Generalization in the
Presence of Free Variables:
a Mechanically-Checked Correctness Proof
for One Algorithm

Matt Kaufmann

Technical Report #53 April, 1990

Computational Logic Inc.
1717 W. 6th St. Suite 290
Austin, Texas 78703
(512) 322-9951

This research was supported in part by ONR Contract
NO00014-88-C-0454. The views and conclusions contained in
this document are those of the author and should not be
interpreted as representing the official policies, either expressed
or implied, of Computational Logic, Inc., the Office of Naval
Research or the U.S. Government.



1. Introduction

The motivation for this work began with a concern for the correctness of an implementation of logic. The
system PC-NQTHM1 is an interactive ** proof-checker’” enhancement of the Boyer-Moore Theorem Prover [3],
and is documented in[10]. In[11] we report on an extension of this system that admits a notion of free
variables. Roughly, free variables are ones that the user is allowed to instantiate in the course of a proof. An
earlier version of this extension for free variables had a soundness bug in one of the commands, called
GENERALIZE. (This command allows one to replace terms by new variables and proceed by proving the
stronger, generalized version of the goal. Thus, it corresponds to the inference rule of universal instantiation).
In fact the bug was easily corrected and the correctness of the resulting GENERALIZE command was checked
on paper. However, the rude shock of having made a soundness mistake in the previous version led to the
following goal: formalize the new version of the GENERALIZE command in the Boyer-Moore logic, and

mechanically check a proof of correctness of this formalization.

In this paper we present a mechanically-checked proof of correctness for a generalization agorithm.
Although the theorem itself is probably new (at least, we are unaware of any existing statement of it), the
interest here lies not particularly in the theorem per se but, rather, lies in the demonstration of the use of
mechanical verification for assisting in the reliability of detailed proofs and software. In particular, we believe
that this exercise strongly suggests the feasibility of creating a verified version of PC-NQTHM, i.e. onewhichis

proved correct in the Boyer-Maoore theorem prover or in some successor of that system.

Thus, this paper could be viewed as a contribution to the study of metatheoretically extensible systems.
Some reports of research in this spirit can be found in works of Davis and Schwartz [6], Weyhrauch [18], Boyer
and Moore [2], Shankar [16], Knoblock and Constable [14, 13], Howe [9], and Quaife[15]. However, we also
view this paper as an exposition which provides a rather detailed look at the practice of using the Boyer-Moore

theorem prover and PC-NQTHM to proof-check mathematical arguments.

Although the development here is intended to capture the behavior of PC-NQTHM, it is actualy an
abstraction of that behavior. Hence, no familiarity with PC-NQTHM is required for an understanding of this
document. Moreover, little particular understanding of the Boyer-Moore logic (cf. [1, 3]) should be necessary

for a comfortable reading of this paper (although for those interested, a complete treatment of the Boyer-Moore

1pC for *“proof-checker'”, **“NQTHM'’ for the name commonly given to the current Boyer-Moore theorem prover



theorem prover and the enhancements used here can be found in [1, 3, 10, 12, 4, 11]). A summary of the basics
needed in order to follow the treatment in this paper may be found in the first subsection 1.1 immediately
below. We follow this with a very general discussion of the methodology employed in the use of the Boyer-
M oore theorem prover and PC-NQTHM in Subsection 1.2. A brief view of the main theorem and the high-level
structure of its proof may be found in Subsection 1.3. We conclude this introduction with a summary of the

remainder of the paper.

1.1 Introduction to the Boyer-M oor e logic and theorem prover

For a description of the Boyer-Moore logic and theorem prover we refer the reader to the careful

description in [3]. For now let us simply point out afew aspects of the logic and theorem prover.

One may simply view the Boyer-Maoore logic as a version of first-order logic that has an induction rule of
inference. Further details will be provided as needed during the presentation below. For now, let us simply
note that a session with the Boyer-Moore theorem prover consists of a sequence of so-called events, which are
generaly either definitions or lemmas/theorems. A sequence of events stored at a given moment is caled a
history. Thus, this paper can be viewed as the presentation of a particular history that culminates in alemma

event stating the correctness of the algorithm in question.

There are a few built-in function symbols which, together with corresponding axioms, are part of the
logic’'s basic (built-in) theory, i.e. are part of every history. Hereisasummary of some of those that we will use
in this paper. In each case we write terms in two ways. First, we write them in official s-expression (Lisp)
notation, i.e.inthefoom (G t, ... t ) whereeacht; isaterminthat notation and Gis afunction symbol
(of the current history). Second, we write them in informal, more traditional notation. We will follow this
convention throughout this paper. Moreover, we will write s-expressions using upper-case characters and
traditional notation using lower-case characters. Here, then, are the primitives promised above.

* (CONS X YY) or<x, y>: theordered pair formed from x andy. CONS is also used to represent
lists (sequences), in which case the atom NI L represents the empty list and (CONS X YY)
represents the sequence whose first element is X and whose remaining elements (in order) form
the sequence Y.

* (CAR 2) or1%( z): thefirst component of the ordered pair z

« (CDR Z) or2™( z) : the second component of the ordered pair z
e (LISTP Z) orlistp(z): zisanordered pair

* T: the boolean true

* F: the boolean false

e (LESSP X Y) orx < y: xislessthany



« (MEMBER A X) ora O x: aisamember of x

The basic logic does not contain first-order quantification, so one often expresses quantified concepts
using primitive recursion. Consider the following (irrelevant but instructive) definition of a predicate that holds

of alistif and only if al of its elements are ordered pairs.
Definition of ALL- LI STP

all-listp(x) =
(Oy Ox) listp(y)

(DEFN ALL- LI STP (X)
(1F (LISTP X)
(AND (LI STP (CAR X))
(ALL-LI STP (CDR X)))
n)
The first version of this definition isinformal. Infact x is (presumably) alist, not a set (there is no built-in set
type), so the predicate [ doesn’t really make precise sense here, though it’s highly suggestive. We'll continue

in this style throughout this paper.

The theorem prover contains a number of ‘‘processes’, but most of the work is done by its simplifier,
whose main component is a rewriter. The user labels certain lemmas as rewrite rules, and the system then
rewrites using them. For example, consider the following rule, which says how the function ALL- LI STP

above appliesto a CONS.
Lemma ALL- LI STP- CONS

listp(a) -
(all-listp({a} O x) =all-listp(x) )

(1 MPLI ES (LI STP A)
(EQUAL (ALL-LISTP (CONS A X))
(ALL-LISTP X)))
Again, the first version is merely suggestive, since the [0 operator applies to sets, not lists. The name of this
lemma is indicated to be ALL-LISTP-CONS. If we label it to be a rewrite rule then the theorem prover's
rewriter will ssimplify any term of the form (ALL- LI STP (CONS A X)) to theterm (ALL-LI STP X)
provided it can establish (LI STP A). Again, while this extremely brief introduction to the logic and theorem

prover should suffice as a prerequisite for the rest of the paper, the reader is welcome to consult [3] for a much

more thorough treatment.



1.2 Remarks on methodology

General hints on how to use the Boyer-Moore theorem prover may be found in the user’s manual [3],
particularly in Chapter 13. We also felt free to use PC-NQTHM, an interactive enhancement of the Boyer-
Moore theorem prover described in [10, 11], to help explore some of the more difficult theorems. (Examples of
such use may be found in [10].) However, the final proof script ultimately does not depend on PC-NQTHM,
but only on the Boyer-Moore theorem prover with the enhancements for theories, LET, quantifiers, and

functional variables mentioned above.

Our first completed proof was rather ugly? in a number of places. Apparently this phenomenon is rather
typical for users of the Boyer-Moore theorem prover, since one is still discovering the proper abstractions and
proof structure while carrying out the proofs. In fact, the helpful output of the system can also distract one
towards proving lemmas that are geared specifically to allow a particular proof attempt to succeed rather than
towards proving elegant, general lemmas. Our first proof did, however, generate a number of basic definitions
and rules for the files "sets.events', "alists.events’, and "terms.events’ which can be found (in their current
forms) in the Appendix. So that we could obtain a proof script amenable to this exposition, we did the proof
again, starting with those three files. Having those files already loaded allowed many of the proofs to go
through automatically, which freed our attention for more substantive matters. In the course of the new proof a
few additional basic rules were discovered and the three aforementioned libraries were suitably enhanced during
this *‘polishing’’ process. Not surprisingly, when we moved some of those new basic rules up to those three
files from our final file, some proofs in the final file no longer succeeded; when arewrite rule is moved in front
of aPROVE-LEMMA event, it can affect the course of the event’s automatic proof. But we were able to find a
few more useful rules for the three preliminary files, without undue difficulty. The resulting proof asit existsin
the final file, "generalize.events', is reasonably concise. An advantage of this conciseness is that the result is
quite amenable for description in the final two sections of this paper. Perhaps a disadvantage is that some of the
struggles in completing the proof have been hidden, though we do make a few remarks about such difficulties

where they came up.

We should be honest that although the lemmas stated in the final file "generalize.events' form the heart of
the proof (in our view), still many of the supporting lemmasin the other three files are crucial too. A number of

those lemmas were not only crucia to the main proof, but in fact were only discovered while trying to do that

2even compared to the final version!



proof.3 The point here is that although the lemmas have been arranged into files for expository purposes, one
should not be left with the impression that the first three files were created in isolation and then a fairly natural
proof evolved without difficulty, as represented in "generalize.events'. An unfortunate amount of sweat went
into that proof! On the other hand, the original proof took well under a month, including the libraries and the
time required to think about the theorem. So athough our experience is that this kind of program verification
remains a less-than-automatic activity, still we are not too disappointed by the amount of effort required. The
exposition in this paper, however, is a different matter; it seemed quite time-consuming. We don’'t recommend

such detailed expositions in general, although we hope that this one has pedagogical value.

We did not keep the set of lemmas in those first three files at aminimum. Rather, we were happy to build
up less-than-minimal but useful libraries of rules. Therefore the thickness of the first three files in the A ppendix
is not entirely indicative of what is truly necessary for the successful processing of the events in the fina file.
On the other hand, we view the events in the first three files as being sufficiently fundamental that many or all

of them should be usable in possible future work that involves notions such as lists, terms and substitutions.

Another obligation arising from honesty requires us to point out that hints to the Boyer-Moore prover
have been omitted from the exposition below (although they do appear in the appendix). We simply felt that the
hints would distract the reader from more substantive considerations, and would even be misleading in the

absence of explanation.

Finaly, let us remark that the time required to automatically replay the events constructed for this
exercise was roughly an hour and a quarter on a Sun 3/60 with 20 megabytes main memory. Slightly under a
half hour was spent on the events in the three preliminary files; the rest was spent on the events in

"generalize.events'.

1.3 Outline of theorem and pr oof

The main theorem is stated precisely in Section 4. However, hereisavery informal version.

We want to model a proof development methodology similar to the one in PC-NQTHM [10, 11], as

explained at the start of the introduction. (In fact, similar ‘‘proof refinement’”” methodologies have been

3People familiar with the Boyer-Moore prover will correctly guess that many of these lemmas were thought up by reading failed proof
transcripts and thinking about what might be useful to prove as rewrite rules. Others were discovered by crawling around through terms
using PC-NQTHM.



implemented in systems preceding PC-NQTHM as well, for example LCF[7] and its ‘‘descendents’ HOL
[8] and Nuprl [5].) In the PC-NQTHM methodology, the user starts with a proof state consisting of a single
goal, namely the goal to be proved, and proceeds to create new proof states by ‘‘refining’’ goals into subgoals
and simplified goals. The proof is complete when all goals of the state are simply T (true). Let us explain this

more carefully (but still informally).

First imagine a situation where one has aformulain some logic that he wishes to show is atheorem. One
approach would be to replace that formula with a list new formulas whose conjunction implies the given
formula. (Such a step may be called a ‘‘refinement step’’.) The resulting formulas are then the goals that
remain to be proved. The first formula in this list, which we will call the current (or top) goal, may then be
similarly refined into subgoals that imply it, leaving one with those new goals, together with the existing goals
other than that current goal. Once a current goal is simply the formula T (true), it is replaced by the empty list
of goals. One would hope to be able to continue this process until there are no goals left, in which case one can
conclude that the original goa is a theorem. Such a sequence of steps will be called a *‘proof’’, though it is

perhaps better viewed as a demonstration that a proof existsin that logic.

We might call the current list of (as yet unproved) goals the *‘ current proof state’’. However, imagine a
slightly more general paradigm in which a proof state consists not only of unproved goals but also of alist of
variables called the free variables of that proof state. The idea is that one should be free to substitute for the
free variables. For example, suppose there is asingle goal, of the formt ; < t,. Clearly it suffices to find
some z forwhicht; < zandz < t,. So, itshould belegal to replacethecurrentgoal t ; < t, withalist
of thetwogoalst ; < zandz < t,, withthestipulation that z isto be considered free. Then if we are able
to find some term u for which we can provet ; < uandu < t,, then we will be allowed to substitute u for

z and carry out that proof.

Suppose a proof state has the property that there is some way of substituting terms for its free variables,
into its goals, such that the resulting goals are al theorem. Such a proof state will be called valid. The ‘‘key
lemma’’ for a proof of correctness of such a refinement-based system would establish that each refinement
transformation has the following property: whenever the new stateis ‘‘valid’’ in an appropriate sense, then the
given state is *‘valid’’. For then an easy induction would let one conclude that if one performs a series of such
state transformations, starting with the user’s given goal and resulting in a state where all goals are disposed of,
then (as such a fina state is presumably ‘‘valid’’) the original state is ‘‘valid’’ -- and hence, presumably, the

original goal is atheorem.



Such a refinement system may have a number of legal refinement steps, so for a correctness result of the
type described in the previous paragraph, one would have to prove a ‘‘key lemma’’ for each of these. We
confine ourselves in this paper to such a proof for a single refinement step that we call generalization. Theidea
is that if one wishes to prove a goal g containing a subterm t , it should be legal to replacet in g by a new

variable. Standard logics have the property that if the result is a theorem, then the original goal is atheorem.

There is a subtlety which makes this correctness proof not completely trivial, namely, generalization in
this sense is not sound in general, i.e. the aforementioned key lemma may fail to hold. The problem has to do
with free variables, and examples are given in Subsection 4.1. Rather than get into details at this point, let us

simply state that there is away to define generalization so that it is correct and reasonable.

The main theorem in this paper states the correctness of aformalization of generalization in this context.
62. Theorem. GENERALI ZE- | S- CORRECT

general i ze-okp(sg, state) O valid-state(generalize(sg,state))
- valid-state(state)

(1 MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
(VALI D- STATE STATE))
Here GENERALI ZE- OKP is a predicate which may be viewed as a precondition under which the user is
allowed to apply the GENERALI ZE refinement rule. We also prove the much simpler ‘‘sanity’”’ theorem,
saying that if generalization is legal then the result is still a state. We'll say no more about this, except to

mention that it could be useful in case we wish (someday) to extend the current theorem to handle a sequence of

PC-NQTHM-like commands.
13. Proposition.  GENERALI ZE- STATEP

(I MPLI ES ( GENERALI ZE- OKP SG STATE)
( STATEP ( GENERALI ZE SG STATE)))

The function GENERALI ZE is actually rather subtle, and the proof is more subtle than one might initially
expect. Our approach in the mechanized proof-checking exercise was to break this theorem into major
subtheorems, some of which were broken down further, and so on. In each case we checked that the theorem
followed from its subtheorems, by adding the subtheorems as (temporary) axioms and running the Boyer-Moore
theorem prover on the desired theorem (after proving minor subtheorems on which the theorem also depends;
these are omitted in the diagram below). This approach will appear upon inspection of the file
"generalize.events' in the Appendix. In fact this top-level structure of the proof is rather evident upon

inspection of the final file "generalize.events" in the Appendix, and is also evident in the structure of the final



section of the paper. Hereisabrief summary, for convenience. We refer to the theorems by name as well as by

the numbers associated with them in the file "generalize.events'.

general i ze-is-correct

|
|
mai n-t heorem 1
I
|
mai n-t heorem 1-case- 4
/ \
/ \

mai n- hyps-relieved mai n- hyps-suffice
/ \ / \
/ \ / \
mai n- hyps-relieved-5 mai n-hyps-relieved-6 / \
\ mai n- hyps-suffice-first main-hyps-suffice-rest
/ \
/ \
mai n-hyps-relieved-6-first ..... mai n- hyps-relieved-6-rest.....

/ | \
/ | \
[/ main-hyps-relieved-6-rest-lema-2 \
mai n- hyps-relieved-6-rest-|emma-1 mai n- hyps-rel i eved- 6-rest-generalization

1.4 Summary of therest of the paper

It's problematic how best to describe a proof checked with the Boyer-Moore prover. The appendix at the
end of this report contains a complete list of events, including supporting events about sets, alists, terms, and
proof theory. However, most readers will only find this list helpful for reference, at best. In the paper proper
we outline a proof of the main theorem with a liberal amount of explanation. The development will refer to
events in the appendix, but (as indicated above) will also display the events using conventional mathematical
notation. Therefore, familiarity with Lisp notation is not a prerequisite for being able to follow the treatment
here. There actually is one exception that we mention now: semicolons (;) denote the start of comments, so

that all characters from a semicolon up to the end of the line should be viewed as informal comments only.

The following section (Section 2) presents the underlying logical preliminaries such as the notion of term.
That is followed by a presentation in Section 3 of some basic but important lemmas about these notions.
Section 4 then presents further notions specific to the theorem in question, culminating with a statement of that
theorem. Finaly, Section 5 contains a proof of the theorem that closely follows the mechanically-checked
proof. Thus, one may view the final section either as being simply an informal proof of the theorem in English

or as being a guide to the mechanically-checked proof.

The appendices contain four files of events that replay in the Boyer-Moore theorem prover as extended by
notions of theories and LET notation (as described in[10Q]), first-order quantifiers (as described in[12]), and

functional variables (as described in [4]). The first three of these sequences of events can be viewed as basic



supporting libraries, corresponding to Sections 2 and 3 below. The last file may be viewed as the proof proper,

including relevant definitions, and thus corresponds to the final two sections below.

2. Basic Notions

This section presents a number of primitive notions such as those of avariable, aterm, and a substitution.
Though these are quite standard, we state here the definitions of these notions used in the mechanically-checked
proof development. We divide into subsections corresponding to the event files "sets.events', "alists.events’,
and "terms.events’, all of which may be found in the Appendix, where complete definitions may be found. A
brief introduction to the Boyer-Moore logic and to some of our conventions in this paper may be found in

Subsection 1.1 above.

2.1 Sets

The event file "sets.events' forms the lowest-level foundation for our proof development. Hereis a brief
and very informal description of some of the functions defined in that file. The reader is referred to the
Appendix for the actual definitions and for a number of basic lemmas. For convenience we indicate ordinary
mathematical notation which *‘ corresponds’’ to these notions. The correspondence isn't quite accurate since we
will feel free to ignore the distinction between sets and lists for this purpose.

* (LENGTH L) or| || : thenumber of elementsin thelist L

* (SUBSETP X Y) orx [ y: equasT if every member of the list X is a member of the list y,
otherwise returns F

« (DELETE X L) orl \ {x}: theresult of deleting the first occurrence of X fromthelist L
*(DISJONT X Y)orx ny = [O: equasTif Xand Y share no common member, else F

* (I NTERSECTI ON X Y) orx n y: thesubsequence of thelist x consisting of members of the
listy

« (SET-DIFF X Y) orx \ vy: thesubsequence of thelist x obtained by removing members of
thelisty

* (SETP X) orset p(x): equasT if thelist x contains no duplicates, else F

* (MAKE- SET X) or make-set (x): alist with no duplicates that has the same members as
does x

2.2 Alists

Here is a brief and very informal description of some of the functions defined in the file "alists.events’.
The reader isreferred to the Appendix for the actual definitions and for a number of lemmas.

* (ALI STP X) oralistp(x): equalsT if x isan association list (alist), i.e. alist of ordered
pairs

- (DOVAI N MAP) or dorrai n( map) : alist of all first components of ordered pairs from map
* (RANGE MAP) or range( map) : alist of all second components of ordered pairs from MAP



10

* (VALUE X MAP) or map(x): the second component of the first ordered pair in map whose
first component is x; we speak of this as being the value associated with x in map

« (I NVERT MAP) or map 1: returns the alist obtained by switching the first and second
components of every ordered pair belonging to map.

* (MAPPI NG MAP) or mappi ng(map): equals T if map is an alist whose domai n has no
duplicates, else F

*(RESTRICT S NEWDOMAIN) or S | new donmi n: the subsequence of s consisting of
pairs whose first components are members of new domai n.

* (CORESTRICT S NEWDOMAIN) or S | ~ new domai n: the subsequence of s consisting
of pairs whose first components are not members of new domnai n.

2.3 Terms

One typically defines the notion of term by recursion: aterm is either a variable or the application of a
function symbol to a list of terms (of an appropriate length). Our formal definitions of term and of various
auxiliary notions will paralel this informal recursive one. This subsection is a summary of the file

"terms.events”, which may be found in the Appendix.

We'll begin with the notion of avariable. We could define the function VARI ABLEP, thus specifying it
as a unique function. However, we prefer to add an axiom asserting only some reasonable properties of this
function, so as not to over-specify the notion of variable. Since the act of simply adding an axiom* does not
guarantee in general that the resulting theory is consistent, instead we will use an extension of the Boyer-Maoore
logic reported in[4] which alows an event form caled CONSTRAIN. Perhaps the best way to explain
CONSTRAIN is in the context of the example displayed below. The event below has name VARIABLEP-
INTRO, and the designation (REWRITE) indicates that it is to be stored as one or more rewrite rules. It asserts
that no L1 STP object (i.e. ordered pair) is a variable, and that VARI ABLEP returns a boolean value. The last
argument of CONSTRAIN below, namely ( ( VARI ABLEP NLI STP)) , instructs the system to show that this
axiom is consistent by showing that it holds when VARI ABLEP is replaced by the function NLI STP (whichisa
predicate holding of objects that are not ordered pairs). Thus, we'll refer to this argument of a CONSTRAIN
event as the witnessing alist. In fact, use of CONSTRAIN guarantees more than consistency -- it guarantees
conservativity, in that no new theorems can be proved for the existing history in the presence of this axiom (see

[4] for more on this).

“4with the Boyer-Moore event type ADD-AXIOM



11

Introduction of VARI ABLEP.
- variablep(<a,b> O (variablep(x) = T O variablep(x) = F)
( CONSTRAI N VARI ABLEP- | NTRO ( REWRI TE)
(AND (I MPLIES (LISTP X)
(NOT (VAR ABLEP X)))
(OR (TRUEP (VARI ABLEP X))

(FALSEP (VARI ABLEP X))))
((VARI ABLEP NLI STP)))

The function VARI ABLE- LI STP recognizes lists of variables. We use the standard mechanism for

representing quantification over listsin the Boyer-Moore logic, namely, primitive recursion.
Definition of VARI ABLE- LI STP
variable-listp(x) = (0O v O x) vari abl ep(v)
(DEFN VARI ABLE- LI STP (X)
(IF (LISTP X)

(AND (VARI ABLEP (CAR X))
(VAR ABLE- LI STP (CDR X)))

(EQUAL X NIL)))

The next notion auxiliary to the notion of term is that of a function symbol. It is not important for the
development that follows to know anything about the notion of a function symbol except that there is at least
one O-place function symbol (i. e. constant symbol), which we call (FN). Below is the appropriate
CONSTRAIN event, which introduces FUNCTI ON- SYMBOLP and FN and asserts that ( FN) is a function
symbol. Notice that the ‘‘witnessing dlist’”” suggests that the prover check this axiom with
FUNCTI ON- SYMBOL- P replaced by LI TATOMand with FN replaced by the constant function that returns the

literal atom’ ZERO.
Introduction of FUNCTI ON- SYMBOL- P.

Let (FN) bean arbitrary function symbol, where for example
(FN) couldbe ' ZERO and FUNCTI ON- SYMBOLP could be LI TATOM

( CONSTRAI N FUNCTI ON- SYMBOL- | NTRO ( REVRI TE)
( FUNCTI ON- SYMBOL- P (FN))

( ( FUNCTI ON- SYMBOL- P LI TATOM
(FN (LAMBDA () ' ZERO))))

Now in order to define the notion of aterm one has to define the notion of alist of termsaswell. We will
define these using mutual recursion, employing a standard trick for representing mutually recursive definitions
in the Boyer-Moore logic: if FLG is not F then (TERMP FLG X) asserts that X is a term (informally,
ternp(x)), and otherwise (TERMP FLG X) asserts that X is a list of terms (informaly,

termp-list(x)).>

5Some Boyer-Moore prover users like to use 'LIST and T for the two explicitly-mentioned values of the FLG parameter in such
situations. However, we found that a heuristic for defeating excessive backchaining was defeating some of our rewrite rulesin that case.



12

Definition of TERMP (and ternp-1ist)

ternp(x) =
[ variablep(x) O
ternp(y,) O... Oternp(y,)
where x is <f y, ... y > and function-synbol p(f) ]
termp-list(<y,, ... y,>)) =[ternp(y,) O... Otermp(y,))]

( DEFN TERMP (FLG X)
(IF FLG
(I F (VAR ABLEP X)
T

(I'F (LISTP X)

(AND ( FUNCTI ON- SYMBOL- P (CAR X))
(TERWP F (CDR X)))
F))
(IF (LISTP X)

(AND (TERVMP T (CAR X))

(TERWP F (CDR X)))
(EQUAL X NIL))))

The function ALL- VARS returns alist of all variablesin x, wherex isatermif f | g isnot F and alist of terms

if f1 gisF). It doesnot bother to eliminate duplicates.
Definition of ALL- VARS

If xisaterm, then
al | -vars(x) = {x} ifxisavariable else
O {all-vars(y): vy isanargumentof x}

all-vars(<x,, ..., x> =0 {all-vars(x;): 1<i <n}

(DEFN ALL- VARS (FLG X)
(IF FLG
(I F (VAR ABLEP X)
(LIST X)
(IF (LISTP X)
(ALL- VARS F (CDR X))
NIL))
(IF (LISTP X)
( APPEND (ALL-VARS T ( X
(ALL- VARS F (CDR X)
NIL)))

We aso need to implement some notion of instantiation. A substitution is essentially a function that
maps terms to terms, represented as a list of term pairs. Of particular interest is the class of variable

substitutions, where the domain consists of variables:
Definition of VAR- SUBSTP
var-subst p(s) = mapping(s) O variable-listp(domain(s)) Oternp-list(range(s))
( DEFN VAR- SUBSTP ( S)
(AND ( MAPPI NG S)
(VAR ABLE- LI STP (DOMAIN S))
(TERVP F (RANGE 9))))
Given asubstitution s (not necessarily a variable substitution), we define the instantiation

x /s



13

of aterm (or term list) x under the substitution s as follows. Natice that we follow the usual convention with

respect to the parameter f | g, namely if f | g isF then x isalist of terms, and otherwise x isasingle term.
Definition of SUBST

If x isaterm, then:
x | s =s(x) if x O domain(s); ese

X if variablep(x); dse

<f y/s ... y/s> if x is <fy ... y>
If x isalit <y, ... y, > of terms, then
X/ s =<y)/ls ... yls>

( DEFN SUBST (FLG S X)
(IF FLG
(I F (MEMBER X (DOMAIN S))
(VALUE X 9)
(I F (VAR ABLEP X)
X

(1F (LISTP X)
(CONS (CAR X)
(SUBST F S (CDR X)))
;; silly impossible value of F for non-termp
F)))
(I F (LISTP X)
(CONS (SUBST T S (CAR X))
(SUBST F S (CDR X))

[ Ne)

)
NIL)))

The following simple fact is one of many obvious facts that need to be proved. It says that the property of being

aterm (or term list, if FLGisF) is preserved by the application of a substitution.
Lemma  TERMP- SUBST

[ternp(x) O ternp-list(range(s))] - ternp(x/s)
[ternp-list(x) Oternmp-list(range(s))] - ternmp-list(x/s)

(I MPLIES (AND (TERWP FLG X)
(TERWP F (RANGE S)))
(TERVP FLG (SUBST FLG S X)))

Just as SUBST is used to apply a substitution to a term, the function APPLY- TO- SUBST is used to apply
one subgtitution to another substitution, i.e. to apply a substitution s1 to each term in range of another

substitution s2. We may informally write
s2 /] sl

to denote the application of s1 to s2 inthissense. Formally, we have:
Definition of APPLY- TO- SUBST

s2 /] sl = {<x,ylsl1> <x,y> [0 s2} .

( DEFN APPLY- TO- SUBST (S1 S2)
(I'F (LISTP S2)
(IF (LISTP (CAR S2))
(CONS (CONS (CAAR S2) (SUBST T SI (CDAR S2)))
( APPLY- TO- SUBST S1 (CDR S2)))
( APPLY- TO- SUBST S1 (CDR S2)))
NIL))



14

We may now define the composition of substitutionss1 and s2, which wewriteas(s1 ¢ s2). Thisis
the substitution that, when applied to a term, is the same as the result of first applying the substitution s1 and
then the substitution s2. Let us display the definition of composition first in informal notation and then in
formal notation. (Hereisaminor detail for those familiar with the Boyer-Moore logic or Lisp: the definition of
COVPCSE in the Boyer-Moore logic may safely use APPEND rather than UNI ON because the function VALUE

only looks for the first occurrence of the key for which the valueis to be found.)
Definition of COMPCSE ( ¢)

sl e s2 = (s1// s2) O {<x,y> 0O s2: x O domain(sl)}.
(DEFN COWMPCSE (S1 S2)
(APPEND ( APPLY-TO SUBST S2 S1)
S2))

The following lemma shows that COMPOSE behaves similarly to ordinary function composition. We write the

lemma both in informal and in formal notation.

Lemma  COVPOSE- PROPERTY
variabl e-1istp(domain(s2)) O [ternp(x) Oternp-list(x)]
(_'x/ sl) / s2 =x /[ (sl e« s2)
(1 MPLI ES (AND ( VARI ABLE- LI STP (DOMAI N S2))
(TERWP FLG X))

(EQUAL (SUBST FLG S2 (SUBST FLG S1 X))
(SUBST FLG (COVPOSE S1 S2) X)))

The next notion illustrates our first use of quantifiers in this development. An extension of the Boyer-
Moore logic and prover by first-order quantification is reported in [12]. Briefly, the ideais that there is a new
event DEFN-SK, where the suffix ‘*-SK’’ refers to Skolemization, a well-known means for removing
quantifiers that was invented by the logician Thoralf Skolem. Every DEFN-SK event in fact adds quantifier-
free axioms that uniquely define the indicated function symbol in a conservative extension (cf. 2.3) of the
existing history. The DEFN-SK event below asserts that TERML is an instance of TERMR2, with the usual

convention that FLGindicates whether these are terms or term lists.
Definition of | NSTANCE

instance(ternl,ternR) = (O s) [var-substp(s) O (terml = tern2/s)]
(DEFN- SK | NSTANCE (FLG TERML TERMWR)
( EXI STS ONE- WAY- UNI FI ER
(AND ( VAR- SUBSTP ONE- WAY- UNI FI ER)
(EQUAL TERML (SUBST FLG ONE- WAY- UNI FI ER TERM2)))))
In fact the system adds the following axiom to ‘‘implement’’ this definition. The first conjunct gives a
sufficient condition for TERML to be an instance of TERM2: if TERML is the result of substituting a variable

substitution ONE- WAY- UNI FI ER into TERM2, then TERML is an instance of TERM2. The second conjunct



15

gives a necessary condition for TERML to be an instance of TERMR (i.e. gives a consequence of
i nstance(terni, ternR)): if TERML is an instance of TERM2 then ( ONE- WAY- UNI FI ER FLG
TERML TERMR) is a variable substitution such that TERML is the result of instantiating TERM2 with this
substitution. Let us state the axiom both in informal and in formal notation. In the informal version we will
write the second conjunct in the natural order rather than the contraposed order of the formal version (which is
stated that way for technical reasons related to rewriting). The function ONE- WAY- UNI FI ER is what is
generally called a Skolem function, in that its only given property is that it provides awitness (in this case, to the

existence of an appropriate substitution).
Axiom added for | NSTANCE

[(var-substp(s) Oterml = ternR/s) - instance(termdl, ternR)]
O

[instance(ternl,tern?) - (var-substp(s0) Oternl = ternR/s0)]
where

sO = one-way-unifier(terml,ternk)

(AND (1 MPLI ES (AND (VAR- SUBSTP ONE- WAY- UNI FI ER)
(EQUAL TERML
(SUBST FLG ONE- WAY- UNI FI ER TERMR) ) )
(I NSTANCE FLG TERML TERMR))
(I MPLIES (NOT (AND (VAR- SUBSTP ( ONE- WAY- UNI FI ER FLG TERML TERM2))
(EQUAL TERML
(SUBST FLG
( ONE- WAY- UNI FI ER FLG TERML TERMR)
TERMR2))))
(NOT (1 NSTANCE FLG TERML TERWR))))

Our final definition from "terms.events' is rather idiosyncratic to the application at hand; it will be used to

construct a substitution that is used in the proof of the main theorem. nul | i f y- subst (s) isasubstitution

that maps the domain of S to the constant term ( FN) .
Definition of NULLI FY- SUBST

nul lify-subst(s) = {<x,c> <x,y> O s}
where ¢ isa fixed constant symbol
(DEFN NULLI FY- SUBST (S)
(I'F (LISTP S)
(IF (LISTP (CAR S))
(CONS (CONS (CAAR S) (LIST (FN)))
(NULLI FY-SUBST (CDR S)))

(NULLI FY-SUBST (CDR S)))
NI L))

3. Some Basic Supporting Lemmas

In order to complete our mechanically-checked proof of the main theorem, we required a number of
lemmas about the notions introduced above. We present some of those in this section, for two reasons. First,
these lemmas give a flavor of the kinds of lemmas that appear in the libraries for this effort -- "sets.events’,

"alists.events', and "terms.events' -- and more generaly, in other libraries as well. Second, we refer to these



16

lemmas in some of the proofs that come later, but do not wish to clutter the exposition there with such trivial

considerations. By the way, thisis meant to be a representative list, not an exhaustive one.

The first lemma says that application of a substitution does not affect the domain.
Lemma  DOVAI N- APPLY- TO- SUBST from"terms.events'

domai n(s2 // sl1) = donain(s2)

(EQUAL (DOMAIN (APPLY- TO-SUBST S1 S2))
( DOMAI N S2))

The next lemma says that a substitution has no effect when its domain contains no variables occuring in

the term to which it is applied.
Lemma  SUBST- NOT- OCCUR (from "terms.events')

(termp(x) Oternmp-list(x)) O variable-listp(domain(s)) O domain(s) n all-vars(x)
- Xx/s =x

(I MPLIES (AND (TERWP FLG X)
( VAR ABLE- LI STP (DOMAIN S))
(DI SJONT (DOMAIN S) (ALL-VARS FLG X)))
(EQUAL (SUBST FLG S X) X))

The following lemmas say that there is no effect when restricting (respectively, co-restricting) a
substitition s to a subset x, as long as all of the variables of the term t er mto which s is applied belong to
(repectively, do not belong to) x. (In fact, they say that it is sufficient that none of those variables belong to

X n domain(s).)
Lemma  SUBST- RESTRI CT (from"terms.events')

( domain(s) n all-vars(term O x O
variabl e-1istp(domain(s)) O
[ternp(term) Oternp-list(term] )

- term/ (x| s) =term/ s

(I MPLI ES (AND ( SUBSETP (I NTERSECTI ON (DOMAIN S) (ALL-VARS FLG TERM)
X)
( VAR ABLE- LI STP (DOMAIN S))
(TERVP FLG TERM)
(EQUAL (SUBST FLG (RESTRICT S X) TERM
(SUBST FLG S TERM)))

Lemma  SUBST- CO RESTRI CT (from"terms.events')

( x n domain(s) n all-vars(term =0 O
vari abl e-listp(donmain(s)) O
[ternp(term) Oternp-list(term] )

- term/ (x |~s) =term/ s

(I MPLI ES (AND (DI SJO NT X
(I NTERSECTI ON (DOMAIN S) (ALL-VARS FLG TERM)))
(VAR ABLE- LI STP (DOMAIN S))
(TERWP FLG TERM)
(EQUAL (SUBST FLG (CO RESTRICT S X) TERM
(SUBST FLG S TERM))



17

Two related lemmas say that one can drop a part of a subsitution whose domain does not intersect the

term in question.
Lemma  SUBST- APPEND- NOT- OCCUR-1  (from"terms.events')

[ (termp(x) Oternp-list(x)) O
vari abl e-li stp(donmain(sl)) O
al | -vars(domain(sl)) n all-vars(x) = 0]

x/ (s1 0s2) = x/ s2

(I MPLIES (AND (TERWP FLG X)
( VAR ABLE- LI STP (DOMAI N S1))
(DI SJONT (ALL-VARS F (DOVAI N S1))
(ALL- VARS FLG X)))
(EQUAL (SUBST FLG (APPEND S1 S2) X)
(SUBST FLG S2 X)))

Lemma  SUBST- APPEND- NOT- OCCUR- 2  (from"terms.events")
[ (termp(x) Oternp-list(x)) O

variabl e-1istp(domain(s2)) O

al |l -vars(domain(s2)) n all-vars(x) = 0O ]

—

x/ (s1 0s2) = x/ s1
(I MPLI ES (AND (TERWP FLG X)
(VARI ABLE- LI STP (DOVAIN S2))
(DI'SJONT (ALL-VARS F (DOVAIN S2))
(ALL- VARS FLG X)))

(EQUAL (SUBST FLG (APPEND S1 S2) X)
(SUBST FLG S1 X)))

The following rewrite rule is kept in a disabled state, meaning that it is not used by the Boyer-Moore
prover except when a hint is given to enable thisrule. It isvery useful when trying to prove that two lists do not
intersect, because it reduces that problem to the problem of showing that nothing can belong to both lists.
Functions such as DI SJO NT- W T are often called definable Skolem functions in that they provide witnesses

to existential assertions (when they hold), in this case the assertion that x and y are not disjoint.®
Lemma DI SJO NT-W T- W TNESSES  (from "sets.events")

ny =10
- [ disjoint-wit(x,y) Ox Odisjoint-wit(x,y) Ovy]

m x

(EQUAL (DI SJONT X )
(NOT (AND (MEMBER (DI SJONT-WT X Y) X)
(MEMBER (DI SJONT-WT X Y)

The following lemma points out the obvious relationship between the domain of a restriction with the

domain of the given substitution.

6The function DI SJO NT- W T is actually defined by recursion in "sets.events’. The idea of using definable Skolem functions in the
Boyer-Moore prover was brought to our attention by Ken Kunen.



18

Lemma DOVAI N- RESTRI CT (from"dists.events")
domain(s | dom) = domain(s) n dom

(EQUAL (DOMAIN (RESTRICT S DOM)
(I NTERSECTI ON (DOMAI N S) DOM) )

The remaining lemmas are al so rather technical, so we prefer to liist them without comment here.
Lemma.  APPLY- TO- SUBST- | S- NO- OP- FOR- DI SJO NT- DOVAI N (from "terms.events")

vari abl e-1istp(donain(sl)) O donmin(sl) n all-vars(range(s2)) = O
- s2 /] s1 =-5s2

(I MPLI ES (AND ( VARI ABLE- LI STP ( DOMAI N S1))
(ALI STP S2)
(TERWP F (RANGE S2))
(DI SJONT ( DOMAI N S1)
(ALL-VARS F (RANGE S2))))
(EQUAL (APPLY-TO SUBST S1 S2) S2))

Lemma.  VALUE- | NVERT- NOT- MEMBER- OF- DOVAI N (from "alists.events")

g O range(sg) O domain(s) n domain(sg) = 0O
-~ sg}(g) O domain(s)

(I MPLIES (AND (MEMBER G (RANGE SG))
(DI SJONT (DOVAIN S) (DOVAIN SG)))
(NOT (MEMBER (VALUE G (I NVERT SG))
(DOVAIN S))))

Lemma  VALUE- APPLY- TO- SUBST (from "terms.events")
g O domain(s) - (s // sg)(g) = s(g9)/sg

(I MPLI ES (MEMBER G (DOMAIN S))
(EQUAL (VALUE G (APPLY- TO SUBST SG S))
(SUBST T SG (VALUE G S))))

The following obvious fact saysthat NULLI FY- SUBST does not alter the domain of a given substitution.
Lemma  DOVAI N- NULLI FY- SUBST (from "terms.events")

domai n(nul li fy-subst(s)) = domain(s)

(EQUAL (DOMAIN (NULLI FY- SUBST S))
(DOMVAIN S)))

Here is another important property of NULLI FY- SUBST.
Lemma. DI SJIO NT- ALL- VARS- RANGE- APPLY- SUBST- NULLI FY- SUBST  (from "terms.events")

termp-list(range(s))

domai n(sg) n all-vars(range(s // nullify-subst(sg))) = 0O

(IMPLIES (TERVMP F (RANGE S))
(DI SJONT ( DOMAIN SG)
(ALL- VARS F
(RANGE ( APPLY- TO- SUBST (NULLI FY- SUBST SG)

$)))))



19

4. Statement of theMain Theorem

In this section we state our main theorem, which should perhaps be called a ‘** metatheorem’’, sinceit'sa
theorem about formal theorems. The definitions in this section are all taken from the file "generalize.events’,
which isthe last file in the Appendix. The eventsin that file have been numbered, and we give those numbers

in the presentation below.

The first subsection below gives an outline of the high-level motivation for the definitions that follow.
This is followed by a presentation of the definitions required for the statement of the main theorem. Some

abbreviations are introduced in the third subsection. We conclude by stating the main theorem.

4.1 Motivation

In the introduction to this paper we discuss the original motivation for this work, which was to increase
our confidence in the correctness of a particular algorithm for generalization in the presence of free variables.
The following example is taken from the final section of [11]. It shows the necessity, for soundness, of having
some restriction on how the GENERALIZE command interacts with the set of free variables of the proof state.
Suppose that the history contains the rather silly (but correct) theorem that [z+1 < z - C] for some
contradiction C. Then to prove C, it sufficesto prove[ z+1 < z] for somez. Infact z hereiswhat we call a
free variable in PC-NQTHM; this designation has the effect of allowing us to instantiate z to be anything we
like. Of course there is no value of z for which the statement [ z+1 < z] is atheorem; there had better not
be, or else C would be atheorem! But suppose we allow ourselves to generalize this goal by replacing z+1 by
some new variable, say a. Thegoa thenis[a < z]. If z were dtill afree variable, then we could instantiate
it to be a+1, which would leave us with thegoal [ a < a+1] . But this goal is a theorem, which is supposed

to imply that the original goal C is atheorem -- yet, C was chosen to be a contradiction!

One way around such a problem is to enforce the following rule: when generalizing with a substitution
that replaces terms t ; with corresponding new variables v; (e.g. replaces z+1 with a in the example above),
the system removes from the list of free variables any variable that occurs in that substitution (e.g. z in that
example). However, we can avoid removing quite that many free variablesin general. Theideais that we must
at least remove from the list of free variables those variables that occur both in the new current goal and in any

of the terms being generalized away.

However, that set alone is not enough. Consider the theorem

[z+41 <wDOw=12] -~ C



20

where as above, C is contradictory. The to prove C should be impossible, but we can do it if we can prove
‘‘appropriate’’ instances of thetwo goals[ z+1 < w] and[w = Zz]. Here ‘‘appropriate’’ means ‘‘via some
substitution whose domain is contained in the set of free variables of the new proof state’’; that setis{z, w}.
After generalizing [ z+1] as in the previous example, we have the two goals[a < w] and [w = Z].
According to plan outlined just above, since z does not occur inthe current goal [ a < w] we may retain it on
the list of free variables, and since w does not occur in the term [ z+1] that was generalized away we may
retain it on the list too. But now if we instantiate both wand z with a+1 then we can prove the resulting goals,

acontradiction.

Here is an informal statement of the main result; a precise statement is of course the topic of the rest of
this Section. This material is adapted from Subsection 4.3 of [11]. We defer to the proof presented in Section 5
below further motivation behind choices made here.

* Fix aproof state st at e, i.e. alist of terms (goals) together with alist of free variables.

* Let sg be avariable substitution.

e Let state’ be the result of applying the GENERALIZE command, with substitution sg
mapping new variables to terms. Thus, the new current (top) goal is the result of substituting the
inversesg- 1 of sg into the current goal of st at e, and the remaining goals are unchanged.

» Let FREE and FREE' be the respective sets of free variablesof st at e andst at e’ .

* Consider the symmetric binary relation R, defined on FREE as follows: Ry(v,w) if and only if v
and woccur in acommon goal of st at e’ .

* Let Rbethetransitive closure of R,.

« Let C be the range of R on the intersection of FREE with the variables of the current goal in
state’.

* Let V bethe set of variables that occur in the range of sg.

In the second example presented above, C={z, W} andV={z},s0C n V = {z}. With this
example in mind, loosely speaking we want to remove from FREE theset (C n V) consisting of all variables
from FREE that both occur in somewhere in the terms being generalized away and also have ‘*anything to do
with’ the new current goal (where ‘‘anything to do with’’ is defined in terms of the equivalence relation R).

The precise relationship specified between FREE and FREE' is asfollows.

FREE = (FREE\ (C n V)) \ (dommin sg)

Here then, finally, iswhat we need to prove. It saysthat if the stateis‘‘valid’’ after generalization then it
was dready ‘‘valid’’, where ‘‘valid’ is as explained in Subsection 1.3: some instance, where only free

variables are instantiated, is a theorem.



21

GENERALIZE SOUNDNESS THEOREM. Let Gbe the current goal in proof state st at e; let P be
the conjunction of the rest of the goals of st ate; let sg be a substitution mapping some variables not
occurring in st at e to terms; let G = @ sg™ 1 be the current goal in the new proof state st at e’ ; and let
FREE and FREE' be the free variables of state and state’, respectively. Suppose that for some
substitution s’ with domain contained in FREE' , | - (G & P)/s’. Then for some substitution s with

domain contained in FREE, wehave| - (G & P)/s.

Aninformal sketch of aproof of thistheorem isoutlined in [11]. Let us proceed with a careful and rather

formal, but (we hope) motivated treatment.

4.2 Definitionsfor main theorem

Some terms are theorems relative to a given history. Here is the axiom that we introduce to capture the
essence of ‘‘theoremhood’’; in fact this is the only axiom we introduce about the notion of theorem. Asin the
introduction of the notions of variable and function symbol in Subsection 2.3, we use the CONSTRAIN
mechanism to guarantee the consistency of these axioms. The first conjunct says that every theorem is a term.

The second says that every instance of atheorem by avariable substitution is also a theorem.
1. Introduction of THEOREM

[theoren(x) - ternp(x)]
O
[(theorem(x) O var-substp(x)) - - theorem(x/s)]

( CONSTRAI N THEOREM | NTRO ( REVRI TE)
(AND (1 MPLI ES (AND ( THEOREM X)
FLO
(TERWP FLG X))
(I MPLI ES (AND ( THEOREM X)
FLG
(VAR SUBSTP S))
( THEOREM (SUBST FLG S X))))
(( THEOREM (LAVBDA (X) F))))

The corresponding notion of alist of theoremsis obvious, and has properties (not listed here; see event #3 in the

Appendix) analogous to those for THEOREMin the event above.
2. Definition of THEOREM LI ST

theoremlist(x) = (0 y O x) theoren(y)

( DEFN THEOREM LI ST (X)
(IF (LISTP X)
(AND ( THEOREM ( CAR X))
( THEOREM LI ST (CDR X)))
(EQUAL X NIL)))

Next we wish to turn to the notion of a proof state, which is essentially alist of goals. We want to model



22

a proof development methodology similar to the one in PC-NQTHM, as explained in the introduction,
especially Subsection 1.3. That is, we model a proof state as an ordered pair (aLl STP) consisting of aterm list

(intuitively, alist of goals) together with alist of variables (intuitively, the free variables of that proof state).
4. Definition of STATEP
statep(<goal s,free>) = ternp-list(goals) O variable-listp(free)
( DEFN STATEP ( STATE)
(AND (LI STP STATE)

(TERWP F (CAR STATE))
( VAR ABLE- LI STP (CDR STATE))))

In order to state our main theorem we need a notion of valid state. This definition captures the corresponding
notion defined in[11], namely, a valid state is a state with the following property: for some variable
substitution on a subset of the free variables of the state, if one substitutes that substitution into the goals of the

state then the results are theorems. (The event type ‘‘DEFN-SK’’ is discussed above with the definition of

| NSTANCE.)
5. Definition of VALl D- STATE

val i d- st ate(<goal s, free-vars>) =
(Os) (var-substp(s) O domamin(s) O free-vars O theoremlist(goals/s))

( DEFN- SK VALI D- STATE ( STATE)
(AND ( STATEP STATE)
(EXI STS W TNESSI NG- | NSTANTI ATI ON
(AND ( VAR- SUBSTP W TNESSI NG- | NSTANTI ATI ON)

( SUBSETP ( DOVAI N W TNESSI NG- | NSTANTI ATI ON) ( CDR STATE))

( THEOREM LI ST (SUBST F W TNESSI NG- | NSTANTI ATI ON ( CAR STATE)))))))
This definition adds a Skolem function W TNESSI NG- | NSTANTI ATl ON. This function may be thought of as
picking out a substitution which, when applied to the goals of a given valid state, yields alist of theorems. Here
is the axiom added by the system for the DEFN-SK event above. As with the previous DEFN-SK event
introducing the function | NSTANCE, this property of the witness is expressed by the second conjunct in the

following axiom (which is stated in the contrapositive in the formal version, for technical reasons).



23

Axiom added for VALI D- STATE

[ ( statep(state) O
var-substp(s) O
domain(s) O 2"(state) O
theoremlist(1%(state)/s) )
valid-state(state) ]
O
[ valid-state(state)
( statep(state) O
var - subst p(s0) 0O
domai n(s0) O 2™(state) O
theoremlist(1%(state)/s0) )
where
sO = witnessing-instantiation(state) ]

(AND (1 MPLI ES (AND ( STATEP STATE)
( VAR SUBSTP W TNESSI NG- | NSTANTI ATl ON)
( SUBSETP (DOMAI N W TNESSI NG- | NSTANTI ATl ON)
(CDR STATE))
( THEOREM LI ST (SUBST F W TNESSI NG- | NSTANTI ATl ON
(CAR STATE))))
(VALI D- STATE STATE))
(I MPLI ES (NOT (AND ( STATEP STATE)
( VAR SUBSTP (W TNESSI NG- | NSTANTI ATI ON STATE) )
( SUBSETP (DOMAI N (W TNESSI NG | NSTANTI ATI ON STATE) )
(CDR STATE))
( THEOREM LI ST ( SUBST F
(W TNESSI NG | NSTANTI ATI ON STATE)
(CAR STATE)))))
(NOT (VALI D- STATE STATE))))

The following definition is auxiliary to GEN- CLOSURE. Informally, we can say that given alist f r ee of
“free variables’ along with alist goal s of terms and a list var s of variables (intuitively, alist of variables
that we've constructed so far in our process of forming the closure), then
new gen-vars(goal s, free, vars) isalist of those members of f r ee that occur in agoal in goal s

that contains an occurrence of avariableinvar s.
6. Definition of NEW GEN- VARS

new gen-vars(goal s,free,vars) =
O {free n all-vars(g): free n all-vars(g) n vars # 0O}

(defn newgen-vars (goals free vars)
(if (listp goals)
;; see below for explanation of LET
(let ((current-free-vars (intersection free (all-vars t (car goals)))))
(if (disjoint current-free-vars vars)
(newgen-vars (cdr goals) free vars)
(append current-free-vars
(newgen-vars (cdr goals) free vars))))

nil))
Notice the use of LET above. We use an extension to the syntax of the Boyer-Moore logic in which LET has
the same meaning as it does in Common Lisp [17]; see the third appendix of the PC-NQTHM manual [10] for

details. So for example, CURRENT- FREE- VARS in the definition above should be viewed as an abbreviation
for (1 NTERSECTI ON FREE (ALL-VARS T (CAR GOALS))),



24

ieforfree n all-vars(1%(goals)).

Now we can define the closure referred to  above We may speak of
gen-cl osure(goal s, free, free-vars-so-far) as ‘‘the CGEN- CLOSURE of
free-vars-so-far with respect to goal s and free.”” The recursive nature of the definition of
GEN- CLOSURE makes it a bit difficult to express informally; our apologies are probably in order for the rather
obscure informal definition below.

10. Definition of GEN- CLOSURE
gen-cl osure(goal s,free,free-vars-so-far) = x n free, where
x istheleast fixed point of the function
(A x . [free-vars-so-far O newgen-vars(goals,free,x)])
(DEFN GEN- CLOSURE ( GOALS FREE FREE- VARS- SO FAR)
(LET ((NEW FREE- VARS ( NEW GEN- VARS GOALS FREE FREE- VARS- SO-FAR)))
(1 F (SUBSETP NEW FREE- VARS FREE- VARS- SO- FAR)
(1 NTERSECTI ON FREE- VARS- SO- FAR FREE)
( GEN- CLOSURE GOALS FREE ( APPEND NEW FREE- VARS FREE- VARS- SO-FAR))))

;; thefollowing hint is explained below
((LESSP (CARDI NALI TY (SET-DI FF FREE FREE- VARS-SO- FAR)))))

Notice that the definition above is recursive. The Boyer-Moore logic requires a proof in such cases; one might
call thisa'‘termination proof’’. The proof obligation is actually completely precise and need not be understood
in the context of termination of some execution, though that’s a reasonable motivation. Informally speaking,
the hint (LESSP ( CARDI NALI TY (SET-DI FF FREE FREE- VARS- SO FAR))) at the end of the
““DEFN’’ event above instructs the system to prove that the cardinality of (free \ free-vars-so-far)

decreases on each recursive call of the function GEN- CLOSURE. Formally, the proof obligation in this caseis

as follows.

- ( newfree-vars O free-vars-so-far )
|free \ (newfree-vars O free-vars-so-far)| < |free \ free-vars-so-far|
where new free-vars = new gen-vars(goal s, free, free-vars-so-far)

(LET ((NEW FREE- VARS ( NEW GEN- VARS GOALS FREE FREE- VARS- SO FAR)))
(1 MPLI ES (NOT ( SUBSETP NEW FREE- VARS FREE- VARS- SO FAR))
(LESSP ( CARDI NALI TY ( SET-DI FF FREE

( APPEND NEW FREE- VARS FREE- VARS- SO- FAR) ) )
( CARDI NALI TY ( SET-DI FF FREE FREE- VARS- SO-FAR)))))

Inspection of the file "generalize.events' shows that a couple of lemmas were proved to help with the

termination proof. In particular, the following lemma is easily proved by the system using induction. (A

moment’ s reflection will suggest its utility in the proof of the termination goal displayed just above.)
8. Lemma  NEW GEN- VARS- SUBSET

new gen-vars(goal s,free,vars) 0O free

( SUBSETP ( NEW GEN- VARS GOALS FREE VARS)
FREE) )



25

Now let us formalize the hypothesis under which the GENERALI ZE command (to be defined shortly) is
allowed to be executed. The GENERALI ZE command is intended to apply the inverse of some variable
substittuion sg to the top goal in the current proof state. Thus in the examples presented earlier in this section,
the generalization obtained by replacing z+1 by a is represented by the variable substitution { <a, z+1>}.
As for the other parameters below: st at e is a proof state, the domain of sg is digoint from the variables
occurring in the goals of the st at e, there is at least one goal in the st at e, and the domain of sg is digoint
from the free variables of the st at e. We take liberties in the informal version below by writing st at e as

<goal s, free>.
11. Definition of GENERALI ZE- OKP

general i ze- okp(sg, <goal s,free>) =
[var-substp(sg) O
statep(<goal s,free>) 0O
domai n(sg) n all-vars(goals) =
goals # 0 O
domain(sg) n free = ]

O
(]

( DEFN GENERAL| ZE- OKP ( SG STATE)
(AND (VAR- SUBSTP SG)
( STATEP STATE)
(DI SJONT (DOMAIN SG)
(ALL- VARS F (CAR STATE)))
(LI STP (CAR STATE))
(DI SJONT (DOMAIN SG) (CDR STATE))))

We define the function GENERALI ZE to take a substitution sg and a proof state st at e and return a new proof
state.” The goals of the new proof state are the same as the goals of st at e except that the first (i.e. top,
current) goa has been modified by substituting the inverse of the variable substitution sg into the first goal of

st at e, and the list of free variables has been (possibly) reduced.
12. Definition of GENERALI ZE

generalize(sg, <{g} O p, free>) =

<new g,

free \ (gen-closure({newg} O p, free, all-vars(newg)) n all-vars(range(sg)))>
where newg = g/sg?!

( DEFN GENERAL| ZE (SG STATE)
(LET ((G (CAAR STATE)) ;; the current goal
(P (CDAR STATE)) ;; therest of the goals
(FREE (CDR STATE))) ;;thefreevariables
(LET ((NEWG (SUBST T (INVERT SG G))) ;;thenew current goal

(LET ((DOVAIN-1 ;; potentially "bad" free variables
( GEN- CLOSURE (CONS NEW G P)
FREE

(ALL-VARS T NEWG))))
(LET ((NEW FREE ;; the new free variables
( SET- DI FF FREE
(1 NTERSECTI ON DOVAI N-1 ( ALL- VARS F (RANGE SG))))))
(CONS (CONS NEW G P)
NEW FREE))))))

"The set DOVAI N- 1 in the definition below iswhat is called Cin 4.1 above; the name suggests (and is closely related to) the domain of a
substitution S1 that appears later, during the proof.



26

4.3 Some abbreviations

Before we state the main theorem, let us introduce some abbreviations for terms that occur repeatedly
throughout the rest of this exposition. As usual, we'll use both informal notation and formal notation to

introduce these abbreviations. Abbreviationswill appear initalicsfont.

S = witnessing-instantiation(generalize(sg,state))
S = (W TNESSI NG- | NSTANTI ATI ON ( GENERAL| ZE SG STATE))

goals = 1%(state)
GOALS = (CAR STATE)

g = 1%(goals)
G = (CAR GOALY
p = 2" goals)
P = (CDR GOALS)

free = 2"(stat e)
FREE = (CDR STATE)

new-g = g/ sgt
NEW-G = (SUBST T (I NVERT SG G)

domain-1 = gen- cl osur e(<new-g, p>, 2™(state), all-vars(new-g))
DOMAIN-1 = ( GEN- CLOSURE (CONS NEW-G P)

FREE

(ALL- VARS T NEW-G))

domain-1
ESTRI CT S DOMAIN-1)

—~wn
a0 —

| ~ domain-1) // nullify-subst(sg)
PPLY- TO- SUBST ( NULLI FY- SUBST SG (CO RESTRICT S DOMAIN-1))

—_~
> v

gen-inst = (s1 O s2) // (sg// s2)
GEN-INST = (APPLY- TO- SUBST (APPLY-TO SUBST 2 SG (APPEND Sl ¥))

L et us use the abbreviations introduced above to restate the definition of GENERALI ZE.

12. Definition of GENERALI ZE
generalize(sg, <{g} O p, frees) =
<new-g,

free \ (domain-1 n all-vars(range(sg)))>
(DEFN GENERALI ZE (SG STATE)

(CONS (CONS NEW-G P)

( SET- Dl FF FREE
(1 NTERSECTI ON DOMAIN-1 (ALL-VARS F (RANGE SG))))))

4.4 Statement of main theorem

Finally we can state the main theorem. It says that if the preconditions of the GENERALI ZE command

are met and if the result of applying this command is avalid proof state, then the original proof stateisvalid.



27

62. Theorem. GENERALI| ZE- | S- CORRECT

general i ze- okp(sg, state) [ valid-state(generalize(sg,state))
- valid-state(state)

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)

(VALI D- STATE ( GENERALI ZE SG STATE)))
(VALI D- STATE STATE))

5. Proof of the Main Theorem

In this final section we outline the mechanically-checked proof of the main theorem
GENERALIZE-IS-CORRECT displayed above. We actualy break this proof into three parts. First we show
how to reduce the main theorem to two lemmas. Then we devote the remaining two subsections to the

respective proofs of those two lemmas.

5.1 Reducingthetheorem to two lemmas

First of al, notice that by definition of VALI D- STATE it suffices to find some substitution, call it

gen-inst (sg, st at e), for which we can prove the following fact.
61. Lemma  MAI N- THEOREM 1

general i ze- okp(sg, <goal s,free>) [ valid-state(generalize(sg, <goal s, free>))
statep(<goal s,free>) O

var-substp(wit) O

domain(wit) O free O

theorem|ist(goal s/wit)

where

wit = gen-inst(sg,state)

(LET ((WT (GEN-1NST SG STATE)))
(1 MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
(AND ( STATEP STATE)

( VAR- SUBSTP W T)

( SUBSETP (DOMAIN W T) (CDR STATE))

( THEOREM LI ST (SUBST F WT (CAR STATE))))))
Such a variable substitution wit = gen-inst(sg, state) can be constructed as follows (see aso
Subsection 4.1 for motivation). Let s be a variable substitution that witnesses the validity of the state
general i ze(sg, state). Let domai n- 1 be the GEN- CLOSURE of the variables occurring in the new
current goal (which isthe result of applying the inverse of the generalizing substitution to the current goal), with
respect to the new goals and the existing list of free variables. Then the desired substitution

gen-inst (sg, st at e) may be defined as follows.



28

14. Definition of GEN- | NST
(Recdll that termsin italics are abbbreviations. See Subsection 4.3 for an explanation of the abbreviations.)

gen-inst(sg, state) =
(sl O s2) I/ (sg /! 2

(DEFN GEN- | NST (SG STATE)

( APPLY- TO- SUBST ( APPLY- TO- SUBST & SG)
(APPEND SL 2)))

The first three conjuncts of the conclusion of MAIN-THEOREM-1 are now quite trivial; they correspond
to events #15, #17, and #19 in the numbered list of events from "generalize.events' in the Appendix (and are
named MAIN-THEOREM-1-CASE-1, MAIN-THEOREM-1-CASE-2, and MAIN-THEOREM-1-CASE-3).
The first of these, statep(state), is clear by definition of GENERALI ZE- OKP. The second,
var - subst p(gen-i nst (sg, st ate)), isclear fromtheway that gen-i nst (sg, st at e) ishuilt from
variable substitutions. The third, domai n(wi t) O 2"( st at e), isaso straightforward, though (like many
simple results proved with the Boyer-Moore prover) it uses basic ‘‘library’’ facts such as the lemma DOMAIN-
APPLY-TO-SUBST (see Section 3 above). A key observation for that case, which is specific to our notion of
generalization, is the fact that the set of free variables of the state obtained by applying the GENERALI ZE

command is a subset of the set of free variables of the original state:
18. Lemma  SUBSETP- CDR- GENERALI ZE

2" general i ze(sg, state)) O 2"(state)
( SUBSETP (CDR ( GENERAL| ZE SG STATE))
(CDR STATE))
It remains then only to check the last of the four cases from the conclusion of MAIN-THEOREM-1, i.e. to

prove the following (stated using abbreviations, in italics, from Subsection 4.3).

60. Lemma  MAI N- THEOREM 1- CASE- 4

general i ze-okp(sg, state) O valid-state(generalize(sg,state))
taheor emlist(goals / gen-inst)

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)

(VALI D- STATE ( GENERALI ZE SG STATE)))
( THEOREM LI ST (SUBST F GEN-INST GOALY)))

The idea now is to introduce a new predicate MAI N- HYPS that that abstracts the hypotheses that are
needed, and then split the proof into two parts. First, we show that MAI N- HYPS implies the result for arbitrary
substitutions and goals. Second, we show that MAI N- HYPS holds of the particular substitutions and goals in
guestion. Thus the first part, MAIN-HY PS-SUFFICE below, states that the bizarre-looking substitution ( (s1
O s2) /1 (sg /! s2)) (which however is closaly related to the definition of GEN- | NST) serves to



29

create a list of theorems, assuming that MAI N- HYPS holds of the relevant substitutions and goals. The other
part, MAIN-HY PS-RELIEVED, showsthat MAI N- HYPS holds of the necessary substitutions and goals.

Notice that we do not use abbreviations in the first of the following lemmas; as suggested above, it holds
of arbitrary substitutions and goals. However, it is applied (by the theorem prover's rewriter) under the

particular instantiation {S1 := S1, S2 := X, GOALS := GOALS}.
27. Lemma  MAI N- HYPS- SUFFI CE

mai n- hyps(sl, s2, sg, g, p)
- theoremlist({g} O p/ ((s1 O s2) /! (sg /!l s2)))

(I MPLIES (AND (LI STP GOALS)
(MAIN-HYPS S1 S2 SG (CAR GOALS) (CDR GOALS)))
( THEOREM LI ST ( SUBST F
( APPLY- TO- SUBST (APPLY- TO- SUBST S2 SG)
(APPEND S1 S2))
GOALS)))

59. Lemma.  MAI N- HYPS- RELI EVED
general i ze-okp(sg, state) O valid-state(generalize(sg,state))
mai n- hyps(sl, s2, sg, g, p)

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
(MAIN-HYPS SL 2 SG G P))

The proof now naturally splits into two parts, one for each of the two lemmas displayed immediately
above. We close this subsection with the remaining definitions before turning to the proofs of these two

remaining lemmas in the respective subsections below. First, here isthe definition of MAI N- HYPS.
21. Definition of MAI N- HYPS

mai n- hyps(sl,s2,sg,9,p) =

[ ternp(g) O
all-vars(g) n domain(sg) =0 O
ternp-list(p) O
all-vars(p) n domain(sg) =0 O
gen-setting-substitutions(sl,s2,sg) O
theoremlist(({g/sg '} O p) / (sl O s2)) ]

(DEFN MAI N-HYPS (S1 S2 SG G P)

(AND (TERVWP T Q
(DI SJONT (ALL-VARS T G (DOVAIN SG))
(TERWP F P)
(DI SJONT (ALL-VARS F P) (DOVAIN SG))
( GEN- SETTI NG- SUBSTI TUTI ONS S1 S2 SG)
( THEOREM LI ST (SUBST F (APPEND S1 S2)

(CONS (SUBST T (INVERT SG O P)))))

The auxiliary function GEN- SETTI NG- SUBSTI TUTI ONS is defined as follows.



30

20. Definition of GEN- SETTI NG- SUBSTI TUTI ONS

gen-setting-substitutions(sl,s2,sg) =
[ var-substp(sl) O
var-substp(s2) O
var-substp(sg) O
donai n(s1l) n dommin(sg) oo
domai n(s2) n dommi n(sg) oo
al | -vars(range(sg)) n domain(sl)
al | -vars(range(s2)) n domain(sg)

00
01
( DEFN GEN- SETTI NG- SUBSTI TUTI ONS (S1 S2 SO
(AND (VAR- SUBSTP S1)

(VAR SUBSTP S2)

( VAR SUBSTP SQ)

(DI SJONT (DOMAIN S1) (DOMAIN SG))

(DI SJONT (DOMAIN S2) (DOMAIN SG))

(DI SJONT (ALL-VARS F (RANGE SO))

(DOMAI N S1))
(DI SJONT (ALL-VARS F (RANGE S2)) (DOMAIN SG))))

5.2 Proof of thelemma MAIN-HYPS-SUFFICE

Let us state the lemma once again.
27. Lemma  MAI N- HYPS- SUFFI CE

mai n- hyps(si, s2,sg, d, p)
-~ theoremlist({g} O p/ ((s1 O s2) // (sg /!l s2)))

(I MPLI ES (AND (LI STP GOALS)
(MAIN-HYPS S1 S2 SG (CAR GOALS) (CDR GOALS)))
( THEOREM LI ST ( SUBST F
( APPLY- TO- SUBST (APPLY- TO- SUBST S2 SG)
(APPEND S1 S2))
GOALS)))

If we apply the definitions of SUBST and THEOREM LI ST in the expression above, then we see that it suffices

to prove the following two properties. (Think of g asthe current goal and of p astherest of the goals.)
24. Lemma  MAI N- HYPS- SUFFI CE- FI RST

mai n- hyps(sl,s2,sg,9,p) - theorem(g/ ( (sl O s2) // (sg// s2)))

(I MPLIES (MAI N-HYPS S1 S2 SG G P)
( THEOREM ( SUBST T
( APPLY- TO- SUBST (APPLY- TO- SUBST S2 SG)
(APPEND S1 S2))
G))

26. Lemma  MAI N- HYPS- SUFFI CE- REST
mai n- hyps(sl,s2,sg,9,p) -~ theoremlist(p/ ( (s1 O s2) // (sg//l s2)))
(I MPLIES (MAIN-HYPS S1 S2 SG G P)
(THEOREM LI ST (SUBST F
(APPLY- TO SUBST (APPLY-TO SUBST S2 SG)

(APPEND S1 S2))
P))

Let us consider these two cases separately.



31

5.2.1 Proof of thelemma MAIN-HYPS-SUFFICE-FIRST

Consider the first of these two lemmas, MAIN-HYPS-SUFFICE-FIRST. Let us begin by arguing
informally for its correctness. The last conjunct of MAI N- HYPS implies, assuming the hypothesis of the
lemma, that (g/sg 1)/ (sl O s2) is atheorem. Now every instance of a theorem by a variable
substitution is a theorem (by the CONSTRAIN event THEOREM-INTRO, event #1 in "generaize.events').
Then MAIN-HY PS-SUFFICE-FIRST above follows if we can show that the proposed theorem is an instance of

(g/sg1)/(s1 O s2). Thefollowing lemma thereforeimplies MAIN-HY PS-SUFFICE-FIRST.
23. Lemma  MAI N- HYPS- SUFFI CE- FI RST- LEMVA
termp(g) O all-vars(g) n donmin(sg) = O 0O gen-setting-substitutions(sl, s2,sgq)
;/ ( (sl Os2) // (sg// s2) ) =((g/ sgh) / (s1 Os2) / (sg// s2)
(I MPLIES (AND (TERVMP T Q
(DI SIONT (ALL-VARS T G (DOMAIN SG))
( GEN- SETTI NG- SUBSTI TUTI ONS S1 S2 SG))
(EQUAL (SUBST T
( APPLY- TO- SUBST ( APPLY- TO-SUBST S2 SG
(APPEND S1 S2))
©)
(SUBST T (APPLY-TO-SUBST S2 SG
(SUBST T (APPEND S1 S2)
(SUBST T (INVERT SG G)))))
Let us see why this lemma holds, and in doing so, discover some of the motivation for the properties embodied
in MAI N- HYPS. Assume the following hypotheses, the last of which is the inductive hypothesis. Note: we'll

see during the proof what we need here about GEN- SETTI NG- SUBSTI TUTI ONS.
ternp(g)
all-vars(g) n domain(sg) = O
gen-setting-substitutions(sl, s2,sQ)

(IHy g [/ ( (s1 0O s2) /!l (sg !/l s2))

=((g / sgl) / (s10Os2)/ (sgll s2)
foral subterms g’ of g

The proof now breaks into three cases. We omit a few details but give many others, just to show the kind of

considerations required in the mechanically-checked proof.

Case 1. g O range(sg), say g =sg(v). Then we have, working with the right side of the goal
equation:



32

((g/ sg'l) / (s1 0s2)) / (sgll s2)

= {definition of v}

(v /! (s1 0O s2)) [/ (sgl/l s2)

= {by Lemma SUBST-NOT-OCCUR, Section 3,since v [ domain(sl 0O s2)
by definition of GEN- SETTI NG- SUBSTI TUTI ONS}

v | (sg /!l s2)

= {since v O donmmi n(sg)}

(sg /1 s2)(v)

= {definitionsof vand//}

g/ s2

On the other hand, reducing the left side of the goal equation we have

g/ ( (s1 0O s2) /!l (sg /!l s2))

= {by SUBST-APPEND-NOT-OCCUR-2 (cf. Section 3), since by the

GEN- SETTI NG SUBSTI TUTI ONS hypothesis we have

all -vars(range(sg)) n domain(sl) = O}

[ ( s2 1/ (sg /!l s2))

{by thelemma APPLY -TO-SUBST-IS-NO-OP-FOR-DISIOINT-DOMAIN (cf. Section 3), since
domai n(sg) n range(s2) = 0O}

g/ s2

IQ

Case2: g O range(sg) andvari abl ep(qg).

((g/ sg'l) / (s1 0s2)) / (sgll s2)

= {since g O range(sqg)}

(g/ (s1 0O s2)) !/ (sgl//l s2)

{by the composition rule COMPOSE-PROPERTY, cf. Subsection 2.3}
I ( ( (sl 0Os2) /] (sg// s2) ) O (sg /!l s2))
{by the lemma SUBST-APPEND-NOT-OCCUR-2 (cf. Section 3)}

[ ( (s1 Os2) /] (sg/ll s2))

Q [1Q Il

Case 3. otherwise. Then we may writeg as<f v, ... v > andwehave

((g/ sgd) 1 (s10s2) [/ (sgll s2)
= {definition of SUBST, since by the case hypothesis, g isnot indomai n(sg 1) }
<t vy/(sl O s2)

v/ (sl Os2)> [ (sg/l s2)
= {definition of SUBST again, since sg is a variable substitution}
<t (vq/ (sl 0O s2)) / (sg//l s2)

(v/(sl Os2) | (sg// s2)>
= {by theinductive hypothesis}
<t vy/( (sl 0Os2) /] (sg//l s2) )

v/( (s10s2) /1 (sgil s2) )>

= {definition of SUBST}
g/ ( (sl Os2) /] (sg/l s2))

Actualy, aformalization of this proof in the Boyer-Maoore logic tends to require one to prove the similar



33

theorem about lists of terms by a simultaneous induction. The theorem prover essentially carries out the above
argument in proving event #22 in "generalize.events', MAIN-HY PS-SUFFICE-FIRST-LEMMA-GENERAL,
which is a generalization we provide of MAIN-HY PS-SUFFICE-FIRST-LEMMA to both terms and term lists.
(That is, we leave f | g uninstantiated.) The cases in the inductive argument correspond to the definition of
SUBST, so we supply the hint (1 NDUCT ( SUBST FLG SG- 1 G)) for thislemma. Notice that we also give
sg-1 aname, sg- 1, for the technical reason that such induction hints in the Boyer-Moore prover must have

variablesin the argument positions.
22, Lemma  MAI N- HYPS- SUFFI CE- FI RST- LEMVA- GENERAL

[ (termp(g) Otermlist(g)) O
all-vars(g) n domain(sg) =0 O
gen-setting-substitutions(sl, s2,sg) O
0sg-1=sg?!]

g/ ( (sl 0Os2) /] (sg/l s2) ) =((g/ sg-1) / (sl O s2)) / (sg !/l s2)

(I MPLIES (AND (TERWP FLG G
(DI SJONT (ALL-VARS FLG G (DOMAIN SG))
( GEN- SETTI NG SUBSTI TUTI ONS S1 S2 SG
(EQUAL SG-1 (I NVERT SG)))
(EQUAL (SUBST FLG
( APPLY- TO- SUBST (APPLY- TO- SUBST S2 SG)
( APPEND S1 S2))
G
(SUBST FLG ( APPLY- TO- SUBST S2 SG
(SUBST FLG (APPEND S1 S2)
(SUBST FLG SG1 G))))

Finally, let us note that a number of trivial considerations that were ignored here must be dealt with in the

mechanical proof. Consider again, for example, the second step in the proof of the first case above:

(v /! (s1 0O s2)) [/ (sgl/l s2)

= {by Lemma SUBST-NOT-OCCUR, Section 3,since v 0O domain(sl 0O s2)

by definition of GEN- SETTI NG- SUBSTI TUTI ONS}

v | (sg /!l s2)
Why do we know that v O domain(sl O s2)? The reason above is ‘‘by definition of
GEN- SETTI NG- SUBSTI TUTI ONS'’. If we think carefully here then we realize that this use of the definition
of GEN- SETTI NG SUBSTI TUTI ONS guarantees that the domain of sg is digoint from the domains of s1
and s2; so at the very least we need to know that v, i.e. sg™1( g) , isamember of the domain of sg. A lemma

to this effect, VALUE-INVERT-NOT-MEMBER-OF-DOMAIN, has been included in Section 3. Another

example where we glossed over small detailsis in the following step from Case 1:
(sg /1 s2)(v)
= {definitionsof vand//}
g/ s2
In fact we proved a lemma to accomplish this bit of reasoning; see VALUE-APPLY-TO-SUBST in Section 3

(with the confusing instantiation g :=v, sg :=s2,s :=sQ).



5.2.2 Proof of thelemma MAIN-HYPS-SUFFICE-REST

Recall that the other half of proving MAIN-HY PS-SUFFICE is:
26. Lemma  MAI N- HYPS- SUFFI CE- REST

goals # [0 O mai n-hyps(sl,s2,sg,d,p)
- theoremlist(p / (sl O s2) /I (sg /] s2))

(IMPLIES (MAIN-HYPS S1 S2 SG G P)
( THEOREM LI ST ( SUBST F
( APPLY- TO- SUBST (APPLY- TO- SUBST S2 SG)
( APPEND S1 S2))

P)))

Again we may use the property that an instance of theorem (or theorem list) is a theorem (or theorem list,
respectively). Therefore the property above follows from the following lemma, with FLG set to F and S set to

(APPEND S1 S2) (informaly,s1 [0 s2),together with the definition of MAI N- HYPS.
25. Lemma  MAI N- HYPS- SUFFI CE- REST- LEMVA

ternmp(p) O variable-listp(domain(sg)) Oall-vars(p) n domain(sg) = O

p/ (s /!l (sg/l s2)) =(p/ s) ! (sg/l s2)

(I MPLIES (AND (TERWP FLG P)
( VAR ABLE- LI STP (DOMAI N SG))
(DI SJONT (ALL-VARS FLG P) (DOMAIN SG)))
(EQUAL (SUBST FLG
( APPLY- TO- SUBST ( APPLY- TO- SUBST S2 SG)
S)
P)
(SUBST FLG
( APPLY- TO- SUBST S2 SO
(SUBST FLG S P))))

This is actually quite a straightforward result, using the rewrite rule COMPOSE-PROPERTY displayed in
Subsection 2.3 above. Here is an informal sketch of the proof (but note that the theorem prover proves this

automatically from the previously proved rules).

(p/ s) ! (sgl/l s2)

{by COMPOSE-PROPERTY}

I (s « (sg // s2))

{by definition of COMPOSE}

I (s /] (sg// s2)) O {<x,y> 0O (sg // s2): x O domain(s)}.
{by SUBST-APPEND-NOT-OCCUR-2 (cf. Section 3), since by
hypothesis no variable occurringinp isindomai n(sg // s2),i.e.indomai n(sg)
(see DOMAIN-APPLY-TO-SUBST in Section 3)}

p/ (s /!l (sg//l s2))

No 1ol

5.3 Proof of thelemma MAIN-HYPS-RELIEVED

The only thing left to prove is the lemma MAIN-HYPS-RELIEVED. Let us repest the statement of that
lemma, but opening up the definition of MAI N- HYPS. We will continue to use the abbreviations introduced in

Subsection 4.3 above.



35

59. Lemma  MAI N- HYPS- RELI EVED (with MAI N- HYPS opened up)

general i ze- okp(sg, state) [ valid-state(generalize(sg,state))

—

ternp(g) O
all-vars(g) n domain(sg) = 0O O
termp-list(p) O
all-vars(p) n domain(sg) =0 O
gen-setting-substitutions(sl, s2,sg) O
theoremlist(({new-g} O p) / (sl O s2))
(1 MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE (GENERALI ZE SG STATE)))
(AND (TERMP T G)
(DI SJONT (ALL-VARS T G) (DOWVAIN SG))
(TERWP F P)
(DI SJO NT (ALL-VARS F P) (DOVAIN SG))
( GEN- SETTI NG SUBSTI TUTI ONS S1 & SG
( THEOREM LI ST (SUBST F (APPEND Sl S2)
(CONS NEW-G P)))))

We thus have six cases to deal with. However, the first four are quite easy; the lemmas
MAIN-HYPS-RELIEVED-n for n = 1, 2, 3, and 4 are events #30 through #33 in the file "generaize.events'
(cf. Appendix A). It remains only to prove the other two cases, MAIN-HYPS-RELIEVED-5 and MAIN-
HYPS-RELIEVED-6.

5.3.1 Proof of thelemma MAIN-HYPS-RELIEVED-5

Let usfirst state the lemma MAIN-HY PS-RELIEVED-5.
41. Lemma  MAI N- HYPS- RELI EVED- 5

general i ze-okp(sg, state) O valid-state(generalize(sg,state))
- gen-setting-substitutions(sl, s2, sg)

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
( GEN- SETTI NG SUBSTI TUTI ONS S1 & SG))

Opening up the function GEN- SETTI NG SUBSTI TUTI ONS gives us a number of subgoals. The lemmas
which follow cover al of these subgoals. Many of them are more general than the corresponding cases of the
lemma MAIN-HYPS-RELIEVED-5. For example, in the first lemma below notice that domai n- 1 isarbitrary
in place of the substitution denoted by the abbreviation domain-1. Generality often makes the theorem prover’s

job easier.



36

34. Lemma  MAI N- HYPS- RELI EVED- 5- LEMVA- 1

val i d-state(generalize(sg, state))

- var-substp(sl) 0O var-subsp(s2)

where

sl = s| domain-1

s2 = (s |~ domain-1) // nullify-subst(sgQ)

(LET ((Sl (RESTRICT S DOMAI N-1))
(S2 (APPLY- TO- SUBST ( NULLI FY- SUBST SG)
(CO-RESTRICT S DOMAIN-1))))
(I MPLI ES (VALI D- STATE ( GENERALI ZE SG STATE))
(AND (VAR- SUBSTP S1)
(VAR SUBSTP S2))))

35. Lemma MAI N- HYPS- RELI EVED- 5- LEMVA- 2
general i ze-okp(sg, state) - var-substp(sg)

(I MPLI ES ( GENERALI ZE- OKP SG STATE)
( VAR- SUBSTP SG))

For the next two cases from the definition of GEN- SETTI NG- SUBSTI TUTI ONS, we first observe that the
domain of the witnessing substitution s is digoint from the domain of sg. Thisis an easy consequence of the
definitions, which imply that domai n(s) O 2"(generalize(sg, state)) O free and that freeis

digoint from the domain of sg.
36. Lemma W TNESSI NG | NSTANTI ATl ON- | S- DI SJOI NT- FROM GENERALI ZI NG- SUBSTI TUTI ON

general i ze-okp(sg, state) [ valid-state(generalize(sg,state))
- domain(s) n domain(sg) =0

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
(DI SJONT (DOMAIN S (DOMAIN SG)))

Since the domain of any restriction or co-restriction of a substitution is a subset of the origina domain, and
since the application of a substitution s to a substitution s’ has the same domain as does s’ (see DOMAIN-

APPLY-TO-SUBST in Section 3), the next two cases follow from the lemma displayed just above.
37. Lemma MAI N- HYPS- RELI EVED- 5- LEMVA- 3

general i ze-okp(sg, state) O valid-state(generalize(sg,state))
domai n(sl) n dommin(sg) = O O domain(s2) n domain(sg) = 0O
where

sl = s | domain-1

s2 = (s |~ domain-1) // nullify-subst(sg)

(LET ((S1 (RESTRICT S DOVAIN-1))
(S2 (APPLY-TO SUBST (NULLI FY- SUBST SG)
(CO-RESTRICT S DOMAI N-1))))
(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
(AND (DI SJO NT (DOMAIN S1) (DOMAIN SG))
(DI SJONT (DOMAIN S2) (DOMAIN SG)))))

The following lemmaMAIN-HY PS-RELIEVED-5-LEMMA-4 handles the next case.



37

39. Lemma  MAI N- HYPS- RELI EVED- 5- LEMVA- 4

general i ze- okp(sg, state) [ valid-state(generalize(sg,state))
- all-vars(range(sg)) n domain(sl) =0

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
(DI SJONT (ALL-VARS F (RANGE SG))
(DOMAI N S1)))

Let usargue informally for the correctness of thislemma. Assuming its hypotheses, we have:

al I -vars(range(sg)) n domai n(sl)

= {by definition}

all -vars(range(sg)) n donain(s | domain-1)

= {by DOMAIN-RESTRICT in Section 3}

all -vars(range(sg)) n domain(s) n domain-1

0 {byaxiomintroduced for VALI D- STATE}

all -vars(range(sg)) n 2"(generalize(sg,state)) n domain-1

= {by definition of GENERALI ZE}

al | -vars(range(sg))
n [free \ (domain-1 n all-vars(range(sg)))]
n domain-1

= {trivial set-theoretic reasoning; see below}

O

How would a person reason in the last step? A natural course would be to consider an arbitrary x and show that
it if it belongs to all-vars(range(sg)) and aso to [free \ (domain-1 n
al |l -vars(range(sg)))], then it does not belong to domain-1. In fact the analogous fact is proved as a

lemmafor the intersection displayed two steps earlier in the informal proof above.

38. Lemma  MAI N- HYPS- RELI EVED- 5- LEMVA- 4-W T
( generalize-okp(sg,state) O
val i d-state(generalize(sg,state)) O
wit O all-vars(range(sg)) O
wit O domain(s) )
- wit O domain-1
(1 MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE (GENERALI ZE SG STATE))
(MEMBER WT (ALL-VARS F (RANGE SG)))

(MEMBER WT (DOVAIN 9)))
(NOT (MEMBER W T DOMAIN-1) ) )

We have one final technical comment on the proof of MAIN-HYPS-RELIEVED-5-LEMMA-4. In addition to
proving the lemma MAIN-HY PS-RELIEVED-5-LEMMA-4-WIT first (as arewrite rule), ahint is also given to
enable the lemma DISJOINT-WIT-WITNESSES. That lemma has the effect of reducing the statement that
al | -vars(range(sg)) isdigoint from the domain of sl to the question issue of whether a particular value

could belong to both of them. For a description of that lemma, see Section 3.

The fina case goes through automatically, though here it is crucia that s2 is built using



38

NULLI FY- SUBST; see the lemma DISJIOINT-ALL-VARS-RANGE-APPLY-SUBST-NULLIFY-SUBST in

Section 3.
40. Lemma MAI N- HYPS- REL|I EVED- 5- LEMVA- 5

general i ze-okp(sg, state) O valid-state(generalize(sg,state))
- all-vars(range(s2)) n domain(sg) = 0O

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))

(DI SJONT (ALL-VARS F (RANGE &2))
(DOVAIN SG)))

5.3.2 Proof of thelemma MAIN-HYPS-RELIEVED-6
Now all that isleft isthe proof of the lemmaMAIN-HYPS-RELIEVED-6. Hereisits statement.
58. Lemma  MAI N- HYPS- RELI EVED- 6

general i ze-okp(sg, state) 0O valid-state(generalize(sg,state))
- theoremlist(({new-gt O p) / (sl O s2))

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))

( THEOREM LI ST (SUBST F (APPEND SL <)
(CONS NEW-G P))))

Hereisavery high-level view of the proof, which incidentally should show why we chose to bring in the
notion of ‘‘gen-closure’’ Because of the way that the function GEN- CLOSURE is defined (event #10 above), the
set domain-1 has the following property: for every goa x in the new state gener al i ze(sg, st at e), the
set of free variables in that state that occur in x are either contained in domain-1 or are disioint from it. In the
former case, which includes the case x = new-g, no variable occurring in x isin the domain of s2, and it follows
that that x/ (sl O s2) =x/sl=x/s. Inthelatter case we similarly have x/ (sl 00 s2) =x/ s2. Since we
have already dealt with the case x = new-g, we may assume that x O p, and by a little additional technical
argument we can show that x/ s2 is an instance of x/ s. So we havethat x/ (s1 O s2) isan instance of X/ s,

and since x/ sisatheorem (by definition of sand the VALI D- STATE hypothesis), soisx/ (sl O <2).

Let us proceed now aong the lines of the mechanically-checked proof. By opening up SUBST and

THEOREM LI ST we can break MAIN-HY PS-RELIEVED-6 into the following two goals.
45. Lemma.  MAI N- HYPS- RELI EVED- 6- FI RST

general i ze-okp(sg, state) 0O valid-state(generalize(sg,state))
- theoren(new-g / (sl O s2))

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
( THEOREM ( SUBST T (APPEND S1 S2) NEW-G)))



39

57. Lemma  MAI N- HYPS- RELI EVED- 6- REST

general i ze- okp(sg, state) [ valid-state(generalize(sg,state))
- theoremlist(p/ (sl O s2))

(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)

(VALI D- STATE ( GENERALI ZE SG STATE)))
( THEOREM LI ST (SUBST F (APPEND S1L S2) P)))

Let us consider these in turn.

5.3.2(1) Proof of thelemma MAIN-HYPS-RELIEVED-6-FIRST. Hereisan informal proof of the first of

these two lemmas. We begin with a key observation, which we will both prove and use presently.

*) domain(s) n all-vars(new-g) O domain-1

Now recall the lemma SUBST-APPEND-NOT-OCCUR-2 (stated in Subsection 5.2 above) which says if no
variable of aterm x belongs to the domain of a substitution s2 thenx / (s1 O s2) = x / sl. The
domain of s2 is equal to donmi n(s) \ domain-1; hence the requirement for SUBST-APPEND-NOT-
OCCUR-2 that donai n( s2) bedisjoint fromal | - var s( new-g) holds by (*).8 So assuming our hypotheses
of generalize-okp(sg,state) and valid-state(generalize(sg,state)), we may
summarize the argument as follows.

new-g / (sl O 2)

= {bythelemma SUBST-APPEND-NOT-OCCUR-2 (cf. Section 3) and (*)}

new-g / sl

= {bythelemma SUBST-RESTRICT (cf. Section 3) and (*)}
new-g / s

It remains to check that (*) holds. Consider the following lemma.
44. Lemma GEN- CLOSURE- CONTAI NS- THI RD- ARG

x O (free n vars)
- x O gen-cl osure(goal s, free, vars)

(I MPLI ES (SUBSETP X (I NTERSECTI ON FREE VARS))
( SUBSETP X ( GEN- CLOSURE GOALS FREE VARS)))

If we apply thislemmawith goal s :={new-g} O p,free =freg vars =all -vars(new-g), and x :=
domai n(s) n all-vars(new-g), the resulting instance can be expressed using our abbreviations as

follows.

8The lemmas used in this argument are DOMAIN-CO-RESTRICT from "alists.events’ and DISIOINT-SET-DIFF-GENERAL from
"sets.events'



40

domain(s) n all-vars(new-g) O (free n all-vars(newg)) - (*)
(1 MPLI ES (SUBSETP (| NTERSECTI ON (DOMAIN § (ALL- VARS NEW-G))

(I NTERSECTI ON FREE (ALL- VARS NEW-G)))
(*)

So in order to prove (*), it sufficesto prove the hypothesis of thisimplication, which in turn follows from

domai n(s) O 2"9(generalize(sg,state)) O free

The first inclusion follows from the fact that the domain of s is contained in the free variables of the new
(generalized) state, which is part of the VALI D- STATE hypothesis. The second inclusion is just the lemma
SUBSETP-CDR-GENERALIZE from Subsection 5.1 above. This concludes the proof of MAIN-HYPS-
RELIEVED-6-FIRST.

In fact we close with one technical comment. The lemma CAR-GENERALIZE is proved before the
lemma GEN-CLOSURE-CONTAINS-THIRD-ARG above so as to speed up the proofs. The idea is that we
only want to invoke the rather hairy definition of GENERALI ZE when we are looking at goal's, not when we are

simply asking about the witnessing substitution.
42. Lemma CAR- GENERALI ZE

1%(generalize(sg, <{g} O p, free>)) =
{g/sg’’y Op

(EQUAL (CAR (GENERALI ZE SG STATE))
(CONS (SUBST T (I NVERT SG) (CAAR STATE))
(CDAR STATE)))
5.3.2(2) Proof of the lemma MAIN-HYPS-RELIEVED-6-REST. We now move to the proof of our final

goal, which once againiis:
57. Lemma  MAI N- HYPS- RELI EVED- 6- REST

general i ze- okp(sg, state) [ valid-state(generalize(sg,state))
- theoremlist(p/ (sl O s2))

(1 MPLIES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
( THEOREM LI ST (SUBST F (APPEND S1 &) P)))
Let us begin with the following key notion suggested by the informal proof given above. It asserts that every

goals sfree variables are either contained in the set x or are disjoint from x.



41

46. Definition of ALL- VARS- DI SJO NT- OR- SUBSETP

al | -vars-disjoint-or-subsetp(goals,free, x) =
(O gingoals) [ free n all-vars(g) Ox 0Ofree n all-vars(g) n x = 0]

( DEFN ALL- VARS- DI SJOI NT- OR- SUBSETP ( GOALS FREE X)
(IF (LI STP GOALS)
(AND (OR (SUBSETP (| NTERSECTI ON FREE (ALL-VARS T (CAR GOALS)))
X)
(DI SJONT (| NTERSECTI ON FREE (ALL-VARS T (CAR GOALS)))
X))
(ALL- VARS- DI SJO NT- OR- SUBSETP (CDR GOALS) FREE X))
m)
Observe that the set of goals p has the above property with respect to the free variables of the generalized state

and the appropriate ‘* gen-closure’’, domain-1:
52. Lemma  MAI N- HYPS- REL| EVED- 6- REST- LEMVA- 2

general i ze-okp(sg, state) [ valid-state(generalize(sg,state))
~ all-vars-disjoint-or-subsetp(p, 2"(generalize(sg,state)), domain-1)

(1 MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
(VALI D- STATE ( GENERALI ZE SG STATE)))
( ALL- VARS- DI SJOI NT- OR- SUBSETP P (CDR ( GENERALI ZE SG STATE)) DOMAIN-1))
This follows from the definition of domain-1 and the following observation. Actualy, the following lemma

relevant in the special case (instance) where new-f r ee is 2" gener al i ze(sg, state)),i.e. theset of

free variables of the new (generalized) state; f r ee isfree; goal s isp; g isg; andvar s isdomain-1.
51. Lemma ALL- VARS- DI SJO NT- OR- SUBSETP- GEN- CLOSURE
newfree O free

—

al | -vars-di sj oi nt-or-subsetp(p, newfree, gen-closure({g} O p, free, vars))

(I MPLI ES ( SUBSETP NEW FREE FREE)
( ALL- VARS- DI SJO NT- OR- SUBSETP
P NEW FREE
( GEN- CLOSURE (CONS G P) FREE VARS)))

Let us attempt to finish the proof of our remaining goal MAIN-HY PS-RELIEVED-6-REST with informal
reasoning. Assume its hypotheses. Let x be any goal in p; then by the VALI D- STATE hypothesis, we have
t heor en( x) . Moreover, the lemma MAIN-HY PS-RELIEVED-6-REST-LEMMA-2 above implies says that
the set of free variables occurring in x is contained in or digoint from domain-1. Hence there are two cases.
We follow the outline given at the start of this subsection 5.3.2 (just below the statement of the lemma

MAIN-HY PS-RELIEVED-6).

Case 1. all-vars(x) 0O domain-1. Then since dorai n(s2) = domai n(s) \ domain-1 (by
definition of s2 and the lemmas DOMAIN-CORESTRICT and DOMAIN-APPLY-TO-SUBST in Section 3), it

follows from the case hypothesis that



42

(1) all-vars(x) n domain(s2) = 0.
Therefore
x/ (sl O s2)
= {by (1) together with the lemma SUBST-APPEND-NOT-OCCUR-2 (cf. Section 3)}
x/ sl
= {by (1) together with the lemma SUBST-RESTRICT (cf. Section 3)}
x/'s

Case 2. all-vars(x) n domain-1 = [O. The argument is a little more involved in this case,
because 2 is not simply a co-restriction of s. Recal that s2 is defined as (s | ~ domain-1) //

nul i fy-subst (sg). Thistimewe argue asfollows.

x/ (sl O s2)
= {bythelemma SUBST-APPEND-NOT-OCCUR-1 (cf. Section 3)}
x/ s2

= {by definition}

x/ ((s |~ domain-1) // nullify-subst(sg))

= {aswe will show below}

(x/ (s |~ domain-1)) / nullify-subst(sg)

= {bythelemma SUBST-CO-RESTRICT (cf. Section 3)}
(x/s) I nullify-subst(sg)

Therefore x/ (s1 0O s2) is atheorem (cf. event #54 in "generalize.events' in the Appendix, which we omit
here), since it is an instance of x/ s (which is a theorem by the VALI D- STATE hypothesis). But it remains to
explain the reason ‘‘as we will show below’” for the penultimate step above. The following lemma is the key.
It is applied automatically by the theorem prover’s rewriter using the substitution {sg := nul lify-
subst(sg), s := (s |~ domain-1)}.

53. Lemma SUBST- APPLY- TO- SUBST- ELI M NATCR

[ variable-listp(domain(sg)) O
variabl e-1istp(domain(s)) O
ternp(x) O
domai n(sg) n all-vars(x) = 0O ]

x /! (s //l sg) =(x 1/ s) [l sg

(I MPLI ES (AND ( VARI ABLE- LI STP ( DOMAI N SG))
(VAR ABLE- LI STP (DOMAIN S))
(TERWP T X)
(DI SJONT (DOMAIN SG (ALL-VARS T X)))
(EQUAL (SUBST T (APPLY-TO SUBST SG S) X)
(SUBST T SG
(SUBST T S X))))

Notice that by the lemma DOMAIN-NULLIFY-SUBST (cf. Section 3), we can safely equate the domains of sg
and nul | i fy-subst (sg). But why can we assume that the domain of sg is digoint from the variables of

x? Recdl that x is an arbitrary member of the set of goals from p that (by the Case 2 hypothesis) do not



43

intersect domain-1. That is, the following lemma should suffice to conclude the proof. (The definition of the
function GOALS- DI SJO NT- FROMt VARS will follow.)
50. Lemma MAI N- HYPS- RELI EVED- 6- REST- LEMVA- 1
[ generalize-okp(sg,state) O valid-state(generalize(sg,state)) ]
[ domain(sg) n
al | -vars(goal s-disjoint-fromvars(p, 2" generalize(sg, state)), domain-1))
= |:|]
(I MPLI ES (AND ( GENERALI ZE- OKP SG STATE)
( VALI D- STATE ( GENERALI ZE SG STATE)))
(DI SJO NT (DOVAI N SG)
(ALL- VARS F (GOALS- DI SJO NT- FROM VARS
P (CDR ( GENERALI ZE SG STATE))
DOMAIN-1))))
And here is the obvious definition of GOALS- DI SJO NT- FROW VARS, followed by an important property of
this function.
47. Definition of GOALS- DI SJO NT- FROM VARS

goal s-disjoint-fromvars(goal s,free,vars) =
{g O goals: free n all-vars(g) = 0O}

(defn goal s-disjoint-fromvars (goals free vars)
(if (listp goals)
(let ((current-free-vars (intersection free (all-vars t (car goals)))))
(if (disjoint current-free-vars vars)
(cons (car goals)
(goal s-disjoint-fromvars (cdr goals) free vars))
(goal s-disjoint-fromvars (cdr goals) free vars)))
nil))

48. Lemma GOALS- DI SJO NT- FROW VARS- SUBSETP
goal s-di sjoint-fromvars(goal s,free,vars) [ goals

( SUBSETP ( GOALS- DI SJOI NT- FROM VARS GOALS FREE VARS)
GOALS)

Event #49, DISIOINT-ALL-VARS-GOALS-DISIOINT-FROM-VARS, is merely a technical lemma that is
necessary because of the theorem prover’'s difficulty in relieving hypotheses of rewrite rules that contain

variables not bound in the conclusion. We omit its statement here.

We conclude by summarizing the top-level structure of the proof of the lemma MAIN-HYPS-
RELIEVED-6-REST, which is motivated by the discussion above. Thislemmais an immediate consequence of
the following lemma, in conjunction with the lemma MAIN-HY PS-RELIEVED-6-REST-LEMMA-1 (event
#50) and MAIN-HY PS-RELIEVED-6-REST-LEMMA-2 (event #52), already explained above, which are used
to relieve its last two hypotheses. Notice that this lemma is somewhat more abstract than those two, in that it

refersto arbitrary values of p, s, domai n- 1, and new- f r ee.

56. Lemma MAI N- HYPS- RELI EVED- 6- REST- GENERALI ZATI ON



[ var-substp(sg) O
var-substp(s) O
domai n(s) O newfree O
termp-list(p) O
theoremlist(p/s) O
domai n(sg) n all-vars(goal s-disjoint-fromvars(p, newfree,domain-1)) =0 O
al | - var s-di sj oi nt - or- subset p(p, newfree, domai n-1) ]
theoremlist(p/ (sl O s2))
where
sl = s | domain-1
s2 (s |~ domain-1) // nullify-subst(sg)

(LET ((Sl (RESTRICT S DOVAIN-1))
(S2 (APPLY-TO SUBST (NULLI FY- SUBST SG)
(CO-RESTRICT S DOMAI N-1))))
(I MPLI ES (AND (VAR SUBSTP SG

( VAR SUBSTP S)

( SUBSETP (DOMAI N S) NEW FREE)

(TERWP F P)

( THEOREM LI ST (SUBST F S P))

(DI SJONT ( DOMAI N SG)
(ALL- VARS F (GOALS- DI SJO NT- FROM VARS

P NEW FREE DOVAI N-1)))
( ALL- VARS- DI SJO NT- OR- SUBSETP P NEW FREE DOMAI N- 1))
( THEOREM LI ST (SUBST F (APPEND S1 S2) P))))

The theorem prover implements informal arguments presented above when proving this theorem by
induction on the length of p. However, we encountered difficulties at first in finding the right argument, at least
during our second proof effort (see Subsection 1.2). The remainder of this section contains an edited version of
the comments made during that proof, just after completion of MAIN-HY PS-RELIEVED-6-REST-LEMMA-2
(so that all that was left was the proof of MAIN-HY PS-RELIEVED-6-REST-GENERALIZATION). All of this
below may be safely omitted; it's there simply for those familiar with the Boyer-Moore theorem prover who

want to dig alittle deeper into the details of the proof effort.

5.3.2(3) Some comments on the pr oof of the lemma
MAIN-HYPS-RELIEVED-6-REST-GENERALIZATION. Findly, al that's left is MAIN-HYPS
RELIEVED-6-REST-GENERALIZATION. An attempted proof by induction of that theorem results in 11

goals, al but one of which goes through automatically. The remaining oneis as follows.



45

(I MPLI ES
( AND
(DI SJO NT NEW FREE
(I NTERSECTI ON DOVAI N- 1
(ALL-VARS T X)))
( THEOREM LI ST
(SUBST F
( APPEND (RESTRI CT S DOMAI N- 1)
( APPLY- TO- SUBST (NULLI FY- SUBST SG)
(CO-RESTRICT S DOMAI N-1)))

7))
( MAPPI NG SG)
( VAR ABLE- LI STP (DOMAI N SG))
(TERWP F (RANGE SG))
( MAPPI NG S)
(VAR ABLE- LI STP (DOMAIN S))
(TERWP F (RANGE S))
(SUBSETP (DOMAIN S) NEW FREE)
(TERWP T X)
(TERWP F 2)
( THEOREM (SUBST T S X))
( THEOREM LI ST (SUBST F S 2))
(DI SJONT (DOMAIN SG) (ALL-VARS T X))
(DI SJONT ( DOMAI N SG)

(ALL- VARS F
( GOALS- DI SJIO NT- FROM VARS Z NEW FREE DOMAI N-1)))
( ALL- VARS- DI SJO NT- OR- SUBSETP Z NEW FREE DOMAI N-1))
( THEOREM ( SUBST T
( APPEND (RESTRI CT S DOMAI N-1)
( APPLY- TO- SUBST ( NULLI FY- SUBST SG)
(CO-RESTRICT S DOMAI N-1)))

X))

Let us attempt to prove this goa with PC-NQTHM, thus seeing why the rewriter can't handle it
automatically. With the aid of PC-NQTHM's SHOW-REWRITES command, we see that we would like to
rewrite with the lemma SUBST-APPEND-NOT-OCCUR-1 (see Section 3) to replace the conclusion with:

( THEOREM ( SUBST T

( APPLY- TO- SUBST ( NULLI FY- SUBST SG)
(CO-RESTRICT S DOVAI N-1))
X))

However, in order to do that we see (using PC-NQTHM’s REWRITE command) that we need to know that
under the hypotheses, the following holds.
(DI SJONT (ALL-VARS F
(DOVAI N (RESTRICT S DOVAI N-1)))
(ALL-VARS T X))
One would think that this follows quite clearly from just two of the hypotheses:
(DI SJIO NT NEW FREE
(1 NTERSECTI ON DOVAI N- 1
(ALL-VARS T X)))

(SUBSETP (DOMAIN S) NEW FREE)

This is one of those cases of a problem with free variables in hypotheses that are so annoying. The lemma



46

DOMAIN-RESTRICT has been proved in "alists.events' (see also Section 3) to help with this. But then we
lose the effect of an existing lemma which applied directly to smplify the term ( ALL- VARS F ( DOVAI N
(RESTRICT S DOVAI N-1))) (afamiliar phenomenon for those familiar with Knuth-Bendix completion).
The lemma VARIABLE-LISTP-INTERSECTION has since been proved in "terms.events” to take care of that

problem.

Now it looks like the rewrite using SUBST-APPEND-NOT-OCCUR-1 should succeed, since all
hypotheses are relieved by rewriting alone. Just to make sure, we back up in PC-NQTHM and see if the BASH
command (which calls the Boyer-Moore prover’s simplifier) uses this rule on our original goal. Sure enough, it

does.

Having successfully applied PC-NQTHM’s REWRITE command and relieved the resulting hypothesis,

we now have a conclusion that is the one displayed above, i.e.
( THEOREM ( SUBST T

( APPLY- TO- SUBST ( NULLI FY- SUBST SG)
(CO-RESTRICT S DOMAI N- 1))

X))
Since (as we aready know) ( NULLI FY- SUBST SG has the same domain as does SG, and since the
hypotheses imply that ( DOVAI N SGQ) is digoint from the variables of X, the SUBST expression in this

conclusion should simplify to:
(SUBST T (NULLIFY- SUBST SG
(SUBST T (CO RESTRICT S DOMAI N-1)
X))
We therefore need the lemma SUBST-APPLY-TO-SUBST-ELIMINATOR below (which is used under the

substitution where S gets (CO- RESTRI CT S DOMAI N- 1) and SG gets ( NULLI FY- SUBST SGQ)). [And



Appendix A
EventsFiles. sets, alists, terms, and generalize

THE FILE "sets.events

;; Requires deftheory enhancenent.
;; Requires only ground-zero theory, nqthm node

(setq events ' (

;; Sets; Matt Kaufmann, Dec. 1989, revised March 1990. The first few
;; events are sone basic events about lists. 1'Il take the approach
;; that all these basic functions will be disabled once enough

;; algebraic properties have been proved. The first two | emmas,

;; LENGTH CONS and LENGTH- NLI STP, reflect this decision. | suspect

;; that it’s awinin big proofs to keep basic functions disabl ed

; Theories:
;; (deftheory set-defns

i (length properp fix-properp nmenber append subsetp delete
- disjoint intersection set-diff setp))

(defn length (x)

(if (listp x)
(addl (length (cdr x)))
0))

(prove-lemma length-nlistp (rewite)
(inmplies (nlistp x)
(equal (length x) 0)))

(prove-lemma | ength-cons (rewite)
(equal (length (cons a x))
(addl (length x))))

(prove-lemn | ength-append (rewite)
(equal (length (append x y))
(plus (length x) (length y))))

(di sabl e | ength)

(prove-1 enma append-assoc (rewite)
(equal (append (append x y) z)
(append x (append y z))))

(prove-1 emma nmenber-cons (rewite)
(equal (menber a (cons x I))
(or (equal a x)
(menmber a l))))

(prove-lemma nmenber-nlistp (rewite)
(implies (nlistp I)
(not (menber a l))))
(di sabl e nmenber)

(defn subsetp (x y)
(if (nlistp x)
t

(and (nenber (car x) y)
(subsetp (cdr x) y))))

(defn subsetp-wit (x vy)

47



sets.events

(if (nlistp x)
t
(if (menber (car x) y)
(subsetp-wit (cdr x) vy)
(car x))))

(prove-1 emma subsetp-wit-w tnesses (rewite)
;; for occasional use in nessy proofs; it and its |enmma are kept disabled
(equal (subsetp x y)
(not (and (nenber (subsetp-wit X y) X)
(not (menber (subsetp-wit xvy) vy))))))

(prove-l ema subsetp-w t-w tnesses-general -1 (rewite)
(inmplies (and (not (nmenber (subsetp-wit x y) x))
(menmber a x))
(nmenber a y)))

(prove-l ema subsetp-w t-w tnesses-general -2 (rewite)
(inmplies (and (menber (subsetp-wit x y) vy)
(menmber a x))
(menber a vy)))

(di sabl e subsetp-wit-w tnesses)
(di sabl e subsetp-wit-w tnesses-general -1)
(di sabl e subset p-wi t-w t nesses-general -2)

(prove-l emm subsetp-cons-1 (rewite)
(equal (subsetp (cons a x) y)
(and (menber a y) (subsetp x y))))

(prove-| emma subset p- cons- 2
(rewite)
(inmplies (subsetp | m
(subsetp | (cons a nm)))

prove-| emma subsetp-reflexivity
| b fl exi vi
(rewite)
(subsetp x x))

(prove-1l emma cdr-subsetp
(rewite)
(subsetp (cdr x) x))

(prove-| emma nmenber - subset p
(rewite)
(inmplies (and (menber x y) (subsetp y z))
(menmber x z)))

(prove-l emm subsetp-is-transitive
(rewite)
(inmplies (and (subsetp x y) (subsetp y z))
(subsetp x z)))

(prove-1l emma nmenber-append (rewite)
(equal (menmber a (append x y))
(or (nenber a x) (nenber avy))))

(prove-1l ema subset p-append (rewite)
(equal (subsetp (append x y) z)
(and (subsetp x z) (subsetpy z))))

(prove-1l emma subset p- of - append-sufficiency (rewite)
(inmplies (or (subsetp a b) (subsetp a c))
(subsetp a (append b c))))

(prove-lemma subsetp-nlistp (rewite)
(inmplies (nlistp x)
(and (subsetp x y)
(equal (subsetp y x)

48



sets.events

(nlistp y)))))

(prove-1l emma subset p- cons- not - nenber (rewite)
(implies (not (menber z x))
(equal (subsetp x (cons z v))
(subsetp x v))))

(di sabl e subset p)

(defn properp (x)
(if (listp x)
(properp (cdr x))
(equal x nil)))

(defn fix-properp (x)
(if (listp x)
(cons (car x)
(fix-properp (cdr x)))
nil))

(prove-1l emma properp-fix-properp (rewite)
(properp (fix-properp x)))

(prove-lemma fix-properp-properp (rewite)
(inplies (properp x)
(equal (fix-properp x) x)))

(prove-1 emma properp-cons (rewite)
(equal (properp (cons x y))
(properp y)))

(prove-lemma properp-nlistp (rewite)
(inmplies (nlistp x)
(equal (properp x)
(equal x nil))))

(prove-lemma fix-properp-cons (rewite)
(equal (fix-properp (cons x y))
(cons x (fix-properpy))))

(prove-lemma fix-properp-nlistp (rewite)
(inmplies (nlistp x)
(equal (fix-properp Xx)
nil)))

(prove-1 emma properp-append (rewite)
(equal (properp (append x y))
(properp y)))

(prove-lemma fix-properp-append (rewite)
(equal (fix-properp (append x y))
(append x (fix-properp y))))

(prove-l emua append-nil (rewite)
(equal (append x nil)
(fix-properp x)))

(defn delete (x I)

(if (listp )
(if (equal x (car 1))
(cdr 1)

(cons (car |I) (delete x (cdr 1))))
1))

(prove-l emma properp-delete (rewite)
(equal (properp (delete x 1))

(properp 1)))

(defn disjoint (x vy)

49



sets.events

(if (listp x)
(and (not (nmenber (car x) y))
(disjoint (cdr x) y))
t))

(defn disjoint-wit (x vy)

50

;; for occasional use in nessy proofs; it and the followi ng | enma are kept disabled

(if (listp x)
(if (nmenber (car x) vy)
(car x)
(disjoint-wit (cdr x) y))
t))

(prove-lemma disjoint-wit-wtnesses (rewite)
(equal (disjoint x vy)
(not (and (nenber (disjoint-wit x y) Xx)
(menmber (disjoint-wit x y) y)))))

(disable disjoint-wt)
(di sabl e disjoint-wit-wtnesses)

(defn intersection (x vy)
(if (listp x)
(if (nmenber (car x) vy)
(cons (car x)
(intersection (cdr x) y))
(intersection (cdr x) y))

nil))

(prove-| enma properp-intersection (rewite)
(properp (intersection x y)))

(defn set-diff (x vy)
(if (listp x)
(if (menmber (car x) vy)
(set-diff (cdr x) y)
(cons (car x) (set-diff (cdr x) y)))
nil))

(prove-1l emma properp-set-diff (rewite)
(properp (set-diff x vy)))

(defn setp (x)
(if (not (listp x))
(equal x nil)
(and (not (menmber (car x) (cdr x)))
(setp (cdr x)))))

(prove-lemua setp-inplies-properp (rewite)
(inmplies (setp x)
(properp x)))

(di sabl e properp)

(deftheory set-defns
(l'ength properp fix-properp nmenber append subsetp del ete
disjoint intersection set-diff setp properp))

;; Set theory | enmmas

(prove-1l emma del ete-cons (rewite)
(equal (delete a (cons b x))
(if (equal a b)
X
(cons b (delete a x)))))

(prove-lemma delete-nlistp (rewite)
(implies (nlistp x)



sets.events

(equal (delete a x) x)))

(prove-lemma listp-delete (rewite)
(equal (listp (delete x 1))
(if (listp 1)
(or (not (equal x (car 1)))
(listp (cdr 1)))
£)))

(prove-1l emmua del et e- non-nenber (rewite)
(inmplies (not (menber x y))
(equal (delete x vy) vy)))

(prove-lemm del ete-delete (rewite)
(equal (delete y (delete x z))
(delete x (delete y z))))

(prove-l emma nmenber-delete (rewite)
(inmplies (setp x)
(equal (menmber a (delete b x))
(and (not (equal a b))
(nmenber a x)))))

(prove-lemma setp-delete (rewite)

(inplies (setp x)
(setp (delete a x))))

(di sabl e del ete)

(prove-lemma disjoint-cons-1 (rewite)
(equal (disjoint (cons a x) vy)
(and (not (nenber a y))
(disjoint x y))))

(prove-lemma disjoint-cons-2 (rewite)
(equal (disjoint x (cons ay))
(and (not (nenmber a x))
(disjoint x vy))))

(prove-lemma disjoint-nlistp (rewite)
(implies (or (nlistp x) (nlistp y))
(disjoint x vy)))

(prove-lemma disjoint-symmetry (rewite)
(equal (disjoint x y)
(disjoint y x)))

(prove-1 emua di sjoi nt-append-right (rewite)
(equal (disjoint u (append y z))
(and (disjoint uvy)
(disjoint u z))))

(prove-1l emu disjoint-append-left (rewite)
(equal (disjoint (append y z) u)
(and (disjoint y u)
(disjoint z u))))

(prove-1l emua disjoi nt-non-nmenber (rewite)
(implies (and (menber a x)
(menmber a vy))
(not (disjoint x vy))))

(prove-1 enmma di sj oi nt - subset p- nbnot one- second (rewite)
(implies (and (subsetp y 2z)
(disjoint x z))
(disjoint x vy)))

(prove-|l emma subsetp-disjoint-2 (rewite)
(implies (and (subsetp x y)

51



sets.events

(disjoint y z))
(disjoint z x)))

(prove-1l emma subsetp-disjoint-1 (rewite)
(inmplies (and (subsetp x y)
(disjoint y z))
(disjoint x z))
((use (disjoint-symetry (x x) (y z)))
(di sabl e disjoint-symretry)))

(prove-lemma subsetp-disjoint-3 (rewite)
(implies (and (subsetp x y)
(disjoint z vy))
(disjoint x z)))

(di sabl e disjoint)

(prove-lemm intersection-disjoint (rewite)
(equal (equal (intersection x y) nil)
(disjoint x vy)))

(prove-lemma intersection-nlistp (rewite)

(inmplies (or (nlistp x) (nlistp y))
(equal (intersection x y) nil)))

(prove-1l emua nmenber-intersection (rewite)
(equal (menber a (intersection x y))
(and (menmber a x) (menber a y))))

(prove-l emm subsetp-intersection (rewite)
(equal (subsetp x (intersectiony z))
(and (subsetp x y) (subsetp x z)))
((induct (subsetp x y))))

(prove-lemma intersection-symetry (rewite)
(subsetp (intersection x y)
(intersectiony x)))

(prove-lenma intersection-cons-1 (rewite)
(equal (intersection (cons a x) Yy)
(if (nenber avy)
(cons a (intersection x y))
(intersection x y))))

(prove-lemm intersection-cons-2 (rewite)
(inmplies (not (menber a y))
(equal (intersection y (cons a x))
(intersectiony x))))

;7 The following is needed because DI SJO NT- | NTERSECTI ON- COVMMUTER,
;; added during polishing, caused the proof of
;; DI SJO NT-DOVAI N-CO-RESTRICT (in "alists.events") to fail

(prove-lemma intersection-cons-3 (rewite)
(implies (menmber w x)
(equal (subsetp (intersection y (cons w z))
X)
(subsetp (intersection y z)

x)))

((enabl e intersection)))

(prove-lemma intersection-cons-subsetp (rewite)
(subsetp (intersection x vy)
(intersection x (cons avy))))

(prove-l emma subsetp-intersection-left-1 (rewite)
(subsetp (intersection x y) Xx)
((enabl e intersection)))

52



sets.events 53

(prove-l emm subsetp-intersection-left-2 (rewite)
(subsetp (intersection x y) vy)
((enabl e intersection)))

(prove-1l emma subsetp-intersection-sufficiency-1 (rewite)
(inmplies (subsetp y z)
(subsetp (intersection x y) z))
((enabl e intersection)))

(prove-1l emma subsetp-intersection-sufficiency-2 (rewite)
(inmplies (subsetp y z)
(subsetp (intersectiony x) z))
((enabl e intersection)))

(prove-lenmma intersection-associative (rewite)
(equal (intersection (intersection x y) z)
(intersection x (intersectiony z)))
((enabl e intersection)))

(prove-lenmma intersection-elinmnation (rewite)
(inmplies (subsetp x vy)
(equal (intersection x vy)
(fix-properp x))))

(prove-lemm | ength-intersection (rewite)
(not (lessp (length x)
(length (intersection x y)))))

(prove-1l emma subsetp-intersection-nmenber (rewite)
(inmplies (and (subsetp (intersection x y) z)
(not (menber a z)))
(and (inplies (menber a x)
(not (menber avy)))
(inmplies (nenber a vy)
(not (menber a x))))))

The followi ng wasn’'t needed in the proof about generalization, but is a nice rule
(prove-lemma intersection-append (rewite)
(equal (intersection (append x y) z)
(append (intersection x z) (intersectiony z))))

;7 1'd rather just prove that intersection distributes over append on
;; the right but that isn't true. Congruence relations would probably
;; help alot with that problem |In the neantine, | content nyself

with the follow ng
(prove-lenmma disjoint-intersection-append (rewite)

(equal (disjoint x (intersection y (append z1 z2)))

(and (disjoint x (intersectiony z1))
(disjoint x (intersectiony z2))))
((enabl e intersection)))

;; See comment just above DI SJO NT-| NTERSECTI ON- APPEND
(prove-l emma subsetp-intersection-append (rewite)
(equal (subsetp (intersection u (append x y))
z)
(and (subsetp (intersection u x) z)
(subsetp (intersection uy) z))))

(prove-1l emma subsetp-intersection-elimnation-lema (rewite)
(implies (and (subsetp y x)
(not (subsetp vy z)))
(not (subsetp (intersection x vy) z)))
((use (subsetp-is-transitive (x y) (y (intersection x vy)) (z z)))
(di sabl e intersection)))

(prove-l emmma subsetp-intersection-elimnation (rewite)
;; Interestingly, the prover failed to prove this when | used EQUAL.
;; Apparently the | FF causes a necessary case split.
(inmplies (subsetp y x)



sets.events

(iff (subsetp (intersection x y) z)
(subsetp y z)))
((disable intersection)))

(prove-lemm disjoint-intersection (rewite)
(equal (disjoint (intersection x vy) z)
(disjoint x (intersectiony z)))
((enabl e intersection)
(disable disjoint)))

(prove-1l emma subsetp-intersection-nonotone-1 (rewite)
(inmplies (and (subsetp (intersection x y) z)
(subsetp x1 x))
(subsetp (intersection x1 y)
z))
((enabl e di sjoint subsetp)))

;3 The | emma SUBSETP- | NTERSECTI ON- MONOTONE- 2 bel ow was added during
;5 polishing of the final proof in "generalize.events", since the

;; lemmm i nmedi atel y above wasn’t enough at that point. Actually

;7 | realized at this point that intersection commutes fromthe point
;; of view of subsetp

(prove-1l emma subsetp-intersection-comuter (rewite)
(equal (subsetp (intersection x y) z)
(subsetp (intersection y x) z))

((use (subsetp-wit-witnesses (x (intersectiony x))

(subsetp-wit-witnesses (x (intersection x y))

(y 2))
(y 2)))))

(prove-1l emm subsetp-intersection-nonotone-2 (rewite)
(inmplies (and (subsetp (intersectiony x) z)
(subsetp x1 x))
(subsetp (intersection x1 y)

2)))

(prove-1lenma disjoint-intersection-comuter (rewite)
(equal (disjoint x (intersectiony z))
(disjoint x (intersection z vy)))
((use (disjoint-wit-witnesses (x x) (y (intersectiony z)))
(disjoint-wit-witnesses (x x) (y (intersection z y)))
(di sabl e intersection)))

)

(prove-lemma disjoint-intersection3 (rewite)
(inmplies (disjoint free
(intersection vars x))
(equal (intersection x (intersection vars free))
nil))

((use (disjoint-wit-w tnesses

(x x)

(y (intersection vars free))))))

(di sabl e intersection)

(prove-lemma nmenber-set-diff (rewite)
(equal (menber a (set-diff y z))
(and (menber a vy)
(not (nmenber a z)))))

(prove-l emma subsetp-set-diff-1 (rewite)
(subsetp (set-diff x y) x))

(prove-lemma disjointp-set-diff (rewite)
(disjoint (set-diff xvy) vy))

(prove-l emm subsetp-set-diff-2 (rewite)
(equal (subsetp x (set-diff y z))
(and (subsetp x vy)
(disjoint x z)))
((enabl e-theory set-defns)))



sets.events

(prove-lemm set-diff-cons (rewite)
(equal (set-diff (cons a x) vy)
(if (nmenber avy)
(set-diff x vy)
(cons a (set-diff x vy)))))

(prove-lemm set-diff-nlistp (rewite)
(implies (nlistp x)
(equal (set-diff x y) nil)))

;7 The following was di scovered during final polishing, for the
;5 proof of MAIN-HYPS- RELI EVED- 6- FI RST
(prove-lemn disjoint-set-diff-general (rewite)
(equal (disjoint x (set-diff y z))
(subsetp (intersection x y) z))
((induct (intersection x y))))

(prove-lemm intersection-subsetp-identity (rewite)
(inmplies (and (properp x)
(subsetp x y))
(equal (intersection x y) x))
((enabl e subsetp)))

(prove-lemm intersection-x-x (rewite)

(inmplies (properp x)
(equal (intersection x x) Xx)))

(prove-| enmma subset p-set-di ff-nmononone-2 (rewite)
(subsetp (set-diff x (append y z))
(set-diff x z))
((disable set-diff)))

(prove-1l emma subset p-set-diff-nonotone-second (rewite)
(equal (subsetp (set-diff x y) (set-diff x z))
(subsetp (intersection x z) y))
((enabl e intersection)))

(prove-lemma set-diff-nil (rewite)
(equal (set-diff x nil)
(fix-properp x)))

(prove-lemun set-diff-cons-non-nenber-1 (rewite)
(implies (not (menber a x))
(equal (set-diff x (cons ay))
(set-diff x vy))))

(prove-lemma | ength-intersection-set-diff ()
(equal (length x)
(plus (length (set-diff x y))
(length (intersection x y))))
((enable set-diff intersection length)))

(prove-lemua | ength-set-diff-opener (rewite)
(equal (length (set-diff x vy))
(difference (length x)
(length (intersection x y))))
((use (length-intersection-set-diff))))

(prove-lemm listp-set-diff (rewite)
(equal (listp (set-diff x vy))
(not (subsetp x y)))
((enabl e set-diff)))

Here is a messy | enma about disjoint and such
(prove-lemm disjoint-intersection-set-diff-intersection (rewite)
(disjoint x (intersectiony (set-diff z (intersectiony x))))
((enabl e disjoint-wit-wtnesses)
(di sable set-diff)))

55



sets.events

(disabl e set-diff)

(prove-1l emma nmenber-fix-properp (rewite)
(equal (menmber a (fix-properp x))
(menber a x)))

(prove-1 emma setp-append (rewite)
(equal (setp (append x y))
(and (disjoint x vy)
(setp (fix-properp x))
(setp y))))

(prove-l emma setp-cons (rewite)
(equal (setp (cons a x))
(and (not (menmber a x))
(setp x))))

(prove-lemua setp-nlistp (rewite)
(inmplies (nlistp x)
(equal (setp x)
(equal x nil))))

(defn make- set
(1)
(if (not (listp 1))
ni
(if (menber (car 1) (cdr 1))
(meke-set (cdr 1))
(cons (car 1) (make-set (cdr 1))))))

(prove-| enma nake- set - preser ves- nenber
(rewite)
(equal (rmenber x (nake-set 1))
(menber x 1)))

(prove-| enma make- set - preserves-subset p-1
(rewite)
(equal (subsetp (nake-set x) (nake-set y))
(subsetp x vy)))

(prove-1l emma nake-set - preserves-subset p- 2
(rewite)
(equal (subsetp x (make-set y))
(subsetp x y))
((enabl e subsetp)))

(prove-| enma make- set - preserves- subset p- 3
(rewite)
(equal (subsetp (nake-set x) vy)
(subsetp x y)))

(prove-| enma make- set-gi ves-setp
(rewite)
(setp (make-set x)))

(prove-l emma nmake-set-set-diff (rewite)
(equal (make-set (set-diff x vy))
(set-diff (nmake-set x) (nake-set y))))

(prove-lemm set-diff-make-set (rewite)
(equal (set-diff x (make-set y))
(set-diff x vy))
((enable set-diff)))

(prove-lemm |istp-nake-set (rewite)
(equal (listp (make-set x))
(listp x)))

(di sabl e setp)

56



sets.events

;735 The follow ng were proved in the course of the final run
;7. .s through the generalization proof. There are a couple or
;.55 so noted above here, too

(prove-lemma set-diff-append (rewite)
(equal (set-diff x (append y z))
(set-diff (set-diff x z) y))
((induct (set-diff x z))))

(prove-lemn | ength-set-diff-leq (rewite)
(not (lessp (length x)
(length (set-diff x vy)))))

(prove-lemma | essp-length (rewite)
(implies (listp x)
(lessp 0 (length x)))
((enabl e length)))

(prove-lemma listp-intersection (rewite)
(equal (listp (intersection x vy))
(not (disjoint x y)))
((enabl e intersection)))

(prove-lemma | ength-set-diff-lessp (rewite)
(inmplies (not (disjoint x new))
(lessp (length (set-diff x new))
(length x))))

(prove-lemma disjoint-inplies-enpty-intersection (rewite)
(inmplies (disjoint x vy)
(equal (intersection x y) nil)))

;; The following | enma DI SJO NT- | NTERSECTI ON3- M DDLE i s needed for the
;5 proof of ALL-VARS-DI SJO NT- OR- SUBSETP- GEN- CLOSURE i n

;; generalize.events. | think I could avoid Iemmas like this one if

;7 | NTERSECTI ON were actual |y conmut ati ve-associ ative (in which case
;7 1'd get rid of disjoint and rely on normalization)

;; Maybe | should redo the notion of disjoint sonetine, perhaps using
;; the fact that intersection is commutative and associative when it’s
7, equated with nil

(prove-lemma disjoint-intersection3-nmiddle (rewite)
(inmplies (disjoint y (intersection x z))
(equal (intersection x (intersectiony z))
nil))
((use (disjoint-wit-wtnesses
(x x) (y (intersectiony z))))))

(prove-1l emma di sj oi nt-subset p-hack (rewite)
(inmplies (and (disjoint x
(intersection u v))
(subsetp w x))
(disjoint u
(intersection wv)))
((use (disjoint-wit-wtnesses
(x u)
(y (intersection wv)))
(di sj oi nt - non- menber
(a (disjoint-wit u (intersection wv)))
(x x)
(y (intersection u v)))
(menber - subset p
(x (disjoint-wit u
(intersection wv)))
(y w
(z x)))

(di sabl e di sj oi nt-non-nenber nenber-subsetp)))

(prove-l emma subsetp-set-diff-sufficiency (rewite)

57



sets.events 58

(inmplies (subsetp x vy)
(subsetp (set-diff x z) y))
((enabl e set-diff)))

;7 The following | enma SETP-1 NTERSECTI ON- SUFFI Cl ENCY i s needed for
;7 MAPPI NG RESTRICT from "alists.events", because (I believe)

;; DOMAI N- RESTRI CT, which was added during polishing, changed the
;; course of the previous proof. Simlarly for

;3 SETP- SET- DI FF- SUFFI CI ENCY and t he | enma MAPPI NG CO- RESTRI CT

(prove-lenmma setp-intersection-sufficiency (rewite)
(inmplies (setp x)
(setp (intersection x y)))
((enabl e intersection)))

(prove-lemua setp-set-diff-sufficiency (rewite)
(inmplies (setp x)
(setp (set-diff x vy)))
((enabl e set-diff)))

;; The definition of FIX-PROPERP was al so added in polishing because
;; of a problemw th the proof of GEN CLOSURE- ACCEPT in

;; "generalize.events". Here are a couple of |enmas about it that

;; mght or might not be useful; all other |enmmas about it above, and
;; the definition, were added during polishing

(di sabl e fix-properp)

(prove-1l emma subsetp-fix-properp-1 (rewite)
(equal (subsetp (fix-properp x) vy)
(subsetp x y))
((enabl e subsetp)))

(prove-l emma subsetp-fix-properp-2 (rewite)
(equal (subsetp x (fix-properp y))
(subsetp x y))
((enabl e subsetp)))

))



alists.events

THE FILE "dlists.events®

;7 Requires deftheory enhancenent.
Requi res sets.

(setq events ' (

;; Alists, March 1990. Most of the definitions and sone of the | emmas
;; were contributed by Bill Bevier; the rest are by Mtt Kaufmann

; Functions defined here

; (deftheory alist-defns
s (alistp donmi n range val ue bind renbind invert mapping
- restrict co-restrict))

(defn alistp (x)
(if (listp x)
(and (listp (car x))
(alistp (cdr x)))
(equal x nil)))

(prove-lenma alistp-inplies-properp (rewite)
(inmplies (alistp x)
(properp x)))

(prove-lemma alistp-nlistp (rewite)
(implies (nlistp x)
(equal (alistp x)
(equal x nil))))

(prove-lemm alistp-cons (rewite)
(equal (alistp (cons a x))
(and (listp a)
(alistp x))))

(di sabl e alistp)

(prove-lemma alistp-append (rewite)
(equal (alistp (append x y))
(and (alistp (fix-properp x)) (alistpy))))

(defn domain (map)
(if (listp map)
(if (listp (car map))
(cons (car (car map)) (domain (cdr map)))
(domain (cdr map)))

nil))

(prove-1l emma properp-donmain (rewite)
(properp (domain map)))

(prove-1l emma domai n-append (rewite)
(equal (donmin (append x y))
(append (domain x) (donmain y))))

(prove-lema domain-nlistp (rewite)
(inmplies (nlistp nap)
(equal (domain map) nil)))

(prove-1 enma domai n-cons (rewite)
(equal (donmin (cons a nmap))
(if (listp a)
(cons (car a) (domai n map))
(domain map))))

(prove-| emma nmenber-domai n-sufficiency (rewite)
(implies (nenber (cons a x) vy)

59



alists.events

(menber a (domain y))))

(prove-1l emma subsetp-donmain (rewite)
(inmplies (subsetp x vy)
(subsetp (domain x) (domain y))))

(di sabl e domai n)

(defn range (map)
(if (listp nmap)
(if (listp (car map))
(cons (cdr (car map)) (range (cdr map)))
(range (cdr map)))

nil))

(prove-l emua properp-range (rewite)
(properp (range nap)))

(prove-l ema range-append (rewite)
(equal (range (append sl s2))
(append (range sl1) (range s2))))

(prove-lemma range-nlistp (rewite)
(inmplies (nlistp nap)
(equal (range map) nil)))

(prove-1l ema range-cons (rewite)
(equal (range (cons a map))
(if (listp a)
(cons (cdr a) (range nmap))
(range map))))

(di sabl e range)

;; BOUNDP has been elimnated in favor of menbership in donain.
;; Notice that | have to tal k about things |ike disjointness of
domai ns anyhow. New definition body would be (nenber x (domain map))

; (defn boundp (x nmap)
(if (listp nap)
(if (listp (car map))
(if (equal x (caar nmap))
t

(boundp x (cdr map)))
(boundp x (cdr map)))

; f))

(defn val ue (x map)
(if (listp map)
(if (and (listp (car map))
(equal x (caar map)))
(cdar map)
(value x (cdr map)))

0))

(prove-lemua value-nlistp (rewite)
(inmplies (nlistp map)
(equal (value x nmap) 0)))

(prove-1l enma val ue-cons (rewite)
(equal (value x (cons pair map))
(if (and (listp pair)
(equal x (car pair)))
(cdr pair)
(value x map))))

(di sabl e val ue)

(defn bind (x v nmap)

60



alists.events

(if (listp map)
(if (listp (car map))
(if (equal x (caar nap))
(cons (cons x v) (cdr map))
(cons (car map) (bind x v (cdr map))))
(cons (car map) (bind x v (cdr nap))))
(cons (cons x v) nil)))

(defn renbind (x map)
(if (listp nmap)
(if (listp (car map))
(if (equal x (caar map))
(cdr map)
(cons (car map) (renbind x (cdr nap))))
(cons (car map) (rembind x (cdr map))))
nil))

(defn invert (map)
(if (listp map)
(if (listp (car map))
(cons (cons (cdr (car map))
(car (car map)))
(invert (cdr map)))
(invert (cdr map)))

nil))

(prove-lemma properp-invert (rewite)
(properp (invert map)))

(prove-lemma invert-nlistp (rewite)

(inmplies (nlistp map)
(equal (invert map) nil)))

(prove-lemm invert-cons (rewite)
(equal (invert (cons pair nap))
(if (listp pair)
(cons (cons (cdr pair) (car pair))
(invert map))
(invert map))))

(prove-1l emma val ue-invert-not-nenber-of-domain (rewite)
(inmplies (and (menber g (range sg))
(disjoint (domain s) (donain sg)))
(not (menmber (value g (invert sg)) (domain s)))))

(di sabl e invert)

(def n mappi ng (map)
;; an alist with no duplicate keys
(and (alistp map)
(setp (domain map))))

; For when we di sabl e mappi ng:
(prove-lemma mapping-inplies-alistp (rewite)
(i mplies (mapping map)
(alistp map)))

(prove-1l ema mappi ng-inplies-setp-domain (rewite)
(inmplies (mappi ng nmap)
(setp (domain map))))

(defn restrict (s new donain)
(if (listp s)
(if (and (listp (car s))
(menber (caar s) new donmin))
(cons (car s)
(restrict (cdr s) new donain))
(restrict (cdr s) new domain))

nil))

61



alists.events 62

(defn co-restrict (s new donmin)
(if (listp s)
(if (and (listp (car s))
(not (menmber (caar s) new domain)))
(cons (car s)
(co-restrict (cdr s) new donain))
(co-restrict (cdr s) new dommin))

nil))

(deftheory alist-defns
(alistp domain range val ue bind renbind invert mapping
restrict co-restrict))

voor alist | enmas
DOVAI N

;7 The following was proved in the course of the final run through
;; the generalization proof. Actually now | see that

;; sone other |enmas are now obsolete, so I'Il put these both

;; early in the file and delete the others

(prove-1l emma domain-restrict (rewite)
(equal (donmmin (restrict s dom)
(intersection (domain s) dom)
((enabl e restrict)))

(prove-1 emma domain-co-restrict (rewite)
(equal (domain (co-restrict s dom)
(set-diff (domain s) dom)
((enabl e co-restrict)))

(prove-1l emma domain-bind (rewite)
(equal (donmmin (bind x v map))
(if (nmenber x (donmai n map))
(domai n map)
(append (domain map) (list x)))))

(prove-1 emma domain-renbind (rewite)
(equal (donmmin (renbind x map))
(del ete x (domain map))))

(prove-1lemma domain-invert (rewite)
(equal (domain (invert map))
(range nap))
((enabl e-theory alist-defns)))

RANGE

(prove-lemua range-invert (rewite)
(equal (range (invert map))
(domai n map))
((enabl e-theory alist-defns)))

; BOUNDP

(prove-1l emma boundp-bind (rewite)
(equal (rmenber x (domain (bind y v map)))
(or (equal x y)
(menmber x (domain map)))))

(prove-1l emma boundp-renbind (rewite)
(i mplies (mappi ng map)
(equal (menber x (domain (rembind y nap)))
(if (equal x vy)
f
(menber x (domain nap))))))

(prove-1 ema boundp-subsetp ()



alists.events

(inmplies (and (subsetp mapl nmap2)
(menber nane (domain mapl)))
(menber name (domain map2))))

(prove-1l emua disjoi nt-donmai n-singleton (rewite)
(and (equal (disjoint (domain s) (list x))
(not (menmber x (domain s))))
(equal (disjoint (list x) (domain s))
(not (menber x (domain s))))))

(prove-1l emma boundp-val ue-invert (rewite)
(implies (menmber x (range map))
(menber (value x (invert map)) (domain map)))
((induct (donmain nmap))))

VALUE

(prove-1 ema val ue-when-not-bound (rewite)
(inmplies (not (menber nane (donmin map)))
(equal (val ue nanme map)
0))
((induct (donmain nmap))))

(prove-lemua val ue-bind (rewite)
(equal (value x (bind y v map))
(if (equal x vy)
v
(value x map))))

(prove-lemma val ue-renbind (rewite)
(i mplies (mappi ng map)
(equal (value x (rembind y map))
(if (equal x vy)
0
(value x map)))))

(prove-1l emma val ue-append (rewite)
(equal (value x (append sl s2))
(if (menmber x (domain sl))
(val ue x s1i)
(value x s2))))

(prove-1l emma val ue-val ue-invert (rewite)
(inmplies (and (menmber x (range s))
(mappi ng s))
(equal (value (value x (invert s))

s)
X))
((enabl e-theory alist-defns)))

;. MAPPI NG
(prove-1 emma mappi ng- append (rewite)
(equal (mapping (append sl s2))
(and (disjoint (domain sl) (domain s2))

(mapping (fix-properp sl1))
(mapping s2))))

(di sabl e mappi ng)

RESTRI CT and CO RESTRI CT

(prove-lemma alistp-restrict (rewite)
(alistp (restrict s r)))

(prove-lemm alistp-co-restrict (rewite)
(alistp (co-restrict s r)))

(prove-lemma val ue-restrict (rewite)

63



alists.events

(inmplies (and (nmenber a r)
(menber a (domain s)))
(equal (value a (restrict s r))
(value a s))))

(prove-lemma val ue-co-restrict (rewite)
(inmplies (and (not (nmenber a r))
(menber a (domain s)))
(equal (value a (co-restrict s r))
(value a s))))

(prove-1l emma mapping-restrict (rewite)
(implies (mapping s)
(mapping (restrict s x)))
((enabl e mapping)))

(prove-1l emma mappi ng-co-restrict (rewite)
(inmplies (mapping s)
(mapping (co-restrict s x)))
((enabl e mapping)))

(disable restrict)
(di sable co-restrict)

))



terms.events

THE FILE "terms.events’

;; Requires deftheory, defn-sk, and constrain enhancnents
Requires sets and alists libraries

(setq events ' (

;; This is a library of events about terns, including substitutions

;7 A TERWP is either a variable or the application of a function

;; symbol to a "proper list" of ternms. Variables and function synbols
;; are introduced with CONSTRAI N

;7 NOTE: In functions |like TERW that have a flag, it seens to be
;; inmportant to use T and F rather than, say, T and 'LIST. That’'s
;; because otherw se, the "worse-than" heuristic will otherw se

;; prevent sone necessary backchaining in cases where the hypothesis
;; to be relieved is of the form (TERW 'LIST ...) and an "ancestor"
;; is of the form(TERW T ...)

Definitions

;7 (deftheory termdefns
y
;o (variablep-intro variable-listp ternp function-synbol-intro all-vars))

;; (deftheory substitution-defns
(i nstance var-substp conpose appl y-to-subst subst
nul lify-subst ;; returns a substitution whose range has no vari abl es

))

(constrain variablep-intro (rewite)
(and (inplies (listp x)
(not (variablep x)))
(or (truep (variablep x))
(falsep (variablep x))))
((variablep nlistp)))

(defn variable-listp (x)
(if (listp x)
(and (variablep (car x))
(variable-listp (cdr x)))
(equal x nil)))

(prove-lemma variable-listp-inplies-properp (rewite)
(implies (variable-listp x)
(properp x)))

(prove-lenmma variable-listp-cons (rewite)
(equal (variable-listp (cons a x))
(and (variabl ep a)
(variable-listp x))))

(prove-lemma variable-nlistp (rewite)
(inmplies (nlistp x)
(equal (variable-listp x)
(equal x nil))))

(di sabl e variable-listp)

(constrain function-synbol-intro (rewite)

We designate ZERO as a function synmbo
(function-synbol-p (fn))
((function-synbol-p litatom

(fn (lanmbda () ’'zero))))

(defn termp (flg x)
(if flg
(if (variablep x)
t

65



terms.events

(if (listp x)
(and (function-synbol-p (car x))
(ternp f (cdr x)))
f))

(if (listp x)
(and (ternmp t (car x))
(termp f (cdr x)))
(equal x nil))))

(prove-lemma ternp-list-cons (rewite)
(equal (ternp f (cons a x))
(and (ternmp t a)
(ternp f x))))

(prove-lemma ternmp-list-nlistp (rewite)
(implies (nlistp x)
(equal (ternp f x)
(equal x nil))))

(prove-lemma ternp-t-cons (rewite)
(implies flg
(equal (ternp flg (cons a x))
(and (function-synbol-p a)
(ternp f x)))))

(prove-lemma ternp-t-nlistp (rewite)
(inmplies (and flg
(not (listp x)))
(equal (ternp flg x)
(variablep x))))

(di sabl e ternp)

(prove-lemma ternp-list-inplies-properp (rewite)
(implies (termp f Xx)
(properp x))
((induct (properp x))))

(defn all-vars (flg x)
duplicates are ok
(if flg
(if (variablep x)
(list x)
(if (listp x)
(all-vars f (cdr x))
nil))
(if (listp x)
(append (all-vars t (car x))
(all-vars f (cdr x)))

nil)))

(prove-1lenmma properp-all-vars (rewite)
(properp (all-vars flg x)))

(prove-lemm all-vars-list-cons (rewite)
(equal (all-vars f (cons a x))
(append (all-vars t a)
(all-vars f x)))
((enable all-vars)))

(prove-lemm all-vars-t-cons (rewite)
(inmplies flg
(equal (all-vars flg (cons a x))
(all-vars f x))))

;; Here is a hack to deal with the flags

(prove-1l emma al | -vars-subset p- append- hack (rewite)
(implies (and flgl flg2)

66



terms.events

(and (subsetp (all-vars flgl x)
(append (all-vars flg2 x) vy))
(subsetp (all-vars flgl x)
(append y (all-vars flg2 x))))))

;; The following is used later in the proof of MEMBER- PRESERVES- DI SJO NT- ALL- VARS
;; and coul d concei vably be of use el sewhere
(prove-lemm all-vars-flg-bool ean ni
(inplies flg
(equal (all-vars flg x)
(all-vars t x)))
((enabl e-theory t)))

(disable all-vars)

(deftheory termdefns
(variablep-intro variable-listp ternp function-synbol-intro all-vars))

v5e lemmas about ternps

(prove-lemm variable-listp-set-diff (rewite)
(inmplies (variable-listp x)
(variable-listp (set-diff x vy)))
((enabl e-theory termdefns)))

(prove-lemm all-vars-variablep (rewite)
(inmplies (and flg (variablep x))
(equal (all-vars flg x) (list x)))
((enabl e-theory t)))

(prove-1 emma nmenber-variable-listp-inplies-variablep (rewite)
(implies (and (menber a x) (variable-listp x))
(variablep a))
((enabl e-theory t)))

;7 The following was proved in the course of the final run through the
generalization proof.

(prove-lenma variable-listp-intersection (rewite)
(inmplies (or (variable-listp x) (variable-listp y))
(variable-listp (intersection x y)))
((enabl e intersection)))

(prove-lemma ternp-range-restrict (rewite)
(implies (termp f (range s))
(ternp f (range (restrict s x))))
((enable restrict)))

(prove-lemm ternp-range-co-restrict (rewite)
(implies (termp f (range s))
(ternp f (range (co-restrict s x))))
((enabl e co-restrict)))

(prove-1 emma nenber - preserves-di sjoint-all-vars-| enma ni
(inmplies (and (disjoint y (all-vars f x))
(menmber g x))
(disjoint y (all-vars t g)))
((induct (nenber g x))))

(prove-1 enma nmenber-preserves-disjoint-all-vars (rewite)
(implies (and flg
(disjoint y (all-vars f x))
(menmber g x))
(disjoint y (all-vars flg g)))
((use (menber-preserves-disjoint-all-vars-Ienm)
(all -vars-flg-boolean (x g)))))

(prove-|l emma nmenber-all-vars-subsetp (rewite)
(implies (and flg

67



terms.events

(menber a x))
(subsetp (all-vars flg a)
(all-vars f x)))
((enabl e menber)))

(prove-lemma all-vars-f-nonotone (rewite)
(inmplies (subsetp x vy)
(subsetp (all-vars f x) (all-vars f y)))
((enabl e subsetp all-vars)))

;7. Substitutions: definitions

(defn var-substp (s)
(and (mapping s)
(variable-listp (domain s))
(ternp f (range s))))

(defn subst (flg s x)
;; works for other than var-substp’'s
(if flg
(if (menmber x (domain s))
(value x s)
(if (variablep x)
X
(if (listp x)
(cons (car x)
(subst f s (cdr x)))
;; inpossible value of f for non-ternp
£)))
(if (listp x)
(cons (subst t s (car x))
(subst f s (cdr x)))

nil)))

(defn appl y-to-subst (sl s2)
;; apply sl to each termin range of s2
(if (listp s2)
(if (listp (car s2))
(cons (cons (caar s2) (subst t sl (cdar s2)))
(appl y-to-subst sl (cdr s2)))
(appl y-to-subst sl (cdr s2)))

nil))

(defn conpose (sl s2)
;; represents the result of applying sl and then s2
(append (appl y-to-subst s2 sl)
s2))

;; Later we may wish to prove correctness of one-way-unify
(defn-sk instance (flg terml ternR)
;; ternml is an instance of terng
(exi sts one-way-unifier
(and (var-substp one-way-unifier)
(equal ternl (subst flg one-way-unifier tern)))))

;o s, substitution | emmas

(prove-lemua subst-list-cons (rewite)
(equal (subst f s (cons a x))
(cons (subst t s a)
(subst f s x))))

(prove-lemma subst-list-nlistp (rewite)
(implies (nlistp x)
(equal (subst f s x) nil)))

(prove-lemma subst-t-variablep (rewite)
(inmplies (and flg
(variablep x))



terms.events 69

(equal (subst flg s x)
(if (menmber x (domain s))
(value x s)

x))))

(prove-1lemma subst-t-non-variablep (rewite)
(inmplies flg
(equal (subst flg s (cons fn x))
(if (nmenber (cons fn x) (domain s))
(value (cons fn x) s)
(cons fn (subst f s x)))))
((enabl e subst)))

(prove-lemma all-vars-subst-lemma (rewite)
(inmplies (and flg
(menber x (domain s)))
(subsetp (all-vars flg (value x s))
(all-vars f (range s))))
;5 hint needed for induction
((enabl e range)))

(prove-lemma all-vars-subst (rewite)
(implies (termp flg x)
(subsetp (all-vars flg (subst flg s x))
(append (all-vars flg x)
(all-vars f (range s)))))
((enable ternp)))

(prove-l emma subst-occur (rewite)
(inmplies (and flg
(menmber x (domain s)))
(equal (subst flg s x)
(value x s))))

(prove-1l emma boundp-in-var-substp-inplies-variablep (rewite)
(inmplies (and (variable-listp (domain s))
(not (variablep a)))
(not (menber a (donmain s))))
((induct (domain s))))

(prove-1l emma vari abl ep-val ue-invert (rewite)
(implies (and (variable-listp (domain s))
(menber x (range s)))
(variablep (value x (invert s))))
((induct (range s))))

(prove-1lemma subst-invert (rewite)
(implies (and (ternp flg Xx)
(disjoint (domain s) (all-vars flg x))
(var-substp s))
(equal (subst flg s (subst flg (invert s) x))
X))
((enable ternp)))

(prove-1 emma domai n-appl y-to-subst (rewite)
(equal (donmin (apply-to-subst sl s2))
(domain s2)))

(prove-lemua alistp-apply-to-subst (rewite)
(alistp (apply-to-subst sl s2)))

(prove-1l emma mappi ng- appl y-to-subst (rewite)
(implies (mapping s)
(mappi ng (apply-to-subst sl s)))
((enabl e mappi ng)))

;; Lemmas like the followi ng shouldn’t be necessary if congruence
;; relations (as suggested by Bishop Brock) are inplenented



terms.events

(prove-lemm subst-flg-not-list (rewite)
(implies flg
(and (equal (equal (subst flg s x)
(subst t s x))
t)
(equal (equal (subst t s x)
(subst flg s x))
t))))

(prove-l emma subst-co-restrict (rewite)
(inmplies (and (disjoint x
(intersection (domain s) (all-vars flg term))
(variable-listp (domain s))
(ternp flg term)
(equal (subst flg (co-restrict s x) term
(subst flg s term)))

(prove-lemma subst-restrict (rewite)
(implies (and (subsetp (intersection (domain s) (all-vars flg term)
X)
(variable-listp (domain s))
(ternp flg term)
(equal (subst flg (restrict s x) term
(subst flg s term)))

(prove-lemua ternp-value (rewite)
(inmplies (and flg
(menmber x (domain s))
(ternp f (range s)))
(ternp flg (value x s)))
((enabl e ternmp)
(i nduct (value x s))))

(prove-lemua ternp-subst (rewite)
(implies (and (ternp flg Xx)
(termp f (range s)))
(ternp flg (subst flg s x)))
((enable ternp)))

(prove-lemua ternp-domain (rewite)
(inmplies (variable-listp (domain s))
(ternp f (domain s)))
((enabl e ternp)
(i nduct (domain s))))

(prove-1l emma var-subst p-appl y-to-subst (rewite)
(inmplies (and (ternmp f (range s))
(ternp f (range sg)))
(ternp f (range (apply-to-subst sg s))))
((enable ternp)))

(prove-| enmma val ue-appl y-to-subst (rewite)
(implies (nmenber g (domain s))
(equal (value g (apply-to-subst sg s))
(subst t sg (value g s)))))

(prove-1l emma non-vari abl ep- not - nenber-of-variable-listp (rewite)
(inmplies (and (variable-listp d)
(not (variablep term))
(not (menber termd)))
((induct (nenmber termd))))

(prove-| enma conpose-property-reversed (rewite)
(implies (and (variable-listp (domain s2))
(ternp flg x))
(equal (subst flg (conpose sl s2) x)
(subst flg s2 (subst flg s1 x))))
((enable ternmp)))

70



terms.events 71

(prove-|l emma conpose- property
(rewite)
(implies (and (variable-listp (domain s2))
(termp flg x))
(equal (subst flg s2 (subst flg s1 x))
(subst flg (conmpose sl s2) x)))
((di sabl e conpose)))

(di sabl e conpose-property-reversed)

(prove-1l emma subst-not-occur (rewite)
(implies (and (ternmp flg x)
(variable-listp (domain s))
(disjoint (domain s) (all-vars flg x)))
(equal (subst flg s x) x))
((enabl e ternp)))

(prove-1l emun disjoint-range-inplies-disjoint-value (rewite)
(inmplies (and (nmenber x (domain s))
flg
(disjoint z (all-vars f (range s))))
(disjoint z (all-vars flg (value x s))))
((use (subsetp-disjoint-2
(x (all-vars flg (value x s)))
(y (all-vars f (range s)))

(z 2)))))

(prove-lemma disjoint-all-vars-subst (rewite)
(implies (and (ternp flg Xx)
(disjoint z (all-vars flg x))
(disjoint z (all-vars f (range s))))
(disjoint z (all-vars flg (subst flg s x))))
((enable ternp)))

(prove-lemma all-vars-variable-listp (rewite)
(implies (variable-listp x)
(equal (all-vars f x)
X))
((induct (variable-listp x))))

(prove-lemma vari abl e-1i st p-append (rewite)
(equal (variable-listp (append x y))
(and (variable-listp (fix-properp x))
(variable-listp y)))
((induct (domain s))))

(prove-lenmma ternp-1ist-append (rewite)
(equal (ternp f (append x y))
(and (ternmp f (fix-properp x))
(ternp f y)))
((induct (range s))))

(prove-1l emma appl y-to-subst-append (rewite)
(equal (apply-to-subst sg (append sl s2))
(append (apply-to-subst sg si)
(appl y-to-subst sg s2))))

(prove-l ema subst-apply-to-subst (rewite)
(inmplies (and flg
(menmber g (domain s)))
(equal (subst flg (apply-to-subst sg s) g)
(subst flg sg (value g s)))))

(prove-1l emma subst - append-not-occur-1 (rewite)
(inmplies (and (ternp flg x)
(variable-listp (domain sl))
(disjoint (all-vars f (domain sl))
(all-vars flg x)))
(equal (subst flg (append sl s2) x)



terms.events

(subst flg s2 x)))
((induct (subst flg s2 x))))

(prove-| emma subst-append-not-occur-2 (rewite)
(implies (and (ternp flg Xx)
(variable-listp (domain s2))
(disjoint (all-vars f (domain s2))
(all-vars flg x)))
(equal (subst flg (append sl s2) x)
(subst flg sl x)))
((induct (subst flg s2 x))))

(prove-l ema appl y-to-subst-is-no-op-for-disjoint-domain (rewite)
(inmplies (and (variable-listp (domain sl1))
(alistp s2)
(ternp f (range s2))
(disjoint (domain sl) (all-vars f (range s2))))
(equal (apply-to-subst sl s2)
s2)))

(prove-1l emma nenber-subst (rewite)
(inmplies (and flg (menber a x))
(menmber (subst flg s a)
(subst f s x)))
((enabl e nenber)))

(prove-1l emmma subsetp-subst (rewite)
(inmplies (subsetp x vy)
(subsetp (subst f s x)
(subst f s y)))
((enabl e subsetp)))

(di sabl e instance)

;; (disabl e conpose) -- COMPCSE is left enabled for use with COWOSE- PROPERTY
(di sabl e appl y-to-subst)

(di sabl e subst)

(di sabl e renbi nd)

(di sabl e bind)

;oo ss nullify-subst: a substitution that has a range containing
s no vari abl es

(defn nullify-subst (s)
(if (listp s)
(if (listp (car s))
(cons (cons (caar s) (list (fn)))
(nullify-subst (cdr s)))
(null'ify-subst (cdr s)))

nil))

(prove-1lemua properp-nullify-subst (rewite)
(properp (nullify-subst s)))

(prove-lemma all-vars-f-range-nullify-subst (rewite)
(equal (all-vars f (range (nullify-subst s)))

nil))

(prove-lemn ternp-range-nullify-subst (rewite)
(ternp f (range (nullify-subst s))))

(prove-1l ema domai n-nul lify-subst (rewite)
(equal (domain (nullify-subst s))
(domain s)))

(prove-1l emma mapping-nul lify-subst (rewite)
(inmplies (alistp s)
(equal (mapping (nullify-subst s))
(mapping s)))
((enabl e mappi ng)))

72



terms.events

(prove-lemm disjoint-all-vars-subst-nullify-subst (rewite)
(inmplies (termp flg term
(disjoint (domain sg)
(all-vars flg
(subst flg (nullify-subst sg) term)))
((enabl e subst)
(di sable nullify-subst)))

(prove-l emma disjoint-all-vars-range-apply-subst-nullify-subst (rewite)
(implies (termp f (range s))
(disjoint (domain sg)
(all-vars f
(range (apply-to-subst (nullify-subst sg) s)))))
((enabl e appl y-to-subst)
(di sable nullify-subst)))

(disable nullify-subst)

(deftheory substitution-defns
(i nstance var-substp conpose apply-to-subst subst nullify-subst))

))

73



generalize.events 74

THE FILE "generalize.events'
(setq events ' (

;; Requires sets, alists, and terns, which however currently contain a
;; nunber of rules that aren’t really needed here, even indirectly.

;; This is a proof soundness of a slight abstraction of the GENERALI ZE
;; command of PC- NQTHM

;7: Here's what | want to prove.
(inmplies (and (generalize-okp sg state)

HHH (valid-state (generalize sg state)))
i (valid-state state))

77, | also prove the nmuch sinpler fact, GENERALI ZE- STATEP:

;7 (inplies (generalize-okp sg state)
; (statep (generalize sg state)))

<< 1 >>
(constrain theoremintro (rewite)
(and (inplies (and (theorem x)
flg)
(termp flg x))
(implies (and (theorem x)
flg
(var-substp s))
(theorem (subst flg s x))))
((theorem (lanmbda (x) f))))

<< 2 >>
(defn theoremlist (x)
(if (listp x)
(and (theorem (car x))
(theoremlist (cdr x)))
(equal x nil)))

7, << 3 >>
(prove-lemua theoremlist-properties (rewite)
(and (inplies (theoremlist x)
(termp f X))
(implies (and (theoremlist x)
(var-substp s))
(theoremlist (subst f s x)))))

iy << 4 >>
(defn statep (state)
(and (listp state)
(termp f (car state))
(variable-listp (cdr state))))

1, << 5 >>
(defn-sk valid-state (state)
(and (statep state)
(exists witnessing-instantiation
(and (var-substp witnessing-instantiation)
(subsetp (domain witnessing-instantiation) (cdr state))
(theoremlist (subst f witnessing-instantiation (car state)))))))

1 << 6 >>
(defn new gen-vars (goals free vars)
(if (listp goals)
(let ((current-free-vars (intersection free (all-vars t (car goals)))))
(if (disjoint current-free-vars vars)
(newgen-vars (cdr goals) free vars)
(append current-free-vars



generalize.events

(newgen-vars (cdr goals) free vars))))

nil))

<< T >>
(defn cardinality (x)
(length (make-set x)))

Next goal: get the definition of GEN CLOSURE accepted. |In fact,
;; the | emma GEN- CLOSURE- ACCEPT bel ow suffices, taking NEWto be
77 (NEW GEN- VARS CGOALS FREE FREE- VARS- SO FAR), as long as we prove the
;; following | emma, NEW GEN- VARS- SUBSET.

<< 8 >>
(prove-1l emma new gen-vars-subset (rewite)
(subsetp (newgen-vars goals free vars)
free))

;; It is interesting to note that the exact formof the follow ng
;; lemma changed while polishing the proof, since rewite rules
;; applied to the old version so as to neke it irrelevant.

7y << 9 >>
(prove-1 emma gen-cl osure-accept (rewite)
(implies (and (not (subsetp new free-vars-so-far))
(subsetp new free))
(lessp (difference (difference (length (rmake-set free))
(length (intersection (make-set free)
free-vars-so-far)))
(length (intersection (set-diff (make-set free)
free-vars-so-far)
new)))

(difference (length (rmake-set free))
(length (intersection (nmake-set free)
free-vars-so-far))))))

;; Here | have a choice: | could intersect the accunulator with free
;; at the end, or | could assunme that it's intersected with free

;; before it’s input. 1'Il choose the forner approach, so that I'II

;; have a sinpler rewite rule and so that | can call gen-closure nore
;; sinmply. | may wish to commute the argunents to intersection in the
;; exit below, but probably that won't matter because |I'll only be

;; tal king about menbership.

pr << 10 >>
(defn gen-closure (goals free free-vars-so-far)
;; Returns the goals with variables anong the closure of the vars of
;; goal s-so-far under the ‘‘occurs in the sane goal as’’ relation,
restricted to free.
(let ((newfree-vars (newgen-vars goals free free-vars-so-far)))
(if (subsetp newfree-vars free-vars-so-far)
(intersection free-vars-so-far free)
(gen-closure goals free (append newfree-vars free-vars-so-far))))
((lessp (cardinality (set-diff free free-vars-so-far)))))

1 << 11 >>
(defn generalize-okp (sg state)
(and (var-substp sg)
(statep state)
(disjoint (domain sg)
(all-vars f (car state)))
(listp (car state))
(disjoint (domain sg) (cdr state))))

<< 12 >>
(defn generalize (sg state)
(let ((g (caar state))
(p (cdar state))
(free (cdr state)))
(let ((newg (subst t (invert sg) g)))

75



generalize.events 76

(let ((donmin-1
(gen-cl osure (cons newg p)
free
(all-vars t newg))))
(let ((newfree
(set-diff free
(intersection domain-1 (all-vars f (range sg))))))
(cons (cons newg p)
newfree))))))

;; Here is a fact, not needed el sewhere, that is worth noticing, in
;; case we wish to extend the nain theoremto a sequence of
;7 PC-NQTHM | i ke conmands.

1 << 13 >>
(prove-l emma generalize-statep nil
(inmplies (generalize-okp sg state)
(statep (generalize sg state))))

i << 14 >>
(defn gen-inst (sg state)
(let ((s (witnessing-instantiation (generalize sg state)))
(g (caar state))
(p (cdar state))
(free (cdr state)))
(let ((newg (subst t (invert sg) g)))
(let ((domain-1 (gen-closure (cons newg p)
(cdr state)
(all-vars t newg))))
(let ((s1 (restrict s donmin-1))
(s2 (appl y-to-subst
(null'i fy-subst sg)
(co-restrict s domain-1))))
(appl y-t o- subst
(appl y-to-subst s2 sg)
(append sl s2)))))))

; Let's see that it suffices to prove the result of opening up the
;; conclusion of the main theoremwith a particul ar witness.

;7 (add-axi om main-theorem1l (rewite)

M (let ((wit (gen-inst sg state)))

M (inmplies (and (generalize-okp sg state)

N (valid-state (generalize sg state)))

H (and (statep state)

I (var-substp wit)

H (subsetp (domain wit) (cdr state))

I (theoremlist (subst f wit (car state)))))))

5. (prove-lenma generalize-is-correct (rewite)

M (inmplies (and (generalize-okp sg state)

N (valid-state (generalize sg state)))

S (valid-state state))

M ((disable-theory t)

- (enabl e-t heory ground-zer o)

M (enabl e mai n-theorem 1)

- (use (valid-state

Pia (W tnessing-instantiation (gen-inst sg state))))))

; So, it suffices to prove main-theorem1. The first three conjuncts
;; of the conclusion are quite trivial.

7y << 15 >>
(prove-l emma mai n-theorem 1-case-1 (rewite)
(inmplies (generalize-okp sg state)
(statep state)))



generalize.events 77

;7 W put one direction of the definition of valid-state here, for
;; efficiency in proofs.

1 << 16 >>
(prove-l emma valid-state-opener (rewite)
(equal (valid-state state)
(and (statep state)
(let ((wtnessing-instantiation (W tnessing-instantiation state)))
(and (var-substp wi tnessing-instantiation)
(subsetp (domain witnessing-instantiation) (cdr state))
(theoremlist (subst f witnessing-instantiation (car state)))))))
((di sabl e-theory t)
(enabl e-t heory ground-zer o)
(use (valid-state (witnessing-instantiation (wtnessing-instantiation state))))))

<< 17 >>
(prove-l emma mai n-theorem 1-case-2 (rewite)
(let ((wit (gen-inst sg state)))
(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(var-substp wit)))
((disable generalize)))

<< 18 >>
(prove-1l emm subsetp-cdr-generalize (rewite)
(subsetp (cdr (generalize sg state)) (cdr state)))

;; At this point | had to prove SUBSETP- SET- DI FF- SUFFI Cl ENCY because
;; of some | enmma that was created during the polishing process
;5 (perhaps DOVAI N- RESTRI CT) .

<< 19 >>
(prove-l emma mai n-theorem 1-case-3 (rewite)
(let ((wit (gen-inst sg state)))
(inmplies (valid-state (generalize sg state))
(subsetp (domain wit) (cdr state))))
((disable generalize)))

;7 So now we only have to prove MAIN- THEOREM 1- CASE-4 (witten here
wi t hout use of LET):

;5 (add-axi om nai n-t heorem 1-case-4 (rewite)

M (inplies (and (generalize-okp sg state)

N (valid-state (generalize sg state)))

. (theoremlist (subst f (gen-inst sg state) (car state)))))

(prove-lema main-theorem1 (rewite)

M (let ((wit (gen-inst sg state)))

N (inplies (and (generalize-okp sg state)

- (valid-state (generalize sg state)))
HN (and (statep state)

N (var-substp wit)

- (subsetp (domain wit) (cdr state))

HH (theoremlist (subst f wit (car state))))))
; ((disable-theory t)

T (enabl e-t heory ground-zer o)

N (enabl e mai n-theorem 1-case-1 mai n-theorem 1-case-2
B mai n-t heorem 1- case-3 nai n-t heorem 1-case-4)))

v << 20 >>
(defn gen-setting-substitutions (sl s2 sg)
(and (var-substp sl)

(var-substp s2)
(var-substp sg)
(disjoint (domain sl) (donmain sg))
(di sjoint (domain s2) (domain sg))
(disjoint (all-vars f (range sg))



generalize.events 78

(domain sl1))
(disjoint (all-vars f (range s2)) (domain sg))))

T << 21 >>
(defn main-hyps (sl s2 sg g p)
(and (ternmp t g)
(disjoint (all-vars t g) (domain sg))
(ternp f p)
(disjoint (all-vars f p) (domain sg))
(gen-setting-substitutions sl s2 sg)
(theoremlist (subst f (append sl s2)
(cons (subst t (invert sg) g) p)))))

; The goal above, MAI N- THEOREM 1- CASE-4, should follow fromthe
; following two | enmas.

5+ (add-axi om mai n-hyps-suffice (rewite)

M (inmplies (and (listp goals)

I (mai n-hyps s1 s2 sg (car goals) (cdr goals)))

M (theoremlist (subst f

I (appl y-to-subst (apply-to-subst s2 sg)
I (append s1 s2))

goal s))))

;5 (add-axi om nmai n-hyps-relieved (rewite)

M (let ((g (caar state))

N (p (cdar state))

N (free (cdr state))

B (s (W tnessing-instantiation (generalize sg state))))
M (let ((newg (subst t (invert sg) g)))

. (let ((dommin-1

N (gen-closure (cons newg p) free (all-vars t newg))))
M (let ((s1 (restrict s donain-1))

- (s2 (apply-to-subst (nullify-subst sg)

I (co-restrict s donmin-1))))
N (inplies (and (generalize-okp sg state)

- (valid-state (generalize sg state)))
i (mai n-hyps sl s2 sg g p)))))))

(prove-l emma nmai n-theorem 1-case-4 (rewite)

N (inplies (and (generalize-okp sg state)

H (valid-state (generalize sg state)))

. (theoremlist (subst f (gen-inst sg state) (car state))))

i ((di sable-theory t)

T (enabl e-t heory ground-zer o)

- (enabl e gen-inst nmain-hyps-suffice generalize-okp main-hyps-relieved)))

;7 So, now let us start with MAIN-HYPS-SUFFICE. It should follow from
two subgoal s, as shown:

;; (add-axi om nmai n-hyps-suffice-first (rewite)

HH (inplies (main-hyps sl s2 sg g p)

H (theorem (subst t

M (appl y-to-subst (apply-to-subst s2 sg)
HHN (append sl s2))

N 9))))

; (add- axi om mai n- hyps-suffice-rest (rewite)
HN (implies (main-hyps sl s2 sg g p)

M (theoremlist (subst f
M (appl y-to-subst (apply-to-subst s2 sg)
Vo (append sl s2))

e P))))

(prove-|l enmma mai n-hyps-suffice (rewite)
(implies (and (listp goals)



generalize.events

H (mai n-hyps s1 s2 sg (car goals) (cdr goals)))

. (theoremlist (subst f

M (appl y-to-subst (apply-to-subst s2 sg)
R (append sl s2))

N goal s)))

HN ((disable-theory t)

M (enabl e-t heory ground- zero)
; (enabl e theoremlist subst main-hyps-suffice-first nmain-hyps-suffice-rest)))

;; Consider the first of these. Although COVPOSE- PROPERTY i s

;; used in the proof (because it’s enabled), it’'s actually not

;; necessary. A proof took slightly over 10 minutes with the rule
;; enabled, and roughly 9 minutes without; at least this was the
;; case at one point during the proof devel opnent.

;<< 22 >>
(prove-l ema mai n-hyps-suffice-first-Iemma-general ni
(inmplies (and (ternmp flg Q)
(disjoint (all-vars flg g) (domain sg))
(gen-setting-substitutions s1 s2 sg)
(equal sg-1 (invert sg)))
(equal (subst flg
(appl y-to-subst (apply-to-subst s2 sg)
(append sl s2))

9)
(subst flg (apply-to-subst s2 sg)
(subst flg (append sl s2)

(subst flg sg-1g)))))
((induct (subst flg sg-149))))

<< 23 >>
(prove-l emma mai n-hyps-suffice-first-lemma (rewite)
(inmplies (and (ternp t Q)
(disjoint (all-vars t g) (domain sg))
(gen-setting-substitutions sl s2 sq))
(equal (subst t
(appl y-to-subst (apply-to-subst s2 sg)
(append sl s2))
9)
(subst t (apply-to-subst s2 sg)
(subst t (append sl s2)
(subst t (invert sg) g)))))
((use (main-hyps-suffice-first-lemm-general (flg t) (sg-1 (invert sg))))
(di sabl e-theory t)
(enabl e-t heory ground-zero)))

<< 24 >>
(prove-l emma nmai n-hyps-suffice-first (rewite)
(inmplies (main-hyps s1 s2 sg g p)
(theorem (subst t
(appl y-to-subst (apply-to-subst s2 sg)
(append sl s2))
9)))
;; Disabling conpose-property is necessary so that the fact
;; that theoremhood is inherited upon substitution is used. Disabling
;7 APPLY-TO SUBST- APPEND i s necessary so that
i MAIN-HYPS- SUFFI CE- FI RST- LEMVA i s used (a Knuth-Bendi x sort of
; problem.
((di sabl e conpose- property appl y-to-subst-append)))

;; The following is useful with s = (append sl s2)

<< 25 >>
(prove-l emma mai n-hyps-suffice-rest-lenma (rewite)
(implies (and (ternp flg p)
(variable-listp (domain sg))
(disjoint (all-vars flg p) (domain sg)))
(equal (subst flg



generalize.events 80

(appl y-to-subst (apply-to-subst s2 sg)

s)
p)
(subst flg
(appl y-to-subst s2 sg)

(subst flg s p)))))

<< 26 >>
(prove-l emm mai n-hyps-suffice-rest (rewite)
(inmplies (main-hyps s1 s2 sg g p)
(theoremlist (subst f
(appl y-to-subst (apply-to-subst s2 sq)
(append s1 s2))

P)))

;; If | don't disable conpose-property | get an infinite |oop

i, inthe rewiter, it seens.

((di sabl e appl y-to-subst-append conpose- property)))

i << 27 >>
(prove-1l emma mai n-hyps-suffice (rewite)
(implies (and (listp goals)
(mai n-hyps sl s2 sg (car goals) (cdr goals)))
(theoremlist (subst f
(appl y-to-subst (apply-to-subst s2 sg)
(append sl s2))
goal s)))
((di sable-theory t)
(enabl e-t heory ground- zero)
(enabl e theoremlist subst main-hyps-suffice-first main-hyps-suffice-rest)))

;7 1"l disable the two | enmas used above so that | avoid the possibility
of looping with conpose-property.

1 << 28 >>
(di sabl e mai n-hyps-suffice-first-1emm)
1 << 29 >>
(di sabl e mai n- hyps-suffice-rest-I|emm)

;7 Al that remains nowis to prove MAIN-HYPS-RELI EVED. |f we open up
;7 MAIN-HYPS we see what the necessary subgoals are. Recall the
;5 definition of MAIN-HYPS

;5 (defn nain-hyps (sl s2 sg g p)

; (and (termp t Q)

B (disjoint (all-vars t g) (donmain sg))

M (termp f p)

HH (disjoint (all-vars f p) (domain sg))

MM (gen-setting-substitutions sl s2 sg)

N (theoremlist (subst f (append sl s2)

I (cons (subst t (invert sg) g) p)))))

7, << 30 >>
(prove-lemma main-hyps-relieved-1 (rewite)
(let ((g (caar state)))
(inmplies (generalize-okp sg state)
(ternp t g))))

1 << 31 >>
(prove-l ema mai n-hyps-relieved-2 (rewite)
(let ((g (caar state)))
(implies (generalize-okp sg state)
(disjoint (all-vars t g) (domain sg)))))

1 << 32 >>
(prove-lema mai n-hyps-relieved-3 (rewite)
(let ((p (cdar state)))
(implies (generalize-okp sg state)



generalize.events

(ternmp f p))))

i << 33 >>
(prove-lemma main-hyps-relieved-4 (rewite)
(let ((p (cdar state)))
(inmplies (generalize-okp sg state)
(disjoint (all-vars f p) (domain sg)))))

5, (add-axi om nai n-hyps-relieved-5 (rewite)

(let ((g (caar state))

N (p (cdar state))

N (free (cdr state))

B (s (W tnessing-instantiation (generalize sg state))))
M (let ((newg (subst t (invert sg) g)))

T (let ((domain-1

N (gen-closure (cons newg p) free (all-vars t newg))))
M (let ((s1 (restrict s donain-1))

- (s2 (apply-to-subst (nullify-subst sg)

I (co-restrict s donmin-1))))
N (inplies (and (generalize-okp sg state)

- (valid-state (generalize sg state)))
I (gen-setting-substitutions sl s2 sg)))))))

;75 (add-axi om nai n-hyps-relieved-6 (rewite)

I (let ((g (caar state))

HE (p (cdar state))

N (free (cdr state))

BN (s (witnessing-instantiation (generalize sg state))))
B (let ((newg (subst t (invert sg) g)))

N (let ((domain-1

. (gen-closure (cons newg p) free (all-vars t newg))))
H (let ((sl (restrict s domain-1))

M (s2 (apply-to-subst (nullify-subst sg)

. (co-restrict s domain-1))))
I (implies (and (generalize-okp sg state)

N (valid-state (generalize sg state)))
s (theoremlist (subst f (append sl s2)

e (cons (subst t (invert sg) g) p)))))))))

;55 (prove-lemma nmin-hyps-relieved (rewite)

M (let ((g (caar state))

HE (p (cdar state))

M (free (cdr state))

BN (s (witnessing-instantiation (generalize sg state))))
B (let ((newg (subst t (invert sg) g)))

N (let ((domain-1

. (gen-closure (cons newg p) free (all-vars t newg))))
H (let ((sl (restrict s domain-1))

H (s2 (apply-to-subst (nullify-subst sg)

A (co-restrict s domain-1))))
I (implies (and (generalize-okp sg state)

N (valid-state (generalize sg state)))
s (mai n-hyps s1 s2 sg g p))))))

M ((di sabl e-theory t)

- (enabl e-t heory ground-zer o)

M- (enabl e mai n-hyps nmai n-hyps-relieved-1 mai n-hyps-relieved-2
S mai n- hyps-relieved-3 main-hyps-relieved-4

B mai n-hyps-relieved-5 nain-hyps-relieved-6)))

;; So, it remmins to prove the goals MAI N-HYPS- RELI EVED-5 and
;7 MAIN-HYPS-RELI EVED-6. Let us start with the first. Opening up
;; GEN- SETTI NG SUBSTI TUTI ONS gi ves us a nunber of subgoal s

;; The case for the first two conjuncts of CEN SETTI NG SUBSTI TUTI ONS
;; do not require know edge about DOVAIN-1 (or G P, FREE, or NEWGQ,
;; but sinply follow fromthe validity of the state (GENERALIZE SG

;; STATE). Disabling GENERALI ZE is very useful for the first of these

81



generalize.events

;; (probably not necessary, though | didn't let the prover run |ong
;; enough to find out for sure)

1 << 34 >>
(prove-l ema mai n-hyps-relieved-5-1emma-1 (rewite)
(let ((s (witnessing-instantiation (generalize sg state))))
(let ((sl (restrict s domain-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(inmplies (valid-state (generalize sg state))
(and (var-substp sl)
(var-substp s2)))))
((disabl e generalize)))

;; The next case is trivial

7, << 35 >>
(prove-l ema mai n-hyps-relieved-5-1ema-2 (rewite)
(inmplies (generalize-okp sg state)
(var-substp sg)))

;; For the next two conjuncts of GEN- SETTI NG SUBSTI TUTI ONS we first

;; Observe that (DOMAIN S) is disjoint from (DOVAIN SG, and then we
;; use SUBSETP-DI SJO NT-3 where X is the domain of S1 or S2, Yis the
;; donmain of S, and Z is the donmin of SG

o (1 MPLIES (AND (SUBSETP X Y) (DISJONT Z Y))

i (DISIJAONT X 2))

<< 36 >>
(prove-lemm w tnessing-instantiation-is-disjoint-fromgeneralizing-substitution ni
(let ((s (witnessing-instantiation (generalize sg state))))
(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(disjoint (domain s) (domain sg)))))

;7 Here we abstract away DOVAIN-1 (and hence G P, FREE, and NEWGQ .

;7 Incidentally, a similar phenonenon occurred here to the one

;; reported just above the statenent above of MAI N THEOREM 1- CASE- 3

;; final polishing resulted in the need for another | enma. That extra
;; lemma is DI SJO NT- SET- DI FF- SUFFI CIENCY in this case, to be found in
;; "sets.events".

i << 37 >>
(prove-1l enmma mai n-hyps-relieved-5-lemma-3 (rewite)
(let ((s (witnessing-instantiation (generalize sg state))))
(let ((s1 (restrict s donmin-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s donmain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(and (disjoint (donmain sl) (donmin sg))
(disjoint (domain s2) (domain sg))))))
((use (w tnessing-instantiation-is-disjoint-fromgeneralizing-substitution))
(di sabl e generalize-okp valid-state-opener generalize)))

;7 The | emma MAI N- HYPS- RELI EVED- 5- LEMVA-4-W T is true because the

;; domain of s is contained in the free variables of the generalized
;; state (by choice, i.e. definition, of WTNESSI NG | NSTANTI ATI ON),
;; which is disjoint fromthe intersection of the indicated

;; GEN-CLOSURE with the variables in the range of sg. |1'Il use a
;; trick that | learned from Ken Kunen (definable Skolem function is
;; all, really) to reduce disjointness considerations to nenbership

;; considerations

7, << 38 >>
(prove-l ema mai n-hyps-relieved-5-1emma-4-wit (rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))



generalize.events 83

(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((domain-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s domain-1)))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state))
(menber wit (all-vars f (range sg)))
(menber wit (domain s)))
(not (menmber wit domain-1)))))))
((di sabl e gen-closure subst invert all-vars restrict)))

<< 39 >>
(prove-l emma mai n-hyps-relieved-5-1ema-4 (rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((domain-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s donain-1)))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(disjoint (all-vars f (range sg))
(domain s1)))))))
((di sable-theory t)
(enabl e-t heory ground-zero)
(enabl e donmmi n-restrict nenber-intersection
disjoint-wit-w tnesses nain-hyps-relieved-5-1ema-4-wit)))

<< 40 >>
(prove-l emma mai n-hyps-relieved-5-1ema-5 (rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((domain-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s2 (apply-to-subst (nullify-subst sg)
(co-restrict s donmain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(disjoint (all-vars f (range s2))

(domein sg))))))))

<< 41 >>
(prove-lemm mai n-hyps-relieved-5 (rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((domain-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s donmain-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))

(gen-setting-substitutions sl s2 sg))))))
((di sabl e-theory t)

(enabl e-t heory ground-zer o)

(enabl e gen-setting-substitutions
mai n- hyps-rel i eved-5-1ema-1 nmain-hyps-relieved-5-1emma- 2
mai n- hyps-relieved-5-1enmma-3
mai n- hyps-relieved-5-1emma-4 main-hyps-relieved-5-1emma-5)))



generalize.events

;7 Now we begin the remaining goal, MAIN-HYPS-RELIEVED-6. The idea is
;; to show that the appropriate goal list is a theoremlist by show ng
;; separately that the first and the rest are theorens, since the

;; reasons are slightly different. The FIRST is a theorem because its
;; free vars are all in domain-1, hence in the domain of sl; so, s2

;; can be dropped fromthe APPEND. The REST all have the property

;; that their free vars are contained in or disjoint fromdonain-1

;; and for those disjoint fromit, they do not contain variables from
;; the domain of sg. Notice that the new current (FIRST) goal may

;; violate the latter requirement, since it may have no free vars at

;; all but contain vars fromthe domain of sg. That's why we have to
;; make a special case out of it.

;75 (add-axi om nai n- hyps-relieved-6-first (rewite)

; (let ((g (caar state))

HE (p (cdar state))

. (free (cdr state))

B (s (W tnessing-instantiation (generalize sg state))))
M (let ((newg (subst t (invert sg) g)))

. (let ((domain-1

I (gen-closure (cons newg p) free (all-vars t newg))))
HH (let ((sl (restrict s domain-1))

M (s2 (apply-to-subst (nullify-subst sg)

H (co-restrict s domain-1))))
HHN (inplies (and (generalize-okp sg state)

- (valid-state (generalize sg state)))
I (theorem (subst t (append sl s2)
new-g))))))))

;7 (add-axi om nai n- hyps-relieved-6-rest (rewite)

; (let ((g (caar state))

HE (p (cdar state))

. (free (cdr state))

B (s (W tnessing-instantiation (generalize sg state))))

M (let ((newg (subst t (invert sg) g)))

. (let ((domain-1

HN (gen-closure (cons new-g p) free (all-vars t newg))))
N (let ((sl (restrict s domain-1))

M (s2 (apply-to-subst (nullify-subst sg)

H (co-restrict s domain-1))))

HHN (inplies (and (generalize-okp sg state)

- (valid-state (generalize sg state)))

HH (theoremlist (subst f (append sl s2) p))))))))

;;; (prove-lema main-hyps-relieved-6 (rewite)

- (let ((g (caar state))

- (p (cdar state))

H (free (cdr state))

BN (s (witnessing-instantiation (generalize sg state))))

B (let ((new-g (subst t (invert sg) g)))

N (let ((domain-1

N (gen-closure (cons newg p) free (all-vars t newg))))
M- (let ((s1 (restrict s donmin-1))

N (s2 (apply-to-subst (nullify-subst sg)

HHN (co-restrict s domain-1))))

H (inplies (and (generalize-okp sg state)

HHN (valid-state (generalize sg state)))

. (theoremlist (subst f (append sl s2)

HH (cons (subst t (invert sg) g) p))))))))
i ((di sabl e-theory t)

T (enabl e-t heory ground-zer o)

M (enabl e nai n-hyps-relieved-6-first nain-hyps-relieved-6-rest

- subst theoremlist)))

The first is true because the free vars in newg are all in the
domain of s1, since they are all in dommin-1. By the way, the
proof -checker was useful here; | dove to the subst term (after



generalize.events

;; adding abbreviations and pronoting hypot heses) and saw t hat

7, wanted to rewite with SUBST- APPEND- NOT- OCCUR-2. | al so notice the
;; need for GEN CLOSURE- CONTAI NS- THI RD- ARG during the attenpt to prove
;; a goal

;; First, we only want to open up GENERALI ZE when we are | ooking at
;; goals, not when we are sinply asking about the witnessing

;; substitution. | believe that this speeds up the proofs

;; considerably.

i << 42 >>
(prove-lemma car-generalize (rewite)
(equal (car (generalize sg state))
(cons (subst t (invert sg) (caar state))
(cdar state))))

7y << 43 >>
(di sabl e generalize)

;7 Inspection of the proof of a subgoal of MAI N HYPS-RELI EVED- 6- FI RST
suggests that we need the following | emma. Actually, before the

;; But final polishing led ne to prove a ‘‘better’’ version, as well
;; as the enmma DI SJO NT- SET- DI FF- GENERAL in "sets.events".

;5 (prove-lemma gen-cl osure-contains-third-arg (rewite)
s (implies (subsetp domain free)

. (subsetp (intersection domain vars)

s (gen-closure goals free vars))))

vy << 44 >>
(prove-l emma gen-closure-contains-third-arg (rewite)
(inmplies (subsetp x (intersection free vars))
(subsetp x
(gen-closure goals free vars))))

1 << 45 >>
(prove-l ema mai n-hyps-relieved-6-first (rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((dommin-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s donmin-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(theorem (subst t (append s1 s2) newg))))))))

;7 Now we enbark on the final goal, MAI N-HYPS-RELI EVED-6-REST. The

;; 1dea is that one splits the witnessing substitution s into two

;; appropriate parts, sl and s2. These parts are the respective

;; restriction and (approximately) co-restriction of the original

;; Witnessing substitution s to sone set that is ‘‘closed’’ in the

;; appropriate sense. Actually, the co-restriction is allowed to have
;; a substitution applied to it, whose domain is disjoint fromthe

;; variables occurring in goals ‘‘outside’’ that closure. Below we

;7 give the I enmas and the proof of MAIN-HYPS-RELI EVED-6 from those

;; lemmas. But first let us introduce the necessary notions

1 << 46 >>
(defn all-vars-disjoint-or-subsetp (p free x)
;; says that every goals’'s free variables are either contained
in x or are disjoint fromx

; final polishing it was the case that the followi ng version sufficed

85



generalize.events 86

(if (listp p)
(and (or (subsetp (intersection free (all-vars t (car p)))
X)
(disjoint (intersection free (all-vars t (car p)))
X))

(all -vars-disjoint-or-subsetp (cdr p) free x))

t))

Qur plan will be to show that (CDAR STATE), i.e. p, has the above
property with respect to the free variables of the generalized
state and the appropriate gen-closure. In cases where one applies
a substitution of the form (append sl1 s2) to such a |list of goals,
where the domain of sl is contained in the intersection of those
free variables with that closure and the domain of s2 is disjoint
fromthat intersection, we expect that the result is a theoremli st
if each of the following are theoremlists: apply sl to the goals
whose vars intersect its domain, and apply s2 to the rest.
Reduction rul es about applying restrictions etc. will then finish
the job

Notice the simlarity of the followi ng definition with newgen-vars
Think of vars as the closure variables, and free as the free variable
set within which this all ‘‘takes place’’

<< 47 >>

(defn goal s-disjoint-fromvars (goals free vars)

(if (listp goals)
(let ((current-free-vars (intersection free (all-vars t (car goals)))))
(if (disjoint current-free-vars vars)
(cons (car goals)
(goal s-disjoint-fromvars (cdr goals) free vars))
(goal s-disjoint-fromvars (cdr goals) free vars)))

nil))

Now al | that renains is MAI N-HYPS-RELI EVED-6-REST. | originally
forgot the (TERMP F P) hypothesis of

MAI N- HYPS- RELI EVED- 6- REST- GENERALI ZATI ON bel ow, but it wasn't very
hard to back up and fix this

;; (add-axi om nmai n-hyps-relieved-6-rest-generalization (rewite)
- (let ((s1 (restrict s donain-1))

- (s2 (apply-to-subst (nullify-subst sg)

s (co-restrict s domain-1))))

(inmplies (and (var-substp sg)

- (var-substp s)
- (subsetp (domain s) newfree)

(ternp f p)

- (theoremlist (subst f s p))

- (di sjoint (domain sg)

o (all-vars f (goal s-disjoint-fromvars
s p newfree domain-1)))

(al |l -vars-disjoint-or-subsetp p newfree donain-1))

'; (theoremlist (subst f (append sl s2) p)))))

(add- axi om nmai n-hyps-relieved-6-rest-lemma-1 (rewite)

- (let ((g (caar state))

- (p (cdar state))

i (free (cdr state))

s (s (witnessing-instantiation (generalize sg state))))

(let ((newg (subst t (invert sg) g)))

- (let ((dommin-1
- (gen-closure (cons newg p) free (all-vars t newg))))

(let ((s1 (restrict s donmin-1))

- (s2 (apply-to-subst (nullify-subst sg)

- (co-restrict s domain-1))))
- (inmplies (and (generalize-okp sg state)

s (valid-state (generalize sg state)))

(di sjoint (domain sg)



generalize.events

M (all-vars f (goal s-disjoint-fromvars
H p (cdr (generalize sg state))

3 donein-1)))))))))

; M nor note: | used the BREAK-LEMVA feature of NQTHMto reali ze
vys 5, that | needed the follow ng | emma.

(add- axi om nmai n-hyps-relieved-6-rest-lemma-2 (rewite)

M- (let ((g (caar state))

I (p (cdar state))

. (free (cdr state))

. (s (witnessing-instantiation (generalize sg state))))

i (let ((newg (subst t (invert sg) Q)))

I (let ((domain-1

N (gen-closure (cons newg p) free (all-vars t newg))))
- (let ((s1 (restrict s donmin-1))

H (s2 (apply-to-subst (nullify-subst sg)

HHN (co-restrict s domain-1))))

M (inmplies (and (generalize-okp sg state)

I (valid-state (generalize sg state)))

N (all-vars-disjoint-or-subsetp p (cdr (generalize sg state))
- domain-1)))))))

(prove-l ema mai n-hyps-relieved-6-rest (rewite)

M- (let ((g (caar state))

I (p (cdar state))

. (free (cdr state))

. (s (witnessing-instantiation (generalize sg state))))

i (let ((newg (subst t (invert sg) Q)))

I (let ((domain-1

N (gen-closure (cons newg p) free (all-vars t newg))))
H (let ((s1 (restrict s donmin-1))

H (s2 (apply-to-subst (nullify-subst sg)

HHN (co-restrict s domain-1))))

M (inmplies (and (generalize-okp sg state)

I (valid-state (generalize sg state)))

HH (theoremlist (subst f (append sl s2) p)))))))
M- ((di sable-theory t)
M (enabl e-t heory ground- zero)

- (enable ;; so that we can get at p from (car state)

N theorem|list subst car-generalize

- ;; relieving hyps of main-hyps-relieved-6-rest-generalization

M mai n- hyps-relieved-6-rest-lemma-1 main-hyps-relieved-6-rest-|enmma-2
N ;; torelieve the (ternp f p) hypothesis in

H mai n- hyps-rel i eved-6-rest-generalization

T statep ternp-list-cons

M general i ze- okp val i d- st at e- opener

- mai n- hyps-rel i eved-6-rest-generalization)))

;; At this point | did a sanity check and sure enough, the pushed
;; lemmas all go through at this point: Ml N HYPS-RELI EVED- 6

i MAIN-HYPS- RELI EVED, MAI N- THEOREM 1- CASE- 4, MAI N- THEOREM 1, and
;» GENERALI ZE- | S- CORRECT

;5 It remains to prove MAI N-HYPS- RELI EVED- 6- REST- LEMVA- 1
;o MAIN- HYPS- RELI EVED- 6- REST- LEMVA- 2, and
;5 MAIN- HYPS- RELI EVED- 6- REST- GENERALI ZATI ON

For the first of these we need the followi ng trivial observation

1 << 48 >>
(prove-1l ema goal s-di sjoint-fromvars-subsetp (rewite)
(subsetp (goal s-disjoint-fromvars goals free vars)
goal s))

;7 Unfortunately the observation above doesn't quite suffice, because
of a technical problemw th free variables in hypotheses. The



generalize.events

;; follow ng consequence does, though.

1 << 49 >>
(prove-lemma disjoint-all-vars-goals-disjoint-fromvars (rewite)
(inmplies (disjoint x (all-vars f goals))
(disjoint x (all-vars f (goal s-disjoint-fromvars goals free vars))))
((use (all-vars-f-nmonotone (x (goal s-disjoint-fromvars goals free vars))

(y goals)))
(di sabl e all-vars-f-nonotone)))

i << 50 >>
(prove-1lenma main-hyps-relieved-6-rest-lemma-1 (rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((domain-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s domain-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(disjoint (domain sg)
(all-vars f (goal s-disjoint-fromvars
p (cdr (generalize sg state))

domain-1)))))))))

;5 The next goal, MAI N-HYPS-RELI EVED- 6- REST- LEMVA- 2, needs the | emma
;3 ALL- VARS- DI SJO NT- OR- SUBSETP- GEN- CLOSURE bel ow. That |em®’s

;; mechani cal proof depends on the trivial observation

;5 DI SJO NT- 1 NTERSECTI ON3-M DDLE in file sets.events.

i << 51 >>
(prove-1lenmma al |l -vars-di sjoint-or-subset p-gen-cl osure
(rewite)

(inmplies (subsetp newfree free)
(all -vars-disjoint-or-subsetp
goal s newfree (gen-closure (cons g goals) free vars))))

1, << B2 >>
(prove-lemma mai n-hyps-relieved-6-rest-lemma-2 (rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((domain-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s donmin-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(al |l -vars-disjoint-or-subsetp
p (cdr (generalize sg state)) domain-1)))))))

; Finally, all that's left is

;5 MAIN- HYPS- RELI EVED- 6- REST- GENERALI ZATI ON.  An attenpted proof by

;; induction of that theoremresults in 11 goals, all but one of which
;; goes through automatically. The tech. report shows how | used

;7 PCNQTHM to figure things out. |In particular, our problens

;; are now reduced to the followi ng goal.

13 (SUBST T (NULLIFY- SUBST SQ
i (SUBST T (CO RESTRI CT S DOVAI N- 1)
i X))



generalize.events

; W need the | emma SUBST- APPLY- TO- SUBST- ELI M NATCR bel ow (which is
;; used under the substitution where S gets (CO RESTRICT S DOVAI N-1)

;; and SG gets (NULLIFY-SUBST SG). However, we'll inmediately derive
;; the desired consequence and then disable this | enma, since it

;; appears that it would | oop with COVWPOSE- PROPERTY

1 << B3 >>
(prove-1l ema subst-apply-to-subst-elimnator (rewite)
(inmplies (and (variable-listp (domain sg))
(variable-listp (domain s))
(termp t Xx)
(disjoint (domain sg) (all-vars t x)))
(equal (subst t (apply-to-subst sg s) x)
(subst t sg
(subst t s x)))))

7, << 54 >>
(prove-l emua theorem subst-appl y-to-subst-with-disjoint-domain (rewite)
(inmplies (and (var-substp sg)
(var-substp s)
(ternp t x)
(disjoint (domain sg) (all-vars t x))
(theorem (subst t s x)))
(theorem (subst t (apply-to-subst sg s) x)))
((di sabl e conpose-property)))

i, << b5 >>
(di sabl e subst-apply-to-subst-elimnator)

;; The proof of the remaining goal should go through now, one m ght
;; think. However, we need one nore observation first, because we
need to apply the following | enma

.7 (PROVE- LEMVA SUBST- CO- RESTRI CT

s ( REVRI TE)

s (I MPLIES (AND (DI SJONT X

v (1 NTERSECTI ON ( DOVAI N S)

s (ALL- VARS FLG TERM))
s ( VAR ABLE- LI STP (DOMAIN S))

s (TERWP FLG TERM)

s (EQUAL (SUBST FLG (CO RESTRICT S X) TERM

i (SUBST FLG S TERM)))

;7 But, the first hypothesis of this | emma needs special handling

;; because of free variables in the relevant rewite rules. The | emma
;; DI SJO NT- SUBSETP- HACK was proved at this point, and appears now in
;; sets.events.

;7 And finally, we finish. During polishing | suddenly needed the
;5 | enma SUBSETP- | NTERSECTI ON- MONOTONE- 2, which is now included in
7, "sets.events", and which in turn suggested

;5 SUBSETP- | NTERSECTI ON- COVWMUJTER t her e

<< 56 >>
(prove-lemm mai n-hyps-relieved-6-rest-generalization (rewite)
(let ((s1 (restrict s donain-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(inmplies (and (var-substp sg)
(var-substp s)
(subsetp (domain s) newfree)
(ternp f p)
(theoremlist (subst f s p))
(di sjoint (domain sg)
(all-vars f (goal s-disjoint-fromvars
p newfree domain-1)))
(al |l -vars-disjoint-or-subsetp p newfree donain-1))

89



generalize.events

(theoremlist (subst f (append sl s2) p)))))
;; Now to clean up the goals that have been pushed above

<< 57 >>
(prove-lema mai n-hyps-relieved-6-rest (rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((domain-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s donmin-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s donain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(theoremlist (subst f (append sl s2) p)))))))
((di sabl e-theory t)
(enabl e-t heory ground-zer o)
(enabl e theoremlist subst
car-generalize ;; so that we can get at p from (car state)
relieving hyps of nmain-hyps-relieved-6-rest-generalization
mai n- hyps-relieved-6-rest-lemm-1 main-hyps-relieved-6-rest-| ema-2
;; torelieve the (termp f p) hypothesis
;; in main-hyps-relieved-6-rest-generalization
statep ternp-list-cons
general i ze-okp val i d- st at e- opener
mai n- hyps-relieved-6-rest-generalization)))

<< 58 >>
(prove-1l emma mai n-hyps-relieved-6
(rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) Q)))
(let ((dormin-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s donain-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s domain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(theoremlist (subst f (append sl s2)
(cons newg p))))))))
((di sable-theory t)
(enabl e-t heory ground-zer o)
(enabl e mai n-hyps-relieved-6-first main-hyps-relieved-6-rest subst
theoremlist)))

7, << 59 >>
(prove-1 enma mai n-hyps-relieved
(rewite)
(let ((g (caar state))
(p (cdar state))
(free (cdr state))
(s (witnessing-instantiation (generalize sg state))))
(let ((newg (subst t (invert sg) g)))
(let ((dommin-1
(gen-closure (cons newg p) free (all-vars t newg))))
(let ((s1 (restrict s donmin-1))
(s2 (apply-to-subst (nullify-subst sg)
(co-restrict s donmain-1))))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(mai n-hyps s1 s2 sg g p))))))

90



generalize.events

((di sable-theory t)
(enabl e-t heory ground-zer o)
(enabl e mai n-hyps mai n-hyps-relieved-1 main-hyps-relieved-2
mai n- hyps-relieved-3 main-hyps-relieved-4 main-hyps-relieved-5
mai n- hyps-relieved-6)))

1 << 60 >>
(prove-1l emma mai n-t heorem 1-case-4
(rewite)
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(theoremlist (subst f
(gen-inst sg state)
(car state))))
((di sabl e-theory t)
(enabl e-t heory ground-zer o)
(enabl e gen-inst main-hyps-suffice generalize-okp
mai n- hyps-relieved)))
1 << 61 >>

(prove-lema main-theorem1 (rewite)
(let ((wit (gen-inst sg state)))
(inmplies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(and (statep state)
(var-substp wit)
(subsetp (domain wit) (cdr state))
(theoremlist (subst f wit (car state))))))
((disable-theory t)
(enabl e-t heory ground-zer o)
(enabl e mai n-theorem 1-case-1 mai n-theorem 1-case- 2
mai n-t heorem 1- case- 3 nmi n-theorem 1-case-4)))

1 << 62 >>
(prove-1l emma generalize-is-correct
(rewrite)

(implies (and (generalize-okp sg state)
(valid-state (generalize sg state)))
(valid-state state))
((di sable-theory t)
(enabl e-t heory ground-zer o)
(enabl e mai n-theorem 1)
(use (valid-state (witnessing-instantiation (gen-inst sg state))))))

))



(4]

(2]

(3]

[4]

(3]

(6]

8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

92

Refer ences

Robert S. Boyer and J Strother Moore.
A Computational Logic.
Academic Press, New York, 1979.

R.S. Boyer and J S. Maore.

Metafunctions: proving them correct and using them efficiently as new proof procedures.
The Correctness Problemin Computer Science.

Academic Press, 1981, pages 103-185.

R. S. Boyer and J S. Moore.
A Computational Logic Handbook.
Academic Press, Boston, 1988.

R. S. Boyer, D. M. Goldschlag, M. Kaufmann, and J S. Moore.

Functional Instantiation in First Order Logic, Report 44.

Technical Report, Computational Logic, 1717 W. 6th St., Austin, Texas, 78703, U.S.A., 1989.

To appear in the proceedings of the 1989 Workshop on Programming L ogic, Programming
Methodology Group, University of Goteborg.

R.L. Constable, et a.
I mplementing Mathematics with the Nuprl Proof Devel opment System.
Prentice Hall, 1986.

M. Davisand J. T. Schwartz.
Metamatehmatical extensibility for theorem verifiers and proof-checkers.
Computers and Mathematics with Applications 5:217-230, 1979.

M. J. Gordon, A. J. Milner, and C. P. Wadsworth.
Edinburgh LCF.
Springer-Verlag, New York, 1979.

M. Gordon.
HOL: A Proof Generating System for Higher-Order Logic.
Technical Report 103, University of Cambridge, Computer Laboratory, 1987.

D. J. Howe.
Computational metatheory in Nuprl.
In 9th International Conference on Automated Deduction, pages 238-257. Springer-Verlag, 1988.

Matt Kaufmann.
A user’s manual for an interactive enhancement to the Boyer-Moore Theorem Prover.
Technical Report 19, Computational Logic, Inc., Austin, Texas, May, 1988.

Matt Kaufmann.
Addition of free variables to an interactive enhancement of the Boyer-Moore Theorem Prover.
Technical Report 42, Computational Logic, Inc., Austin, Texas, May, 1989.

Matt Kaufmann.
DEFN-SK: An extension of the Boyer-Moore Theorem Prover to handle first-order quantifiers.
Technical Report 43, Computational Logic, Inc., Austin, Texas, June, 1989.

Todd B. Knoblock.
A formal metalanguage for NuPrl.
to appear.

T. B. Knoblock and R. L. Constable.
Formalized metareasoning in type theory.
In Proceedings of the First Annual Symposium on Logic in Computer Science. |EEE, 1976.

A. Quaife.
Automated proofs of Loeb’s Theorem and Goedel’ s two imcompl eteness theorems.
Journal of Automated Reasoning 4:219-231, 1988.



[16]

[17]

[18]

N. Shankar.
Towards Mechanical Metamathematics.
Journal of Automated Reasoning 1(1), 1985.

Guy L. Steele Jr.
Common Lisp: The Language.
Digital Press, 1984.

R. W. Weyhrauch.

Prolegomena to a theory of formal reasoning.

Artificial Intelligence 13:133-170, 1980.

93



Table of Contents

LIntroduCtion . . ... e

1.1. Introduction to the Boyer-Moore logic and theorem prover . .
1.2. Remarkson methodology . ............ .. ... .
1.3. Outline of theoremand proof . .........................
1.4. Summary of therest of thepaper . ......................

2.BasSiCNOtIONS ...

2. 3. TEIMS i e

3. Some Basic SupportingLemmas ....................
4, Statement of theMainTheorem .....................

41 MOtIVaION . ..ot
4.2. Definitionsfor maintheorem .. ............ oL
4.3.Someabbreviations .......... ...
4.4. Statement of maintheorem .......... ... ... .. .. ... ...

5. Proof of theMainTheorem .. . ........ ... .. ...

5.1. Reducing thetheoremtotwolemmas ...................
5.2. Proof of thelemma MAIN-HYPS-SUFFICE .............
5.2.1. Proof of the lemma MAIN-HYPS-SUFFICE-FIRST .. ..
5.2.2. Proof of the lemma MAIN-HY PS-SUFFICE-REST . ...
5.3. Proof of thelemma MAIN-HYPS-RELIEVED ...........
5.3.1. Proof of thelemma MAIN-HYPS-RELIEVED-5 ......
5.3.2. Proof of the lemma MAIN-HYPS-RELIEVED-6 ......

5.3.2(2). Proof of thelemmaMAIN-HYPS-RELIEVED-6-FIRST ......................
5.3.2(2). Proof of thelemmaMAIN-HYPS-RELIEVED-6-REST ......................
5.3.2(3). Some comments on the proof of the lemma MAIN-HY PS-RELIEVED-6-REST-

GENERALIZATION ...

Appendix A. Events Files: sets, alists, terms, and generalize

OCOOWOUMANPEF

a7



