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Abstract

In aerospace and in many other fields of engineering, it is common practice to forecast the behavior of a
physical system by analyzing a mathematical model of it. If the modd is accurate and the analysis is
mathematically sound, forecasting from the model enables an engineer to preview the effect of adesign on
the physical behavior of the product. Accurate mathematical forecasting reduces the risk of building
latent design errors into the physical product. Preventing latent design errors is an important part of
successful engineering. If a product contains a latent design error, it can cause operational malfunction.
When a latent design error is detected, removing it requires backtracking in the product development
cycle. Thisbacktracking can consume large amounts of time, money and human resources.

Although digital computers now are embedded as operational components in many aerospace and other
physical systems, capabilities for mathematically forecasting the physical behavior of computer programs
are only now beginning to emerge. Without these capabilities, latent design errors in computer programs
frequently go undetected until late in program design or until the program is tested or even until it isin
actual operation. This increases the dual risks of operational malfunction and high resource consumption
caused by developmental backtracking. When computers are embedded in other physical systems, these
systems inherit those risks. Mathematically forecasting the physical behavior of computer programs can
reduce these risks for software engineering in the same way that it does for aerospace and other fields of
engineering. Present forecasting capabilities for computer programs still are limited, but they are
expanding; and even the present, limited capabilities can be useful to a practicing software engineer.



1. Mathematicsin Engineering

Imagine, if you can, aerospace engineering without mathematics. Suppose that a new anti-mathematics
virus suddenly infected all aerospace engineers, making them unable to apply any known mathematical
models of the physical world. Suddenly unavailable are al of the mathematica models of the physical
laws of motion, gravity, aerodynamics, thermodynamics, ... al of them. What state would aerospace
engineering be in? Inaword, "Grounded!"

Let’s continue this fantasy -- or perhaps nightmare -- a bit further. While aerospace engineers remain
mathematically crippled by this virus, what might be done to advance the state of engineering practice?
One might look for ways to improve the product development cycle to get better product quality and
engineering productivity. One might implement better ways to state complete and consistent product
requirements, automate parts of the design process, produce more accurate and detailed documentation,
implement more careful configuration management procedures, improve methods for conducting physical
experiments, use better manufacturing methods, improve product quality assurance methods, reuse as
much previous good work as possible, improve engineering management methods, raise certification
standards for engineers, etc. All of these things could help to improve the state of the engineering
practice. But without applying accurate mathematical models of physical phenomenato preview product
designs, the current, advanced level of aerospace engineering practice would not be possible.

In his introductory textbook on flight [Anderson 89], John D. Anderson, Jr. begins his chapter on basic
aerodynamics with the following two quotations:

Mathematics up to the present day have been quite uselessto usin regard to flying. -- From the fourteenth
Annual Report of the Aeronautical Society of Great Britain, 1879.

Mathematical theories from the happy hunting grounds of pure mathematicians are found suitable to
describe the airflow produced by aircraft with such excellent accuracy that they can be applied directly to
airplane design. -- Theodore von Karman, 1954.

The application of mathematics describing the physical laws that pertain to heavier-than-air flight has
played a key role in advancing aerospace engineering, and it has played a similar role in advancing many
other fields of engineering. The application of mathematical descriptions of physical phenomena enables
engineersto predict accurately the physical behavior of products manufactured from their designs.

Without this mathematical forecasting ability, engineers must rely much more on physical
experimentation guided by previous experience. To conduct a physical experiment, time, money and
human resources must be used to complete a design and manufacture the physical object of the
experiment (even if the object is just a prototype). If the experiment detects a design error in the product,
the error must be corrected, the product redevel oped and the experiment repeated. With good fortune, the
redevel opment may consume less resources than the one beforeit.

With mathematical forecasting, engineers can reduce the risks of pursuing a poor design. Mathematical
forecasting in aerospace engineering does not replace the creativity of human invention, it does not
guarantee perfection, and it does not eliminate the need for physical experiments. What it does provide is
a way for early detection of design flaws without requiring the manufacturing of a product or even the
completion of a design. It is much cheaper to calculate that a rocket engine will not produce enough
thrust to achieve escape velocity than it isto design one that won't, manufacture it, and watch it fail!

Now imagine, if you can, software engineering without mathematics. This requires no stretch of the
imagination; it happens every day. It isthe common, accepted practice.

But software engineering also results in a physical product, just as aerospace engineering does. The



product that results from software engineering is a computer program. A computer program is a physical,
control mechanism. It consists of physical switches within a computer. Just as a rudder or a wing
controls the dynamic, physical behavior of an airplane, these switches control the dynamic, physical
behavior of the computer. These switches control the sequence of physical, electronic states that occurs
within the computer.

Today amost all software engineering is done without the benefit of mathematically forecasting what
effects these switches will have on the computer they control. The current practice of software
engineering is dominated by physical experimentation. The result is not much different than if aerospace
engineering were done that way, just as when our aerospace engineers were stricken with the anti-
mathematics virus. There is a high risk of latent design errors. Encountering them in operation causes
program malfunction. Removing them requires developmental backtracking and the consequential
consumption of time, money and human resources.

Unlike airplane development, however, amost all resources consumed in program development are
consumed in the design stage. The resources required for manufacturing are negligible. Indeed, one of
the most remarkable characteristics about computer programs is their manufacturing process. An airplane
is built by assembling a collection of physical parts. This requires a large amount of time, labor, energy
and materials. A computer program also is built by assembling a collection of physical parts. But these
parts are switches that already exist in the computer, and all that remains to be done to "manufacture" the
program is to set the switches. In our present day and time, this normally is done by a process called
"loading” the program. The manufacturing of even a very large program requires just a tiny amount of
time, labor and energy, and it requires no new materials! What an amazing manufacturing bargain for a
physical, control mechanism!®

For all practical purposes, software costs are design costs. It is incredibly easy and inexpensive to
manufacture a computer program. What is hard is to manufacture the right one. Software costs are the
design costs of deciding which program to manufacture. Without effective means to forecast the effects
of design decisions, programs contain latent design errors which cause operational malfunction and
developmental backtracking.

Current software engineering practice is dominated by physical experiment; and, as in other fields of
engineering, there are steps that can be taken to improve this practice. But the effectiveness of these steps
will be limited until software engineers can forecast accurately the effects that a program design will have
on the dynamic, physical behavior of the computer it is controlling.

Applying mathematics to predict the behavior caused by a computer program is not a new idea. It has
been put forward by von Neumann[von Neumann 61], McCarthy [McCarthy 63], Naur [Naur 66],
Floyd [Floyd 67], Dijkstra[Dijkstra 68], [Hoare 69] and others. But, as we enter the 1990's, applied
mathematics has not been incorporated into the actual practice of software engineering, and both software
producers and consumers alike continue to suffer the consequences.

The following sections sketch how the mathematics of recursive functions theory can be applied to
forecast program behavior. The approach will be familiar to engineers from other fields. First one
develops an accurate mathematical model of the sequence of electronic states that programs will cause to
occur in the physical computer. Then one uses this model to analyze the physical effects that a particular
program design will cause. This analysis can be done before the program is built or even while it is only

1This bargain is a two-edged sword. If it cost as much to manufacture a program as it does an airplane, software engineers
probably would be much more highly motivated to preview the effects of their designs before putting them in operation.



partially designed. An analysis can be done to show that the physical behavior of a particular program
will satisfy specific behavioral requirements. This mathematical forecasting reduces the risks of
operational malfunction and high resource consumption caused by developmental backtracking.

The reader is forewarned that the models for computer programs are expressed in terms of discrete
mathematics rather than the continuous mathematics that is common in other engineering fields.
However, the engineering benefits of mathematical forecasting are the same in both cases.

2. Mathematicsfor Programs

To forecast the physical behavior of a computer program, we need an accurate mathematical description
of the physical states it will cause to occur. To do that, we need mathematical objects that describe
programs and states. With these objects, the sequence of states that a program causes to occur in a
computer can be described very accurately by recursive functions.?

The line of discussion in the following sections first summarizes how mathematical sequences and
mappings can be used to describe programs and states respectively. Then it illustrates how recursive
functions on these mathematical objects can define a model of program behavior. Next it shows how that
model can be applied to make some forecasts about a simple computer program that controls a physical
device on an airplane, and it points out some of the engineering benefits that result. The discussion
concludes by addressing the relation between mathematical forecasting and program testing and the
important issue of the accuracy of forecasts made from a mathematical model.

2.1 Programs

A computer program can be described accurately by a sequence of symbols from a programming
language. The language might be a machine language, in which programs are described by a sequence of
zeros and ones, or it might be an assembly language or a higher order language. Whatever the language, it
defines various acceptable sequences of symbols, and each such sequence describes a computer program.
These segquences of symbols are perfectly acceptable mathematical objects.

To make this discussion concrete, let's focus on the sequence of symbols in Figure 1 from the Gypsy
language [Good 86].3 The sequence of symbols that begins with the symbol pr ocedur e describes a
program. For future reference, let’'s denote this sequence by nD,

nD = procedure validator ... end

This sequence of symbols is a mathematical object. Its first element is pr ocedur e, its second is
val i dat or, anditslastisend.

A computer program is a physical mechanism that controls the sequence of physical states that occurs
within a computer. It is important to make a careful distinction between the physical mechanism that is
being described and the mathematical object that describes it. There is plenty of room for confusion
because it is customary to refer to the sequence of symbols mD as a "program.” But this sequence of
symbols is not a physical mechanism that controls the sequence of physical states in a digital computer.
The physical control mechanism consists of physical switches inside the computer. Just as the number

2For this discussion, we restrict attention to synchronous behavior.

3This probably unfamiliar language is used in this discussion because there is a relatively concise mathematical model for the
behavior of the programsit describes. A major part of thismodel is stated in Figure 4.



35,000 is a mathematical object that might describe an atitude of an airplane, the sequence n0 is a
mathematical object that describes a physical control mechanism. This is more clear when one thinks
about the sequence of bits that "D compiles into. That sequence of numbers (zeros and ones) is another
mathematical object that describes the settings of the physical switches that comprise the computer
program. This s the description from which the program is manufactured -- i.e., from which the physical
switches are set. Both the sequence of symbols of nD and the sequence of bhits it compiles into are
different mathematical objects that describe the same physical control mechanism.

In Gypsy, the sequence nD describes a control mechanism by describing how it, as a composite
mechanism, is made up of component mechanisms. The mechanism described by n0 is composed of the
component mechanisms shown in Figure 2. These components are assembled into a composite by means
of the compositions shown in Figure 3. For example, composition 5 composes the two mechanisms
| eave andupdate_cnd(c, y, z, e) intothenew mechanism

if eox then | eave
el se update_cmd(c, y, z, e)
end

Composition 3 composesget _cnd(c, eox, x) withthistogive

get _cmd(c, eox, X);

if eox then | eave

el se update _cnd(c, vy, z, €)
end

Composition 4 gives
| oop
get _cnd(c, eox, X);
if eox then | eave
el se update _cnd(c, y, z, €)

end
end

Continuing in this way, sequence n0 describes how the composite mechanism val i dat or is made up of
its components. Components 1-4 in Figure 2 are primitive Gypsy mechanisms (ones provided by the
implementation of the Gypsy language), and components 5-9 are non-primitive mechanisms that must be
composed by the software engineer (ultimately also from Gypsy primitives).

2.2 States

The physical state of a digital computer can be described accurately by a mathematical mapping from a
domain of names into a range of values. For example, the mechanism described by 0 controls a state
that can be described by a mapping s with four components,

s ={ (x, x0), (y, y0), (z, z0), (run, run0) }.

The first component of s isthe pair (x, x0) with name x and value x0. The name x is the name of the
formal parameter x of val i dat or. The componentsy and z are similar to x. For val i dat or, x0,
y0 and z0 are sequences of elements of type a_cnd. At thislevel of program design, the type of these
elements is not relevant. The r un component of s is a specia component of the state of every Gypsy
program. Itsvalue, r un0, iseither nor mal or| eave.

The mathematical model in the next section uses two functions on mappings, component selection and
alteration.
e sel ect (s, n) is the vaue part of the par in state s with name n. Instead of



sel ect (s, n), we can use the more concise notation s n] .

ealter(s,n,v) isthe state which is identical to s except that the pair with name n has
vauev. Thatis,

alter(s, n, v)[p] = if p=n then v else s[p]
For example, given the mapping s above,

s[x] = x0
alter(s,run,normal) ={ (x, x0), (y, y0), (z, z0), (run, normal) }

alter(s,u,0 ={ (x, x0), (y, y0), (z, z0), (run, run0), (u, 0) }

2.3 Models

With sequences of symbols to describe programs, and mappings to describe states, the sequence of states a
program causes to occur within a computer can be described accurately by recursive functions. Just as
partial differential equations describe the dynamic, physica behavior of fluids, recursive functions
describe the dynamic, physical behavior of digital computers. They describe the physical sequence of
states that is caused by a program.

Figure 4 illustrates a recursive function g(m s) that describes the physical states caused by programs
described by sequences of symbols from the Gypsy language. The function g( m s) describes the final
state that results from applying the mechanism (described by the sequence of symbols) mto the initial
state (described by the mapping) s.# The model in Figure 4 has one equation for each kind of primitive
mechanism and one for each kind of composite mechanism. The terms <T> in these equations are
syntactically well-formed sequences of symbols of the appropriate kind.>

To get some feel for the nature of these equations, consider applying the sequential composition of the
mechanismsvar e: a_cont ext andreset (y) toaninitia state

s ={ (x, x0), (y, y0), (z, z0), (run, normal) }.
Thefina state v produced by the composite mechanismis

v = g(var e:a_context ; reset(y), s)
= g(reset(y), g(var e:a_context, s)) Egq. 8
= g(reset(y), sl) Eq. 2
where s1 = alter(s, e, default(a_context, D))
= copyout (reset, y, s2, sl1, D Eq. 7

where s2 = g(D[reset], copyin(reset, y, s1, D))

4A more detailed description could be given by having g( m s) produce the entire sequence of states that results from applying m
tos; but having g( m s) produce just thefinal state is sufficient for many analytical purposes.

5The existence of afunction g(m s) that satisfies the equationsin Figure 4 is an important issue that is not discussed here.



First the mechanismvar e: a_cont ext isappliedto s to produce the state®

sl ={ (x, x0), (y, y0), (z, z0), (run, nornal),
(e, default(a_context,D)) }.

Then the mechanismr eset (y) isappliedto sl to producev. Statev isthe result of calling procedure
reset with actual parameter y on state s1. If we assume that the r eset mechanism has the behavior
stated for it in Figure 8, then by virtue of the copyi n and copyout functions (whose definitions are not
shown in Figure 4),

v ={ (x, x0), (y, <), (z, z0), (run, normal),
(e, default(a_context,D)) }.

The state v isthe same as s 1 except that the value of the y component is the empty sequence <>.

The function g( m s) provides some important insight into the difficulty of software engineering. The
function has no continuity! Typically engineers in other fields rely on continuity to help predict system
behavior. If the system is changed just alittle, its behavior will change just alittle. This continuity often
is used to design safety factors into a system. Not so in software engineering! Small changes in either m
or s can produce dramatic changesin g( m s) . Because of this, the behavior of a computer program can
be quite counter-intuitive and therefore even more difficult to predict. Consequently, the need for
accurate mathematical forecasting is even greater in software engineering than in some of the more
traditional engineering fields.

2.4 Forecasting

Some of the important benefits that mathematical forecasting can bring to software engineering can be
illustrated by a simple example. Suppose that a master and a slave computer are to be embedded on an
airplane with the master sending commands to the slave. The dlave uses the commands to control some
physical device. But, for some reason, the slave cannot fully trust the master to issue a sensible sequence
of commands. Therefore, perhaps for the safety of the airplane, the slave needs to issue only valid
commands to the device it is controlling, and ones that are invalid should be returned to the master. What
is needed is avalidator program such as the one described in Figure 1.

One of the first benefits that comes from having a mathematical model of the physical behavior of a
program is the ability to state precise behavioral requirements for it. The model has mathematical objects
that describe programs and states. Behavioral requirements of the program can be stated as mathematical

The D that appears in the equations of the model is a dictionary which is a mapping. It maps from names, which are symbols,
into values. The values are the sequences of symbols that comprise the type and procedure declarations contained in the body of
Gypsy text being interpreted. For example, from the text given in Figure 1, D would have the pairs

(a_cnd, pendi ng)
(a_cnmd_seq, sequence of a_cmd)
(a_context, pending)

(validator, procedure validator(var x, y, z:a cnd_seq) =
begi n
end)

and D val i dat or] would be the same sequence of symbols as 0 in Section 2.1. For the examples in this discussion, D aso
contains components for the Gypsy procedure declarations given in Figures 6-9.



relations on these objects -- for example, as arelation R(s, g( n0D, s) ) between the initial and final state
of mD. This provides a very precise way of stating requirements; and once stated in this form, the
requirements R( u, v) themselves also can be the object of rigorous mathematical analysis.

For example, the required behavior of val i dat or is stated in the "BEHAVI OR: " part of Figure 1 as a
relation R( u, v) whichis

v[y] = all _valid(x0) and v[z] = all _invalid(x0)

The state u isthe initial state that the val i dat or is applied to, and v is the final state that it produces.
The state u has components ( x, x0), (y, y0) and (z, z0) . The names of these components, x, vy
and z, are the names of the formal parameters of val i dat or. The values of these components, x0,
y0 and z0, are the initia values of the corresponding actual parameters. The state u also has arun
component with value nor nal . Whenever the val i dat or mechanism is applied, the copyi n
function in the Procedure Call Primitive equation in Figure 4 creates a state of this form, and the
val i dat or mechanism is applied to it to produce the final state v = g(D[validator], u).
D val i dat or] is the sequence of symbols that describes the validator mechanism, pr ocedur e
validator(...) = begin...end. D validator] isthe same as the sequence n0D cited in
Section 2.1.

The required behavior of the val i dat or mechanism is that the relation R( u, v) stated above be
satisfied for every value of u where u and v are defined asin Figure 1. The value x0 of the x component
of u is assumed to be the sequence of commands that the slave computer receives from the master. They
component of the final state produced by the val i dat or mechanism must be the sequence of all valid
commands in x0. These are the commands that the save computer can send to the device it is
controlling. The z component of the final state must be the sequence of all invalid commands in xO0.
These are the commands that the slave will return to the master computer.

Similarly, the required behavior of the component mechanisms of val i dat or is stated in Figures 6-9.
Stating these behaviora requirements requires the use of several new mathematical functions, such as
all _valid(x) andall _invalid(x), which are not part of the model of the program behavior.
These functions are shown in Figure 5. They do not appear anywhere in the mathematical model of the
behavior of Gypsy programs. Instead, they are functions of the problem domain. They help describe the
problem that theval i dat or mechanism is expected to solve.

For example, functions al | _val i d(x) and al | _i nval i d(x) define precisely what is meant by
sequences of valid and invalid commands. Both are defined in terms of the functionval i d( ¢, x) . This
function defines what it means for a command ¢ to be valid with respect to a sequence of commands x.
Thefunctionsal | _val id(x) andall _i nvali d(x) usevalid(c, x) to determine the validity of
each command c with respect to the sequence of commands that preceded it. This allows the
val i dat or to review each command it receives with respect to all preceding commands.

The requirements of the updat e_cnd component refer to two additional functions, cont ext ( x) and
check(c, e), with the property stated in Figure 5 that

valid(c, x) = check(c, context(x))

These functions are introduced to allow the updat e_cnd mechanism to operate efficiently. The
function cont ext ( x) gleans from the sequence of commands x only that information needed to make
the validity decision on the command ¢. Thus, updat e_cnd can operate just by retaining this context
information, and it does not need to retain the full history of all commandsit receives.

Figure 5 does not provide definitions for the functions valid(c, x), context(x) or



check(c, x). These definitions are not needed to show that val i dat or satisfies its requirements.
All that is needed is to assume that they exist, and that they satisfy the relation stated for them. These
definitions, or at least additional properties of cont ext (x) and check(c, x), would be needed to
analyze updat e_cnd, but they are not needed to analyzeval i dat or .

By analyzing g( n0, s) wherenD=0{ val i dat or], itispossibleto show that

« if the problem domain functionsval i d(c, x), context(x) andcheck(c, x) satisfy
their assumed relation and

« if the component mechanisms of val i dat or satisfy their stated requirements,

- thentheval i dat or mechanism will satisfy its requirements.
Hereisasketch of the analysis. Theval i dat or can be decomposed as follows:

nD = procedure fp = nil
fp = validator(var x, y, z:a_cnd_seq)
ml. = begin n2 ; nB end

n2 = var ¢ :a_cnd,
var eox: bool ean;
var e :a_context;
reset (y); reset (z);
init_context(e)

n8 = | oop nmt end

md = get _cnd(c, eox, X);
if eox then | eave
el se update cnd(c, y, z, €)
end

As stated in the behavioral requirements of val i dat or, let

u { (x, x0), (y, y0), (z, z0), (run, normal) },

v = g(nD, u).

First let's show that v[y] =al | _val i d(x0). A sketch of the analysis follows, and the rationale is
discussed below.

vyl = g(nD, u)[yl]
= g(nB, g(n2, u))[y]
= g(n8, sl)[y]

where s1 = { (x, x0), (y, <>), (z, <>), (run, normal),
(e, context(<>)) }

sl{y] @all _valid(sl[x])

=<  @all _valid(x0)

al | _val i d(x0)

Showing that s1 is the state given above requires knowing the definitions of copyi n and copyout in
the Procedure Call Primitive equation and assuming that r eset satisfies its requirements. The next step



above uses the following general property of the nB loop:
g(n8, s)[y] = s[y] @all_valid(s[x]).

The effect of the B loop isto append to s[ y] the sequence of al the valid commandsin s[ x] . Under
the assumptions that get _cnd and updat e_cnd satisfy their requirements and that val i d(c, x),
context (x) and check(c, x) satisfy their assumed relation, this property can be shown by a
straightforward induction on the length of s[x]. The analysis sketched above shows that the
v[y]=all _valid(x0) requirement is satisfied, and a smilar one shows that the
v[z]=all _inval i d(x0) reguirement is satisfied. Thus, the val i dat or sdtisfies its behaviora
requirements.

This preceding analysis shows that the val i dat or mechanism satisfies its requirements for every
possible initial state u that it might be applied to, provided that its component mechanisms satisfy their
requirements and that the problem domain functionsval i d(c, x), context (x) and check(c, x)
satisfy their assumed relation. This illustrates the power of mathematical forecasting to preview the
effects that will be caused by a particular program design. The analysis has shown that if the component
mechanisms of val i dat or are built to the requirements assumed for them in the anaysis, then
val i dat or will have its required behavior. If the components are designed to meet their assumed
requirements, there will be no need to backtrack and redo the design of val i dat or .

The previewing power of mathematical forecasting reduces the risk of developmental backtracking, but it
does not eliminate it. It is possible that the behavioral requirements used in the analysis of val i dat or
might be incorrect or incomplete in some way. Or, for some component, we might not be able to find an
efficient design that meets behavioral requirements assumed for it in the analysisof val i dat or . Any of
these situations could require backtracking to redesign val i dat or .

An important benefit of the kind of analysisdone on val i dat or isthat it does show that the behavioral
requirements of the components are sufficient with respect to the requirements of val i dat or. The
analysis shows that the requirements stated for the component mechanisms are sufficient for the
composite mechanism to satisfy its requirements. In this sense, the analysis identifies "build to"
requirements that are sufficient for the component mechanisms.

Another benefit of mathematical forecasting is the ability to predict accurately the effects of program
modifications. Many programs change almost continually throughout their lifetimes. Certainly a program
design will change as it evolves from initial conception to completion. Program maintenance is another
common cause of program modification. Even in the best of worlds, after a good design is completed and
the program is built and put into operation, better designs are discovered and requirements change.
Because of the generally discontinuous behavior of programs, the effects of program modifications on
their behavior often are very difficult to predict.

The way in which mathematical forecasting can predict the effect of program modifications can be
illustrated by atrivial example. For theval i dat or , it iseasy to show that

g(reset(y) ; reset(z), s) = g(reset(z) ; reset(y), s)

Thereset (y) andreset (z) mechanisms can be applied in either order to produce the same result.
If, for some reason, we wish to reverse the order of r eset (y) andreset (z) intheval i dat or, this
simple reversibility property tells us that the new version of the val i dat or produces the same final
state as the old one. The change has no effect on the final state. From this, we aso know that the new
version still satisfies the same behavioral requirements that were satisfied by the old one. Rather than
redoing the entire analysis for the new version, we use the reversibility and reuse the analysis of the old
version.
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It also should be noted that the requirements stated for components of the val i dat or can be used
defensively to limit the effects of design changes. When we showed that the val i dat or satisfies its
requirements, we did so under very minimal assumptions about its component mechanisms. We assumed
only that they satisfied their requirements. Nothing else was assumed about the components. The
requirements stated for the component are a precise statement about the assumed interface between the
component and its composite mechanism. Thus the design of a component can be changed without
effecting the analysis of the composite so long as the modified component still satisfies it requirements.
In this way, the requirements of a component can be used to limit the effects of changes to the component
on the analysis of the composite mechanism.

All of the analyses of val i dat or illustrated in this section can be done before the components of
composite mechanism are designed and even before their requirements are fully defined. This illustrates
how mathematical forecasting can be used to preview the physical effects of the design of a composite
program, and by virtue of that, to reduce the risk of latent design errors and the consequential risks of
operational malfunction and developmental backtracking.

2.5 Testing

Effective engineering commonly involves both accurate mathematical forecasting and physical
experimentation. Aerospace engineering without mathematics would be a nightmare. It also would be a
nightmare without physical experimentation. Wind tunnels are till used. Prototypes are still built. Test
flights are still made. Even with the best mathematical forecasting, physical experimentation till is
needed to demonstrate physical operability and to validate the accuracy of the mathematical models.
Every airplane flight provides additional, experimental evidence of the accuracy (or inaccuracy) of the
relevant mathematical models.

Program testing is physical experimentation. To test any physica thing, it must exist. A computer
program is no exception. A computer program can be tested only by physically running it. In contrast,
mathematical analysis is logical deduction that is performed on a description of a program. This
predictive analysis can be done long before the program can be run physically.’

The analysis of theval i dat or in Section 2.4 showed that it satisfies its requirements for every possible
initial state u to which it might be applied. Let's also select afinite set of test cases{ul, ..., uk}

and conduct k physical experiments by observing what final state vi results when the actual
val i dat or mechanism is applied to each initial state ui . Finaly, let's suppose that every result vi

satisfies the physical requirements of theval i dat or .

By mathematical analysis, it is forecast from the model g( m s) that the mechanism described by nD will
satisfy (future tense) the requirement R(u, g(nD, u)) for every possible value of the initial state
described by u. The accuracy of the forecast depends on the accuracy of the model, the accuracy of the
requirement and the soundness of the analysis. By testing, it was observed that the physical mechanism
did satisfy (past tense) its physical requirement for the k test cases. The accuracy of the testing depends
on our ability to perform physical experiments and observations.

If u ranges only over a set of values that is small enough so that the physical mechanism can be tested
successfully on every one of them, then this tells us that the mechanism once actually was observed to
work correctly for every possible initial state. This is a stronger statement than the corresponding

"The analysis of the behavior of a program on a single initial state sometimes also is referred to as "program testing.” However, |
prefer to call this"single-point analysis' and to let "program testing” refer strictly to physical experimentation.
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mathematical forecast that it will work correctly because there is no question about the accuracy or the
completeness of the mathematical forecast. There is no replacement for a demonstrably successful
operational history.

Typically, however, u ranges over such an enormous set of values that the physical mechanism could be
tested on only avery tiny fraction of them in a reasonable amount of time. For example, if u ranges over
a state of just 64 bits, exhaustive testing would require 2°64 (more than 1.84* 10M19) test cases. Even if
each case required only 100 nano-seconds, testing them all would require over 58,000 years! And who or
what is going to evaluate al those results? When one considers that it is common for a modern program
to control states of 232 or more bits, these numbers become truly unimaginable! In contrast, however, if
u ranges over a state of just 16 hits and each test requires 1 second, then exhaustive testing requires only a
little more than 18 hours.

A serious difficulty with non-exhaustive, physical testing is that a successful test on one case ui tells us
nothing about the outcome of testing a different case uj . But this problem is not unique to computer
programs. It isacharacteristic of experimental, physical testing. In order to extrapolate from a successful
test on ui to what the outcome of testing uj might be, a predictive model usually is required, such as
g(m s) ! Sometimes a useful degree of predictability can be achieved just by assuming that there exists a
predictive model and that it is continuous or monotonic. For example, if a chair is tested successfully to
support 200 kilograms, it probably also will support any number of kilograms less than 200, and it
probably will even support 201. But for computer programs, discontinuities abound and intuition serves
us poorly. If a program passes a test for 200, who knows what it might do for 201 or even 199? To
extrapolate accurately from the physical behavior of a program for 200 to its behavior for other cases, an
accurate predictive model is needed.

2.6 Accuracy

Mathematical forecasting is of benefit to an engineer to the extent that it provides accurate predictions
about the future behavior of a physical system. Inaccurate predictions about physical behavior are of little
interest. Those are made commonly every day with the well-known, unsatisfactory results.

How accurate a forecast is depends on how accurately the mathematical model describes the physical
system, and on the soundness of the mathematical analysis. One would not expect to get an accurate
forecast about the behavior of a spring from a mathematical model of a pendulum. And one would not
expect to get an accurate forecast, even from an accurate model, if the mathematical analysis contained
logical errors.

How does one obtain an accurate mathematical model of the behavior of a physical object? One does not
construct a mathematical proof that a model accurately describes a physical system. Instead, one must
conduct physical experiments which either affirm or deny that a particular model describes the appropriate
physical observations. For example, Newton did not construct a mathematical proof of the law of gravity.
The physical effects of the force of gravity were observed, and in time, Newton proposed a mathematical
model to describe those effects. By careful measurement and observation, many subsequent physical
experiments confirmed the accuracy of Newton's model. Newton’s model certainly is not a complete
description of the force of gravity. To this day, we do not know how gravity works. But Newton's
mathematical model does describe the effect of gravity accurately enough so that engineers can, and do,
make very accurate forecasts about the attractive forces between physical objects.

To establish the accuracy of a mathematical model of a computer program, ultimately, a similar
experimental process is required. What must come out of these experiments is confirmation that a
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particular mathematical model is an accurate description of the effects caused by programs running on
some physical computer. How this might be done is an important subject that is beyond the scope of this
discussion. The scope of this discussion is the role of mathematics in forecasting the behavior of
computer programs. Therefore, it is important to set forth clearly what can and cannot be done with
mathematics. Ultimately, mathematics cannot replace the process of experimentally confirming the
accuracy of amodel of program behavior.

What can be done mathematically is to prove that one model of a physical system logically follows from
another one. If Aisamodel of some physical system, and model B logically follows from model A, then
B describes the physical system just as accurately as A does. Accuracy-preserving transformations of one
model into another by sound mathematical deduction are common practice in other fields of engineering,
and it also is possible in software engineering.

For example, suppose that we are given a mathematical function f ( x) that describes the behavior of the
some digital processor at the level of machine language. This function gives the final state produced by
the processor when itsinitia state is described by the sequence of binary digits x. Both the program and
the state would be contained in the bit sequence x, and the model would alow even self-modifying
programs.

Suppose further that we construct a mathematical proof that
g(ms) = display(f(compile(ms))) where g(ms) is the Gypsy model of program
behavior described in Figure 4, conpi | e(m s) isafunction that maps Gypsy descriptions of programs
mand states s into bit sequences, and di spl ay( x) maps bit sequences back into Gypsy states. The
mathematical deductions that comprise this proof show that the Gypsy model g( m s) logically follows
from the machine language model f ( x) . Thus, the accuracy of the machine language model is preserved
in the Gypsy model -- i.e., the Gypsy model is just as accurate as the machine model is. If a compiler
program can be produced that performs the transformation conpi | e(m s) , then one can use g( m s)
to make forecasts about the physical behavior of compiled Gypsy programs with the same degree of
accuracy that one getsby using f ( x) to make forecasts about machine language programs.

Some specific examples of different models of program behavior and mathematical proofs that one
logically follows from another can be found in [Bevier 89a], [Hunt 89], [Moore 89] and [Young 89].
These examples involve three languages. Gypsy, the assembly language Piton, and FM8502 machine
language. The FM8502 is a 32-bit micro-processor of complexity comparable to a PDP-11. Gypsy is
compiled into Piton, and Piton is compiled into FM8502 machine language. Each of these three
languages has a predictive model that forecasts the physical behavior of programs described in that
language. By mathematical deduction, it has been proved that the Gypsy model logically follows from
applying the Piton model to Gypsy compilations [Y oung 89], and the Piton model logically follows from
the FM 8502 machine language model applied to Piton compilations [Moore 89]. Finaly, it also has been
proved that the FM8502 machine language model logically follows from the gate-level design of the
FM8502 [Hunt 89]. In this way, accuracy of the gate-level model is preserved in the FM8502 machine
language model, in the Piton model and in the Gypsy model. The Gypsy model is just as accurate as the
FM8502 gate-level model!

Another important example of deducing that one model logically follows from another is described
in[Bevier 89b]. Here it is proved that a model of a simple separation kernel, Kit, logically follows by
applying the machine language model of an FM8502-like processor to a particular machine language
program description. The program description which the model is applied to is the actual machine
language code for the separation kernel. This kernel provides separation for a fixed number of
communicating processes running on a single FM 8502-1ike processor.
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Making an accurate forecast about the physical behavior of a computer program not only requires having
an accurate model of program behavior, but also, to preserve the accuracy inherent in the model, it
requires making sound mathematical deductions. Because accurate mathematical models of programs are
highly discontinuous, our mathematical intuition about these modelsis not very well developed; therefore,
we must be especially careful to perform the mathematical analysis of these models correctly.

The mathematical deductions used to perform the analysis of the val i dat or example are sufficiently
simple so that they can be done reliably with pencil and paper (even the important induction step that was
left out of the presentation). In some cases, this kind of manual analysis can be quite tractable and useful.
In addition, structuring a program description so that its mathematical analysis does become tractable
manually can have considerable engineering benefit because it tends to keep the program structured in a
way so that we understand it better.

However, because the current state of technology for modeling program behavior is till quite primitive,
analyzing a model also can pose a high volume of mathematical deduction. Mechanical theorem provers
are one way of dealing with thisvolume. For example, to obtain maximal assurance that the mathematical
deductions cited above in [Hunt 89], [Bevier 89c], [Moore 89] and [Y oung 89] were done without logical
errors, all of them have been confirmed with a mechanical theorem prover. With appropriate human
guidance, the Boyer-Moore theorem prover [Boyer & Moore 88] has confirmed that the conclusions
drawn from the models of Gypsy, Piton, Kit and the FM8502 logically follow from the axioms of the
Boyer-Moore logic [Boyer & Moore 79] by applying only precisely stated, well-understood rules of
logical deduction. It isimportant to emphasize that these mechanical deductions are confirmations of, not
replacements for, human mathematical deductions.

3. Intothe Future

Let’s take von Karman's 1954 statement about airplane design and rephrase it for the design of computer
programs, those physical control mechanisms that are composed of very large numbers of very small
switches.

Mathematical theories from the happy hunting grounds of pure mathematicians are found suitable to
describe the state sequences produced by computer programs with such excellent accuracy that they can be
applied directly to program design.

If the practice of software engineering could advance to this state, both providers and consumers of
computer software systems could receive the benefits that applied mathematics brings to engineering.

Historically, the incorporation of applied mathematics is an important step in the evolution of a field of
engineering. Strictly speaking, applied mathematics is neither necessary nor sufficient for successful
engineering. But accurate mathematical models and sound analyses provide engineers with a very
powerful way to forecast the physical behavior of systems constructed from their designs. This
forecasting capability does not replace the creativity of human invention, it does not guarantee perfection,
and it does not eiminate the need for physical experimentation. But it can reduce the risk of operational
malfunction and the risk of high resource consumption caused by developmental backtracking.

The current practice of software engineering falls well short of the state of aerospace engineering
described by von Karman in 1954. Current software engineering practice is more like aerospace
engineering in 1879.

Mathematics up to the present day have been quite useless to us in regard to programming.
The application of mathematics to forecast the physical behavior of computer programs is virtualy
non-existent in current practice. Certainly it is common for mathematical equations describing airflow or
other physical phenomena to be deduced from various models and then handed over to a "programmer”
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for "coding." But how many times has that "programmer" applied a mathematical model to the Fortran or
C or Ada "code" to predict how the program (those physical switch settings) produced from that "code"
will control the electronic states caused by the physical computer? Zero, | would guess. How many times
does that program cause unpredicted behavior? Many, and there is no need to guess.

These simple observations raise an important question. Computer programs are control mechanisms for
physical machines. These machines do cause effects in our physical world. Many of them have been
engineered without adequate means to forecast accurately what effects they will cause. Therefore, many
of them probably are capable of causing unforeseen effects. What risks do these potential unforeseen
effects pose to our physical world? Thisimportant question has yet to be answered.

What is to be done to advance software engineering beyond this current state of affairs? Part of the
answer is to incorporate effective, applied mathematics for computer programs into mainstream software
engineering practice. To do this, it will necessary to

« develop models for the notations engineers use to describe programs,
« develop models of requirements for programs,

« develop mathematics and tools to apply these models effectively,

« integrate this mathematics into the software engineering process,

« educate software engineersin how to useit, and

« transfer it into engineering practice.
All of thisis much easier said than done, and there is much to be done before mathematics can be applied
as extensively in software engineering as it currently is in aerospace engineering. But even today,
software engineers can begin to use some of the mathematics that is becoming available.

At some future time, there will need to be standard, mathematical models for whatever notations® are
being used in software engineering practice. If we were in this state today, there would be, for example,
ISO standard models of Fortran, C and Ada. Software engineering students would be learning these
models and how to apply them while aerospace engineering students were learning the mathematical
models of gravity and aerodynamics. Practicing engineers would be applying these standard models to
predict the behavior of programs described in these languages. These predictions might be made by direct
application of the models, or they might be made by applying libraries of general theorems derived from
the standard models. For every language implementation that conformed with the standard, predictions
made from the model would be accurate. Thiswould have the important practical consequence of making
the predicted behavior truly portable among all conforming implementations. This would be a significant
advance beyond the "pseudo portability” that often exists today in which, although the same program
description may compile and run under different implementations, its behavior may be different.

The current practice of software engineering is far from achieving this futuristic state of affairs. The
important role of mathematical models of programs in software engineering is only beginning to be
recognized. There are no "off-the-shelf* models, standard or otherwise, for Fortran, C or Ada. What
presently is needed is to begin building and validating some of these models. This will not be easy
because mathematical models of program behavior were not even considered in the design of most current
languages. In the future, these mathematical models need to be developed in parallel with the design of
new languages or the evolution of current ones. In contrast to the way that most languages currently are
developed, this will require that language development efforts put a high priority on defining the
mathematical semantics of the language. For example, the Gypsy model g( m s) described in Section 4

8These future notations may, or they may not, resemble the programming languages used in current practice.
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defines part of an operational semantics for Gypsy. Strictly as a practical engineering consideration, the
mathematical semantics of programming languages can no longer be ignored. Without these semantic
foundations, accurate mathematical forecasting will not be possible.

But for now, we can begin with what we have. It is not necessary to wait for the definition of
international standard models for current languages. A wise project manager can build or adopt a model
for a particular project. The project model can be restricted to a particular language subset as it is
implemented by a particular combination of compiler, operating system and machine. The manager can
constrain project programming to these restrictions. Where this is possible, it can be a useful start. Just
by defining a project-wide model, one makes explicit a precise set of assumptions about how programs
behave on a particular project. This, at least, enables all project software engineers to work from the same
set of assumptions about program behavior, and it allows one to begin validating the assumptions of the
project model from practice and experience. With abit of luck, a project model could be generalized and
used on other projects, thus amortizing the cost of developing the model. A specific, project-wide
standard is far removed from a generally accepted, international standard, but at least it can bring the
benefits of applied mathematics to a particular project.

One of the important uses of mathematical forecasting is to predict that the behavior of a program will
meet certain behavioral requirements. Making the forecast requires a mathematical model of the
requirements (such as the problem domain functions shown in Figure 5). Developing models of
requirements is another major problem that confronts software engineering. This development will
require requirements discovery and requirements modeling. Have all of the right requirements been
discovered? Have they been modeled accurately? These are important questions that require answers
because mathematical forecasting is no better than its models. Once a moddl is stated, mathematical
analysis can provide some help in answering these questions. For example, one can analyze the
consistency of the requirements. One also can make deductions from the requirements, and see if these
logical conclusions conform to expected program behavior. Ultimately, however, physica
experimentation and observation, through previous experience and prototyping, will need to play a major
role in requirements discovery and modeling.

A well-developed mathematical theory aready exists which can provide the foundations for describing
very accurately the state sequences produced by computer programs. It is the theory of recursive
functions. What is not yet well-developed are the means to apply this theory effectively in engineering
practice. This body of applied mathematics is beginning to emerge, and enough is presently available so
that it can be useful to a practicing engineer. Various aspects of mathematical reasoning about programs
are discussed in [Boyer & Moore 88], [Chandy 88], [Dijkstra 76], [Gehani 86], [Gries 81], [Hayes 87],
[Hoare 85], [Jones 80] and [Jones 86]. In response to this mathematics, one often hears the objection that
it isjust too complex to be useful. It is complex. But the complexity is not caused by the mathematics.
This mathematics just accurately describes the complexity of computing. |s computing too complex to be
useful? Mathematicsis one of the most effective ways we have to manage complexity.

If software engineering is to reach the level of maturity of aerospace and other successful engineering
fields, it needs to incorporate effective, applied mathematics. Applied mathematics is one of the
important crystal balls that engineers use to forecast the future behavior of their systems. This reduces the
dua risks of operationa malfunction and high resource consumption caused by developmental
backtracking. There is not a single point in the engineering process where aerospace engineers "do the
mathematics' to certify that their system will meet its requirements. Mathematics is applied in many
ways and in many places throughout the product development process. This same kind of integration of
applied mathematics into the software development process is needed in software engineering. Certainly
there is much more to engineering than applied mathematics. But engineering without it is risky business.
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Figurel: Validator Mechanism Description

DESCRI PTI ON

type a_cnmd
type a_cnd_seq
type a_context

pendi ng;

pendi ng;

procedure validator(var Xx, VY,

begi n
var ¢

;a_cnd;

var eox: bool ean;

var e

reset(y);

:a_context;
reset(z);

init_context(e);

| oop

get _cnd(c, eox, X);
if eox then | eave
el se update_cnd(c, v,

end
end
end

BEHAVI OR:
vlyl =
v[z] =
where u

\Y

al | _val i d(x0),

al | _inval i d(x0),

{ (x, x0), (y,

g(Dvalidator],

y0),

u).

sequence of a_cnd,

z:a_cnd_seq) =
e)
(z, z0), (run,

normal ) },
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var c:a_cnd

var eox: bool ean
var e: a_cont ext

| eave

reset(y)

reset (z)
init_context(e)

get _cnd(c, eox, X)
update_cnd(c, vy, z,

Figure2: Validator Components

e)
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Figure3: Validator Compositions

procedure <A> = <B>
begi n <A> end
<A> ;. <B>

| oop <A> end
if <A> then <B> el se <C end
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Figure4: Mathematical Model

Procedure Conposition.

g(procedure <F> = <B>, s) = if s[run]=nornal
then g(<B>, s)
el se s

Local Variable Primtive.

g(var <I>: <J> 5s) i f s[run]=normal
then alter(s, <I>, default(<J> D))

el se s

Begi n Conposition.

g(begin <A> end, 5s) i f s[run]=normal

then g(<A>, s)

el se s
| f Conposition.
g(if <I> then <B> else <C> end, s) = if s[run]=normal
then if s[<l>]
then g(<B>, s)
el se g(<C>, s)
el se s
Loop Conposition.
g(loop <A> end, s) = if s[run]=normal

then if g(<A>,s)[run] =l eave

then alter(g(<A>, s), run, normnal)

el se g(loop <A> end, g(<A>, s))

el se s
Leave Primtive.
g(leave, s) = if s[run]=normal
then alter(s, run, |eave)

el se s
Procedure Call Primtive.
g(<I> ( <A>), s) = if s[run]=nornal
t hen copyout (<I >, <A>, v, s, D
el se s
where v = g(D[<I>], copyin(<l> <A> s, D))
Sequenti al Conposition.
g(<A> ; <B> s) =if s[run]=normal

then g(<B> g(<A>, s))
el se s
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Figure5: Problem Domain Functions

Let ¢ be a command,
e be a context,
X be a sequence of commands,

<> be the enpty sequence.

For a non-enpty sequence of comands,

last(x) is the last elenent of x,
nonl ast(x) is the rest,

nonl ast(x) :> last(x) = x.

first(x) is the first elenent of X,
nonfirst(x) is the rest,

first(x) <@ nonfirst(x) = x.

Assuned Functi ons:
val i d(c, x)
cont ext (x)

check(c, e)

Assumed Rel ati ons:

valid(c, x) = check(c, context(x))

Def i ned Functi ons:

all _valid(x) =if x = <> then <>
else if valid(last(x), nonlast(x))
then all _valid(nonlast(x)) :> last(x)
el se all _valid(nonl ast(x))

all _invalid(x) =if x = <> then <>
else if valid(last(x), nonlast(x))
then all _invalid(nonlast(x))
el se all __invalid(nonlast(x)) :> last(x)

eos(x) iff x=<>
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Figure6: Get_Cmd Mechanism Description

DESCRI PTI ON:
procedure get cnd(var c:a_cnd;
var eox: bool ean;
var x:a_cmd_seq) = pending
BEHAVI OR:
v[c] = if v[eox] then cO else first(x0),
v[ eox] = eos(x0),
v[ Xx] = if v[eox] then x0 el se nonfirst(x0),

where u = { (c,

c0),

(eox, eox0) (x,

v = g(Dget_cnd], u).

x0), (run,

normal ) 1},
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Figure7: Init_Context Mechanism Description

DESCRI PTI ON:

procedure init_context(var e:a_context) = pending

BEHAVI OR:
v[e] = context(<>),

where u = { (e, e0), (run, nornal) },

\ g(Dinit_context], u).



Figure8: Reset Mechanism Description

DESCRI PTI ON:

procedure reset(var y:a _cnd_seq) = pending

BEHAVI OR:
vyl = <>,
where u = { (y, y0), (run, normal) },
v = g(Dreset], u).



Figure9: Update Cmd Mechanism Description

DESCRI PTI ON

procedure update _cnd(c: a_cnd;
var y, z:a_cnd_seq;

var e:a_context) = pending
BEHAVI OR:
v[c] = cO,
v[y] = if check(cO, e0) then yO :> cO el se yO,
v[z] = if check(cO, e0) then zO0 el se z0 :> cO,

v[e] = context(hO :> c0),

where u = { (c, c0), (y, y0), (z, z0), (e, e0), (run,
e0 = context (h0),
v = g(Dupdate_cnd], u).

normal ) 1},
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