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Introduction

This report contains contributions to the requested survey for FM91, ‘‘A survey of formal methods tools
and techniques’’ and ‘‘A survey of applications.’’  Two tools are covered:  (1) Nqthm, the Boyer-Moore
Theorem Prover; and (2) Pc-Nqthm, an interactive enhancement of Nqthm.  Some of the words are taken
from corresponding responses for FM89, but changes have been made.

The parts (other than this introduction) are as follows.  In the text below, these are all separated by headers
of the form

===== <section name> =====

1. Response for tool:  Nqthm

2. Response for tool:  Pc-Nqthm

3. Applications using Nqthm or Pc-Nqthm:  Part I

4. Applications using Nqthm or Pc-Nqthm:  Part II

The report concludes with references.

Perhaps some explanation of my treatment of Applications is in order.  There have been many applica-
tions of Nqthm and of Pc-Nqthm, a number of them significant.  Therefore, in order to convey this breadth
in a reasonable amount of space, I’ve chosen in (3) to list essentially all of the applications that are on-line
at Computational Logic, Inc. (the home of Nqthm and Pc-Nqthm), but with only a brief explanation of
each. (4) is the treatment of a few of these and other applications using the requested format, so that depth
can be obtained in addition to the breadth afforded by the more comprehensive listing in (3).

Acknowledgements. Many people contributed to this effort.  In particular, the final section consists
entirely of contributions made by the creators of the particular applications, with only trivial editing by
this author.  J Moore supplied the annotated list of Nqthm applications in Section 3.  Without Boyer and
Moore’s theorem prover, none of this would be possible.  And without the supportive environment at
Computational Logic, Inc., none of this would be as easy.
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===== Section 1.  Response for tool:  Nqthm =====

Name: The Boyer-Moore Theorem Prover (Nqthm)

Participants: Robert S. Boyer and J Strother Moore

Contact name and address:

J Strother Moore
Computational Logic Inc.
1717 W. 6th St., Suite 290
Austin, TX  78703

phone: (512) 322-9951
email: moore@cli.com
fax: (512) 322-0656

Level of effort:  21 years X 2 persons

Description: This is an automatic/interactive theorem prover for a first order logic resembling Pure Lisp.
The logic is based on recursive function definition and inductively defined data types.  The theorem
prover consists of about 1 megabyte of Common Lisp and contains many heuristics for controlling
rule-based rewriting and induction.

Accomplishments: Proofs of Goedel’s Incompleteness theorem, Wilson’s Theorem, Gauss’ law of quad-
ratic reciprocity, unsolvability of the halting problem, correctness of the Boyer-Moore fast string search-
ing algorithm, invertibility of the RSA encryption algorithm, Piton assembler, Micro-Gypsy compiler,
FM8502 microprocessor, FM9001 microprocessor, KIT operating system, Bitonic sort, several programs
in Unity, asynchronous communications, biphase mark protocol, 8-bit parallel io Byzantine agreement
processor, a formalization of the Motorola MC68020, a variety of MC68020 machine code programs, a
mutual exclusion algorithm, and many other problems.

Published articles and reports.

A Computational Logic, Boyer & Moore, Academic Press, 1979.

A Computational Logic Handbook, Boyer & Moore, Academic Press, 1988.

-- and, various articles on particular applications

Start date:  1971

Completion date:  1992

Future developments:  A new theorem prover based on applicative Common Lisp with significantly
greater control over hints, theories and libraries, an expanded set of built-in data types, random-access
arrays, and many other improvements.  A prototype currently exists.

Strengths/weaknesses/suitability: Sound, extensible, interactive via incorporation of user-suggested but
mechanically proved rules.  Complicated; requires experience.  Seems particularly suited for proofs about
computer systems, but has been used successfully on a wide variety of applications.
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External users:  Hundreds of copies have been distributed over the net.  Mainly university research
groups. Some industry interest.  Much government interest.

Applications: See ‘‘Accomplishments’’ above as well as the ‘‘applications’’ portion of the survey.

Availability: To get a copy follow these instructions:

1. ftp to Internet host cli.com.
(cli.com currently has Internet number 192.31.85.1)

2. log in as ftp, password guest
3. get the file /pub/nqthm/README
4. read the file README and follow the directions it gives.

Inquiries concerning tapes may be sent to:  Computational Logic, Inc.,
Suite 290, 1717 W. 6th St., Austin, Texas 78703.

Additional remarks:  See also the corresponding response for Pc-Nqthm.

This development of Nqthm has been an ongoing effort for 21 years.  It has received support from a wide
variety of sponsors including Science Research Council of Great Britain (now Science and Engineering
Research Council), Xerox, SRI International, National Science Foundation, Office of Naval Research,
NASA, Air Force Office of Scientific Research, Digital Equipment Corporation, the University of Texas
at Austin, the Venture Research Unit of British Petroleum, Ltd., IBM, Defense Advanced Projects
Research Agency, National Computer Security Center, the Space and Naval Warfare Systems Command,
and Computational Logic, Inc.  Our primary support now comes from Defense Advanced Research
Projects Agency, DARPA Order 7406.  The views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing the official policies, either expressed or
implied, of Computational Logic, Inc., the Defense Advanced Research Projects Agency or the U.S.
Government.
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===== Section 2.  Response for tool:  Pc-Nqthm =====

Name: Pc-Nqthm (An interactive ‘‘Proof-checker’’ enhancement of the Boyer-Moore Theorem Prover

Participants: Matt Kaufmann

Contact name and address:

Matt Kaufmann
Computational Logic Inc.
1717 W. Sixth St., Suite 290
Austin, TX  78703

phone: (512) 322-9951
email: kaufmann@cli.com
fax: (512) 322-0656

Level of effort:  Perhaps (very roughly) 2 man-years, spread over 5 years.

Description: This ‘‘proof-checker’’ is loaded on top of the Boyer-Moore Theorem Prover; see the
corresponding response for Nqthm.  The user can give commands at a low level (such as deleting a
hypothesis, diving to a subterm of the current term, expanding a function call, or applying a rewrite rule)
or at a high level (such as invoking the Boyer-Moore Theorem Prover).  Commands also exist for
displaying useful information (such as printing the current hypotheses and conclusion, displaying the
currently applicable rewrite rules, or showing the current abbreviations) and for controlling the progress of
the proof (such as undoing a specified number of commands, changing goals, or disabling certain rewrite
rules). A notion of ‘‘macro commands’’ lets the user create compound commands, roughly in the spirit of
the tactics and tacticals of LCF and its descendents.  An on-line help facility is provided, and a user’s
manual exists.

As with a variety of proof-checking systems, this system is goal-directed: a proof is completed when the
main goal and all subgoals have been proved.  Upon completion of an interactive proof, the lemma with
its proof may be stored as a Boyer-Moore ‘‘event’’ that can be added to the user’s current library of
definitions and lemmas.  This event can later be replayed in ‘‘batch mode’’.  Partial proofs can also be
stored.

Accomplishments: This system has been used to check theorems stating the correctness of a transitive
closure program, a Towers of Hanoi program, a ground resolution prover, a compiler, irrationality of the
square root of 2, an algorithm of Gries for finding the largest "true square" submatrix of a boolean matrix,
the exponent two version of Ramsey’s Theorem, the Shroeder-Bernstein theorem, Koenig’s tree lemma,
and others.  It has also been used to check the correctness of several Unity programs and has been used for
hardware verification.

Published articles and reports.  The first one below is a detailed user’s manual, including soundness
arguments. The second extends this by describing an extension of the system which admits free variables,
an important addition for doing full first-order reasoning.  The third is a reference for that full first-order
reasoning capability.

Matt Kaufmann, A User’s Manual for an Interactive Enhancement to the Boyer-Moore Theorem Prover.
Technical Report 19, Computational Logic, Inc., May, 1988.

Matt Kaufmann, Addition of Free Variables to an Interactive Enhancement of the Boyer-Moore Theorem
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Prover. Technical Report 42, Computational Logic, Inc., May, 1989.

Matt Kaufmann, An Extension of the Boyer-Moore Theorem Prover to Support First-Order Quantifica-
tion. To appear in J. of Automated Reasoning" A preliminary (and expanded) version appears as Tech-
nical Report 43, Computational Logic, Inc., May, 1989.

-- and, various articles on particular applications.

Start date:  Late 1986

Completion date:  1992

Future developments:  Boyer and Moore are creating a new theorem prover based on applicative Common
Lisp; see the ‘‘Future developments’’ response for Nqthm.  There currently exists a similar interactive
enhancement for that system, and we intend to continue development of that capability.

Strengths/weaknesses/suitability:

Strengths include:

• Combination of capability for high degree of user control with the power of the Boyer-
Moore prover

• On-line help facility and users manuals

• Extensibility by way of ‘‘macro commands’’ (patterned after the tactics and tacticals of
LCF, HOL, Nuprl etc.)

• Full integration into Boyer-Moore system

• Careful attention to soundness issues

Weaknesses include:

• Ease of low-level interaction often tempts users to construct ugly proofs without many
reusable lemmas that are hard to modify.

• First-order quantification is handled via Skolemization, rather than directly (as in the Never
prover).

External users:  Dozens of copies have been distributed over the net.  Mainly university research groups.
Some industry interest.  Much government interest.

Applications: See ‘‘Accomplishments’’ above as well as the ‘‘applications’’ portion of the survey.

Availability: To get a copy, first obtain the Boyer-Moore Theorem Prover (Nqthm), as described in the
corresponding response for Nqthm.  Then follow these instructions:

1. ftp to Internet host cli.com.
(cli.com currently has Internet number
192.31.85.1)

2. log in as ftp, password guest
3. get the file /pub/proof-checker/README-pc
4. read the file README-pc and follow the directions it gives.

Inquiries concerning tapes may be sent to:  Computational Logic, Inc.,
Suite 290, 1717 W. 6th St., Austin, Texas 78703.
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Additional remarks:  See also the corresponding response for Nqthm.

This work was supported by the Defense Advanced Research Projects Agency (currently DARPA Order
7406), the Office of Naval Research, the National Computer Security Center, and IBM.  The views and
conclusions contained in this document are those of the author and should not be interpreted as represent-
ing the official policies, either expressed or implied, of Computational Logic, Inc., the Defense Advanced
Research Projects Agency or the U.S. Government.
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===== Section 3.  Applications survey, Nqthm and Pc-Nqthm:  Part I =====

Below is a list all of the prover input files that we have on-line at Computational Logic, Inc.  Many of
these example files are freely distributed by their authors. In Part II we present detailed summaries of a
few of the larger applications, in the format requested.

J Moore has supplied the information below in the case of Nqthm, and Matt Kaufmann has done so for
Pc-Nqthm. In each case, we give a very rough indication of level of effort by stating the number of bytes
for the input file.

For each entry we give a partial file name, followed by the number of bytes for that file. That file length
is followed in parentheses by the author(s) and possibly a citation, followed by a very brief description of
the work.  When no citation is given, no published description of the work is available and the interested
reader should look at the events file itself.  Many of the files have explanatory comments.

The files are listed in alphabetical order for Nqthm, and again for Pc-Nqthm.  NOTE!!!  The sizes and
complexity of these applications vary wildly.  The brief descriptions and file lengths should give a little
indication of the relative sizes of the efforts.

References appear at the end of the paper.
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-------------------- Nqthm applications --------------------

I have been told that there are about 16,000 theorems (PROVE-LEMMA forms) in the Nqthm event files
discussed below.

basic/alternating (14237 bytes)
(Boyer) a formalization and correctness proof of a card trick having to do with the
outcome of shuffling a deck of cards that has been previously arranged into alternating
colors

basic/async18 (150871 bytes)
(Moore, [1]) a model of asynchronous communication and a proof of the reliability of
the biphase mark communications protocol

basic/binomial (4015 bytes)
(Boyer and Moore, [2]) the binomial theorem expressed with FOR and a proof thereof

basic/controller (9184 bytes)
(Boyer, Moore, and Green, [3]) a model of the problem of controlling a vehicle’s
course and a proof that under certain conditions a particular program keeps the vehicle
within a certain corridor of the desired course and, under more ideal conditions,
homes to the course

basic/fibsums (13243 bytes)
(Cowles) proofs of several interesting theorems about the sums of Fibonacci numbers

basic/fortran (10687 bytes)
(Boyer and Moore, [4]) supporting definitions for a Fortran verification condition
generator

basic/fs-examples (9243 bytes)
(Boyer, Goldschlag, Kaufmann, and Moore, [5]) illustrations of the use of constrained
functions and functional instantiation

basic/gauss (55601 bytes)
(Russinoff, [6]) the original Nqthm proof of Gauss’ law of quadratic reciprocity

basic/new-gauss (37455 bytes)
(Russinoff, [6]) an improved proof of Gauss’ law of quadratic reciprocity (after all,
Gauss proved it eight times!)

basic/parser (Boyer and Moore, an appendix of [7]) a formalization of the syntax and abbreviation
conventions of the Nqthm extended logic, expressed as a function from lists of ASCII
character codes to the quotations of formal terms

basic/peter (8376 bytes)
(Boyer) a sequence of lemmas describing the relationship between Ackermann’s
original function and R. Peter’s version of it

basic/pr (7863 bytes)
(Boyer) a proof of the existence of nonprimitive recursive functions

basic/proveall (86983 bytes)
(Boyer and Moore, Appendix A of [8]) elementary list processing, number theory
through Euclid’s theorem and prime factorization, soundness and completeness of a
tautology checker, correctness of the CANCEL metafunction, correctness of a simple
assembly language program, correctness of a simple optimizing expression compiler

basic/quant (59573 bytes)
(Boyer and Moore, [2]) illustrations of the use of V&C$ and FOR, including a study of
several partial functions and functions, such as the ‘‘91 function’’ that recurse on the
value of their own recursive calls

basic/rsa (17481 bytes)
(Boyer and Moore, [9]) proof of the invertibility of the Rivest/Shamir/Adleman public
key encryption algorithm
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basic/small-machine (25494 bytes)
(Moore) a simple operational semantics and its use to prove program properties
directly and via the so-called ‘‘functional’’ and ‘‘inductive assertion’’ methods

basic/tic-tac-toe (77473 bytes)
(Moore) a formalization of what it means for a program to play non-losing tic-tac-toe,
the proof that a certain algorithm does so, and the successive refinement of the algo-
rithm into the functional expression of an iterative number-crunching program

basic/tmi (17429 bytes)
(Boyer and Moore, [10]) proof of the Turing completeness of Pure Lisp

basic/unsolv (13796 bytes)
(Boyer and Moore, [11]) proof of the unsolvability of the halting problem for Pure
Lisp

basic/wilson (17576 bytes)
(Russinoff, [12]) proof of Wilson’s theorem

basic/ztak (7065 bytes)
(Moore, [13]) proof of the termination of Takeuchi’s function

bevier/kit (3258803 bytes)
(Bevier, [14] the formalization, implementation and proof that a simple separation
kernel (implementing multi-processing on a uniprocessor) provides process schedul-
ing, error handling, message passing, and interfaces to asynchronous devices

bronstein/* (360053 bytes)
(Bronstein, [15, 16, 17] hardware verification using string-functional semantics)
provides the set of events described in Alex Bronstein’s dissertation.

cowles/intro-eg (4902 bytes)
(Cowles) a brief introduction to Nqthm intended for mathematicians and a proof of a
theorem about factorial

cowles/shell (9703 bytes)
(Cowles) alternative ways to decompose sequences and a study of Nqthm’s shell
principle

fm9001-piton/big-add (31064 bytes)
(Moore, [18]) a proof of the correctness of a Piton program for adding arbitrarily long
numbers in base 232

fm9001-piton/fm9001 (2175131 bytes)
(Brock and Hunt, [19]) formalizations of a netlist description language, the machine
code for the 32-bit FM9001 microprocessor, the design of an implementation of the
processor, and a proof of the correspondence of the design and the machine code
specification

fm9001-piton/piton (1709400 bytes)
(Moore, [18]) the definition of the Piton assembly language, its implementation on the
FM9001 via a compiler, assembler and linker, and a proof of the correctness of the
FM9001 implementation

fortran-vcg/fortran (10686 bytes)
(Boyer and Moore, [4]) the same file as basic/fortran, above, which is dupli-
cated on this subdirectory for technical reasons

fortran-vcg/fsrch (59138 bytes)
(Boyer and Moore, [4]) proofs of the verification conditions for a Fortran implemen-
tation of the Boyer-Moore fast string searching algorithm

fortran-vcg/isqrt (12526 bytes)
(Boyer and Moore, [20]) proofs of the verification conditions for a Fortran implemen-
tation of the integer version of Newton’s square root algorithm

fortran-vcg/mjrty (62019 bytes)
(Boyer and Moore, [21]) proofs of the verification conditions for a Fortran implemen-
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tation of a linear-time majority vote algorithm

hunt/fm8501 (301605 bytes)
(Hunt, [22]) formalizations of the machine code for the 16-bit FM8501 microproces-
sor, a register transfer model of a microcoded implementation of the machine, and a
proof of their correspondence

kaufmann/expr-compiler (4365 bytes)
(Kaufmann, see Young [23]) the proof of correctness of a simple expression compiler,
designed as an exercise for beginners

kaufmann/foldr (10895 bytes)
(Kaufmann) an illustration of a method of proving permutation-independence of list
processing functions

kaufmann/generalize-all (106112 bytes)
(Kaufmann, [24]) the correctness of a generalization algorithm that operates in the
presence of free variables

kaufmann/koenig (15825 bytes)
(Kaufmann, [25]) a proof of Koenig’s tree lemma

kaufmann/locking (6177 bytes)
(Kaufmann, [26]) a model of a simple data base against which read and write trans-
actions can occur

kaufmann/mergesort-demo (4833 bytes)
(Kaufmann) the correctness of a merge sort function

kaufmann/note-100 (10071 bytes)
(Kaufmann, [27]) the proof of Ramsey’s theorem for exponent 2, finite case,
described in a style intended to assist those wishing to improve their effectiveness
with Nqthm

kaufmann/partial (9925 bytes)
(Kaufmann) an approach to handling partial functions with Nqthm

kaufmann/permutationp-subbagp (2018 bytes)
(Kaufmann) a formalization of the notion of permutation via bags

kaufmann/ramsey (17010 bytes)
(Kaufmann, [25]) a proof of Ramsey’s theorem for the infinite case

kaufmann/rotate (1900 bytes)
(Kaufmann, [28]) a proof about rotations of lists, intended as an introduction to
Nqthm

kaufmann/rpn (3028 bytes)
(Kaufmann and Jamsek) an exercise in reverse Polish notation evaluation

kunen/ack (3520 bytes)
(Kunen) an illustrative definition of Ackermann’s function

kunen/new-prime (39987 bytes)
(Kunen) an alternative proof of the fundamental theorem of arithmetic that -- unlike
the one presented in [8] -- does not use concepts not involved in the statement of the
theorem

numbers/bags (4888 bytes)
(Bevier) a library of useful definitions and lemmas about bags

numbers/extras (377 bytes)
(Wilding) a trivial extension of the integers library used in fib2 below

numbers/fib2 (15871 bytes)
(Wilding, [29]) a proof of Matijasevich’s lemma about Fibonacci numbers

numbers/integers (236757 bytes)
(Bevier, Kaufmann, and Wilding, [30]) a library of useful definitions and lemmas
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about the integers

numbers/naturals (100476 bytes)
(Bevier, Kaufmann, and Wilding, [31]) a library of useful definitions and lemmas
about the natural numbers

numbers/nim (51396 bytes)
(Wilding) a formalization of the game of Nim and a proof that a certain algorithm
implements a winning strategy

shankar/church-rosser (61967 bytes)
(Shankar, [32]) a proof of the Church-Rosser theorem for lambda-calculus

shankar/goedel (1054073 bytes)
(Shankar, [33]) a proof of Goedel’s incompleteness theorem for Shoenfield’s first
order logic extended with Cohen’s axioms for hereditarily finite set theory, Z2

shankar/tautology (68347 bytes)
(Shankar, [34]) a proof that every tautology has a proof in Shoenfield’s propositional
logic

talcott/mutex-atomic (127131 bytes)
(Nagayama and Talcott, [35]) a proof of the local correctness of a mutual exclusion
algorithm under a certain ‘‘atomicity assumption’’

talcott/mutex-molecular (169218 bytes)
(Nagayama and Talcott, [35]) a proof of the local correctness of a mutual exclusion
algorithm without the ‘‘atomicity assumption’’ mentioned above

yu/bsearch (17548 bytes)
(Yu, [36]) the correctness proof for the MC68020 machine code produced by the Gnu
C compiler for a binary search program written in C

yu/gcd (13392 bytes)
(Yu, [36]) the correctness proof for the MC68020 machine code produced by the Gnu
C compiler for Euclid’s greatest common divisor algorithm written in C

yu/group (31947 bytes)
(Yu, [37]) proofs of two theorems in finite group theory, the first is about kernels of
homomorphisms and the second is the Lagrange theorem

yu/isqrt-ada (14118 bytes)
(Yu) the correctness proof for the MC68020 machine code produced by the Verdix
Ada compiler from an Ada program for computing integer square roots via Newton’s
method written in C

yu/mc20-0 (26383 bytes)
(Yu, [36]) some utilities involved in the formal specification of the MC68020

yu/mc20-1 (165631 bytes)
(Yu, [38]) the formal specification of about 80% of the user available instructions for
the Motorola MC68020 microprocessor

yu/mc20-2 (166450 bytes)
(Yu, [36]) a library of useful definitions and lemmas about the formalization of the
MC68020

yu/mjrty (33507 bytes)
(Yu) the correctness proof for the MC68020 machine code produced by the Gnu C
compiler for a linear time majority vote algorithm written in C

yu/qsort (65665 bytes)
(Yu) the correctness proof for the MC68020 machine code produced by the Gnu C
compiler for Hoare’s in situ quick sort program written in C

yu/log2 (9212 bytes)
(Yu) the correctness proof for the MC68020 machine code produced by the Gnu C
compiler for a C program for computing integer logarithms (base 2) e.g., repeated
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division by 2

yu/cstring, yu/mem*.events, yu/str*.events (251139 bytes)
(Yu) verifications of MC68020 machine code of 15 of the 19 C String Library func-
tions from the Berkeley Unix C String Library
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-------------------- Pc-Nqthm applications --------------------

Disclaimer: Many of the events in "basic/" are inelegant, as they were worked out in the early phases of
the development of Pc-Nqthm.  They are not to be viewed as models of good usage!

Some of these use the DEFN-SK quantifier enhancement [25], which may or may not be included in a
final release of Pc-Nqthm but will remain available in any case.

basic/arith.events (10632 bytes)
some supporting arithmetic events for other event files in this directory

basic/hanoi.events (15461 bytes)
(Kaufmann) proof of correctness of a Towers of Hanoi program

basic/pigeon-hole.events (2369 bytes)
(Kaufmann) proof of a version of the pigeon-hole principle

basic/ramsey1.events (12633 bytes)
(Kaufmann) Our original proof of correctness of Ramsey’s Theorem for exponent 2

basic/ramsey2.events (1792 bytes)
(Kaufmann) proof that a certain binomial coefficient serves as a bound on the Ramsey
number

basic/square.events (5798 bytes)
(Kaufmann) ugly proof of an ugly formalization of the irrationality of the square root
of 2

basic/subset.events (5025 bytes)
(Kaufmann) some supporting events about lists and their use as an implementation of
sets

basic/symmetric-difference.events (3221 bytes)
(Kaufmann) commutativity and associativity of symmetric difference as a set opera-
tion

basic/transitive-closure.events (17530 bytes)
(Kaufmann) proof of correctness of a transitive closure algorithm

basic/tsquare.events (40440 bytes)
(Kaufmann) proof of correctness of a ‘‘true square’’ algorithm of Gries

defn-sk/csb.events (18698 bytes)
(Kaufmann, [25]) proof of a formalization of the Schroeder-Bernstein theorem of set
theory

defn-sk/finite-state-machine-example.events (8062 bytes)
(Kaufmann) a little finite state machine example

defn-sk/koenig.events (13469 bytes)
(Kaufmann, [25]) a formalization of Koenig’s Tree Lemma, which says that any
finitely branching tree which is infinite has an infinite branch

defn-sk/ramsey.events (13514 bytes)
(Kaufmann, [25]) proof of a formalization of the infinite Ramsey Theorem for ex-
ponent 2

dmg/bags.events (4480 bytes)
(Bevier, [31]) some supporting events about bags

dmg/dining.events (86876 bytes)
(Goldschlag [39]) the verification of a dining philosopher’s program, under the as-
sumptions of deadlock freedom and strong fairness, using a mechanized implemen-
tation of Unity on the Boyer-Moore prover

dmg/fifo.events (148159 bytes)
(Goldschlag [40]) the verification of both the safety and liveness properties of an
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n-node delay insensitive fifo circuit, using a mechanized implementation of Unity on
the Boyer-Moore prover

dmg/interpreter.events (59999 bytes)
(Goldschlag [41]) a mechanized implementation of Unity on the Boyer-Moore prover

dmg/me.events (36101 bytes)
(Goldschlag) verification of an n-processor program satisfying both mutual exclusion
and absence of starvation, using a mechanized implementation of Unity on the Boyer-
Moore prover

dmg/min.events (261122 bytes)
(Goldschlag) the correctness of a distributed algorithm that computes the minimum
node value in a tree, using a mechanized implementation of Unity on the Boyer-
Moore prover

dmg/naturals.events (77298 bytes)
(Bevier, Wilding [31]) some supporting events about natural numbers

generalize/*.events (92003 bytes)
(Kaufmann, [24]) the correctness of a generalization algorithm that operates in the
presence of free variables; same as kaufmann/generalize-all from the Nqthm
suite, except that the quantifier (DEFN-SK, [25]) events have been replaced by DCL
and ADD-AXIOM events in that version

mg/*.events (1961835 bytes)
(Young, [42]) a mechanically-verified code-generator for micro-Gypsy, which is a
Pascal-like language

middle-gypsy/*.events (2048662 bytes)
(Good, Siebert, Young, [43]) a mathematical definition of a subset of the Gypsy 2.05
language, including a preliminary rationals library created by Matt Wilding1

wilding/ground-resolution.events (80997 bytes)
(Wilding) a proof of the completeness of ground resolution using Bledsoe’s excess
literal technique

1This rationals library contains Pc-Nqthm ‘‘Instructions’’ hints.  If not for that, it seems quite possible that all of this would replay
in Nqthm, with the DEFN-SK enhancement loaded.
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===== Section 4.  Applications survey, Nqthm and Pc-Nqthm:  Part II =====

Here we present detailed summaries of a few of the larger applications, in the format requested.  These
have been supplied by participants in the respective applications, with at most minor editing by Matt
Kaufmann. These are listed alphabetically by the first last name in ‘‘participants’’ (got that?).
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--------------------------------------------------

Name of application project:  CLI Verified Stack

Participants: Bill Bevier, Warren Hunt, J Moore, Bill Young

Contact name and address:

Dr. Bill Young
Computational Logic, Inc.
1717 W. 6th St., Suite 290
Austin, TX  78703

(512) 322-9951
email: young@CLI.COM

Level of effort:  4 people, around 2 years

Brief description:

The CLI ‘‘verified stack’’ is a collection of system components, each built upon the previous one, each
subsequently providing more abstraction, and each being formally specified and mechanically verified
using the Boyer-Moore theorem prover ‘Nqthm’ (and in the case of Bill Young’s work, the interactive
enhancement ‘Pc-Nqthm’ of Nqthm).  The system we have constructed contains a microprocessor with
machine code, an assembly language, and a simple high-level programming language, together with the
compiler, assembler and linker necessary to connect them.  The stack properly consists of four abstract
machines:

1. Gates--a register-transfer model of a microcoded machine.

2. FM8502--a machine code interpreter.  More recently, this has been replaced by FM9001,
which is a hardwired, 32-bit machine.

3. Piton--a high-level assembly language.

4. Micro-Gypsy--a simple high-level language which is a subset of the Gypsy 2.05 program-
ming and specification language.

Relating each pair of adjacent machines is an implementation, represented as a function in the Boyer-
Moore logic, that maps a higher-level state into a lower-level state.  The implementation function is
known as a ‘‘compiler’’ for the step from Micro-Gypsy to Piton, but as a ‘‘link-assembler’’ for the step
from Piton to FM8502.

In addition, we have specified and proved correct the implementation a small operating system kernel
(KIT) written for a uniprocessor von Neumann machine. KIT is proved to implement a fixed number of
conceptually distributed communicating processes on this shared computer. In addition to implementing
processes, Kit provides the following verified services: process scheduling, error handling, message pass-
ing, and an interface to asynchronous devices.  KIT is not currently integrated into our stack.

We believe that this is the first hierarchically verified system of such complexity.  It is possible using
these components to compose and verify a high level program, and generate a core image for a
microprocessor which provably preserves the semantics. We believe that future progress in this direction
will lead to a higher degree of reliability than any existing approach.

We found many errors during the development of these systems.  The discovery of these errors was a
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direct result of the use of a theorem prover:  failed proofs would point us to the errors in our definitions.
Thus, we have relearned a lesson that we already knew:  although it is expensive, mechanical verification
can assist in the discovery of errors and thus contribute significantly to the development of high-reliability
systems.

Published articles and reports:

Journal of Automated Reasoning, Vol. 5, No. 4 (November, 1989) contains 5 papers describing the stack
and the individual components.
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--------------------------------------------------

Name of application project:  PREVAIL

Participants: D.Borrione, L.Pierre, A.Salem, C.Le Faou, S.Coupet

Contact name and address:

D.Borrione or L.Pierre
IMAG/ARTEMIS, BP 53X
38041 Grenoble Cedex, FRANCE
email : borrione@imag.fr or lolo@imag.fr

Level of effort : 2 person-years

Brief description :

- Outline the nature of the application, the tools/techniques employed:

PREVAIL is a prototype environment for the formal proof of digital devices. It takes as input VHDL
circuit descriptions, and automatically verifies their correctness. Several proof tools are included in this
system, and NQTHM is one of them.

- What role did the formal methods play in the development process?

We have defined the functional semantics of a subset of VHDL. Then, inspired by the works of W.Hunt as
reported in his PhD thesis, we have written a translator which automatically produces the function
definitions and the theorems to be proven, under the input format for NQTHM.

- What were the benefits?

We use this prover in order to perform some kinds of proofs that are impossible with other tools, such as
boolean tautology checkers. The main advantages are the possibility of reasoning on parameterized
devices, and its ability to deal simultaneously with bit-vectors and integers.

- What were the drawbacks?

The major drawback, from our point of view, is the difficulty to identify whether a proof failed because
the device is erroneous or because the theorem is not written in the right way. In addition, it is almost
impossible to return a meaningful diagnosis to the user when there is a fault.

- What lessons can be drawn, recommendations made?

In view of the previous remark, it would be useful to have a summarized history of the proof (with the
essential points) as an alternative to the complete one.

Published articles and reports :

L.PIERRE : The Formal Proof of Sequential Circuits described in CASCADE using the Boyer-Moore
Theorem Prover.’’  Proc. IFIP WG 10.2 Int. Workshop Nov. 1989. In ‘‘Formal VLSI Correctness
Verification,’’ L.Claesen Ed., North Holland, 1990, ISBN 0444 88689 3.
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L.PIERRE : ‘‘One Aspect of Mechanizing Formal Proof of Hardware : the Generalization of Partial
Specifications.’’ Proc. ACM International Workshop on Formal Methods in VLSI Design. Miami
(Florida). 9-11 January 1991.

L.PIERRE : ‘‘From a HDL Description to Formal Proof Systems : Principles and Mechanization.’’  Proc.
10th International Symposium on Computer Hardware Description Languages and their Applications.
Marseille (France).  22-24 April 1991.

S.COUPET, L.PIERRE : ‘‘Recursive Models for Synchronous Sequential Devices.’’  Research report
IMAG/ARTEMIS 855-I, Grenoble. July 1991.

C.LE FAOU, L.PIERRE, A.SALEM : ‘‘A user-oriented presentation of PREVAIL : a proof environment
for VHDL descriptions.’’  Technical report IMAG/ARTEMIS RT71, Grenoble. September 1991.

D.BORRIONE, L.PIERRE, A.SALEM : ‘‘PREVAIL : a proof environment for VHDL descriptions.’’
Proc. Advanced Research Workshop on Correct Hardware Design Methodologies, Torino, Italy, June
12-14, 1991.

D.BORRIONE, L.PIERRE, A.SALEM : ‘‘Formal Verification of VHDL Descriptions in the PREVAIL
Environment.’’ To appear in a Special Issue of IEEE Design&Test on VHDL, 1992.
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--------------------------------------------------

Name of application project:  Compiler for NQTHM Logic

Participants: Arthur Flatau

Contact name and address:

Arthur Flatau
Computational Logic Inc.
1717 W. 6th St., Suite 290
Austin, TX  78703

(512) 322-9951
email flatau@cli.com

Level of effort: approx 3 man-years

Brief description:

A compiler from the NQTHM logic to the Piton assembly level language is being built.  The compiler will
include a reference count garbage collector. The compiler is written and formally specified in the
NQTHM logic.

Currently a prototype and its proof of correctness has been completed and work is underway to add the
garbage collector.

Published articles and reports:

Arthur Flatau, ‘‘A Compiler for NQTHM: A Progress Report.’’ Technical Report 74, Computational
Logic, Inc., February 1992.
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--------------------------------------------------

Name of application project:  Mechanically Verifying Concurrent Programs

Participants: David Goldschlag

Contact name and address:

David Goldschlag
National Security Agency
Attn: R232
Fort George G. Meade, Maryland
20755-6000
Voice: (410) 859-4494
Fax: (410) 850-7166
email: goldschlag@tycho.ncsc.mil

Level of effort:  Four person years over four years

Brief description:

This project embeds Chandy and Misra’s Unity logic on Kaufmann’s proof checker extension of the
Boyer-Moore prover, and demonstrates this theory by the mechanical verification of four simple, yet
parameterized, concurrent programs:

• a dining philosopher’s program proved under the assumptions of strong fairness and absence
of deadlock;

• an n-node delay insensitive fifo circuit;

• an n-processor program satisfying both mutual exclusion and absence of starvation; and

• a distributed algorithm that computes the minimum node value in a tree.

Various first order safety and liveness properties are proved.  These mechanized proofs are expensive,
however.

This mechanized proof system is novel, since it is sound by construction.  Unity’s proof rules are proved
as theorems about an arbitrary fair computation, rather than presented as axioms characterizing a logic.

This methodology of building a proof system on top of an operational semantics is a reasonable and useful
technique for developing sound proof systems.

Published articles and reports

D.M. Goldschlag, A Mechanical Formalization of Several Fairness Notions, in VDM ‘91: Formal
Software Development Methods, S. Prehn and W.J. Toetenel (Editors), Springer-Verlag Lecture Notes in
Computer Science 551, Springer-Verlag, Berlin, 1991.

D.M. Goldschlag, Mechanically Verifying Safety and Liveness Properties of Delay Insensitive Circuits,
Computer Aided Verification 1991, Aalborg, Denmark, July 1991.

D.M. Goldschlag, Verifying Safety and Liveness Properties of a Delay Insensitive FIFO Circuit on the
Boyer-Moore Prover, 1991 International Workshop on Formal Methods in VLSI Design, Miami, January,
1991.
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D.M. Goldschlag, Mechanically Verifying Concurrent Programs with the Boyer-Moore Prover, IEEE
Transactions on Software Engineering, September 1990.

D.M. Goldschlag, Proving Proof Rules: A Proof System for Concurrent Programs, Fifth Annual Con-
ference on Computer Assurance, Compass 1990, Maryland, June 1990.

D.M. Goldschlag, Mechanizing Unity, in Programming Concepts and Methods, M. Broy and C.B. Jones
(editors), North-Holland, Amsterdam, 1990.

J.M. Crawford and D.M. Goldschlag, Mechanical Verification, The Twenty-Sixth Annual Lake Ar-
rowhead Workshop: How Will We Specify Concurrent Systems in the Year 2000?, Lake Arrowhead,
California, September, 1987.
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--------------------------------------------------

Name of application project:  Generalization in the Presence of Free Variables:  A Mechanically-Checked
Proof for One Algorithm

Participants: Matt Kaufmann

Contact name and address:

Matt Kaufmann
Computational Logic Inc.
1717 W. 6th St., Suite 290
Austin, TX  78703

(512) 322-9951
email kaufmann@cli.com

Level of Effort:  Roughly 2 man-months

Brief Description:  Some of the following is adapted from the paper referenced below.

The motivation for this work began with a concern generated by a soundness bug in the Pc-Nqthm
command GENERALIZE.  This bug could be viewed as resulting from a delicate interaction between the
first-order inference rule of universal instantiaion and ‘‘free’’ (instantiatable, Skolem) variables.  At any
rate, the bug was easily corrected and the correctness of the resulting GENERALIZE command was
checked quite informally on paper (though that wasn’t quite as easy).  However, the rude shock of having
made a soundness mistake in the previous version of Pc-Nqthm led to the following goal:  formalize the
new version of the GENERALIZE command in the Boyer-Moore logic, and mechanically check a proof
of correctness of this formalization.

This work consists of a mechanically-checked proof of correctness for a generalization algorithm. Al-
though the theorem itself is probably new (at least, we are unaware of any existing statement of it), the
interest here lies not particularly in the theorem per se but, rather, lies in the demonstration of the use of
an automated reasoning assistant to check the reliability of detailed proofs and software.  What is new
about the current effort is the use of the Boyer-Moore prover (slightly extended) to check a non-trivial
logic proof related to the correctness of an actual implementation, though it must be conceded that the
actual Pc-Nqthm code is not a direct translation of the definitions from this proof, but is only conceptually
related to them.

The paper referenced below is written with the intention of providing a good introduction to this style of
mechanically-assisted reasoning.

Published articles and reports:

Matt Kaufmann, ‘‘Generalization in the Presence of Free Variables:  A Mechanically-Checked Proof for
One Algorithm.’’  J. of Automated Reasoning 7, March, 1991.
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--------------------------------------------------

Name of application project:  A Formal Model of Asynchronous Communication and Its Use in Mechani-
cally Verifying a Biphase Mark Protocol

Participants: J Strother Moore

Contact name and address:

J Strother Moore
Computational Logic Inc.
1717 W. 6th St., Suite 290
Austin, TX  78703

(512) 322-9951
email moore@cli.com

Level of Effort:  3 man-months

Brief Description:

In this paper we present a formal model of asynchronous communication as a function in the Boyer-
Moore logic.  The function transforms the signal stream generated by one processor into the signal stream
consumed by an independently clocked processor. This transformation ‘‘blurs’’ edges and ‘‘dilates’’ time
due to differences in the phases and rates of the two clocks and the communications delay.  The model can
be used quantitatively to derive concrete performance bounds on asynchronous communications at ISO
protocol level 1 (physical level).  We develop part of the reusable formal theory that permits the con-
venient application of the model.  We use the theory to show that a biphase mark protocol can be used to
send messages of arbitrary length between two asynchronous processors.  We study two versions of the
protocol, a conventional one which uses cells of size 32 cycles and an unconventional one which uses
cells of size 18.  Our proof of the former protocol requires the ratio of the clock rates of the two
processors to be within 3% of unity.  The unconventional biphase mark protocol permits the ratio to vary
by 5%.  At nominal clock rates of 20MHz, the unconventional protocol allows transmissions at a burst
rate of slightly over 1MHz.  These claims are formally stated in terms of our model of asynchrony; the
proofs of the claims have been mechanically checked with the Boyer-Moore theorem prover, NQTHM.
We conjecture that the protocol can be proved to work under our model for smaller cell sizes and more
divergent clock rates but the proofs would be harder.  Known inadequacies of our model include that (a)
distortion due to the presence of an edge is limited to the time span of the cycle during which the edge was
written, (b) both clocks are assumed to be linear functions of time (i.e., the rate of a given clock is
unwavering) and (c) reading ‘‘on an edge’’ produces a nondeterministically defined value rather than an
indeterminate value.  We discuss these problems.

Published articles and reports:

J Strother Moore, ‘‘A Formal Model of Asynchronous Communication and Its Use in Mechanically
Verifying a Biphase Mark Protocol.’’  Technical Report 68, Computational Logic, Inc., August, 1991.
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--------------------------------------------------

Name of application project:  Checking correctness of mutex algorithm

Participants: Misao Nagayama and Carolyn Talcott

Contact name and address:

Carolyn Talcott
Computer Science Department
Stanford University
Stanford CA 94305
clt@sail.stanford.edu

Level of effort:  One graduate student part time for approximately one year.

Brief description:

This was an exercise in checking an informal proof.  It was carried out by a logic student who had no
previous experience with computers, or provers, as a means of learning about using computers.  We began
with an informal proof of a Mutex Algorithm, given by Manna and Pnueli, based on their formalism for
reasoning about concurrent programs.  Minor modifications in data structures modelling program state
were made to facilitate representation in the Nqthm logic. The Nqthm events followed closely the
informal proof analysis.  Some work was required to fill in details in some cases, and to find the right
hints and lemmas.

Published articles and reports:

Nagayama, Misao and Talcott, Carolyn, ‘‘An NQTHM Mechanization of ‘An Exercise in the Verification
of Multi-Process Programs’.’’  Technical Report STAN-CS-91-1370, Computer Science Department,
Stanford University, 1991.
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--------------------------------------------------

Name of application project:  Verification of Cathedral hardware module library.

Participants: D. Verkest and J. Vandenbergh

Contact names and address:  D. Verkest or L. Claesen, IMEC (VSDM), Kapeldreef 75, B-3001 Leuven,
Belgium; email verkest%imec.imec.be@imec.be

Level of effort: 3 to 4 man years

Brief description:

The project is concerned with the formal verification with Nqthm of the functional correctness of
parameterized hardware module libraries for use in high level silicon compilers. The libraries contain
more than 25 modules of varying complexity ranging from simple functional building blocks which
implement logical functions to a complex and highly optimized Booth multiplier module. The library
contains both combinational and sequential blocks.

A library of bit vector functions has been developed together with a set of lemmas expressing useful
properties of these functions. Abstraction functions and representation functions allow for switching
between the bit vector domain and the domain of natural numbers and integers. The behavioral specifica-
tion of the modules is modeled as a function in the logic using these bit vector functions.  The behavior of
the basic cells (leaf cells) is also modeled by functions in the logic (using the built-in logical connectives
of the logic). The parameterized structure of the modules is described hierarchically in terms of the leaf
cells. A proof of correctness is then constructed using Nqthm. Since all of the modules are parameterized
in the word length of their input signals, the correctness proofs make use of Nqthm’s induction
capabilities. During the development of the proofs the interactive proof checker (Pc-Nqthm) and Nqthm’s
interactive break facilities (BREAK-LEMMA) are used to investigate the cause of proof failures.

Once the formal proof of a module is completed the possibility exists to automatically generate
parameterized descriptions of its structure in a traditional hardware description language. These descrip-
tions can be used by standard cell packages to generate (guaranteed correct) layout. In addition it is
possible to perform net list comparison between instances of the module generated from the formal
descriptions in the Boyer-Moore logic and the actual full-custom layout of the modules.

The library of bit vectors is also used to describe the semantics of operators in various hardware descrip-
tion languages in use at IMEC and it has been used to describe and verify the implementation of a division
algorithm on an arithmetic logic unit with respect to the division on integers [2].  Some of the lemmas in
this proof are realized with the interactive proof checker (Pc-Nqthm).

The main benefit of this project lies in a large increase in quality of the module library developed. The
theorem prover approach forced us to meticulously check the consistency between implementation,
specification and documentation of all aspects of the modules at all levels of hierarchy and abstraction.
Many inconsistencies, including errors in functionality of the modules, were (and are still being) dis-
covered using this approach. In addition the bit vector function library developed in the project can be
used to check consistency between operators defined in the various hardware description languages at
different levels of abstraction. Although the use of a theorem prover requires a large effort from a skilled
user, we believe this effort is justified for the specific application domain of module libraries (or more in
general any hardware/software library) because the effort can be written off over all the instances of the
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various modules which are generated.

Published articles and reports:

[1] D.Verkest, L.Claesen, H.De Man, ‘‘On the use of the Boyer-Moore theorem prover for correctness
proofs of parameterized hardware modules,’’ in Formal VLSI Specification and Synthesis, Ed. L.Claesen,
Elsevier Science Publishers (North Holland), 1990, pp.99-116

[2] D.Verkest, L.Claesen, H.De Man, ‘‘A proof of the non restoring division algorithm and its implemen-
tation on the Cathedral-II ALU,’’ Proc. of the workshop on Designing Correct Circuits, DCC-92, Lyngby,
Denmark, 6-8 January 1992.
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--------------------------------------------------

Name of application project: A Proven-Correct Compiler Front-End

Participants: Debora Weber-Wulff

Contact name and address:  Debora Weber-Wulff, Institut fuer Informatik der FU Berlin, Nestorstr. 8-9,
D-W-1000 Berlin 31

Level of effort:  2 1/2 years invested, probably 2 more years needed

Brief description:

The goal of this dissertation project is to prove an implementation for compiler front-ends correct with
respect to a set of specifications using a mechanical verification system, the Boyer-Moore prover. The
front-end consists of a scanner, a skeleton parser, a transformer from concrete to abstract syntax, and a
parser table generator. The front-ends are for compilers that were developed for the ProCoS (ESPRIT
BRA 3104: Provably Correct Systems) project. The fully verified front-ends will in the LISP subset
employed by the rest of the compiler effort. The rest of the compiler, which compiles a representation for
abstract syntax into Transputer code, has been proven correct by hand proofs.

One major benefit of using the prover is that one is made to very carefully examine what one is doing.
Even the slightest presupposition that is not explicitly stated will make a proof fail or fail to terminate.
The major drawback is the incredible learning curve associated with using the prover outside of Austin. It
takes an enormous amout of time before one begins to feel comfortable proving even trivialities. Larger
proof attempts without the support of persons experienced in using the prover are extremely difficult.  It
has been observed that one spends most of one’s time patiently coaxing this stubborn prover into assent-
ing to the obvious.

In order for the prover to be more usable outside of Austin, there needs to be more of a body of little
examples that illuminate perhaps one point about the use of the prover and more libraries available, so that
one can build on "proven knowledge" and not have to begin every proof literally at GROUND-ZERO.

Published articles and reports:

‘‘Trip Report :  Visit to Computational Logic, Inc., Austin, Texas’’ ProCoS Report. Kiel, February 1990.

‘‘Proof Movie :  Proving the Add-Assign Compiler with the Boyer-Moore Prover’’.  ProCoS Report.
Kiel, July 1990.  A thoroughly revised version is to appear in Formal Aspects of Computing.

‘‘The ‘Automated Proving and Term Rewriting’ Praktikum’’.  Zusammen mit Karl-Heinz Buth.  ProCoS
Report. Kiel, February 1991.

‘‘Pass Collapsing : An Optimization Method for Compiler Proofs’’.  ProCoS Report. Kiel, September
1991.

‘‘Proven Correct Front-end Specification’’. In:  ESPRIT BRA 3104 ProCoS:  Provably Correct Systems
Final Report.  Volume 3.  Dines Bjorner (Ed.). In preparation.

--------------------------------------------------
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