
A Parallel Version of
the Boyer-Moore Prover

Matt Kaufmann
Matt Wilding

Technical Report 39 February 1989

This research was supported in part by ONR Contract N00014-88-C-0454. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of Computational Logic, Inc., the Office of Naval Research
or the U.S. Government.

1. Acknowledgements

We’d like to thank Bob Boyer and Ross Overbeek for their help. Ross wrote a program that gave us the
idea to build this system. Bob created the "nuke-all" shell script for us and suggested the basic paradigms
for processing nqthm events and for compiling nqthm in parallel. Both provided advice and
encouragement throughout the project.

1

2. Introduction

The idea of this system is to use idle processors to increase the speed of NQTHM. There were many
design considerations, including:

• No shared file system. We want to allow the dispatcher to use processors besides the ones
connected to our file system. This also allows us to implement a distributed system that has
a chance to recover from any problems that occur.

• Easy to kill jobs on a given host. Ultimately, if all else fails, we want a way to kill ALL
processes we have created. This also gives machine users some measure of control.

• Easy to prevent job assignment on a given host. Machine users must be able to remove
their processor from the shared pool if they wish.

• Robust. The system should be able to recover from most kinds of processor or network
problems.

• Nice user interface. Plenty of flexibility with reasonable defaults, output that tells the user
what he needs to know, etc.

We wish to use the system to process an NQTHM event list in parallel, with a given "granularity". If we
have a granularity of n, then the first job will process the first n PROVE-LEMMAs. Each subsequent job
will process n PROVE-LEMMAs. Since an arbitrary subsequence of PROVE-LEMMAs may require a
previous definition, each job will process all previous definitions. A subsequence of PROVE-LEMMAs
may also require PROVE-LEMMAs from a previous subsequence, so each job will process all PROVE-
LEMMAs from previous subsequences, treating each PROVE-LEMMA as an ADD-AXIOM.

This system allows the user to run a job on multiple machines in parallel. The issue of machine use has
been discussed at Computational Logic and a preliminary policy adopted. It is the policy at
Computational Logic to allow users to run parallel jobs using the dispatcher. Spawned jobs are to be run
at the default (nice) priority level, and it is OK for any user to "kick" spawned parallel jobs off his local
machine if he wishes (without feeling bad about it!)

Most users will only need or want to read Subsection 2.1.

Section 2 is a User’s Manual for the system. Section 2.1 describes basic use of the system and includes
everything most people will need to use the system. Section 2.2 describes options to the system. Section
2.3 describes some hooks that allow customization of the system. Section 2.4 describes the use of the
dispatcher, the part of the system that distributes the work to other processors that may be used on work
other than NQTHM jobs.

Section 3 is a System Guide. Section 3.1 describes how the dispatcher is implemented. Section 3.2
describes how events files are broken up and how the dispatcher is applied to this problem.

Section 4 includes results and conclusions. Section 4.1 compares the system’s performance against
sequential runs. Section 4.2 suggests future work. Section 4.3 summarizes our conclusions.

Appendix A describes the instrumentation added to the system to keep track of its use. Appendix B
describes an experiment where the dispatcher is used to compile code in parallel. Appendix C is the code.

2

3. A User’s Manual

3.1 Basic Use

3.1-A An example

The following example shows how the function DO-FILE-PARALLEL may be called to run NQTHM
events in parallel. Comments are inserted in italics. Later subsections explain which directories and files
need to be present for this function to execute successfully, and some commands that control parallel jobs.

cli:wilding[46]% akcl {start up Lisp}
AKCL (Austin Kyoto Common Lisp) Version(1.57) Thu Sep 29 21:27:15 CDT 1988
Contains Enhancements by W. Schelter

>(load "/usr/local/src/parallel/top.lsp") {Load in the parallel NQTHM-manipulation code}
Loading /usr/local/src/parallel/top.lsp
Loading /usr/local/src/parallel/from-nqthm.o
start address -T 191000 Finished loading /usr/local/src/parallel/from-nqthm.o
Finished loading /usr/local/src/parallel/top.lsp
T

>(load-dispatcher) {Load in parallel NQTHM code}
Loading /local/src/parallel/dispatch.o
start address -T 1c8800 Finished loading /local/src/parallel/dispatch.o
Loading /local/src/parallel/bm.o
start address -T 1d0800 Finished loading /local/src/parallel/bm.o
NIL

>(do-file-parallel "/usr/home/kaufmann/demo-permutationp.events" 2)
{Execute events in file with 2 PROVE-LEMMA events per job}
Clearing directory jobs/.
Creating jobs files... done.

Invoking dispatcher.
Initializing job information... done.
Clearing directory output/.
Clearing directory temp/.

Hosts requested: ("client12" "cli" "anderson" "jingles" "scarab"
"decaf" "client13" "elgin" "oscar").
Hosts currently blocked: NONE.

starting>> client12 : DELETE (job# 1) 0:00
starting>> cli : DELETE-COMMUTATIVITY (job# 2) 0:00
starting>> anderson : PERMUTATIONP-PRESERVES-MEMBER (job# 3) 0:00
starting>> jingles : PERMUTATIONP-TRANSITIVE (job# 4) 0:00
completed>> anderson : PERMUTATIONP-PRESERVES-MEMBER (job# 3) 0:01
completed>> client12 : DELETE (job# 1) 0:01
completed>> cli : DELETE-COMMUTATIVITY (job# 2) 0:01
completed>> jingles : PERMUTATIONP-TRANSITIVE (job# 4) 0:01
All events have been run successfully.
T
>

3

3.1-B Environmental requirements

jobs/ temp/ output/ hosts (optional)

<event1> finish.1 <event1>.output
<event2> finish.2 <event1>.status
... ... <event2>.output

output.1 <event2>.status
output.2 ...
...
status.1
status.2
...

The system uses files in three subdirectories of the current working directory. By default, these
subdirectories are called jobs/, temp/, and output/. A user may also optionally have a file named hosts in
the current working directory.

The jobs/ subdirectory contains the input file associated with each of the processes to be executed. It is
created automatically from the input events file and the granularity (the number of PROVE-LEMMAs
requested per job). The jobs are assigned to processors in alphabetical order. The name of each job is the

1name of the first PROVE-LEMMA in the file.

cli:wilding[47]% ls jobs
DELETE-COMMUTATIVITY PERMUTATIONP-PRESERVES-MEMBER
MEMBER-APPEND PERMUTATIONP-TRANSITIVE

The temp/ subdirectory contains files used temporarily during the execution of the jobs. Each scheduled
job is assigned a unique number. There are three files associated with each scheduled job contained in the
temp/ subdirectory. The output.n file is the output created by job n. The status.n file communicates
whether the nqthm events were successfully (or unsuccessfully) processed to completion, or whether the
job was terminated before it could complete. The finish.n file is created when the remote job finishes.

By default, when the finish.n file is created the output.n and status.n files are moved to the output/
subdirectory described below. Note that if the system does not have to recover from errors, there will be
as many scheduled jobs as there are files in the jobs/ directory.

cli:wilding[48]% ls temp
finish.1 finish.4 output.2 status.1 status.4
finish.2 junk.lsp output.3 status.2
finish.3 output.1 output.4 status.3

The output/ subdirectory contains the output from jobs, and information about the status of each job. If
scheduled job n executes job X from the jobs/ subdirectory without error, then X.output in the output/
directory is identical to output.n in the temp/ directory and X.status in the output/ directory is identical to
status.n in the temp/ directory.

1If the file contains BOOT-STRAPs or NOTE-LIBs, then job naming and assigning is slightly different. Events of that type are
always the first events in a job, so the previous job may have fewer than PROVE-LEMMAs than the granularity. Job names are the
first event name in the job followed by a "." followed by a number that is the location in the file of the most recent BOOT-STRAP
or NOTE-LIB. This is necessary since an events file with BOOT-STRAPs or NOTE-LIBs may have duplicate event names.

4

cli:wilding[49]% ls output
DELETE-COMMUTATIVITY.output PERMUTATIONP-PRESERVES-MEMBER.output
DELETE-COMMUTATIVITY.status PERMUTATIONP-PRESERVES-MEMBER.status
MEMBER-APPEND.output PERMUTATIONP-TRANSITIVE.output
MEMBER-APPEND.status PERMUTATIONP-TRANSITIVE.status

If the current directory contains a file named (by default) "hosts", then it is used to find hosts upon which
to run. Each host name must appear on a separate line. The number of times a hostname appears in the
host file will be the number of processes that may be simultaneously placed on it. (For example, if "cli"
appears twice in the host file, then the host cli may have two simultaneous processes running on it.)

If a hosts file does not exist in the local directory, a system default is used.

cli:wilding[50]% cat hosts
client12
cli
anderson
jingles
scarab
decaf
client13
elgin
oscar

3.1-C Problems That are Detected

There are two kinds of errors that are detected by the system. First, if a job finishes but does not produce
the appropriate output, then the system concludes that the remote job ended abnormally and reschedules
the work. (To construct the following example, one remote process was killed. The system detected the
problem and rescheduled the job.)

>(do-file-parallel "/usr/home/kaufmann/demo-permutationp.events" 3
:kill-if-no-progress 60)
Clearing directory jobs/.
Creating jobs files... done.

Invoking dispatcher.
Initializing job information... done.
Clearing directory output/.
Clearing directory temp/.

Hosts requested: ("client12" "cli" "anderson" "jingles" "scarab"
"decaf" "client13" "elgin" "oscar").
Hosts currently blocked: NONE.

starting>> client12 : DELETE (job# 1) 0:00
starting>> cli : MEMBER-DELETE-OTHER (job# 2) 0:00
starting>> anderson : PERMUTATIONP-TRANSITIVE (job# 3) 0:00
***NOT completed>> anderson : PERMUTATIONP-TRANSITIVE (job# 3) 0:00
starting>> anderson : PERMUTATIONP-TRANSITIVE (job# 4) 0:00
completed>> client12 : DELETE (job# 1) 0:01
completed>> cli : MEMBER-DELETE-OTHER (job# 2) 0:01
completed>> anderson : PERMUTATIONP-TRANSITIVE (job# 4) 0:01
All events have been run successfully.
T

>

The other type of error detected by the system is when no progress is made. If the output file is not
written to for too long, the system kills the local process (in case it is not already dead) and restarts the
job. (To construct this example, all local processes related to parallel jobs were killed on the local host.

5

After a while the system detected the problem and took action.)

>(do-file-parallel "/usr/home/kaufmann/demo-permutationp.events" 3
:kill-if-no-progress 60)
Clearing directory jobs/.
Creating jobs files... done.

Invoking dispatcher.
Initializing job information... done.
Clearing directory output/.
Clearing directory temp/.

Hosts requested: ("client12" "cli" "anderson" "jingles" "scarab"
"decaf" "client13" "elgin" "oscar").
Hosts currently blocked: NONE.

starting>> client12 : DELETE (job# 1) 0:00
starting>> cli : MEMBER-DELETE-OTHER (job# 2) 0:00
starting>> anderson : PERMUTATIONP-TRANSITIVE (job# 3) 0:00
*** KILLED>> client12 : DELETE (job# 1) 0:02
*** KILLED>> cli : MEMBER-DELETE-OTHER (job# 2) 0:02
*** KILLED>> anderson : PERMUTATIONP-TRANSITIVE (job# 3) 0:02
starting>> client12 : DELETE (job# 4) 0:02
starting>> cli : MEMBER-DELETE-OTHER (job# 5) 0:02
starting>> anderson : PERMUTATIONP-TRANSITIVE (job# 6) 0:02
completed>> client12 : DELETE (job# 4) 0:03
completed>> cli : MEMBER-DELETE-OTHER (job# 5) 0:03
completed>> anderson : PERMUTATIONP-TRANSITIVE (job# 6) 0:03
All events have been run successfully.
T

>

3.1-D The Par commands

There are several commands that are useful for controlling parallel jobs. They are used from the shell,
and none of them has arguments. Note that it is the policy at Computational Logic that it is OK for any
user to do execute any of these commands whenever he wishes.

• parstop -- block the local machine from getting more par jobs assigned to it (blocks are
2removed at 8PM and 8AM every day) and kill all par jobs already running on this machine.

• parblock -- block the local machine from getting more par jobs assigned to it (blocks are
removed at 8PM and 8AM every day)

• parunblock -- free the local machine for par jobs

• parshowblocked -- show which machines are currently blocked

• parkill -- kill all par jobs on this machine

• parcount -- give the number of jobs owned by user par on the local processor (this is
usually twice the number of rsh’s on the local machine)

Here’s an example of these commands in action:

2This command is simply a parblock followed by a parkill

6

client12:wilding[11]% parshowblocked
jingles
client12:wilding[12]% parstop
client12 blocked
All PAR jobs killed on client12
client12:wilding[13]% parshowblocked
client12 jingles
client12:wilding[14]% parunblock
client12 unblocked
client12:wilding[15]% parcount
3 PAR jobs executing
client12:wilding[16]% parkill kill the current jobs but allow later ones
client12:wilding[17]% parcount
0 PAR jobs executing
client12:wilding[18]% parcount
2 PAR jobs executing
client12:wilding[19]% parstop kill the current jobs and prohibit later ones
client12 blocked
All PAR jobs killed on client12
client12:wilding[20]% parcount
0 PAR jobs executing
client12:wilding[21]%

7

3.2 DO-FILE-PARALLEL options

There are several options available when using DO-FILE-PARALLEL to run NQTHM jobs in parallel.
They are passed as key parameters in the function invocation. The general form of an invocation of
DO-FILE-PARALLEL is:

(do-file-parallel infile granularity
:jobs-directory-name <directory-name>
:output-directory-name <directory-name>
:hosts-file-name <file-name>
:local-host-first <t | nil>
:kill-if-no-progress <number of seconds>
:command-name <command-name>
:front-end <file-name>
:delay <nil | number of seconds>
:nice-flag <t | nil>)

3.2-A :jobs-directory-name

Default: "jobs/"

The jobs directory name is a string that contains the name of the subdirectory that is to be used to hold the
input files for the dispatcher. If the parameter given is not a real subdirectory name for the current
directory, or if the parameter does not end with a ’/’ character, then an error is reported. The job-
directory-name subdirectory is cleared with every run of DO-FILE-PARALLEL.

3.2-B :output-directory-name

Default: "output/"

The output directory name is a string that contains the name of the subdirectory that is to be used to hold
the output files from the jobs. If the parameter given is not a real subdirectory name for the current
directory, or if the parameter does not end with a ’/’ character, then an error is reported. The output-
directory-name subdirectory is cleared with every run of DO-FILE-PARALLEL.

3.2-C :hosts-file-name

Default: "hosts"

The hosts file name is a string that contains the name of a file that contains the hosts upon which to run
the parallel jobs. As described in section 2, if the host file name exists (either the default "hosts" in the
current directory or the file specified with the :hosts-file-name key parameter) then it is used to provide
the list of host names. If the host file name does not exist, than a system-wide default is used instead.

The hosts file contains one host per line. Each host name should be a valid host accessible to the user
with an rsh command from the local host. A host may have as many processes assigned to it as there are
occurrences of its name in the hosts file.

3.2-D :local-host-first

Default: t

A list of hosts is maintained by the system for use in assigning jobs when necessary. Since jobs are

8

assigned to the hosts on this list starting from the beginning, the order of the hosts in the list affects the
job. This is particularly important when one considers system errors - a job that does not complete
successfully is reassigned to the first host on the list that does not have a job assigned to it, even if that
host was the one that just failed! If the first host is inaccessible for some reason, the system will loop
forever reassigning a job to that host.

Since we are already relying on the local host, in general we want the local host to appear first in the host
list. If :local-host-first is non-nil, then the host list lists the hosts in the same order as was found in the
hosts file, except that occurrences of the local host are moved to the front of the list. If :local-host-first is
nil, then the host list is in the same order as was found in the hosts file.

3.2-E :kill-if-no-progress

Default: 200

As described in section 2, remote jobs that do not produce output for too long are killed and their work
rescheduled. The minimum "safe" time in seconds for before a job may be killed is given with the
parameter :kill-if-no-progress.

If the value of this parameter is n, then the processor checks every n seconds to see if any processes
should be killed. If a process has not written to its output file in the last n seconds, then it is killed and the

3work rescheduled.

The garbage collection message is turned on in remote jobs (in the default front-end file - see :front-end
below) when they are set up to guarantee that long periods of time between output updates really means
trouble and is not just NQTHM taking a long time.

3.2-F :command-name

Default: "pc-nqthm"

The command name is the command that is to be run on the remote hosts. It must be accessible on the
remote host.

Probably the only time a user would want to change the default command is to use another version of the
theorem prover, for example "nqthm".

3.2-G :front-end

Default: "/local/src/parallel/front-end.lsp"

The front-end is a string that is the name of a file containing forms to be sent to the remote processes
before the job-specific info and the events. The default contains code that helps set up the remote process
for running the subsequence of events that need to be run by that job.

Most users will not want to mess with this parameter.

3This means that a process may take longer than n seconds to be killed once it stops producing output, but no longer than 2*n
seconds.

9

3.2-H :delay

Default: nil

The parameter describes how often the local host will check to see if there are jobs that have completed.
If the number n is provided, then the local host will sleep n seconds between checking for completions.

If nil is provided (or the default is used) then the delay will be set equal to the granularity. Thus, if each
job processes 20 PROVE-LEMMAS and the delay is set to nil, then the local processor will sleep 20
seconds after checking for completed jobs.

3.2-I :nice-flag

Default: t

If nice-flag is non-nil, then the jobs run on remote machines will be run using "nice". That is, they will
run so that they have a lower priority than most other jobs on the system. If nice-flag is nil, then the
spawned jobs will be run at normal priority.

Note that even nice jobs take resources, so running at a lower priority will not guarantee that running a
parallel job will have no effect on the systems used.

It is the policy at Computational Logic to run jobs at the default (nice) priority level.

10

3.3 Some Implementation Hooks

This section describes global variables whose values are used by the system. Using them, the user may
customize the system somewhat.

The following variables may be set by the user.

• *output-completed-string* (Default: "Boyer-Moore job terminated") This string appears in
the status file of a job. It signifies that the job completed. Whether the job completed
successfully or with failure is communicated on the line after this line.

• *no-io-in-parallel-flag* (Default: nil) This flag directs whether the remote processes should
produce the complete NQTHM output or an abbreviated version. If non-nil the abbreviated
version is produced.

• *delete-jobs-flag* (Default: nil) This flag directs whether the job input files should be
deleted after they are all processed. If nil the job input files are retained.

• *clear-query-flag* (Default: nil) This flag directs whether the the user should be queried
before the jobs, temp, and output subdirectories are cleared. If non-nil the query is
performed.

• *local-host-warning* (Default t) This flag directs whether the user should receive a
warning if the first host in the host list is not his local host. This is checked after the host list
is possibly rearranged to move the local host to the front of the host list (as described in
section 2.2). As noted before, if the first host is inaccessible for some reason, the system
will loop forever reassigning a job to that host.

• *save-temp-files-flg* (Default nil) This flag directs whether the files in the temp/
subdirectory should be copied or moved to the output directory when a job completes. If
non-nil, the temp files are copied (and therefore saved).

• *kill-dispatcher-upon-seeing-failure* (Default nil) This flag directs whether the parallel
job should finish as soon as failure is detected. If non-nil, the job stops as soon as any of the
jobs returns a failure.

• *system-parallel-directory* (Default "/local/src/parallel/") This directory name contains
various files the dispatcher needs to operate. These files are discussed in Section 3.1.

• *parkill-command* (Default "/local/bin/parkill") This string is submitted to the system if
the system ends abnormally (e.g. the user aborts)

• *protected-hosts-subdirectory* (Default "protected-hosts/") This subdirectory of *system-
parallel-directory* contains the "block" files used by the dispatcher. (See Section 3.1.)

• *lock-file-name* (Default "lock-out-others.par") This is the name of the lock file that is
used to lock the current directory from use as a parallel job current directory for someone
else.

• *output-info-subdirectory* (Default "statistics/runs/") This subdirectory of *system-
parallel-directory* holds the files that record job progress. These files are designed to help
track system use. (See Appendix A.)

• *all-valid-hosts-names* (Default nil) If non-nil, host names from the hosts file are checked
to make sure that they appear in this list. If they do not appear, a warning message appears.

11

3.4 Dispatcher Use

This section is intended for someone who wishes to use the dispatcher part of this system independently.
We have tried to keep the dispatcher functionally separate in order to make it applicable to other problems
than parallel NQTHM. If you just want to use this system to run NQTHM jobs in parallel, this subsection
probably will NOT do you any good.

DON’T LET THIS SECTION CONFUSE YOU IF YOU SIMPLY WANT TO USE THIS SYSTEM TO
RUN NQTHM JOBS IN PARALLEL. It is intended for those who want to build systems to do parallel
work with other kinds of jobs.

Section 3.1 describes the dispatcher’s implementation, and section 3.2 describes how the system is built
on top of the dispatcher. Appendix B contains an example of using the dispatcher to compile in parallel.

Dispatcher Use Overview

The dispatcher takes work and passes that work out to some processors. When a processor is done with a
task, the dispatcher updates its records and assigns a new job to the processor. Eventually all the work
will be completed and the dispatcher will return with a value reflecting whether all the jobs were
successful.

The dispatcher expects there to be in the current directory a jobs directory (default name : "jobs/") that
contains the work to be done. By default, each file in the jobs directory contains the input to the
command to be run remotely.

During the execution of the dispatcher, a temp subdirectory (name: "temp/") is used to keep track of the
jobs as they progress.

After a job completes, its standard output is moved from the temp/ subdirectory to the the output
subdirectory (default name "output/"). If the name of the job file is X, then X.output will contain the
task’s output and will appear in the output directory. X.status will contain the standard error stream
output by the job and will also appear in the output directory.

The hosts to use for remote processing can be found in the hosts file (default name : file "hosts" in the
current directory).

Dispatcher Use Example

cli:wilding[12]% ls jobs
job1 job2 job3 job4 job5
cli:wilding[13]% more jobs/job2
hostname; date; rsh cli date
cli:wilding[14]% more hosts
anderson
client12
oscar
cli
cli:wilding[15]% akcl
AKCL (Austin Kyoto Common Lisp) Version(1.57) Thu Sep 29 21:27:15 CDT 1988
Contains Enhancements by W. Schelter

>(load "/local/src/parallel/from-nqthm.lsp")
Loading /local/src/parallel/from-nqthm.lsp
Finished loading /local/src/parallel/from-nqthm.lsp
T

12

>(load "/local/src/parallel/dispatch")
Loading /local/src/parallel/dispatch.o
start address -T 1c5800 Finished loading /local/src/parallel/dispatch.o
25392
>(dispatcher :command-name "sh" :completion-function #’(lambda (x)

(cons ’success nil))
:front-end "" :back-end "")
Hosts requested: ("cli" "anderson" "client12" "oscar").
Hosts currently blocked: NONE.

starting>> cli : job1 (job# 1) 0:00
starting>> anderson : job2 (job# 2) 0:00
starting>> client12 : job3 (job# 3) 0:00
starting>> oscar : job4 (job# 4) 0:00
completed>> cli : job1 (job# 1) 0:00
completed>> anderson : job2 (job# 2) 0:00
completed>> client12 : job3 (job# 3) 0:00
completed>> oscar : job4 (job# 4) 0:00
starting>> cli : job5 (job# 5) 0:00
completed>> cli : job5 (job# 5) 0:01
T

>(by)
Bye.
cli:wilding[16]% ls output
job1.output job2.output job3.output job4.output job5.output
job1.status job2.status job3.status job4.status job5.status
cli:wilding[18]% more output/job2.output
16538
anderson
Tue Feb 21 12:47:45 CST 1989
Tue Feb 21 12:56:29 CST 1989
cli:wilding[19]%

Dispatcher Invocation

A dispatcher invocation has the form

default
(dispatcher :jobs-directory-name <directory-name> "jobs/"

:output-directory-name <directory-name> "output/"
:hosts-file-name <file-name> "hosts"
:local-host-first <t | nil> t
:delay <number> 15
:kill-if-no-progress <number> 600
:command-name <command-name> "pc-nqthm"
:completion-function <function> #’nqthm-completed
:front-end <file-name> "/local/src/parallel/front-end.lsp"
:back-end <file-name> "/local/src/parallel/back-end.lsp"
:nice-flag <t | nil>) t
:job-list <job-list | nil>) nil

Most of these parameters are the same as those to DO-FILE-PARALLEL (see section 2.2), with the
following exceptions:

• :host-file-name Like the :host-file-name parameter name to DO-FILE-PARALLEL except
if the file does not exist an error occurs.

• :completion-function This is a function to be applied to the status file of a job to tell
whether it completed successfully or not. The status file contains the output from the
standard error stream of the job. This function will be applied when the remote process
terminates. It is expected to return either nil (the job apparently aborted) or a pair of the
form (’success . message) or (code . message) where code may be anything except ’success,
and message may either be nil or a list suitable as the arglist for the function FORMAT. If
this function returns nil for a job, that job is rescheduled. If all input jobs eventually
produce status files that indicate success in this sense, then dispatcher returns t, otherwise

13

the dispatcher returns nil.

• :front-end This file is sent to the remote process as input before the job input file. If the
empty string is used, then no front-end file is sent.

• :back-end This file is sent to the remote process as input after the job input file. If the
empty string is used, then no back-end file is sent.

• :job-list If non-nil, this provides a list of job names in the jobs subdirectory to be run. This
may be useful if only a subset of the jobs subdirectory is to be used, or if the jobs are to be
assigned in a particular order. If nil, all jobs in the jobs directory will be assigned in
alphabetical order.

14

4. Systems guide: implementation

This section contains a description of our implementation. Let us re-emphasize that it should be
completely unnecessary to read this section if one simply wants to be able to use the system. Rather, we
have included this section for those who would like to know how this all works at the lower levels,
perhaps so that they can create variants of this system. One might even think of this section as
documentation for the code; the code itself may be found in Appendix C.

The first subsection below is a guide to the implementation of the dispatcher, which has nothing to do
with NQTHM but is a general-purpose program for running independent jobs in parallel. (The
dispatcher’s use is documented in Subsection 2.4.) The second subsection below describes the
implementation of the parallel version of the Boyer-Moore prover on top of the dispatcher. We conclude
this section with an explanation of the system front-end file.

4.1 Dispatcher implementation

The main function for the general dispatcher is the Lisp function DISPATCHER. The code and its
comments (see Appendix C) are the ultimate reference. In this section we describe the algorithm it uses
and some of the subsidiary functions.

Dispatcher algorithm:
1. Initialize various environmental variables. These include the starting time, the local host

name, the user name, and the suffix to use for the filename where statistics of the run will be
collected, e.g. the ‘567489’ in "/local/src/parallel/statistics/runs/wilding.567489".

2. Set up locking. Only one run of the dispatcher is allowed in a given directory at a given
time, in order to avoid clashing use of common directories. The file "lock-out-others.par" is
created in the current working directory whenever the dispatcher is entered. The dispatcher
starts by checking to see if the directory is already "locked" in this sense; if not, it locks the
directory.

3. Check if jobs exist. If a job-list is provided, make sure that the jobs all exist in the jobs/
subdirectory.

4. Set up the jobs. The job names are simply the file names from the directory
jobs-directory-name ("jobs/" by default), unless they are provided by the :job-list
option.

5. Set up the initial hosts-jobs-alist. This is an association list which associates jobs
with hosts. Initially each host is associated with NIL, indicating that no job has yet been
assigned.

6. Enter main loop.

• Update completed jobs records. Remove the terminated jobs from the
hosts-jobs-alist. Tack those that didn’t complete back on to the end of the
list of unassigned jobs. (More on this below.)

• Possibly look for and kill bombed jobs. If it has been longer than
kill-if-no-progress seconds since we last looked for "bombed jobs", then
kill all the jobs which haven’t output any characters in the last
kill-if-no-progress seconds and put them back on the list of unassigned
jobs. In such cases, a message headed with "*** KILLED" will appear on the
terminal.

• Assign jobs. Assign jobs to hosts which are currently not busy, appropriately
adjusting the hosts-jobs-alist and the list of unassigned jobs. Avoid hosts
that are currently blocked (except for the local host). Print an appropriate "starting"

15

message to the terminal for each new job started.

• Check for completion. If no hosts are busy, return from the loop. Otherwise sleep
for delay seconds.

7. Report failed jobs. Return NIL if there are any failed jobs and otherwise return T.

8. Clean up. Remove the lock (i.e. delete the file "lock-out-others.par") and report completion
to statistics files. If execution didn’t complete normally then do parkill to remove all

4local jobs owned by user par.

One complicated thing about the code is how jobs are started. The Lisp function SYSTEM (as it exists in
KCL and AKCL at CLInc) takes a string which is then given to the Shell to execute. Our function
SYSTEM-JOB-COMMAND produces a string that, when given to SYSTEM, creates a job. This causes
execution of the Shell command parcsh, which calls the Shell on its arguments after changing
ownership of the process to the user par. The argument list for parcsh is of the form

PAR <host-name> <command-name> <unique-number> <front-end> <job> <back-end>

PAR is a c-Shell script (see Appendix C) that:
1. Write the process number to the file temp/output.n, where n is the <unique-number>

supplied above, i.e. the unique job number.

2. Call rsh (remote Shell) with host <host-name> and command <command-name>, piping
the concatenation of the files <front-end>, <job>, and <back-end> to its standard input
stream. Send the standard output of this process to the file temp/output.n, and send its error
output to the file temp/status.n, where (as above) n is the <unique-number>.

3. Create the file temp/finish.n (same n as above).

Notice that since we start by writing the process number to the file temp/output.n, we can kill a bombed
job by first reading its process id from the first line of the output file and then issuing the appropriate kill
command.

As mentioned above, we need to update completed jobs records. We have just explained that PAR uses a
remote Shell call (i.e., rsh) to fire up a job on a remote machine, after which it creates a "finish" file.
One may consider a job to be terminated if its corresponding "finish" file has been created. (The Lisp
function job-completed, which should perhaps be called job-terminated, does this check.)
Such a "terminated" job is to be removed from hosts-jobs-alist. But first it must be decided
whether the job completed or not; if not, it should be put back on the list of unassigned jobs. This
determination is up to the completion function, which by default is the function nqthm-completed.
Recall from Subsection 2.4 that this function expects a file name, which in this case is the status file
temp/status.n (where n is the job’s unique number), and returns either NIL (which means that it was
"unable to give a reliable answer") or a pair of the form (’success . message) or (code .
message). In the former case (where NIL is returned) the job is considered to have failed to complete
(and the message "***NOT completed" is printed out), and it is put on the list of unassigned jobs.
Otherwise the job is considered to have completed (and the message "completed" is printed out), the
message (if any) is printed out, and the output and status files are moved to the output/ subdirectory. If
the first component of this pair is anything other than ’success then the job is added to the list
failed-job-names. When the dispatcher finally returns, if this list is not NIL then the list is
printed out with an appropriate message and the dispatcher returns NIL. If all jobs succeed, then the
dispatcher returns T.

4In many cases this will kill remote par jobs as well.

16

4.2 Parallel nqthm implementation on top of the dispatcher

As in the previous subsection, we leave to the code documentation the task of giving detailed
specifications. What follows here is an overview of the execution of the main function,
DO-FILE-PARALLEL.

1. Set up locking. This works just as it did in the dispatcher. We want the current working
directory reserved for only this run of DO-FILE-PARALLEL since even before the
dispatcher is called we will be writing to one subdirectory, namely (by default) jobs/.

2. Check that appropriate files and directories exist. These include the system’s
front-end file, the jobs/ subdirectory, the output/ subdirectory, the temp/ subdirectory,
and the hosts file (or whatever the user supplied in place of these defaults).

3. Set delay. If the :delay keyword argument has not been supplied by the user, then set the
delay to the granularity of the call to DO-FILE-PARALLEL.

4. Reset. Set the *current-job-unique-number* back to 0 and clear the relevant
subdirectories (these are jobs/ and output/ by default, together with temp/).

5. Create the jobs files. These are the input files to be shipped to the remote hosts inbetween
the front end and the back end. Note that jobs with events which follow a BOOT-STRAP or
NOTE-LIB in the main file are suffixed with a natural number, i.e. they look like
<identifier>.n where n is the position of the applicable BOOT-STRAP or NOTE-LIB
in the main file.

6. Check directory. Be sure that the current working directory is what we started with; if not,
change to it.

7. Remove the locking. Otherwise we won’t be able to run the dispatcher!

8. Run dispatcher. Return what it returns and print a happy message if it returns T. Clean up
by returning to the working directory that we started with in case that differs from the
current working directory.

The dispatcher is called with :back-end set to the filename argument (for the events list) of the call of
DO-FILE-PARALLEL. We’ll omit discussion of the defaults, as these are documented earlier (see
Section 2.2, DO-FILE-PARALLEL-OPTIONS), except to discuss briefly the function
NQTHM-COMPLETED. Recall from the previous subsection that the :completion-function
argument to the dispatcher takes a filename argument (which is supposed to be the name of a status file)
and returns either NIL or a pair. The function NQTHM-COMPLETED in fact looks for a line that equals
the *output-completed-string*, "Boyer-Moore job terminated", in the given file, and then reads
the next line. If the first 7 characters of that next line are "success" (when converted to lower case), then it
returns the pair (’success . NIL). Otherwise it returns the list (’failure . (<line>)),
where <line> is that line.

Note that the appropriate messages to the status file are placed there by the remote job. The top-level loop
function PAR-NQTHM-TOP-LEVEL in the system’s front-end file in fact uses a system call to echo2 to
print the string " FAILURE: The event <event-name> failed." to the error stream (and hence to the status
file) in this case, where <event-name> is the name of the failed event; otherwise it prints "Success!!"

4.3 The system front-end file.

Recall that the default "front-end" file for DO-FILE-PARALLEL is the file
/local/src/parallel/front-end.lsp. The file /local/src/parallel/front-end-with-doc.lsp is a version of that file
with comments, so complete documentation may be found in that code. In this subsection we give
describe that code (which may be found in Appendix C).

17

Recall that the front-end file is the first file sent into the standard input stream of the nqthm or
pc-nqthm process. That is, a remote host will be reading in and executing the forms from this file.
After all the forms in this file are read, the particular job file will be read in. The last form in the job file
is (PAR-NQTHM-TOP-LEVEL), where the function PAR-NQTHM-TOP-LEVEL is defined in the front-
end file. It is a top-level loop which will process the forms in the back-end file, i.e. the file of events. The
central thing to understand from the front-end file is the definition of PAR-NQTHM-TOP-LEVEL. That

5function executes a loop after which it "cleans up" . Here is what its main loop does.
1. Read the next form.

2. If there are no more events to process, return T. There are no more events to process if
we are either (a) at end-of-file or (b) at the event *finish-name* (set in the job-file to be
the first event that we should not process).

3. Print the next event, evaluate it, and print its value. However, we turn PROVE-
LEMMAs into ADD-AXIOMs until we find the starting event. The variable
start-name is initialized to the starting event’s name in the job file. In case there is a
preceding BOOT-STRAP or NOTE-LIB the variable *start-position* is also set in
that file, and all events before the appropriate BOOT-STRAP or NOTE-LIB are ignored.

4. If the value is NIL, exit the loop with value NIL.

The first part of the "cleanup" phase has already been described in the subsection above: A success
message is printed to the error stream if all events evaluated to non-NIL, and otherwise a failure message
is printed. (We also handle the case that a READ fails, i.e. and end-of-file is encountered during the
process of reading the next form.) Finally, we exit in the C language tradition, i.e. with status 0 if all
events evaluated to non-NIL and 1 otherwise. Our current implementation does not use that status
information, however.

The only slightly tricky part of this strategy is that the "cleanup forms" are not evaluated in Lisp when an
error is caused until control is returned to the built-in top-level loop. Fortunately, in KCL there is a global
variable *break-enable* which one may initialize to NIL in order to avoid entering the break loop
when an error occurs. This is the first thing we do in the front-end file.

The front-end file also contains the form (setq sys::*notify-gbc* t), which turns on garbage-
collection notification. This feature should make it virtually impossible for an NQTHM job to "bomb"
simply because it’s not putting out characters fast enough; if all other output is slow, still there are likely

6to be frequent garbage collection messages!

5in Lisp jargon, it executes the cleanup-forms of an UNWIND-PROTECT

6One exception is compilation, where certain phases of the code generation can take a long time without a garbage collect. In this
case one may wish to specify a large number of seconds for the :kill-if-no-progress parameter, as illustrated in the
example in Appendix B, where we use 1200.

18

5. Results and Conclusions

5.1 Trial Runs

We’ve run several tests to try to break the error handling capability of the system. These included killing
processes in the middle of a job, adding sleep commands to jobs to make them "killable", and even
turning off a remote processor before it finishes. In all these tests the problem was detected and the
parallel job recovered.

The dispatcher’s utility has been demonstrated separately from the problem of doing NQTHM runs in
parallel. It was used to compile code in parallel. That experiment is described in Appendix B.

We’ve run several different nqthm files for testing. The largest nqthm job we’ve run in parallel so far has
been the events that create the various shared libraries created by Bill Bevier. With 7 Sun 3/60 processors
(including the processor that ran the dispatcher) the job took 2 hr 22 min, compared with 10 hr 31 min for
one dedicated processor running pc-nqthm from the shell.

The speedup of about 4 1/2 is about 63% of the theoretical maximum. The following lines from the
parallel run’s output show that only a fairly small portion of of the 37% loss is due to uneven finish times
of the jobs.

completed>> scarab : T (job# 63) 2:08
completed>> jingles : PUT-WITH-LARGE-INDEX (job# 52) 2:09
completed>> elgin : TIMES-DISTRIBUTES-OVER-DIFFERENCE (job# 64) 2:09
completed>> decaf : PUTS-WITH-LARGE-INDEX (job# 55) 2:10
completed>> oscar : QUOTIENT-DIFFERENCE-LESSP-ARG2 (job# 57) 2:17
completed>> client12 : PUTS-PUTS3 (job# 54) 2:21
completed>> client13 : QUOTIENT-DIFFERENCE1 (job# 58) 2:21
All events have been run successfully.
T

5.2 Future Work

There are several things we’d like to do (someday) that would increase the utility of this coarse approach
to parallelism in NQTHM.

• Integrate with J Moore’s library utilities. When NQTHM with efficient library utilities is
released, it will have two possible impacts on our system. First, it may allow remote
systems to avoid redoing the DEFNS and old PROVE-LEMMAS for each job. Second, and
more importantly, it will be very desirable for our system to produce endorsed "books".

• Include the notion of dependencies. We should investigate better ways to create the job
files. Some events depend on others, like PROVE-LEMMAs after a BOOT-STRAP, and
some events take longer and should have processing resources devoted to them early.

• Find the bottlenecks. We’re not sure right now what is keeping us from getting better
performance. (63% may be as good as it gets, but we should at least know what the
important factors are.)

• Try some big runs. The system has limits. (100 remote hosts would surely fill the
dispatcher’s process table, for example) We should find out what these are.

• Try to run remotely The system has been designed to run on machines that are not in the
local area network. We should try it.

19

5.3 Conclusions

It’s not difficult to take advantage of idle processors.

GNU EMACS with KCL running under Unix is a wonderful development environment.

The basic idea of running NQTHM event files in parallel by sending remote processors subsequences of
events seems to work fairly well. With large runs we have obtained close to 2/3 of the theoretical
speedup.

20

Appendix A

Instrumentation

In order to get a handle on parallel job usage, some instrumentation has been added to the code. There are
several files that are updated when parallel work is done.

A.1 /local/src/parallel/statistics/blocks

This file contains information about the creation and removal of block files. There are 4 types of
messages.

• USER-BLOCK A user has blocked a processor.

• USER-UNBLOCK A user has unblocked a processor.

• USER-UNBLOCK-FAILURE A user tried to unblock an unblocked processor.

• SYSTEM-UNBLOCK The system unblocked some processors. The list of block files
follows.

• SYSTEM-UNBLOCK-FAILURE The system tried to unblock processors but there were
none to unblock.

example block file:

+++02/20/89 17:13:10 USER-UNBLOCK kaufmann cli
+++02/20/89 19:15:16 USER-BLOCK wilding cli
+++02/21/89 16:28:16 SYSTEM-UNBLOCK
total 1
-rw-rw-r-- 1 wilding 2 Feb 20 19:06 cli

+++02/21/89 16:28:47 SYSTEM-UNBLOCK-FAILURE
+++02/21/89 16:28:49 USER-BLOCK wilding cli

A.2 /local/src/parallel/statistics/job-info

This file contains information about the parallel jobs run. The information contains the date and time, the
user, the dispatcher host, the run code number (see the next section), the requested hosts, and the blocked
hosts.

example job-info file excerpt:

+++02/24/89 17:37:17 PAR-START kaufmann client12 355006
hosts: ("client12" "scarab" "elgin" "client13" "decaf")
blocked: ("anderson" "cli" "jingles")
+++02/24/89 17:48:38 PAR-END kaufmann client12 355006
hosts: ("client12" "scarab" "elgin" "client13" "decaf")
blocked: ("anderson" "cli" "jingles")
+++02/26/89 16:15:17 PAR-START wilding client12 522876
hosts: ("client12" "cli" "anderson" "jingles" "scarab" "decaf"

"client13" "elgin" "oscar")
blocked: NIL
+++02/26/89 16:16:30 PAR-END wilding client12 522876
hosts: ("client12" "cli" "anderson" "jingles" "scarab" "decaf"

"client13" "elgin" "oscar")
blocked: NIL

21

A.3 /local/src/parallel/statistics/runs

This directory contains a trace of all runs using the parallel system. There is a file in this directory of the
form <user-name>.<code-number> for each parallel run. The code-number is the number found in the

7job-info file. Each file contains the header information of the job-info file plus progress messages that
the user received while he ran the job.

Example runs directory:

cli:wilding[4]% cd ~kaufmann/dispatcher
cli:wilding[5]% cd /local/src/parallel/statistics/runs
cli:wilding[6]% ls
kaufmann.345071 kaufmann.346447 kaufmann.355006 wilding.524027
kaufmann.345195 kaufmann.348576 wilding.522876 wilding.524251
kaufmann.345253 kaufmann.352817 wilding.523562 wilding.524815
cli:wilding[7]% cat wilding.522876
+++02/26/89 16:15:17 PAR-START wilding client12 522876
hosts: ("client12" "cli" "anderson" "jingles" "scarab" "decaf"

"client13" "elgin" "oscar")
blocked: NIL
starting>> client12 : DELETE (job# 1) 0:00
starting>> cli : DELETE-COMMUTATIVITY (job# 2) 0:00
starting>> anderson : PERMUTATIONP-PRESERVES-MEMBER (job# 3) 0:00
starting>> jingles : PERMUTATIONP-TRANSITIVE (job# 4) 0:00
completed>> anderson : PERMUTATIONP-PRESERVES-MEMBER (job# 3) 0:01
completed>> client12 : DELETE (job# 1) 0:01
completed>> cli : DELETE-COMMUTATIVITY (job# 2) 0:01
completed>> jingles : PERMUTATIONP-TRANSITIVE (job# 4) 0:01
+++02/26/89 16:16:30 PAR-END wilding client12 522876
hosts: ("client12" "cli" "anderson" "jingles" "scarab" "decaf"

"client13" "elgin" "oscar")
blocked: NIL
cli:wilding[8]%

7This code-number is actually the file-server’s "universal time" in seconds, modulo 1,000,000.

22

Appendix B

Parallel compilation

In this appendix we describe an experiment using the dispatcher for parallel compilation of NQTHM.
This method could be generalized to solving the problem of compiling arbitrary systems. However, we’ve
chosen simply to build a reasonably optimal parallel NQTHM compiler at this point. We describe the
parallel compiler and how fast it is.

B.1 How Parallel Compilation is Done

The NQTHM code is broken into the file sloop.lisp (which is Bill Schelter’s loop macro definition) and 10
other files. Three of those 10 must be compiled in sequence first. The remaining 7 files may then be
compiled in parallel. The function COMPILE-NQTHM-SEQ defined below is like the existing function
COMPILE-NQTHM except that it doesn’t compile sloop.lisp or the final 7 files.

(DEFUN COMPILE-NQTHM-seq ()
;;; **** This is all done before saving a core image
(FLET ((LF (N)

(LOAD (EXTEND-FILE-NAME N FILE-EXTENSION-BIN)))
(CF (N)

(COMPILE-FILE (EXTEND-FILE-NAME N FILE-EXTENSION-LISP))))
(PROCLAIM-NQTHM-FILES)
(system "date")
(format t "~&Completed proclaiming nqthm files.~&")
;;; (CF "sloop") ***** We assume that sloop exists in any reasonable system!
(LF "/local/src/nqthm/sloop")
(CF "basis")
(LF "basis")
(CF "genfact")
(LF "genfact")
(CF "events")
(LF "events")))

We don’t compile sloop.lisp because the object file sloop.o does not change very often (i.e. we view it as
being a file provided by the Lisp system)

The idea is to save a core image after compiling and loading the "sequential" files, and then run that core
image in parallel, compiling one of the remaining 7 files in each job. The top-level call of this compiler is
a shell command that calls akcl twice: first for the initial sequential compilation of the first 3 files, using
the function COMPILE-NQTHM-SEQ shown above, and then for the parallel compilation of the
remaining 7 files.

The file nqthm-par.lisp is the same as existing Boyer-Moore file nqthm.lisp, except that it includes the
definition of COMPILE-NQTHM-SEQ and contains the following definition.

(DEFUN COMPILE-one-NQTHM-file (filename)
;; **** This is all done after saving a core image from (compile-nqthm-seq)
;; Hence we may assume that all the proclamations are already around.
(COMPILE-FILE (EXTEND-FILE-NAME filename FILE-EXTENSION-LISP)))

Other than nqthm-par.lisp, the following files comprise the crucial parallel compiler code.

23

--
The file compile-nqthm-shell-script:

compile-nqthm-shell-script:

date
akcl < compile-nqthm-seq.lisp
date
rsh scarab w
rsh elgin w
rsh client13 w
rsh decaf w
rsh client12 w
date
rm /usr/home/kaufmann/compiletest/output/*
rm /usr/home/kaufmann/compiletest/temp/*
akcl < compile-nqthm-par.lisp
date

The file compile-nqthm-seq.lisp:

(when (probe-file "lock-out-others.par")
(error "Dispatcher won’t work -- please remove lock-out-others.par"))

;; nqthm-par.lisp is just like nqthm.lisp, except that instead of
;; COMPILE-NQTHM it has COMPILE-NQTHM-SEQ and COMPILE-ONE-NQTHM-FILE,
;; and also LOAD-NQTHM is omitted and sloop is loaded but not compiled.
(load "nqthm-par.lisp")

(system "date")
(format t "~%Begin compiling sequential part of nqthm~%")
(compile-nqthm-seq)

(system "date")
(format t "~%Save core image~%")
(save "/usr/tmp/nqthm-compilation-midpoint")

The file compile-nqthm-par.lisp:

(load "/local/src/parallel/top.lsp")

(load-dispatcher)

(system "date")
(format t "~%Now starting dispatcher run~%")
(setq *output-completed-string* "Compile job terminated")
(dispatcher :command-name "/usr/tmp/nqthm-compilation-midpoint"

;; use nqthm completion function
:front-end "compile-nqthm-front-end.lisp" :back-end ""
:kill-if-no-progress 1200
:job-list ’("code-1-a" "code-b-d" "code-e-m" "code-n-r" "code-s-z"

"ppr" "io"))

24

The file compile-nqthm-front-end.lisp:

(setq sys::*notify-gbc* t)

(defvar *output-completed-string*)
(setq *output-completed-string* "Compile job terminated")

(defun format2 (string &rest args)
(system
(concatenate ’string

"echo2 ’"
(apply #’format nil string args)
"’")))

(defun format-nqthm-status (string &rest args)
(apply #’format2 (concatenate ’string *output-completed-string* "~&" string) args))

(SETQ *DEFAULT-NQTHM-PATH* "/usr/home/kaufmann/compiletest/")

A typical job, e.g. jobs/code-1-a:

(compile-one-nqthm-file "code-1-a")

(cond (*break-enable*
(if (probe-file "/usr/home/kaufmann/compiletest/code-1-a.o")

(format-nqthm-status "Success!!")
(format-nqthm-status "FAILURE -- did not end in a break, but file does not

exist.")))
(t (format-nqthm-status "FAILURE -- ended in a break.")))

--

B.2 Results from Using the Parallel Compiler

Summary of Times

Total sequential time: 2688 sec.
Total parallel time: 1191 sec.
Real Speedup: (/ 2688 1191.0)) = 2.26

Parallel run breakdown (times in seconds):

load nqthm-par.lisp 4
Proclaim 109
compile-load sequential part 226
save core image 124
[rsh ... w] 24 {To see which processors were busy -- none were}
load dispatcher code 13
Run dispatcher 691

Total 1191

An abbreviated shell transcript

17:28:48
>Loading nqthm-par.lisp
Finished loading nqthm-par.lisp
17:28:52

25

Begin compiling sequential part of nqthm

17:30:41
Completed proclaiming nqthm files.
Loading /local/src/nqthm/sloop.o
start address -T 20e800 Finished loading /local/src/nqthm/sloop.o
Compiling basis.lisp.
.....
start address -T 2b0000 Finished loading events.o
14744

17:34:27
Save core image

17:36:31
[rsh ... w]
17:36:55
AKCL (Austin Kyoto Common Lisp) Version(1.57) Thu Sep 29 21:27:15 CDT 1988
Contains Enhancements by W. Schelter

>Loading /local/src/parallel/top.lsp
.....
17:37:08

Now starting dispatcher run
NIL

Hosts requested: ("client12" "scarab" "elgin" "client13" "decaf").
Hosts currently blocked: ("anderson" "cli" "jingles").

starting>> client12 : code-1-a (job# 1) 0:00
starting>> scarab : code-b-d (job# 2) 0:00
starting>> elgin : code-e-m (job# 3) 0:00
starting>> client13 : code-n-r (job# 4) 0:00
starting>> decaf : code-s-z (job# 5) 0:00
completed>> client12 : code-1-a (job# 1) 0:07
completed>> decaf : code-s-z (job# 5) 0:07
starting>> client12 : ppr (job# 6) 0:07
starting>> decaf : io (job# 7) 0:07
completed>> client12 : ppr (job# 6) 0:08
completed>> scarab : code-b-d (job# 2) 0:09
completed>> elgin : code-e-m (job# 3) 0:09
completed>> decaf : io (job# 7) 0:10
completed>> client13 : code-n-r (job# 4) 0:11
T

>Bye.
17:48:39

One measure of "efficiency" is in terms of how many total CPU seconds are used in the parallel vs. the
sequential run. That is, this measure should be an indication of the overhead in setting up the dispatcher
run. We measure this kind of efficiency in (A) below, with a slight variation in (B). In part (C) we
measure the actual REAL speedup comparing the parts of the two runs that can actually be made parallel,
i.e. the compilation of the files code-1-a, code-b-d, code-e-m, code-n-r, code-s-z, ppr, io.

(A) From the point of view of total CPU seconds used (on all processors).

First we calculate the expected total CPU seconds for a theoretical "optimal" parallel run. More precisely,
this is the total seconds for the sequential compilation run together with the additional operations done in
the parallel run that don’t correspond to actions taken in the sequential run. (Notice that our notion of
"additional operations" does not include time required to fire up processes or other overhead incurred in
running the dispatcher.)

26

[total sequential run time] + [save core image] + [rsh ... w] + [load dispatcher code] =
2688 + 124 + 24 + 13 =
2849

On the other hand, if we note early completions,

completed>> client12 : ppr (job# 6) 0:08
completed>> scarab : code-b-d (job# 2) 0:09
completed>> elgin : code-e-m (job# 3) 0:09
completed>> decaf : io (job# 7) 0:10
completed>> client13 : code-n-r (job# 4) 0:11

we get the estimated total CPU seconds for the entire actual parallel run by subtracting off the minutes
that all but client13 sat idle (note the gross rounding here!):

[{total parallel run time} - {dispatcher_time}] + (* 5 {dispatcher_time})
- (* 60 (3+2+2+1)) =

(- 1191 691) + (* 5 691) - 480 =
3475

Estimated actual efficiency from the point of view of total CPU seconds used:

(/ 2849.0 3475) = 82%.

(B) From the point of view of total CPU seconds used (on all processors), but only for the part of
compilation potentially done in parallel

Sequential (Real) Time for code-1-a to the end (note nqthm-par.lisp and nqthm.lisp are similar in load
times): Roughly,

[sequential total] - {[load nqthm-par.lisp] + [Proclaim]
+ [Compile-load sequential part]} =

(- 2688 (+ 4 109 226)) =
2349

Parallel run (as explained above, roughly 8 minutes less than (* 5 691)):
(- (* 5 691) (* 60 8)) =
2975

Efficiency: (/ 2349 2975.0) =
79%

(C) From the point of view of looking at REAL TIME, but only for the compilation potentially done
in parallel:

Sequential run, code-1-a to the end (as shown in (B) above):
2349

Parallel Real Time for running dispatcher:
691

REAL speedup for code-1-a to the end:
(/ 2349 691.0) =
3.40

Efficiency for code-1-a to the end:
(/ 3.40 5) = 68%

27

Appendix C

Code

We give here the contents of the following files in directory /local/src/parallel/: bm.lsp, dispatch.lsp,
top.lsp, front-end-with-doc.lsp, and PAR.

;; bm.lsp
;;
;;;;;;;;;; CODE TO CREATE BOYER-MOORE INPUT FILES ;;;;;;;;;;
;;

;;Here’s an example of what an input stream might look like (whitespace added here).

#|
;; front-end.lsp
(defun do-event)
(defun par-nqthm-top-level ...)
;; [and requisite DEFVARs and auxiliaries]

;; jobs file
;(defun no-io () nil)
;(setq io-fn #’no-io)
;(setq blurb-flg nil)
(defvar *output-completed-string* "Boyer-Moore job terminated")
(setq *start-name* ’DELETE)
(setq *finish-name* ’MEMBER-DELETE)
(setq *start-position* 0)
(par-nqthm-top-level)

;; back-end.lsp
[actual events]
|#

;;
;;;;;;;; VARIABLE DECLARATIONS ;;;;;;;;;
;;

(defvar *output-completed-string* "Boyer-Moore job terminated")

;;
;;;;;;;;;;;;;;;; FLAGS ;;;;;;;;;;;;;;;;;
;;

(defvar *no-io-in-parallel-flag* nil)

(defvar *delete-jobs-flg* nil) ;if non-NIL, delete the files in JOBS/.

;;
;;;;;;;;;;;;;; THE REST ;;;;;;;;;;;;;;;;
;;
(defun create-jobs-files (infile suc-size jobs-directory-name)
;; Here INFILE is the list of nqthm events, SUC-SIZE is the granularity, i.e. the
;; number of events to be run each time (after bringing the chronology up to speed),
;; and JOBS-DIRECTORY-NAME and OUTPUT-DIRECTORY-NAME are the subdirectories of the
;; current directory for the input and output files (respectively).
(WITH-OPEN-FILE
(INSTREAM INFILE

:DIRECTION :INPUT
:IF-DOES-NOT-EXIST :ERROR)

(let ((start-info (start-info instream suc-size)))
;; *** We haven’t thought enough about how to handle two jobs with the same name.
;; Perhaps we should put something here checking for duplcate file names.
;; But probably that’s better left for when we deal with books and such.
(iterate for tail on start-info

when ;a bit of error-checking
(if (atom (caar tail)) t
(error "Encountered non-atom in start-names, ~S." (caar tail)))

collect
(create-one-job-file (car tail) (cadr tail) jobs-directory-name)))))

(defun start-name-of (form)
(if (new-dispatch-call form) (car form) (cadr form)))

(defun lemma-form (form)
;; This is a recognizer for the class of forms which determine our notion of granularity.
;; For example, if CONSTRAIN becomes an event then we should include that too.
(member (car form) ’(prove-lemma lemma) :test #’eq))

28

(defun new-dispatch-call (form)
;; *** Should be modified when we deal with books and such.
(or (eq (car form) ’boot-strap)

(eq (car form) ’note-lib)))

(defun start-info (instream suc-size)
;; Returns a list of pairs (<event-name> . n), where n >= 0 indicates the starting
;; position (from a boot-strap or note-lib call or the beginning of file) for this
;; event-name. (I could return the position as well, but I want the event-names
;; to create nice file names, and then the position ought to be irrelevant.)
;; Notice that every suc will end with a lemma, except when the accumulation process
;; is aborted by a boot-strap or note-lib.
(iterate for position from 1

with form and i = 0 and suffix = 0 and ready-flg = t and ans
;; i is the number of lemmas we’ve got so far in the suc we’re accumulating
;; when ready-flg is set we know we’re ready to start a new suc
while (not (eq (setq form (read instream nil a-very-rare-cons))

a-very-rare-cons))
do (progn

(cond ((not (and (consp form)
(or (null (cdr form))

(consp (cdr form)))))
(error " Encountered atom in event file:~& ~S" form))

((new-dispatch-call form)
(setq ready-flg nil) ;in case we were already ready anyhow
(setq i 0)
(setq suffix position)
(setq ans (cons (cons (start-name-of form) suffix) ans)))

(ready-flg
(setq ready-flg nil)
(setq ans (cons (cons (start-name-of form) suffix) ans)))

(t nil))
(when (lemma-form form)

(setq i (1+ i))
(when (= i suc-size)

(setq i 0)
(setq ready-flg t))))

finally (return (nreverse ans))))

(defun create-one-job-file
(start-info finish-info jobs-directory-name

&aux (job-file-name-from-pair (job-file-name-from-pair start-info)))

;; Writes out an input file in the subdirectory JOBS-DIRECTORY-NAME
;; which is appropriate for nqthm or pc-nqthm. If START-INFO is
;; (<event-name> . <position>), that input file is intended for
;; running events in the file from the position <position> in INFILE
;; up to (but not including) FINISH-NAME, with output to be written
;; to a file in OUTPUT-DIRECTORY-NAME. Lemmas before the event
;; named <event-name> (after <position>), however, are to be taken
;; as axioms.
;; The function actually returns the new input file’s name.
(with-open-file
(outstream (concatenate ’string jobs-directory-name job-file-name-from-pair)

:direction :output)
(when *no-io-in-parallel-flag*

(format outstream "(defun no-io () nil)~%")
(format outstream "(setq io-fn #’no-io)~%")
(format outstream "(setq blurb-flg nil)~%"))

(format outstream "(defvar *output-completed-string* ~S)~%"
output-completed-string)

(format outstream "(setq *start-name* ’~S)~%" (car start-info))
(format outstream "(setq *finish-name* ’~S)~%" (car finish-info))
(format outstream "(setq *start-position* ~S)~%" (cdr start-info))
(format outstream "(par-nqthm-top-level)~%" (cdr start-info)))
job-file-name-from-pair)

(defun job-file-name-from-pair (start-info)
;; Here, as usual, START-INFO is a pair (symbol . number), where symbol is an event-name
(if (= (cdr start-info) 0)

(string (car start-info))
(concatenate ’string (string (car start-info)) "."

(prin1-to-string (cdr start-info)))))

29

(defun nqthm-completed (file-name)
;; returns non-nil if we find the header *output-completed-string* (which isn’t then
;; immediately followed by end-of-file)
(cond
((not (probe-file file-name))
(cons ’failure

(list "UNUSUAL FAILURE: File ~A should exist, but does not! ~&"
file-name)))

(t
(with-open-file (stream file-name)

(iterate with input-string
do
(if (setq input-string (read-line stream nil nil))

(when (equal input-string *output-completed-string*)
(let ((success-string

(read-line
stream nil
"UNUSUAL FAILURE: End of status file encountered.")))

(cond
((and (> (length success-string) 6)

(equal (string-downcase (subseq success-string 0 7))
"success"))

(return (cons ’success nil)))
(t (return (list ’failure success-string))))))

(return nil)))))))

(defun status-file-name-from-string (directory-name job-name)
(concatenate ’string directory-name job-name ".status"))

(defun current-directory ()
(directory-namestring (truename "")))

(defun reset-directory (target-directory-name)
(when (not (equal (current-directory) target-directory-name))

(sys:chdir target-directory-name)))

(defun do-file-parallel (infile suc-size &key
(jobs-directory-name "jobs/")
(output-directory-name "output/")
(hosts-file-name
(if (probe-file "hosts")

"hosts"
(concatenate ’string *system-parallel-directory*

"hosts.all")))
(local-host-first t)
(kill-if-no-progress 200)
(command-name "pc-nqthm") ;might be "nqthm", etc.
(front-end (concatenate ’string *system-parallel-directory*

"front-end.lsp"))
(delay nil)
(nice-flag t)
&aux (temp-directory-name "temp/")
jobs-files (current-directory (current-directory)))

;; Runs a Boyer-Moore event list in parallel by creating job files
;; with CREATE-JOBS-FILES (each of which calls DO-FILE-WITH-SUCCESS)
;; and then calling the dispatcher. The first four forms in the PROGN
;; below relate only to clearing out the input and output subdirectories.
;; Returns T if and only if all jobs cause T to be written to the ".status"
;; files. (Recall also that DO-FILE-WITH-SUCCESS causes T to be thus written
;; if and only if all of its events complete successfully.) If any job fails
;; in this sense, the failed jobs are reported to the standard output.
;; Notice that we do the locking on par jobs here because we work with the
;; jobs subdirectory even before starting up the dispatcher.

(unwind-protect
(progn

;; Get control over the current directory right away.
(check-lock-on-par-jobs)
(lock-on-par-jobs)

;; Set up the jobs.
(unwind-protect

(progn

(chk-file-or-directory-exists front-end)
(chk-file-or-directory-exists hosts-file-name)
(chk-file-or-directory-exists jobs-directory-name t)
(chk-file-or-directory-exists output-directory-name t)
(chk-file-or-directory-exists temp-directory-name t)

30

(when (null delay) (setq delay suc-size))
(clear-directory jobs-directory-name *clear-query-flg*)
(setq *current-job-unique-number* 0)
;; Create jobs files.
(format t "~&Creating jobs files...")
(setq jobs-files (create-jobs-files

infile suc-size jobs-directory-name))
(format t " done.~%~%")
;; Run jobs in parallel.
(reset-directory current-directory))

(remove-lock-on-par-jobs))

;; Call the dispatcher.
(format t "~&Invoking dispatcher.~&")
(when (dispatcher :jobs-directory-name jobs-directory-name

:output-directory-name output-directory-name
:hosts-file-name hosts-file-name
:local-host-first local-host-first
:kill-if-no-progress kill-if-no-progress
:command-name command-name
:delay delay
:completion-function #’nqthm-completed
:front-end front-end
:back-end infile
:nice-flag nice-flag)

(format t "~&All events have been run successfully.~%")
t)

)

;; Clean up.
(when *delete-jobs-flg*

(iterate for x in jobs-files
do (delete-file x)))

(reset-directory current-directory)))

31

;; dispatch.lsp

;; This version assumes that nqthm is loaded. Otherwise one should
;; (load "/usr/local/src/nqthm/sloop") and
;; (defmacro iterate (&rest args) ‘(sloop::sloop ,@args)).
;; There are probably a couple of other functions below that would
;; need to be defined in akcl, e.g. no-duplicatesp.

;; We assume that only one parallel job is being run in the current
;; directory at any one time.

;;
;;;;;;;;;;;;;; STRUCTURES ;;;;;;;;;;;;;;
;;

;; Here is the only structure we introduce:

(defstruct job
name number)

;;
;;;;;;;;;;;;;;;; FLAGS ;;;;;;;;;;;;;;;;;
;;

(defvar *local-host-warning* t)

(defvar *save-temp-files-flg* nil)

(defvar *kill-dispatcher-upon-seeing-failure* nil)

(defvar *clear-query-flg* nil) ;used for CLEAR-DIRECTORY

;;
;;;;;;;; VARIABLE DECLARATIONS ;;;;;;;;;
;;

(defvar *failed-job-names*)

(defvar *system-parallel-directory* "/local/src/parallel/")

(defvar *parkill-command* "/local/bin/parkill")

(defvar *protected-hosts-subdirectory* "protected-hosts/")

; The following might have been in /tmp, but what if other run dispatcher
; jobs at the same time? So we put the "junk" in the current directory,
; where the locking mechanism should save us.
(defvar *junk-file* "dispatcher-junk.lsp")

(defvar *lock-file-name* "lock-out-others.par")

;; for the run file, e.g. "/local/src/parallel/statistics/runs/wilding.1"
(defvar *long-job-info-filename*)

;; e.g. the number 1 in the pathname above
(defvar *uniq-value*)

(defvar *user-name*) ;e.g. "wilding"

(defvar *short-job-info-filename* ;i.e. "/local/src/parallel/statistics/job-info"
(concatenate ’string *system-parallel-directory*

"statistics/job-info"))

(defvar *output-info-subdirectory* "statistics/runs/")

(defvar *start-time*) ;set in dispatcher when it’s called

(defvar *local-host-name*) ;used to make the hosts-jobs-alist and to
;protect against blocking spawns on local host

(defvar *all-valid-host-names* nil) ;not actually used here, but could be set in an init-file

(defvar *current-job-unique-number* 0) ;not automatically reset on new dispatcher call

(defvar *file-server-time-disparity*) ; seconds file server’s clock is ahead
; (could be negative if behind)

32

;;
;;;;;;;;;;;; FILE UTILITIES ;;;;;;;;;;;;
;;

(defun chk-file-or-directory-exists (filename &optional directory-flg)
(when (not (probe-file filename))

(if directory-flg
(error "Bad news -- directory ~A doesn’t exist!" filename)

(error "Bad news -- file ~A doesn’t exist!" filename)))
(when (and directory-flg

(not (equal (aref filename (1- (length filename))) #\/)))
(error "Bad news -- directory ~A didn’t end with a ‘/’ !" filename)))

(defun non-files-in-directory (directory-name list-of-files)
(iterate for name in list-of-files

when (or (not (stringp name))
(not (probe-file (concatenate ’string directory-name name))))

collect name))

(defun system-output (command)
;; Submits a shell command writes its output to the "junk file".
;; Should work if command is in syntax you’d give when typing to the shell.
;; Probably don’t need to clear *junk-file* first because SYSTEM will direct SOMETHING there.
(system (concatenate ’string "(" command ") > " *junk-file*)))

(defun read-one-form (filename)
;; returns NIL if file doesn’t exist or if the read fails
(let ((instream (open filename :direction :input :if-does-not-exist nil)))
(and instream

(unwind-protect
(read instream nil nil)

(close instream)))))

(defun get-system-output (command)
;; assumes output is a single line
(system-output command)
(with-open-file (infile *junk-file* :direction :input)

(read-line infile)))

(defun lines-from (filename)
;; Returns the list of lines (as strings) from the given file.
(with-open-file (stream filename)

(iterate with ans and temp
when
(progn (setq temp (read-line stream nil nil))

(when (null temp) (return ans))
(not (equal (setq temp (string-trim " \t" temp))

"")))
collect temp into ans)))

(defun format-to-file (filename string &rest args)
(with-open-file (outfile filename

:direction :output
:if-does-not-exist :create
:if-exists :new-version)

(apply #’format outfile string args)))

(defun princ-to-end-of-file (filename string)
(with-open-file (stream filename :direction :output

:if-exists :append
:if-does-not-exist :error)

(princ string stream)))

(defun list-directory (directory-name)
;;; ***** We should change this to avoid the problem of two jobs dealing
;; with the same junk file, once DIRECTORY works right in AKCL.
;; Returns the listing (as strings) of the given directory name,
;; sorted by time, most recently written ones being at the end.
(progn (system-output (format nil "ls ’~A’" directory-name))

(lines-from *junk-file*)))

(defun clear-directory (directory-name &optional query &aux files)
;; Returns T unless we decide to abort, and then NIL.
(when (setq files (list-directory directory-name))

(cond
((or (not query)

(y-or-n-p "Directory ~A not empty! OK to clear it?"
directory-name))

;;(iterate for file in files do
;; (delete-file (concatenate ’string directory-name file)))
(format t "~&Clearing directory ~A.~&" directory-name)
(system (format nil "rm ~A/*" directory-name)))
(t (error "Directory ~A not empty! Quitting...."

directory-name)))))

(defun job-file-name (directory-name job)
(concatenate ’string directory-name (job-name job)))

(defun output-file-name (directory-name job)
(concatenate ’string directory-name (job-name job) ".output"))

33

(defun status-file-name (directory-name job)
(concatenate ’string directory-name (job-name job) ".status"))

(defun temp-finish-file-name (directory-name job)
(concatenate ’string directory-name "finish." (prin1-to-string (job-number job))))

(defun temp-status-file-name (directory-name job)
(concatenate ’string directory-name "status." (prin1-to-string (job-number job))))

(defun temp-output-file-name (directory-name job)
(concatenate ’string directory-name "output." (prin1-to-string (job-number job))))

(defun check-lock-on-par-jobs ()
(when (probe-file *lock-file-name*)

(error "Already locked by ~A!~%~%~
[Sometimes bogus lock files aren’t removed --~% ~
If you REALLY want to remove the lock file (CAREFUL!!!!),~% ~
(REMOVE-LOCK-ON-PAR-JOBS).]~%"

(file-author *lock-file-name*))))

(defun lock-on-par-jobs ()
(format-to-file *lock-file-name* "locked~%"))

(defun remove-lock-on-par-jobs ()
(delete-file *lock-file-name*))

(defun blocked-hosts ()
;; just for the user, perhaps
(list-directory (concatenate ’string *system-parallel-directory*

protected-hosts-subdirectory)))

;;
;;;;;;;; OTHER RANDOM UTILITIES ;;;;;;;;
;;

(defun hostname ()
(get-system-output "hostname"))

(defun username ()
(get-system-output "whoami"))

(defun set-file-server-time-disparity ()
(format-to-file *junk-file* "xxx")
(setq *file-server-time-disparity*

(- (file-write-date *junk-file*) (get-universal-time))))

(defun get-file-server-time ()
(+ *file-server-time-disparity* (get-universal-time)))

(defun output-host-job (status host-job)
;; Here STATUS is a string
(let* ((now (- (get-universal-time) *start-time*))

(string (format nil
(concatenate ’string "~&" status

">> ~A : ~A (job# ~D)~70,0T~D:~D~D~&")
(car host-job) (job-name (cdr host-job))
(job-number (cdr host-job)) (floor now 3600)
(mod (floor now 600) 6) (mod (floor now 60) 10))))

(output-long-job-info string)
(princ string)
(force-output)))

;;
;;;;;;;;;;;; METERING STUFF ;;;;;;;;;;;;
;;

(defun digits-to-string (number size)
(subseq
(prin1-to-string (+ (expt 10 size) number))
1 (1+ size)))

34

(defun initialize-job-info ()
(setq *start-time* (get-universal-time))
(set-file-server-time-disparity)
(setq *local-host-name* (hostname))
(setq *user-name* (username))
(setq *uniq-value* (mod (get-file-server-time) 1000000))
(setq *long-job-info-filename* (concatenate ’string *system-parallel-directory*

output-info-subdirectory
user-name "."
(digits-to-string *uniq-value* 6)))

(let ((temp))
(unwind-protect

(when (not (setq temp (open *long-job-info-filename*
:direction :output
:if-exists nil
:if-does-not-exist :create)))

(error (concatenate ’string *long-job-info-filename* " exists")))
(if temp (close temp))))

(when (not (probe-file *short-job-info-filename*))
(error (concatenate ’string *short-job-info-filename*

" does not exist "))))

(defun output-long-job-info (string)
(princ-to-end-of-file *long-job-info-filename* string))

(defun output-short-job-info (string)
(princ-to-end-of-file *short-job-info-filename* string))

(defun job-info-message (message host-names)
;; e.g. if message is PAR-START and host-names is ("cli" "client12" "anderson"),
;; and anderson is currently the only blocked host, we get:
;; +++02/17/89 16:26:53 PAR-START kaufmann client12 1
;; hosts: ("cli" "client12" "anderson")
;; blocked: ("anderson")
(multiple-value-bind
(sec min hour date month year)
(get-decoded-time)
(format nil

"~&+++~D~D/~D~D/~D~D ~D~D:~D~D:~D~D ~A ~A ~A ~D~%hosts: ~S~%blocked: ~S~%"
(floor month 10) (mod month 10) ; AKCL bug(?) makes us do contortions
(floor date 10) (mod date 10)
(mod (floor year 10) 10) (mod year 10)
(floor hour 10) (mod hour 10)
(floor min 10) (mod min 10)
(floor sec 10) (mod sec 10)
message *user-name* *local-host-name* *uniq-value*
host-names
(list-directory (concatenate ’string *system-parallel-directory*

protected-hosts-subdirectory)))))

(defun output-job-info (message host-names)
(let ((mess (job-info-message message host-names)))
(output-short-job-info mess)
(output-long-job-info mess)))

;;
;;;;;;;;; MAIN DISPATCHER CODE ;;;;;;;;;
;;

;; The following function, DISPATCHER,

;; takes input files from JOBS-DIRECTORY-NAME
;; and runs COMMAND-NAME on each of these files,
;; using the hosts in HOSTS-FILE-NAME
;; by employing a scheduler which engages roughly every DELAY seconds,
;; and sends the output from each job to the directory TEMP-DIRECTORY-NAME
;; (using the same filenames as the input "jobs" files). If the job
;; completes, then the output file in TEMP-DIRECTORY-NAME is copied
;; to OUTPUT-DIRECTORY-NAME. Note that COMPLETION-FUNCTION should return
;; either NIL, which indicates that the job died in the middle somehow,
;; or else a pair -- either (’success . <message>) or (<other> . <message>),
;; where <message> is either NIL or a list suitable for FORMAT, i.e. a list
;; of the form (string . args).

;; The auxiliary (&AUX) variables may be thought of as follows.
;; HOSTS-JOBS-ALIST: An association list with one pair (HOST . JOB)
;; for each occurrence of HOST in the HOSTS-FILE-NAME. The JOB
;; component is either NIL, which indicates that the HOST is
;; currently idle, or else is a job built using the name of the input file
;; currently assigned (via the rsh command) to HOST.
;; JOBS-UNASSIGNED: The list of input files which have not yet been
;; assigned to any host.

35

(defun make-local-host-first (host-names local-host-name)
(iterate for x in host-names

with ans
when (not (equal x local-host-name))
collect x into ans
finally (return (nconc (iterate for i from 1 to (- (length host-names) (length ans))

collect local-host-name)
ans))))

(defun make-hosts-jobs-alist (host-names local-host-first)
;; Note that *local-host-name* is already initialized by the time this is called.
(cond
((not (consp host-names))
(error "Empty list of hosts"))
(t
(when local-host-first (setq host-names (make-local-host-first host-names *local-host-name*)))
(when (and *local-host-warning*

(not (member *local-host-name* host-names :test #’equal)))
(format t "~%WARNING: This run has been set up such that the local host, ~

~A, is NOT~%in the host list.~%" *local-host-name*))
(iterate for host-name in host-names

when (cond
((or (null *all-valid-host-names*)

(member host-name *all-valid-host-names* :test ’equal))
t)
(t (format t "~&WARNING: Host name ~A not found in *all-valid-host-names*.~&"

host-name)
nil))

collect (cons host-name nil)))))

(defun dispatcher (&key (jobs-directory-name "jobs/")
(output-directory-name "output/")
(hosts-file-name "hosts")
(local-host-first t)
(delay 15)
(kill-if-no-progress 600)
(command-name "pc-nqthm")
(completion-function #’nqthm-completed)
(front-end (concatenate ’string *system-parallel-directory*

"front-end.lsp"))
(back-end (concatenate ’string *system-parallel-directory*

"back-end.lsp"))
(nice-flag t)
(job-list nil)
&aux
(temp-directory-name "temp/") ;auxiliary because we use it in the shell command
(time-since-last-progress-check 0)
temp-time
(bad-jobs nil)
start-time *local-host-name* *user-name* *uniq-value* *long-job-info-filename*
(*failed-job-names* nil)
hosts-jobs-alist
jobs-unassigned
(finished-normally nil))

;; set *start-time*, *local-host-name*, *user-name*, *uniq-value*, and *long-job-info-filename*
;; NOTE: Must do these early for the OUTPUT-JOB-INFO in the unwind-protect
(format t "~&Initializing job information...")
(initialize-job-info)
(format t " done.~%")

(unwind-protect
(progn

(check-lock-on-par-jobs)
(lock-on-par-jobs)

(chk-file-or-directory-exists jobs-directory-name t)
(chk-file-or-directory-exists output-directory-name t)
(chk-file-or-directory-exists temp-directory-name t)

(clear-directory output-directory-name *clear-query-flg*)
(clear-directory temp-directory-name *clear-query-flg*)
(terpri)

36

(when job-list
(let ((bad-files

(non-files-in-directory jobs-directory-name job-list)))
(when bad-files

(error "Bad Job File Names Provided:~%~A" bad-files))))

;; Set up local non-special variables
(when nice-flag

(setq command-name (concatenate ’string "nice " command-name)))
(setq jobs-unassigned

(if job-list
job-list

(list-directory jobs-directory-name)))
(setq hosts-jobs-alist ;uses *local-host-name*

(make-hosts-jobs-alist
(lines-from hosts-file-name)
local-host-first))

(format t "~&Hosts requested: ~S.~%"
(iterate for host-job in hosts-jobs-alist

collect (car host-job)))
(format t "~&Hosts currently blocked: ~S.~%~%"

(let ((x (remove *local-host-name* (blocked-hosts) :test #’equal)))
(or x ’none)))

(output-job-info "PAR-START"
(iterate for host-job in hosts-jobs-alist

collect (car host-job)))

(loop
;; the first form is ignored for time-since-last-progress-check, but that’s OK.

(let ((temp (update-completed-jobs-records
completion-function hosts-jobs-alist jobs-unassigned
temp-directory-name output-directory-name)))

(setq hosts-jobs-alist (car temp))
(setq jobs-unassigned (cdr temp)))

(when (and *kill-dispatcher-upon-seeing-failure* *failed-job-names*)
(format t "~%~%******** KILLING ENTIRE JOB -- if you don’t like abortion,~%~

(SETQ *KILL-DISPATCHER-UPON-SEEING-FAILURE* NIL).")
(return nil))

(when (> time-since-last-progress-check kill-if-no-progress)
(setq time-since-last-progress-check 0)
(when (setq bad-jobs (find-bombed-jobs hosts-jobs-alist

kill-if-no-progress temp-directory-name))
(kill-processes bad-jobs temp-directory-name)
(setq hosts-jobs-alist

(remove-processes-from-hosts-jobs-alist
hosts-jobs-alist bad-jobs))

(setq jobs-unassigned
(append jobs-unassigned

(iterate for job in bad-jobs
collect (job-name job))))))

(setq temp-time (get-universal-time))

(let ((temp (assign-jobs hosts-jobs-alist jobs-unassigned command-name
jobs-directory-name front-end back-end)))

(setq hosts-jobs-alist (car temp))
(setq jobs-unassigned (cdr temp))
(if (all-jobs-completed hosts-jobs-alist)

(return t)
(sleep delay)))

(setq time-since-last-progress-check (+ time-since-last-progress-check
(- (get-universal-time) temp-time))))

;; end of loop

(setq finished-normally t)

(cond (*failed-job-names*
(format t "~%~%FAILED JOBS ~S~&" *failed-job-names*)
nil)

(jobs-unassigned
(format t "~%~%JOBS LEFT TO BE DONE - NO HOSTS AVAILABLE!!")
(format t "~&~%jobs left to do:~% ~S" jobs-unassigned)
nil)

(t t)))

(remove-lock-on-par-jobs)
(output-job-info "PAR-END"

(iterate for host-job in hosts-jobs-alist
collect (car host-job)))

(when (not finished-normally)
(format t "~%Now killing any outstanding ~~par jobs.~%")
(system *parkill-command*))))

37

(defun find-bombed-jobs (hosts-jobs-alist kill-if-no-progress temp-directory-name)
;; returns a list of all jobs which have made no progress since "kill-time"
(let ((kill-time (- (get-file-server-time) kill-if-no-progress)))
(iterate for host-job in hosts-jobs-alist

when (and
(cdr host-job)
(let ((temp-output-file (temp-output-file-name temp-directory-name (cdr host-job))))
(or
(not (probe-file temp-output-file))
(< (file-write-date temp-output-file) kill-time))))

collect (cdr host-job))))

(defun kill (pid)
(system (concatenate ’string "kill -KILL " (prin1-to-string pid))))

(defun get-pid (job temp-directory)
;; pid is first line of temp output file
(iterate for i from 1 to 2 ;could be greater than 2 if we want to try more often

with ans
until ans
do
(cond
((setq ans (read-one-form (temp-output-file-name temp-directory job)))
(return ans))

(t (format t "~&Trying again to read pid of ~S~&" job)
(sleep 3)))

finally (error "Unable to get pid of ~S" job)))

(defun kill-processes (bad-jobs temp-directory)
(iterate for job in bad-jobs

do (kill (get-pid job temp-directory))))

(defun remove-processes-from-hosts-jobs-alist (hosts-jobs-alist bad-jobs)
;; Note that bad-jobs is in same order as hosts-jobs-alist

(iterate for host-job in hosts-jobs-alist
collect
(cond
((null bad-jobs) host-job)
((and
(cdr host-job)
(eq (job-number (car bad-jobs)) (job-number (cdr host-job))))

(setq bad-jobs (cdr bad-jobs))
(output-host-job "*** KILLED" host-job)
(cons (car host-job) nil))

(t host-job))))

(defun block-spawn (host)
(and
(not (equal host *local-host-name*))
(probe-file (concatenate ’string *system-parallel-directory*

protected-hosts-subdirectory host))))

(defun assign-jobs
(hosts-jobs-alist jobs-unassigned command-name jobs-directory-name

front-end back-end)
;; This function assumes that updating of HOSTS-JOBS-ALIST (to reflect completion
;; of jobs) has already been performed. That is: it’s not this function’s job
;; to do that updating. At this point we already know that if a job may be
;; assigned to the CAR of the pair then the CDR of the pair is NIL, and vice-versa.
;; This returns (CONS <new hosts-jobs-alist> <new-jobs-unassigned>). Its side
;; effect is to assign new jobs (from JOBS-UNASSIGNED) to those hosts
;; which are currently idle, additionally instructing the
;; hosts to create .finish files upon completion.

(cons (iterate for pair in hosts-jobs-alist
with next-job
collect
(cond
((null jobs-unassigned) pair)
((and (null (cdr pair))

(not (block-spawn (car pair))))
(setq next-job (make-job :name (car jobs-unassigned)

:number (setq *current-job-unique-number*
(1+ *current-job-unique-number*))))

(setq jobs-unassigned (cdr jobs-unassigned))
(system (system-job-command (car pair) next-job command-name

jobs-directory-name front-end back-end))
(output-host-job "starting" (setq pair (cons (car pair) next-job)))
pair)

(t pair)))
jobs-unassigned))

38

(defun system-job-command (host-name new-job command-name jobs-directory-name front-end back-end)
;; Grotesque, but it works. Notice that \ appears as \\ inside quotes (" ... "), and
;; the single quotes are there to protect names with "funny characters" like $ from the
;; shell command processor.
(format nil "/local/bin/parcsh ~A \\’’~A’\\’ \\’’~A’\\’ \\’’~A’\\’ \\’’~A’\\’ \\’’~A’\\’ \\’’~A’\\’ &"

(concatenate ’string *system-parallel-directory* "PAR")
host-name
command-name
(job-number new-job)
front-end
(job-file-name jobs-directory-name new-job)
back-end))

(defun job-completed (job temp-directory-name)
(probe-file (temp-finish-file-name temp-directory-name job)))

(defun move-temp-files-to-output (job temp-directory-name output-directory-name)
;; Moves the output and status files from the temp directory to the output directory.
;; If the flag *save-temp-files-flg* is non-nil then this does a copy instead of a
;; move (for debugging only, probably).
(system (format nil

(if *save-temp-files-flg*
"cp ’~A’ ’~A’ ; cp ’~A’ ’~A’"

"mv ’~A’ ’~A’ ; mv ’~A’ ’~A’")
(temp-output-file-name temp-directory-name job)
(output-file-name output-directory-name job)
(temp-status-file-name temp-directory-name job)
(status-file-name output-directory-name job))))

(defun update-completed-jobs-records
(completion-function hosts-jobs-alist jobs-unassigned temp-directory-name

output-directory-name &aux success-status)
;; Returns new versions of HOSTS-JOBS-ALIST and JOBS-UNASSIGNED to reflect
;; known job completions (and failures).
(cons
(iterate for pair in hosts-jobs-alist

collect
(if (cdr pair)

(cond
((job-completed (cdr pair) temp-directory-name)
(if (setq success-status

(funcall completion-function
(temp-status-file-name
temp-directory-name (cdr pair))))

(progn
(output-host-job "completed" pair)
(when (not (eq (car success-status) ’success))

(setq *failed-job-names*
(cons (job-name (cdr pair)) *failed-job-names*)))

(when (cdr success-status)
(fresh-line)
(format t " (Job #~D) " (job-number (cdr pair)))
(apply #’format t (cdr success-status))
(fresh-line))

(move-temp-files-to-output (cdr pair) temp-directory-name
output-directory-name))

(progn
(output-host-job "***NOT completed" pair)
(setq jobs-unassigned (append jobs-unassigned

(list (job-name (cdr pair)))))))
(cons (car pair) nil))

(t pair))
pair))

jobs-unassigned))

(defun all-jobs-completed (hosts-jobs-alist)
(iterate for x in hosts-jobs-alist

always (null (cdr x))))

39

;; top.lsp

;; Most of this file is pilfered (and modified) from an rcl file, which
;; in turn borrows freely from Boyer and Moore’s file nqthm.lisp.

(defun nqthm-loaded ()
(fboundp ’iterate))

(when (not (nqthm-loaded))
(load "/usr/local/src/parallel/from-nqthm"))

(defvar dispatcher-code-files
’("/local/src/parallel/dispatch" "/local/src/parallel/bm"))

(defun already-compiledp (filename &aux
(lisp-filename (concatenate ’string filename ".lsp"))
(bin-filename (concatenate ’string filename ".o")))

(and (probe-file lisp-filename)
(probe-file bin-filename)
(< (file-write-date lisp-filename) (file-write-date bin-filename))))

(defun first-file-to-compile (filenames)
(iterate for name in filenames

when (not (already-compiledp name))
do (return name)))

(DEFUN COMPILE-dispatcher (&aux (first-file-to-compile (first-file-to-compile dispatcher-code-files)))
(if (null first-file-to-compile)

(format t "~&All dispatcher files are already compiled.~&")
(FLET ((LF (N)

(LOAD (concatenate ’string n ".o")))
(CF (N)

(COMPILE-FILE (concatenate ’string n ".lsp"))))
;; could have PROCLAIM form here, as in nqthm
(iterate for file in dispatcher-code-files

with compile-flg
do (cond (compile-flg

(CF file) (LF file))
((equalp file first-file-to-compile)
(setq compile-flg t)
(CF file) (LF file))

(t (LF file)))))))

; Invoking (load-dispatcher) is all it takes to build a runnable version of
; this system, assuming that you have compiled it.
(defun load-dispatcher (&aux badfile)
(when (setq badfile (first-file-to-compile dispatcher-code-files))

(format t "WARNING: The file ~A should be compiled."
badfile))

(FLET ((LF (N)
(LOAD (concatenate ’string n ".o"))))

(iterate for file in dispatcher-code-files
do (LF file))))

40

;; /local/src/parallel/front-end-with-doc.lsp

(setq *break-enable* nil)
(setq sys::*notify-gbc* t)

;;;;; Values to be input for particular job:
(defvar *start-position*) ;position of applicable note-lib or boot-strap
(defvar *start-name*) ;name of first event to be possibly proved
(defvar *finish-name*) ;name of event which terminates the job (maybe NIL, for EOF)
;;;;;

;; The following might be modified in the particular input file.
(defvar *par-directory-name* "/usr/home/par/")

(defvar *event-index* 0) ;which event we’re currently looking at

(defvar *axiom-stage* t) ;when t, we should replace PROVE-LEMMAs by ADD-AXIOMs

(defvar *last-event-name*) ;name of event most recently read from the input stream

;(sleep 30)

(defun do-event (form)
(setq *event-index* (1+ *event-index*))
(setq *last-event-name* (cadr form))
(cond
((< *event-index* *start-position*)
t)
(t
(when *axiom-stage*

(cond
((eq (cadr form) *start-name*)
(setq *axiom-stage* nil))

((eq (car form) ’prove-lemma)
(setq form

‘(add-axiom
,(cadr form) ,(caddr form) ,(cadddr form))))

((eq (car form) ’lemma)
(setq form

‘(axiom
,(cadr form) ,(caddr form) ,(cadddr form))))))

(ppr form nil)
(terpri nil)
(eval form))))

(defun format2 (string &rest args)
;; notice that the call to echo2 guarantees that we’ll overwrite the err
(system
(concatenate ’string

"echo2 ’"
(apply #’format nil string args)
"’")))

(defun format-nqthm-status (string &rest args)
(apply #’format2 (concatenate ’string *output-completed-string* "~&" string) args))

(defun par-nqthm-top-level (&aux next-par-form init success)
(unwind-protect

(loop
(setq init nil)
(setq next-par-form (read *standard-input* nil a-very-rare-cons))
(setq init t)
(if (or (eq next-par-form a-very-rare-cons)

(and *finish-name* (eq (cadr next-par-form) *finish-name*)))
(return (setq success t))

(or (prog1 (print (do-event next-par-form))
(terpri nil) (terpri nil))

(return (setq success nil)))))
(cond
((null init)
(format-nqthm-status "Failure: Unsuccessful read after ~S" (cadr next-par-form)))
(success
(format-nqthm-status "Success!!"))
(t (format-nqthm-status " FAILURE: The event ~S failed."

last-event-name)))
(bye (if success 0 1))))

41

;; PAR

#!/bin/csh
par [host-name] [command-name] [unique_number] [file1] [file2] [file3]
Sends process number of the PAR call followed by standard output of rsh, all to the standard output
echo $$ > temp/output.$3
(cat $4 $5 $6 | rsh $1 $2 ’; echo2 $status’ >> temp/output.$3) >& temp/status.$3
echo " " > temp/finish.$3

42

Table of Contents

1. Acknowledgements . 1
2. Introduction . 2
3. A User’s Manual . 3

3.1. Basic Use . 3
3.1-A. An example . 3
3.1-B. Environmental requirements . 4
3.1-C. Problems That are Detected . 5
3.1-D. The Par commands . 6

3.2. DO-FILE-PARALLEL options . 8
3.2-A. :jobs-directory-name . 8
3.2-B. :output-directory-name . 8
3.2-C. :hosts-file-name . 8
3.2-D. :local-host-first . 8
3.2-E. :kill-if-no-progress . 9
3.2-F. :command-name . 9
3.2-G. :front-end . 9
3.2-H. :delay . 10
3.2-I. :nice-flag . 10

3.3. Some Implementation Hooks . 11
3.4. Dispatcher Use . 12

4. Systems guide: implementation . 15
4.1. Dispatcher implementation . 15
4.2. Parallel nqthm implementation on top of the dispatcher . 17
4.3. The system front-end file. 17

5. Results and Conclusions . 19
5.1. Trial Runs . 19
5.2. Future Work . 19
5.3. Conclusions . 20

Appendix A. Instrumentation . 21

A.1. /local/src/parallel/statistics/blocks . 21
A.2. /local/src/parallel/statistics/job-info . 21
A.3. /local/src/parallel/statistics/runs . 22

Appendix B. Parallel compilation . 23

B.1. How Parallel Compilation is Done . 23
B.2. Results from Using the Parallel Compiler . 25

Appendix C. Code . 28

i

