Mathematical Methods 23
for Digital Systems Development
Technical Report #67

[8]

[10]

[11]

[12]

[13]

Matt Kaufmann, “A User’s Manual for an Interactive Enhancement
to the Boyer-Moore Theorem Prover,” Technical Report 19, Compu-
tational Logic, Inc., 1988.

J Strother Moore, “A Mechanically Verified Language Implemena-
tion,” Journal of Automated Reasoning, 5(4), December, 1989.

James H. Paul, Gregory C. Simon, “Bugs in the Program, Problems
in Federal Government Procurement Regulation,” U. S. House of Rep-
resentatives, September, 1989.

L. Robinson and K. Levitt, “Proof Techniques for Hierarchically Struc-
tured Programs,” CACM, 20(4): April, 1977.

Larry Wos and William McCune, “Challenge Problems Focusing on
Equality and Combinatory Logic: Evaluating Automated Theorem-
Proving Programs,” Springer-Verlag Lecture Notes in Computer Sci-
ence 310, Proceedings of the 9th International Conference on Auto-
mated Deduction, May, 1988.

William D. Young, “A Mechanically Verified Code Generator,” Jour-
nal of Automated Reasoning, 5(4), December, 1989.

Mathematical Methods 22
for Digital Systems Development
Technical Report #67

A verified system may be functionally entirely correct but intolerably in-
efficient; efficiency concerns are seldom addressed in formal specification.

e The verification process may be flawed or not carried out carefully enough.

e The tools supporting the verification process may not provide a correct
implementation of the underlying logic.

e The verification may have been carried out to a certain level of abstraction
but the system fail at some even lower level.

These and other important concerns must be addressed; important research
issues are still to be faced.

The methods currently available certainly are not mature enough to make
any substantial contribution to enhancing the level of assurance in, say, the
Strategic Defense Initiative. However for smaller critical applications, they can
make a real contribution of enhanced assurance. This potential contribution has
long been recognized in specialized areas, notably secure computing and safety
critical applications. The work on the verified stack has shown that by following
a systematic mathematical approach supported by a powerful automated proof
tool, highly reliable systems can be constructed. Additional applications of such
methods will undoubtedly emerge.

References

[1] Robert L. Akers, Bret A. Hartman, Lawrence M. Smith, Millard C.
Taylor, William D. Young, Gypsy Verification Environment User’s
Manual. Technical Report 61, Computational Logic, Inc., 1990.

[2] William R. Bevier, “Kit and the Short Stack,” Journal of Automated
Reasoning, 5(4), December, 1989.

[3] William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, William D.
Young, “An Approach to Systems Verification,” Journal of Automated
Reasoning, 5(4), December, 1989.

[4] R. S. Boyer and J S. Moore. A Computational Logic, Academic Press,
New York, 1979,

[5] R. S. Boyer and J S. Moore, A Computational Logic Handbook. Aca-
demic Press, Boston, 1988.

[6] Warren A. Hunt, Jr., “Microprocessor Design Verification,” Journal
of Automated Reasoning, 5(4), December, 1989.

[7] Jeffery Joyce, Graham Birtwistle, and Mike Gordon, “Proving a Com-
puter Correct in Higher Order Logic,” University of Calgary, Depart-
ment of Computer Science, August, 1985.

Mathematical Methods 21
for Digital Systems Development
Technical Report #67

environment of his program is undermining those abstractions. We have built
several simple application programs in Micro-Gypsy and used the verified stack
to translate them to a semantically equivalent load image for the FM8502 mi-
CTOPTOCEsSOr.

Using the same basic approach described above we have also implemented
and proved correct a simple operating system, called Kit[2]. Kit is a small op-
erating system kernel written for a uniprocessor von Neumann machine, and is
proved to implement a fixed number of conceptually distributed communicat-
ing processes on this shared computer. In addition to implementing processes,
Kit provides the following verified services: process scheduling, error handling,
message passing, and an interface to asynchronous devices.

The proof of correctness involves showing that a certain block of about 3K
16-bit words when executed by the target machine implements a fixed number
of isolated target machines capable of communicating only through shared I/0
buffers. While Kit is not big enough to be considered a kernel for a general
purpose operating system, it does confront some important operating system
phenomena. It is adequate for a small special purpose system such as a com-
munications processor.

The uniprocessor for Kit is very similar to the FM8502 microprocessor but
was developed concurrently and more or less independently. A consequence of
this is that Kit does not fit precisely into our verified stack. But because of the
similarity of the two machines, we are confident that we could produce a verified
stack with a multiprocessing operating system sitting between the machine code
level and the Piton level.

We hope to be able to eventually incorporate Kit-like operating system ca-
pabilities into the verified stack between the machine code level and the Piton
level. This will allow us to run several communicating parallel Piton processes.
It may also permit Micro-Gypsy to be extended to include Gypsy concurrent
processing capabilities and I/0.

The verified stack i1s far from a state-of-the-art software development en-
vironment. The components are special-purpose and limited in functionality.
However, it serves as a convincing proof of principle. Formal methods can be
used in the construction of highly reliable computing systems of at least mod-
erate complexity. Verified components can be assembled into a system that is
more than simply the sum of its parts, one that provides a level of assurance
that any piece alone could not provide.

7 Conclusions

Formal methods are not a complete solution to the “software crisis.” Even a
hierarchically verified system is not guaranteed to be absolutely reliable. A
number of things can go wrong.

e The specifications may have been wrong or incomplete.

Mathematical Methods 20
for Digital Systems Development
Technical Report #67

Applications

Y

Micro-Gypsy

Y

Piton

FM8501

Y

Gates

Y

O—CO—CO—0O—0
O—0O—0O—0O—0

Figure 4: The CLI Stack

Mathematical Methods 19
for Digital Systems Development
Technical Report #67

ROM containing microcode instructions. The step function uses combi-
national logic to determine the new contents of the various state-holding
devices as a function of the current values and signals arriving on various
input lines such as the reset, the data acknowledgement and the data
in lines.

Relating each pair of adjacent machines is an tmplementation or MapDown
function, represented formally as a function in the logic, that maps a higher-
level state into a lower-level state. The implementation function is known as a
“compiler” for the step from Micro-Gypsy to Piton, but as a “link-assembler”
for the step from Piton to FM8502. In addition, for each such pair of machines
we define the MapUp function that is a partial inverse of the implementation.
The Map Up function for the Piton implementation, for example, interprets bit
strings in the FM8502 memory as elements of the various data types of Piton.

The correctness of each implementation is characterized by a theorem in
the Boyer-Moore logic representing an appropriate commutative diagram as
explained above. Each of the implementations has been proved correct:

e the correctness of a gate-level register-transfer model of a machine code
machine,

e the correctness of a link-assembler from an assembly level language to
binary machine code,

e the correctness of a compiler from Micro-Gypsy to assembly language, and

These proofs were all constructed by the Boyer-Moore theorem prover.

We have proved the additional results necessary to let us “stack” the three
correctness results. For example, a legal Micro-Gypsy program that executes
without high-level errors is compiled into a legal Piton program that executes
without Piton-level errors, etc. We thus obtain a theorem that tells us that the
error-free execution of a legal Micro-Gypsy program can equivalently be carried
out by the microcode machine on the low level state obtained by compiling,
link-assembling, loading, and resetting the gate-level machine. Furthermore, we
constructively characterize the number of microcycles required. Figure 4 illus-
trates the current verified stack. We add applications to the “top” of the stack
since each verified application written in Micro-Gypsy is really an extension to
the stack and possibly provides additional abstractions above what is directly
provided in that language.

The result of tying all these efforts together into a unified whole is that
an applications programmer can devise a solution to his programming problem
and reason rigorously about his efforts within the framework of the high-level
language, confident in the knowledge that his program will be translated into
a semantically equivalent representation running on hardware at a much, much
lower-level of abstraction. He retains the conceptual benefits of the abstrac-
tion provided by a high-level language without the worry that the execution

Mathematical Methods 18
for Digital Systems Development
Technical Report #67

abstract machine definitions “in the middle” correspond exactly. That is, the
concrete-level machine for the upper diagram must match exactly the abstract-
level machine for the lower diagram. Also, MapDown, must always yield a state
that satifies the GOOD-STATE predicate for machine M2. If these conditions are
satisfied, we will have established that the high level machine M1 is correctly
implemented on the machine M3, two levels below. It should be apparent that
any number of proofs of the type we have described can be “stacked” in this
fashion. This makes it possible to establish the correct implementation of a
machine in terms of another machine that is any number of levels less abstract.

6 The CLI Stack

The approach described in the previous section has been used to establish for-
mally the correctness of an abstract machine provided by a simple high-level
language in terms of the abstract machine representing the implementation of a
micro-processor by a collection of hardware gates. The intermediate level ma-
chines represent an assembly language, machine language, and hardware func-
tional design. This hierarchical system contains the following components.

e Micro-Gypsy[13]-a high-level programming language. The state consists
of a current expression, local variable bindings, and a condition code,
together with a static collection of programs in symbolic form. The step
function is the recursive statement evaluation for a language providing
if-then-else, begin-when blocks, iteration, sequencing, procedure call, and
condition signaling.

e Piton[9]-a high-level assembly language. The state consists of an execute-
only program space containing named programs in symbolic form, a stack,
a read-write global data space organized as disjoint, symbolically named
variables and 1-dimensional arrays, and some control information. The
step function is the “single stepper” for a stack-based language, providing
seven different data types including integers, Booleans, data addresses,
and program addresses.

e FM8502[6]-a machine code interpreter. The state consists of eight 32-bit
wide registers, four condition code bits, and 232 32-bit words of memory.
The step function is the “single stepper” for a machine code that provides
a conventional, orthogonally organized 2-address instruction set. This
machine is comparable to a PDP-11 in the complexity of the ALU and
instruction set. However, the machine lacks interrupts, supervisor/user
modes, and support for virtual memory management.

o (Gates—a register-transfer model of a microcoded machine. The state is a
collection of 32-bit wide registers and latches, various one bit flags and
latches, an array of 232 32-bit wide words representing memory, and a

Mathematical Methods
for Digital Systems Development
Technical Report #67

M1

O
&

MapDown1 MapUpl

-
—

M2

Y

M2

OO
OO

MapDown2 MapUp2

~——————
—>

e O
w O O
MapDown1 MapUp2
(b) : ;
MapDown2 MapUpl
Y
M3 >

A

Figure 3: Composing Equivalence Theorems

17

Mathematical Methods 16
for Digital Systems Development
Technical Report #67

MapDown MapUp

Figure 2: Equivalence of Machines

1. run the abstract interpreter directly on the initial abstract state and view
the results;

2. map the abstract state down to a corresponding concrete state, run the
concrete interpreter, and map the results back up to the abstract world.

If these two approaches always yield the same result, then the abstract layer is
correctly implemented in the concrete layer. With a little thought, it is easy
to see that this is a reasonable abstraction of what is usually meant by saying
that a compiler is correct or that a piece of hardware i1s correctly implemented
in some technology.

In the Boyer-Moore logic the correctness theorem is stated roughly as follows:

Theorem: IMPLEMENTS-RELATION
(IMPLIES (GOOD-STATE ASTATE)
(EQUAL (MAPUP (INTERPRET-C (MAPDOWN ASTATE)))
(INTERPRET-A ASTATE)))

The hypothesis (GOOD-STATE ASTATE) assures that the initial abstract state is a
legitimate state from which to begin. Obviously, specific layers are only fully de-
fined when we have completely defined the functions GOOD-STATE, INTERPRET-C,
INTERPRET-A, MAPUP, and MAPDOWN.

Suppose that we can prove two such theorems establishing the correct im-
plementation of machine M1 on M2 and of machine M2 on M3. These theorems
are represented by the commuting diagrams in figure 3-(a). Under certain con-
ditions, it is possible to compose the machine definitions to obtain the theorem
represented by the commuting diagram in figure 3-(b). To be able to com-
pose the commuting diagrams in this fashion it must be the case that the two

Mathematical Methods 15
for Digital Systems Development
Technical Report #67

provides convenient computational abstractions that are not available directly
on the hardware platform that supports it. The language is implemented by a
compiler that translates high-level language programs to semantically equiva-
lent assembly level language programs. That is, the abstractions of the high-
level language are really provided in terms of the abstractions available at the
assembly level (and possibly by the operating system of the machine). The ab-
stractions of the assembly language are provided in turn by an assembler on top
of the abstractions of the hardware. The abstractions of the hardware model
are provided by some collection of hardware gates, wires, and registers.

Thus an applications programmer is typically relying upon a rather sizable
collection of system software and hardware, including compilers, assemblers,
operating systems, and the underlying machine hardware. The “correctness”
of an applications program, then, ultimately depends upon the correctness of
the underlying support software and hardware, over which the applications pro-
grammer has little control. This means that effort expending in applying even
the best formal methods to guaranteeing the “correctness” of a program may
be vitiated if the supporting layers are flawed.

One approach to dealing with this problem is to apply our methods to the
analysis of the underlying support software and hardware and building ap-
plications on top of a “stack” of verified components. This is called systems
verification[3]-the “layering” of verified components to construct highly reliable
hierarchically-structured computing systems. Each “layer” (except the lowest)
is proven to be correctly implemented on the next lower layer in the hierarchy.

Using abstract machine models we can characterize the semantics of the
individual layers in our stack. To connect adjacent layers, we need to have a
way of formally establishing that a lower level machine “implements” a higher
level machine. Formally, let Int4 : S4 — S4 and Inte : S¢ — S be interpreter
functions that define two machines M4 and M¢. (The subscripts A and C' are
chosen to suggest abstract and concrete machines, the higher and lower level
machines, respectively.) Let MapUp : S¢ — Sa be an abstraction function that
maps a concrete state to an abstract state, and let MapDown : S, — Sc map an
abstract state to a concrete state. MapDown is the function that takes us from
the higher level abstraction to the lower level. For our high-level language, this
would be the compiler that translates a high-level state containing a program
and its data structures into a low-level state containing a corresponding assembly
language program with its data structures. The MapUp function in turn takes
a low-level state and “reads out” the results in terms that are meaningful in the
high-level context. An example of MapUp is the function that takes bit strings
in a computer memory and prints them out as numbers or characters depending
on the context.

We say that Mo itmplements My if the following theorem holds.

This theorem is a formalization of the “commuting diagram” depicted in
figure 2. Intuitively, it asserts that there are two possible ways to obtain the
results of an (abstract) computation:

Mathematical Methods 14
for Digital Systems Development
Technical Report #67

e if b then stmtl else stmt2: if b is true execute stmtl, otherwise
execute stmt2.

Conceptually, the interpreter function for this language might take the form:

(INTERPRET PROGRAM STATE)

(IF PROGRAM is <skip>
STATE
(IF PROGRAM is <stmtl; stmt2>
(INTERPRET <stmt2> (INTERPRET <stmt> STATE))
(IF PROGRAM is <while b do stmt>
(IF evaluates to TRUE in STATE
(INTERPRET <while b do stmt>
(INTERPRET <stmt> STATE))
STATE)
(IF PROGRAM is <if b then stmtl else stmt2>
(IF evaluates to TRUE in STATE
(INTERPRET <stmti1> STATE)
(INTERPRET <stmt2> STATE))
<other constructs of the language>))).

Such interpreter semantics or operational semantics have been written for pro-
gramming languages for many years. As early as 1962, this approach was used
by John McCarthy to describe the semantics of the Lisp programming language.

Given an accurate operational characterization of a machine or a program-
ming language, we can precisely describe the effects of a program running on
that machine or written in that language. Moveover, we can state and prove
interesting properties of the language itself. For example, the following rather
trivial theorem is easily provable of the language characterized by the INTERPRET
function.

Theorem: EQUIVALENCE-OF-WHILE-AND-IF
(IMPLIES evaluates to FALSE in STATE
(EQUAL (INTERPRET <while b do stmt> STATE)
(INTERPRET <skip> STATE))).

One use of this theorem is to sanction a compiler to replace any occurrence of
a while statement by a skip, assuming the compiler can establish statically
that the test of the while is false. Such ability to reason formally about the
language, as opposed to reasoning about programs in the language, has been
largely neglected.

Given a mathematical definition of a system—a language or a machine-we can
also potentially verify that the system is correctly implemented on lower-level
machines. Almost any system is constructed “on top of” another conceptu-
ally lower-level system. A high-level language, for example, is useful because it

Mathematical Methods 13
for Digital Systems Development
Technical Report #67

then terminates returning the state which results. Termination is guaranteed
since the (natural number valued) counter N is decremented in each recursive
call until it reaches zero.

The function STEP defined as follows.

(STEP STATE) = (EXECUTE (FETCH STATE) STATE)

Notice that the functions MACHINE and STEP characterize a broad class of com-
puting systems.

The details of fetching and executing particular instructions is buried within
the functions FETCH and EXECUTE; Specific machines are defined by formalizing
these functions. Typically, the EXECUTE function is merely a large IF expression
that describes the effect of each of the legal types of instructions for the machine
and the effect of each on the state of the machine. For example, it might take
the form:

(EXECUTE INST STATE)

(IF (IS-HALT-INSTRUCTION INST)
STATE

(IF (IS-ADD-INSTRUCTION INST)
<perform add operation>

(IF (IS-MULT-INSTRUCTION INST)
<perform multiplication operation>
<other possible operations>)))

Models such as this have been used to formally characterize a number of hard-
ware devices, including several microprocessors[6,7].

In addition to the modeling of hardware devices, similar techniques can
be used to define the semantics of programming languages. Here we think of
the defining function as an “interpreter” for the language and the state of the
machine as the memory or collection of data structures on which the program
is operating.

For an assembly level language in which a program is merely a list of simple
instructions, the form of the interpreter is very similar to the function MACHINE
above. For a higher-level language in which various statement types contain
other statements as subparts, the structure of the interpreter becomes more
complicated. Consider a high-level programming language that contains, among
others, the following constructs:

e skip: do nothing;
e stmtl; stmt2: execute stmtl and then stmt2 in the resulting state;

e while b do stmt: as long as b remains true, repeatedly execute stmt;

Mathematical Methods 12
for Digital Systems Development
Technical Report #67

chores and record keeping for which the human is ill-suited. This is not to say
that mechanical provers could not make a genuine contribution to the more
“creative” aspects of mathematics. For example, mechanical theorem provers
developed by L. Wos and his colleagues at the Argonne National Laboratories
have answered a number of previously open questions in mathematics[12]. For
the foreseeable future, however, mechanical provers are likely to remain a useful
tool of human mathematicians rather than a replacements for them.

In assuring the correctness of computing system, a powerful prover such as
the Boyer-Moore prover can play several useful roles. Many of the theorems
that arise in context of program verification are relatively uninteresting from a
mathematical perspective yet may be quite tedious to prove, requiring the han-
dling of numerous quite similar cases. One useful role for a mechanical prover is
in assuring that all cases are covered and in handling much of the low-level proof
effort. That is, the prover can be used as the “proof engine” in a system that
processes specifications and programs, even if those specification and programs
are not expressed directly within the Boyer-Moore logic. It need only be possi-
ble to translate conjectures into the Boyer-Moore logic for presentation to the
theorem prover. An earlier version of the Boyer-Moore prover was used in this
fashion in the Hierarchical Development Methodology[11] of Stanford Research
Institute.

An alternative approach is to use the Boyer-Moore logic directly as a specifi-
cation language. Within the logic it is possible to model interesting computing
systems and to state desired properties of them. With the support of the theo-
rem prover we can then develop proofs of these properties, i.e. verify the system
with respect to its specification.

An approach that has been used successfully by the author and others has
been to model computing system as abstract “machines” defined as function
in the logic. Such an abstract machine is a mathematical model characterizing
each possible operation in the system by its effect on a “state”; this model gives
an operational characterization of the behavior of the machine.

5 Mathematical Modeling of Digital Systems

Consider modeling a typical computer at the assembly language level. At each
step in the execution of a program, the machine retrieves an instruction from
memory and executes it; this is the so-called “fetch-execute cycle” of the ma-
chine. To model the execution of the machine for N steps we define the function:

(MACHINE STATE N) = (IF (ZEROP N)
STATE
(MACHINE (STEP STATE) (SUB1 N))),

where STATE contains the abstract state of the machine including the memory,
registers, error flags, program counter, etc. This function “runs” for N steps and

Mathematical Methods 11
for Digital Systems Development
Technical Report #67

system’s behavior is influenced by the data base of lemmas that have already
been formulated by the user and proved by the system. Each conjecture, once
proved, is converted into one or more rules and stored in the prover’s database
to guide the theorem prover’s actions in subsequent proof attempts. Often these
are rewrite rules, but there are other specialized types of rules as well.

A data base is thus more than a logical theory; it is a set of rules for proving
theorems in the given theory. The user leads the theorem prover to difficult
proofs by programming its rule base. Given a goal theorem, the user gener-
ally discovers a proof himself, identifies the key steps in the proof, and then
formulates them as lemmas, paying particular attention to their interpretation
as rules. The key role of the user in the system is guiding the theorem prover
to proofs by the strategic selection of the sequence of theorems to prove and
the proper formulation of those theorems. Successful users of the system must
know how to prove theorems in the logic and must understand how the theorem
prover interprets them as rules.

Using this approach the Boyer-Moore prover has been used to check the
proofs of some quite deep theorems.! For example, some theorems from tradi-
tional mathematics that have been mechanically checked using the system in-
clude proofs of: the existence and uniqueness of prime factorizations; Gauss’ law
of quadratic reciprocity; the Church-Rosser theorem for lambda calculus; the
infinite Ramsey theorem for the exponent 2 case; and Goedel’s incompleteness
theorem. Somewhat outside the range of traditional mathematics, the theorem
prover has been used to check: the recursive unsolvability of the halting problem
for Pure Lisp; the proof of invertibility of a widely used public key encryption
algorithm; the correctness of metatheoretic simplifiers for the logic; the correct-
ness of a simple real-time control algorithm; the optimality of a transformation
for introducing concurrency into sorting networks; and the correctness of an
implementation of an algorithm for achieving agreement among concurrently
executing processes in the presence of faults. When connected to a specialized
front-end for Fortran, the system has also proved the correctness of Fortran
implementations of a fast string searching algorithm and a linear time majority
vote algorithm. Many other interesting theorems have been proven as well.

It is important to note that all of these proofs were checked by the same
general purpose theorem prover, not a number of specialized routines optimized
for specific problems. Still, despite its apparent versatility and mathematical
acumen, the Boyer-Moore theorem prover does not have any deep mathematical
insight. The proof of each of these quite difficult theorems was achieved through
the clever automated heuristic application of some simple proof strategies and
through the development of powerful theories under the guidance of a human
mathematician. The theorem prover’s contribution is in assuring the soundness
and consistency of the result and in attending to many of the low-level proof

1Some of these proofs used the interactive enhancement to the Boyer-Moore prover devel-
oped by Matt Kaufmann([8].

Mathematical Methods 10
for Digital Systems Development
Technical Report #67

(prove-lemma associativity-of-append (rewrite)
(equal (append (append x y) z)
(append x (append y z))))

Call the conjecture *1.

Perhaps we can prove it by induction. Three inductions are
suggested by terms in the conjecture. They merge into two likely
candidate inductions. However, only one is unflawed. We will
induct according to the following scheme:

(AND (IMPLIES (AND (LISTP X) (p (CDR X) Y Z))
(p XY Z))
(IMPLIES (NOT (LISTP X)) (p X Y Z))).

Linear arithmetic and the lemma CDR-LESSP can be used to prove
that the measure (COUNT X) decreases according to the well-founded
relation LESSP in each induction step of the scheme. The above
induction scheme leads to two new goals:

Case 2. (IMPLIES (AND (LISTP X)
(EQUAL (APPEND (APPEND (CDR X) Y) Z)
(APPEND (CDR X) (APPEND Y Z))))
(EQUAL (APPEND (APPEND X Y) Z)
(APPEND X (APPEND Y Z)))),

which simplifies, applying the lemmas CDR-CONS and CAR-CONS, and
opening up the definition of APPEND, to:

T.
Case 1. (IMPLIES (NOT (LISTP X))
(EQUAL (APPEND (APPEND X Y) Z)
(APPEND X (APPEND Y Z)))),
which simplifies, unfolding the function APPEND, to:

T.

That finishes the proof of *1. Q.E.D.

Figure 1: Proof of the lemma ASSOCIATIVITY-OF-APPEND

Mathematical Methods 9
for Digital Systems Development
Technical Report #67

interesting properties of them. Since the logic contains rules of inference, it is
also possible to construct proofs of these properties as in any of the more famil-
iar formal mathematical systems. However, as mathematical objects, models of
large scale computing systems tend to be quite complex. Proofs of their proper-
ties are often highly repetitive, involving a large number of cases and sometimes
tedious low-level reasoning. As noted earlier, humans are notoriously poor at
managing this type of complexity. Automated proof assistance can help in man-
aging complexity and in guaranteeing that cases are not overlooked. Much of
the most tedious reasoning can be done mechanically.

A powerful mechanical theorem proving program has been written by Boyer
and Moore for reasoning about expressions in their logic (and distributed free
of charge via anonymous file transfer). The Boyer-Moore theorem prover is a
computer program that takes as input a conjecture formalized as a term in the
logic and attempts to prove it by repeatedly transforming and simplifying it.
The theorem prover employs eight basic transformations:

e decision procedures for propositional calculus, equality, and linear arith-
metic;

e rewriting based on axioms, definitions and previously proved lemmas;

e automatic application of user-supplied simplification procedures that have
been proven correct;

e climination of calls to certain functions in favor of others that are “better”
from a proof perspective;

e heuristic use of equality hypotheses;

e generalization by the replacement of terms by variables;
e elimination of apparently irrelevant hypotheses; and

e mathematical induction.

The theorem prover contains many heuristics to control the orchestration of
these basic techniques.

The system displays a script of the proof attempt allowing the user to fol-
low the progress of the proof and take steps to abort misdirected proof at-
tempts. From the script it is often apparent to the skilled user how to im-
prove the prover’s knowledge base so that a subsequent proof attempt will suc-
ceed. The script printed by the prover in discovering the proof of the lemma
ASSOCIATIVITY-OF-APPEND is shown in Figure 1.

In a shallow sense, the prover is fully automatic; the system accepts no advice
or directives from the user once a proof attempt has started. The only way the
user can alter the behavior of the system during a proof attempt is to abort
the attempt. However, in a deeper sense, the theorem prover is interactive; the

Mathematical Methods 8
for Digital Systems Development
Technical Report #67

The logic also provides a principle of recursive definition under which new
function symbols may be introduced. The following, for example, is a definition
within the logic of a list concatenation function APPEND.

(APPEND X Y) = (IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y).

This equation submitted as a definition is accepted as a new axiom under certain
conditions that guarantee that one and only one function satisfies the equation.
One of these conditions is that certain derived formulas be theorems. Intuitively,
these formulas insure that the recursion terminates by exhibiting a “measure”
of the arguments that decreases, in a well-founded sense, in each recursive call
of the function.

The rules of inference of the logic, in addition to those of propositional
calculus and equality, include mathematical induction. The formulation of the
induction principle is similar to that of the definitional principle. To justify an
induction schema it is necessary to prove certain theorems that establish that,
under a given measure, the inductive hypotheses are about “smaller” objects
than the conclusion. Using induction it is possible to prove such theorems as
the associativity of the APPEND function defined above; this can be stated as a
theorem in the logic.

Theorem ASSOCIATIVITY-OF-APPEND
(EQUAL (APPEND (APPEND A B) C)
(APPEND A (APPEND B C)))

Notice that this theorem provides a partial specification of the APPEND func-
tion. It is one of myriad properties of this function and its relation to others
that can be defined and proved within the logic. Notice also that this theorem,
once proven, becomes available for use in the proofs of subsequent theorems. In
particular, we can use it as a rewrite rule-i.e., we can interpret it as sanctioning
the replacement of any expression that matches the left hand side of the equality
by the corresponding instance of the right hand side. Thus, for example, the
expression

(APPEND (APPEND V (APPEND W X)) (APPEND Y Z))
can be readily shown to be equal to
(APPEND V (APPEND W (APPEND X (APPEND Y Z))))

by two applications of ASSOCIATIVITY-OF-APPEND interpreted as a rewrite rule.
By defining and proving rewrite rules, it is possible to build up a powerful theory
for proving interesting facts about a specific domain.

As we will illustrate shortly, the Boyer-Moore logic can be used to build
mathematical models of even quite complex computing systems and to state

Mathematical Methods 7
for Digital Systems Development
Technical Report #67

may permit a program to be “proven” to meet its specifications when it actually
does not do so.

Often, automated assistance is available for recognizing (parsing) specifica-
tions and programs, for processing and storing them, and for reasoning about
them. These range from simple parsers for checking the syntactic adequacy
of specifications to complete verification systems providing automated support
for all phases of the verification process. For example, one of the most ma-
ture implementations of formal methods for software development, is the Gypsy
Verification Environment[1]. This system provides automated support for in-
teractively editing programs and specifications, parsing them, generating logical
formulas sufficient to assure that a program satisfies its specifications, check-
ing the proofs of those formulas, and interactively modifying a program and its
specifications while maintaining an accurate view of the changing proof status
of the program.

4 The Boyer-Moore Logic and Theorem Prover

A wide diversity of methods and automated systems that support their use
are available. To illustrate the utility of formal methods, we concentrate in this
paper on one approach used at Computational Logic, Inc. in developing a highly
reliable hierarchically verified computing system. This is the logic devised by
Robert S. Boyer and J Strother Moore and its supporting proof system[4,5].
The Boyer-Moore logic is a simple quantifier-free, first-order logic resembling
in syntax and semantics the Lisp programming language. Terms in the logic are
written using a prefix syntax—we write (PLUS I J) where others might write
PLUS(I,J) or I+J. The logic is formally defined as an extension of propositional
calculus with variables, function symbols, and the equality relation. Axioms are

added defining the following:

e the Boolean (logical) constants (TRUE) and (FALSE), abbreviated T and
F.

)

e the if-then-else function, IF, with the property that (IF x y z) is z if x
is F and y otherwise;

e the Boolean connectives AND, OR, NOT, and IMPLIES;

e the equality function EQUAL, with the property that (EQUAL x y) is T or
F according to whether x is y;

e and inductively constructed objects including natural numbers, ordered
pairs, and literal atoms.

In addition, there is the ability within the logic to add user-defined inductive
data structures.

Mathematical Methods 6
for Digital Systems Development
Technical Report #67

the specification be captured in some standardized notation if possible. Of
course, there are likely to be less readily quantifiable or formalizable aspects of
the design as well, eg. involving aesthetic concerns and the degree to which the
design harmonizes with its intended setting. This means that formal specifica-
tions are usually only partial specifications. For any realistic system, there are
desirable properties that it is not possible or desirable to formalize.

Over the past few years a variety of specification languages have been de-
vised; some of the most widely used being Z, VDM, Larch, Gypsy, and OBJ.
Though some of them have been used for specifying systems other than com-
puting systems, for our purposes we view the role of a specification language
as providing a well-defined and unambiguous formalism for expressing desired
properties of computing systems. Some of these languages take a declarative
approach in which the desired properties of the system are stated without ref-
erence to the mechanisms by which these ends are attained. Other languages
take a more procedural approach in which the properties are stated in terms of
an “abstract implementation” of the system displaying one way in which the
desired results can be obtained. Available formalisms range from the struc-
tured version of first-order logic and elementary set theory found in Z to the
full-blown programming language including concurrency and data abstraction
found in Gypsy.

Verification is the process of establishing rigorously that a design meets or
satisfies (some of) its specifications. For a bridge design, “verification” may
involve computation of the stress that the design will bear and determination
whether the resulting safety factor is adequate for the intended traffic. For a
program it means showing through rigorous analysis that every execution of
the program will have the desired effect. Some of the desirable properties of a
design may not be suitable for verification. The aesthetic properties of a bridge
or the efficiency of a computing system may be left unspecified, and hence are
“verified” only informally.

Finally, transformation involves the derivation of a more complete design
from a less complete one or from a specification. In civil engineering, an earlier
design may be adapted to meet a later need, or a chief engineer’s design may be
elaborated by his or her assistants according to accepted engineering principles
and practice. In programming, it may mean the modification of a program
via various semantics-preserving transformations to gain additional efficiency or
functionality, or the instantiation of a program “schema” to gain an instance
suitable for some programming task.

To allow either verification or transformation, there must be an underlying
logic for reasoning about specifications and programs and proving appropriate
relationships between them. That is, a specification language by itself is not
very useful unless there are rules of inference by which the specification can
be related to an implementation. The most crucial property of such a logic
is soundness—it should be impossible to derive any false conclusion from true
premises using the rules of inference of the logic. Lack of soundness in the logic

Mathematical Methods 5
for Digital Systems Development
Technical Report #67

with the Tacoma Narrows bridge, can be catastrophic.

Still, no modern engineer would seriously suggest abandoning mathematical
modeling in civil engineering. The use of mathematical techniques to inves-
tigate properties of a design before it is realized in steel and concrete yields
too many significant benefits. These include the obvious benefits of cost re-
duction and enhanced assurance that the design is safe. Less obvious are the
concomitant benefits including: more efficient use of materials; discovery and
elimination of errors early in the design process; the ability to efficiently inves-
tigate multiple design options; the possibility of automated assistance in the
design process; enhanced communication between the design and construction
teams; and better documentation of design decisions. Moreover, a widely used
common formal notation for expressing designs aids the development of a con-
venient and accessible archive of engineering successes that other designers can
study and emulate; that is, designs become more readily reusable. Because of
these benefits of mathematical modeling, a modern civil engineer would never
adopt the approach to bridge design of “let’s build it and see if it works.” Yet
amazingly this is a common approach to the construction of complex digital
systems.

3 Applying Mathematical Modeling to Digital
System Design

The field of formal methods attempts to gain the benefits of mathematical mod-
eling in the design of digital systems in much the same way that modeling is
used in design in more established engineering disciplines. Exactly what falls
under the umbrella of “formal methods” is widely debated, but it includes at
least:

e spectfication: the use of a standard notation to describe desired behavior
or properties of a system;

e verification: the application of rigorous reasoning techniques to assure
that a program satisfies its specification;

o transformation: use of (correct) semantics-preserving transitions to de-
velop an implementation from a specification.

Notice from our previous discussion that each of these activities have analogues
in traditional civil engineering practice.

Specification is merely the statement of desired properties of a design, whether
that design is of a bridge or of a computing system. Those properties may be
stated informally in English or some other natural language, or formally in the
language of mathematical logic or another notation. Since a natural language
like English is notoriously ambiguous, it is desirable for significant designs that

Mathematical Methods 4
for Digital Systems Development
Technical Report #67

contribution of mathematical models to software engineering, consider the role
of models in a more traditional engineering discipline such as civil engineering,
as in the design and construction of a bridge.

The civil engineer brings to this task a wealth of knowledge cultivated
through a long process of education, apprenticeship, and practice. He or she
has a keen grasp of the principles of structural dynamics, stress analysis, prop-
erties of materials, and diverse other fields relevant to this discipline. Moreover,
our engineer has available an extensive catalogue of sound principles of design,
well-tested engineering techniques, and previously successful design examples.
On the basis of this solid foundation of knowledge and experience, the engineer
produces an initial design (model) that specifies the structure of the bridge,
length of spans, the size and composition of supporting members, etc. The de-
velopment of this design is a highly creative process guided by the overriding
goal of a structurally sound, functionally suitable, and aesthetically pleasing
end product.

With an initial model or design in hand, by the application of well-understood
mathematical techniques the engineer can calculate whether a bridge built ac-
cording to this design will perform its intended function and support the ex-
pected load. This process of verifying mathematically the properties of the
design is essentially a partial “proof of correctness” of the design, i.e, rigorous
evidence that the design meets its specifications. Often these calculations will
show the engineer’s initial design to be perfectly adequate. This is not too
surprising since the design process itself was guided at every step by good en-
gineering principles and accompanied by an ongoing process of mathematically
verifying portions of the design before they were incorporated into the evolving
whole. A design “proven” in this manner can guide the construction of the
bridge with a high degree of confidence that the resulting structure will stand
the load.

Certainly, structurally sound bridges were built before sophisticated analytic
techniques were available. The Pons Fabricus of Rome is still in use almost
twenty centuries after its construction. But its longevity is due largely to the
fact that, from a modern standpoint, it was massively “over-engineered” for its
expected load of ancient carts and foot traffic. The Roman engineers did not
have available the mathematical modeling techniques that allow their modern
counterparts to calculate stresses in their designs and hence compute safety
factors. The result was obviously quite durable, but also much more massive
and costly to build than other structures that would have sufficed.

Using mathematical modeling in any engineering discipline is not infallible,
of course. A memorable experience in many engineering students’ educations
is viewing the riveting 1940 film of the collapse of the Tacoma Narrows bridge.
This film is a spectacular reminder of the limitations of even good engineer-
ing practice. Moreover, it illustrates a fundamental limitation of modeling; by
definition a model is an abstraction of reality. A model may abstract away or
simply overlook factors that ultimately prove to be important. The results, as

Mathematical Methods 3
for Digital Systems Development
Technical Report #67

ior. Programs are tested on a selection of potential inputs; software modules
that behave adequately for these inputs are deemed suitably reliable. Modules
that misbehave on test cases are “patched” until adequate behavior is attained.
Critics of this approach to enhancing software reliability often quote the famous
aphorism of Edsger Dijkstra that testing “can be used to show the presence of
bugs but never to show their absence.” Of course, some small programs can
be exhaustively tested. It is usually infeasible, however, to assure the absence
of errors by testing because, except for the most trivial programs, the poten-
tial input space is simply too large for exhaustive testing. Hence, according to
well-accepted industry figures, software produced by standard “good” software
engineering practice typically contains around 1-3 errors per 1000 lines of code.
At this rate, a software system of 1,000,000 lines of code could be expected
to contain 1,000 to 3,000 errors. Though there is a large research community
investigating ways to improve the efficacy of testing, testing alone is clearly
limited.

The field that has come to be known loosely as formal methods attempts
to achieve software reliability by applying mathematical modeling in the con-
struction of digital systems. Using rigorous and mathematically-based tech-
niques that model programs and computing systems as mathematical entities,
practitioners of formal methods attempt to prove that program models meet
their specifications for all potential inputs. This approach augments traditional
testing-based software engineering practice with deductive approaches to pre-
dicting software behavior and offers promise for enhancing the quality of soft-
ware, at least in selected applications.

Of course, actual computing systems—physical machines and the software
that runs on them—are not mathematical abstractions. It is only models of
these physical systems that are accessible to rigorous mathematical reasoning
techniques. Care must be taken in validating that such models capture relevant
aspects of our systems and in extrapolating the results of the mathematical
analysis to the physical reality. But, carefully applied, these methods can sig-
nificantly improve the predictability and reliability of computing systems.

In the remainder of this paper we explore the role of formal methods in digital
systems engineering and illustrate one significant application of formal methods—
the construction of a hierarchical verified systems. This system comprises a
compiler for a simple high-level language, an assembler and link-loader for an
assembly level language, and a microprocessor with its gate level realization.
We also describe a verified multi-tasking operating system.

2 Mathematical Modeling in Engineering

The key concept underlying the application of formal methods is the notion of
a mathematical model of a computing system. We will shortly discuss models
of several moderately complex systems. But first, to understand the potential

Mathematical Methods 2
for Digital Systems Development
Technical Report #67

1 Introduction

As the effects of electronic computing become increasingly pervasive, the po-
tential for serious negative consequences caused by malfunctioning or incorrect
computing systems also increases. Errors in digital systems usually result from
the failure of the designers to accurately predict the behavior of their system
under intended circumstances of use, or to foresee novel conditions of use for
which the system was not originally intended.

The potential for failure of software, particularly, has increased in recent
years as software has grown explosively in size and complexity. Commercial
aircraft often have tens or hundreds of thousands of lines of operational code.
Accounting and weapons systems routinely have code measured in millions of
line. This explosion in software size has reached what some sceptics would con-
sider absurd heights with the proposed Strategic Defense Initiative, certainly
the most ambitious software project ever conceived. Its designers have envi-
sioned fielding a system estimated to contain up to 40,000,000 lines of code.
Merely coordinating such a vast endeavor and assuring that the myriad pieces
fit together smoothly is a monumental task, leading many to question whether
such a project could ever succeed.

In addition to the complexity arising from the sheer size of the code, inher-
ently more complex application domains are coming increasingly under auto-
matic control. Modern concurrent, distributed, and real-time applications of-
ten involve subtle time-dependent and sequence-dependent interactions among
multiple processors or interactions with an unpredictable physical environment.
Such applications severely tax the analytic powers of the human charged with
assuring the quality and “correctness” of the code. Humans are notoriously
poor at managing the kinds of complexity found in these applications. When
the stakes are raised with the addition of critical safety and security concerns,
effectively eliminating any margin for error, the point is quickly reached where
the types of informal analysis traditionally applied to achieve software quality
becomes totally inadequate to gain acceptable levels of assurance.

This inability to gain adequate assurance in the quality of software con-
tributes to the much-lamented “software crisis” described as follows in a U.S.
congressional staff report.

As the complexity of systems increases, (Government managers find
that the software they buy or develop does not achieve the capabili-
ties contracted for, that it is not delivered at the time specified, and
that the cost is significantly greater than anticipated. Indeed, many
recent examples of cost overruns and degraded capability cited as
examples of Government waste, fraud and abuse can be related to
problems in the development of computer software.[10]

The standard approach to attaining assurance in the correctness of software
is to test it. Testing is an inductive approach to predicting software behav-

Mathematical Methods 1
for Digital Systems Development
Technical Report #67

Abstract. We explore the role of mathematical modeling in digital systems
development as a way to gain enhanced assurance in their correctness. We
concentrate on systems verification-the “layering” of verified components to
construct highly reliable hierarchically-structured computing systems. We illus-
trate with an existing hierarchically verified system, the CLI stack, comprising
a compiler for a simple high-level language, an assembler and link-loader for an
assembly level language, a microprocessor with its gate level realization, and a
simple multi-tasking operating system.

Mathematical Methods
for Digital Systems Development

Donald I. Good and William D. Young

Technical Report 67 August 28, 1991

Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas 78703-4776

TEL: +1 512 322 9951
FAX: 41 512 322 0656

EMAIL: good@cli.com, young@cli.com

This paper is to appear in the proceedings of VDM’91 held in The Netherlands,
October 21-25, 1991. Much of the work described was the individual and col-
lective efforts of our colleagues at Computational Logic, Inc., particularly Bill
Bevier, Bishop Brock, J Moore, and Warren Hunt. This work was supported in
part at Computational Logic, Inc., by the Defense Advanced Research Projects
Agency, ARPA order number 7406. The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as represent-
ing the official policies, either expressed or implied, of Computational Logic,
Inc., the Defense Advanced Research Projects Agency or the U.S. Government.

