
IDM -- A Configuration Management Tool
for Maintaining Consistency

Through Incremental Development
May 1, 1989

Technical Report #40

Robert L. Akers
Lawrence M. Smith

Computational Logic Inc.

1717 W. 6th St. Suite 290

Austin, Texas 78703

(512) 322-9951

This research was supported in part by the Defense
Advanced Research Projects Agency, ARPA Orders 6082
and 9151., and by the National Computer Security Center,
MDA904-87-C-6005. The views and conclusions
contained in this document are those of the authors and
should not be intepreted as representing the official
policies, either expressed or implied, of Computational
Logic, Inc., the Defense Advanced Research Projects
Agency, the National Computer Security Center, or the
U.S. Government.

1

Abstract

This paper presents a mechanism which a software development environment may use to help maintain
consistency among the various parts of a developing or evolving software system. Our view of the
development process considers that 1) the program is represented as a collection of structured objects in a
database and 2) the program development environment manages a collection of independent tools that
operate on the database objects, storing their results in the same database. If one operation changes a
database entry that is an input of another operation, then the result of the latter operation may be
inconsistent with the database entries on which it should be based. We present a mechanism for managing
the development process in such a way that these consistency problems can be resolved with minimal
impact and show how it was used to implement a new Incremental Development Manager for the Gypsy
Verification Environment.

1. Introduction

Change is a fact of life in software systems, particularly during development phases. The operations
performed on one program unit by the program development environment (compilation of a procedure, for
example) may rely on information about other units. Changing one of these other units can therefore
introduce inconsistencies in the results of previous operations. A compiler does not extensively explore
the network of interrelations among program units, and at worst, a system recompilation will resolve all
inconsistencies between source code and compiled code and may cost only a few hours or days of
computer time. Formal verification operations, such as verification condition generation and proof, tend
to more extensively explore the interrelation network, however, increasing the number of operations
which might be invalidated by a particular change in the program. Moreover, due to the high personnel
cost of formal reasoning, redoing operations to restore consistency can be quite expensive. A program
support environment with formal reasoning modules should strive to minimize the amount of work which
must be redone to recover consistency after a source code change.

A program development support environment can be viewed as a collection of more or less independent
tools coordinated to operate on a database. The database contains the program under development and
data objects associated with it, e.g. proofs, cross-references, object and executable files, etc. We say a
USE of a data object by an operation occurs when the data is utilized in the operation. With this view, we
can discuss the problem of maintaining consistency through incremental development in terms of the
general problem of maintaining consistency of a changing database with a network of internal
dependencies. The dependency network is represented by the collection of all USES which the
environment has recorded.

This paper presents a paradigm, suitable to this view, for managing incremental development. The
paradigm allows dependencies to be tracked to an arbitrary level of granularity, which helps to minimize
the amount of work to be redone in response to a change. The paradigm is more closely tied to the
relationship between the program database and the environment tools than to any notion of programming
language semantics. Therefore, it is applicable to a wide variety of program development operations. (In
fact, it is applicable to database consistency problems not associated at all with program development
environments.)

The paradigm was recently used to implement a fine-grained Incremental Development Manager (IDM)
for the Gypsy Verification Environment (GVE). [Good 88] Gypsy is a collection of methods, languages,
and tools for building formally verified computing systems. [Good 89] The GVE provides capabilities for
specifying a system, implementing it, and for using formal, logical deduction to prove properties about its
specification and implementation. The most fundamental operations are presenting a program for parsing

2

and type checking, generating verification conditions (VCs), which are conjectures whose proofs validate
the consistency of the program with its specification, and proving these VCs with the help of an
interactive prover. The IDM is responsible for helping to maintain consistency between the results of
these operations and their inputs. The new IDM replaces an older tracking facility which was known to be
flawed.

The rest of this paper will summarize previous work, outline the implementation of the new GVE
mechanism, and reflect on these results.

2. Background

An excellent paper by Perry [Perry 87] presents a taxonomy of software interconnection models,
discussing examples of each. Perry’s principal categories are those based on: 1) units (typically files), 2)
syntactic program objects (procedures, types, etc.), and 3) formulas capturing semantic information about
program objects. Incremental development systems can be discussed quite naturally in terms of software
interconnection models.

The most common means of tracking incremental development is based on dependencies among files.
Among the many systems that use files and file versions as the unit of development granularity are the
Unix Make [Feldman 86], the Software Change Control System (SCCS) [Rochkind 75], and the Revision
Control System [Tichy 85]. None of these systems consider the semantic content of the files they
manage; neither do they deal with granularity at or below the level of a program unit, such as a procedure.
Therefore they can be described in terms of Perry’s category of unit interconnection models.

A step from unit interconnection to syntactic interconnection was made by Tichy [Tichy 86] in a tool that
determines when changes to a program entity necessitate recompilation of various parts of a system.

More than any of the aforementioned systems, the Boyer/Moore theorem prover [Boyer & Moore
88] solves a problem akin to that faced in the GVE: proof dependencies that penetrate arbitrarily deeply
through the program structure. The prover enforces a rigid incremental development policy for function
definitions. Any time a function is redefined, all definitions and proofs which have ever depended in any
way, either directly or transitively, upon the function being redefined are immediately discarded. While
this Spartan approach guarantees soundness and consistency, it does not offer much flexibility to the user,
nor does it attempt to preserve previous work which depends on unmodified parts of a redefined function.

The INSCAPE Environment [Perry 89] uses semantic interconnection information to track dependencies
among program modules, with a goal of supporting formal modularization of large scale systems. The
environment tracks pre- and post-condition dependence, caller obligations, and preclusion and handling of
runtime exceptions. User-defined predicates serve as the points of interconnection. The INSCAPE
incremental development tool, Infuse [Kaiser 87], suggests when a change in the interface or
implementation of a module might require changes to other interfaces or module implementations. This is
a related but somewhat different problem than that addressed by the Boyer-Moore mechanism and the
GVE, which are largely concerned with the consistency of a collection of proofs derived from code.

The incremental development algorithm employed in the GVE in years past [Moriconi 77] [Moriconi
79] is known to have been deficient in both concept and implementation. Among its principal
shortcomings were that:

• It was not based on a general model independent of the operations involved. Rather, an
internal model of GVE operations and relationships was an intrinsic part of the design and
implementation of the tool. The incremental development "rules" were deeply embedded in

3

both the theory and the software implementation. This discouraged a clean factoring of
concerns.

• It noticed only in a coarse way the connections between program units, specifically noting
only that some information from a particular unit had been used without noting what that
information was.

• To compensate for the lack of detail, it made assumptions about the nature of the USE. For
example, it assumed that if a function was USED in parsing, only its header was utilized, or
if it was USED in VC generation, only its external specifications were touched. The rules
assumed these characterizations of the USED relationships among units, and utilized these
assumptions to declare what operations would be called into question when a program unit
was changed. This led to an idealized theory which seemed reasonable, but which had no
direct connection to the real interrelations established during program development.

• Syntactic references in the Gypsy code, rather than operational references to the objects in
the GVE database, were sometimes used for determining the presence of USES. This is
generally inadequate, since USES in some operations may be transitive down the reference
tree to varying degrees, depending on the implementation of the program development
environment.

• The original design was incorrect, even in its own ideal terms, with respect to dependencies
arising during proof. This design was never implemented to support the GVE prover.

3. The Implementation of the IDM

Although our incremental development paradigm is quite generally applicable, it will be helpful to
describe it in terms of its implementation as the new GVE Incremental Development Manager.

Some definitions will help make the discussion clear.
1. A Gypsy program UNIT is a procedure, function, lemma, constant, or type.

2. A SYNTACTIC COMPONENT of a Gypsy unit is a separately identifiable portion of a unit.
Examples are a function’s parameter list, the exit specification of a procedure, and the value
of a constant.

3. A GVE database OBJECT is the internal representation of a unit.

4. An OPERATION is an analysis the GVE does on an object. The operations covered by the
IDM are semantic checking of a unit (a phase of parsing), verification condition (VC)
generation of a unit, and proving a verification condition. Other operations which could be
tracked are compilation, information flow analysis, or documentation assemblage; in short,
any action that uses database input.

5. A USE is a dependency, by one object A on another object B, created by a particular
operation on A. If B changes because of incremental development, then that operation on A
must be checked or possibly redone.

The key steps we take in managing incremental development are first to note when an operation uses
certain input data, and then to recognize that when that data is changed, the operation must be checked.
The observations the incremental development manager makes about the USE relations among program
units can be as fine-grained as the property structure of the underlying database. The tool makes
absolutely no assumptions about how these relations manifest themselves in various development
operations.

The overview of the IDM is straightforward.
1. The USES associated with each operation are recorded as information is fetched from the

database.

4

2. The USE information is inverted, so that each unit has not only a list of all USES stemming
from operations based on the unit, but also a list of inverted USES showing which
operations on other units USED this one.

3. When a unit changes, the inverted lists allow the relevant operations on units to be
efficiently marked for checking.

4. On the basis of program status reports, the user issues commands to check the marked
operations when he sees fit.

The IDM implements a general scheme for incremental development. A GVE-specific rule base provides
direction for actions which maintain database consistency. The rule base is driven by a propagating
database manager, which triggers these actions when new information is stored in the database.

In describing the mechanism, we will first sketch the structure of the GVE database, then describe its new
rule-based propagating database manager. With that background, we will discuss the recording of USES
of program objects. Then, we will exhibit a critical propagation rule and show how it completes the
information gathering phase. Finally, we will describe how incremental development status and cross
reference information is reported to the user.

3.1 Our Example

We will use a simple Gypsy example to illustrate the operation of the mechanism. Knowledge of the
Gypsy language and of the GVE is helpful but not required for understanding.

We have a recursive functional specification for the mathematical function factorial and a procedure fact
that computes it iteratively. The goal of our verification is to prove that the execution of fact computes
factorial. The proof, however, is not the point of the example. Rather, we will investigate how
incremental changes to the program affect the work that has already been done.

Here is a fragment of Gypsy source code for the example.
scope factor= begin

const maxpos :integer := 32767;
type small_int = integer [1 .. maxpos];

procedure fact (n:small_int; var fact_result : small_int) =
begin

exit fact_result = factorial(n); { specification of fact }
{ .. the executable body of fact .. }

end {fact};

function factorial (m:small_int): small_int =
begin exit (assume factorial(m) =

if m = 1 then 1 else (m * factorial(m-1)) fi);
end {factorial};

end; {scope factor}

3.2 The GVE Database Structure

To understand the mechanism, it helps to understand the GVE database structure.

There is one database object for each Gypsy program unit. Each database object has a set of attributes
which, in turn, may have a number of entries. Among the attributes of a database object are the unit’s
semantically analyzed internal representation (which we call its INTERNAL-REP), its verification
conditions, a structure describing its verification status, and a structure containing cross reference

5

relationships with other units. We will discuss each of these principal attributes in turn.

The INTERNAL-REP is constructed by the parser during semantic analysis of the unit. It contains,
among other things, an internal representation of each syntactic component of the unit. Consider our
Gypsy routine fact. The INTERNAL-REP contains separate entries for the formal parameter list (header),
the exit specification, the local variable declarations, and the executable body. There is also an I-USE list
entry, wherein every USE of another unit during semantic analysis is noted.

The status attribute of a unit has a set of entries describing such things as whether its semantics need
checking because of an incremental change to a unit USED in the original semantic analysis, whether the
unit has had its VCs generated, and whether its VCs or proofs need to be checked because of a change to a
unit USED during VC generation.

Among the entries in the verification condition attribute are a list of VCs for the unit and an I-USE list
corresponding to USES occurring during VC generation. Each of the VCs contains a representation of its
proof (if it has been attempted), an indicator of the status of the proof (e.g., trivially true, proved, partially
proved, or not attempted), and an I-USE list corresponding to USES occurring during the proof.

The cross reference attribute contains an entry for each syntactic component of the unit. The values under
that entry indicate which other units in the database have USED that component. We call these entries
THEY-REF properties. In our example, the unit factorial will have a THEY-REF-MY-HEADER entry
which notes that the semantic checking of fact USED the header of factorial. Note that the I-USE lists
for a unit foo indicate which units (and which parts of those units) were USED in the analysis of foo,
while the various THEY-REF lists of foo indicate which units USED the various parts of foo. We
maintain the invariant that, collectively, the combined THEY-REF properties are an exact inversion of the
combined I-USE lists for all units in the database.

3.3 The Propagating Database Manager

The objects of the GVE database and their attributes are managed by a rule-based propagating database
manager [LSmith 88]. The database designer can associate rules with an arbitrary database attribute,
attribute entry, or, generically, with any node in the database structure. The rules are triggered when the
value of the attribute (or node) to which it is attached is modified. The role of the rules is to describe

1actions which can keep the database in a state that is consistent with respect to the changed value.

A rule has three components:
1. A predicate, Pred, which must be satisfied in order for the propagation to occur. The

evaluation of this predicate cannot cause a database attribute to be stored.

2. A Form which is evaluated to effect the propagation.

3. A collection of attributes, Attr-set, which are allowed to be modified as part of the
immediate propagation.

When the value of an attribute with a propagation rule is stored, if the new value is different than the old
one, the database manager invokes the propagation rule and takes the following action. First, Pred is
evaluated. If Pred is satisfied, the propagation Form is evaluated. Form can do anything it wishes,
except that if it directly stores a value in the database, the target attribute must be among the ones given in
Attr-set. The attributes whose names are in Attr-set may also have propagations attached to them, so that

1In fact, the rules can cause arbitrary actions, but we will discuss only their role in incremental development.

6

a chain of propagations may be triggered by storing an attribute value in the databsae.

Propagation rules are used to build and maintain both the status attribute structure mentioned above and
the collection of cross reference THEY-REF properties.

3.4 Marking the USES of Program Objects

Our implementation employs the notion of active I-USE lists. For every type of I-USE list (I-USE-IN-
PARSE, I-USE-IN-VCGEN, I-USE-IN-PROOF, etc.), there exists a single I-USE list variable in the GVE

2implementation. When a context is entered, for instance when the parser begins checking a particular
unit or when a proof of a VC is begun, the appropriate I-USE list is activated and is initially empty. Then,
whenever information from another unit is USED, (for instance when there is a database query to fetch the
type definition of small_int), we record on all active I-USE lists that the type definition of small_int has
been USED. This recording is done in conjunction with the database fetch. When we exit the context for
the active I-USE list, the list is deactivated, and the value of the I-USE list variable is stored in the
database. I-USE lists may be reactivated with initial values from previous computations.

From a software engineering viewpoint, the advantage of this recording mechanism is a proper separation
of concern. I-USE lists can be activated at a high level of the implementation, where context is typically
controlled, without regard for what kind of lower level activity might trigger a USE or what the USES
might be. But the actual recording of a USE will normally occur at the low-level of the implementation,
where the database is accessed, without concern for the context of the larger computation. This factoring
of duties makes arbitrarily fine granularity possible while contributing to the modularity and overall
reliability of the system.

We mentioned that the old GVE IDM made gross assumptions about which information is USED in the
GVE. The new IDM avoids this possibility completely by recording USES precisely at their point of
occurrence. There is no question of interpretation, and unlike the old system, there are no inferences
based on mere expectations about how certain operations are conducted and how incremental
development might affect them. Everything is strictly realized in the implementation.

Thus far, we have not discussed the granularity of information recorded in an I-USE list, except to say that
it was coarse in the previous implementation of the IDM. In fact, all that was noted in the old IDM was
the name of the unit which was USED. Moreover, there was only one I-USE list for each unit, and it was
utilized for all operations. This lack of granularity extended into the I-USE list cross references.

The granularity is much finer in the new IDM, and this is one of the secrets to its success and its
reliability. Each entry under an I-USE list is of the form:

entry ::= (<unitname> (<use tag>+))

where the tags indicate what parts of the unit were USED. The part of an I-USE-IN-PARSE list derived
from the exit specification of fact might be:

(.. (factorial (ITS-KIND ITS-HEADER))
(small_int (ITS-TYPE-DEF)) ..)

2This implies an assumption that only one unit is being analyzed at a time. This is not strictly necessary. In general, it is only
necessary that there be some capability for associating some I-USE list variable with every operation/context pair. Moreover, the
same operation can be associated with multiple operations or multiple contexts simultaneously. For instance, we have
simultaneously active I-USE lists for the parsing of a unit and for the parsing of a particular syntactic component of the unit, e.g., its
exit specification.

7

This means that in the semantic analysis of fact, the parser USED the KIND of factorial (to note that it is
a function) and USED its formal parameter list (to make sure the actual parameters are compatible with
their formals), and it also USED the type definition of the formal, small_int, (to make sure it matched
with the type of the actual, also small_int).

The granularity of the USE tags carries into the inversion of the I-USE lists into THEY-REF lists. In this
case, the unit small_int will have a THEY-REF-MY-TYPE-DEF entry among its THEY-REF attributes.
A partial picture of that entry will be:

(THEY-REF-MY-TYPE-DEF .. (fact (IN-ITS-PARSE)) ..)

This means that during the semantic analysis of unit fact, we USED the type definition of small_int. To
extend this example, if the type definition of small_int were examined during the VC generation of
another unit gcd and during the proof of a VC fact#3, the above entry would look like:

(THEY-REF-MY-TYPE-DEF .. (fact (IN-ITS-PARSE))
(gcd (IN-ITS-VCS))
(fact#3 (IN-ITS-PROOF)) ..)

As we shall see, the THEY-REF properties are the linchpin of the system’s response to an incremental
change to a unit.

3.5 Two Critical Propagation Rules

Recall that each operation is responsible for collecting the USE dependencies that it creates, and these
cross-references are completely inverted in the database by the propagating database manager. When, for
example, the VC generation of unit fact USED the entry spec of factorial, that information was recorded
as a USE in an I-USE list property of fact and its inversion stored in a THEY-REF property of factorial.

The propagation rule attached to all I-USE list attributes triggers this inversion. We state it informally,
where the I-USE list belongs to a unit A:

PRED: true

FORM: First determine which USES in the old value are absent in the new one
(call these DELETES) and which USES in the new value are not present in
the old value (call these ADDS). DELETES and ADDS are of the general
form of a USED list. Now invert the DELETES and ADDS, for example
turning A’s USED list entry:

(I-USE-IN-VCGEN (B ITS-HEADER) (C ITS-TYPE-DEF))

into a candidate for B’s THEY-REF entry

(THEY-REF-MY-HEADER (A ITS-VCGEN))

and C’s entry

(THEY-REF-MY-TYPE-DEF (A ITS-VCGEN)).

Finally, remove the inverted DELETES from the appropriate THEY-REF lists,
then add the inverted ADDS to the appropriate THEY-REF lists.

ATTR-SET: (THEY-REF-MY), i.e., the THEY-REF structure (which encompasses
all the THEY-REF lists) of any unit may be modified.

Another critical database propagation rule is attached to each syntactic component of INTERNAL-REP.
It is informally stated as follows:

8

3PRED: The syntactic component changes in a significant way,

FORM: Get the THEY-REF list for that syntactic component of the unit, and
for each operation mentioned in a use tag, mark that operation as
needing checking for the unit to which it applies.

ATTR-SET: The status attributes which indicate that the semantics of a unit
need checking, that its VCs need checking, and that any individual
VC needs its proof checked.

Note that the propagation form says only that the relevant operation should be marked as needing
checking. It does not actually perform the checking. Since the checking is potentially expensive, we let
the user do it when he sees fit. He may wish to make several successive changes which would each affect
one operation, for example, and this allows him to defer checking the operation until after he has made all
his changes, if he so chooses.

We can see this rule at work if we change the exit specification of factorial to be:

exit (assume factorial(m) =
if m lt 2 then 1 else (m * factorial(m-1)) fi);

We shall see below how this change could cause a change in the verification status of fact.

3.6 Reporting Program Status, Cross Reference, and Enforcement

Propagation rules are used to build and maintain both the status attribute structure mentioned above and
the collection of cross reference THEY-REF properties. These two sets of properties are used by the IDM
to maintain an efficient representation of the development status of the entire program. From these
properties and the I-USE lists, detailed status reports and cross references can be delivered to the user.

For this status report, the example has been parsed, the VCs generated for fact, and the VCs fact#2 and
fact#3 proven interactively.

Gve -> show status
Units and/or VCs -> fact

VCs generated, not all proved:
FACT

FACT
Correctness vcs:

Basic vcs, proved in theorem prover:
FACT#2, FACT#3

Basic vcs, proved in VC generator:
FACT#1

Basic vcs, not yet attempted:
FACT#4, FACT#5

Well-formedness vcs, proved in VC generator:
FACT#1

The cross reference report at this point would be:

Gve -> show crossref
Units and/or VCs -> fact

FACT (a Procedure) refers in its parse to:
FACTORIAL: its header, its kind.
MAXPOS: its value, its type specification, its kind.

3At present, any change is significant, but we could loosen this restriction in some contexts, for instance if we are simply renaming a variable throughout a unit, or if we are
relaxing a specification constraint in such a way that all existing proofs will still be valid.

9

SMALL_INT: its type definition, its kind.

FACT refers in its VC Generation to:
FACTORIAL: its entry spec, its exit domain spec, its header.
MAXPOS: its type specification, its kind.
SMALL_INT: its type definition.

References to FACT:
no units

VCS for FACT:
FACT#2 (a vc) refers in its proof to:

MAXPOS: its value, its type specification, its kind.
SMALL_INT: its type definition.

FACT#3 (a vc) refers in its proof to:
FACTORIAL: its entry spec, its header, its exit spec, its kind.
MAXPOS: its value, its type specification, its kind.
SMALL_INT: its type definition.

After making the modification to the exit specification of factorial, the status report is:

Gve -> show status
Units and/or VCs -> fact

VCs generated, not all proved:
FACT

FACT
Correctness vcs:

Basic vcs, proved in theorem prover:
FACT#2, FACT#3

Basic vcs, proved in VC generator:
FACT#1

Basic vcs, not yet attempted:
FACT#4, FACT#5

Basic vcs, incremental development has marked the proof to be checked:
FACT#3

Well-formedness vcs, proved in VC generator:
FACT#1

Note that since neither the semantic analysis nor the VC generation of fact referred to the exit
specification of factorial, neither of those operations were marked to be checked. In the proof of fact#3,
however, we USED factorial’s exit specification, and therefore the proof needs to be checked.

The status attribute and cross reference information is also used to inhibit operations which are likely to
immediately become inconsistent. For example, we inhibit the VCGen operation on units which need
semantic checking or units whose semantic checking USED other units which now need semantic
checking. Similarly, we will not allow the user to enter the prover with a verification condition which
USES units which need semantic checking, or a verification condition of a unit which is marked to have
its VC’s checked.

4. Discussion and Extensions

10

4.1 Payoff

The GVE is a large and complex software development environment, and the wrong model of incremental
development could result in an unmanageable set of incremental development rules. When we first
developed our propagating database manager, we envisioned a set of rules in the style of Moriconi but
extended to cover all development scenarios. We imagined the need for hundreds of rules and dreaded the
task of guaranteeing their consistency. After completing our model of the database and formulating the
algorithm for the fine-grained marking of USES, we recognized there were only two propagations of
central importance: the inversion of I-USE lists to THEY-REF lists, and the marking rule illustrated in
the example above! After tying up all the details, we found only ten distinct propagation rules necessary
to completely capture incremental development in the GVE. The design of propagation driver, the
database, and the marking algorithm had paid off in a big way.

4.2 The Complete Set of Propagation Rules

The complete set of distinct propagation rules are as follows:

• Invert I-USE lists into THEY-REF lists, as described in 3.5.

• Mark operations which need checking, as described in 3.5.

• When a unit is parsed with semantic errors, note that its semantics will need to be checked.

• When a unit with errors is re-parsed and the errors corrected, turn off the flag which says its
semantics need checking.

• When a new unit is parsed, initialize its VCG-STATUS as either NOT-GENERATED or
NOT-POSSIBLE (i.e., with a type or a constant).

• When a VC is generated, record its status as either being TRUE, FALSE, or PROOF-NOT-
ATTEMPTED.

4• When a unit with VCs is changed, turn its CHECK-VCS flag on.

• When a proof is attached to a VC, set the VC-STATUS to PROVED if the proof is
complete, or to PROOF-SUSPENDED if the proof is partial.

• The composition access lists of abstract types are inverted, so that each unit has a property
which shows the abstract types to which it has access.

• When a type is deleted, update an internal structure which contains information about all
declared types.

(The last two items have no direct bearing on incremental development or status, but are of general utility
to the GVE. There is no limitation on what propagations can do, beyond the constraints of the allowable
attributes list in the propagation.)

4.3 Unexpected USES and Optimization

After installing the rules, we noted the phenomenon that the implementation was USE-ing more
information than one might naively expect. These instances seemed to break down into four classes, each
of which required a different GVE implementation response.

1. Unanticipated but correct USES-- For instance, when expanding a function during proof, the
system extracted information from the entire call tree of the exit specification of the
expanded function. This was because the GVE does not support proof of mutually recursive
functions, and call tree traversal was necessary to determine if mutual recursion was present.

4This would be subsumed by the second rule if a unit’s USES of itself were recorded.

11

Naturally, we uphold these USES.

2. Spurious USES -- There were cases where the implementation performed computations
unrelated to the decisions at hand, for instance by utilizing service functions which were
designed for other purposes but which fortuitously returned the desired results. The remedy
was to tune the implementation to use more appropriate utilities, thus improving efficiency.

3. Non-optimal algorithms -- We uncovered a number of cases where information was in fact
being legitimately extracted and its USE marked, but the computation was more complicated
than it needed to be, perhaps because of unnecessary generality. The remedy was to
optimize the algorithms, resulting in a reduced set of USES and, again, improved efficiency.

4. Non-impact USES -- This is the most subtle case. Occasionally, a computation USES
information in such a way that incremental development of the USED units would not
change the result of the computation or otherwise require any checking. For example, in the
algebraic simplifier, a performance optimization gets information about the symbols in an
expression, causing USES of types. This allows the simplifier to return a result much more
quickly, but the same result would have been returned without the optimization and the
USES. There is no reason, then, for the USES to affect incremental development. In cases
like this, we can temporarily disable or otherwise restrict the recording of USES. Decisions
such as this, to bypass the basic incremental development mechanism, should be made with
great care.

It was natural to take a very conservative approach in our initial implementation of the new incremental
development paradigm. Optimizing the implementation is an open-ended task.

In retrospect, we feel that the very introduction of the IDM provided a measure of inter-connectivity in the
GVE implementation we did not previously have. With this knowledge, we were able to improve the
quality of the implementation in areas not directly related to incremental methods.

4.4 A Note on Caching

In the GVE, as in many systems, caching information is an important strategy for increasing efficiency.
In implementing an IDM in this style, it is critical to recognize that when an operation caches information,

5the USES that occurred while computing that information must also be cached. When the cached
information is utilized, the cached USES associated with the information must be recorded in the current
context. This complicates any caching mechanism, but unless it is done correctly, there will be a hole in
the tracking of dependencies.

4.5 Extensions to the Work

Aside from the open-ended optimizations mentioned earlier, there are several directions for future IDM-
supported work.

The granularity of contexts associated with I-USE lists in the GVE is not as fine as it could be. Although
the parser stores an I-USE list for each syntactic component of a unit, the VC generator stores only a
single I-USE list for all the VCs for a unit, encompassing the entire VC generation operation for that unit,
and the prover stores only a single I-USE list for each proof. In general, the smaller the contexts of the
operations, or the finer the subdivisions of an operation, the more granularity can be realized in I-USE
lists and in incremental development tracking.

In an entirely different vein, the incremental development information currently stored in the database

5Note that this discussion applies to operations caching information, as opposed to the database system. If we picture the IDM as
a layer sitting between the database system and the various system operations, we are concerned with caching above the IDM layer.

12

could support a knowledge-based tool for guiding the user through the verification task. This could take a
6number of forms, one of which might be a modification impact analysis tool, or a "What if.." facility.

For instance, a user could ask what would be the effect of changing the exit specification of a unit, and he
might be told that he would have to re-parse the unit, to regenerate VCs for that unit and perhaps some
others, and to replay or re-do certain proofs. We might consider extending this report with a "why is
that?" annotation, which would describe what activity (e.g., expanding a function during a proof) caused
the dependency to exist. Note that with the separation of concerns in our implementation, this extension
would be messy, since the reason for the USE, which is probably known at a high level of the
implementation, would have to be communicated to the lower-level functions which recorded the USE.

We envision that the entire IDM could be cast as a stand-alone tool which could be layered over any
object-oriented database system and then be used by any set of tools which could be arranged to use the
appropriate IDM interfaces. A paper is being drafted which describes the formal model of incremental
development embodied in the IDM and which could be used as the benchmark for evaluating the stand-
alone tool. We would hope that the tool could be coded in a language suitable for formal verification and
that its desired properties could be verified by proof.

4.6 Applicability

This discussion has concerned itself only with the way the IDM paradigm is employed to achieve high
reliability configuration management of Gypsy programs and specifications. We feel, however, that the
paradigm is applicable to a much broader set of problems.

For example, consider the task of releasing new versions of a software development environment to users
who have work in progress on the platform of the old version. Perhaps a change in the new release might
affect the work in progress. In the GVE, for instance, a change to the VC generator might be significant
enough to warrant checking of VCs under certain circumstances. The IDM could be employed to "stamp"
the unit with the version of the VC generator used to create its VCs. If a subsequent release called for
checking of VCs, the database object representing the VC generator would be given a new value for its
version attribute. When the modified value was stored, a propagation rule would note which units had
VCs associated with the old VC generator and would mark those units as needing their VCs checked with
the new VC generator.

The IDM would lend itself to the sort of straightforward configuration management measures being
implemented in various program support environments. The notion of "created after" relations on files,
which are the basis of incremental development tracking in many systems, could be captured with
timestamps and coarse USE recording for files. This rather crude use of the IDM could be significantly
refined for any identifiable components of files that could be represented in a database.

Of course, for languages that support the incremental compilation of units, the IDM would support the
simple problem of knowing what program units throughout a system need to be incrementally recompiled
after changes have been made in particular units.

It seems that the model described here could be applied to the fully general problem of maintaining
consistency of an arbitrary database with various data dependencies when any database element is
updated. The principal problem would be optimizing the space requirements for storing the incremental
development properties, with the tradeoff being storage vs. granularity.

6Moriconi provided an ad hoc version of such a tool in his earlier work.

13

5. Conclusion

We have presented a mechanism for managing incremental development and illustrated its support of the
development of verified Gypsy programs. To achieve high reliability, the model we use interprets
incremental development events strictly in terms of the implementation of the programming environment;
a USE is recorded because something was fetched from the database, not because some model of the
verification process stated that a USE was likely. Our implementation employs a separation of concerns
which strongly reinforces the reliability of the system. Its observations have a fine degree of granularity,
which tends to minimize the job of restoring consistency to a verification and proof state in which some
units have been changed. The IDM itself became a useful software analysis tool for our program
development system by helping to reveal the subtle inter-connectedness in its implementation.

While this discussion focused on a particular software development methodology and its tools, we see no
reason why it could not be applied to a broad class of problems in program development environments
and, in general, to manage update propagation in any database system.

14

References

[Boyer & Moore 88]
R. S. Boyer and J S. Moore.
A Computational Logic Handbook.
Academic Press, Boston, 1988.

[Feldman 86] S.I. Feldman.
Make -- A Program for Maintaining Computer Programs
University of California, 1986.
Unix Programmer’s Manual Supplementary Documents I.

[Good 88] Michael K. Smith, Donald I. Good, Benedetto L. DiVito.
Using the Gypsy Methodology
Computational Logic Inc., 1988.
Revised January 1988.

[Good 89] Donald I. Good, Robert L. Akers, Lawrence M. Smith.
Report on Gypsy 2.05
Computational Logic Inc., 1989.
Revised January 10, 1989.

[Kaiser 87] Dewayne E. Perry and Gail E. Kaiser.
Infuse: A Tool for Automatically Managing and Coordinating Source Changes in Large

Systems.
In Proceedings of the 1987 ACM Computer Science Conference. ACM, St. Louis, Mo.,

February, 1987.

[LSmith 88] Larry Smith.
The Propagating Database Manager.
Internal Note 78, Computational Logic, Inc., September, 1988.

[Moriconi 77] Mark S. Moriconi.
A System for Incrementally Designing & Verifying Programs.
PhD thesis, The University of Texas at Austin, 1977.
ICSCA-CMP-9.

[Moriconi 79] Mark S. Moriconi.
A Designer/Verifier’s Assistant.
IEEE Transactions in Software Engineering SE-5:4:387-401, July, 1979.

[Perry 87] Dewayne E. Perry.
Software Interconnection Models.
In Proceedings of the Ninth International Conference on Software Engineering. IEEE

Computer Society, March, 1987.

[Perry 89] Dewayne E. Perry.
The Inscape Environment.
Technical Report, AT&T Bell Laboratories, February, 1989.
publication pending.

[Rochkind 75] M.J. Rochkind.
The Source Code Control System.
IEEE TSE SE-1:364-370, December, 1975.

[Tichy 85] Walter F. Tichy.
RCS -- A System for Version Control.
Software -- Practice and Experience 15:7:637-654, July, 1985.

[Tichy 86] Walter F. Tichy.
Smart Recompilation.
ACM Transactions on Programming Languages and Systems 8:3, July, 1986.

Table of Contents

1. Introduction . 1
2. Background . 2
3. The Implementation of the IDM . 3

3.1. Our Example . 4
3.2. The GVE Database Structure . 4
3.3. The Propagating Database Manager . 5
3.4. Marking the USES of Program Objects . 6
3.5. Two Critical Propagation Rules . 7
3.6. Reporting Program Status, Cross Reference, and Enforcement . 8

4. Discussion and Extensions . 9
4.1. Payoff . 10
4.2. The Complete Set of Propagation Rules . 10
4.3. Unexpected USES and Optimization . 10
4.4. A Note on Caching . 11
4.5. Extensions to the Work . 11
4.6. Applicability . 12

5. Conclusion . 13

i

