa.
i This returns (CONS <new hosts-j obs-alist> <newjobs-unassigned>). |Its side
;; effect is to assign new jobs (from JOBS-UNASSI GNED) to those hosts
;5 which are currently idle, additionally instructing the
;; hosts to create .finish files upon conpletion.

(cons (iterate for pair in hosts-jobs-alist
with next-job
col | ect
(cond
((nul'l jobs-unassigned) pair)
((and (null (cdr pair))
(not (bl ock-spawn (car pair))))
(setq next-job (make-job :nanme (car jobs-unassigned)
:nunber (setq *current-job-uni que- nunber*
(1+ *current-job-uni que- nunber*))))
(setq jobs-unassigned (cdr jobs-unassigned))
(system (systemjob-conmand (car pair) next-job command-name
jobs-directory-nane front-end back-end))
(output-host-job "starting" (setq pair (cons (car pair) next-job)))
pair)
(t pair)))
j obs-unassi gned))

38

(defun systemjob-command (host-nane newjob command- nane jobs-directory-nane front-end back-end)
;5 Grotesque, but it works. Notice that \ appears as \\ inside quotes (" ... "), and
;; the single quotes are there to protect names with "funny characters" like $ fromthe
;5 shell command processor.
(format nil "/local/bin/parcsh ~A V177 ~A 117 1177 ~A 117 V77 ~AL L7 7 =AY V7 =AY VL =AY &
(concatenate 'string *systemparallel-directory* "PAR")
host - nane
conmmand- name
(j ob- number new-j ob)
front-end
(job-file-nane jobs-directory-name newjob)
back-end))

(defun job-conpleted (job tenp-directory-nane)
(probe-file (tenp-finish-file-nanme tenp-directory-nanme job)))

(defun nove-tenp-files-to-output (job tenp-directory-nanme output-directory-name)
Moves the output and status files fromthe tenp directory to the output directory.
i, If the flag *save-tenp-files-flg* is non-nil then this does a copy instead of a
;5 move (for debugging only, probably).
(system (format nil
(if *save-tenp-files-flg*
"cp '~A" '~A" ; cp '~A ~A"
mv T~A T~A o T ~A T ~ATY)
(tenp-output-file-nane tenp-directory-name job)
(output-file-name output-directory-nanme job)
(tenp-status-file-name tenp-directory-nane job)
(status-file-nanme output-directory-name job))))
(defun updat e- conpl et ed-j obs-records
(conpl etion-function hosts-jobs-alist jobs-unassigned tenp-directory-nanme
out put - di rectory-nanme &ux success-status)

Returns new versions of HOSTS-JOBS- ALI ST and JOBS- UNASSI GNED to reflect
;7 known job conpletions (and failures).

(cons
(iterate for pair in hosts-jobs-alist
col | ect
(if (cdr pair)
(cond

((job-conpleted (cdr pair) tenp-directory-nane)
(if (setq success-status
(funcal | conpletion-function
(tenp-status-file-nanme
tenp-directory-name (cdr pair))))
(progn
(out put-host-job "conpleted" pair)
(when (not (eq (car success-status) 'success))
(setq *fail ed-job-names*
(cons (job-name (cdr pair)) *failed-job-nanmes*)))
(when (cdr success-status)
(fresh-line)
(format t " (Job #~D) " (job-number (cdr pair)))
(apply # format t (cdr success-status))
(fresh-line))
(nmove-tenp-files-to-output (cdr pair) tenp-directory-nane
out put - di rect ory- nane))
(progn
(out put-host-job "***NOT conpl eted" pair)
(setq jobs-unassigned (append jobs-unassi gned

(list (job-nanme (cdr pair)))))))
(cons (car pair) nil))

(t pair))
pair))
j obs-unassi gned))

(defun all-jobs-conpleted (hosts-jobs-alist)

(iterate for x in hosts-jobs-alist
always (null (cdr x))))

39

., top.lsp

Most of this file is pilfered (and nodified) froman rcl file, which
in turn borrows freely from Boyer and More's file ngthmlisp.

(defun nqthm | oaded ()
(fboundp "iterate))

(when (not (nqthml oaded))
(load "/usr/local/src/parallel/fromnqthni))

(defvar dispatcher-code-files
"("/local/src/parallel/dispatch" "/local/src/parallel/bnt))

(defun al ready-conpiledp (filename &aux
(lisp-filenane (concatenate 'string filename ".Isp"))
(bin-filename (concatenate 'string filename ".0")))

(and (probe-file lisp-filenane)
(probe-file bin-filenane)
(< (file-wite-date lisp-filenanme) (file-wite-date bin-filenane))))

(defun first-file-to-conpile (filenanes)
(iterate for nanme in filenanmes
when (not (already-conpiledp nane))
do (return nane)))

(DEFUN COWPI LE-di spat cher (&aux (first-file-to-conpile (first-file-to-conpile dispatcher-code-files)))
(if (null first-file-to-conpile)
(format t "~&All dispatcher files are already conpiled. ~&")
(FLET ((LF (N
(LOAD (concatenate 'string n ".0")))
(CF (N
(COWPI LE- FI LE (concatenate 'string n ".1sp"))))
;5 could have PROCLAIM form here, as in ngthm
(iterate for file in dispatcher-code-files
with conpile-flg
do (cond (conpile-flg
(CF file) (LF file))
((equalp file first-file-to-conpile)
(setq conpile-flg t)
(CF file) (LF file))
(t (LF file)))))))

I nvoking (| oad-dispatcher) is all it takes to build a runnable version of
; this system assuming that you have conpiled it.
(defun | oad-di spatcher (&ux badfile)
(when (setq badfile (first-file-to-conpile dispatcher-code-files))
(format t "WARNING The file ~A should be conpiled."
badfile))
(FLET ((LF (N
(LOAD (concatenate 'string n ".0"))))
(iterate for file in dispatcher-code-files
do (LF file))))

iy /local/src/parallel/front-end-wth-doc.|sp

(setq *break-enable* nil)
(setq sys::*notify-gbhc* t)

;735 Values to be input for particular job:

(def var
(defvar
(defvar

start-position) ;position of applicable note-l1ib or boot-strap
start-nane) ;name of first event to be possibly proved
fini sh-name) ;name of event which termnates the job (maybe NIL, for ECF)

;5 The followi ng might be nodified in the particular input file.

(defvar
(def var
(defvar
(defvar

i (sleep

par - di rect ory-nanme "/usr/hone/par/")

event - i ndex 0) ;which event we're currently |ooking at

axi om stage t) ;when t, we should replace PROVE-LEMVAs by ADD- AXI Ovs
| ast - event - nane) ;nanme of event nost recently read fromthe input stream
30)

(defun do-event (form

(setq
(setq
(cond

event -i ndex (1+ *event-index*))
| ast - event - nane (cadr forn))

((< *event-index* *start-position*)

t)
(t

(when *axi om st age*

(cond
((eq (cadr form) *start-name*)
(setq *axi omstage* nil))
((eq (car form ’prove-|emm)
(setq form
‘ (add- axi om
,(cadr forn) ,(caddr form ,(cadddr form)))
((eq (car form 'lenm)
(setq form
‘ (axi om
,(cadr form ,(caddr form ,(cadddr form)))))

(ppr formnil)
(terpri nil)
(eval form)))

(defun format2 (string & est args)

notice that the call to echo2 guarantees that we'll overwite the err
(system
(concatenate 'string
"echo2 ' "
(apply # format nil string args)
"))

(defun format-ngthmstatus (string & est args)
(apply # format2 (concatenate 'string *output-conpl eted-string* "~&" string) args))

(defun par-ngthmtop-1level (&ux next-par-forminit success)
(unwi nd- prot ect
(1 oop

(setq init nil)

(setq next-par-form(read *standard-input* nil a-very-rare-cons))
(setq init t)

(if (or (eq next-par-forma-very-rare-cons)

(and *finish-name* (eq (cadr next-par-form) *finish-nane*)))
(return (setq success t))
(or (progl (print (do-event next-par-form)
(terpri nil) (terpri nil))
(return (setq success nil)))))

(cond

((nul'l init)

(format-nqthmstatus "Failure: Unsuccessful read after ~S" (cadr next-par-forn)))
(success

(format-nqthm status "Success!!"))

(t

(format-ngthmstatus “ FAILURE: The event ~S failed."
| ast - event - nane)))

(bye (if success 0 1))))

41

PAR

#!/ bin/ csh
par [host-nanme] [command-nane] [unique_nunber] [filel] [file2] [file3]
Sends process nunber of the PAR call followed by standard output of rsh, all to the standard output

echo $$ > tenp/output.$3
(cat $4 $5 $6 | rsh $1 $2 '; echo2 $status’ >> tenp/output.$3) >& tenp/status.$3

echo " " > tenp/finish.$3

42

Table of Contents

1 Acknowledgementso e
2. INtrodUCHIONo
SLAUSE'SMaNUA . ..o
3L BaSICUSE . oot
B A AN EXAMPIE .o e
3.1-B. Environmental reqUIrementsooutii i e
3.1-C. Problems That areDetectedt e
3.1-D. ThePar commandsiiiiii e
3.2. DO-FILE-PARALLEL OPtiONS . .. oottt et e
3.2-A. JObS-dIreCtOry-Nameo
3.2-B. :0Utput-direCtOry-Name
3.2-C.hostsfile-nameo
3.2-D.clocal-host-firsto
3.2-E. Kill-if-NO-progresso
3.2-F. :CoMMANd-NAIMIEottt et e e e e e
32-G.front-end
B 2-H. cdelay ..
B2l niceflag ..o
3.3. Some Implementation HOOKSot
B DISPAChEr USe . o oottt
4. Systemsguide: implementation
4.1. Dispatcher implementationt
4.2. Paralel ngthm implementation on top of thedispatcher
4.3. Thesystem front-end file.
5.Resultsand ConClUSIONSot
B L TriaA RUNS . .
B2 FUUrE WOIK . .o
B3 CONCIUSIONS . .ottt e

Appendix A. INnStrumentation

A.Ll /local/src/parallel/statistics/blockso
A.2. /local/sre/parallel/statistics/job-info
A.3. /local/sre/parallel/statistiCIrunso

Appendix B. Parallel compilation i

B.1. How Parallel CompilationisDonet
B.2. Resultsfrom Using the Parallel Compiler.......... i

ApPendiX C. Codeot

OCOWWOWWWOWMWWOOUTRWWWN -

23

23
25

28

