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Abstract. A hierarchical, occurrence-oriented, combinational hardware de-
scription language has been formalized. Instead of using logic formulas to rep-
resent circuits, we represent circuits as list constants. Using a formal logic,
interpreters have been defined which give meanings to circuit constants, and a
good-circuit predicate recognizes well-formed circuit descriptions. We can di-
rectly verify circuit specifications, but instead we often verify functions which
generate circuit constants.
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1 Introduction

The formalization of a hierarchical, occurrence-oriented, combinational hard-
ware description language (HDL) has been accomplished using the Boyer-Moore
logic. Circuits are represented as Boyer-Moore list constants, and the Boyer-
Moore logic [2] is used to define the semantics and syntax of our circuit constants.
Instead of verifying each circuit directly, we often prove the correctness of func-
tions which synthesize circuit constants. We employ the Boyer-Moore theorem
prover to mechanically manage our database of definitions and to check our
proofs.

CAD vendors have long provided tools which operate on circuit descriptions.
The typical paradigm is to record design information in a computer data file
and write programs to manipulate this data. Programs often translate data
from one form to another, e.g., from a gate-graph to a transistor wiring list. For
logistical reasons, the formal methods community has not previously attempted
to represent circuits as data nor to verify circuits represented as data; circuits
have been modeled as terms in a formal logic [10,19,3,7,12,18]. Representing
circuits as data involves the definition of interpreters which provide the seman-
tics for the circuit data. To prove the correctness of circuits represented as data
requires proofs about the interpretations of the data.

Previously, we used Boyer-Moore logic expressions to represent hardware
circuits. Circuits were verified by proving that they satisfied some more abstract
specification. However, this approach does not provide a direct migration path
to CAD languages, from which an actual physical device can be realized, unless
the modeling language is a CAD language itself. Although it may seem that
just using an existing CAD language would provide both the modeling capability
and an implementation path, commercial CAD languages do not have formal
semantics, which means that circuit verification is impossible. Our approach
here is to formalize a subset of a conventional CAD language. This approach
provides a formal circuit semantics, a formal circuit syntax, and a means of
translating circuit descriptions from/to a CAD language.

Here we describe a formalization of a combinational hardware description
language and show how we verify functions which generate correct circuit de-
scriptions. Our HDL definition formalizes the notion of circuit delay, fanout,
logical values, circuit loading, circuit modules, and circuit module hierarchy;
these issues cannot be formally addressed if circuits are modeled with logic
formulas. The power of being able to reason about circuits expressed as data
cannot be over-emphasized. For instance, we have proved the correctness of a
function which produces ALU circuits. We know in advance that any circuit
constructed by this ALU-producing function is correct. In addition, modeling
circuit specifications with data even admits the possibility of verifying tools (e.g.,
minimizers, tautology checkers, etc.) which manipulate circuit expressions.

Our presentation begins with an introduction to the notion of hardware
verification. We then describe the concept of functions which generate provably
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correct circuits, at which point the reader should understand the concepts that
the rest of the paper makes more precise.

2 Hardware Verification

We consider hardware verification to mean the use of formal methods for spec-
ifying and verifying the operation of digital computing devices. The hardware
verification community is attempting to formalize as much of the digital design
process as possible. Presently, engineers are given or create specifications that
contain a mixture of formal and informal notations from which they are expected
to create working devices. The “hardware verification” approach advocates the
use of formal logic for both designs and high-level specifications. We introduce
this type of approach here.

The use of formal techniques to design hardware is spreading (for example
[12,3,4,5,6,18,11,14,17]). Our effort has been ongoing since 1985, and our long-
term goal is to provide a means whereby circuits may be rigorously specified and
mechanically verified. We conceptualize this notion as providing a mathemat-
ical statement, which we call a formula manual, that completely specifies the
operation of a hardware component. To visualize this notion, imagine a micro-
processor user’s manual containing a series of formulas that describes the pro-
gramming model, the timing diagrams, the memory interface, the pin-out, the
power requirements, cooling requirements, etc. Further, imagine that available
implementations of this microprocessor were verified to meet every specification
contained in the formula manual. Then the formula manual would represent
a formal specification that would allow hardware engineers to connect this de-
vice with complete confidence and would allow software engineers to completely
predict the results of programming it.

Formula manuals are a long way off. To address the difficulties of designing,
specifying, and constructing real computing equipment, the hardware verifi-
cation community must continually expand its modeling efforts to explicitly
include all hardware attributes which contribute to the correct operation of
hardware devices. This expansion will eventually enable us to provide formula
manuals for many hardware devices. Formal hardware specification and ver-
ification effort has primarily concentrated on the logical correctness of circuit
designs. With the formalization of an HDL, we are expanding our formal model
to explicitly model (with varying degrees of precision) circuit fanout, loading,
and circuit hierarchy. Our desire to explicitly model more hardware character-
istics 1s part of what drove us to consider the specification of an HDL.

Verified hardware design specifications must be convertible to a form that
results in physical devices. Formal hardware design specifications are usually
described as netlists of transistors or Boolean gates. This level of description is
far removed from actual physical implementation; therefore, the conversion of
the formal hardware design specifications into physical descriptions is an area
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where errors can easily be made. We have designed the HDL presented here to
be structured just like some of the HDLs used in commercial CAD systems. It
is important that the conversion from verified designs to CAD systems be made
at the lowest level possible and be made in a simple and believable way. This
is another factor that influenced the design of our HDL.

3 The Boyer-Moore Logic

The HDL we have defined is expressed in terms of Boyer-Moore list constants.
We use the Boyer-Moore logic to recognize well-formed HDL expressions and
to provide a semantics for our HDL. Here we give a quick introduction to the
Boyer-Moore logic and present some examples of its use.

The Boyer-Moore logic [2] is a quantifier-free, first-order predicate calculus
with equality. Recursive functions may be defined, provided they terminate.
Logic formulas are written in a prefix-style, Lisp-like notation. The basic logic
includes several built-in data types: Booleans, natural numbers, lists, literal
atoms, and integers. Additional data types can be defined.

An unusual feature of the Boyer-Moore logic is the ability to extend the
logic by the application of any of the following axiomatic acts: defining con-
servative functions, adding recursively constructed data types, and adding ar-
bitrary axioms. Adding an arbitrary formula as an axiom does not guarantee
the soundness of the logic; we do not use this feature.

The Boyer-Moore theorem prover is a Common Lisp [13] program that pro-
vides a user with various commands to extend the logic and to prove theorems.
A theorem prover user enters commands through the top-level Common Lisp
interpreter. The theorem prover manages the axiom database, user definitions
and data types, and proved theorems, thus allowing a user to concentrate on
the less mundane aspects of proof development. The theorem prover contains
decision procedures for propositional logic and linear arithmetic, and it includes
a simplifier and rewriter. The theorem prover also contains procedures for au-
tomatically performing structural inductions.

We use the Boyer-Moore theorem prover as a proof checker. We lead the
theorem prover to difficult theorems by providing it with a graduated sequence
of more and more difficult lemmas until a final result can be obtained.

3.1 Bit-Vectors

We represent a bit-vector as a list of Boolean elements. We formalize this
notion with the Boyer-Moore logic by defining the functions BOOLP and BVP. In
this presentation we write definitions with the “=” symbol, while theorems are
presented without the “=” symbol. BOOLP tests that X is either T (true) or F
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(false).! BVP has been defined to recognize a (possibly empty) list of Boolean
values. Lists are formed with the pairing function CONS; CAR selects the first
element of a pair and CDR the second. For instance, (LIST T F F) is a three-
element bit-vector. BVP works recursively; either X is equal to NIL, or (CAR X) is
Boolean and (CDR X) is a bit vector as recognized by BVP.

(BOOLP X) = (OR (EQUAL X T) (EQUAL X F))

(BVP X) = (IF (NOT (LISTP X))
(EQUAL X NIL)
(AND (BOOLP (CAR X))
(BVP (CDR X))))

(BITN N LIST) = (IF (ZEROP N)
(IF (LISTP LIST)
(IF (CAR LIST) T F)
F)
(BITN (SUB1 N) (CDR LIST)))

To access a bit in a bit vector we use the function BITN. The Nth bit of LIST
is returned if this bit is Boolean; otherwise, F is returned. We will use this
formalization of Booleans and bit vectors throughout this paper.

The function APPEND is used to append two list. We can prove that appending
two bit vectors together produces a bit vector, and a lemma stating this fact is
shown below the definition for APPEND.

(APPEND X Y) = (IF (NOT (LISTP X))
Y
(CONS (APPEND (CAR X) Y)))

(IMPLIES (AND (BVP X)
(BVP Y))
(BVP (APPEND X Y)))

The proof is by induction on X, and the Boyer-Moore theorem prover can auto-
matically perform this proof. At this point, a Boyer-Moore theorem prover user
would have to have entered the definitions for BOOLP and BVP, and entered the
proof command containing the lemma just above.?

3.2 Boyer-Moore List Constants and Basic Definitions

Our hardware circuit boxes are represented with Boyer-Moore list constants.
Constants are written using the LISP quote notation. The following statements

1The semantics for OR, EQUAL, T, and F are described in Boyer and Moore’s book, A
Computational Logic Handbook [2]; see this book for a complete introduction to the Boyer-
Moore logic and theorem prover.

2The definitions of APPEND and many other simple functions are standard in the Boyer-
Moore theorem prover.
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are theorems.

(EQUAL (CAR (CONS X Y) X))
(EQUAL (CDR (CONS X Y) Y))

(EQUAL (LISTP (CONS X Y)) T)
(EQUAL >(ABC ... X) (CONS A (B C ... D)

(EQUAL (CAR (A B C) °A))
(EQUAL (CDR (A B C) ’(B C)))

(EQUAL (LIST AB C ... X) (CONS A (LISTB C ... X)))

>(A B ©) is a list of three literal atoms. We use nested lists to provide a structure
for our circuit descriptions; components are accessed using combinations of CARs
and CDRs. CAR/CDR nests are abbreviated; for example, we write (CAR (CDR (CDR
X))) as (CADDR X).

Included below are functions used repeatedly throughout the remainder of
this paper. These definitions should be skipped upon a first reading, and referred
to as needed. As with the definitions above, we consider these definitions to be
“obviously correct,” that is, we use these functions without proof. NLISTP is a
predicate which returns true if X is not a list. BOOLFIX coerces X to a Boolean
value. FIRSTN collects the first N bits of a list. RESTN collects bits starting at
position N in L. ASSOC searches for the key X in association list ALIST and returns
a key-value pair or F. COLLECT-ASSOC returns a list of values for the keys in ARGS.
MEMBER tests whether X is an element of LIST. DISJOINT is true if no member of
L1 is a member of L2. DUPLICATES? returns true if no member of L occurs twice
in L. The length of a list is given by LENGTH.

(NLISTP X) = (NOT (LISTP X))
(BOOLFIX X) = (IF X T F)

(FIRSTN N L) = (IF (LISTP L)
(IF (ZEROP N)
NIL
(CONS (CAR L) (FIRSTN (SUB1 N) (CDR L))))
NIL)

(RESTN N L) = (IF (LISTP L)
(IF (ZEROP N)
L
(RESTN (SUB1 N) (CDR L)))
L)
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(ASSOC X ALIST) = (IF (NLISTP ALIST)
F
(IF (EQUAL X (CAAR ALIST))
(CAR ALIST)
(ASSOC X (CDR ALIST))))

(COLLECT-ASSOC ARGS ALIST) = (IF (NLISTP ARGS)
NIL
(CONS (CDR (ASSOC (CAR ARGS) ALIST))
(COLLECT-ASSOC (CDR ARGS)
ALIST)))

(MEMBER X LIST) = (IF (NLISTP LIST)
F
(IF (EQUAL X (CAR LIST))
T
(MEMBER X (CDR LIST))))

(DISJOINT L1 L2) = (IF (NLISTP L1)
T
(AND (NOT (MEMBER (CAR L1) L2))
(DISJOINT (CDR L1) L2)))

(DUPLICATES? L) = (IF (NLISTP L)
F
(OR (MEMBER (CAR L) (CDR L))
(DUPLICATES? (CDR L))))

(LENGTH X) = (IF (NLISTP X) O (ADD1 (LENGTH (CDR X))))

(PAIRLIST L1 L2) = (IF (NLISTP L1)
NIL
(CONS (CONS (CAR L1) (CAR L2))
(PATRLIST (CDR L1) (CDR L2))))

(PROPERP X) = (IF (NLISTP X) (EQUAL X NIL) (PROPERP (CDR X)))

(SUBSET L1 L2) = (IF (NLISTP L1)
T
(AND (MEMBER (CAR L1) L2)
(SUBSET (CDR L1) L2)))
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(UNION L1 L2) = (IF (LISTP L1)
(IF (MEMBER (CAR L1) L2)
(UNION (CDR L1) L2)
(CONS (CAR L1)
(UNION (CDR L1) L2)))
L2)

(MAX-MEMBER LIST) = (IF (NLISTP LIST)
0
(MAX (CAR LIST)
(MAX-MEMBER (CDR LIST))))

(MAKE-BALANCED-TREE N)

(IF (ZEROP N)
0
(IF (EQUAL N 1)
0
(CONS (MAKE-BALANCED-TREE (QUOTIENT N 2))
(MAKE-BALANCED-TREE (DIFFERENCE N (QUOTIENT N 2))))))

(TREE-SIZE TREE) = (IF (NLISTP TREE)
1
(PLUS (TREE-SIZE (CAR TREE))
(TREE-SIZE (CDR TREE))))

(TFIRSTN LIST TREE) = (FIRSTN (TREE-SIZE (CAR TREE)) LIST)

(TRESTN LIST TREE) = (RESTN (TREE-SIZE (CAR TREE)) LIST)

PATRLIST creates an association list. PROPERP checks that a list ends with NIL. If
the members of list 1.1 are a subset of the members of 1.2, then (SUBSET L1 L2)
is true. The function UNION produces the set union of L1 and L2. MAX-MEMBER
returns the maximum number in LIST. MAKE-BALANCED-TREE constructs a balanced
binary tree with N leaves. TREE-SIZE counts the number of leaves in a binary
tree. TFIRSTN and TRESTN measure the number of leaves in the left-hand part of
TREE to select elements out of LIST.

We have defined a number of small programs which we later use to compute
values for our HDL primitives. The definitions below are not a part of the HDL
we define later, but are used to help define the logical interpreter for our HDL
primitives.
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(B-BUF X) =(IFXTF

(B-NOT X) = (NOT X)

(B-NAND A B) = (NOT (AND A B))

(B-NAND3 A B C) = (NOT (AND A B C))

(B-NAND4 A B C D) = (NOT (AND A B C D))

(B-OR A B) = (OR A B)

(B-OR3 A B C) = (OR A B C)

(B-OR4 A B C D) = (OR A B C D)

(B-EQUV X Y) =(IFX(IFYTF) (IFYFT))
(B-XOR X Y) =(IFXFYFT) (TFYTF))
(B-AND A B) = (AND A B)

(B-AND3 A B C) = (AND A B C)

(B-AND4 A B C D) = (AND A B C D)

(B-NOR A B) = (NOT (OR A B))

(B-NOR3 A B C) = (NOT (OR A B C))

(B-NOR4 A B C D) = (NOT (OR A B C D))

4 Introduction to Circuit Generators

The purpose of circuit generator functions is to create parameterized libraries
of circuits that can be generated when needed. We call our circuit constructor
functions generators instead of synthesizers because we usually think of synthesis
as more fully exploring the design space than do our generator functions. That
is not to say that our generator functions are conceptually any different than
circuit synthesis functions; just that our generators may be simpler and are
proven to be correct.

To give the flavor of our HDL formalization and the construction of verified
circuit generator functions, we begin with the definition of an n-bit, ripple-carry
adder generator. Later, we will consider the verification of this and several other
circuit generator functions.

We represent circuits as a list of circuit boxes (modules). A well-formed
circuit box contains four elements: a box name, a list of input names, a list of
output names, and a circuit box body. We require the input and output names
to be distinct. A circuit box body is just a set of wiring instructions inter-
connecting circuit boxes. The definition of our HDL includes simple Boolean
gate as primitives. These gates are treated as pre-defined circuit boxes. A well-
formed circuit box body does not admit wiring loops; i.e., only combinational
logic without feedback is permitted. We think of circuit box input and output
names as representing wire names.
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Figure 1: Half-Adder Circuit
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Figure 2: Full-Adder Circuit

Below is a circuit box constant for the half-adder whose schematic diagram
is pictured in Figure 1.

> (HALF-ADDER (A B) (SUM CARRY) (((SUM) (B-XOR A B))
((CARRY) (B-AND A B))))

Circuit box HALF-ADDER has two inputs named A and B and two outputs named
SUM and CARRY. The circuit box body is a list. Each circuit box body occurrence
is composed of two elements: a list of outputs and a circuit box reference.
Thus the first circuit box body occurrence is ((SUM) (B-XOR A B)); the output
of circuit box reference (B-XOR A B) is connected to wire SUM.

A schematic for a full-adder is presented in Figure 2. The FULL-ADDER circuit
box references the HALF-ADDER circuit box twice; thus to construct a full-adder
circuit requires two half-adders.

> (FULL-ADDER (A B C) (SUM CARRY)
(((SUM1 CARRY1) (HALF-ADDER A B))
((SUM CARRY2) (HALF-ADDER SUM1 C))
((CARRY) (B-OR CARRY1 CARRY2))))

We introduce the internal wires SUM1, CARRY1, and CARRY2 to interconnect the
half-adders and the primitive B-0R gate.

One way to create an n-bit ripple-carry adder is to connect n full-adders
together. For example, Figure 3 is a schematic diagram of a 4-bit ripple-carry
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Figure 3: Four-bit, Ripple-carry Adder Circuit

adder, where A; is the most significant bit and the adder carries from right to
left. The circuit box constant for this adder is below.

> (RIPPLE-ADDER,

(CARRY;

Ay As Ay Ay
Bs B3 Bz Bi)

(SUM; SUM; SUM, SUM; CARRY;)

(((SUM; CARRY,) (FULL-ADDER A; B; CARRY:))
((SUM; CARRY:;) (FULL-ADDER A; Bs CARRY,))
((SUM, CARRY,) (FULL-ADDER A; B, CARRY;))
((SUM; CARRY;) (FULL-ADDER A; B; CARRY;))))

More generally, we can define a function which creates a circuit box, with an
input variable that specifies the adder size. For instance, an n-bit circuit box
might be written as follows.

> (RIPPLE-ADDER,,

(CARRY,, 11

An ... Ay

B, ... By)

(SUM,, ... SUM; CARRY;)

(((SUM,, CARRY,) (FULL-ADDER A, B, CARRY,41))

((SUM; CARRY;) (FULL-ADDER A; B; CARRY3))))

We construct our ripple-carry adder box generator in two parts: a top-
level function which provides the box name, the input names, and the output
names; and a function which creates the ripple-carry adder body. The func-
tion (V-ADDER-BODY N), just below, creates a list of N occurrences where each
occurrence is a list of two elements: a list with two output names, SUM;, and
CARRY;; and a reference to a full-adder with parameters A;, B;, and CARRY;;;. Our
Boyer-Moore formulation of V-ADDER-BODY does not actually produce terms with

subscripts as appears above; we simply abbreviate names of the form (LIT . i)
as LIT;.
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(V-ADDER-BODY N)

(IF (ZEROP N)
NIL
(CONS (LIST (LIST (CONS ’SUM N)
(CONS ’CARRY N))
(LIST ’FULL-ADDER
(CONS ’A N)
(CONS ’B N)
(CONS ’CARRY (ADD1 N))))
(V-ADDER-BODY (SUB1 N)))))

Below is the result of executing (V-ADDER-BODY 4). We use the symbol “==" to
denote the result of evaluating a function.

(V-ADDER-BODY 4)

>((((SuM . 4) (CARRY . 4))
(FULL-ADDER (A . 4) (B . 4) (CARRY . 5)))
(((suM . 3) (CARRY . 3))
(FULL-ADDER (A . 3) (B . 3) (CARRY . 4)))
(((SuM . 2) (CARRY . 2))
(FULL-ADDER (A . 2) (B . 2) (CARRY . 3)))
(((SUM . 1) (CARRY . 1))
(FULL-ADDER (A . 1) (B . 1) (CARRY . 2))))

To complete our ripple-adder generator function, we now just need to put the
V-ADDER-BODY into a circuit box with the appropriate input and output names;
the function V-ADDER* produces such a circuit box. The function (GENERATE-NAMES
LETTER N) produces a list of N names with LETTER as a seed.

(GENERATE-NAMES LETTER N)

(IF (ZEROP N)
NIL
(CONS (CONS LETTER N)
(GENERATE-NAMES LETTER (SUB1 N)))))

(V-ADDER* N)

(LIST (CONS °’V-ADDER N)
(CONS (CONS °CARRY (ADD1 N))
(APPEND (GENERATE-NAMES ’A N)
(GENERATE-NAMES °B N)))
(APPEND (GENERATE-NAMES ’SUM N)
(LIST (CONS ’CARRY 1)))
(V-ADDER-BODY N)))
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Below is the result of evaluating (V-ADDER* 4).

(V-ADDER* 4)

>((V-ADDER . 4) ; Name

((CARRY . b) ; Inputs
Aa.48 @.3@.2@;.1n
B.4 B.3 B.2 (B. 1)

((sUM . 4) (SUM . 3) (SUM . 2) (SUM . 1) ; Outputs
(CARRY . 1))
(C((suM . 4) (CARRY . 4)) ; Body

(FULL-ADDER (A . 4) (B . 4) (CARRY . 5)))
(((SUM . 3) (CARRY . 3))

(FULL-ADDER (A . 3) (B . 3) (CARRY . 4)))
(((SUM . 2) (CARRY . 2))

(FULL-ADDER (A . 2) (B . 2) (CARRY . 3)))
(((SUM . 1) (CARRY . 1))

(FULL-ADDER (A . 1) (B . 1) (CARRY . 2)))))

A complete circuit description is represented as a list of circuit boxes, which
we call a bozlist. A complete boxlist for an n-bit, ripple-carry adder at the least
contains a circuit box generated by (V-ADDER* n), along with an instance of
FULL-ADDER and HALF-ADDER.

5 Boxlist Syntax

In this section we present formal specifications of well-formed circuit boxes and
boxlists. We consider our simple HDL to be a formal abstraction of a combina-
tional subset of a generic commercial CAD language. We believe that a boxlist
that meets our syntactic criteria can be easily and mechanically translated into
a commercial CAD language, and used as a reliable basis for a hardware re-
alization of the formal model. We present an example of such a translator in
Section 10. We have also defined a number of interpreters for our boxlists includ-
ing interpreters for circuit values, fanout, and gate count. These interpreters are
presented in Section 6. Since Boyer-Moore logic functions are total, these inter-
preters will compute a result for any boxlist; however, the interpretations are
only meaningful for circuit descriptions that meet our syntactic requirements.

The following is an informal summary of the syntax requirements that our
boxlist specification makes precise.

e Module names are unique to a boxlist.
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(BOXLIST-OKP BOXLIST)
(IF (NLISTP BOXLIST)
(EQUAL BOXLIST NIL)

(LET ((BOX (CAR BOXLIST))
(REST (CDR BOXLIST)))
(AND (LISTP BOX)
(LISTP (CDR BOX))
(LISTP (CDDR BOX))
(LISTP (CDDDR BOX))
(EQUAL (CDDDDR BOX) NIL)

(LET ((NAME (CAR BOX))
(INPUTS (CADR BOX))
(OUTPUTS (CADDR BOX))
(BODY (CADDDR BOX)))

(AND (NOT (ASSOC NAME REST))
(PROPERP INPUTS)
(NOT (DUPLICATES? INPUTS))
(PROPERP QUTPUTS)
(NOT (DUPLICATES? OUTPUTS))
(DISJOINT INPUTS OUTPUTS)
(BODY-OKP BODY INPUTS OUTPUTS REST)
(BOXLIST-OKP REST))))))

Figure 4: Definition of BOXLIST-0KP.

e Modules are defined in terms of a small set of combinational primitives,
or other modules defined in the boxlist. The boxlist contains a complete
hierarchical description of every box.

e Input and output arities are consistent for each primitive and hierarchical
reference.

e All nets are driven either by a module input or by exactly one primitive
output. There are no busses.

e There is no feedback or potential feedback. In a top-to-bottom scan of the
occurrence list for a module, all of the inputs nets for an occurrence must
be either module inputs, or appear as outputs of previous occurrences.

The formal specification of a well-formed boxlist is given by (BOXLIST-0KP
BOXLIST). The definition of BOXLIST-0KP appears as Figure 4. BOXLIST-0KP checks
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that the boxlist as a whole has the correct structure, that boxes have unique
names, and that the inputs and outputs names of each box are unique and
disjoint.

The syntax of the occurrence list of each box is specified by (BODY-0KP BODY
SIGNALS OUTPUTS REST). The definition of BODY-0KP appears as Figure 5. The
BODY argument of BODY-OKP is the occurrence list; SIGNALS is initialized to the
module input list by BOXLIST-0KP, and collects the internal signal names; OUTPUTS
are the module output signals; and REST is the remainder of the boxlist, used to
insure that all referenced submodules are defined.

BODY-OKP, as well as our interpretation functions defined in the next Section,
refer to the specification (PRIMP FN). PRIMP defines those names that are con-
sidered primitive, and returns a pair Cinput-arity . output-arity) for primitives,
otherwise F for non-primitives.

(PRIMP FN)

(CASE FN
(B-BUF  (CONS 1 1)) (B-NOT (CONS 1 1))
(B-NAND (CONS 2 1)) (B-NAND3 (CONS 3 1))
(B-NAND4 (CONS 4 1)) (B-OR (CONS 2 1))
(B-OR3  (CONS 3 1)) (B-0R4  (CONS 4 1))
(B-EQUV (CONS 2 1)) (B-XOR  (CONS 2 1))
(B-AND  (CONS 2 1)) (B-AND3 (CONS 3 1))
(B-AND4 (CONS 4 1)) (B-NOR  (CONS 2 1))
(B-NOR3 (CONS 3 1)) (B-NOR4 (CONS 4 1))

(OTHERWISE F))

The choice of primitives is completely arbitrary; we have chosen a set of prim-
itives that correspond to the Boolean specification functions displayed in Sec-
tion 3.1.

6 Hardware Interpreters

To provide a meaning to our HDL circuit constants we have constructed four
interpreters: a value interpreter, a delay interpreter, a loading interpreter, and
an interpreter which counts the number of primitive references required by a
circuit. Each of these interpreters share a similar structure, as each take well-
formed circuits as input. Before giving the interpreter definitions, we consider
the interpretation of the four-bit adder circuit presented earlier.

The value interpreter produces a logical value for a circuit reference given a
boxlist and an association list containing values for signal names. BOXLIST-OKP
only recognizes circuits which can be evaluated with a single depth first traver-
sal. Each traversal terminates in the evaluation of a primitive. Consider the
schematic representation of RIPPLE-ADDERs presented in Figure 6. To evaluate
this circuit, each input must be bound to a value. To evaluate RIPPLE-ADDERy, we
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(BODY-0KP BODY SIGNALS OUTPUTS REST)

(IF (NLISTP BODY)
;3 If the occurrence list is empty, then each output must
;3 have been assigned.
(AND (EQUAL BODY NIL)
(SUBSET OUTPUTS SIGNALS))

(LET ((OCCURRENCE (CAR BODY)))
(AND
(LISTP OCCURRENCE)
(LISTP (CDR OCCURRENCE))
(EQUAL (CDDR OCCURRENCE) NIL)

(LET ((LHS (CAR OCCURRENCE))
(RHS (CADR OCCURRENCE)))

(AND

(PROPERP LHS)

(NOT (DUPLICATES? LHS)) ;These checks prohibit
(DISJOINT LHS SIGNALS) ;busses.

(LISTP RHS)
(PROPERP RHS)

(LET ((MODULE-NAME (CAR RHS))
(MODULE-ARGS (CDR RHS)))
(LET ((PRIMP (PRIMP MODULE-NAME)))

(AND
(SUBSET MODULE-ARGS SIGNALS) ;Inputs must be driven.
(IF PRIMP
;3 Arity checks for primitives.
(AND (EQUAL (CAR PRIMP) (LENGTH MODULE-ARGS))
(EQUAL (CDR PRIMP) (LENGTH LHS)))
;5 Existence and arity checks for submodules.
(LET ((SUBMODULE (ASSOC MODULE-NAME REST)))
(LET ((SUBMODULE-INPUTS (CADR SUBMODULE))
(SUBMODULE-QUTPUTS (CADDR SUBMODULE)))
(AND SUBMODULE
(EQUAL (LENGTH MODULE-ARGS)
(LENGTH SUBMODULE-INPUTS))
(EQUAL (LENGTH LHS)
(LENGTH SUBMODULE-QUTPUTS))))))
(BODY-OKP (CDR BODY) (APPEND LHS SIGNALS)
OUTPUTS REST)))))))))

Figure 5: Definition of BODY-OKP.

16
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CARRY SUM CARRY , SUM, CARRY g SUMg CARRY 4 SUM,
FULL- FULL- FULL- FULL-
ADDER ADDER ADDER ADDER
HALF- HALF- HALF- HALF-
ADDER ADDER ADDER ADDER
A A A A
HALF- HALF- HALF- HALF-
ADDER ADDER ADDER ADDER
A A A A
Ay B A, B, Ag Bg Ay B4 CARRYg

Figure 6: Exploded, Four-bit, Ripple-carry Adder Circuit

must evaluate the four FULL-ADDER circuit boxes that comprise RIPPLE-ADDER,.
The evaluation begins with the least significant FULL-ADDER; the evaluation of
FULL-ADDER proceeds in a manner similar to RIPPLE-ADDER;. The evaluation con-
tinues until left with circuit boxes containing only primitives. The evaluation
of primitives is defined by our circuit box evaluator.

6.1 The Logical Value Interpreter

Our logical value interpreter uses association lists to bind values to names.
A value for NAME in the binding environment ALIST is defined by EVAL-NAME.
COLLECT-EVAL-NAME uses EVAL-NAME to map a list of names to a list of values.

(EVAL-NAME NAME ALIST)
(IF (NLISTP ALIST)
F
(IF (AND (LISTP (CAR ALIST))
(EQUAL NAME (CAAR ALIST)))
(BOOLFIX (CDAR ALIST))
(EVAL-NAME NAME (CDR ALIST))))
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(COLLECT-EVAL-NAME ARGS ALIST)

(IF (NLISTP ARGS)
NIL
(CONS (EVAL-NAME (CAR ARGS) ALIST)
(COLLECT-EVAL-NAME (CDR ARGS) ALIST)))

We give an example of the use of COLLECT-EVAL-NAME below.

(COLLECT-EVAL-NAME °(B C A)
(LIST (CONS °A F)
(CONS ’B T)
(CONS °C T)
(CONS ’D F)))

(LISTT T F)

The specification of evaluating primitive circuit boxes is given by the function
HAPPLY. HAPPLY specifies a value for each function name recognized by PRIMP.

(HAPPLY FN ACTUALS)

(LET ((A (CAR ACTUALS))

(B (CADR ACTUALS))

(C (CADDR ACTUALS))

(D (CADDDR ACTUALS)))

(CASE FN
(B-BUF  (LIST (B-BUF A4)))
(B-NOT  (LIST (B-NOT A)))

(B-NAND (LIST (B-NAND A B)))
(B-NAND3 (LIST (B-NAND3 A B C)))
(B-NAND4 (LIST (B-NAND4 A B C D)))
(B-0R (LIST (B-OR A B)))
(B-0R3  (LIST (B-OR3 A B C)))
(B-OR4 (LIST (B-OR4 A B C D)))
(B-EQUV  (LIST (B-EQUV A B)))
(B-XOR  (LIST (B-XOR A B)))
(B-AND  (LIST (B-AND A B)))
(B-AND3 (LIST (B-AND3 A B C)))
(B-AND4 (LIST (B-AND4 A B C D)))
(B-NOR  (LIST (B-NOR A B)))
(B-NOR3 (LIST (B-NOR3 A B C)))
(B-NOR4 (LIST (B-NOR4 A B C D)))
(OTHERWISE F))))

The evaluation of a circuit box involves alternatively evaluating circuit box
references and evaluating circuit box bodies. The Boyer-Moore logic only allows
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(HEVAL FLAG FORM ALIST BOXLIST)

(IF FLAG
(LET ((FN  (CAR FORM))
(ARGS (CDR FORM)))
(LET ((ACTUALS (COLLECT-EVAL-NAME ARGS ALIST)))
(IF (PRIMP FN)
(HAPPLY FN ACTUALS)
(LET ((BOX (ASSOC FN BOXLIST)))
(IF BOX
(LET ((INPUTS (CADR BOX))
(OUTPUTS (CADDR BOX))
(BODY (CADDDR BOX)))
(COLLECT-EVAL-NAME
OUTPUTS
(HEVAL F BODY (PAIRLIST INPUTS ACTUALS)
(CDR BOXLIST))))
I3DDD))]
(IF (LISTP FORM)
(LET ((OCCURRENCE (CAR FORM)))
(LET ((LHS (CAR OCCURRENCE))
(RHS (CADR OCCURRENCE)))

(HEVAL F
(CDR FORM)
(APPEND (PAIRLIST LHS (HEVAL T RHS ALIST BOXLIST))
ALIST)
BOXLIST)))
ALIST))

Figure 7: The Logical Value Interpreter, HEVAL.

definitions to refer to previously defined functions; therefore, we are unable to
introduce two mutually recursive evaluation functions, but are forced to intro-
duce a single function, HEVAL, containing both a circuit reference evaluator and
a circuit box body evaluator. The definition of HEVAL appears as Figure 7. The
control flag, FLAG, is used to specify the selection of an evaluator. If FLAG is not
F, then FORM is assumed to be a circuit box reference and HEVAL returns a list of
values, one value for each output of the reference circuit box. If FLAG is F, the
FORM is assumed to be a circuit box body and HEVAL returns an association list
that binds values for all outputs.

If FLAG is not F and the occurrence is primitive, then HAPPLY is called. If FLAG is
not F and the occurrence is not primitive, then the circuit box body is evaluated
by HEVAL with an initial association list that binds the circuit box inputs to the
actual parameters. If FLAG is F, HEVAL interprets FORM as a circuit box body;
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HEVAL performs the body evaluation recursively by evaluating each circuit box
reference in a binding environment that contains the input bindings and output
bindings for previously occurring circuit box references. After each reference in
a circuit box body has been evaluated, an association list is returned containing
bindings for every internal signal along with the original input bindings.

The termination of HEVAL is guaranteed by a decrease in a lexicographic
measure of the arguments BOXLIST and FORM with each recursive call of HEVAL. In
the call to HEVAL when FLAG is not F, the size of (CDR BOXLIST) is less than the
size of BOXLIST. When FLAG is F, the size of FORM is decreasing in both recursive
calls of HEVAL: the (CDR FORM) case is obvious, and in the other case HEVAL is
called with FORM bound to RHS which is a subcomponent of OCCURRENCE, which
itself is a subcomponent of FORM.

To demonstrate a HEVAL interpretation, we consider the evaluation of
’ (HALF-ADDER A B) in the following environment.

BOXLIST = (LIST ’(HALF-ADDER (A B) (SUM CARRY)
(((SuM) (B-XOR A B))
((CARRY) (B-AND A B)))))

ALIST = (LIST (CONS °’X F) (CONS °Y T))

Below is a partial trace of the evaluation of > (HALF-ADDER X Y), which finally
simplifies to (LIST T F).

(HEVAL T ’(HALF-ADDER X Y) ALIST BOXLIST)
(COLLECT-EVAL-NAME ’ (SUM CARRY)
(HEVAL F °(((SUM) (B-XOR A B))
((CARRY) (B-AND A B)))
(LIST (CONS ’A F) (CONS ’B T)) *()))

(COLLECT-EVAL-NAME ’ (SUM CARRY)
(HEVAL F ’(((CARRY) (B-AND A B)))
(LIST (CONS °SUM T)
(CONS ’A F) (CONS °B T)) *()))

(COLLECT-EVAL-NAME ’ (SUM CARRY)
(HEVAL F °Q
(LIST (CONS ’CARRY F) (CONS ’SUM T)
(CONS °A F) (CONS °B T))
>ON
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(COLLECT-EVAL-NAME ’ (SUM CARRY)
(LIST (CONS °CARRY F) (CONS ’SUM T)
(CONS A F) (CONS °B T)))

(LIST T F)

6.2 Other Interpreters

We have written several other interpreters: a delay interpreter which computes
the delay for every output of any circuit box reference; a load interpreter which
computes the input loading, output loading, and maximum internal loading
of a circuit box reference; and an interpreter that counts the total number of
primitives that must be evaluated for any circuit box reference.

GEVAL counts the number of primitives evaluated for any circuit box reference.
For example, the ripple-carry adder circuit in Figure 6 contains 20 primitives
gates. The structure of GEVAL is similar to HEVAL’s structure. GEVAL’s primitive
apply function GAPPLY returns 1; however, it is possible to generalize GAPPLY to
return different values for different primitives.

When given a circuit box reference, GEVAL calls GAPPLY if FORM is primitive;
otherwise, GEVAL computes the number of primitives in the body of the current
circuit box reference. Note, when the FLAG is not F, FORM is a circuit box reference,
otherwise FORM is a circuit box body.

(GAPPLY FN) =1

(GEVAL FLAG FORM BOXLIST)

(IF FLAG
(LET ((FN  (CAR FORM))
(ARGS (CDR FORM)))
(IF (PRIMP FN)
(GAPPLY FN)
(LET ((BOX (ASSOC FN BOXLIST)))
(IF BOX
(LET ((BODY (CADDDR BOX)))
(GEVAL F BODY (CDR BOXLIST)))
IDDDY

(IF (LISTP FORM)
(LET ((OCCURRENCE (CAR FORM)))
(LET ((RHS (CADR OCCURRENCE)))
(PLUS (GEVAL T RHS BOXLIST)
(GEVAL F (CDR FORM) BOXLIST))))
0))
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DEVAL computes the maximum delay for every output from every relevant
input. Unique initial delays may be provided for every input. In DAPPLY we
have chosen the delay for each primitive to be one more than the maximum
delay of its inputs. We could define DAPPLY to reflect delays for a particular
implementation technology.

(DAPPLY FN ACTUALS)

(LIST (ADD1 (MAX-MEMBER ACTUALS)))

DEVAL operates in a manner just like HEVAL, but instead of computing the
value for every output, it computes the delay for every output. The initial
ALIST contains the initial delays for every input.

(DEVAL FLAG FORM ALIST BOXLIST)

(IF FLAG
(LET ((FN  (CAR FORM))
(ARGS (CDR FORM)))
(LET ((DELAYS (COLLECT-ASSOC ARGS ALIST)))
(IF (PRIMP FN)
(DAPPLY FN DELAYS)
(LET ((BOX (ASSOC FN BOXLIST)))
(IF BOX
(LET ((INPUTS (CADR BOX))
(OUTPUTS (CADDR BOX))
(BODY (CADDDR BOX)))
(COLLECT-ASSOC
QUTPUTS
(DEVAL F BODY (PAIRLIST INPUTS DELAYS)
(CDR BOXLIST))))
I3DDD))]
(IF (LISTP FORM)
(LET ((OCCURRENCE (CAR FORM)))
(LET ((LHS (CAR OCCURRENCE))
(RHS (CADR OCCURRENCE)))
(DEVAL F
(CDR FORM)
(APPEND (PAIRLIST LHS
(DEVAL T RHS ALIST BOXLIST))
ALIST)
BOXLIST)))
ALIST))

The loading interpreter, LEVAL, returns three items: the input loadings, the
output loadings, and the maximum internal loading. Each primitive input has a
loading of one. Primitive output loadings are zero; however, the output loadings
of a circuit box are not always zero, as box outputs may be wired to other
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internal inputs. The loadings for the primitive circuit boxes are specified by
LAPPLY. The LEVAL function concerns itself with the structure of a circuit box
reference, not about values it may compute. Loadings are returned as a list with
the input loading first, the output loading second, and the maximum internal
loading last.

(LAPPLY FHN)

(LIST (MAKE-LIST (CAR (PRIMP FN)) 1) (LIST 0) 1))

ALIST is used in LEVAL to supply initial loadings for every input.

(LEVAL FLAG FORM ALIST BOXLIST)

(IF FLAG
(LET ((FE  (CAR FORM))
(ARGS (CDR FORM)))
(IF (PRIMP FH)
(LAPPLY FN)
(LET ((BOX (ASSOC FH BOXLIST)))
(IF BOX
(LET ((INPUTS (CADR BOX))
(OUTPUTS (CADDR BOX))
(BODY (CADDDR BOX)))
(LET ((LEVAL (LEVAL F BODY (PAIRLIST INPUTS 0)
(CDR BOXLIST))))
(LET ((ALIST (CAR LEVAL))
(NEW-MAX-FAN (CDR LEVAL)))
(LIST (COLLECT-ASSOC INPUTS ALIST)
(COLLECT-ASSOC OUTPUTS ALIST)
NEW-MAX-FAN))))
F))))
(IF (LISTP FORM)
(LET ((DCCURRENCE (CAR FORM)))
(LET ((LHS (CAR OCCURRENCE))
(RHS (CADR OCCURRENCE)))
(LET ((TRIPLE (LEVAL T RHS NIL BOXLIST)))
(LET ((I-COSTS (CAR TRIPLE))
(0-COSTS (CADR TRIPLE))
(TERM-MAX-COST (CADDR TRIPLE)))
(LET ((NEW-ALIST
(APPEEND (PAIRLIST LHS 0-COSTS)
(ADD-TO-ALIST (CDR RHS)
I-COSTS ALIST))))
(LET ((RETURN-ALIST
(CAR (LEVAL F (CDR FORM) NEW-ALIST
BOXLIST)))
(RETURN-MAX-COST
(CDR (LEVAL F (CDR FORM) NEW-ALIST
BOXLIST))))
(CONS RETURN-ALIST
(MAX TERM-MAX-COST RETURN-MAX-COST))))))))
(CONS ALIST (MAX-ALIST-VAL ALIST))))

It is easy to imagine the definition of other interpreters. For instance, a
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critical path interpreter could be written, delays could computed with fanout
information taken into account, or power requirements could be estimated.

7 A Simple Circuit Generator

A consequence of using constants to specify hardware circuits is an ability to
verify functions which generate circuit descriptions. To demonstrate verifying
circuit generators, we consider the proof of the ripple-carry adder generator
presented earlier. The ripple-carry adder example is often used in descriptions
of formal hardware verification methodologies; thus the interested reader can
directly compare this treatment with other approaches [15,9,19,16]. We are not
aware of other work specifically attempting to verify circuit generator functions.

It is important to clarify exactly what we intend to verify. We can only prove
the correctness of the interpretation of a circuit box reference with respect to
a boxlist that completely defines the hierarchical structure of the circuit. The
verification of circuit generators is three part: we specify a circuit box generator,
we specify a predicate which recognizes a boxlist that contains instances of the
circuit box generator, and finally we prove the correctness of a reference to
the circuit box with respect to a specification function, assuming our predicate
holds for the boxlist. The structure of these predicates mimics the hierarchy of
the design, as do the structure of the proofs. We present the verification of our
ripple-carry adder generator in a bottom-up manner.

A lemma stating the correctness of a reference to an exclusive OR primitive is
shown below. In the case of primitives, like exclusive OR, we need not construct
circuit generators, and the predicates which recognize primitives in a boxlist are
always true.

(B-XOR& BOXLIST) =T

(IMPLIES (B-XOR& BOXLIST)
(EQUAL (HEVAL T (LIST ’B-XOR X Y) ALIST BOXLIST)
(LET ((X (EVAL-NAME X ALIST))
(Y (EVAL-NAME Y ALIST)))
(LIST (B-XOR X Y)))))

This lemma indicates that the evaluation with HEVAL of any reference of
the form (LIST ’B-XOR X Y) is precisely the same as applying the specification
function B-XOR to the values of X and Y in ALIST. We now take as given that
the boxlist recognizers for our primitives are true, and that we have proven the
correctness of the evaluation of each primitive with respect to their specification
functions.

The verification of a circuit box generator for a half-adder proceeds in three
parts: we define the circuit box generator HALF-ADDER*, we define a predicate,
HALF-ADDERZ, that recognizes boxlists containing an instance of our half-adder
circuit box, and finally we prove the correctness of a reference to a half-adder.
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(HALF-ADDER#*)

> (HALF-ADDER (A B) (SUM CARRY)
(((sum) (B-XOR A B))
((CARRY) (B-AND A B))))

(HALF-ADDERZ BOXLIST)

(AND (EQUAL (ASSOC ’HALF-ADDER BOXLIST) (HALF-ADDER=*))
(B-XOR& (CDR BOXLIST))
(B-AND& (CDR BOXLIST)))

(IMPLIES (HALF-ADDER& BOXLIST)
(EQUAL (HEVAL T (LIST ’HALF-ADDER A B) ALIST BOXLIST)
(LET ((A (EVAL-NAME A ALIST))
(B (EVAL-NAME B ALIST)))
(LIST (B-XOR A B)
(B-AND A B)))))

We verify the correctness of our full-adder in the same manner as we verified
our half-adder. We first introduce the specification functions FULL-ADDER-SUM
and FULL-ADDER-CARRY for our full-adder.

(FULL-ADDER-SUM A B C)

(IF A
(IFB(IFCTF) (IFCFT))
(IFBIFCFT) (IFCTF)))

(FULL-ADDER-CARRY A B C)

(OR (AND A (OR B C)) (AND B C))

Shown below is our full-adder box generator, FULL-ADDER#, a predicate which
recognizes boxlists that contain an instance of FULL-ADDER#, and a lemma demon-
strating the correctness of evaluating a reference to a full-adder.
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(FULL-ADDER*)

> (FULL-ADDER (A B C) (SUM CARRY)
(((SUM1 CARRY1) (HALF-ADDER A B))
((SUM CARRY2) (HALF-ADDER SUM1 C))
((CARRY) (B-OR CARRY1 CARRY2)))))
(FULL-ADDER& BOXLIST)

(AND (EQUAL (ASSOC ’FULL-ADDER BOXLIST) (FULL-ADDER=*))
(HALF-ADDER& (CDR BOXLIST))
(B-0R& (CDR BOXLIST)))

(IMPLIES (FULL-ADDER& BOXLIST)
(EQUAL (HEVAL T (LIST °FULL-ADDER A B C¢) ALIST BOXLIST)
(LET ((A (EVAL-NAME A ALIST))
(B (EVAL-NAME B ALIST))
(C (EVAL-NAME C ALIST)))
(LIST (FULL-ADDER-SUM A B C)
(FULL-ADDER-CARRY A B €)))))

We are now ready to verify the correctness of the ripple-carry adder generator
with respect to our Boolean addition specification V-ADDER.

(V-ADDER C A B)

(IF (NLISTP A)
(CONS (IF ¢ T F) NIL)
(CONS (XOR C (XOR (CAR A) (CAR B)))
(V-ADDER (OR (AND (CAR A) (CAR B))
(OR (AND (CAR A) C)
(AND (CAR B) C)))
(CDR A)
(CDR B))))

V-ADDER specifies Boolean addition of bit-vectors A and B, with an initial input
carry C.

Our ripple-carry adder generator, V-ADDER*, generates a circuit box whose
body contains N references to full-adders; these references are constructed by
the helper function V-ADDER-BODY.
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(V-ADDER-BODY N)

(IF (ZEROP N)
NIL
(CONS (LIST (LIST (CONS ’SUM N) (CONS ’CARRY N))
(LIST ’FULL-ADDER (CONS ’A N) (CONS ’B N)
(CONS ’CARRY (ADD1 N))))
(V-ADDER-BODY (SUB1 N))))
(V-ADDER* N)

(LIST (CONS °’V-ADDER N) ; Name
(CONS (CONS ’CARRY (ADD1 N)) ; Inputs
(APPEND (GENERATE-NAMES ’A N)
(GENERATE-NAMES °B N)))
(APPEND (GENERATE-NAMES ’SUM N) ; Outputs
(LIST (CONS ’CARRY 1)))
(V-ADDER-BODY N)) ; Body

We verify the correctness of our helper function V-ADDER-BODY before at-
tempting to verify V-ADDER*. The lemma below shows that the association list
returned by HEVAL from the evaluation of the body of the adder binds the output
names correctly.

(IMPLIES
(AND (FULL-ADDER& BOXLIST)
(EQUAL C (EVAL-NAME (CONS ’CARRY (ADD1 N)) ALIST))
(EQUAL A (COLLECT-EVAL-NAME (GENERATE-NAMES ’A N) ALIST))
(EQUAL B (COLLECT-EVAL-NAME (GENERATE-NAMES ’B N) ALIST)))
(EQUAL (COLLECT-EVAL-NAME (APPEND (GENERATE-NAMES °’SUM N)
(LIST (CONS ’CARRY 1)))
(HEVAL F
(V-ADDER-BODY N)
ALIST
BOXLIST))
(V-ADDER C A B)))

We prove that the HEVAL interpretation of a reference to a V-ADDER circuit box
is equal to Boolean addition only if the BOXLIST contains an instance of V-ADDER*
(the adder generator), and instances of the HALF-ADDER and FULL-ADDER circuits.
With the interpretation of the adder body in hand, it is a simple matter to
complete the proof of adder circuit references.

(V-ADDER& BOXLIST N)

(AND (EQUAL (ASSOC (CONS °V-ADDER N) BOXLIST) (V-ADDER# N))
(FULL-ADDER& (CDR BOXLIST)))
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(IMPLIES (AND (V-ADDER& BOXLIST N)
(EQUAL (LENGTH A) N)
(EQUAL (LENGTH B) N))
(EQUAL (HEVAL T (CONS (CONS ’V-ADDER N)
(CONS C (APPEND A B)))
ALIST BOXLIST)
(LET ((C (EVAL-NAME C ALIST))
(A (COLLECT-EVAL-NAME A ALIST))
(B (COLLECT-EVAL-NAME B ALIST)))
(V-ADDER C A B))))

We have not demonstrated a well-formed boxlist that satisfies V-ADDER&.
V-ADDER-BOXLIST generates a boxlist that is both well-formed and satisfies
V-ADDER&.

(V-ADDER-BOXLIST N) = (LIST (V-ADDER* N)
(FULL-ADDER%*)
(HALF-ADDER%*))

V-ADDER-BOXLIST generates a boxlist with three circuit boxes: an n-bit ripple-
carry adder, a full-adder, and a half-adder. It is trivial to prove that
V-ADDER-BOXLIST satisfies V-ADDER&. It is also possible to prove that
V-ADDER-BOXLIST generates a well-formed boxlist; however, we do not prove either
property. In general, we never prove that our parameterized circuit generators
are well-formed or that they satisfy any particular circuit boxlist predicate.
Instead, we prove that instances of boxlists created by parameterized boxlist
generators are well-formed by executing BOXLIST-0KP. Likewise, we show that
instances of circuit boxlists satisfy their circuit boxlist predicates by executing
these predicates on boxlists of interest. For example, when we generate a boxlist
with V-ADDER-BOXLIST we check that its result is complete and well-formed by
executing the functions V-ADDER% and BOXLIST-OKP.

We can extend the lemma above by observing that V-ADDER can be used to
add natural numbers when they are represented as bit-vectors. We define the
abstraction function V-TO-NAT that converts a bit-vector into a natural number.

(V-TO-NAT X) = (IF (NLISTP X)
0
(PLUS (IF (CAR X) 1 0)
(TIMES 2 (V-TO-NAT (CDR X)))))

We are then able to prove the lemma below, which shows that V-ADDER specifies
addition of bit-vector representations of natural numbers.
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(IMPLIES (AND (BVP A)
(BVP B)
(EQUAL (LENGTH A) (LENGTH B)))
(EQUAL (V-TO-NAT (V-ADDER C A B))
(PLUS (IF C 1 0)
(V-TO-NAT A)
(V-TO-NAT B))))

With this lemma, we are able to finally prove the lemma below.

(IMPLIES (AND (V-ADDER& BOXLIST N)
(EQUAL (LENGTH A) N)
(EQUAL (LENGTH B) N))
(EQUAL (V-TO-NAT (HEVAL T (CONS (CONS ’V-ADDER N)
(CONS C (APPEND A B)))
ALIST BOXLIST))
(LET ((C (EVAL-NAME C ALIST))
(A (COLLECT-EVAL-NAME A ALIST))
(B (COLLECT-EVAL-NAME B ALIST)))
(PLUS (IF C 1 0)
(V-TO-NAT A)
(V-TO-NAT B)))))

The presentation above sets the theme for the next two sections. In the
next section we employ heuristics to generate an adder with a minimum cost.
Afterward, we outline an ALU generator.

8 A Heuristically Guided Adder Generator

The use of programs to generate provably correct hardware circuits provides
great freedom in selecting designs through the use of heuristic guidance. Here
we outline an adder circuit generator that selects a ripple-carry or propagate-
generate adder based on a comparison of their costs.

The function €0ST computes the cost of a circuit reference by adding the
maximum circuit delay to the result of dividing the number of primitive gates
required to build the circuit by three. To aid in the computation of the cost
we use DEVAL to calculate adder delays and GEVAL to compute the number of
required gates.

(COST FORM BOXLIST)

(PLUS (QUOTIENT (GEVAL T FORM BOXLIST) 3)
(MAX-MEMBER (DEVAL T FORM (PAIRLIST (CDR FORM) 0) BOXLIST)))

We use the circuit box generated by ADDER# to provide an indirect reference
to either a ripple-carry adder or a propagate-generate adder. The particular
reference returned by ADDER# is picked by a comparison of the cost for an n-bit
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ripple-carry adder with the cost for an n-bit propagate-generate adder. To make
this comparison, ADDER# actually creates instances of both the ripple-carry adder
and the propagate-generate adder, measures their costs, and returns a reference
to the adder with the least cost. Propagate-generate adders are characterized
by their tree-based look-ahead logic. To specify a propagate-generate adder of
n-bits, we construct a balanced binary tree with n leaves; the structure of this
tree specifies the organization of the look-ahead logic.

The type of adder for which an indirect reference is created is specified in the
last three lines of the definition of ADDER*. The remainder of ADDER#* definition
is used to make the comparison between the two adder types.

(ADDER* N)
(LET ((TREE (MAKE-BALANCED-TREE N)))
(LET ((RIPPLE-NAME (CONS ’V-ADDER N))
(PG-NAME (CONS ’TV-ADDER TREE))
(ARGS (CONS (CONS ’CARRY (ADD1 N))
(APPEND (GENERATE-NAMES ’A N)
(GENERATE-NAMES °B N))))

(OUTPUTS (GENERATE-NAMES °0UT (ADD1 N))))
(LET ((RIPPLE-BOXLIST (V-ADDER-BOXLIST N))
(PG-BOXLIST (TV-ADDER-BOXLIST TREE))
(RIPPLE-FORM (CONS RIPPLE-NAME ARGS))
(PG-FORM (CONS PG-NAME ARGS)))
(LET ((RIPPLE-COST (COST RIPPLE-FORM RIPPLE-BOXLIST))
(PG-COST (COST PG-FORM PG-BOXLIST)))
(LIST (CONS ’ADDER N) ; Name
ARGS ; Inputs
OUTPUTS ; Outputs
(IF (LESSP RIPPLE-COST PG-COST) ; Body

(LIST (LIST OUTPUTS RIPPLE-FORM))
(LIST (LIST OUTPUTS PG-FORM))))))))

For example, an instance of ADDER* with N equals four is shown below.

(ADDER* 4)
>((ADDER . 4)
((CARRY . 5)
a.4) @A.3@G.2) @Ga.1D
(B.4) (B.3)@®.2) B.1)M
(ouTt . 5) (OUT . 4) (OUT . 3) (OUT . 2) (QUT . 1))
(¢((ouT . 5) (OUT . 4) (OUT . 3) (OUT . 2) (OUT . 1))
((V-ADDER . 4)
(CARRY . 5)
(A .4) (A.3@G.2 .1
(B.4) B.3®.2 B. LN
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We prove a lemma that demonstrates the correctness of our adder generator
given any boxlist that satisfies ADDER&. TV-ADDERg is a predicate that recognizes
boxlists with instances of propagate-generate adders.

(ADDER& BOXLIST N)

(AND (EQUAL (ASSOC (CONS °>ADDER N) BOXLIST) (ADDER* N))
(LET ((TREE (MAKE-BALANCED-TREE N)))
(AND (V-ADDER& (CDR BOXLIST) N)
(TV-ADDER& (CDR BOXLIST) TREE))))

(IMPLIES (AND (ADDER& BOXLIST N)

(EQUAL (LENGTH A) N)

(EQUAL (LENGTH B) N)

(NOT (ZEROP N)))

(EQUAL (HEVAL T (CONS (CONS ’ADDER N)
(CONS C (APPEND A B)))
ALIST BOXLIST)
(V-ADDER (EVAL-NAME C ALIST)

(COLLECT-EVAL-NAME A ALIST)
(COLLECT-EVAL-NAME B ALIST))))

This lemma has the same form as the lemma we previously proved for our ripple
carry adder. For simplicity, we impose the condition in ADDER& that BOXLIST
contains both ripple-carry and propagate-generate adder definitions.

We have computed the costs for different sized ripple-carry and propagate-
generate adders and provide a comparison of these costs in Table 1. The maxi-
mum delay and number of gates for a ripple-carry adder increase linearly with
the size of the adder. The propagate-generate maximum delay increases log-
arithmically with the size of the adder, while the size increases at a roughly
linear rate. Notice that an adder larger than 26 bits must be generated before
the propagate-generate adder becomes cheaper than the ripple-carry adder.

The point to this section is to demonstrate how heuristics can be used to
control the generation of provably correct circuits. Our adder generator selects
an “appropriate” adder based on our cost function. Note that any other scheme
could have been substituted to select which adder is specified.

9 An ALU Generator

We have verified a circuit box generator function for an n-bit ALU [1]. There
are two parts to the ALU verification: the proof that the top-level Boolean ALU
specification implements mathematical functions and the proof that the HDL
circuit generated implements the top-level Boolean ALU specification. Here we
present the top-level Boolean ALU specification, its statement of correctness,
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Adder Ripple | Ripple | Ripple | Prop-Gen | Prop-Gen | Prop-Gen
Size Gate Max Cost, Gate Max Cost
Count | Delay Count Delay
1 bit 5 3 4 6 3 5
2 bits 10 5 8 15 5 10
4 Dbits 20 9 15 33 8 19
8 bits 40 17 30 69 12 35
16  bits 80 33 59 132 15 59
25 bits 125 51 92 222 19 93
26  bits 130 53 96 231 19 96
27  bits 135 55 100 240 19 99
32 bits 160 65 118 285 20 115
64 bits 320 129 235 573 24 215
128  bits 640 257 470 1149 28 411

Table 1: Ripple-Carry, Generate-Propagate Adder Cost Comparison

and sketch a part of the internal implementation of the ALU.3

Our Boolean ALU specification, V-ALU, plays the same role that V-ADDER
played in the verification of our ripple-carry adder. V-ALU is the specification
that our ALU circuit generator is verified to implement. An informal summary
of V-ALU is presented in Table 2.

V-ALU is the Boolean specification for our ALU. It requires four inputs: C,
a Boolean carry input; A and B, bit-vector inputs; and a four-bit op-code, OP.
V-ALU returns a bit-vector that is two bits longer than bit-vector A: the first bit
is the carry output, the second bit is the overflow output, and the remainder is
the result bit-vector.

3We have proved that the top-level Boolean ALU specification implements a number of
Boolean, natural number, and integer operations. Each ALU operation has been verified to
correctly implement one or more functions. For instance, if a logical OR operation is selected,
then we have proved that our Boolean ALU specification computes the logical OR; however,
if an arithmetic shift right is selected we have proved not only the logical properties of this
operation, but we have also proved that this operation implements a division by two for a bit-
vector representing a natural number or an integer. For addition operations we have proved
the correctness of the Boolean ALU specification with respect to natural number and integer
addition; likewise for subtraction. Here, we give the ALU specification as a Boolean function,
as this is what the actual ALU hardware should compute.
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OP-CODE Result Description

0000 a Move

0001 a+1 Increment

0010 b+ a+c Add with carry

0011 b+a Add

0100 0—a Negation

0101 a—1 Decrement

0110 b— a—c¢ Subtract with borrow

0111 b—a Subtract

1000 a>1 Rotate right, shifted through carry
1001 a>1 Arithmetic shift right, top bit duplicated
1010 a>1 Logical shift right, top bit zero
1011 b¥ a Exclusive Or

1100 bV a Or

1101 bAa And

1110 —a Not

1111 a Move

Table 2: Informal ALU Operation Summary

(V-ALU C A B OP)

(COND ((EQUAL OP (BC ’B0000)) (CVBV F F (V-BUF A4)))
((EQUAL 0P (BC ’B0001)) (CVBV-INC A))
((EQUAL 0P (BC ’B0010)) (CVBV-V-ADDER C A B))
((EQUAL 0P (BC ’B0011)) (CVBV-V-ADDER F A B))
((EQUAL 0P (BC ’B0100)) (CVBV-NEG A))
((EQUAL 0P (BC ’B0101)) (CVBV-DEC A))
((EQUAL 0P (BC ’B0110)) (CVBV-V-SUBTRACTER C A B))
((EQUAL 0P (BC ’B0111)) (CVBV-V-SUBTRACTER F A B))
((EQUAL 0P (BC ’B1000)) (CVBV-V-ROR C A))
((EQUAL 0P (BC ’B1001)) (CVBV (BITN 0 A) F (V-ASR A)))
((EQUAL 0P (BC ’B1010)) (CVBV (BITN 0 A) F (V-LSR A)))
((EQUAL 0P (BC ’B1011)) (CVBV F F (V-XOR A B)))
((EQUAL 0P (BC ’B1100)) (CVBV F F (V-OR A B)))
((EQUAL 0P (BC ’B1101)) (CVBV F F (V-AND A B)))
((EQUAL 0P (BC ’B1110)) (CVBV F F (V-NOT A)))
(T (CVBV F F (V-BUF 4))))

Of the many different possible implementations for the V-ALU specification,
we have verified an ALU implementation which includes a propagate-generate
look-ahead scheme for additions and subtractions. Previously, we have veri-
fied implementations of V-ALU with a ripple-carry approach [19] and a bit-slice
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Figure 8: Internal Organization of the ALU

approach [20]; however, these previous approaches did not specify their im-
plementations with an HDL but required a program to extract a netlist from
Boyer-Moore definitions which represented the design specification. Our ALU
implementation is produced by a generator, like V-ADDER#, but it generates quite
a large number of boxes with fairly complicated interconnections.

A block diagram of the internal structure of our ALU implementation is
shown in Figure 8. The ALU is divided into three main parts: a propagate-
generate ALU, which performs logical and arithmetic operations; a shift/buffer
unit, which performs the right shift operations; and a carry/overflow unit which
computes carry and overflow.

Our boxlist recognizer for our ALU is NEW-ALU%, which is presented below.
We do not present the individual predicates that NEW-ALU& references.

(NEW-ALU%& BOXLIST TREE)

(AND (EQUAL (ASSOC (CONS °NEW-ALU TREE) BOXLIST)
(NEW-ALU* TREE))
(B-BUF& (CDR BOXLIST))
(MPG& (CDR BOXLIST))
(TV-SHIFT-0R-BUF& (CDR BOXLIST) TREE)
(CARRY-IN-HELP& (CDR BOXLIST))
(TV-ALU-HELP& (CDR BOXLIST) TREE)
(T-CARRY& (CDR BOXLIST))
(CARRY-OUT-HELP& (CDR BOXLIST))
(OVERFLOW-HELP&  (CDR BOXLIST)))
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The lemma stating the correctness of our ALU is below.

(IMPLIES
(AND (NEW-ALUZ BOXLIST TREE)

(EQUAL (LENGTH A) (TREE-SIZE TREE))

(EQUAL (LENGTH B) (TREE-SIZE TREE)))
(EQUAL (HEVAL T (CONS (CONS ’NEW-ALU TREE)

(CONS C
(APPEND A
(APPEND B
(LIST OPO OP1 OP2 0P3)))))
ALIST BOXLIST)

(V-ALU (EVAL-NAME C ALIST)
(COLLECT-EVAL-NAME A ALIST)
(COLLECT-EVAL-NAME B ALIST)
(LIST (EVAL-NAME OPO ALIST)

(EVAL-NAME 0OP1 ALIST)
(EVAL-NAME 0P2 ALIST)
(EVAL-NAME 0P3 ALIST)))))

That is, when the predicate NEW-ALU% is satisfied, then the HEVAL of NEW-ALUrrEE
satisfies our specification function V-ALU.

Instead of presenting the entire specification and implementation of our ALU
generator, we have chosen to present one particular part of the ALU. The
most interesting part of our ALU generator is the propagate-generate arith-
metic/logical unit (PG-ALU). The PG-ALU performs all of the ALU operations
expect for the shift operations and the computation of the carry and overflow
outputs. The PG-ALU circuit has 4 inputs; bit-vector data inputs A and B, a
carry input ¢, and an 8-bit control vector MPG.

The PG-ALU circuit generator requires a single parameter, TREE. The num-
ber of leaves in the tree defines the size of the data input vectors, and the
structure of the tree determines the configuration of the carry look-ahead logic.
Each leaf of the tree is represented in the final circuit by an instance of an ALU
function cell, T-CELL. Each internal node of the tree is represented in the final cir-
cuit by two PG-ALU modules connected together with carry look-ahead logic.
The definition of the PG-ALU generator TV-ALU-HELP* appears as Figure 10.
The schematic diagram in Figure 9 shows the interconnections generated by
each internal tree node. The definition of the carry look-ahead cell, T-CARRY, is
below.

(T-CARRY%*)

>(T-CARRY (C P G) (COUT)
(((T0) (B-AND C P))
((couT) (B-OR G T0))))

Notice that TV-ALU-HELP-BODY buffers the control lines only if a control line
may drive more than 8 primitives. Also notice that TV-ALU-HELP-BODY is not a
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Figure 9: PG-ALU Circuit Organization

recursive function like V-ADDER-BODY, but creates a circuit box that references
submodules created by other calls to TV-ALU-HELP* on subtrees of TREE. In other
words, the entire boxlist has a recursive structure. This condition is stated
formally by the predicate TV-ALU-HELP&.

(TV-ALU-HELP& BOXLIST TREE)
(IF (NLISTP TREE)
(AND (EQUAL (ASSOC (CONS ’TV-ALU-HELP TREE) BOXLIST)
(TV-ALU-HELP* TREE))
(T-CELL& (CDR BOXLIST)))
(AND (EQUAL (ASSOC (CONS ’TV-ALU-HELP TREE) BOXLIST)
(TV-ALU-HELP* TREE))
(T-CARRY& (CDR BOXLIST))
(B-AND& (CDR BOXLIST))
(V-BUF& (CDR BOXLIST) 8)
(TV-ALU-HELP& (CDR BOXLIST) (CAR TREE))
(TV-ALU-HELP& (CDR BOXLIST) (CDR TREE))))

Using an HDL-based approach provides an ability to explicitly control circuit
fanout, loading, and delay. Using the functions GEVAL, DEVAL and LEVAL we have
computed the gate count, delay, and maximum fanout of our ALU for different
word sizes; these are given in Table 3. The delay of our ALU with its propagate-
generate look-ahead logic grows with the logs of the size of the ALU when
generated with balanced binary trees.
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(TV-ALU-HELP* TREE)

(LET ((A-NAMES (GENERATE-NAMES ’A (TREE-SIZE TREE)))
(B-NAMES (GENERATE-NAMES ’B (TREE-SIZE TREE)))
(OUT-NAMES (GENERATE-NAMES ’0UT (TREE-SIZE TREE)))
(MPGNAMES (GENERATE-NAMES ’MPG 8)))

(LIST (CONS ’TV-ALU-HELP TREE) ;; Hame
(CONS °C (APPEND A-NAMES ;; Inputs
(APPEND B-NAMES MPGNAMES)))
(CONS °P (CONS ’G OUT-NAMES)) ;; Outputs
(TV-ALU-HELP-BODY TREE))) ;; Body

(TV-ALU-HELP-BODY (TREE)

(LET ((A-NAMES (GENERATE-NAMES ’A (TREE-SIZE TREE)))
(B-NAMES (GENERATE-NAMES ’B (TREE-SIZE TREE)))
(OUT-HAMES (GENERATE-NAMES ’0UT (TREE-SIZE TREE)))
(MPGNAMES (GENERATE-NAMES *MPG 8))

(MPGNAMES* (GENERATE-NAMES ’HMPG#* 8)))
(LET ((LEFT-A-NAMES (TFIRSTH A-NAMES TREE))
(RIGHT-A-NAMES (TRESTH A-NAMES TREE))
(LEFT-B-NAMES (TFIRSTH B-NAMES TREE))
(RIGHT-B-NAMES (TRESTH B-NAMES TREE))
(LEFT-0UT-NAMES (TFIRSTHN OUT-NAMES TREE))
(RIGHT-OUT-NAMES (TRESTN OUT-NAMES TREE)))
(LET ((BUFFER? (EQUAL (REMAINDER (SUB1 (TREE-HEIGHT TREE)) 3) 0)))
(LET ((MPGNAMES? (IF BUFFER? MPGNAMES* MPGHNAMES)))
(IF (NLISTP TREE)
(LIST
(LIST *(P G (OUT . 1))
(CONS ’T-CELL (CONS °C (COENS (A . 1)
(coms °(B . 1)
MPGNAMES))))))
;; Buffer MPG if more than 8 loads.
(APPEND
(IF BUFFER? (LIST
(LIST MPGHAMES#* (CONS (CONS ’V-BUF 8) MPGNAMES)))
NIL)
(LIST
;5 The LHS alu
(LIST (CONS °PL (CONS ’GL LEFT-OUT-NAMES))
(CONS (CONS ’TV-ALU-HELP (CAR TREE))
(CONS °C (APPEND LEFT-A-NAMES
(APPEND LEFT-B-NAMES
MPGNAMES?)))))
;35 The LHS carry
»((CL) (T-CARRY C PL GL))
;5 The RHS alu
(LIST (CONS °PR (CONS ’GR RIGHT-OUT-NAMES))
(CONS (CONS ’TV-ALU-HELP (CDR TREE))
(CONS °CL (APPEND RIGHT-A-NAMES
(APPEND RIGHT-B-NAMES
MPGHAMES?)))))
;; P and G
>((P) (B-AND PL PR))
»((@) (T-CARRY GL PR GR))))))))))

Figure 10: The PG-ALU Generator, TV-ALU-HELP%



A Formal Introduction to a Simple HDL 38
Technical Report #60

Size Gate Count | Fanout | Delay
1 bit 126 8 12
2 bits 149 8 14
4 bits 196 8 17
8 bits 297 8 22
16  bits 491 8 26
32 bits 880 8 30
64 bits 1665 8 35
128  bits 3227 8 39

Table 3: ALU Characteristics

Using the Boyer-Moore theorem prover on a Sun 3/280, the processing of
our ALU proof, including the time necessary to define the primitives and inter-
preters, takes less than one hour. To generate all of the ALU designs for Table 3
only takes a few seconds. A few seconds more are required to check that each
ALU is recognized by NEW-ALU% and BOXLIST-OKP.

10 Translating our HDL into a Commercial CAD
Language

One motivation for defining our HDL was to ease the conversion of verified de-
signs into a form acceptable to commercial CAD systems. Instead of attempting
to define our own HDL, we could have attempted to formally define an exist-
ing HDL, e.g., VHDL [8]. However, before attempting to formalize a complex
language, we wanted to explore the subtleties of defining an HDL without the
constraints imposed by an existing language. For example, we did not want to
spend time worrying over whether we have the “correct” syntax; any unambigu-
ous syntax will do.

Providing a simple translation into commercial HDLs is important for us
as we wish to be able to physically realize our verified circuit descriptions.
Because our HDL is simple, we expect that designs specified with our HDL
should translate to a commercial HDL in a straightforward manner. However,
the accuracy of such a translation is open to question. We do not have meaning
functions for any commercial HDL; that is, we do not have a function like
HEVAL for any commercial HDL. Therefore, any translation from our HDL to a
commercial HDL cannot be verified.*

4Tt seems unlikely that we will have a meaning for a commercial HDL in the near future.
Most commercial HDLs that we have investigated are large and complex, and these languages
do not have formally defined syntax or semantics. A reasonable approach might be to formally
define a subset of a popular commercial HDL. However, even with such a definition the
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The Boyer-Moore theorem prover is implemented in Common Lisp and ma-
nipulates Lisp representations of Boyer-Moore logic terms. The Boyer-Moore
theorem prover provides Common Lisp implementations of functions defined in
the logic. These Common Lisp procedures are an integral part of the mechaniza-
tion of the logic, i.e., the soundness of the theorem prover depends upon their
correctness. We use the Common Lisp versions of the formal boxlist-creating
functions as the basis of our translations. For example, the boxlist-generating
function (V-ADDER-BOXLIST N) in the Boyer-Moore logic has a Common Lisp
counterpart (*1*V-ADDER-BOXLIST N). Evaluating (#1xV-ADDER-BOXLIST 4) in
Common Lisp yields the boxlist below.

>(((V-ADDER . 4)
((CARRY . 5)
a.4) @A.3@G.2) @Ga.1D
(B.4) (B.3)@®.2) B.1)

((SuM . 4) (SUM . 3) (SUM . 2) (SUM . 1) (CARRY . 1))

((((SUM . 4) (CARRY . 4)) (FULL-ADDER (A . 4) (B . 4) (CARRY . 5)))
(((SUM . 3) (CARRY . 3)) (FULL-ADDER (A . 3) (B . 3) (CARRY . 4)))
(((SUM . 2) (CARRY . 2)) (FULL-ADDER (A . 2) (B . 2) (CARRY . 3)))
(((SUM . 1) (CARRY . 1)) (FULL-ADDER (A . 1) (B . 1) (CARRY . 2)))))

(FULL-ADDER (A B C) (SUM CARRY)
(((SUM1 CARRY1) (HALF-ADDER A B))
((SUM CARRY2) (HALF-ADDER SUM1 C))
((CARRY) (B-OR CARRY1 CARRY2))))

(HALF-ADDER (A B) (SUM CARRY)
(((SUM) (B-XOR A B)) ((CARRY) (B-AND A B)))))

To make the translation process concrete, we present the translation of the
circuit box above into LSI Logic’s NDL. This translation is performed by adding
keywords and other bits of syntax to our circuit box expression; translating
Lisp lists into comma-separated lists; converting our formal gate names into
LSI Logic macrocell names; and translating our CONS-indexed names into a
more standard form. The result of converting the boxlist above into NDL is
shown in Figure 11.

To perform the translation of boxlists into NDL, we have written a translator
in Common Lisp. The complete source text for our translator is less than two
pages of Lisp code. Since there is no formal model of NDL, we are not able to
verify our translator, but we are pleased that it is so short.

software tools used to create integrated circuit masks from HDL circuit specifications will not

be verified.
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COMPILE;
DIRECTORY MASTER;

MODULE V-ADDER_4;

INPUTS CARRY 5,A 4,A3,A2,A 1,B4,B.3,B2,B_1;
0UTPUTS SUM_4,SUM_3,SUM_2,SUM_1,CARRY_1;

LEVEL FUNCTION;
DEFINE
G_0(SUM_4,CARRY_4)
G_1(SUM_3,CARRY_3)
G_2(SUM_2,CARRY_2)
G_3(SUM_1,CARRY_1)
END MODULE;

FULL-ADDER(A_4,B_4,CARRY.5) ;
FULL-ADDER(A_3,B_3,CARRY_4) ;
FULL-ADDER(A_2,B_2,CARRY_3);
FULL-ADDER(A_1,B_1,CARRY_2);

MODULE FULL-ADDER;

INPUTS A,B,C;

OUTPUTS SUM, CARRY;

LEVEL FUNCTION;

DEFINE

G_0(SUM1,CARRY1) = HALF-ADDER(A,B);
G_1(SUM,CARRY2) = HALF-ADDER(SUM1,C);
G_2(CARRY) = OR2(CARRY1,CARRY2);

END MODULE;

MODULE HALF-ADDER;
INPUTS A,B;

OUTPUTS SUM,CARRY;
LEVEL FUNCTION;
DEFINE

G_0(SUM) = EO(A,B);
G_1(CARRY) = AN2(A,B);
END MODULE;

END COMPILE;
END;

Figure 11: NDL Translation of a Four-bit Adder

40
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11 Conclusions

The formalization of even a simple, combinational HDL is more subtle and
complex than might first be imagined; however, the usefulness of having circuits
represented as data cannot be over-emphasized. Our HDL enjoys the benefits
of being purpose-built for concisely and directly expressing hardware circuits,
but incurs the costs associated with having to prove the correctness of circuit
operation through an interpreter.

We believe that it is possible to formalize features of commercial CAD lan-
guages. If this is possible, then we may be able to adapt existing verification
systems to support commercial CAD systems. We do not expect commercial
CAD system suppliers to convert to formal systems (e.g., HOL, Boyer-Moore,
NuPRL) without these systems being able to support the kinds of activities
commercial customers now enjoy.

The use of arbitrary heuristics is possible for provably correct circuit gen-
erating functions. For instance, consider a heuristic that chooses between two
correct implementations. The heuristic may perform any amount of analysis,
but no matter what choice is returned the resulting circuit generated will still
be correct. We employed a simple algebraic choice heuristic in the verification
of our ALU generator; this heuristic helps control the fanout of the control lines.
It is easy to imagine much more sophisticated heuristics.

Modeling circuits as data in a formal logic has important benefits: well-
formed circuits can be formally specified, programs can be used to manipulate
circuits, circuits can be verified, and the verification of circuit manipulating
tools (e.g., a logic minimizer) can be accomplished. That is, it is possible to
build a system where verified circuits are created with the assistance of verified
tools. For instance, a verified synthesis program could be constructed, thus
eliminating the need for after-the-fact proofs. Our ALU circuit generator is an
instance of a verified synthesis program.

We believe the formalization of as much of the design space as possible is
critical to the production of higher quality hardware. We are presently extend-
ing our HDL to include registers, tri-state and open-collector logic, and other
features germane to digital hardware design. It is important that we continue to
extend our formal models to include any notion of hardware specification that
is important to correctly build computing hardware.

Even though the notion of a formula manual is many years off, we believe
formal methods will play an increasingly important role in the construction of
predictable computer hardware. The ability to provide multiple interpretations
for circuits expressed with our HDL is a step toward providing greater formal
modeling coverage of physical properties important to correct hardware device
operation.
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