The Boyer-Moore Prover and Nuprl: An Experimental Comparison 29
Technical Report #58

[15] Per Martin-Lof. “Constructive mathematics and computer programming.”
In Swzth International Congress for Logic, Methodology, and Philosophy of
Science, pages 153-175, North Holland, Amsterdam, 1982.

[16] J. McCarthy et al. LISP 1.5 Programmer’s Manual. The MIT Press,
Cambridge, Massachusetts, 1965.

[17] James T. Sasaki. The Ezxtraction and Optimization of Programs from Con-
structive Proofs. PhD thesis, Cornell University, 1985.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 28
Technical Report #58

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

David A. Basin. Building Theortes in Nuprl Technical Report 88-932,
Cornell University, 1988.

William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, and William D.
Young. “An Approach to Systems Verification.” Journal of Automated
Reasoning, November, 1989.

William R. Bevier. “Kit: A Study in Operating System Verification.”
IEEE Transactions on Software Engineering, November, 1989, pp. 1368-81.

Robert S. Boyer and J Strother Moore. A Computational Logic. Academic
Press, New York, 1979.

Robert S. Boyer and J Strother Moore. “Metafunctions: Proving Them
Correct and Using Them Efficiently as New Proof Procedures.” In The Cor-
rectness Problem in Computer Science, ed. Robert S. Boyer and J Strother
Moore, Academic Press, London, 1981.

Robert S. Boyer and J Strother Moore. A Computational Logic Handbook.
Academic Press, Boston, 1988.

R.L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, 1986.

Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edin-
burgh LCF: A Mechanized Logic of Computation. Volume 78 of Lecture
Notes in Computer Science, Springer-Verlag, 1979.

Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer. Ramsey
Theory. John Wiley and Sons, 1980.

Douglas J. Howe. Awutomating Reasoning in an Implementation of Con-
structive Type Theory. PhD thesis, Cornell University, 1988.

Matt Kaufmann. An Ezample in NQTHM: Ramsey’s Theorem. Internal
Note 100, Computational Logic, Inc., November 1988.

Matt Kaufmann. A User’s Manual for an Interactive Enhancement to the
Boyer-Moore Theorem Prover. Technical Report CLI-19, Computational
Logic, Inc., May 1988.

Richard A. Kemmerer. Verification Assessment Study Final Report. Na-
tional Computer Security Center, Fort Meade, Maryland, 1986.

Peter A. Lindsay. “A Survey of Mechanical Support for Formal Reasoning.”
Software Engineering Journal, January, 1988.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 27
Technical Report #58

systems. Perhaps though it would be responsible of us to point out that it took
much more effort to write this paper than to carry out the proofs.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 26
Technical Report #58

development was for the most part fairly general.'® Similarly, arbitrarily large
chunks of the proof can be proved separately as lemmas that can be incorpo-
rated into the final proof. Nuprl’s definition mechanism also allows text to be
bound to a single tokens. Comparable difficulties exist in collecting statistics
about the Boyer-Moore theorem prover. Many of the tokens come from techni-
cal lemmas whose statements were constructed by using the editor to cut and
paste; hence the token count is not necessarily reflective of the amount of user
interaction. And as with Nuprl, it is easy to shorten the proof with tricks, es-
pecially if we use the let construct, which is included with the PC-NQTHM
interactive enhancement of the Boyer-Moore prover, to share subexpressions.
Of the lemmas proved, six (with 65 tokens altogether) were purely about sets,
and two were technical lemmas that were created easily using the Emacs editor
(without typing many characters, to our recollection) but which accounted for
116 tokens; and all of these were included in the statistics.

In a similar vein, let us point out that a higher definition count might reflect
a lack of expressiveness of the logic, or it might instead reflect an elegance of
style (modularity). Similarly, the number of lemmas in an interactive system
can reflect the user’s desire for modularity or it can reflect the weakness of the
prover. Replay time can measure the power of the prover, but instead it may
measure the extent to which the system “saves” the decisions that were made
during the interactive proof of the theorem.

Of course, in our proofs we tried not to exploit such possibilities. Further-
more, to a certain extent, “cheating” in one area is reflected in another. For
example a proof may be shortened by increasing definitions and lemmas, and
replay time may be decreased by increasing the size (explicitness) of the proof.
Hence, quantitative measurements should all be taken together along with the
non-quantitative proof aspects in order to aid understanding of the systems in
question.

Perhaps the most important point we can make in closing this comparison
is that both of us felt comfortable in using the system that we chose, and we
each find the other system to be reasonably natural but difficult to imagine
using ourselves. It seems to be the case that it takes most people at least
a few weeks to get comfortable enough with a proof-checking environment in
order to reasonably assess its strengths and weaknesses. We’d like to hope that
the descriptions of the proof efforts presented in this paper, together with our
comments about the systems, suggest that both systems are quite manageable
once one invests some time to become familiar with them. We’d also like to
hope that the various warnings presented in this paper encourage people to
be cautious about making too-easy judgments regarding the relative merits of
systems.

We would be interested in seeing more comparisons of proof development

16 As with the rest of the finite set library, they have been used by other students at Cornell
to prove other theorems in graph theory.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 25
Technical Report #58

significantly more efficient code. Improvements are also planned for program
development in the Boyer-Moore system. Boyer and Moore are developing a
successor to BMTP called acl2 that will be based on an applicative subset of
Common Lisp. Common Lisp is actually used for serious applications and we
expect acl2 to be more useful for programmers than the current language.

We have spent little time addressing soundness issues. Both systems are
based on well-defined formal logics, so at the very least it is possible to ask
whether the systems do indeed implement their respective logics. Both systems
have been crafted sufficiently carefully and used sufficiently extensively to give
us some confidence that when a statement is certified by the system as being a
theorem, then it is indeed a theorem. Another soundness issue is the extent to
which a system helps users to develop specifications that reflect their informal
intentions. The expressiveness of Nuprl’s type theory and the ability to create
new notions allow users to express specifications in a reasonably naturally and
hierarchical way that follows their logical intuitions. Soundness is not com-
promised by definitions as the definition facility is essentially a macro facility.
Furthermore the “strong typing” in Nuprl prevents certain kinds of specification
errors that are analogous to errors prevented by strong typing in programming
languages (e.g., array subscripts out of range). The Boyer-Moore logic (hence
the prover as well) does allow bona fide definitions, even recursive ones, but
guarantees conservativity and hence consistency of the resulting theories. The
text printed out by the Boyer-Moore prover is also occasionally useful for discov-
ering errors in specifications. For example, experienced users sometimes detect
output indicating obviously false subgoals. Similarly, their suspicions may be
raised by proofs that succeed “too quickly”.

We have also said little in our comparison about user interface issues. How-
ever, in practice, actual usability depends greatly on something less glamorous
than the logic or the automated reasoning heuristics, namely the editor. Seri-
ous users of BMTP tend to rely heavily on the capabilities offered by an Emacs
editor. Nuprl provides special purpose editors for creating and manipulating
definitions, tactics, and proofs.

We should re-emphasize that the numbers presented above, as with many
metrics, are potentially misleading. Consider, for example, the problem of com-
paring sizes of related proofs. We measure this by counting user-entered tokens.
But even this simple metric is problematic. Our count measures the number of
tokens to be input for the completed proof, and hence ignores the issue of how
many tokens were entered on misguided parts of the attempt that never found
their way into the final proof. (An attempt to measure this total number of
tokens might be informative but might well measure a user’s style more than
it would measure something about a particular system.) Moreover, even the
final token count may be quite dependent on the way one goes about doing the
proof, and this can vary wildly among users of a given system. For example, in
the Nuprl system, any sequence of proof steps can be encoded as a tactic. In
the Nuprl effort, we did not count the tactic code in Figure 2 since the tactics’

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 24
Technical Report #58

find a proof. Refinement style proof is possible using the PC-NQTHM inter-
active enhancement. On the other hand, Nuprl proofs are constructed entirely
interactively by refinement.

Interestingly, approximately the same number of lemmas were used for both
proofs. However, the lemma statements tend to be rather different. Almost all of
the Nuprl lemmas are general purpose propositions about finite sets and are not
suggested by failed automated proof attempts. As a result, their statements are
often more intuitive than the more technical of the lemmas used in the BMTP
proof. Moreover, the Nuprl proofs seem syntactically close to the style in which
mathematics is traditionally presented and provide a formal document of why a
theorem is true. Let us return to the question of what is learned from counting
the number of lemmas. The sequence of Nuprl refinement steps is probably
a more natural analogue of the sequence of Boyer-Moore lemmas than is the
sequence of Nuprl lemmas. For, Boyer-Moore lemmas and Nuprl refinement
steps are all atomic steps carried out automatically without user interaction,
and they all take advantage of reasoning capabilities provided by the system
(including the tactic libraries, in the case of Nuprl).

Another interesting point, related to proof style, is that, to a certain degree,
Nuprl proofs should not in general be completely automated. Although any
proof is sufficient to demonstrate that a theorem is true, different proofs have
different computational content. When algorithmic efficiency is a consideration,
the user requires control over the proof steps that affect program complexity.
This is not an issue with BMTP proofs as programs are explicitly given in
definitions.

Both Nuprl and the Boyer-Moore prover have strong connections with pro-
gramming, although the approaches are different. In Nuprl, one may directly
verify that an explicitly given program (a term in Nuprl’s type theory) meets
a specification. However, programs are usually extracted as the implicit “com-
putational content” of proofs. Subsection 4.4 provides examples of the latter
approach. In the Boyer-Moore system one must explicitly provide the programs
(though they are usually called definitions or “DEFN events”) in a language
closely related to pure Lisp. However, those programs are translated quite di-
rectly by the system into Common Lisp code, which can then be compiled.
Therefore these programs can be considerably more efficient than the unopti-
mized, interpreted programs extracted by Nuprl. (Recall the numbers in Sub-
sections 3.5 and 4.4: 0.15 seconds to evaluate a Boyer-Moore form (0.011 if the
functions are compiled) corresponds to about 7 seconds for evaluation of an
analogous Nuprl form, albeit on different machines.) But we can envision im-
provements in both systems. The Nuprl term language defines a pure functional
programming language that is currently interpreted in a straightforward way. It
seems reasonable to assume that (with enough effort) execution could be made
as efficient as current ML or Lisp implementations. Furthermore, extracted code
is currently unoptimized. Work by Sasaki [17] on an optimizer for an earlier ver-
sion of Nuprl indicates that type information in proofs can be utilized to extract

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 23
Technical Report #58

Boyer-Moore | Nuprl
Tokens 933 972
#t Definitions | 10 24
Lemmas 26 25
Replay Time | 3.7 minutes 57 minutes

Figure 2: Comparison Statistics

and PC-NQTHM (see for example [2] and the other articles on system verifica-
tion in that issue of the Journal of Automated Reasoning). It is also reflected
in the total times for the proof efforts. The Nuprl effort took about 60 hours
for library development and about 20 additional hours to complete the proof.'®
The Boyer-Moore effort took about 7 hours altogether, though (as explained in
Subsection 3.4) a few hours may have been saved because of the existence of a
previous proof. Finally, the simplicity and classical nature of the Boyer-Moore
logic makes it quite accessible to those with little background in logic.

The philosophy behind Nuprl is to provide a foundation for the implemen-
tation of constructive mathematics and verified functional programs. Within
this framework, the responsibility for automating reasoning falls almost entirely
upon the user, though Nuprl does contain a built-in decision procedure for a
fragment of arithmetic and Nuprl’s standard tactic collection provides signifi-
cant theorem proving support. Moreover, the logical complexity of Nuprl’s type
theory is reflected in the complexity of the tactics. For example, term well-
formedness is not merely a syntactic property of terms; it is a proof obligation
that is undecidable in general, as it is equivalent to showing that a program
meets its specification. Nuprl’s standard tactic collection contains procedures
that in practice solve well-formedness problems (i.e., that a term belongs to
some universe), but nonetheless well-formedness is an additional burden on the
user and tactic writer and is reflected in development and replay time. However,
the richness of the logic contributes to the ease with which problems may be
formulated. And its constructivity enables the system to construct interesting
programs as results of the theorem-proving process.

It is difficult to compare the naturality or the ease with which one finds proofs
in different systems — especially when the theorem proving paradigms are as
different as BMTP and Nuprl’s. In BMTP, the user incrementally provides def-
inition and lemma statements that lead up to the desired theorem statement.
Each lemma is proved automatically, as is the final theorem. Interaction with
the system consists of the user analyzing failed proof attempts and determining
what intermediate lemmas, and perhaps hints, are needed to help the prover

15Much of this time was spenting waiting for Nuprl and would be saved by a more efficient
(see previous footnote) version of the system.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 22
Technical Report #58

ram_clique P, the second component of the above pair, is the computational
part of our proof that n — (I1,lz). This too is an AFE statement (see
Figure 1) and defines a function whose application to a G in Graph and a
trivial proof (aziom) that G is sufficiently large evaluates to <s, P»>. The
function Alylag.term_ofiramsey)(l1)(l2).2(g)(azxiom).1, returns the set s,
where G restricted to s is an [i-clique or an /5-independent set.

ram_decide P is the computational content of our proof of a disjunction. Tt
provides the basis for a procedure that prints “Clique” or “Independent
Set” depending on which disjunct holds.

Nuprl contains facilities to execute these functions. For example, let G be
the graph isomorphic to a hexagon.

G = make_graph((2.6.n:l).(1.3.n4l).(2.4.n¢l).(3.5.n4l).(4.6.nil).(5.1.nil).nl)

Here, make_graph is a routine that converts an adjacency list (i.e., vertex 1
has an edge to vertex 2 and an edge to vertex 6, ...) to a tuple of type Graph.
Execution of ram_n(3)(3) returns six, so GG contains three vertices that constitute
a clique or an independent set. Execution of ram_clique(3)(3)(G) returns the set
6.(2.(4.nil)) and ram_decide(3)(3)(G) prints Independent Set. Their execution
takes about seven seconds on a Symbolics 3670 Lisp Machine.

5 Comparison

At the heart of the differences between the Boyer-Moore theorem prover (BMTP)
and Nuprl are the philosophies underlying the two systems. BMTP is poised on
a delicate balance point between logical strength and theorem proving power.
The logic is just strong enough to express many interesting problems, but not
so strong that proof automation becomes unmanageable. In the case of Ram-
sey’s theorem, the BMTP proof was essentially constructive by necessity: as
the logic lacks quantifiers, “existence” cannot be expressed other than by pro-
viding witnessing objects in the theorem statement. Of course, the upside is
that around such a restricted logic, Boyer and Moore have been remarkably
successful at designing heuristics for automating theorem proving; this is per-
haps reflected in the quantitative comparison in Figure 2,'* and it is certainly
reflected in some large proof efforts that have been carried out using that system

M“Tn that figure, “# Tokens” refers to (essentially) the total number of identifiers and
numerals in the input submitted to the systems. It does not count Nuprl tactics or Nuprl
definitions or theorem statements leading up to the final proof. Replay times refer to runs on
a Sun 3/60 using akcl for the BMTP run and a Symbolics 3670 Lisp Machine for the Nuprl
run. The Nuprl replay time measures the time required to expand (i.e., produce a tree of
primitive refinement rules) only the proof of Ramsey’s theorem. Nuprl version 3.0 was used
for these measurements; a new version is soon to be released that is substantially (up to a
factor of 2) more efficient.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 21
Technical Report #58

two hypotheses in the display above in fact correspond to two other subgoals
produced by the indicated refinement; however, they are proved automatically
by the tactic FSTactic mentioned previously.!®> This new goal is proved by
examining the four possible cases of # = vg and y = vg. This type of reasoning
is routine and each case takes one refinement step (invoking the suitable tactic or
combination of tactics) to verify. If = y = vg, then this contradicts hypothesis
33. If neither are, than both vertices are in s and F(z, y) follows from hypothesis
26. In the remaining two cases, one vertex is vg and the other is not; E(z,y)
follows from hypotheses 19 and 22, together with the definition of r; and the
symmetry of F.
In the second case, our new hypotheses are

s C rl
Isl = j2
Vx,y € s. —E(x,y)

Instantiating the goal with s now proves the existence of a jy-independent set.

>> Js:FS(A). s C V &
Isl = j1 & Vx,y ¢ s. =(x=y in |A|) => E(x,y) V
sl = j2 & Vx,y ¢ s. —E(x,y)

BY ITerm ’s’ THEN IRight

FSTactic completes the |ri| > m case. The other case is proved analogously.

Overall, the entire proof consists of 64 refinement steps and took about 20
hours to prove, including aborted proof attempts. Tactics played a major role in
making this development feasible; the 64 refinement steps hide 17531 primitive
steps, an expansion factor of 273 to 1.

4.4 Computational Content

Although our constructive proof may be more complicated than a correspond-
ing classical proof, our proof constructs three interesting functions that can be
automatically synthesized by Nuprl’s extractor. They are displayed below. Let
us note that term_of(thm) is a term that evaluates to the extraction from a
theorem thm, i.e., evaluates to a proof of thm. “.17 and “.2” are defined as first
and second projection functions on pairs.

ram_n The outermost type constructors of Ramsey’s theorem define an AF
(V/3) formula. Hence, its extraction, Aly.term_of(ramsey)(l1)(l).1, con-
stitutes a function from integers /; and /5 that evaluates to the first pro-
jection of a pair <n, P;>. This function returns n, an upper bound on the
Ramsey number for /; and [s.

13This does not come for free. FSTactic undertakes significant amounts of search and this is
slow. Its execution time contributes significantly to our replay time and library development
time discussed in the next section.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 20
Technical Report #58

vO ¢ V

(19) Vx:elts(V - v0). x e 11 <=> x ¢ V - vO & E(v0,x) &
Xxer2<=>x¢eV-v0& —E(O0,x)

disj(x1,r2)

ril Ur2 =V - v0

Using the last two hypotheses and our cardinality lemmas, we prove that |rq|+
|ra] > m + n — 1. This takes two refinement steps. It follows (using a tactic
for simple monotonicity reasoning) that |ri| > m V |rz| > n, and we split on
the two cases. In the |r1| > m case, we instantiate hypothesis 8, one of our two
induction hypotheses as follows.

BY EOnThin ’<A,<rl,<E,<p1,<p2,p3>>>>>’ 8

Recall that a Graph is a tuple. The tactic EOnThin (“Eliminate On and then
Thin (drop) the indicated (uninstantiated) hypothesis”) performs an elimination
step that instantiates hypothesis 8 with the graph G restricted to the vertex set
r1 C V. The other components of G are as before. This yields the following
hypothesis.

(m < |r1]) => 3s:FS(A). s C r1 &
sl = j1-1 & Vx,y e s. ~(x=y in |A]) => E(x,y) V
sl = j2 & Vx,y ¢ s.—E(x,y)

Breaking down this hypothesis yields another case split. In the first case, we
are given the new hypotheses:

(22) s C r1
Is]l = j1-1
(26) Vx,y € s.—(x=y in |A[|) => E(x,y)

Our conclusion remains unchanged. We must still produce a subset s of V
that contains a j;-clique or a js-independent set. In this case we prove the left
disjunct by introducing the set s + vy and demonstrate that it constitutes a
clique.

>> Js:FS(A). s C V &
Isl = j1 & Vx,y e s. =(x =y in |A]) => E(x,y) V
sl = j2 & Vx,y ¢ s. —E(x,y)

BY ITerm ’s + vO’ THEN TLeft

s+ v0OC V

|s + vO| = j1

x e€s + v0

y € s + vO

(33) ~(x=y in |A|)
>> E(x,y)

This step results in the new goal of proving that G restricted to s+ vg is indeed
a clique: that is, given an arbitrary z and y in s+ vg, proving F(z,y). The first

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 19
Technical Report #58

BY Cases ['Vx,y e V. (A z w. z

= w in |A] V =E(z,%)) @) (y)’;
Ix,y e V. ~((A z w. z =

w in [A] V —E(z,®)) (x)(y))’]

When the first case holds, we are provided with a proof of =E(z,y), for all z
and y in V such that ¢ # y. As |V| > [, we can pick a subset of V that is an
l5-independent set. In the second case, we are given an z and a y that have an
edge between them. Hence, this subset of V' is a 2-clique under the edge relation
E. Tt takes 11 refinement steps to complete this analysis.

To prove the inductive case of the first induction, we perform a second
induction.

BY OnVar ‘12¢ (NonNegInd ‘j2°¢)
j2 = 2
>> dn:H+. n— (j1,3j2)
2 < j2
In:0+. n— (j1,j2-1)
>> dn:H+. n— (j1,3j2)

The proof of the base case of this second induction is analogous to the first base
case, and we say no more about it here. We now have two induction hypotheses,
which, after several elimination steps, are as follows.

(6) n— (j1,j2-1)
(8) m— (j1-1,3j2)

These furnish the required Ramsey number for the second induction step.

>> In:W+. n— (j1,j2)
BY ITerm ’n + m’
G:Graph
ntm < V(@) |
>> Is:FS(lGl). s C V(@) &
Is| j1 & Vx,y € s. =(x=y in |IGI]) => E(G) (x,y) V
Isl = j2 & Vx,y ¢ s. =E(@) (x,y)

After expanding G into its constituent components (a discrete type pair A, a
vertex set V, an edge relation E, and edge properties p;, ps, and p3 — i.e., the
six parts of the graph tuple defined in Figure 1), we instantiate the outermost
quantifiers of the pick lemma to select an element vy from V. Then, using finite
set comprehension, provided by a lemma fs_comp which states that any set
(here V' — vg) may be partitioned by a decidable property (here Az. E(vo)(z)),
we divide V into r{ and ry: those elements of V' connected to vy and those not.

BY InstLemma ‘pick‘ [?’A7;’V’] THEN InstLemma ‘fs_comp® [’A’;’V - v0’;’E(v0)’]

This leaves our conclusion unchanged and provides the following new hypothe-
ses.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 18
Technical Report #58

developed definitions, lemmas, and tactics, facilitate high-level, comprehensible
proof development.

The first snapshot is of the initial proof step. At the top is the goal, our
statement of Ramsey’s theorem. It is followed by a refinement rule, a combina-
tion of tactics that specifies induction on {; using j; as the induction variable.
The next two lines contain the hypothesis and subgoal for the base case, and
the last three lines contain the inductive case. This simple looking refinement
step hides 64 primitive refinement rules.?

>> V11,12:{2..}. 3n:F+. n— (11,12)
BY OnVar ‘11¢ (NonNegInd ‘j1°¢)
i1 = 2

>> V12:{2..}. 3n:F+. n— (j1,12)
2 < j1
Vi2:{2..}. In:¥+. n— (j1-1,12)

>> V12:{2..}. dn:F+. n— (j1,12)

We continue by refining the base case using the tactic ITerm (“Instantiate
Term”), which provides the witness [, for n. Notice some that abbreviations
are expanded after this refinement, such as n — (j1,[2).

BY ITerm ’12°

G:Graph
12 < V(@)]
>> Is:FS(lGl). s C V(@) &
Isl = j1 & Vx,y € s. =(x=y in ||GI]) => E(®) (x,y) V
Is| = 12 & Vx,y ¢ s. =E(G) (x,y)

The result is that, given an arbitrary graph G with at least [y vertices, we must
find a subset s of its vertex set such that G restricted to s is a 2-clique or an
[5-independent set. To construct such an s, we use a lemma that states that
for any decidable predicate P on pairs of elements from some finite set, either
P holds for all pairs, or there is a pair for which P fails. This lemma, whose
formal statement is

>> Vs:FS(A). VP:elts(s)->elts(s)->Ul.Vx,y € s.
P(x)(y) V —P(x)(y)
=> Vx,y e s. P(x)(y) vV Ix,y e s. =P(x)(y),

is proved by providing (implicitly via an inductive proof) a search procedure
that applies P to all z and y in a given s and returns a proof that either P
holds for all z and y or returns a pair for which P fails and a proof of =P(z)(y).
Instantiating P with the appropriate edge relation justifies the following.

12That is, the tactics in this refinement step internally generate a 64 node proof tree con-
taining only primitive refinement rules. The size of this underlying proof tree, to a first
approximation, roughly indicates the degree of automated proof construction.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 17
Technical Report #58

Graph:

A:D # V:FS(A) # E: (elts{A}(V)->elts{A}(V)->U1) #
Vx,y:elts{A}(V). E(x,y) V —E(x,y) &
Vx,y:elts{A}(V). E(x,y) <=> E(y,x) &
Vx:elts{A}(V). —E(x,x)

n— (11,12):
A n 11 12. VG:Graph. n < |V(G)]| =>
Is:Fs(lGg]). s C {lal} V(@) &
Is| =11 & Vx,y e{l6¢|} s. ~(x ={ll6]|} y) => E@ (x,y) V
Isl =12 & Vx,y e{IG|} s. —E(®) (x,y)

ramsey:
>> V11,12:{2..}. Jn:W+. n— (11,12)

Figure 1: Graph and Ramsey Theory

n — (l1,{2)), which states that any graph with at least n vertices contain an
li-clique or an [y-independent set.!® The third object is the statement of Ram-
sey’s theorem itself. {2..} and N+ represent the set of integers at least two and
the positive integers, respectively.

Our development of finite set and graph theory also includes building spe-
cialized tactics. Nuprl’s standard tactic collection [10] contains a number of
modules for automating common forms of logical reasoning. On top of these
are special purpose tactics for set theoretic reasoning. The most powerful of
these, F'STactic, uses a combination of term rewriting, backchaining, proposi-
tional reasoning, and congruence reasoning to solve set membership problems.
For example, the lemma defining finite set union is automatically used to rewrite
membership in a union of sets to a disjunction of membership terms. Our col-
lection consists of about 150 lines of ML code and was written in a day.

4.3 Outline of Main Proof Steps

The actual Nuprl proof of Ramsey’s theorem closely follows the informal outline
in Section 2, albeit with more detail. The following snapshots represent the
main steps and are taken from the actual Nuprl session.!! These steps convey
much of the flavor of proof development in Nuprl and indicate how carefully

10We have used indentation to aid the reader in parsing such expressions. In the actual
system, a structure editor is used that has facilities for disambiguating parsing when creating
and viewing expressions.

11Space saving simplifications have been made: Some hypotheses and uninteresting parts
(e.g., applications of FSTactic) of refinement steps are omitted. Hypothesis numbers are
omitted unless referenced in subsequent snapshots. As the proof references only one discrete
type pair, such references are dropped whenever possible. For example, expressions like s; U
{A} s> and ze{A} s are replaced with the simpler s1 U sz and zes. The complete unaltered
proof is found in [1].

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 16
Technical Report #58

Finite sets (displayed as F'S(A)) are defined as lists without duplication,
containing members from some discrete type A. Specifically, finite sets are
defined as the parameterized (over a discrete type pair A) type”

AA AL |A| list | [nil — True; hit,v — —(he{|A|}t) & v; @I}

whose members are empty lists (the base case, when [is the empty list, evaluates
to T'rue), and all non-empty | A| lists whose heads are not members of their tails
and the same is recursively required of their tails. Given this definition, finite set
membership is defined in the obvious way as list membership, subset in terms
of finite set membership, cardinality as list length, etc.

Many of the theorems we prove about finite sets read like set theory axioms,
and their proofs implicitly construct useful functions on finite sets. Consider,
for example, the following lemma, which states that the union of two finite sets
is a finite set: “for all A of the type D of discrete type pairs, and for all »; and
r9 that are finite sets over |A|, there exists a finite set r over |A| such that for
all z in |A|, z belongs to 7 if and only if z belongs to either r; or ry.”

VA:D.Vry,re:FS(A).3r: FS(A).Va:|Al.ze{A}r @ ze{A}ri Ve e{A}ry

As its proof must be constructive, it provides an actual procedure that given a
discrete type pair A, and two finite sets r; and ry, returns a pair® where the first
component is the union of r; and r5 and the second is constructive evidence of
this fact. This procedure is supplied automatically from the completed proof
by Nuprl’s extractor. An additional library object is created that associates a
definition for finite set union (displayed as U{ A}) with this extraction. Another
typical example is the lemma pick which states that an element can be picked
from any non-empty finite set.

VA:D.Vs:FS(A).0 < |s| = Jx:|Al.ze{A}s

Several additional definitions leading up to the statement of Ramsey’s theo-
rem are provided in Figure 1. The first defines the type of graphs (displayed as
Graph). A graph is parameterized by a discrete type pair A, and contains a ver-
tex set V', and an edge relation E that is decidable, symmetric, and irreflexive.
Not shown are projection functions that access the graph’s carrier, vertex set,
and edge relation components. Their display forms are |G|, V(G), and E(G)
respectively.” The second definition defines a “ramsey function” (displayed as

"The term [nil — b;h.t,u — w; @[] is defined as (a hopefully more readable version of)
Nuprl'’s list recursion combinator list_ind(l;b;h,t, v.w). When [is nil this term reduces to
b and when [is h’.t’ it reduces to the term w’ where w’ is w with h’ substituted for (free
occurrences of) h, t' substituted for ¢, and list_ind(t';b; h, t, v.w) substituted for v.

8 A constructive proof of 3z.P is a pair <a,p> where p proves Pla/z].

®Note that we have overloaded display forms (e.g., we have two distinct definitions that
display the same way) such as vertical bars which project carriers from both graphs and
discrete type pairs. Hence, in the second definition in Figure 1, the term ||G|| is the type
given by projecting out the discrete type pair from a graph tuple G and then projecting out
the type from the resulting pair.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 15
Technical Report #58

To prove a proposition P of constructive mathematics in Nuprl, one proves
“>> T” for the appropriate type T by applying refinement rules until no un-
proven subgoals exist. If P is true, a proof will produce a member of T' (the
proof object) that embodies the proof’s computational content. Nuprl provides
facilities to extract and execute this content. Thus, Nuprl may be viewed as a
system for program synthesis: Theorem statements are program specifications,
and the system extracts proven correct programs.

Theorem proving takes place within the context of a Nuprl library, an or-
dered collection of tactics, theorems, and definitions. Objects are created and
modified using window-oriented, structure editors. Nuprl contains a definition
facility for developing new notations in the form of templates (display forms)
which can be invoked when entering text. Notations are defined using other
definitions and ultimately terms within the type theory. Required properties
(or axioms) about defined objects may not be assumed; they must be proved
within the theory.

4.2 Theory Development

Our proof of Ramsey’s theorem required approximately two weeks of work. Most
of this time was spent building a library of foundations for reasoning about
finite sets and graphs. Our self-contained library contains 24 definitions and 25
lemmas (counting the final theorem and excluding “ground zero” definitions such
as the direct encodings of the logical connectives of predicate calculus). Nineteen
definitions and all of the lemmas are related to finite sets, four definitions are
related to graphs, and one definition is relevant to the statement of Ramsey’s
theorem. A complete list of definitions and lemmas may be found in [1].

Our library is built in a rather general way and has been used by researchers
at Cornell (in addition to the first author) to prove theorems in graph theory.
Rather than assuming that finite sets are built from some specific type (such
as integers) most of our definitions and theorems are parameterized by a type
whose members are types with decidable member equalities. This type of types
(which we refer to as the type of “discrete type pairs” and display as D) is
defined as

T:Uy #Ve,y:T.e=yinTV-(z=yinT).

For example, the type of integers (int) paired with a decision procedure for
member equality belongs to this type D. If A is a member of D, we denote
the first projection (or carrier) of A by |A|. Most definitions (e.g., finite set
membership e{A} or finite set subset C{A}) and theorems carry along a refer-
ence to this type parameter in their statement. Such generality is not required
for Ramsey’s theorem as we could have fixed a specific discrete type, such as
the integers, throughout the proof; hence, in the presentation that follows, we
often leave this parameter (A) implicit. A full discussion of the benefits of such
parameterization may be found in [1].

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 14
Technical Report #58

discussed in the rest of this paper). We found on a Sun 3/60 that it took an av-
erage of about 0.15 seconds to evaluate this wit form. However, after compiling
an appropriate file, the time was reduced to 0.011 seconds per form.

4 Nuprl

Our presentation of the Nuprl proof is divided into four subsections. The first
provides a brief overview of Nuprl. The reader is encouraged to consult [7] for
further details. The second summarizes definitions, theorems, and tactics used
in our proof. The third presents main proof steps. And the final subsection
documents the computational content of our proof.

4.1 Background

The basic objects of reasoning in Nuprl are types and members of types. The
rules of Nuprl deal with sequents, objects of the form

x1:Hy, ®9:Hs, ..., xpn:H, >> A.

Informally, a sequent is true if, when given members z; of type H; (the hypothe-
ses), one can construct a member (inhabitant) of A (the goal or conclusion).
Nuprl’s inference rules are applied in a top down fashion. That is, they allow us
to refine a sequent obtaining subgoal sequents such that a goal inhabitant can be
computed from subgoal inhabitants. Proofs in Nuprl are trees where each node
has associated with it a sequent and a refinement rule. Children correspond to
subgoals that result from refinement rule application.

These refinement rules may be either primitive inference rules or ML pro-
grams called tactics. Nuprl tactics are similar to those in LCF [8]: given a
sequent as input, they apply primitive inference rules and other tactics to the
proof tree. The unproved leaves of the resulting tree become the subgoals re-
sulting from the tactic’s application. Tactics act as derived inference rules; their
correctness is justified by the way the type structure of ML is used.

Nuprl’s type theory is expressive; its intent is to facilitate the formaliza-
tion of constructive mathematics. Higher order logic is represented via the
propositions-as-types correspondence. Under this correspondence an intuition-
istic proposition is identified with the type of its evidence or proof objects. For
example, an intuitionistic proof of A = B is a function mapping proofs of A
to proofs of B, i.e., a member of the function space A — B. Similarly, a proof
of A& B inhabits the cartesian product type A#B. A proposition is true when
the corresponding type is inhabited. For example, Az. z is a member of the true
proposition A = A. Types are stratified in an unbounded hierarchy of universes
beginning with U;. One may quantify over types belonging to a given universe,
but the resulting type (predicatively) belongs to a higher universe.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 13
Technical Report #58

one thing, it allows the fast replacement of variable-free terms by constants.
This was an important consideration in, for example, the operating system
kernel proof described in [3], where there were many large variable-free terms
in the proof; compiling the executable counterparts sped up the proof process
significantly.® Fast execution is also valuable when executing metafunctions [5],
which are functions that are written in the logic for the purpose of simplifying
terms and can be used as code once they are proved correct.

In this subsection we address the use of the Boyer-Moore logic as a general
purpose programming language. For example, if we want a homogeneous set of
cardinality 3, execution of the function ramsey tells us that such a set exists
within any graph with at least 20 vertices:

>(x-loop) ;; We type this in order to enter the Boyer-Moore reduction loop.

Trace Mode: Off Abbreviated Output Mode: On

Type 7 for help.

*(ramsey 3 3) ;; We ask the system to compute the value of ramsey on inputs 3

This is however an unsatisfactory answer, given that the Nuprl proof (see
next section) provides a value of 6 rather than 20 in this case. Therefore, we
have in fact re-done the proof using slightly different definitions of the functions
ramsey and wit that more closely reflect the induction that takes place in the
Nuprl proof, which is grounded at 2 rather than at 0. We then obtain 6 rather
than 20 for the value of (ramsey 3 3). It took roughly 5 hours to redo the
proof for these new versions of ramsey and wit.

Convention. In the remainder of this subsection we refer to the alternate ver-
sions of ramsey and wit mentioned above.

The (new version of the) function wit can also be executed, on a particular
set and binary relation, with particular values for its parameters p and q. Con-
sider for example the hexagon, represented as a binary relation connecting ¢ to
i+ 1 for i from 1 to 6 (except that 6 is connected to 1).

*(wit °((1 . 2) (2 .3) (3.4) (4.5) (G .s6)(6.1)
’(1 2345 686)
3 3)

(CONS °(1 3 5) F)

*

Thus, the set {1,3,5} is an independent set, as indicated by the second com-
ponent F of the value returned above (which corresponds to 2 in the version

8 personal communication from Bill Bevier

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 12
Technical Report #58

3.3.4 The constructed set is indeed a set

The final goal is to prove that the homogeneous set is really a set.

(prove-lemma setp-hom-set (rewrite)
(implies (setp domain)
(setp (car (wit pairs domain p q)))))

The Boyer-Moore prover does not succeed in proving this automatically, but
the output suggests the following useful (though obvious) lemma whose proof
does succeed automatically. It states that the lists returned by partition are
sets if the given list is a set.

(prove-lemma setp-partition (rewrite)
(implies (setp x)
(and (setp (car (partition a x pairs)))
(setp (cdr (partition a x pairs))))))

Two technical lemmas discovered using the proof-checker then suffice for
concluding the proof of SETP-HOM-SET.

3.4 More Statistics and General Remarks

The first time we formalized and proved this theorem was in January, 1987.
The resulting proof was very ugly, as the use of the (then new) proof-checker
enhancement was quite undisciplined. It seems best to find a good combination
of elegant rewrite rules even when one has the capabilities offered by the proof-
checker. Perhaps surprisingly, the “manual” proof takes longer to replay than
the “heuristic” one reported here: total time was 219.7 seconds as opposed to
394.7 seconds for the older proof, both on a Sun 3/60 with 16 megabytes of
main memory.

It took about 7 hours of human time to complete the current proof effort,
which resulted in a list of events that is accepted by the Boyer-Moore prover
(without the interactive enhancement). That number may be somewhat mis-
leading since the new proof effort took advantage of the definitions and a few
of the lemmas created in the earlier version. However, the more disciplined
approach used in the final effort suggested changes that were made in the defi-
nitions, so it seems reasonable to guess that an effort from scratch would have
taken not much longer than 7 hours anyhow. A more detailed annotated chron-
icle of this proof effort may be found in [11].

3.5 Computing

The Boyer-Moore system provides a mechanism for computing values of variable-
free terms in the logic. This mechanism of providing ezecutable counterparts to
defined functions is important as part of the theorem proving process. For

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 11
Technical Report #58

A similar lemma is required for the first component, and these are used
to prove two rather technical lemmas suggested by the attempted proof of the
lemma SUBSETP-HOM-SET-DOMAIN. After these four lemmas, the inductive
proof of SUBSETP-HOM-SET-DOMAIN succeeds without further interaction.

3.3.3 The constructed set is homogeneous and large enough

The following lemma is at the heart of the theorem.

(prove-lemma wit-yields-good-hom-set (rewrite)
(implies (not (lessp (length domain) (ramsey p q)))
(good-hom-set pairs domain p q
(cdr (wit pairs domain p q)))))

Unfortunately, the proof attempt does not succeed at first, so we must prove
some supporting lemmas. This time we use the proof-checker enhancement (see
Subsection 3.2) of the Boyer-Moore prover to explore the situation. Specifically,
an INDUCT command is used to invoke a heuristic choice of induction scheme,
a PROVE command is used in order to call the Boyer-Moore prover to dispose
of the three “base cases”, the function good-hom-set is expanded in one of the
remaining four (inductive) cases, a casesplit is performed to create 8 subgoals,
and finally inspection of one of those subgoals suggests the following lemma.

(prove-lemma homogeneousl-subset (rewrite)
(implies (and (subsetp x domain)
(homogeneous1 elt domain pairs flg))
(homogeneous1 elt x pairs flg)))

The Boyer-Moore prover proves this lemma automatically. Manual applica-
tion of this rule (in the proof-checker), to the subgoal referred to above, suggests
another lemma, which is also proved automatically.

(prove-lemma homogeneousl-cdr-partition (rewrite)
(homogeneous1 elt (cdr (partition elt dom pairs)) pairs 2))

Further attempts to prove subgoals inside the proof-checker, as well as at-
tempts to prove the main goal WIT-YIELDS-GOOD-HOM-SET in the context
of the two lemmas displayed above (and others discovered subsequently), lead to
some additional lemmas. One is completely analogous to HOMOGENEOUS1-
CDR-PARTITION (displayed just above), but for the car of the partition in
place of the cdr. Another (also proved automatically) asserts that the cardi-
nality of a set equals the sum of the cardinalities of the two sets returned by
partition. Still another asserts that ramsey always returns a positive integer.
Four other technical lemmas seem necessary for the prover’s rewriter to behave
properly; they are omitted here. Finally, the proof of our goal WIT-YIELDS-
GOOD-HOM-SET (see above) succeeds.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 10
Technical Report #58

(defn homogeneousl (n domain pairs flg)
(if (listp domain)
(and (if (equal flg 1)
(related n (car domain) pairs)
(not (related n (car domain) pairs)))
(homogeneousl n (cdr domain) pairs flg))

t))

(defn homogeneous (domain pairs flg)
(if (1istp domain)
(and (homogeneousl (car domain) (cdr domain) pairs flg)
(homogeneous (cdr domain) pairs flg))
t))

Our formalization of Ramsey’s theorem also requires the notion of a “suf-
ficiently large” homogeneous set, i.e., one that has at least p or q elements
depending on whether the set is a clique or an independent set.

(defn good-hom-set (pairs domain p q flg)
(and (homogeneous (car (wit pairs domain p q))
pairs
flg)
(not (lessp (length (car (wit pairs domain p q)))
(if (equal flg 1) p a9)))))

Finally, we need the notion of subset. We omit here its straightforward re-
cursive definition as well as several standard related lemmas such as transitivity.

3.3.2 The constructed set is contained in the given set

We wish to prove the following lemma. Notice the syntax for lemmas: (prove-lemma
lemma-name lemma-types statement), where lemma-types is often (rewrite)

to indicate that the lemma is to be used in subsequent proofs as a rewrite rule.
(See [6] for details.)

(prove-lemma subsetp-hom-set-domain (rewrite)
(subsetp (car (wit pairs domain p q))
domain))

The theorem prover proceeds by an induction suggested by the recursion
in the definition of the function wit. The proof actually fails at first, but the
prover’s output suggests some lemmas. Here is one of those, which says that
the second component returned by partition is a subset of the given set.

(prove-lemma subsetp-cdr-partition (rewrite)
(subsetp (cdr (partition x z pairs))

z))

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 9
Technical Report #58

ramsey that provides an upper bound on the Ramsey number. Here is that
definition, expressed in the official syntax with formal parameters p and q. (As
mentioned above, semicolons denote comments.)

(defn ramsey (p q)
(if (zerop p)
1
(if (zerop q)
1
(plus (ramsey (subl p) q)
(ramsey p (subl q)))))
;5 hint to the prover for its proof of termination,
;; suggesting that the sum of the two arguments decreases on each recursive call
((lessp (plus p q))))

The definition of wit depends not only on the function ramsey, but also
depends on three other functions, which we describe here informally; see [11]
for details. For any list pairs, (related i j pairs) is true (t) if and only
if the pair <i, j> or the pair <j,i> belongs to pairs; in this way we represent
the notion of symmetric binary relation. (partition n rest pairs) returns
a pair <x,y> where x consists of all elements of the list rest that are related (in
the sense above) to n, and y consists of the remaining elements of rest. Finally,
(length 1st) is the length of the list 1st.

The function setp recognizes whether or not a list represents a set by re-
turning true (t) if and only if the list contains no duplicates. Notice the use
of primitive recursion to express bounded quantification. This is a common
technique for defining universally-quantified concepts in the Boyer-Moore logic.

(defn setp (x)
(if (Qistp x)
(and (not (member (car x) (cdr x)))
(setp (cdr x)))
t))

The function homogeneous defined below recognizes whether a given set
domain is homogeneous (i.e., a clique or independent set) for the relation (graph)
represented by the list pairs: it tests whether domain is a clique if the formal
parameter £1g is 1, and otherwise it tests whether domain is an independent set.
Notice that homogeneous is defined by recursion on its first argument, using an
auxiliary function homogeneous1 that checks that its first parameter n is related
or not related (according to whether or not the parameter flg is 1) to every
element of domain.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 8
Technical Report #58

instructs the prover to verify that the sum of the final two arguments of wit
decreases in each recursive call of wit, thus guaranteeing termination. This
informal description of what the prover does with that hint reflects a formal
definitional principle in the Boyer-Moore logic, but we omit further discussion
of this point.

In this example we use two main techniques to “discover” the proofs. One
approach (the traditional one for Boyer-Moore prover users) is to start by pre-
senting a lemma to the Boyer-Moore theorem prover. If the proof fails or if the
output (a mixture of English and formulas) suggests that the proof probably
won’t complete successfully, then inspection of the output often suggests (to
an experienced eye) useful rewrite (simplification) rules that one might wish to
prove. The other main technique is to use an interactive enhancement [12] to
the Boyer-Moore system as an aid to discovering the structure of the proof. This
“PC-NQTHM?” enhancement® allows one to create PROVE-LEMMA events by
first submitting the proposed theorem and then interactively giving various
proof commands in a backward goal-directed, “refinement” style. These com-
mands range from “low-level” commands which invoke a particular definition
or rewrite rule, to “medium-level” commands invoking simplification or (heuris-
tic) induction, to “high-level” commands which call the Boyer-Moore theorem
prover. There is also a facility for user-defined macro commandsin the tradition
of the “tactics” and “tacticals” of LCF [8] and Nuprl [7]. This “proof-checker”
enhancement is helpful, but not crucial, for completion of the proof. The plan
was in fact to develop nice rewrite rules rather than to rely on the manual com-
mands provided by the interactive enhancement, and this plan succeeded: the
final proof contained only 10 definitions and 26 lemmas (including the final the-
orem) after loading the standard “ground-zero” base theory, and did not contain
any proof-checker commands. The events run successfully in the unenhanced
Boyer-Moore system. Other than a few hints — 7 of the lemmas took standard
Boyer-Moore “hints” that specify use of one or two previously proved lemmas
— the proofs are fully automatic.

3.3 Outline of Main Proof Steps

We divide this subsection into four parts: one for the requisite definitions and
then one for each of the three conjuncts of the conclusion of the main theorem
(see Subsection 3.1).

3.3.1 Definitions

Several definitions are necessary for the proof. One of these is the definition
of the function wit, provided in the preceding subsection, which picks out the
desired clique or independent set. Another important definition is of a function

54PC* for “proof-checker”, “NQTHM?” for a common name of the Boyer-Moore theorem
prover

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 7
Technical Report #58

THEOREM.
(implies (leq (ramsey p q) (length domain))
(and (subsetp (car (wit pairs domain p q))

domain)

(good-hom-set pairs domain p q

(cdr (wit pairs domain p q)))

(implies (setp domain)

(setp (car (wit pairs domain p q))))))

3.2 Proof Strategy

In the Boyer-Moore prover, a “proof” is a sequence of steps called events, typi-
cally of two kinds: definition (DEFN) events and theorem (PROVE-LEMMA)
events. A major step is to define the function wit, referred to above, that
constructs the clique or independent set. Unlike Nuprl, the system does not
construct such a function from the proof; rather, the function is introduced by
the user and its pattern of recursion is available for generating heuristic induc-
tion schemes. In fact, the proof is eventually (after some lemmas are proved)
accomplished using an induction heuristically chosen by the Boyer-Moore sys-
tem (see [6] or [4] for more on this topic) to reflect the recursion in the definition
of the function wit below, i.e., by an induction on (plus p q). This function
returns a pair for the form (cons set flag) where flag is 1 or 2 according to
whether set is a clique or an independent set. Everything to the right of any
semicolon is a comment.

DEFINITION.
(wit pairs domain p q) =
(if (listp domain)
(if (zerop p) (coms nil 1)
(if (zerop q) (cons nil 2)
(let ((setl (car (partition (car domain) (cdr domain) pairs)))
(set2 (cdr (partition (car domain) (cdr domain) pairs))))
(if (lessp (length setl) (ramsey (subl p) q))
;; then use set2 to form clique or independent set
(let ((wit-set2 (wit pairs set2 p (subl g))))
(if (equal (cdr wit-set2) 1) wit-set2
(cons (cons (car domain) (car wit-set2))
2)))
;; otherwise use setl to form clique or independent set
(let ((wit-setl (wit pairs setl (subl p) q)))
(if (equal (cdr wit-setl) 2) wit-setl
(cons (cons (car domain) (car wit-setl))
DN

(cons nil 1))

This definition is actually presented with a hint (Lessp (plus p q)) that

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 6
Technical Report #58

Consider now how one might formalize Ramsey’s Theorem in this logic. If
one had quantifiers then one might simply write the following. Here pairs is
a list of pairs that represents a graph on a set domain of nodes, and S is the
desired homogeneous set (i.e., clique or independent set) with respect to the
graph pairs.*

For all p and q there exists N
such that for all domain and pairs there exists S

such that:
N < cardinality(domain) —
[S C domain A
(a) ((p < cardinality(S) A clique (pairs, S)) V
(b) (q < cardinality(S) A independent (pairs, S)))]

In order to represent this conjecture in the Boyer-Moore logic, we must first
eliminate the quantifiers. To that end, we will define N as a function ramsey
of p and q, and we will also define S in terms of a function wit (“witness”) of
P, 9, domain, and pairs. Actually, it is convenient to define wit to return an
ordered pair of the form <.S, f>, where S is the desired clique or independent
set according to whether the “flag” f is 1 or 2, respectively. We’ll say that
good-hom-set (pairs, domain, p, g, flg) holds iff £1g is 1 and disjunct
(a) above holds, or else f1g is not 1 and disjunct (b) above holds, where S is the
first component of wit (pairs, domain, p, q). The conjecture above thus
transforms into the following statement.

For all p, q, domain, pairs, if
S = car (wit (pairs, domain, p, q)) and
flg = cdr (wit (pairs, domain, p, q)), then:
ramsey (p,q) < cardinality(domain)
—

[S C domain A good-hom-set (pairs, domain, p, q, flg)]

The Boyer-Moore logic has a built-in theory of lists, but not of sets. There-
fore it is convenient to recast this formalization in terms of lists. We can define
a predicate setp for a list having no duplicates. Slipping into Lisp-style syntax,
we finally obtain a formalization of Ramsey’s theorem. (Only the last conjunct
below is new, and it says that if domain represents a set then so does the witness
set. This is important so that the length of a list equals the cardinality of the
set it represents; note that length is used in the definition of good-hom-set.)

4Here p and q correspond to what were called I; and Iy in the preceding section; these
differ simply because each author used different variable names in their independent efforts.

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 5
Technical Report #58

set S” = S +vg. Now, since S C ry, there is an edge between vy and all z € S.
Hence S’ is the desired l1-clique. The case |ry| > n is analogous.

3 The Boyer-Moore Theorem Prover

We present our discussion of the Boyer-Moore proof in five subsections. We
begin by giving enough of an introduction to the Boyer-Moore logic to be able
to transform a straightforward first order formalization of the theorem into a
formalization in the Boyer-Moore logic (which we also do in the first subsection).
That introduction is followed by a discussion of the proof strategy. The third
subsection gives a summary of the actual proof steps. We continue with some
statistics and general remarks about the proof. The section concludes with a
discussion of computing in the Boyer-Moore logic.

3.1 Background and Formalization of the Theorem

The Boyer-Moore theorem prover is a heuristic prover based on a simple ver-
sion of a traditional first order logic of total functions, with instantiation and
induction rules of inference. The logic is quantifier-free, except for the implicit
universal quantification surrounding each definition and theorem. A detailed
description of the logic and manual for the prover may be found in [6]. The
lack of quantifiers together with the presence of induction encourages a style
of specification and proof that is “constructive” in nature.? That is, rather
than specifying the existence of various objects, one explicitly defines functions
that yield those objects. The system is in fact equipped with a mechanism for
computing with its defined functions (see Subsection 3.5).
The syntax of the logic is in the Lisp tradition, where the list (£ z;

z,) denotes the application of the function £ to the arguments z; through z,,.
We also allow the let form from Lisp3, so for example the expression (let
((x a) (y b)) exp) is equivalent to the result of substituting a for x and &
for y in exp. Certain functions are built into the logic, such as the ordered pair
constructor cons and the atom nil. The list (z1 25 ... z,) is represented by the
term (cons z; (cons x5 ... (cons z, nil) ...)). The functions car
and cdr select (respectively) the first and second component of a pair. Thus
car selects the first member of a list. It is an axiom of the logic that every pair
z equals (cons (car z) (cdr z)). Note also that since this is a logic of total
functions, it makes sense to form the term (car z) for any term z, whether it
is a pair (or list) or not. In practice, this lack of typing is generally not much
of a problem for users once they become accustomed to it.

2Bob Boyer has pointed out that since definitions in the Boyer-Moore logic (in “thm mode”,
i.e., without the V&C$ interpreter and without induction all the way up to ¢y) always produce
primitive recursive functions, the law of the excluded middle is constructively valid for this
logic when all function symbols are introduced with definitions (DEFN events).

3This let construct, implemented by J Moore, is available in the system described in [12].

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 4
Technical Report #58

that set. (Some formulations also require that F is irreflexive; that bears little
on the essential mathematics but can bear on the details.) Let G be a symmetric
graph with vertex set V and relation E. A cligue C of G is a subset of V such
that all pairs <z,y> of distinct members of C' belong to E; an independent set
I of G is a subset of V' such that no pairs <z,y> of members of I belong to E.
A set is homogeneous if it is a clique or an independent set. For any positive
integer [we say that a subset S of V is an [-clique (respectively, an [-independent
set) if it is a clique (respectively, independent set) of cardinality {. Finally, for
any positive integers n, [; and l; we write

n — (11,12)

to assert that for every graph G with at least n vertices, there is either an /-
clique or an /s-independent set in G.

Note: Henceforth all our graphs will be symmetric, i.e., graph means symmetric
graph.

We may now state the main theorem.
Theorem. For all I, I3, there exists an n such that n — (I1,[2).

Note: The least such n is sometimes called the Ramsey number correspond-
ing to {; and 5.

An informal “text-book proof” (similar to one in [9]) proceeds by double
induction on /; and /3. (Alternatively, the proof may proceed by a single induc-
tion on their sum — this is the tact taken in the Boyer-Moore proof.) To prove
the base case observe that {; — ({1,2) as any graph with [; vertices either is
a clique, or there are at least two vertices that are not connected by an edge.
Similarly {; — (2,l2). Now assume as an inductive hypothesis that we have
some n and m where n — ({1,l> — 1) and m — (i1 — 1,13).

Claim. n+ m — (I1,13).

Proof. Given an arbitrary graph G on at least n + m vertices, choose an el-
ement vy of its vertex set V. Now partition the remaining elements into two
sets 71 and ro where

{z € (V —{v}) : E(vo,z)}
fe € (V — {w0}) : ~E(v0,2)}
Then |ri| + |r2] = m 4+ n — 1 so either |r1| > m or |r3| > n. If |ry| > m,

then by the induction hypothesis there is a subset S of r; where either S is an
l3-independent set (so we are done) or S is an (I1-1)-clique. In the latter case

(l

1

T2

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 3
Technical Report #58

e Use of novel techniques in representation or in automated reasoning

e Naturality /comprehensibility of definitions and proofs, both to experi-
enced users and to a more general community

e Ease of creating, reviewing, and changing definitions and proofs
e Proof discovery capabilities

e Soundness.

Moreover, the choice of metrics is difficult. Different metrics can favor different
kinds of systems more than one might expect. For example, the number of
tokens typed may not correlate with number of keystrokes if one system uses
extensive cutting and pasting with an editor, or uses keyboard macros or struc-
ture editor facilities. For another example, it may or may not be the case that
prover power correlates with replay time; it’s not hard to envision scenarios
in which a weak system’s proofs replay more quickly because there is a large
proof script but little heuristic search. Nonetheless, we make some quantitative
comparisons:

e Lemma and definition counts
e Symbol counts

e User time required

e Replay time.

Our paper is organized as follows. Section 2 provides an informal statement
and proof of the version of Ramsey’s theorem alluded to above. Section 3
contains a description of the proof completed with the Boyer-Moore Theorem
Prover. Section 4 contains the Nuprl proof. The final section draws comparisons
and conclusions.

Acknowledgements. We thank Gian-Luigi Bellin, Jussi Ketonen, and David
McAllester for a number of interesting and useful discussions on this topic. We
thank Andrew Ireland, Bill Pierce, and Matt Wilding for their very helpful
comments on a draft of this paper. Randy Pollack gave us some useful en-
couragement on this effort. David Basin also gratefully acknowledges assistance
provided by Doug Howe during the Nuprl proof effort.

2 Informal Statement and Proof of Ramsey’s
Theorem

Ramsey’s theorem is about the existence of “order” in symmetric graphs. A
symmetric graph is a set V of vertices together with a symmetric relation £ on

The Boyer-Moore Prover and Nuprl: An Experimental Comparison 2
Technical Report #58

1 Introduction

Over the last 25 years, a large number of logics and systems have been devised for
machine verified mathematical development. These systems vary significantly
in many important ways, including: underlying philosophy, object-level logic,
support for meta-level reasoning, support for automated proof construction, and
user interface. A summary of some of these systems, along with a number of
interesting comments about issues (such as differences in logics, proof power,
theory construction, and styles of user interaction), may be found in Lindsay’s
article [14]. The Kemmerer study [13] compares the use of four software verifi-
cation systems (all based on classical logic) on particular programs.

In this report we compare two interactive systems for proof development and
checking: The Boyer-Moore Theorem Prover and the Nuprl Proof Development
System. We have based our comparison on similar proofs of a specific theorem:
the finite exponent two version of Ramsey’s theorem (explained in Section 2
below). The Boyer-Moore prover is a powerful (by current standards) heuristic
theorem prover for a quantifier-free variant of first order Peano arithmetic with
additional data types. Nuprl is a tactic-oriented theorem prover based on a
sequent calculus formulation of a constructive type theory similar to Martin-
Lof’s [15]. We do not assume any prior knowledge of either system by the
reader.

Why undertake such a comparison? We believe there is too little communi-
cation between those who use different mechanical proof-checking systems. This
lack of communication encourages myths and preconceptions about the usabil-
ity of various systems. Concrete comparisons bring to light the limitations and
advantages of different systems, as well as their commonalities and differences.
Moreover, comparisons help determine which directions the field is heading and
what progress is being made.!

Much of our comparison is based on our two proofs of the aforementioned
theorem. We make qualitative comparisons, and we also make quantitative com-
parisons based on metrics that indicate the degree of effort required to prove
the theorem. However, we caution that there is a real danger in quantitative
comparisons as metrics can oversimply and mislead. Numbers cannot account
for much of what is important about proof development systems and their ap-
plication; e.g.,

e Expressive power of the underlying logic (e.g., first order vs. higher order,
definitional extensibility, set theoretic or arithmetic, typed vs. untyped.)

e Domains particularly well-suited to verification with the given system

e Computational content (explicit or implicit), i.e., existence of executable
programs associated with existence proofs (written explicitly or derived
implicitly from the proof)

Tthough in fact we first did versions of these proofs at least a couple of years ago....

The Boyer-Moore Prover and Nuprl: An Experimental Comparison
Technical Report #58

Abstract

We use an example to compare the Boyer-Moore Theorem Prover and
the Nuprl Proof Development System. The respective machine verifica-
tions of a version of Ramsey’s theorem illustrate similarities and differ-
ences between the two systems. The proofs are compared using both
quantitative and non-quantitative measures, and we examine difficulties
in making such comparisons.

The Boyer-Moore Prover and Nuprl:

An Experimental Comparison'

David Basin? and Matt Kaufmann®

Technical Report 58 July 17, 1990

Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas 78703-4776

TEL: 41 512 322 9951
FAX: +1 512 322 0656

EMAIL: basin@aipna.ed.ac.uk,kaufmann@cli.com

! This paper will appear in the proceedings of the BRA Logical Frameworks Work-
shop ’90.

?Department of Artificial Intelligence, University of Edinburgh, Edinburgh
Scotland.

®This work was supported in part at Computational Logic, Inc., by the Defense
Advanced Research Projects Agency, ARPA Orders 6082 and 9151. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of Com-
putational Logic, Inc., the Defense Advanced Research Projects Agency or the U.S.
Government. FEarlier related work was supported by ONR Contract N00014-81-K-
0634.

