Addition of FreeVariables
tothe PC-NQTHM
I nter active Enhancement
of the Boyer-Moore Theorem Prover

Matt Kaufmann

Technical Report #42 May, 1989 (revised March, 1990)

Computational Logic Inc.
1717 W. 6th St. Suite 290
Austin, Texas 78703
(512) 322-9951

This research was supported in part by ONR Contract
NO00014-88-C-0454. The views and conclusions contained in
this document are those of the author and should not be
interpreted as representing the official policies, either expressed
or implied, of Computational Logic, Inc., the Office of Naval
Research or the U.S. Government.

Acknowledgements

I’d like to thank my colleagues at Computational Logic, Inc. for useful conversations and suggestions
during the course of thiswork. I'd especially like to thank Bob Boyer for a suggestion which led directly to this

approach and Matt Wilding, David Goldschlag, and Bishop Brock for helpful comments on drafts of this report.

1. Introduction

The PC-NQTHM system, aso referred to below as *‘the proof-checker’’, is an interactive enhancement to
the Boyer-Moore Theorem Prover (NQTHM). CLI Technical Report 19 [1] isauser’s manua for PC-NQTHM
asit existed in May 1988. Since that time we have, however, added a notion of *‘free variables’ to that system.
The present report documents changes since May 1988 that involve the addition of free variables to
PC-NQTHM. However, other changes from the version reported in [1], besides those relating to free variables,
can be found in the appendix at the end of this report. We assume that the reader has some familiarity with

PC-NQTHM, either by way of having used it a little or by way of having looked briefly at the user’s manual
(1.

The primary motivation behind this extension of PC-NQTHM was a desire to give support to an
experimental modification of the Boyer-Moore Theorem Prover that allows first-order quantifiers; see[2]. In
fact, some appropriate new macro commands have been created and used successfully (also reported in[2]) in
the presence of first-order quantifiers; see 3.2 below. However, this extension of PC-NQTHM documented
herein should prove useful even without involving quantifiers, since it allows the user to defer the choice of
substitution when using the built-in commands CLAIM, USE-LEMMA, and REWRITE; see Subsection 3.1
below.

With afew minor exceptionsl, the new version is ** upward-compatible’’ with the previous version in the
following sense: proofs that replay in the previous system still replay in the new version. However, the new
version includes a notion of free variable in the proof state. In the previous version, when one wished to use a
lemma (either by way of the proof-checker’'s REWRITE or USE-LEMMA commands), one had to specify the
instance of that lemma at the time it was used (by way of an optional substitution argument). In the new
version, new variables are simply labeled as *‘free’’, and three new built-in commands have been introduced to
handle free variables. Free variables may be instantiated by way of the PUT command. The COPY command
conveniently copies hypotheses so that, roughly speaking, the user can perform multiple PUTs. Finaly, the
help command SHOW-FREE-VARIABLES displays the current free variables. These commands are

documented by the on-line help facility and in this report, as are some convenient macro commands.

Section 2 explains our notion of ‘‘free variables’ and documents the new built-in commands COPY,

1GENERALIZE lemmas are now used in the new proof-checker's GENERALIZE command; a very minor change has been made to
SPLIT for better efficiency; SUBV can only be used when at the top of the conclusion. Also see the appendix.

PUT, and SHOW-FREE-VARIABLES. A quick scan of that section should suffice to prepare the user to start

using free variables.

Section 3 documents other changes in PC-NQTHM arising from the addition of the notion of free
variables. It explains the changes in existing built-in commands and also documents some new and modified

macro commands.

Finally, Section 4 deals with soundness. It provides examples demonstrating the necessity for some
restrictions on the system’s handling of free variables, reviews some important technical notions, and sketches a
proof of soundness of the approach. That section is included more for theoreticians than for PC-NQTHM users.
It contains some details about the exact interaction of free variables with various commands, notably

GENERALIZE, that were not so fully given in previous sections.

Here's a bit of background. A version of the PUT command appeared in an early natural deduction
prover of Bledsoe[3]. This prover was incorporated into an early program verification system[4], whose
descendent is the current prover for the Gypsy Verification Environment (GVE), [5]. PUT and COPY
commands both exist in the current GVE prover, the latter having existed for some 5 years. Our inspiration for
the proof-checker’s version of these commands came from the GVE prover, although we make no claims about
similarity of implementation. In addition, we are unaware of any soundness arguments for similar provers such

as those given in Subsection 4.3 of this report.

2. Freevariables and the new built-in commands

2.1 Freevariables

Our notion of free variables is similar to the notion described for the Boyer-Moore Theorem Prover in

[6] on pages 235 and 325. Roughly speaking, afree variable is one that may be instantiated any way one likes.

Let'sformalize this notion as follows. Recall from [1] that a proof state has the following fields -- except
that we now add anew field, called FREE-VARIABLES:

A state consi sts of:

I NSTRUCTI ON, CURRENT- TERM GOVERNCRS, CURRENT- ADDR- R, GOAL,
OTHER- GOALS, CUMULATI VE- LEMVAS- USED, FREWRI TE- DI SABLED- RULES,
ABBREVI ATI ONS, and FREE- VARI ABLES.

Recall also our basic paradigm, namely that each successful invocation of a built-in change command pushes a

new proof state on top of the so-called st at e- st ack. The changes to the proof-checker described in this
report mostly involve the three new commands mentioned above as well as some new macro commands,
together with the effects that the existing commands now have on the FREE-VARIABLES component of a

state.

The correctness of the approach is stated formally, and then proved, in Subsection 4.3 of this report. For
now, a rough description of the semantics of the approach is that a proof state is provable if there is some
instantiation for its free variables such that the conjunction of the state’s goals, under that instantiation, is a
theorem. The commands should thus have the property that if a state is provable after the issuing of a
command, then the pre-existing state is provable. Thus, if the final state has the property that every goal is T

(true), then it must follow that the original goal is atheorem.

Let us turn now to the new built-in commands.

2.2 PUT, COPY, and SHOW-FREE-VARIABLES

These new commands are the commands that most directly involve free variables. Here are examples of

how they are used:
(PUT (V$ (PLUS X VY)) (W(TIMES A B)))

{Substitute (PLUS X Y) for V$ and (TI MES A B) for W in the current proof state
(COPY 3)

{Copy the third hypothesis, renaming free variables in that hypothesis to obtain the new

hypothesis whenever such renaming is known to be sound.}

SHOW FREE- VARI ABLES

{Show the free variables together with the names of the goals in which they appear.}

Notice that PUT substitutes for the indicated free variables in the entire proof state, not just in the current goal.

The on-line help facility provides the following descriptions of these commands.

->. (help put copy showfree-variabl es)
(PUT (V1 terml) ... (Vn termm)): Apply the indicated substitution to the
entire proof state, where each Vi is a free variable in the current proof

st at e.
EXAMPLE: (PUT (V$ (PLUS X Y)))

(COPY nl1 ... nk): Copy the indicated active hypotheses, renanming all
free variables in the copies that do not appear in any other goal.
EXAMPLE: (COPY 3)

OTHER FORM (see HELP-LONG): COPY.

SHOW FREE- VARI ABLES: Show the free variables of the current proof state,
each listed together with the goals in which it appears (if any).

(SHOW FREE- VARI ABLES T): As above, except that printing of the goal
informati on i s suppressed.
->

Documentation for the command COPY (with no arguments) is found using (HELP-LONG COPY):

COPY: Sane as (COPY nl ... nk) where (nl ... nk) is the list of all
active hypotheses, except that a hypothesis is only copi ed when the resulting
copy contains at |east one renanmed vari abl e.

More details on all these commands may be found by using HEL P-LONG.

3. Additional and modified commands

3.1 Moadificationsto built-in commands

In this section we describe modifications to the built-in **change’’ commands GENERALIZE, INDUCT,
REWRITE, USE-LEMMA, and CLAIM that have been made in order to deal appropriately with free variables.
Some of these modifications are relevant to soundness, as shown in the final section. Others are useful for

deferring the choice of substitution when using alemmaor aclaim.

Let us begin with GENERALIZE. The first example of the fina section shows the necessity, for
soundness, of having some restriction on how GENERALIZE interacts with the set of free variables of the proof
state. Actualy it would suffice, when generdlizing with a substitution that replaces terms t; with
corresponding new variables v; , to remove from the list of free variables any variable that occurs in that
substitution. However, we can do a little better. Our precise conditions are rather subtle for when a free
variable must become non-free because of GENERALIZE. Therefore, we'll postpone further discussion of this

aspect of GENERALIZE until the soundness proof in Subsection 4.3.

Next let us consider the INDUCT command. Here are two new points from the documentation provided

by (HELP-LONG INDUCT).

(2) If there are any free variables of the state that occur in the

current goal, these will be remobved fromthe free variables list. This is
necessary for soundness. (3) If there are any free variables of the state
occurring in the variables of a command of the form (INDUCT (g vl ... vn)),
these will be renoved fromthe free variables list. This too is necessary for
soundness.

REWRITE, USE-LEMMA, and CLAIM have been modified so that newly-introduced variables are
considered to be free. Here is the appropriate documentation. First, from (HELP-LONG REWRITE) we

excerpt the following:

NOTE on free variables of the proof state: Al variables introduced into
the proof state by REWRITE are added to the list of free variables.

And, from (HELP-LONG USE-LEMMA) we excerpt the following:

NOTE on free variables of the proof state: Al variables introduced into
the proof state by USE-LEMVA are added to the list of free variables.

Finally, here is some new information provided by (HELP-LONG CLAIM), where exp is the expression being

CLAIMed.
NOTE: Any variables in exp that do not occur anywhere else in the
current proof state will be added to the list of free variables of the proof
state.

3.2 Some new and some improved macr o commands

Several macro commands have been newly provided or strengthened with the new system, some of which
deal particularly with free variables. The most interesting ones are documented in this section. Some new
commands that are not related to free variables are described briefly in the appendix. Special attention is given

to the command SK* at the end of this subsection.

First we give a very brief summary of the commands that we will document below. ANDSPLIT+ islike
ANDSPLIT, except that it copies hypotheses to avoid unwanted sharing of free variables among goals.
BACKCHAIN has been enhanced, primarily to perform unification (i.e. to do PUTs when helpful). R$islike
REWRITE except that new free variables are suffixed with ‘$’ (possibly followed by an index). SK* removes
all functionsin the current goal that were defined using DEFN-SK, as described in some detail at the end of this
subsection, while SK is a more selective version. UNIFY unifies the current subterm with a hypothesis.
USE-LEMMAS is like USE-LEMMA but treats all variables not bound by the supplied substitution as free
variables. FORWARDS is like FORWARD in that it does forward-chaining, but FORWARDS$ aso does
unification, and the user does not have to supply a hypothesis number. GENERALIZE-SKOLEMS generalizes
away calls of Skolem functions introduced by DEFN-SK (mentioned in the discussion of SK* above), and it can

be especially useful for preparing a goal for acall to the prover in which metalemmas are expected to be used.

Now for the details, as provided by the help facility.

->. (help andsplit+ backchain r$ sk sk* unify use-lemma$ forward$ generalize-skol ens)

Macro Command [Use HELP-LONG to see the definition]

(ANDSPLI T+)

As with the ANDSPLIT conmand, if the current subtermis of the form

(AND x y ...), then a subgoal is created for each conjunct, and the current
goal becomes proved. However, unlike ANDSPLIT, hypotheses are copi ed before
each subgoal is created, whenever the COPY command can succeed. This way
there is |l ess chance that one will find, later in a proof, that a variable to
be instantiated occurs in a goal other than the current one.

Macro Conmand [Use HELP-LONG to see the definition]

(BACKCHAI N &OPTI ONAL N)

(BACKCHAIN n): The idea is that if hypothesis nunber n is active and of the
form (IMPLIES P Q, where Qis the current conclusion, this results in proving
the current goal but |eaving one at a subgoal to prove P under the current
hypot heses. However, BACKCHAIN is nore powerful than that, in four ways.

First of all, it suffices that Qunify with the current conclusion, i.e.,
it suffices that there be a PUT comand that will nake Q and the current
concl usion identical.

Second, the indicated hypothesis can be of the form
(I'MPLIES P1 (I MPLIES P2 (... (IMPLIES Pk QQ))), for any non-negative k. In
particular, it can sinply be Q

Third, the conditions above hold as well if Qis a conjunction of which
the current conclusion is one of the conjuncts (in the general sense that if Q
is (AND QL @), then everything above holds if it holds for either QL or Q@ in
place of Q.

Finally, n need not be supplied, i.e. it is permissible to subnmt the
conmmand BACKCHAIN with no arguments. |n that case, an attenpt will be made to
find a suitable n, by I|ooking through the hypotheses in reverse order until a
suitabl e one is found.

NOTE: one nust be at the top of the current goal to run this comand.

Al so note that "booknmarks" will be placed around the instructions generated:
the first comuand generated will be (BOOKMARK (BEG N (BACKCHAIN n k))), where
nis the index of the hypothesis used and k is as shown above, and the final
command will be (BOOKMARK (END (BACKCHAIN n k))).

Macro Command [Use HELP-LONG to see the definition]

(R$ &REST ARGS)

Sane as REWRI TE, except that new free variables are suffixed with $ signs when
they don't already end in $ signs or $ signs foll owed by indices.

Macro Command [Use HELP-LONG to see the definition]

(SK)

Assuming that the current termis a call of a DEFN SK function FOO, and that
there is a lemma call ed FOO SUFF or FOO- NECC (according to parity determ ned
by position of the current tern), we want to replace the current termby the
appropriate Skol em axi om stored in FOO SUFF or FOO NECC.

Macro Command [Use HELP-LONG to see the definition]

(SK* &OPTI ONAL NO SY)

Applies SK to everything possible in the current goal (including subterns of
active hypotheses). Wth a non-NIL optional argunent it prints out what it is
doi ng.

Macro Command [Use HELP-LONG to see the definition]

(UNI'FY &OPTI ONAL N)

UNIFY: Creates a PUT comand that unifies sone active top-level hypothesis
with the current subterm if possible; fails otherwise. (UNIFY n) specifies
that one should only try this with the nth hypot hesis.

See al so BACKCHAI N.

Macro Conmand [Use HELP-LONG to see the definition]

(USE- LEMVA$ LEMVA &OPTI ONAL SUBST)

Li ke USE- LEMVA, except that variables in the I emma which are not explicitly
substituted for are brought in as free variables in the proof state.

Macro Command [Use HELP-LONG to see the definition]

(FORWARDS)

Li ke forward, except no argunent is required and instead, the systemtries to
find (starting with the |ast hypothesis) an active hypothesis of the form
(I'MPLIES p g) such that p unifies with some active hypothesis. |f the system
finds such hypotheses then it calls the FORWARD conmand appropriately after
doi ng any necessary unification.

Macro Command [Use HELP-LONG to see the definition]

(GENERAL| ZE- SKOLEMS)

General i zes away all ternms whose function synbol was introduced as a Skol em
function by a DEFN-SK event. This is probably a useful thing to do just
before entering the theoremprover if you want it to be able to take naxi mal
advant age of nmetafunctions.

- >

Finaly, let us give a little extra attention to the command SK*, which is very convenient to use in
conjunction with DEFN-SK (the new Boyer-Moore event currently available in some experimental
enhancements, cf.[2]). In order for SK* to work, it is necessary that appropriately named lemmas have been

proved. For example, after submitting the definition
(defn-sk arb-large-p (x)
(forall big (exists bigger
(and (1 essp big bigger)
(p x bigger)))))

one should prove the following two trivial lemmasin order for SK* to work on calls of ARB-LARGE-P. They
are obtained by inspection of the formula printed out by the system in response to the DEFN-SK event. One of
these is the ‘‘sufficiency’’ lemma, whose name is obtained by suffixing ‘‘-SUFF’ to the end of the new
function name, and which corresponds to the first conjunct of the formula printed out in response to the
DEFN-SK command. The other isthe ‘‘ necessity lemma’’, whose name is obtained by suffixing *‘*-NECC’’ to

the end of the new function name, and which corresponds to the second conjunct of the formula printed out in

response to the DEFN-SK command.?

2The INSTRUCTION hints shown below will always work for the -suff and -necc lemmas. In fact a macro DEFN-SK+ is in the CLI
core image of pc-ngthm, and is available upon request, which creates these lemmas automatically.

(prove-l emma arb-1I arge-p-suff
(rewite)
(implies (and (lessp (big x) bigger)

(p x bigger))
(arb-large-p x))
((instructions pronote (rewite 2))))
(prove-1l emma arb-1| arge-p-necc
(rewite)
(inmplies (not (and (lessp big (bigger big x))
(p x (bigger big x))))
(not (arb-large-p x)))
((instructions pronote
(dive 1)
(rewrite 2)
top s)))

Having proved such lemmas for each function introduced by DEFN-SK, the SK* macro command has the
following effect. Each call of such a function, in either an active hypothesis or the conclusion of the current
goal, is replaced by aterm in which that function has been eliminated by ‘‘opening it up’’ using the lemmas
above (and paying attention to parity). Hereisan example use. Notice that the -SUFF lemma above is used for

proving that ARB-LARGE-P holds, while the -NECC lemma is appropriate for using the fact that ARB-

LARGE-P holds. The variables suffixed with ‘$' are newly-introduced free variables.

>(verify (inplies (and (g x) (arb-large-p X))
(arb-large-p (addl x))))

->. sk*
-> th

***x Active top-level hypotheses:
There are no top-level hypotheses to display.

***x Active governors:
There are no governors to display.

The current subtermis:

(1 MPLIES (AND (Q X)
(LESSP BI G (Bl GGER BI G X))
(P X (BIGGER BIGS X)))

(AND (LESSP (BI G (ADDL X)) Bl GGERS)
(P (ADDL X) Bl GGER$)))

4. Soundness

In thisfinal section we start by showing why certain restrictions are necessary on the system’s use of free
variables. We then review certain fundamental notions, especially about substitutions, and conclude by

demonstrating soundness of the approach.

10

4.1 Examplesillustrating restrictions on free variables

This subsection demonstrates the necessity of having some restrictions on the handling of free variables.
All input in the examples below appears on lines following the prompt, ‘- >: ’; the rest is output. Let us

consider various commands in turn.

GENERALIZE.

Consider the following *‘proof’” of (EQUAL T F). What'sgoing on hereisthat we' re trying to prove a
falsehood by generalizing away an expression with a free variable and then later instantiating that variable with

PUT. Asthe‘‘proof’’ below shows, it isimportant not to allow such a sequence of steps.
(EQUAL T F)

-> showrewites

1. SILLY

New term T

Hypot heses: ((LESSP (ADD1 $7) $2))
-> (rewrite 1 (($z 2)))

Rewriting with SILLY.

NOTE: The variable Z is being introduced into the proof state and is
therefore being added to the current list of free variables.

Creating 1 new subgoal, (MAIN. 1).

The proof of the current goal, MAIN, has been conpleted. However, the
foll owing subgoals of MAIN renain to be proved: (MAIN . 1).

Now proving (MAIN . 1).

-> th

*** Active top-level hypotheses:
There are no top-level hypotheses to display.

*** Active governors:
There are no governors to display.

The current subtermis:
(LESSP (ADD1 Z7) 2)
->: (generalize (((addl z) a)))

The goal (MAIN . 1) has been generalized to the new goal ((MAIN. 1) . 1),
whi ch is now the current goal.
{Her€e's the message indicating the removal of Z from the free variables of the proof state.}

WARNI NG The variable Z is being renoved fromthe list of free variables
of the current proof state, for soundness reasons, because it has been
generalized away but still "interacts" with free variables in the resulting
goal . (Use (HELP-LONG GENERALI ZE) for a further explanation.)

The proof of the current goal, (MAIN. 1), has been conpleted. However, the
foll owing subgoals of (MAIN. 1) renain to be proved: ((MAIN. 1) . 1).

Now proving ((MAIN . 1) . 1).

->: goals

((MMN. 1) . 1)

11

-> th

*** Active top-level hypotheses:
Hl. (NUMBERP A)

*** Active governors:
There are no governors to display.

The current subtermis:

(LESSP A 2)

-> (put (z (addl a))) {Thishad better not work, or we'd be able to finish the proof!!}

NO CHANGE -- The variable Z is not in the list of free variables of the

current state.
- >

INDUCT

Let’s see now why having certain restrictions on how the set of free variables interacts with the INDUCT
command are necessary for the soundness of the system. One such restriction is labeled (2) in the help printed

in response to (HELP-LONG INDUCT):

(2) If there are any free variables of the state that occur in the
current goal, these will be renmobved fromthe free variables list. This is
necessary for soundness.

Now suppose that we have defined the notion |S-SQUARE of a perfect square (for natural numbers), and

that we have the following rewrite rule |S-SQUARE-SUFFICIENCY :
(I MPLI ES (EQUAL (TIMES Y Y) X)

(1'S- SQUARE X))
Also suppose that we want to prove that every natural number is a perfect square (which is obviously absurd).

If we enter the proof-checker with the command
(verify (inplies (nunberp n) (is-square n)))

and proceed with the commands PROMOTE and REWRITE, we have a single goa and a single free variable,
Y:

*** Active top-level hypotheses:
HL. (NUMBERP N)

*** Active governors:
There are no governors to display.

The current subtermis:
(EQUAL (TIMES Y Y) N

If we then apply the command (INDUCT (PLUS N Q)), or any similar induction on N, then we find ourselves

with the following two goals:

12

(I MPLI ES (ZEROP N)
(I MPLI ES (NUMBERP N)

(EQUAL (TIMES Y V) N)))

(I MPLIES (AND (NOT (ZEROP N))
(I MPLI ES (NUMBERP (SUBL N))

(EQUAL (TIMES Y Y) (SUBL N))))
(I MPLI ES (NUMBERP N)

(EQUAL (TIMES Y Y) N)))
Our specification of the INDUCT command requires the removal of Y from the list of free variables at this
point. Suppose however that we did not have this restriction. Then the substitution replacing Y by
(IF (ZEROP N) 0 N) would result in each of the two goals above being provable, thus completing the

proof!

Here is an example showing the necessity of another restriction for the INDUCT command printed in

response to (HELP-LONG INDUCT):

(3) If there are any free variables of the state
occurring in the variables of a command of the form (INDUCT (g vl ... vn))
these will be renpved fromthe free variables I|ist.

Here is how to prove a non-theorem if that restriction is entirely removed. Consider the following valid but

silly rewrite rule:

(prove-lemma funny (rewite)
(inmplies (and f (not (zerop n
(equal (equal x f) t

)))
)))
Suppose we attempt to verify (EQUAL T F), with our first step be to REWRITE using the rule FUNNY

above. Then we obtain three subgoals:

-> print-all-goals

(MAIN . 1)
F

(MAIN . 2)
(NUMBERP N)
(MAIN . 3)

(NOT (EQUAL N 0))
->

Suppose we work on the first of these by issuing the command (INDUCT (PLUS N Q)). Then our proof state

looks as follows:

13

-> print-all-goals

((MIN. 1) . 1)

(IMPLIES (ZERCP N) F)

((MIN. 1) . 2
(IMPLIES (AND (NOT (ZEROP N)) F) F)
(MAIN . 2)

(NUVBERP N)

(MAIN . 3)

(NOT (EQUAL N 0))

If N is not removed from the list of free variables, then we can instantiate N to be 1 via the command

(PUT (N 1)), at which point all of the goals become provable!

Notice, by the way, that the first of these two INDUCT examples does not violate restriction (3), while
the second doesn't violate restriction (2). That is, neither restriction alone is enough to guarantee soundness,

which seems to leave us with no obvious way to weaken the requirements for INDUCT.

4.2 A Review of Some Technical Notions

In the following discussion, |- denotes provability with respect to the current Boyer-Moore history

(chronology). It ishandy to introduce some notation and standard terminology.

Review of facts about substitutions.

A substitution is simply a function mapping terms to terms. For aterm t and substitution s, we write
t / s to denote the result of substituting s intot (which is defined in the usual way). It also makes sense to
substitute a substitution s, into agiven substitution s ; by substituting s, into every element of therange of s ;

Sq 11 sy = {<X,y/s,> <x,y> 0O s}

Next let us introduce notation for the (more or less standard) notion of the composition of substitutions s, and
S, thought of as the substitution obtained by first applying s; and then applying s ,:

Sy @s, = (s /1 sp) O {<x,y> 0O s, x 0O domain(s,)}.

We will use the following composition rule for substitutions, which relates the above notion of composition to

the usual functional notion. Notice that wewrite t/s/s’ asshorthandfor (t/s)/s’

LEMMA (Composition rule for substitutions). For any termt and substitutionss and s’ , we have:

14

t/isls’ =tl(s @s’). -

Let us conclude our review of substitutions with one more simple observation.

LEMMA (restricting substitutions). Lett beaterm and let s be a substitution whose domain is a set of
variables. Suppose that A is a subset of the domain of s such that every variable occurring int which belongs
to the domain of s in fact belongs to A, and let s be the restriction of s to A. Then t/s isidentica to to

t/sg. -|

Let us move on now to some notions related to PC-NQTHM in particular.

DEFINITION. A provable state is a proof state for which thereis a substitution s, with domain equal to
(equivalently, contained in) the set of free variables in that state, such that if P is the conjunction of the goals of

that state, then P/ s is atheorem of the current history.

Notice that an equivalent definition results if we allow the domain of s to be any subset of the set of free

variables, since we can extend such a substitution by {<v, v>: v isafreevariablenotindonai n(s) }.

“*Soundness”’ means simply that any state that can be brought to completion by proof-checker
commands, in the sense that the final goals all have true conclusions, is‘‘provable’’ in this sense. To make this
notion of soundness a hit more precise, let us recal the following definition from Appendix B of [1].
(Disclaimers regarding the sense in which certain issues are avoided may be found in that appendix. They

apply here but will not be repeated here.)

DEFINITION. A valid state stack is a state stack that can be produced from an interactive session that
begins with a call of the form (VERIFY <term>) and then results from the execution of a sequence of change

commands.

4.3 Soundness Theorem

We wish to prove the following theorem, which extends the theorem in Appendix B of [1] to the setting
of the new proof-checker. It implies that in particular, if all the goals have true conclusions at the end of a
proof, then the original goal (which of course never has free variables) is atheorem. That is, the proof-checker

only certifies theorems of the Boyer-Moore logic.

15

THEOREM. If the top (most recent) proof state in a valid state stack is a provable state, then so is the

bottom (original) state in that state stack.

We will prove this theorem by induction on the length of the valid state stacks. First let us note (without
proof) that all commands except INDUCT, PUT, COPY, and GENERALIZE have the following property

(which is stronger than the property (*) on p. 56 of the manual, [1]):

(+) A goa Gisreplaced by agoal G (which may equal G) and zero
or more new goalsGGsuchthat| - GG & G -> G

In order to prove the theorem by induction, then, suppose that we have a valid state stack and that the
theorem holds for all shorter state stacks. Assume that the top state is provable. If the state stack has length 1,
then we're done, so assume that there are at least two states in the stack. By the inductive hypothesis, it suffices
to prove that the next-to-top state is provable. That state is of the form (G & R), where Gis its current goal
and Ris the conjunction of the rest of its goals. Then the top state may bewrittenas (GG & G & R), where
here G isthe new version of Gin that state and GGis the conjunction of the newly-created subgoals of G and R
is the conjunction of the remaining goals. Since the top state is provable (by hypothesis), there is a substitution
s onitsset of freevariablessuchthat |- (GG & G & R)/s. Henceif the final instruction is other than
INDUCT, PUT, COPY, or GENERALIZE, then by (+) we have| - (G & R)/s. This concludes the proof
(except for these four commands), except that we should observe that the commands REWRITE, USE-
LEMMA, and CLAIM can introduce new free variables into a state, and hence the domain of s may properly
include the set of free variables of the next-to-top state; but in that case, we simply observe that | - (G &
R) /s’ ,wheres’ istherestriction of s to the set of free variables of the next-to-top state. It remains then to

handle the cases where the final instruction is INDUCT, PUT, COPY, or GENERALIZE.

INDUCT. Thiscaseisclear -- we may take s’ to equal s -- since the restriction on INDUCT guarantees
that no free variable occursin Gor in GG For that condition implies that GG s equals GGand G s equals G
Now the Boyer-Moore logic supports INDUCT in the sense that from | - GGweget | - G and the conclusion
follows. (In practice the INDUCT command allows free variables in G, but first removes them from the free

variableslist before completing the command.)

PUT. The PUT command takes a substitution sO whose domain is a subset of the free variables FRV of
the current state, and creates a new state with a set FRV1 of free variables. Let P be the conjunction of the

goas in the next-to-top state, i.e. Pis(G & R). By hypothesis, there is a substitution s with domain FRV 1

16

suchthat | - (P/s0)/s. It sufficesto show that there is a substitution s’ with domain FRV such that | -
P/ s’ . Let sl bethe composition of sO withs. Then P/ s1 = P/ s0/ s by the composition rule, and that's
amost al thereistoit. The problem isthat we need a substitution with domain FRV, yet s1 has domain equal
to the union of the domains of s and sO, i.e. the union of FRV1 with the domain of sO. However, since the
domain of sO is contained in FRV, and since the only variables in FRV1 which are not in FRV are variables
that do not occur in P, then the restriction s2 of s1 to FRV has the property that P/ s2 = P/ s1. Thuswe may
lets’ bes2.

COPY. Consider a version of COPY in which one specifies a single variable to be copied (rather than
requiring al possible variables to be renamed in the copy and perhaps specifying a hypothesis). We note that it
suffices to prove soundness for this version of COPY. For if we can do so, and then we want to prove
soundness with respect the official version of COPY (again by induction on the state stack), we simply note that
every valid state stack in the official sense is a subsegquence of avalid state stack in this modified sense. To see
this, note that if P is the hypothesis to be copied, then by a sub-induction hypothesis we may copy P with
respect to al but one variable; call the copy P’ . Now copy (OTHER- HYPS & P & P') with respect to the
remaining variable to get (OTHER- HYPS & OTHER-HYPS & P & PP & P’ & P’ ’), and then
drop OTHER- HYPS' , P’ , and P’ ' . (If the new variable doesn’t have the desired name, that’s an easy matter
to fix using PUT.) It remains then only to prove the following theorem. Notice that the restriction on v

corresponds to the restriction on COPY regarding which variables may be renamed.

COPY SOUNDNESS THEOREM. Let P, C, and R be terms, and suppose that v’ is a variable not
occurring in any of these. Let P be P/ { <v, v’ >}, wherev isavariable other than v’ that does not occur in
Cor R Also suppose that s is a substitution with domain D O {v, v’ }, for aset D not containing v or v’ ,
suchthat |- ([(P & P') -> C & R)/s. Thenthereisasubstitutions1 withdomanD O {v} such
that| - ([P -> C & R/sl.

Proof. Sincev does not occur in Cor R, it suffices to prove the following lemma. Think of sO below as
being the restriction of s aboveto D, of s1 asbeing s1, of s2 asbeing s, of u asbeings(v),andof u’ as

beings(v’'). -|

LEMMA. Let P be aterm, let sO be a substitution with domain not including either of the distinct

variables v, v’ , and suppose that v’ does not occur in P. Let u and u’ be terms, let PO be P/ (sO O

17

{<v,u>}),letslbesO O {<v, (IF PO u u)>},lets2besO0 O {<v,u> <v',u’ >},andletP

beP/ {<v, v’ >}. Thenthefollowing isatheorem:

(A) |- Plsl <-> [P &P]/s2.

Proof. First note that by the lemma on restricting substitutions, sincev’ does not occur in P we have
(1) P/s2 = PO

Also, a simple computation using the lemma on restricting substitutions and the composition rule for

substitutions shows:
20 P/s2 =P/ (s0 O {<v,u >}).

Consider what happens when we split into cases according to PO. When PO holds, P/ s1 reducesto P/ (s0 O
{<v,u’ >}),and (1) and (2) immediately imply (A) in this case. When PO fails, P/ s1 reduces to PO, which

by this case hypothesis reduces to F (false), and hence by (1) we again have (A). - |

GENERALIZE. This part of the soundness proof is necessarily rather technical. A corresponding
mechanically-checked proof has been performed using (pc-)ngthm and will appear in [7].

First, let us point out a precondition on the success of the GENERALIZE command, as reported by

(HELP GENERALIZE):

(GENERALI ZE ((ternl V1) ... (termm Vn))): Replace each of the given terns by
the indicated correspondi ng new variabl e, which nust not occur anywhere in the
current proof state.

Now, let us specify in some detail what happens when one has a proof state ps and applies the
GENERALIZE command with substitution sg to obtain a new proof state ps’. We will pay particular
attention to how this command relates to free variables.

* Fix aproof state ps.

« Let sg be a one-to-one substitution mapping variables to terms.3

* Let ps’ be the result of applying the GENERALIZE command, with substitution sg mapping
new variables to terms. Thus, the new current goal is the result of substituting theinversesg-1 of
sg into the current goal of ps.

3In the implementation, the user may specify a substitution in which the same term is generalized to more than one variable. However, in
such a case one should think of sg as noticing only the first occurrence of that term in the substitution.

18

 Let FREE and FREE' be the respective sets of free variables of ps and ps’ .

+ Consider the binary relation R, defined on FREE as follows: Ry(v,w) if and only if v and w occur
in acommon goal of ps’ .

* Let Rbethetransitive closure of R,.
* Let Cbetherange of R on the intersection of FREE with the variables of the current goal in ps’ .

* Let V bethe set of variables that occur in the range of sg.

Loosely speaking, we want to remove from FREE the set (C n V) consisting of all variables from
FREE that both occur in somewhere in the terms being generalized away and aso have *‘ anything to do with™’
the new current goal (where **anything to do with’’ is defined in terms of the equivalence relation R). We also
want to make sure the none of the new variables is considered free* The precise relationship specified between
FREE and FREE’ isasfollows.

FREE = (FREE\ (C n V)) \ (dommin sg)

Here then, finaly, iswhat we need to prove, using the notation in Subsection 4.2 above.

GENERALIZE SOUNDNESS THEOREM. Let Gbe the current goal in proof state ps; let P be the
conjunction of the rest of the goals of ps; let sg be a substitution mapping some variables not occurring in ps
toterms; let G = G sg” 1 be the current goal in the new proof state ps’ ; and let FREE and FREE’ be the free
variables of ps and ps’, respectively. Suppose that for some substitution s’ with domain contained in
FREE' ,|- (G & P)/s’. Thenfor some substitution s with domain contained in FREE, we have| - (G
& P)/s.

Proof. We continue using the notation above, as well as the notation introduced in Subsection 4.2 above.
Let s, be the restriction of s’ to C (recall that C is defined above); let sg be the restriction of s’ to the
complement of C; let s, ; ,, be any substitution with domain equal to the domain of sg such that its range has
no occurrences of variables; and let s, = sg I'l s, Findly we can define the desired substitution s as
follows:

s = (s, Osy,) Il (sg /] sy

“This would be automatic if we were to require not only that domai n('sg) to be disjoint from the set of variables occurring in the
current proof state, which we do, but also that every variable in FREE occurs in the current proof state. But we do not bother to enforce the
latter.

19

Notice that s and s’ have the same domain, and hence the domain of s is a subset of FREE. It remains to

show |- G sand|- PIs.

Let usfirstshow | - G's. Sinceweknow | - G /s’ by hypothesis, then by the rule of instantiation it

suffices to prove the following two facts.

(1) Gs =G/(s; Osy)/(sg !l sy

@ Gl(s; Os,) =GIs’

Equation (1) follows by structural induction on G and the definition of s. We omit the proof here, as the details
are very similar to those in various arguments below. For (2), let us first observe that by definition of C, every
variable of FREE that occursin G isamember of C. Therefore, every member of dorai n(s’) that occurs
in G isamember of domai n('s,) . Itfollowsfrom the lemma on restricting substitutions (in Subsection 4.2

above) that both sides of equation (2) areequal to G / s ;.

It remainsto show | - P/ s. Fix an arbitrary conjunct Qof P. First, we claim:

Q) Q(s; U sy)/(sg// s2) =Qs

Hereisaproof of (3).

Q (s, O s,)/(sg /] s2)

= {by the composition rule for substitutions}

Q((sy Usy @(sg // s2))

= {definition of @sincesg and (s, O s,) havedisoint domains}

Q(((sq O sy) /1 (sg// s2)) O (sg//l s2))

= {by the lemma on restricting substitutions and the hypothesis that no variablein dormai n(sg)
occurs in the proof state}

Q((sy O sy) /1 (sg /]l s2))

= {definition of s}

Qs

Finaly, we claim that

(4 Q(s; O s,) isaninstanceof Q' s’ .

Assume this claim for the moment. Now the composition rule for substitutions implies that the *‘is an instance

of’ relation istransitive on terms. It therefore follows from (3) and (4) that

(5) Q@ sisaninstanceof Q' s’ .

20

Sincewe know | - P/'s’ (by hypothesis), and since Qis a conjunct of P, it followsthat @ s’ , and hence by
the rule of instantiation and (5) we havethat | - @ s. Since Qis an arbitrary conjunct of P, we have shown

that | - P/ s. Hence, it remainsonly to prove (4).

There are two cases. First suppose that Q contains a variable of FREE that is R-equivalent to a variable of
FREE occurring in G . In that case, every variable of FREE occurring in Qisin C(since R is an equivaence
relation), and hence is in the domain of s,. It follows from the lemma on restricting substitutions that
Q(s; O s,) ardQ' s’ areboth equal to Q' s,. The other case is where Q does not contain any variable of
FREE that is R-equivalent to a variable occurring in G Since every member of the domain of s, is

R-equivalent to avariable occurring in G, it follows that:

(6) Novariableof Qisinthedomainofs;.

ThereforeQ (s, O s,) =Q's,. Recal the notation above defining s, to besg I'l sy Itsufficesto

showtha Q' s, =Q' s’ /'s; ;. Which we do now.

Qs’/ Striv

= {by the composition rule for substitutions, and since thedomain of s, ; ,, equals
the domain of sg, which is digoint from the domain of s’ }

Q((s’ 11 s) O Siypy)

= {by the lemma on restricting substitutions, since by hypothesis, no variable of Qisin the
domain of sg, i.e.inthedomainof s, ., }

Q(s" 11 Striv)

= {by the lemma on restricting substitutions and (6)}

0

Q (S 2 I Stri v)

= {by definition of s}

Qs,

21

Appendix A
Other Changes

In this appendix we document some of the main changes in the current version of PC-NQTHM from the

version documented in[1], other than the changes pertaining to free variables (which are aready discussed

above). The list below provides brief summaries only. The help facility should be used to get more

information, e.g. submit (HELP FORWARD) to PC-NQTHM to obtain more information about FORWARD.

These are in no particular order.

1

Thereisnow aglobal variable* pc- nqt hm ver si on- nunber *. Asof March 7, 1990, thisversion is
1.1. (However, in some Lisps this number could be slightly different, e.g. 1.1000000000000001 -- !1)

. FORWARD has been improved from an earlier version so that it tries to prove the new goals generated

and reports which new goals are unproved.

. The GENERALIZE command now uses GENERALIZE lemmas (see page 248 of [6]).° (Use the help

facility for details.)

. REPEAT has been changed so that if all goals are proved then it's considered a *‘ success’ (in the sense

of *‘success”’ and ‘‘failure’’ for commands, cf. [1]).

. USE has been modified so that it warns the user when uninstantiated variables remain.

6. IFSPLIT isanew command that can be used to case split on the test of an IF expression.

.BASH no longer automatically prints out the new goals created. However, the macro command

PGBASH (mnemonic for print-goals-bash) does print out the new goals, in case you really want that
feature. BASH now does one thing it didn’t do before, namely inform you which rules and definitions
were used.

8. The command (CASESPLIT exp) does a case split according to a user-supplied term exp.

9. ELIM (destructor elimination) now allows, but does not require, the new variable names for the

10.

11

12.

13.

14.

15.

16.

generalized terms to be supplied by the user.

ADD-ABBREVIATION can now be given a single argument, a variable. Then the term to be
abbreviated is the current subterm.

The command (S NIL) is now legal, meaning simplify without opening up any function or using any
rewriterules. (It alwayswaslegal in principle, but a bug prohibited its use.)

COMM prints out commands in a way that hides commands set between bookmarks, and thus hides
uninteresting commands generated by many macro commands.

UNDO! is very handy for undoing top-level macro commands in a way that corresponds closely to how
commands are displayed using COMM (described just above).

The SUBV command (which hardly anyone ever uses) now requires you to be at the top of the
conclusion, and is smarter about which hypotheses to use. It also how prints out the substitution that it
finds. Details may (as usua) be found using the help facility.

The EXIT command can be given an extra non-NIL argument, meaning ‘‘do not prompt upon exit but
just go ahead and create the event.””

The extension of the syntax to include COND, CASE, and LET now aso includes LIST*, where
(LIST* x; x, ... Xx,) abbreviates(cons x; (cons X, ... (cons X, ; X,) ...)).

5The utility of this change was brought to our attention by Matt Wilding.

22

Therefore, you can use backquotes with **,@’" in your event formsin certain Lisps (e.g. akcl). However,
in analogy to how LET is handled, LIST* will never appear in terms pretty-printed by the system.®

17. The proof-checker’'s INDUCT command formerly differed from the Boyer-Moore theorem prover's
heuristics as follows: the theorem prover ignored induction schemes corresponding to disabled functions,
but the proof-checker’s INDUCT did not. That discrepancy has been eliminated.

18. SHOW-REWRITES now informs you if arewrite rule is disabled.
19. The macro command PRO isa ‘' smarter’’ version of PROMOTE.

20. PRUNE is similar to UNDO, except that some attempt is made to save that part of the proof which
doesn’t *“depend on’’ the command that was undone.

21. SHRINK attempts to shorten the proof by compressing commands. For example, the sequence consisting
of (DIVE 2) followed by UP would be canceled by SHRINK, and consecutive CHANGE-GOAL
commands would be combined.

22. EX islike EXIT, but runs SHRINK first.

23. The variable RESTART-STACK-DEPTH is set to O if the underlying Lisp is not a version of kcl (e.g.
akcl). What this meansis that you'll need to submit (VERIFY) to go back into the proof checker after an
interrupt. It was discovered that Symbolics Lisp machines can throw you into the cold load stream
otherwise. (But akcl makes special provisions, which is why 1've left the value of this variable at 8 for
kcl.) One may feel free to set RESTART-STACK-DEPTH to another integer value, of course; see[1] for
documentation.

24. The SPLIT command has been made more efficient at the cost of avery slight weakening of the heuristics
for checking if the goal isaready valid. I'd be surprised if anyone notices any difference here.

25. The CASE patch to TRANSLATE has been fixed so that OTHERWISE behaves properly (thanks to
Larry Smith).

26. The equality substitution macro commands EQSUB and EQSUB-R now substitute into the hypotheses (in
addition to the conclusion) and then drop the equality that has been used.

8For ngthm hackers: that is, although TRANSLATE has been modified to support LIST*, UNTRANSLATE has not.

23

References
Matt Kaufmann, ‘A User's Manual for an Interactive Enhancement to the Boyer-Moore Theorem
Prover'’, Tech. report 19, Computational Logic, Inc., May 1988.

Matt Kaufmann, ‘* DEFN-SK: An Extension of the Boyer-Moore Theorem Prover to Handle First-Order
Quantifiers'’, Tech. report 43, Computational Logic, Inc., June 1989.

W.W. Bledsoe, P. Bruell, ‘‘A Man-Machine Theorem-Proving System’’, Advance Papers of Third
International Joint Conference on Artificial Intelligence, W.W. Bledsoe, 5-1 (Spring) 1974.

D.l. Good, R.L. London, W.W. Bledsoe, ‘‘An Interactive Program Verification System’’, Proceedings
of 1975 International Conference on Reliable Software, D.I. Good, 1975.

Bill Young, ‘*Using the GVE: Examples of Proof Commands'’, Tech. report 8, Computational Logic,
Inc., June 1987.

R. S. Boyer and J S. Moore, A Computational Logic Handbook, Academic Press, Boston, 1988.

Matt Kaufmann, ** A Mechanically-checked Correctness Proof for Generalization in the Presence of Free
Variables'’, Tech. report 53, Computational Logic, Inc., to appear.

Table of Contents

L INtrodUCHION . . et e e e e
2. Freevariables and the new built-incommands.o i ..
2. L Freevariables o
2.2. PUT, COPY, and SHOW-FREE-VARIABLES
3. Additional and modifiedcommandsc i
3.1. Modificationsto built-incommands i
3.2. Some new and some improved macro COMMANASottt
A, SOUNANESS . . ittt ettt e e e e e
4.1. Examplesillustrating restrictionsonfreevariables i 10
4.2. A Review of Some Technical NOLIONS. oottt e 13
4.3, S0UNANESS THEOIEM . . . ottt ettt e e e e e e e e e e e e 14

CoUITh~,WWN

Appendix A. Other Changeso i e e e e e 21

