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Abstract. A hierarchical, occurrence-oriented, combinational hardware description
language has been formalized using the Boyer-Moore logic.  Instead of representing
circuits as formulas of a particular logic, combinational circuits are represented by list
constants in the Boyer-Moore logic.  A good-circuit predicate recognizes well-formed
circuit descriptions; an interpreter provides the semantics of the language. This
approach allows the direct verification of circuit specifications, as well as allowing the
verification of circuit generating functions.  A circuit generating function for a family
of ALUs has been verified using these techniques.

1. Introduction

The formalization of a hierarchical, occurrence-oriented, combinational hardware description language
(HDL) has been employed to prove the correctness of functions which generate circuits.  This
formalization was carried out with the Boyer-Moore logic and its associated mechanical theorem prover
[Boyer & Moore 88].  HDL statements are formalized as list constants in the Boyer-Moore logic, and the
proofs of correctness of HDL circuits are carried out using the Boyer-Moore theorem prover.

Previously we used Boyer-Moore logic expressions [Hunt 89a, Hunt 89b] to represent and verify circuits;
however, this representation provided inadequate information for conventional CAD systems.  Our
formalization of a hierarchical, occurrence-oriented HDL using constants provides a formal representation
for circuits which is closely related to HDLs currently in use in industry.  With our new formalization, a
circuit box is specified by listing its inputs and outputs, and its internal circuitry.  Internal circuitry is
specified as interconnected primitive gates and/or other boxes, allowing circuits to be specified and
verified hierarchically.  Our simple HDL model only recognizes combinational primitives.  Also, circuitry
within a box may not be circular, nor may box compositions introduce circularities.

We make the notion of a circuit box precise with a predicate, written in the Boyer-Moore logic, which we
map over circuit descriptions.  We also use the Boyer-Moore logic to define several interpreters which
evaluate circuit properties. For proving circuit correctness we use an interpreter which computes a value
for a circuit given its inputs.  We can also compute or verify the delay and loading of a circuit or class of
circuits.

The use of general-purpose theorem proving systems to guarantee the correctness of circuit designs is a
recent advance [Gordon 83, Viper 89, Hunt 85].  With other hardware verification efforts that we are
aware of, circuits are represented as formulas in a particular logic, theorems are proved about these
representations, and then the logic formulas are translated into an language suitable for actual design
layout. (In other cases, circuits are originally described in a HDL, but for verification purposes they are
translated into a formal logic.)  These kinds of translations are impossible to guarantee because of the
generally informal nature of CAD languages.

Our approach, however, formalizes conventional hardware design environments.  Circuits are described
by list constants which capture the abstract syntax of a generic HDL.  Our good-circuit predicate is
analogous to a netlist compiler, ensuring that the netlist is syntactically valid.  Our evaluation function
plays the role of a simulator, and more.  Since our evaluator is embedded in the Boyer-Moore logic, we
are able to prove abstract properties of our circuits with respect to the evaluation function, as well as
simply simulate circuits on fixed inputs.  Similar to the way that hardware engineers can write programs
to create the text of circuit descriptions, we have written functions that generate circuits in our abstract
syntax, and furthermore have proven that the circuits generated by these functions are correct with respect
to their abstract specifications.

In this note we explore our HDL formalization by considering the verification of a circuit generating
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function for a family of ALUs.  Before describing our ALU proof, we introduce the idea of hardware
verification and describe the formalization of our HDL.  We then consider the verification of several
simple circuits and conclude with our ALU verification.

2. Our Approach

Hardware verification is the application of formal methods to the task of specifying and verifying the
1operation of digital computing. Typically, digital hardware is designed from natural language

specifications. With our approach, circuits are specified, both abstractly and concretely, as mathematical
formulas. Formally specified circuits and designs allow us to rigorously demonstrate that designs meet
their specifications by using formal proof techniques. In this section, we argue the merits of the approach
to hardware verification outlined in this note.

Formal techniques are being employed by a number of groups (for example [Brown 89, Viper 89, Gordon
85, Johnson 89, Sheeran 84]) to aid in the specification, design, and verification of computer hardware.
Each group has a formal logic which is used to model hardware.  Typically, functions or predicates are
defined in the logic of choice, and these functions or predicates are considered to represent either
collections of primitive objects or primitive objects themselves.  In other words, functions or predicates of
some logic are "overloaded" in the sense that they have both a formal meaning in the defining logic, and
they are used to represent computer hardware.

For example, consider the one-bit selector circuit schematic in Figure 1.  The typical approach taken to

A

C

B

Figure 1: One-bit Selector Circuit

represent this circuit formally is to introduce a function or predicate describing the operation of each gate
(where in turn, each gate is described as either primitives of the logic being used and/or other functions or
predicates.) Using the Boyer-Moore logic we can formalize the one-bit selector circuit with the B-IF

function.
(B-IF C A B)
=

(B-NAND (B-NAND A C)
(B-NAND (B-NOT C) B))

That is, we introduce the function B-IF, which is defined in terms of the functions B-NAND and B-NOT.
For this to be possible in the Boyer-Moore logic, it is necessary for B-AND and B-NOT to have been
previously defined, and in this case, these two functions were defined with primitives of the Boyer-Moore
logic. Additionally, the functions B-NAND and B-NOT are overloaded in the sense that we think of these
functions as representing hardware gates.

1This is not to say that it is impossible to verify analogue circuits; we only consider digital circuits.
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We find overloading functions in the Boyer-Moore logic to be imprecise when considering if a particular
circuit description represents a circuit which can be physically realized.  In general it is impossible for us
to formally decide (inside the logic) whether an arbitrary function was defined in such a way that it can be
completely represented with primitive hardware functions.  Another problem we suffer by using functions
in the Boyer-Moore logic is that fanout cannot be explicitly expressed.  By inspecting the definition of
B-IF we can see that C appears twice, suggesting that C fans out twice; however, we still have no explicit
means of checking this.  Modeling circuits with predicates allows the explicit specification of fanout, but
yields unexecutable specifications, and introduces a host of other problems concerning the realizability of
the specified hardware.

We have several goals in the formalization of an HDL: its structure should be similar to commercial
HDL’s, it should be executable, and it should provide a basis for verified synthesis.  In the past, we have
found it more difficult to precisely specify a circuit for manufacturing than to check whether a
specification represents a circuit.  Our HDL formalization now allows us to explicitly specify circuit
interconnections. The ability to explicitly manipulate circuit expressions cannot be overemphasized.  The
structure of our HDL allows simulation of our circuit specifications without having to transform them into
some other form.  Very often circuit designs are refined from specifications and then optimized.  Since our
circuit descriptions are simply constants in the Boyer-Moore logic, we are able to synthesize and
manipulate circuit descriptions with provably correct procedures.

3. The Boyer-Moore Logic

We use the Boyer-Moore logic as a hardware description language and also as a hardware specification
language. Here we introduce the Boyer-Moore logic and give several examples of its use.

The Boyer-Moore logic [Boyer & Moore 88] is a quantifier-free, first-order predicate calculus with
equality. Logic formulas are written in a prefix-style, Lisp-like notation. Included with the logic are
several built-in data types: Booleans, natural numbers, lists, literal atoms, and integers.

The Boyer-Moore logic is unusual in that the logic may be extended by the application of any of the
following axiomatic acts: defining conservative functions, adding recursively constructed data types, and
adding arbitrary axioms.  Adding an arbitrary formula as an axiom does not guarantee the soundness of
the logic; we do not use this feature.

The Boyer-Moore theorem prover is a Common Lisp [Steele 84] program which provides a user with
various commands to extend the logic and to prove theorems.  The theorem prover is interactive and users
enter commands through the top-level Common Lisp interpreter.  The theorem prover manages a database
of axioms, definitions, and proved theorems, thus allowing a user to concentrate on the less mundane
aspects of proof development.  The theorem prover contains decision procedures for propositional logic
and linear arithmetic, a simplifier, and a rewriter.  The Boyer-Moore theorem prover also contains
procedures for automatically performing structural inductions.

We use the Boyer-Moore theorem prover as a proof checker.  The theorem prover is led to difficult
theorems by giving it a graduated sequence of more and more difficult lemmas until a final result can be
obtained.

Consider that we wish to represent a bit vector as a list which contains only Boolean elements. We
formalize this notion within the Boyer-Moore logic by introducing the functions BOOLP and BVP. We
write function definitions with the symbol "=", while theorems are presented without the "=" symbol.
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(BOOLP X) = (OR (EQUAL X T) (EQUAL X F))

(BVP X) = (IF (NOT (LISTP X))
(EQUAL X NIL)
(AND (BOOLP (CAR X))

(BVP (CDR X))))

(BITN N LIST) = (IF (ZEROP N)
(IF (LISTP LIST)

(IF (CAR LIST) T F)
F)

(BITN (SUB1 N) (CDR LIST)))

BOOLP is just an abbreviation, while BVP is a recursive function.  For a recursive function to be
acceptable, it must be possible to prove that it terminates.  Pairs are constructed with CONS; CAR selects
the first element of a pair and CDR the second.  If a bit vector is empty, BVP insists that it equal NIL. For a
list, the first element must be Boolean and the remainder of the list must be a bit vector.  We later use this
formalization of Booleans and bit vectors. BITN selects bit N from LIST if N is less than the length of
LIST; otherwise BITN returns F.

Using the function APPEND, we can prove that appending two bit vectors together produces a bit vector.
(APPEND X Y) = (IF (NOT (LISTP X))

Y
(CONS (APPEND (CAR X) Y)))

(IMPLIES (AND (BVP X)
(BVP Y))

(BVP (APPEND X Y)))

The proof is by induction on X, and the Boyer-Moore theorem prover can automatically perform this
proof.

To represent our hardware circuit boxes we are using Boyer-Moore logic constants.  Constants are written
using the Lisp quote notation.  The following statements are theorems.

(EQUAL (CAR (CONS X Y) X))
(EQUAL (CDR (CONS X Y) Y))

(EQUAL (LISTP (CONS X Y)) T)

(EQUAL ’(A B C ... X) (CONS ’A ’(B C ... X)))

(EQUAL (CAR ’(A B C) ’A))
(EQUAL (CDR ’(A B C) ’(B C)))

(EQUAL (LIST A B C ... X) (CONS A (LIST B C ... X)))

’(A B C) is a list of three literal atoms.  We use (nested) lists of this kind to represent our circuit
descriptions. We access components of circuit description with CAR and CDR. We abbreviate nests of CAR
and CDR; for example, we abbreviate (CAR (CDR (CDR X))) by (CADDR X).

Below are several functions which we will use throughout the remainder of this note.
(NLISTP X) = (NOT (LISTP X))

(ASSOC X ALIST) = (IF (NLISTP ALIST)
F
(IF (EQUAL X (CAAR ALLIST))

(CAR ALIST)
(ASSOC X (CDR ALIST))))
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(DISJOINT L1 L2) = (IF (NLISTP L1)
T
(AND (NOT (MEMBER (CAR L1) L2))

(DISJOINT (CDR L1) L2)))

(DUPLICATES? L) =  (IF (NLISTP L)
F
(OR (MEMBER (CAR L) (CDR L))

(DUPLICATES? (CDR L))))

(LENGTH X) = (IF (NLISTP X) 0 (ADD1 (LENGTH (CDR X))))

(MEMBER X LIST) = (IF (NLISTP LIST)
F
(IF (EQUAL X (CAR LIST))

T
(MEMBER X (CDR LIST))))

(PAIRLIST L1 L2) = (IF (NLISTP L1)
NIL
(CONS (CONS (CAR L1) (CAR L2))

(PAIRLIST (CDR L1) (CDR L2))))

(PROPERP X) = (IF (NLISTP X) (EQUAL X NIL) (PROPERP (CDR X)))

(SUBSET L1 L2) = (IF (NLISTP L1)
T
(AND (MEMBER (CAR L1) L2)

(SUBSET (CDR L1) L2)))

4. Some Example Circuit Boxes

To give the flavor of our HDL formalization, we present some example circuits along with their HDL
specifications. Circuit boxes are specified with Boyer-Moore logic list constants.  A well-formed circuit
box contains four items: a name, a list of inputs, a list of outputs, and a circuit description body.  The
names of the inputs and outputs must be distinct.  The body is a list of wiring instructions.

CARRY

SUM

A

B

Figure 2: Half-Adder Circuit

Circuit boxes for a half-adder and a full-adder are below.  Certain circuit boxes are considered primitive,
for example B-XOR, B-AND, and B-OR. The HALF-ADDER circuit box contains just two primitives, and
this circuit is pictured in Figure 2.

’(HALF-ADDER (A B) (SUM CARRY) (((SUM) (B-XOR A B))
((CARRY) (B-AND A B))))
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’(FULL-ADDER (A B C) (SUM CARRY)
(((SUM1 CARRY1) (HALF-ADDER A B))
((SUM CARRY2)  (HALF-ADDER SUM1 C))
((CARRY) (B-OR CARRY1 CARRY2))))

The FULL-ADDER circuit box makes two references to HALF-ADDER, thus to build a FULL-ADDER circuit
requires two half-adders and one B-OR primitive, as pictured in Figure 3. A complete circuit description
is represented as a list of circuit boxes, which we call a boxlist.

HALF-ADDER

A

B SUM

CARRY

HALF-ADDER

A

B SUM

CARRY
CARRY2

CARRY1

SUM1

SUM

A

B

C

CARRY

Figure 3: Full-Adder Circuit

5. Boxlist Syntax

Here we present the specification for well-formed circuit boxes and boxlists.  A circuit box may refer to
other circuit boxes; every circuit box reference in a well-formed boxlist either refers to other circuit boxes
in the boxlist or to primitives.  The form of a boxlist prevents circuit boxes from referring to themselves.
The class of circuits which can be expressed with a well-formed boxlist is just combinational logic
without feedback.

The syntax of our HDL is formally specified by the function BOXLIST-OKP. A boxlist which is NIL is
well-formed; otherwise, the (CAR BOXLIST) must be a syntactically well-formed circuit box in the
context of (CDR BOXLIST), which also must be well-formed.  The conditions on (CAR BOXLIST)

include: a unique name, disjoint input and output names, and a well-formed body.
(BOXLIST-OKP BOXLIST)
=

(IF (NLISTP BOXLIST)
(EQUAL BOXLIST NIL)
(LET ((BOX (CAR BOXLIST)))

(AND (LISTP BOX)
(LISTP (CDR BOX))
(LISTP (CDDR BOX))
(LISTP (CDDDR BOX))
(EQUAL (CDDDDR BOX) NIL)
(LET ((NAME (CAR BOX))

(INPUTS (CADR BOX))
(OUTPUTS (CADDR BOX))
(BODY (CADDDR BOX)))

THE FORMALIZATION OF A SIMPLE HDL 29 December 1989



BOXLIST SYNTAX 7

(AND (NOT (ASSOC NAME (CDR BOXLIST)))
(PROPERP INPUTS)
(NOT (DUPLICATES? INPUTS))
(PROPERP OUTPUTS)
(NOT (DUPLICATES? OUTPUTS))
(DISJOINT INPUTS OUTPUTS)
(BODY-OKP BODY INPUTS OUTPUTS (CDR BOXLIST))
(BOXLIST-OKP (CDR BOXLIST)))))))

A well-formed body is specified by the function BODY-OKP. A body contains a list of occurrences, where
each occurrence is a list of two elements: an output list and a circuit box reference.  Each occurrence in a
body satisfies the following conditions: the circuit box reference is either a primitive reference or a
reference to another circuit box, the input arity of a circuit box reference must match the box being
referenced, a value for each input must exist, the output arity of a circuit box reference must match the
occurrence output list, each occurrence output list cannot contain duplicates, and all occurrence output
lists must be disjoint.  Furthermore, every output must be set exactly once.

(BODY-OKP BODY SIGNALS OUTPUTS BOXLIST)
=

(IF (NLISTP BODY)
(AND (EQUAL BODY NIL)

(SUBSET OUTPUTS SIGNALS))
(LET ((OCCURRENCE (CAR BODY)))

(AND
(LISTP OCCURRENCE)
(LISTP (CDR OCCURRENCE))
(EQUAL (CDDR OCCURRENCE) NIL)
(LET ((LHS (CAR OCCURRENCE))

(RHS (CADR OCCURRENCE)))
(AND
(PROPERP LHS)
(NOT (DUPLICATES? LHS))
(DISJOINT LHS SIGNALS)
(LISTP RHS)
(PROPERP RHS)
(LET ((MODULE-NAME (CAR RHS))

(MODULE-ARGS (CDR RHS)))
(LET ((PRIMP (PRIMP MODULE-NAME)))
(AND
(SUBSET MODULE-ARGS SIGNALS)
(IF PRIMP

(AND (EQUAL (CAR PRIMP) (LENGTH MODULE-ARGS))
(EQUAL (CDR PRIMP) (LENGTH LHS)))

(LET ((SUBMODULE (ASSOC MODULE-NAME BOXLIST)))
(LET ((SUBMODULE-INPUTS  (CADR SUBMODULE))

(SUBMODULE-OUTPUTS (CADDR SUBMODULE)))
(AND SUBMODULE

(EQUAL (LENGTH MODULE-ARGS)
(LENGTH SUBMODULE-INPUTS))

(EQUAL (LENGTH LHS)
(LENGTH SUBMODULE-OUTPUTS))))))

(BODY-OKP (CDR BODY) (APPEND LHS SIGNALS)
OUTPUTS BOXLIST)))))))))

PRIMP specifies the output and input arity for each primitive.
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(PRIMP FN)
=

(CASE FN
(B-BUF (CONS 1 1)) (B-NOT (CONS 1 1))
(B-NAND (CONS 2 1)) (B-NAND3 (CONS 3 1))
(B-NAND4 (CONS 4 1)) (B-OR (CONS 2 1))
(B-OR3 (CONS 3 1)) (B-OR4 (CONS 4 1))
(B-EQUV (CONS 2 1)) (B-XOR (CONS 2 1))
(B-AND (CONS 2 1)) (B-AND3 (CONS 3 1))
(B-AND4 (CONS 4 1)) (B-NOR (CONS 2 1))
(B-NOR3 (CONS 3 1)) (B-NOR4 (CONS 4 1))
(OTHERWISE F))

6. The Logical Hardware Interpreter

Since our HDL is written as constants, we have defined interpreters to give various meanings to our
circuit boxes and boxlists.  Here we consider the definition of the function HEVAL, which interprets
references to a circuit box as Boolean functions.

HEVAL uses an association list to assign values to (signal) names. EVAL-NAME retrieves the value assigned
to NAME in ALIST and coerces the value to a Boolean. COLLECT-EVAL-NAME retrieves a list of values.

(EVAL-NAME NAME ALIST)
=

(IF (NLISTP ALIST)
F
(IF (AND (LISTP (CAR ALIST)) (EQUAL NAME (CAAR ALIST)))

(BOOLFIX (CDAR ALIST))
(EVAL-NAME NAME (CDR ALIST))))

(COLLECT-EVAL-NAME ARGS ALIST)
=

(IF (NLISTP ARGS)
NIL
(CONS (EVAL-NAME (CAR ARGS) ALIST)

(COLLECT-EVAL-NAME (CDR ARGS) ALIST)))

To interpret a circuit box body, FLAG is set to F; otherwise, HEVAL interprets FORM as a circuit box
reference. A circuit box is interpreted in two steps: values for the arguments are retrieved from ALIST

and the circuit box reference is applied to the argument values. (HAPPLY FN ARGS) provides a value for
each primitive FN recognized by PRIMP given ARGS. For example, (HAPPLY ’B-NOT (LIST T)) is
(LIST F). Otherwise, the circuit box reference is retrieved from BOXLIST and its body is interpreted by
HEVAL.
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(HEVAL FLAG FORM ALIST BOXLIST)
=

(IF FLAG
(LET ((FN (CAR FORM))

(ARGS (CDR FORM)))
(LET ((ACTUALS (COLLECT-EVAL-NAME ARGS ALIST)))

(IF (PRIMP FN)
(HAPPLY FN ACTUALS)
(LET ((BOX (ASSOC FN BOXLIST)))

(IF BOX
(LET ((INPUTS  (CADR BOX))

(OUTPUTS (CADDR BOX))
(BODY (CADDDR BOX)))

(COLLECT-EVAL-NAME
OUTPUTS
(HEVAL F BODY (PAIRLIST INPUTS ACTUALS)

(CDR BOXLIST))))
F)))))

(IF (LISTP FORM)
(LET ((OCCURRENCE (CAR FORM)))
(LET ((LHS (CAR OCCURRENCE))

(RHS (CADR OCCURRENCE)))
(HEVAL F

(CDR FORM)
(APPEND (PAIRLIST LHS (HEVAL T RHS ALIST BOXLIST))

ALIST)
BOXLIST)))

ALIST))

To illustrate the workings of HEVAL we consider the interpretation of ’(HALF-ADDER A B) with the
following environment.

BOXLIST = (LIST ’(HALF-ADDER (A B) (SUM CARRY)
(((SUM) (B-XOR A B))
((CARRY) (B-AND A B)))))

ALIST = (LIST (CONS ’X F) (CONS ’Y T))

We initiate the interpretation of HALF-ADDER by the following invocation of HEVAL, which finally
simplifies to (LIST T F).
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(HEVAL T ’(HALF-ADDER X Y) ALIST BOXLIST)
=

(COLLECT-EVAL-NAME ’(SUM CARRY)
(HEVAL F ’(((SUM) (B-XOR A B))

((CARRY) (B-AND A B)))
(LIST (CONS ’A F) (CONS ’B T)) NIL))

=
(COLLECT-EVAL-NAME ’(SUM CARRY)

(HEVAL F ’(((CARRY) (B-AND A B)))
(LIST (CONS ’SUM T)

(CONS ’A F) (CONS ’B T)) NIL))
=

(COLLECT-EVAL-NAME ’(SUM CARRY)
(HEVAL F ’()

(LIST (CONS ’CARRY F) (CONS ’SUM T)
(CONS ’A F) (CONS ’B T))

NIL))
=

(COLLECT-EVAL-NAME ’(SUM CARRY)
(LIST (CONS ’CARRY F) (CONS ’SUM T)

(CONS ’A F) (CONS ’B T)))
=

(LIST T F)

We have also defined interpreters like HEVAL which compute the delay, primitive count, and loading of
circuit box references.

7. A Simple Circuit Generator

A consequence of using list constants to specify hardware circuits is the ability to verify functions which
create circuit descriptions.  We demonstrate this ability with a simple example, the verification of a
function which creates descriptions of n-bit adder circuits.  This example is simple enough that we can
completely describe it; the ALU generator verification discussed later is far too large.  This adder example
is often used in descriptions of formal hardware verification methodologies; thus the interested reader can
directly compare this treatment with other approaches [Gordon 86, Goguen 89, Hunt 85, Pace 89].

Our abstract specifications are given by functions in the Boyer-Moore logic.  The function V-ADDER is a
specification for bit-vector addition.

(V-ADDER C A B)
=

(IF (NLISTP A)
(CONS (IF C T F) NIL)
(CONS (XOR C (XOR (CAR A) (CAR B)))

(V-ADDER (OR (AND (CAR A) (CAR B))
(OR (AND (CAR A) C)

(AND (CAR B) C)))
(CDR A)
(CDR B))))

The function V-TO-NAT provides an interpretation of bit-vectors as natural numbers. Using this
interpretation, it is straightforward to prove that V-ADDER can perform natural number addition.

(V-TO-NAT X) = (IF (NLISTP X)
0
(PLUS (IF (CAR X) 1 0)

(TIMES 2 (V-TO-NAT (CDR X)))))
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(IMPLIES (AND (BVP A) (BVP B)
(EQUAL (LENGTH A) (LENGTH B)))

(EQUAL (V-TO-NAT (V-ADDER C A B))
(PLUS (IF C 1 0)

(V-TO-NAT A)
(V-TO-NAT B))))

Given the specification of bit-vector addition, we now turn to the creation of an HDL circuit which meets
that specification.  We proceed by defining a set of functions which generate a complete circuit
description for an n-bit adder.

(GENERATE-NAMES SEED N)
=

(IF (ZEROP N)
NIL
(CONS (CONS SEED N) (GENERATE-NAMES SEED (SUB1 N))))

(V-ADDER-BODY N)
=

(IF (ZEROP N)
NIL
(CONS (LIST (LIST (CONS ’SUM N) (CONS ’CARRY N))

(LIST ’FULL-ADDER (CONS ’A N) (CONS ’B N)
(CONS ’CARRY (ADD1 N))))

(V-ADDER-BODY (SUB1 N))))

(V-ADDER* N)
=

(LIST (CONS ’V-ADDER N) ; Name
(CONS (CONS ’CARRY (ADD1 N)) ; Inputs

(APPEND (GENERATE-NAMES ’A N)
(GENERATE-NAMES ’B N)))

(APPEND (GENERATE-NAMES ’SUM N) ; Outputs
(LIST (CONS ’CARRY 1)))

(V-ADDER-BODY N)) ; Body

Since our simple HDL does not include a syntax for bit-vectors, we use the function
(GENERATE-NAMES SEED N) to create lists of unique names. (V-ADDER-BODY N) generates a list
constant representing the body of an n-bit adder, designed to be used in the signal name environment
provided by V-ADDER*. The adder is composed of interconnected FULL-ADDER modules using a ripple-
carry scheme. V-ADDER* provides a circuit box for an n-bit ripple-carry adder.  The following example
should help clarify the circuit discriptions specified by V-ADDER*.

(V-ADDER* 2)
=

’((V-ADDER . 2) ; Name
((CARRY . 3) (A . 2) (A . 1) (B . 2) (B . 1))  ; Inputs
((SUM . 2) (SUM . 1) (CARRY . 1)) ; Outputs
((((SUM . 2) (CARRY . 2)) ; Body

(FULL-ADDER (A . 2) (B . 2) (CARRY . 3)))
(((SUM . 1) (CARRY . 1))
(FULL-ADDER (A . 1) (B . 1) (CARRY . 2)))))

V-ADDER-BOXLIST provides a complete boxlist for our ripple carry adder by including circuit boxes for
FULL-ADDER and HALF-ADDER.
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(V-ADDER-BOXLIST N)
=

(LIST (V-ADDER* N)
’(FULL-ADDER (A B C) (SUM CARRY)

(((SUM1 CARRY1) (HALF-ADDER A B))
((SUM CARRY2)  (HALF-ADDER SUM1 C))
((CARRY) (B-OR CARRY1 CARRY2))))

’(HALF-ADDER (A B) (SUM CARRY)
(((SUM) (B-XOR A B))
((CARRY) (B-AND A B)))))

One way to state the correctness of the circuit produced by V-ADDER-BOXLIST is given below.
(IMPLIES (AND (EQUAL (LENGTH A) N)

(EQUAL (LENGTH B) N))
(EQUAL (HEVAL T (CONS (CONS ’V-ADDER N)

(CONS C (APPEND A B)))
ALIST (V-ADDER-BOXLIST N))

(V-ADDER (EVAL-NAME C ALIST)
(COLLECT-EVAL-NAME A ALIST)
(COLLECT-EVAL-NAME B ALIST))))

This is a general lemma which specifies that the HEVAL interpretation of a reference to the V-ADDER box
in (V-ADDER-BOXLIST N) is the same as V-ADDER applied to the values in the ALIST bound to the
symbolic inputs.  A more concrete consequence of the lemma just above is presented below.

(IMPLIES
(AND (BVP A) (BVP B) (BOOLP C)

(EQUAL (LENGTH A) N)
(EQUAL (LENGTH B) N))

(EQUAL (HEVAL T (CONS (CONS ’V-ADDER N)
(CONS ’C (APPEND (GENERATE-NAMES ’A N)

(GENERATE-NAMES ’B N))))
(PAIRLIST (CONS ’C (APPEND (GENERATE-NAMES ’A N)

(GENERATE-NAMES ’B N)))
(CONS C (APPEND A B)))

(V-ADDER-BOXLIST N))
(V-ADDER C A B)))

The lemmas above have been checked with the Boyer-Moore prover.

The proof of the general lemma has a different flavor than the correctness proofs where the adder is a
function in the logic.  We began by proving a lemma about the association list returned by the HEVAL

interpretation of V-ADDER-BODY; the structure of the induction is unique to the proof of V-ADDER-BODY
because of the naming issues.  It was also necessary to prove that every output name was assigned exactly
once. To ensure that our ripple-carry adder generator function always generates well-formed boxlists, we
verified (BOXLIST-OKP (V-ADDER-BOXLIST N)).

Although simple, our ripple-carry adder example provides some indication of how circuit generator
functions can be written and verified.  More sophisticated generator functions can easily be imagined.  For
instance, we have written a function which generates an adder with a tree-based carry look-ahead scheme.
More generally, since the creation of the list constants is program controlled, we are in a position to use
any algorithmic means to assist the creation of circuit boxes.
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8. An ALU Verification

A circuit box generator function for an n-bit ALU is the largest verification we have attempted using a
specification in our HDL.  This ALU has a specification similar to the FM8502 ALU [Hunt 89a], but the
implementation is entirely different in its construction methodology and internal organization.  The proof
of the ALU circuit box generator function was developed in a hierarchical fashion; subparts of the ALU
were first verified and these subparts combined into the final proof.

OP-CODE Result Description

0000 a Move
0001 a+1 Increment
0010 b+a+c Add with carry
0011 b+a Add
0100 0−a Negation
0101 a−1 Decrement
0110 b−a−c Subtract with borrow
0111 b−a Subtract
1000 a>>1 Rotate right, shifted through carry
1001 a>>1 Arithmetic shift right, top bit duplicated
1010 a>>1 Logical shift right, top bit zero
1011 b ∨− a Exclusive or
1100 b ∨ a Or
1101 b∧a And
1110 ¬ a Not
1111 a Move

Table 1: ALU Operation Summary

In the short space of this note we do not attempt to explain the steps of the ALU verification, but we do
present an informal specification for the ALU (Table 1) and a lemma stating its correctness.  We present
this summary of the ALU verification to demonstrate a realistic use of our HDL for specifying a large
circuit.
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Figure 4: Internal Organization of the ALU

THE FORMALIZATION OF A SIMPLE HDL 29 December 1989



AN ALU VERIFICATION 14

Our ALU is a 16-function unit which produces three outputs: an n-bit result, a carry, and an overflow.
Our ALU generator function NEW-ALU-BOXLIST generates a boxlist which contains the complete circuit
description of an n-bit ALU.  Our specification function V-ALU takes two bit-vectors, a carry, and an
op-code as arguments.  A pictorial representation of the major functional units in the ALU design is
shown in Figure 4.  The argument TREE of NEW-ALU-BOXLIST is a set of instructions for several circuit
generator functions. NEW-ALU-BOXLIST builds circuits recursively depending on the structure of TREE;
for example, the structure of the propagate-generate logic in the ALU is isomorphic to TREE. TREE is also
used to control the insertion of buffers for common control signals; starting from the bottom, buffers are
added at interior nodes whenever the fanout of a control signal may exceed eight loads. The correctness
lemma for NEW-ALU is given below.

(IMPLIES
(AND (EQUAL BOXLIST (NEW-ALU-BOXLIST TREE))

(EQUAL (LENGTH A) (TREE-SIZE TREE))
(EQUAL (LENGTH B) (TREE-SIZE TREE)))

(EQUAL (HEVAL T (CONS (CONS ’NEW-ALU TREE)
(CONS C

(APPEND A
(APPEND B

(LIST OP0 OP1
OP2 OP3)))))

ALIST BOXLIST)
(V-ALU (EVAL-NAME C ALIST)

(COLLECT-EVAL-NAME A ALIST)
(COLLECT-EVAL-NAME B ALIST)
(LIST (EVAL-NAME OP0 ALIST)

(EVAL-NAME OP1 ALIST)
(EVAL-NAME OP2 ALIST)
(EVAL-NAME OP3 ALIST)))))

Our HDL-based approach has, for the first time, given us the ability to explicitly control circuit fanout,
loading, and delay. Given that we use functions to generate our circuits, we are extra sensitive to the
quality of circuit we have specified.  The gate count, delay, and maximum fanout of our ALU for different
word sizes are given in Table 2.  The delay of our tree-based, carry look-ahead ALU increases as a
constant function of the log of the ALU width.2

ALU Characteristics

Size Gate Count Fanout Delay

1 bit 126 8 12

2 bits 149 8 14

4 bits 196 8 17

8 bits 297 8 22

16 bits 491 8 26

32 bits 880 8 30

64 bits 1665 8 35

128 bits 3227 8 39

Table 2: ALU Result Summary
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Processing the proof of the ALU generator functions, including the time necessary to define our primitives
and interpreters, takes less than one hour on a Sun 3/280.  To generate the circuit boxes for all of the
ALU’s above takes only a few seconds.  For instance, we can generate a complete HDL description of a
32-bit ALU in 1/6 of a second.

9. Conclusions

The formalization of our HDL using list constants provides us with much greater circuit specification
precision than we previously enjoyed expressing circuits as functions in the Boyer-Moore logic.  We are
now able to formally specify well-formed circuits, which was previously impossible.  Our interpreters
provide logical, delay, and load semantics for circuit boxes.  Using this formalization we were able to
verify an n-bit ALU circuit description by proving that the ALU circuit generating functions produce
correct circuits.

The use of constants to represent circuits permits research in verified synthesis and verified tools.  Since a
circuit specification is just a constant, we can write programs which manipulate these specifications.  For
example, we could write a logic minimizer and prove the correctness of this program.  An algebraic
heuristic was employed to control the specification of the fanout for our n-bit ALU.

Using formal logic constants to represent circuit boxes provides clear benefits over modeling circuits as
formulas in a particular logic:  well-formed circuits can be formally specified, circuits can be manipulated
with programs in the formalization logic, and verified synthesis and circuit box tools are possible.  Circuit
generator functions provide a rapid means of producing provably correct circuits.  We intend to extend our
HDL to include sequential logic, and we plan to explore the use of heuristics in circuit generator functions
more thoroughly in the future.
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