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(CONS (CAR NETLIST) (DELETE-MODULE NAME (CDR NETLIST)))))
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(BOOLP X) = (OR (EQUAL X T) (EQUAL X F))

(BVP X)

(IF (NLISTP X)
(EQUAL X NIL)
(AND (BOOLP (CAR X)) (BVP (CDR X))))

(F-OR A B)

(IF (OR (EQUAL A T) (EQUAL B T))
T
(IF (AND (EQUAL A F) (EQUAL B F))
F
X))

(F-NOT A) = (IF (BOOLP A) (NOT &) (X))
(F-XOR3 A B C) = (F-XOR A (F-XOR B C))
(XOR AB) = (IFA(IFBFT) (IFBTF))
(B-OR A B) = (OR A B)

(B-XOR X Y) = (IFX (IFYFT) (IFYT F))
(B-XOR3 A B C) = (B-XOR (B-XOR A B) C)
(B-AND A B) = (AND A B)

(LOOKUP-MODULE NAME NETLIST)

(IF (NLISTP NETLIST)
F
(IF (AND (LISTP (CAR NETLIST))
(EQUAL (CAAR NETLIST) NAME))
(CAR NETLIST)
(LOOKUP-MODULE NAME (CDR NETLIST))))

(DELETE-MODULE NAME NETLIST)

(IF (NLISTP NETLIST)
NETLIST
(IF (AND (LISTP (CAR NETLIST))
(EQUAL (CAAR NETLIST) NAME))
(CDR NETLIST)
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e elimination of apparently irrelevant hypotheses; and
e structural induction.

The prover contains heuristics to orchestrate the application of these techniques.

We use the Boyer-Moore theorem prover primarily as a proof checker. We
lead the theorem prover to difficult theorems by providing it with a graduated
sequence of more and more difficult lemmas until a final result can be obtained.

The Boyer-Moore system also contains an interpreter for the logic that allows
the evaluation of terms in the logic. Thus, the logic can be considered as either
a functional programming language or an executable specification language. We
often use this facility for debugging our specifications.

The Boyer-Moore prover has been used to check the proofs of some quite
deep theorems. For example, some theorems from traditional mathematics that
have been mechanically checked using the system include proofs of: the existence
and uniqueness of prime factorizations; Gauss’ law of quadratic reciprocity; the
Church-Rosser theorem for lambda calculus; the infinite Ramsey theorem for the
exponent 2 case; and Goedel’s incompleteness theorem. Somewhat outside the
range of traditional mathematics, the theorem prover has been used to check:
the recursive unsolvability of the halting problem for Pure Lisp; the proof of
invertibility of a widely used public key encryption algorithm; the correctness
of metatheoretic simplifiers for the logic; the correctness of a simple real-time
control algorithm; the optimality of a transformation for introducing concur-
rency into sorting networks; and a verified proof system for the Unity logic of
concurrent processes. When connected to a specialized front-end for Fortran,
the system has also proved the correctness of Fortran implementations of a fast
string searching algorithm and a linear time majority vote algorithm. Recent
work at CLI includes the mechanically checked proofs of a high-level language
compiler, an assembler, a microprocessor, and a simple multi-tasking operating
system. These verified components were integrated into a vertically verified sys-
tem called the “CLI Short Stack”[3], the first such system of which we are aware.
Many other interesting theorems have been proven as well. It is important to
note that all of these proofs were checked by the same general purpose theorem
prover, not a number of specialized routines optimized for specific problems.

Below are definitions of the subsidiary functions used in the examples in the

paper.

; An ADD-SHELL event adds a new ‘‘data type’’. In this case, we add

; the new constructor functions X and Z of no arguments, with recognizer
; functions XP and ZP. This is equivalent to adding to the logic two new
; constants that are distinct from any previously added constants.

(ADD-SHELL X () XP ())

(ADD-SHELL Z () ZP ())
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Appendix:
The Boyer-Moore Logic

The HDL we have defined is expressed in terms of Boyer-Moore list con-
stants. We use the Boyer-Moore logic to recognize well-formed HDL expressions
and to provide a semantics for our HDL. Here we give a quick overview of the
Boyer-Moore logic and theorem prover.

The Boyer-Moore logic[l, 2] is a quantifier-free, first-order predicate calcu-
lus with equality and induction. Logic formulas are written in a prefix-style,
Lisp-like notation. Recursive functions may be defined and must be proven to
terminate. The logic includes several built-in data types: Booleans, natural
numbers, lists, literal atoms, and integers. Additional data types can be de-
fined. The syntax, axioms, and rules of inference of the logic are given precisely
in A Computational Logic Handbook[2].

The Boyer-Moore logic can be extended by the application of the following
axiomatic acts: defining functions, adding recursively constructed data types,
and adding arbitrary axioms. Adding an arbitrary formula as an axiom does
not guarantee the soundness of the logic; we do not use this feature.

The Boyer-Moore theorem proving system (theorem prover) is a Common
Lisp[40] program that provides a user with various commands to extend the
logic and to prove theorems. A user enters theorem prover commands through
the top-level Common Lisp interpreter. The theorem prover manages the axiom
database, function and data type definitions, and proved theorems, thus allow-
ing a user to concentrate on the less mundane aspects of proof development.
The theorem prover contains a simplifier and rewriter and decision procedures
for propositional logic and linear arithmetic. It also can perform structural
inductions automatically.

Theorems are formalized as terms in the logic; the prover attempts to prove
a proposed theorem by repeatedly transforming and simplifying it, employing
eight basic transformations:

e decision procedures for propositional calculus, equality, and linear arith-
metic;

e rewriting based on axioms, definitions and previously proved lemmas;

e automatic application of user-supplied simplification procedures that have
been proven correct;

e climination of calls to certain functions in favor of others that are “better”
from a proof perspective;

e heuristic use of equality hypotheses;

o generalization by the replacement of terms by variables;
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formula manual (i.e., this collection of formulas) would represent a formal spec-
ification that would allow hardware engineers to connect this device with great
confidence and allow software engineers to predict the results of programming
it.

Formula manuals are still a long way off, but we believe that formalization
of our HDL is an incremental step toward our goal. We believe that to address
the difficulties of designing, specifying, and constructing complex computing
equipment, the hardware verification community must continually expand its
modeling efforts to include every possible hardware attribute that contributes to
the correct operation of hardware devices. This expansion will eventually enable
us to provide formula manuals for many hardware devices. Formal hardware
specification and verification effort has primarily concentrated on the logical
correctness of circuit designs. With the formalization of an HDL, we are ex-
panding our formal model to explicitly model (with varying degrees of precision)
other aspects of circuit design, including fanout, loading, and circuit hierarchy
and to bring such issues into the realm of formal mathematical modeling.

Acknowledgments: This work was supported in part at Computational Logic,
Inc., by the Defense Advanced Research Projects Agency, ARPA Order 7406.
The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of Computational Logic, Inc., the Defense Advanced Re-
search Projects Agency or the U.S. Government
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12 Conclusions

We have embedded within the Boyer-Moore logic a register-transfer level lan-
guage for describing sequential hardware. Though quite conventional in syntax
and semantics, the language and its implementation have a variety of unique
aspects.

e The syntax and semantics are fully defined by functions in the computa-
tional logic of Boyer and Moore. These functions are executable, permit-
ting effective evaluation of both the combinatorial and sequential aspects
of circuit designs.

e Because our HDL is embedded within the Boyer-Moore logic, we have
available an expressive formalism for specifying properties of our circuit
designs.

e Since our formalism is supported by a powerful heuristic theorem prover,
we can establish with mathematical rigor the conformance of our circuit
designs to their specifications.

e Our circuit interpreters compute various important aspects of circuit be-
havior, such as fanout, in addition to functional results;

e Since circuits are represented by logical constants, we can manipulate
them via functions in the logic. This opens the possibility of constructing
verified tools, such as minimizers, tautology checkers, etc., that manipulate
circuit expressions.

e We are able to construct and prove parameterized circuit generator func-
tions, allowing automatic synthesis of proven circuits.

o The language is semantically akin to commercial HDL’s; this permits me-
chanical translation to a form readily processed by available commercial
tools.

Our long-term vision for hardware verification research is to eventually see
a much more formal approach to hardware design than the current practice.
We envision a standard style of formal specification for digital hardware that
we call a formula manual. A formula manual is a fully formal description of a
device that records all of the information that a manufacturer would need to
fabricate the device and a user would need to use it reliably. For instance, a mi-
croprocessor’s formula manual would contain a series of mathematical formulas
that describe the programming model, the timing diagrams, the memory inter-
face, the pin-out, the power requirements, cooling requirements, etc. The lowest
level mathematical model of the implementation of this microprocessor would
be verified to meet every specification given by the formula manual. Then the
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T2(CARRY)=0R2(CARRY1,CARRY2) ; (T2 (CARRY) B-OR (CARRY1 CARRY2)))
NIL)

END MODULE;

MODULE HALF-ADDER; (HALF-ADDER

INPUTS A,B; (A B)

OUTPUTS SUM,CARRY; (SUM CARRY)

LEVEL FUNCTION;

DEFINE

GO(SUM) = EO(A,B); ((GO (SUM) B-XOR (A B))

G1(CARRY) = AN2(A,B) (G1 (CARRY) B-AND (A B)))
NIL))

END MODULE;

... four additional modules (not shown) ...

END COMPILE;
END;

Notice that the modules FULL-ADDER and HALF-ADDER are minor syntactic variants
of our HDL descriptions. We translate our primitive names into the correspond-
ing NDL primitives. Additional modules (not shown) are automatically added
by the translator to provide circuitry to facilitate testing, and primitive mod-
ules for signal renaming, logical TRUE, and logical FALSE for the circuit. Given
this translation, we can also process the NDL description of the module with
LSI Logic’s “schematic liberator” program and obtain a mechanically drawn
schematic diagram for our circuit.

Each of our circuit primitives has a corresponding NDL counterpart. Conse-
quently, all HDL circuits are translatable into NDL, and hence implementable
with accessible technology. We cannot exhibit an NDL display of a parameter-
ized module such as those described by our circuit generator functions; but we
can translate any specific instance of them. We take our ability to translate our
formal descriptions into a commercial HDL as strong evidence that our HDL
provides a reliable basis for circuit implementation. The translation from our
HDL to NDL is not formally verified in any sense, and could not be because NDL
does not have a formal semantics. However, we have considerable evidence from
comparing the results of the LSI simulator and our DUAL-EVAL function that the
semantics of our hardware primitives coincides with their NDL counterparts.

In addition to our translator to NDL, we have also constructed translation
programs from our HDL to the MIMIC hardware description language[32] and
to VHDLI[31].
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Figure 7: NAND-Latch Not Handled by our HDL

11 Translation to the LSI Logic Form

A hardware description language is useful only to the extent that it can be
used for expressing implementable hardware designs. Our HDL is designed as a
formal abstraction of a sequential subset of a generic commercial CAD language.
We believe that a netlist that meets our syntactic criteria can be easily and
mechanically translated into a commercial CAD language, and used as a reliable
basis for a hardware realization of our formal circuit descriptions.

We have written a Common Lisp program that translates our HDL circuit
descriptions into LSI Logic’s Netlist Description Language (NDL). NDL is a
conventional hardware description language similar to Verilog™[41]. Commer-
cially available tools from LSI Logic permit one to analyze NDL descriptions
to extract schematics, do layout, etc. We used our translator to generate NDL
netlists from our HDL description of the FM9001 microprocessor[25]. These
netlists were delivered to LSI Logic and were the basis for the fabrication of the
FM9001.

The translation is extremely staightforward; the translator itself occupies
around a single page of Common Lisp code. Below is the FULL-ADDER netlist
from Section 4, juxtaposed with its translation to NDL.

COMPILE;
DIRECTORY MASTER;

MODULE FULL-ADDER; > ((FULL-ADDER
INPUTS A,B,C; (ABOC)
OUTPUTS SUM, CARRY; (SUM CARRY)
LEVEL FUNCTION;

DEFINE

TO(SUM1,CARRY1)=HALF-ADDER(A,B); ((TO (SUM1 CARRY1) HALF-ADDER (A B))
T1(SUM,CARRY2)=HALF-ADDER(SUM1,C); (T1 (SUM CARRY2) HALF-ADDER (SUM1 C))
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Primitive

A02, AO4, A6, AO7:

B1I:

B-AND, B-AND3, B-AND4:
B-EQUV, B-EQUV3:

B-IF:

B-NAND, B-NAND3, B-NAND4,
B-NANDS, B-NAND6, B-NANDS:
B-NBUF:

B-NOR, B-NOR3, B-NOR4, B-NORS5,
B-NOR6, B-NORS:

B-NOT:

B-NOT-B41IP:

B-NOT-IVAP:

B-0R, B-0R3, B-0R4:

B-X0R, B-XOR3:

DEL2, DEL4, DEL10:
PROCMON:

DP-RAM-16X32:

FD1, FD1S, FD1SP, FD1SLP:
ID:

MEM-32X32:
RAM-ENABLE-CIRCUIT:
T-BUF:

T-WIRE:

PULLUP:

TTL-BIDIRECT:
TTL-CLK-INPUT:

TTL-INPUT:
TTL-0UTPUT-PARAMETRIC:
TTL-0UTPUT, TTL-OUTPUT-FAST:

TTL-TRI-OUTPUT, TTL-TRI-OUTPUT-FAST:

VDD, VDD-PARAMETRIC:
VSS:

Description

OR-AND circuits;
clock buffer;

bitwise AND;

bitwise exclusive NOR;
bit selector function;

bitwise NAND;
buffer;

bitwise NOR;

bitwise NOT;

high power inverter;

high power inverter;

bitwise OR;

bitwise exclusive OR;

delay elements;

LST process monitor

16 word x 32-bit register file;
D flip-flops;

wire renaming primitive;
32-bit memory element;
level-sensitive memory enable;
tri-state buffer;

tri-state bus element;

tri-state or open collector pullup;

bi-directional I/O pad;
clock input pad;

input line;

ttl parametric output;
output lines;

tri-state output line;
power;

ground;

Different types of a given primitive indicate either different input arities (eg.
B-NOR, B-NOR3, etc) or different gate types (FD1, FD18, etc).

Figure 6: Currently Defined Hardware Primitives
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10 Admissible Circuits

Our HDL provides a way to specify, verify, and compose sequential machines.
The degenerate case is modules with no state-holding devices, i.e., purely com-
binational. The class of circuits acceptable to our tools is formally defined
by a collection of recognizer predicates written in the Boyer-Moore logic. The
predicates that recognize a well-formed netlist check to see that each module
it contains is syntactically correct—that it contains no combinational loops or
wire type mismatches, that it has correct clock distribution, that it contains no
overloading of any primitive, that any reference to a state-holding device is listed
in the state list argument, that the arities of all module and primitive references
are correct, etc. All acceptable netlists are lists of module definitions that obey
these constraints and reference only primitives or other defined modules.

Separately, we check the consistency of our database of information about the
primitive elements to ensure that every defined primitive has information about
its delays, inputs types, input loadings, output types, output drive strengths,
and uniqueness of all port names. Figure 6 gives our currently defined list of
primitives. For combinational primitives we check that each primitive has a
database entry that specifies its combinational behavior; for sequential primi-
tives we check that the database defines both a combinational result and a means
to compute the next state for the primitives internal state-holding devices.

There are certain limitations to the expressive power of our HDL. The treat-
ment of time in our interpreter model is somewhat simplistic. Our hardware
description language only admits synchronous sequential circuits with a single
(implicit) clock. A call to DUAL-EVAL is assumed to model one “tick” of the
global clock. All transitions are triggered by the leading edge of the clock pulse.
All state-holding devices update their internal states simultaneously. This pre-
vents us from modeling some simple circuits such as the cross-coupled NAND latch
shown in Figure 7. Though obviously less general than an event-driven simu-
lator model such as that of VHDL[37], this restriction makes the modeling and
proof problem much more tractable and guarantees that our circuit descriptions
can be composed. The fact that the clock is implicit restricts the class of circuits
we can handle and the properties we can specify of them. For example, we do
not allowed gated-clock circuits, though it would require only a minor extension
to the language to do so.

DUAL-EVAL is essentially a unit-delay symbolic simulator. The restrictions
we impose are designed to ensure that all circuit evaluations terminate deter-
ministically. Similar restrictions are imposed, for example, in [9] who “believe
that verification under the unit-delay assumption is a good way to debug many
types of asynchronous circuits—perhaps as an initial step in a more thorough
(and expensive) verification process.” We chose these restrictions so as to not
sacrifice the benefits of hierarchical design and proof.
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Notice that this is exactly the form of the hand-coded 4-bit adder from Section
4. However, the function RIPPLE-ADDER# is a circuit generator that will produce
an adder of arbitrary length. Consequently, proving the correctness of this pa-
rameterized generator function gives us a proof of an infinite class of circuits,
any of which can be generated automatically. We have used such circuit gener-
ator functions extensively in defining the ALU for the FM9001, various register
files, n-bit selectors, and other hardware modules.

9 Proofs of Circuit Generators

We desire to show that the circuits produced by our generator functions are
correct. For the n-bit adder generator described in the previous section, this
means that the generated circuit produces the appropriate n+ 1 bit sum of two
n-bit strings. This is stated in the following theorem.

Theorem. RIPPLE-ADDER$Value.

(IMPLIES

(AND (RIPPLE-ADDER& NETLIST N)
(BOOLP C) (BVP A) (BVP B)
(EQUAL (LENGTH A) N)
(EQUAL (LENGTH B) N))

(EQUAL (DUAL-EVAL ’QUTPUTS (CONS ’RIPPLE-ADDER N)

(CONS C (APPEND A B)) STATE NETLIST)
(BV-ADDER C A B))).

We can interpret this theorem as follows: the result of evaluating the circuit
module generated by (RIPPLE-ADDER* N) on parameters (CONS C (APPEND A B)),
STATE, and NETLIST will be equal to the result of executing the defined recursive
function BV-ADDER on parameters C, A, and B, provided the following hold:

e NETLIST is a netlist defining the circuit result of (RIPPLE-ADDER# N); and

e Cis a Boolean; A and B are bit-vectors of length N.

Notice that this is generalization of our earlier theorem RIPPLE-ADDER,$Value.
Whereas the 4-bit case could be proved by flattening of the gate graph or
by exhaustive simulation, the proof of the general case requires induction.
The proof of RIPPLE-ADDER$Value is by induction on the recursive structure of
RIPPLE-ADDER-BODY. Proofs of such theorems can be rather difficult and may re-
quire considerable familiarity with the structure of the interpreter and with the
Boyer-Moore prover. One of our continuing goals is to simplify this aspect of
using the methodology.



An Introduction to a Formally Defined 22
Hardware Description Language

Technical Report #76

(RIPPLE-ADDER-BODY M N)

(IF (ZEROP N)
NIL
(CONS (LIST (INDEX (G M)
(LIST (INDEX (SUM M)
(INDEX (CARRY (ADD1 M)))
’FULL-ADDER
(LIST (INDEX (A M)
(INDEX (B M)
(INDEX (CARRY M)))
(RIPPLE-ADDER-BODY (ADD1 M) (SUB1 N))))

Shown below is the result of executing (RIPPLE-ADDER-BODY 0 4).

>((Go (SUMy CARRY;) FULL-ADDER (Ao By CARRY())
(G; (SUM; CARRY,) FULL-ADDER (A; B; CARRY;))
(G2 (SUM, CARRY3;) FULL-ADDER (A2 B» CARRY2))
(Gs (SUMs CARRYs) FULL-ADDER (As Bs CARRY3)))

To complete our ripple-adder generator function, we insert the RIPPLE-ADDER-BODY
into a circuit module with appropriate input and output names; the function
RIPPLE-ADDER* produces such a circuit description. The function call (GENERATE-NAMES
NAME N) produces the list of names NAMEy, NAME,, ..., (NAMEy_;).

(RIPPLE-ADDER* N)

(LIST (CONS ’RIPPLE-ADDER N)
(CONS (CONS ’CARRY (ADD1 N))
(APPEND (GENERATE-NAMES ’A N)
(GENERATE-NAMES °’B N)))
(APPEND (GENERATE-NAMES ’SUM N)
(LIST (CONS ’CARRY 1)))
(RIPPLE-ADDER-BODY 0 N)
NIL))

Evaluating (RIPPLE-ADDER* 4) gives

> (RIPPLE-ADDER,

(CARRYy Ao A; A, As Bg B; By B3)

(SUM, SUM; SUM, SUM; CARRY,)

((Go (SUMy CARRY;) FULL-ADDER (Ay By CARRYp))
(G1 (SUM; CARRY,) FULL-ADDER (A; B; CARRY;))
(G, (SUM, CARRY;) FULL-ADDER (A, B, CARRY,))
(G2 (SUMs CARRY,) FULL-ADDER (As Bs CARRYs)))

NIL)
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circuits descriptions that can be generated when needed. We call our circuit
constructor functions generatorsinstead of synthesizers because we usually think
of synthesis as more fully exploring the design space than do our generator
functions. That is not to say that our generator functions are conceptually
any different than circuit synthesis functions, just that our generators may be
simpler and are proven to be correct. We illustrate our approach in this section
by returning to our example of an n-bit, ripple-carry adder and showing how
to write and verify a generator function that will produce a correct adder for
arbitrary word size. The proofs of generator functions are discussed in Section
9.

Recall from Section 4, that a 4-bit ripple-carry adder can be defined in our
HDL as follows:

> (RIPPLE-ADDER,

(CARRYy Ap A; A As Bg B; Bz B3)

(SUM, SUM; SUM, SUM; CARRY,)

((Go (SUMy CARRY;) FULL-ADDER (A¢ Bo CARRYp))
(Gy (SUM; CARRY,) FULL-ADDER (A; Bi CARRY;))
(G, (SUM, CARRY;) FULL-ADDER (A, B, CARRY,))
(G2 (SUMs CARRY,) FULL-ADDER (As Bs CARRYs)))

NIL)

We can clearly define such a constant for an n-bit adder for any fixed n. In
general, an n-bit circuit description would be written as follows.

> (RIPPLE-ADDER,,
(CARRYy Ap ... Ap_q1 Bo ... By_1)
(SUMy ... SUM,,_; CARRY,)
((Go (SUMy CARRY;) FULL-ADDER (4¢ By CARRYg))

(Gr—1(SUM,,_; CARRY,) FULL-ADDER (A,_; B,_1i CARRY,_1))))

However, rather than constructing an explicit circuit description for particular
values of n, we take a more general approach. We define within the Boyer-
Moore logic a function that creates an adder circuit module, where the width is
provided as a parameter to the function.

We construct our ripple-carry adder module generator in two parts: a top-
level function provides the module name, the input names, and the output
names; an auxiliary function creates the list of FULL-ADDER occurrences that
make up the ripple-carry adder body. The function (RIPPLE-ADDER-BODY M N),
shown below, creates a list of N occurrences of FULL-ADDER with appropriate
connections to the adjacent occurrences, numbering from M.
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Consider the theorem FULL-ADDER$Value from the previous section. This
theorem provides an explicit value of an evaluation of module FULL-ADDER under
fairly general circumstances. Consequently, a symbolic evaluation of any call
to a module that uses FULL-ADDER need not expand the definition. Rather, it
can use theorem FULL-ADDER$Value as a rewrite rule to give the output values
without delving into the definition of FULL-ADDER, provided that the hypotheses
of the theorem are satisfied in that context. The proof of FULL-ADDER, in turn,
uses the HALF-ADDER$Value lemma to characterize the results of the two calls to
HALF-ADDER without having to open them up. At the lowest level, we provide
lemmas explicitly characterizing the results of each of the primitives. Then, at
each level of the design hierarchy, the results from lower levels are encapsulated
in the form of lemmas. We do this for both the module outputs and next state.
There is never any need to flatten hierarchically structured designs for proof
purposes.

This suggests our general strategy for parallel design and proof. Each of the
hardware primitives is defined to return an explicit result. Whenever a module
is defined, the user characterizes the results of a call to that module in terms
of a recursive function of the inputs and current values of the state-holding
components, and proves the corresponding theorem as a Boyer-Moore rewrite
rule. Subsequent module definitions using the defined module can rely upon
its result, as characterized by the correctness theorem. Subsequent proofs use
these theorems to provide the module output and state values without needing to
unfold the definition. Following this approach, proofs of very complex modules
can be constructed with the exact hierarchical structure used in the design.
Proof complexity is “essentially” linear in the number of distinct module types,
rather than in the number of occurrences of primitives.

Though we have suggested that the strategy is straightforward, consider-
able familiarity with the Boyer-Moore theorem prover is still needed to prove
complex modules. For example, defining the appropriate recursive functions to
characterize results of circuit evaluation is not always easy. Care is required to
make the theorems as general as possible. Certain function definitions must be
“disabled” to prevent them from opening up during proofs. We are still refin-
ing our methodology and attempting to automate some of the more mundane
aspects. However, we have been able to use the methodology to prove the cor-
rectness of a number of devices, including a 32-bit microprocessor[25], an 8-bit
Byzantine resilient processor[36], and a simple combination lock.

8 Circuit Generator Functions

In addition to defining circuit modules as explicit Boyer-Moore constants, we can
construct functions to generate these constants. We then prove properties about
the circuit generator functions and, thus, about the resulting circuit modules.
The purpose of circuit generator functions is to create parameterized “generic”
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Theorem. Latch-State-also-Boolean.

(IMPLIES

(AND (M2& NETLIST)
(BOOLP DO) (BOOLP D1)
SELO SEL1
(BOOLP SELO) (BOOLP SEL1))

(BVP (DUAL-EVAL ’STATE ’M2 (LIST CLK ENO EN1 SELO SEL1 DO D1)

(LIST SO S1) NETLIST)))

This example suggests the value of our approach. Using simulation it would
be possible to exhaustively prove the statements shown above. But to state
general theorems of this type and later make use these theorem requires a more
general approach. We often combine circuits like M2 into circuits too large for
exhaustive simulation.

In addition to these sorts of “behavioral” properties of circuits, we can ex-
press “structural” properties of our modules. For example, it is easy to express
(and prove) that no module in a circuit description exceeds certain fanout lim-
itations. This provides some additional assurance that our circuit designs can
be implemented within a given technology.

7 Proofs of Circuits

Our circuit design primitives are described at the register-transfer level. How-
ever, it should be apparent that we can use our primitives and defined modules
hierarchically to design more and more complex modules. We saw, for example,
in the previous sections how our FULL-ADDER module was built up from prim-
itives and the defined module HALF-ADDER. In turn we used FULL-ADDER in the
definition of RIPPLE-ADDER,, and so on.

Any complex module defined hierarchically can ultimately be “flattened”
into an elaborate graph of primitives, since there is no recursion in our defini-
tions. However, to do so sacrifices many of the benefits of hierarchical design.
We would like to maintain the benefits of hierarchical structure both for design
and for proof. This contrasts with some other hardware verification method-
ologies that flatten a design and apply brute force Boolean procedures[11]. We
would like to make use of hierarchical structure both at design and at proof
time. Our methodology allows this.
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Theorem. M2$State.
(IMPLIES
(M2& NETLIST)
(EQUAL (DUAL-EVAL °’STATE ’M2
(LIST CLK ENO EN1 SELO SEL1 DO D1i) STATE NETLIST)
(LET ((Q (FT-WIRE (FT-BUF ENO (CAR STATE))
(FT-BUF EN1 (CADR STATE)))))
(LIST (F-IF SELO DO Q) (F-IF SEL1 D1 Q)))))

In addition to these general lemmas characterizing the output and state val-
ues of our modules, we often require more specialized lemmas about the results
of evaluating our circuit module constants. For example, it does not follow from
our syntactic checks alone, that the state values of M2 remain Boolean. In our
model, if a Boolean latch attempts to store a non-Boolean value, DUAL-EVAL pro-
duces a new state value of (X) or “undefined.” It is possible, however, to prove
that the latches in M2 will always latch a Boolean value, given certain conditions.
If SELO is T then only input DO need be Boolean. If SELO is F then the value on
the bus must resolve to a Boolean value. Similar remarks apply to SEL1, D1, and
the bus result. This is expressed formally in the theorem below.

Theorem. Latch-State-Boolean.
(IMPLIES
(AND (M2& NETLIST)
(BOOLP SELO) (BOOLP SEL1)
(LET ((Q (FT-WIRE (FT-BUF ENO S0)
(FT-BUF EN1 S1))))
(AND (IF SELO (BOOLP DO) (BOOLP Q))
(IF SEL1 (BOOLP D1) (BOOLP Q)))))
(BVP (DUAL-EVAL ’STATE ’M2 (LIST CLK ENO EN1 SELO SEL1 DO D1)
(LIST SO S1) NETLIST)))

Notice that we require SELO and SEL1 to be Boolean; otherwise, the F-IF primitive
will produce an undefined result even if both of its inputs are Boolean.

A variation of this theorem is sometimes useful. If both select lines are high,
then we only need to know that the data inputs are Boolean and that the select
lines are set to select data inputs DO and D1, to assure that the state values are
Boolean.
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Unlike our previous examples, associated with module M1 is a lemma that
describes its next state function.

Theorem. Mi$State.
(IMPLIES
(M1& NETLIST)
(EQUAL (DUAL-EVAL ’STATE °M1 (LIST CLK EN SEL D Q) STATE NETLIST)
(F-IF SEL D Q)))

Mig$State is a lemma stating that the value of the next state of the one-bit latch
contained in M1 is (F-IF SEL D Q). We can use both the next state and the value
lemmas for modules that contain references to module M1.

Similarly, we define and prove output and next state lemmas for module M2.
Module M2 references two M1 modules and T-WIRE, our bus resolution primitive.
Function FT-WIRE describes the behavior of T-WIRE.

(FOURP X) = (OR (EQUAL X T) (EQUAL F X) (EQUAL X (X)) (EQUAL X (2Z)))
(FOURFIX X) = (IF (FOURP X) X (X))
(FT-WIRE A B)

(IF (EQUAL A B) (FOURFIX A)
(IF (EQUAL A (Z)) (FOURFIX B)
(IF (EQUAL B (Z)) (FOURFIX A)
NN

The following two lemmas characterize the operation of module M2. Note that
lemma M2$State shows the next state of M2 to be a list containing two elements.
Recall from Section 4 that the state component of our M2 module was a list of
two elements, corresponding to the states of the two component occurrences of
module M1.

Theorem. M2$Value.
(IMPLIES
(M2& NETLIST)
(EQUAL (DUAL-EVAL °’OUTPUTS ’M2
(LIST CLK ENO EN1 SELO SEL1 DO D1) STATE NETLIST)
(LIST (FT-WIRE (FT-BUF ENO (CAR STATE))
(FT-BUF EN1 (CADR STATE))))))
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e NETLIST is an appropriate netlist defining the circuit RIPPLE-ADDER;.

e The various arguments are bit lists of the requisite lengths.

BV-ADDER is a recursively defined specification function that computes the
bitwise sum of two bit vectors. Notice that though BV-ADDER is defined in a
very structural hardware-oriented fashion, its result is provably equal to the
arithmetic n + 1-bit sum of A, B, and ¢ when these are interpreted as binary
numbers of appropriate lengths. Thus, our 4-bit adder circuit adds, as desired.

(BV-ADDER C A B)

(IF (NLISTP A)
(LIST ¢C)
(LET ((A-IN (CAR A4))
(B-IN (CAR B)))
(CONS (XOR C (XOR A-IN B-IN))
(BV-ADDER (OR (AND A-IN B-IN)
(AND A-IN C)
(AND B-IN C))
(CDR A)
(CDR B))))

As a final example, we consider the specification of properties of sequential
logic of the previously presented modules M1 and M2, recognized in a netlist by
predicates M1& and M2&. For modules with state-holding components we define
lemmas characterizing both the module’s outputs and the module’s next state.
The following lemma describes the outputs of module M1.

Theorem. Mi$Value.
(IMPLIES
(M1& NETLIST)
(EQUAL (DUAL-EVAL ’QUTPUTS °M1 (LIST CLK EN SEL D Q) STATE NETLIST)
(LIST (FT-BUF EN STATE))))

Function FT-BUF is used to characterize the properties of primitive T-BUF.

(FT-BUF C A)

(IF (EQUAL C T) (THREEFIX A)
(IF (EQUAL C F) (Z) (X))

(F-IF C A B)

(IF (EQUAL C T) (THREEFIX A)
(IF (EQUAL C F) (THREEFIX B)
X))
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(F-AND A B)

(IF (OR (EQUAL A F) (EQUAL B F)) F
(IF (AND (EQUAL A T) (EQUAL B T)) T
X))

(THREEFIX A) = (IF (BOOLP A) A (X))

(F-XOR A B)

(IF (EQUAL A T) (F-NOT B)
(IF (EQUAL A F) (THREEFIX B)
X))

Our four-valued logic functions return (X) if given unknown inputs. For
example, note that F-AND only returns a Boolean result if one of its inputs is F
or both of its inputs are T; otherwise, it returns (X). Thus, both the input and
output of DUAL-EVAL can include (Z) and (X) values, as well as Booleans. For
particular circuits, we often prove the general theorem about the four-valued
behavior of the circuit and then the restriction to the Boolean-valued case.”

As another example, consider our 4-bit ripple-adder module. We desire to
prove that it produces the appropriate 5-bit sum of two 4-bit strings. This is
stated in the following theorem.

Theorem. RIPPLE-ADDERs$Value.

(IMPLIES
(AND (RIPPLE-ADDER4& NETLIST)
(BOOLP C)

(BOOLP Ap) (BOOLP A;) (BOOLP A;) (BOOLP As)
(BOOLP By) (BOOLP B;) (BOOLP B;) (BOOLP Bs))
(EQUAL (DUAL-EVAL ’QUTPUTS ’RIPPLE-ADDER,
(LIST CARRYo, Ao A; A As By By Bz B3)
STATE NETLIST)
(BV-ADDER C (LIST A¢ A; Ay As)
(LIST Bg By Bz B3)))).

The interpretation of this theorem is as follows: the result of evaluating the
circuit module RIPPLE-ADDER, on the bit lists A and B, and Boolean ¢ with respect
to STATE and NETLIST will be equal to the result of executing the defined recursive
function BV-ADDER on those bit lists provided that the following hold.

"Sometimes it is crucial to consider the non-Boolean case. For example, to prove the
correctness of a sequential circuit’s reset behavior, the circuit must be designed to trap the
unknown values that exist upon “powering up” the hardware. For this purpose we use prim-
itives like B-AND that provide a way for us to force the output to a known value in face of
unknown inputs. Certain gates “trap” unknown values; other gates such as B-X0OR produce
the unknown value (X) if either of their inputs are not Boolean.



An Introduction to a Formally Defined 14
Hardware Description Language

Technical Report #76

As an example of our specification style, we can express the desired value
of a call to FULL-ADDER as an appropriate Boolean expression and prove that,
under certain assumptions, the module always returns that value. Formally, the
following is a theorem in the logic:

Theorem. FULL-ADDER$Value.
(IMPLIES (AND (FULL-ADDER& NETLIST)
(BOOLP C) (BOOLP A) (BOOLP B))
(EQUAL (DUAL-EVAL °’QOUTPUTS °’FULL-ADDER
(LIST C A B) STATE NETLIST)
(FULL-ADDER-B-VALUE C A B))),

where we define the function FULL-ADDER-B-VALUE as follows:

(FULL-ADDER-B-VALUE C A B)

(LIST (B-XOR3 C A B)
(B-OR (B-AND A (B-OR B C))
(B-AND B C)).

The theorem asserts that if NETLIST is appropriately structured to include
the definition of FULL-ADDER and its subsidiary modules, and the three inputs
are all Boolean valued, then the outputs have their intended values.

Actually, the theorem FULL-ADDER$Value above is a specialization of a more
general theorem that defines the results for arbitrary (including non-Boolean)
values of the inputs. The more general theorem value theorem for FULL-ADDER
is below, though we usually require only the Boolean-valued version.

Theorem. FULL-ADDER-FOUR-VALUED$Value.
(IMPLIES (FULL-ADDER& NETLIST)
(EQUAL (DUAL-EVAL °’OUTPUTS ’FULL-ADDER
(LIST C A B) STATE NETLIST)
(FULL-ADDER-VALUE C A B))).

Here, FULL-ADDER-VALUE is the corresponding generalization of FULL-ADDER-B-VALUE:

(FULL-ADDER-VALUE C A B)

(LIST (F-XOR3 C A B)
(F-OR (F-AND A (F-OR B C))
(F-AND B C))).

Functions such as F-XOR and F-AND are the four-valued counterparts of the
standard Boolean functions. For example, we define F-AND and F-XOR as follows.
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The examples above have all assumed Boolean values. However, the under-
lying evaluation model used by DUAL-EVAL is four-valued, with logical values of
T, F, (2), and (X); (2) is the “floating value and (X) is “undefined.”® All of the
primitives (and, hereditarily, all defined modules) are defined on the four logical
values. For instance, the call

(DUAL-EVAL °’OQUTPUTS °M2 (LIST T F F T F T T) (LIST F F) M2-NETLIST)

produces (LIST (Z)), since the two tri-state enables (the second and third
elements of the arguments) are both off. If both enable bits are on and the
state-holding components are different, the value for

(DUAL-EVAL ’OUTPUTS °M2 (LISTTTT T F T T) (LIST T F) M2-NETLIST)

will be (LIST (X)), because of the bus conflict. The state-holding compo-
nents can also become (X) if they attempt to latch a value of (z). For this
circuit, a clock argument is syntactically required, but it plays no part in the
evaluation.

The values produced by DUAL-EVAL are computed by a recursive evaluation
of a module definition and its component modules. The syntactic constraints
on the language assure that this can be done efficiently, in two passes through
the occurrence list. Since all of our functions, including DUAL-EVAL, are defined
within the Boyer-Moore logic, we can use the logic’s interpreter to simulate
them for explicit input values. We use this capability extensively to “debug” our
efforts before investing the time to prove the correctness of our circuit designs.

The treatment of time in our interpreter model is simplistic. Our “unit
clock” simulator is defined by the recursive application of DUAL-EVAL. Potential
extensions of our model are described in Section 12.

6 Specifying Hardware Properties

Our DUAL-EVAL interpreter provides an operational semantics for our circuit de-
scription language. Because it is defined as a function in the Boyer-Moore logic,
we can use the logic to express desired properties of our modules and netlists.
We chose to semantically embed a language in the Boyer-Moore logic because
we wanted an HDL that was specifically organized to express hardware circuits.
Our HDL has been designed for describing hardware circuits and their structure,
providing a clear interface between what we consider a hardware description and
what is just a Boyer-Moore logic definition.

6(Z) and (X) are predefined zero-ary (constant) functions. T and F are abbreviations for

the constant functions (TRUE) and (FALSE).
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A flag value of ’QUTPUTS or ’STATE determines, respectively, whether the
interpreter computes the values of the output lines or the new values of the
state-holding components. The other arguments are:

e function: the name of the module to be evaluated;
e arguments: the list of values of the input lines for this module evaluation;

e state: a list of current values of the state-holding components of the mod-
ule; and

e netlist: the netlist in which module function is defined.

For example, assuming that NETLIST is the netlist for FULL-ADDER given in the
previous section and STATE is any Boyer-Moore object®, the function call:

(DUAL-EVAL °’0UTPUTS ’FULL-ADDER (LIST T F T) STATE NETLIST)
returns
(LIST F T).

This returned value represents the list of values of the FULL-ADDER outputs
SUM and CARRY, when the inputs A, B, and C take values T, F, and T, respectively.
The call

(DUAL-EVAL ’STATE ’FULL-ADDER (LIST T F T) STATE NETLIST),

returns the list of updated values of the state-holding components of mod-
ule FULL-ADDER on the same arguments, and in this case returns NIL since the
FULL-ADDER module has no state-holding components. The call

(DUAL-EVAL °’STATE °M2 (LISTTTT T F T T) (LIST F F) M2-NETLIST)

returns (LIST T F), the list of values of the two state-holding components of
module M2 under the given assignment of values to the input lines and previous
values to the state-holding components. The argument M2-NETLIST must be an
appropriate netlist containing the definitions of M1 and M2 given in Section 4.

5You might expect that the state argument should be NIL, since FULL-ADDER has no
state-holding components. However, DUAL-EVAL merely tries to bind the names of each of
the state-holding arguments of the module—in this case there are none—to whatever values
appear in STATE. Any additional structure of STATE is simply ignored.
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As afinal example of a module definition in our HDL, consider a 4-bit ripple-
carry adder constructed by connecting four FULL-ADDER modules. Such an adder
is illustrated in Figure 5, where As is the most significant bit and the adder
carries from right to left. The circuit module HDL constant for this adder is
shown below.*

> (RIPPLE-ADDER,

(CARRYy Ap A; Ay As Bg B; Bz B3)

(SUMy SUM; SUM; SUM: CARRY4)

((Go (SUM, CARRY;) FULL-ADDER (A, By CARRYy))
(G; (SUM; CARRY,) FULL-ADDER (A; Bi CARRY;))
(G2 (SUM> CARRY:) FULL-ADDER (A; B» CARRY:))
(G5 (SUM; CARRY,) FULL-ADDER (A; Bs; CARRY3)))

NIL)

In section 8, we will show how we can construct and verify a generator function
to construct a correct instance of this module for arbitrary word size.

The various syntactic constraints on our circuit descriptions described infor-
mally above are checked by a collection of functions (predicates) written in the
Boyer-Moore logic. We have defined predicates to check for well-formed names,
the absence of combinational loops, loading and fanout violations, wire type
mismatches, clock distribution, and other circuit parameters. These predicates
are described further in Section 10.

5 Hardware Interpreters

A module in our HDL is a representation of a hardware circuit design. Con-
ceptually, the meaning of the module is the computation performed by that
circuit for given inputs. This is formalized operationally by a collection of in-
terpreter functions that evaluate circuit modules for specific values of the input
variables, and produce the appropriate values for the output variables and state-
holding variables. These interpreter functions give meaningful values only for
well-formed circuit descriptions. Our syntactic constraints assure that a well-
formed circuit module body is ordered such that the outputs can be computed
efficiently by our interpreters.

The operational semantics of our circuit description language is given by
an interpreter function DUAL-EVAL coded in the Boyer-Moore logic. A call to
DUAL-EVAL takes the form:

(DUAL-EVAL flag function arguments state netlist).

4TIn this paper we use the notational convention X;, where we would actually be forced in
the logic to write XI, or sometimes (INDEX X I).
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Figure 5: Four-bit, Ripple-carry Adder Circuit

> ((FULL-ADDER (A B C) (SUM CARRY)

((TO (SUM1 CARRY1) HALF-ADDER (A B))
(T1 (SUM CARRY2) HALF-ADDER (SUM1 C))
(T2 (CARRY) B-OR (CARRY1 CARRY2)))

NIL)

(HALF-ADDER (A B) (SUM CARRY)

((GO (SUM) B-XOR (A B))
(G1 (CARRY) B-AND (A B)))

NIL))

Notice that the definition of HALF-ADDER must occur after that of FULL-ADDER
in the netlist, since FULL-ADDER references HALF-ADDER. The occurrences of B-OR,
B-XOR, and B-AND need not be represented by module definitions in the netlist
since these are hardware primitives defined by the HDL.

Whenever a module is introduced we define a predicate to recognize an ap-
propriate defining netlist for that module. The recognizer is typically named
with the module name, suffixed with the character “€”. For example, the
function FULL-ADDER&, shown below, is the recognizer for netlists defining the
FULL-ADDER module.

(FULL-ADDER& NETLIST)

(AND (EQUAL (LOOKUP-MODULE ’FULL-ADDER NETLIST) (FULL-ADDER%*))
(HALF-ADDER& (DELETE-MODULE °’FULL-ADDER NETLIST))
(B-OR& (DELETE-MODULE ’FULL-ADDER NETLIST))))

FULL-ADDER& checks that FULL-ADDER has the previously given definition in the
netlist and that the remainder of the netlist is appropriate for the compo-
nent modules. The definition uses previously defined netlist recognizers for
HALF-ADDER and for B-OR.



An Introduction to a Formally Defined 9
Hardware Description Language

Technical Report #76

M1
Qx
0 B-IF 5 FD1 Q A
D
D> 1 CP ON AN
SEL CLK EN
M2
Q
L M1 M1 J
Qo0 Q1
o
DO H 4< D1

L L

SELO ENO EN1 SEL1

)

CLK

Figure 4: One-bit Latch with Tri-state Buffer Circuit and Bi-directional Bus
Circuit
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In addition to the purely combinational primitives such as B-OR and B-AND,
our HDL contains primitive state-holding devices such as latches. Circuit mod-
ules that contain occurrences referencing either primitive state-holding devices
or defined modules containing state-holding devices, must indicate which occur-
rences reference state-holding devices. These are listed in the fifth component
of the circuit module. During evaluation of a circuit module we associate state,
specified by occurrence names, with particular state-holding devices.

Consider the schematic circuits in Figure 4. The one-bit latch circuit M1 is
composed of three primitives: the B-IF selector primitive, the FD1 one-bit latch
primitive, and a tri-state buffer with an enable input. Our HDL representation
of M1 is as follows.

(M1%)

»(M1 (CLK EN SEL D Q) (Q)
((MUux  (B) B-IF (SEL D Q))
(LATCH (A AN) FD1 (B CLK))
(TBUF (Q) T-BUF (EN 4)))
LATCH)

Notice that the last element in the circuit module is LATCH; this indicates that
LATCH is the label of the (single) occurrence of a state-holding device FD1 within
this module. For modules that contain two or more occurrences of state-holding
devices, these occurrences are represented in a list. All such occurrences must
be listed.

Circuit module M2, also shown schematically in Figure 4, contains two occur-
rences of the (state-holding) M1 circuit module defined above, and one occurrence
of the wiring primitive T-WIRE. The occurrences that refer to circuit module M1
are listed in the last argument of module M2. These represent the collected
“state” of the module.

(M2%)

»(M2 (CLK ENO EN1 SELO SEL1 DO D1) (Q)
((occo (Qo) M1 (CLK ENO SELO DO Q))
(occ1 (Q1) M1 (CLK EN1 SEL1 D1 Q))
(WIRE (Q) T-WIRE (Q0 Q1)))
(0CCO 0cc1))

A well-formed netlist contains a complete hierarchical description of a circuit
in terms of primitive and defined modules. For example, an admissible netlist
describing the complete full adder circuit is given below.
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Figure 3: Full-Adder Circuit

The module HALF-ADDER is a structural description of the circuit with two
inputs, A and B, and two outputs, SUM and CARRY. The module body is a list of
module occurrences. Each occurrence consists of four elements: an occurrence
name, a list of outputs, a defined circuit module name or primitive reference,
and a list of inputs. In HALF-ADDER the first circuit module body occurrence
is (GO (SUM) B-XOR (A B)), which specifies that the output of the (primitive)
reference B-XOR (A B) is connected to wire SUM. GO is the occurrence name. This
HALF-ADDER circuit module does not contain any occurrences of state-holding
devices; thus, the final component of the circuit module is NIL.

HALF-ADDER contains only primitive references; we can also compose defined
modules. A schematic for a full-adder is presented in Figure 3. The FULL-ADDER
circuit module contains two occurrences of the HALF-ADDER circuit module, mean-
ing that two copies of HALF-ADDER are required to build the full-adder circuit.
Our FULL-ADDER circuit specification is shown below. The internal names (wires)
SUM1, CARRY1, and CARRY2 interconnect the half-adders and the primitive B-OR
gate.

(FULL-ADDER=*)

» (FULL-ADDER (A B C)
(SUM CARRY)
((TO (SUM1 CARRY1) HALF-ADDER (A B))
(T1 (SUM CARRY2) HALF-ADDER (SUM1 C))
(T2 (CARRY) B-OR (CARRY1 CARRY2)))
NIL)
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Figure 2: Half-Adder Circuit

As an example of a module within our HDL, below is a circuit constant
for the half-adder whose schematic diagram is pictured in Figure 2. The circuit
description is actually introduced as the body of a zero-ary function HALF-ADDER.
We follow a similar naming convention for all of our circuit modules. This allows
us to refer to this constant in subsequent expressions as (HALF-ADDER#*).

(HALF-ADDER=*)

> (HALF-ADDER (A B) ; name, inputs
(SUM CARRY) ; outputs
((GO (SUM) B-XOR (A B)) ; occurrences
(G1 (CARRY) B-AND (A B)))
NIL) ; state
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the inputs and state. Syntactic restrictions on the language assure that this
computation can be carried out efficiently and with a deterministic result.

The structuring concepts of the language specify how to combine primitive
and defined modules into increasingly more complex designs. The resulting
structures can be viewed as “wiring diagrams” accurately reflecting the hier-
archical design structure of the resulting hardware. Such a modular design
methodology is a crucial tool in managing the complexity of VLSI design. How-
ever, we take this one step further by providing a proof system that permits
hierarchical verification of hardware designs. Thus, the advantages of modular
design are inherited by the proof domain. These concepts are elaborated in
subsequent sections.

4 Representing Circuits in our HDL

Circuit designs in our HDL are represented as constants within the Boyer-Moore
logic. Functions written in the logic allow us to manipulate these constants—
checking for syntactic admissibility, providing an operational interpretation of
these constants as circuit designs, and enforcing various design constraints (such
as fanout limitations). In this section we describe the representation of circuits.

We represent a circuit within our HDL as a netlist—a list of circuit modules.
A well-formed circuit module consists of five elements:3

e a module name,
e a list of input names,
¢ a list of output names,

e a circuit module body in the form of a list of component module occur-
rences; and

e an occurrence name or a list of occurrence names.

Empty lists are represented as NIL.

All input and output names within a circuit module must be distinct, with
the exception that a name may appear in both the input and output name lists,
indicating a bi-directional wire. Component circuit modules may be primitive
hardware devices defined by the HDL or previously defined user-supplied mod-
ules. The circuit module body is a list of occurrences—a set of wiring instruc-
tions connecting component circuit modules. No module may be self-referential.
Primitives of the HDL include simple Boolean gates, registers, register files, and
integrated circuit I/O buffers. A complete list of primitives is given in Section

10.

3 An optional sixth argument is an association list of annotations. This argument is cur-
rently ignored by the evaluation software and will not be discussed further.
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expanding field.

There has been considerable work into formally modeling hardware descrip-
tion languages with an eye toward verified designs. Some languages studied
include Zeus[19], SMAX[17], SML[9], CSML[13], ELLA[6] and VHDL[5, 18, 42].
Several of these have interfaced with commercial CAD tools. For example, SML
has a postprocessor producing output compatible with the Berkeley VLSI de-
sign tools[10]. The VHDL work capitalizes on the growing availability of VHDL
support tools.

The use of general-purpose mechanical theorem provers is widely recognized
as useful in managing the proofs of increasingly complex VLSI designs. HOL[21]
and the Boyer-Moore prover[2, 33] seem to be the most widely used in current
hardware verification work, though other tools such as SDVS[35] and Clio[39],
have also been used to verify substantial designs. In addition, there is consid-
erable effort aimed at building special-purpose proof aids for reasoning about
hardware circuits[12, 16].

3 Modeling Sequential Logic

Figure 1 shows a conventional view of a sequential logic circuit.! Along with
the purely combinational circuit components, there are various state-holding
components. The outputs of the circuit at any time are a function of the inputs
and the current values of the state-holding components. The circuit is clocked,
i.e., the outputs are also a function of time. The state-holding components take
on new values only in response to a clock “tick.”

Our HDL is an attempt to model this basic paradigm while abstracting away
some of the complexity inherent in allowing the clock as an explicit signal in the
model. We retain the combinational and sequential aspects of this model, but
make the clock implicit. Thus, a module containing state-holding components is
a finite state machine, while one without is purely combinational. Our HDL is a
compromise between expressive power and “provability” that allows us to model
a variety of hardware devices and prove interesting properties of our models.

Circuit descriptions in our HDL are built as a collection of modules. Each
module is a specific instantiation of the basic circuit model depicted in Figure
1, where the clock is implicit.2 Internally, each module comprises a collection of
occurrences of primitives and other defined modules. In turn, a defined module
can be referenced as a component of other defined modules. The primitives of
the language include both combinational logic devices (eg. NOR gates) and state-
holding devices (eg. flip-flops). Our evaluation paradigm is one of unit-clock
simulation. On each “tick” of the clock (cycle of the simulation) we compute
the new values of the outputs and state-holding components as a function of

1This diagram is adapted from [34].
2The clock signal is syntactically required in our circuit module descriptions. However, it
is ignored by the evaluator.
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The formalization of our HDL was motivated by the desire for the expressive
power normally found in commercial hardware description languages, i.e., the
ability to identify both active circuit elements and the interconnecting wiring
networks. In previous work [22; 23, 24], we modeled sequential logic with
Boolean-valued Boyer-Moore logic expressions. The intended hardware was de-
rived from the structure of these expressions. State-holding modules could not
be explicitly specified. Furthermore, fanout and other important engineering
considerations could not be addressed. An alternative approach—using predi-
cates to describe circuits—allows arbitrary circuit descriptions, but at the cost
of a simulation capability.

In contrast, our HDL allows us to express circuits as logical constants, en-
abling us to provide mechanisms similar to those provided by CAD tools: simu-
lation; synthesis; analysis of loadings, fanouts, and drive strengths; and syntax
checking. Our HDL is our lowest-level model; that is, with our approach the
most concrete means of describing a circuit is to represent it as a valid HDL con-
stant. We can then manipulate and reason about these constants with mechan-
ical tools built as functions in the Boyer-Moore logic. We can also mechanically
translate these constants to other hardware description languages for physical
implementation purposes.

We have used our HDL to express the implementation of the FM9001 micro-
processor[25]. This implementation specification contains all internal gates,
wires, test logic, and I/O circuits. For the FM9001 fabrication, we have me-
chanically translated our HDL-based implementation into a commercial CAD
language and provided test vectors.

In the following section, we point to some related work. In Sections 3 and
4 we describe our overall model of circuits and their representation within our
HDL. In Section 5 we describe informally the hardware interpreters that provide
the semantics of our HDL. Sections 6 and 7 illustrate the specification and proof
of properties of hardware designs. We then consider the design, specification and
proof of circuit generator functions in Sections 8 and 9. Section 10 describes
some limitations on our formalism and delimits the class of circuits that can
be represented within our HDL. Section 11 describes the translation of our
HDL circuit descriptions into some commercially available hardware description
languages. Finally, we give some conclusions and observations on the value of
this work in Section 12. The Boyer-Moore logic and theorem prover, along with
some of the notation and function definitions used in the paper, are described
in the appendix.

2 Related Work

A large number of researchers are working in the field of hardware verification
and formal modeling of hardware. See Yoeli’s recent tutorial[44] for an overview
of the field. We mention here only a few of the threads of research from a rapidly
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Abstract

We describe a hierarchical, occurrence-oriented hardware description language
embedded within the Boyer-Moore logic. Within this formalism, we represent
combinational and sequential circuits as list constants. An interpreter has been
defined that gives meaning to circuit constants recognized by a well-formedness
circuit predicate. Circuits can be verified with respect to their interpretations
and we can write programs that manipulate HDL expressions. Instead of at-
tempting to verify each circuit constant of interest, we often verify functions
that synthesize circuit constants.

1 Introduction

The use of mathematical logic for modeling and reasoning about hardware de-
signs promises assurance of circuit correctness beyond what is available from
current state-of-practice techniques. The development and use of formal tech-
niques in hardware design is spreading [4, 8, 12, 14, 15, 26, 27, 29, 38]. This
approach to circuit validation is known generally as hardware verification. Cir-
cuits with the complexity of microprocessors[4, 22, 30, 39] have been given
mathematical specifications, and their designs have been proved to implement
their specifications. Yet, the transfer of hardware verification techniques to
commercial engineering practice has been hampered by such factors as the use
of non-standard notations, inaccessibility of the tools, and the significant math-
ematical sophistication required to use these approaches. In addition, formal
techniques have been directed at only selected aspects of the design process. Im-
portant hardware characteristics such as testability and I/O behavior have been
largely neglected by the formal hardware modeling and verification community.

We have attempted to address some of these issues by formalizing a subset of
a conventional CAD-like sequential hardware description language (HDL). We
provide a formal circuit syntax, a formal semantics, and a means of translating
circuit descriptions to a commercial CAD language. Our HDL definition en-
compasses the notions of circuit behavior, delay, fanout, logical values, loading,
modularity, and circuit module hierarchy.

Our HDL is formally embedded within the Boyer-Moore logic[l, 2]. Con-
sequently, we have available a formalism for specifying correctness properties
of our circuits and a theorem prover to support proofs about our circuit de-
signs. Circuits are represented as constants within the logic, which is also used
to define the syntax and semantics of our circuit constants. We employ the
Boyer-Moore theorem prover to mechanically manage our database of speci-
fications and to check our proofs. We are also able to construct and verify
functions that generate correct circuit descriptions in our HDL. For instance,
we have proved the correctness of a function that produces ALU circuits for
arbitrary word sizes[7]. We know in advance that any circuit constructed by
this ALU-producing function is correct.
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