A Formal HDL and its use 17
in the FM9001 Verification
Technical Report #79

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

Steven D. Johnson. Manipulating logical organization with system fac-
torizations. In Hardware Specification, Verification and Synthesis: Mathe-
matical Aspects., volume 408 of Lecture Notes in Computer Science, pages

259-280. Springer Verlag, 1989.
Guy L. Steele Jr. Common LISP: The Language. Digital Press, 1984.

Warren A. Hunt Jr. FM8501: A Verified Microprocessor. PhD thesis,
University of Texas at Austin, December 1985.

Warren A. Hunt Jr. Microprocessor design verification. Journal of Auto-

mated Reasoning, 5(4):429-460, December 1989.

Warren A. Hunt Jr. and Bishop C. Brock. The verification of a bit-slice
ALU. In Workshop on Hardware Specification, Verification and Synthests:
Mathematical Aspects., Lecture Notes in Computer Science, pages 281-305.
Springer Verlag, 1989.

Matt Kaufmann. A hardware reset lemma and its proof. Internal Note 230,
Computational Logic, Inc., May 1991.

J S. Moore. Mechanically verified hardware implementing an 8-bit parallel
io byzantine agreement processor. Technical Report NASA CR-189588,
NASA, 1992.

Mary Sheeran. pu-FP-An algebraic VLSI design language. Technical Report
PRG-39, Oxford University Computing Laboratory, September 1984.

A Formal HDL and its use 16
in the FM9001 Verification
Technical Report #79

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Graham Birtwistle, Brian Graham, Todd Simpson, Konrad Slind, Mark
Williams, and Simon Williams. Verifying an secd chip in hol. In Proceedings
of the IFIP TC10/WG10.2/WG10.5 Workshop on Applied Formal Methods
for Correct VLSI Design. Elsevier Science Publishers, Amsterdam, 1990.

R.S. Boyer and J S. Moore. A Computational Logic Handbook. Academic
Press, Boston, 1988.

Geoffrey M. Brown and Miriam E. Leeser. From programs to transistors:
Verifying hardware synthesis tools. In Workshop on Hardware Specification,
Verification and Synthests: Mathematical Aspects., volume 408 of Lecture
Notes in Computer Science, pages 128-150. Springer Verlag, 1989.

R.E. Bryant. Verification of synchronous circuits by symbolic logic simula-
tion. In Hardware Specification, Verification and Synthesis: Mathematical
Aspects., volume 408 of Lecture Notes in Computer Science, pages 14-24.
Springer Verlag, 1989.

Avra Cohn. A proof of correctness of the viper microprocessor: The first
level. In G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specifica-
tion, Verification and Synthesis, pages 27-71. Kluwer Academic Publishers,
Boston, MA, 1988.

W.J. Cullyer. Implementing safety critical systems: The viper micropro-
cessor. Divisional Memo (CC2) 411-87, Royal Signals and Radar Estab-
lishment, Malvern, Worcestershire (United Kingdom), August 1987.

Simon Finn, Michael P. Fourman, Michael Francis, and Robert Harris. For-
mal system design - interactive synthesis based on computer-assisted formal
reasoning. In Proceedings of the IFIP TC10/WG10.2/WG10.5 Workshop
on Applied Formal Methods for Correct VLSI Destgn. Elsevier Science Pub-
lishers, Amsterdam, 1990.

Donald I. Good. Mathematical forecasting. In Christine Anderson and Mer-
lin Dorfman, editors, Aerospace Software Engineering. American Institute
of Aeronautics and Astronautics, Inc., 1991.

M. Gordon. HOL: A proof generating system for higher-order logic. Tech-
nical Report 103, University of Cambridge, Computer Laboratory, 1987.

M.J.C. Gordon. Why higher-order logic is a good formalism for specifying
and verifying hardware. Technical Report 77, University of Cambridge,
Computer Laboratory, September 1985.

A Formal HDL and its use 15
in the FM9001 Verification
Technical Report #79

possible to prove the monotonicity property we mentioned earlier. We believe
that the proof of monotonicity property of the HDL is one check on the validity
of our hardware model.

The weakness of our HDL forced us to restrict ourselves to implementing a
device with a single clock. This restriction precludes the formalization of any
multi-phased clocked device, e.g., a RISC microprocessor. In addition, our HDL
does not admit the use of both rising-edge and falling-edge clocked registers — we
consider every state-holding device to update its internal state simultaneously.
The FM9001 implementation does include one level-sensitive memory element,
the register file. We chose to include this non-standard primitive because a
level-sensitive memory of the size of our register file can be manufactured in one
half of the space required by 512 single-bit latches. We implemented a circuit
around the register file so that we could use the register file just like all of the
other state-holding device primitives.

We expect that if we were to design another microprocessor of similar com-
plexity it would not take nearly as long as this effort. Much of our effort was
spent in refining our HDL and making proofs about HDL circuits as automatic
as possible. We spent a great deal of time “engineering” our HDL proof system
so 1t would be simple for others to use. In fact, a circuit for Byzantine agree-
ment [17] and a combination lock circuit [16] have been specified with our HDL
and these circuits were verified by Boyer-Moore theorem-prover users other than
ourselves.

We have recently formalized single stuck-at faults for the combinational por-
tion of our HDL. We believe that this is an area that should be integrated with
the design and verification process. We consider this potential integration as
another thread that should be sewn into the formula manual cloth.

10 Acknowledgments

This work was done in collaboration with Bishop C. Brock until his departure in
July of 1991. Bishop Brock deserves equal credit for this effort, and without his
innovation and theorem proving ability this work would have not been possible.
This paper was written entirely by Hunt. Brock is presently on an around-the-
world bicycle trip, and thus was unable to review this note.

Matt Kaufmann was responsible for the formalization and proof of the mono-
tonicity of our HDL. Ann Siebert built the well-formed HDL circuit recognizer.
Fay Goytowski engineered the formalization of our stuck-at test model.

This work was sponsored in part at Computational Logic, Inc., by the De-
fense Advanced Research Projects Agency, ARPA Order 7406. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied,
of Computational Logic, Inc., the Defense Advanced Research Projects Agency
or the U.S. Government.

A Formal HDL and its use 14
in the FM9001 Verification
Technical Report #79

the first two lines of the chart just below.

Prettyprinted

Lines
User—-level semantics of FM9001 915
Statement of theorem 197
Semantics of HDL 3459
FM9001 implementation description 3479
Existential witness for the clock 1942
Total: 9992

To get a rough measure of the size of the FM9001 proof, J Moore modified
the theorem prover to count its smallest step. By adopting a suitable collection
of derived inference rules, a formal proof can be constructed with one line for
each step. Among our one-step rules are instantiation, modus ponens, general-
ized equality substitution, tautology recognition, and cross-multiplication and
addition of inequalities.

The sum of the proof steps in all the formal proofs done for FM9001 is
6,100,315. That is, more than six million lines of formal proof were “virtually
constructed.” It would be easy to increase this number by reducing the size
of our proof steps. For example, the cost of substitution-of-equals-for-equals in
HOL [9] is not constant (it is one in our count of proof steps) but is proportional
to the depth at which the target occurrence is found. Similarly, we recognize
very large IF expressions as tautologies but charge only one step. We have
expressions containing more than 50 IF expressions through which there are
more than 10° branches—but because the branches were pruned dynamically,
the theorem prover did not have to explore them all.

The total number of primitive proof steps investigated by the theorem prover
during its search for the FM9001 proof is 19,165,122. This means that 32% of all
the investigated steps were actually “kept.” The term clausifier was called 80,390
times. The function that determines the type of a term was called 14,699,506
times and the rewriter was called 11,624,455 times.

9 Conclusions

A netlist implementation of the FM9001 microprocessor has been mechanically
checked by the Boyer-Moore theorem proving system to implement its formal
specification. The more important result of this effort is the notion that the
FM9001 specification and implementation represents our first formula manual.
Although we consider the verification of circuit designs to be important, we
believe the formalization of design requirements to be more valuable.

We know of no other work where the complete syntax and semantics of a
HDL have been described. Without this formalization, it would not have been

A Formal HDL and its use 13
in the FM9001 Verification
Technical Report #79

An abstract representation of the top-level theorem specifying the correct-
ness of an implementation for the FM9001 specification is below.

dimplementation Iclock
FM9001_speci fication(user_state, n)

map_up(simulate(map_down(user_state), implementation, clock))

The implementation for which we have proved this theorem is, of course, the
one previously described. We remind the reader that there is a time abstraction
between the user and two-valued levels. The clock argument above accommo-
dates the different rates of the user and lower levels. The natural number n
indicates the number of user-level instructions to be executed.

Our FM9001 proof script contains 2957 entries that expand into 4851 theo-
rem prover events. The total time required for the Boyer-Moore theorem prover
to check the proof of FM9001’s implementation with respect to its specification
is about 24 hours on a Sun Microsystems 3/60.

The following chart is a partial reproduction of a chart in Appendix III of
A Computational Logic Handbook, by Boyer and Moore [2]. We added the last
line. This information was constructed by a static analysis of the final FM9001
library produced by the Boyer-Moore theorem prover.

Number of lines in understandable statement
Concept depth of statement

| Max concept depth in proof

| | Number of supporters

| [| Lines of supporters
I I | I Depth of proof

I I I I I I

85 FM8501 991 157 152 230 2171 18

86 Goedel 864 48 40414 1741 20002 58

91 FM9001 1112 120 128 1894 28784 46

The “understandable statement” of a theorem is the prettyprinted text of all
the definitions used in the theorem except for Boyer-Moore primitives. The
number of lines for the understandable statement of the FM9001 proof could be
considered to be as high as 9992. The 1112 lines reported above is the sum of

A Formal HDL and its use 12
in the FM9001 Verification
Technical Report #79

automatically from a description of what internal resources are to be used each
clock cycle. However, in this case we also generate a list of lemmas that must
be established to ensure the correctness of the control logic. The lemmas are
mechanically proved without manual intervention.

The use of synthesizers wherever possible has made most of the FM9001
pieces reusable. Only a few pieces are fixed in their word size. To implement
another similarly complex microprocessor would require much less effort than
we spent implementing the FM9001 because of the existence of many verified
synthesizers.

The FM9001 implementation netlist is composed of 85 modules that collec-
tively reference 1800 primitives of 48 different types. On average, the output
of a primitive is connected to 3.4 other primitives. The FM9001 has 95 I/0O
pins, of which 32 are bi-directional. It is this netlist that we have mechanically
checked to implement the FM9001 specification.

To allow LSI Logic to build the FM9001, we translate this netlist into NDL
as discussed earlier. The resulting NDL specification of the FM9001 contains
over 91000 characters in 2215 lines. This NDL specification is used by LSI Logic
as a wiring guide for an actual implementation. In addition to the NDL-based
specification, we provide test vectors. Even a logically correct implementation
must be tested to ensure that there were no flaws introduced during the manu-
facturing process.

To facilitate testing, the 248 internal single-bit latches are connected in a
scan chain. Through the use of an external test control input, it is possible to
load or read every bit in the chain. The contents of the internal 16 word by
32-bit register file can be loaded and retrieved by using the scan chain along
with two, external, dedicated, register file control signals . That is, it is possible
to stop the FM9001 implementation on any clock cycle, and read and/or alter
any or all of the internal state.

8 The FM9001 Mechanical Proof

The proof of the FM9001 microprocessor was mechanically checked by the
Boyer-Moore theorem prover. The proof is large by mechanical standards and
impossible to do by hand. We present a top-level statement of the correctness
of the FM9001 implementation and describe the size of the mechanical proof.

A Formal HDL and its use 11
in the FM9001 Verification
Technical Report #79

are false and undefined, then the result is false. If we consider the primitive
ezclusive-or gate, DUAL-EVAL produces an undefined result if either input argu-
ment is undefined.

We have proved that DUAL-EVAL is monotonic with respect to an ordering
in which the undefined value is smaller than everything else. It was necessary
to first prove that every primitive was monotonic and then to prove that well-
formed netlists were also monotonic. Using this property and the ability of
some primitive gates to prevent the propagation of undefined values, we were
able to prove that the FM9001 microprocessor could be reset, even if the initial
state was undefined. We prove that the FM9001 can be reset by simulating the
FM9001 netlist with DUAL-EVAL using a completely undefined initial state.

By referring back to Figure 1, we can now describe the difference between the
two-valued and the four-valued levels. The four-valued level is just a functional
abstraction of our netlist level — this level implements a four-valued logic — and
the proof that the netlist level implements the four-valued level is straightfor-
ward. After the FM9001 has been reset, every state-holding device has been
proved to contain only Boolean values; we assume that the memory contains
only Boolean values. The two-valued level admits only Boolean values. To prove
that we can lift ourselves from the four-valued level to the two-valued level, we
must prove that we have a completely Boolean state and that the memory in-
terface only supplies Boolean values (during memory read operations.) It is
between these two levels that we must prove that the memory interface proto-
col, implemented by the FM9001, is correct for our memory model; otherwise,
we are not able to prove that the memory always provides Boolean data.

7 The FM9001 Circuit Netlist

The implementation of the FM9001 is described as a netlist containing a ref-
erence for every primitive gate, latch, register, I/O buffer, and wire that is
required for a FM9001 implementation. Both the syntax and the semantics
of this netlist have been checked: the netlist is well-formed and it has been
mechanically checked to implement the FM9001 specification.

The FM9001 netlist is actually constructed by executing a function that
generates the FM9001 netlist. Much of the netlist is synthesized. The ALU, the
largest internal block of combinational logic, is defined by a generator parame-
terized by the word size and the structure of the propagate-generate look-ahead
logic. We have mechanically proved that our ALU synthesizer constructs cor-
rect ALU’s for all word sizes and look-ahead structures. Registers, selectors,
I/0O pads, and other regular structures are also synthesized. Instead of prov-
ing the correctness of the circuits produced by the synthesizer programs, we
prove the correctness of the synthesizer programs themselves. In this way we
know that the resulting circuits are correct and we do not have to inspect the
resulting circuit modules. We also synthesize our control logic; it is produced

A Formal HDL and its use 10
in the FM9001 Verification
Technical Report #79

output names, translating the primitive reference names, and adding keywords
for NDL. The complete source text for our translator is less than two pages of
Lisp code. Since there is no formal model of NDL, we are not able to verify our
translator, but we are pleased that it is so short.

COMPILE;
DIRECTORY MASTER;

MODULE FULL-ADDER; > ((FULL-ADDER
INPUTS A,B,C; (A BC)
OUTPUTS SUM, CARRY; (SUM CARRY)
LEVEL FUNCTION;

DEFINE

TO(SUM1,CARRY1) = HALF-ADDER(A,B); ((TO(SUM1 CARRY1) HALF-ADDER (A B))
T1(SUM,CARRY2) = HALF-ADDER(SUM1,C); (T1(SUM CARRY2) HALF-ADDER (SUM1 C))

T2(CARRY) = OR2(CARRY1,CARRY2); (T2(CARRY) B-OR (CARRY1 CARRY2)))
NIL)

END MODULE;

MODULE HALF-ADDER; (HALF-ADDER

INPUTS A,B; (A B)

OUTPUTS SUM,CARRY; (SUM CARRY)

LEVEL FUNCTION;

DEFINE

GO(SUM) = EO(A,B); ((GO(SUM) B-XOR (A B))

G1(CARRY) = AN2(A,B); (G1(CARRY) B-AND (A B)))
NIL))

END MODULE;

END COMPILE;
END;

6 The Unit-clock Simulator

The function that implements our unit-clock simulator is named DUAL-EVAL. This
is because DUAL-EVAL must evaluate a netlist twice to compute new values for
the state-holding devices. A module’s inputs may not be available during the
first evaluation pass because their values may not have been computed; that is,
their computation occurs later in the evaluation of the netlist. At the start of
the second pass, all outputs of every module will have been computed and are
available as inputs to any other module.

DUAL-EVAL implements a four-valued simulator; it recognizes four distinct
logical values: true, false, floating, and undefined. Undefined values given as ar-
guments to primitives are passed on by DUAL-EVAL as appropriate. For instance,
if a two-input Boolean and gate is evaluated with one input being undefined
and the other true, then an undefined result is returned; however, if the inputs

A Formal HDL and its use 9
in the FM9001 Verification
Technical Report #79

A—aA caRRy |_CARRY1
HALF-ADDER CARRY
B—s8 sum | SUML |, CARRY | CARRY2
HALF-ADDER
C B SUM SUM

Figure 4: Full-Adder Circuit

> (HALF-ADDER (A B)
(SUM CARRY)
(C GO(SUM) B-XOR(A B))
(G1(CARRY) B-AND(A B)))
NIL)

The HALF-ADDER module has two inputs named A and B and two outputs named
SUM and CARRY. The circuit module body is a list of two occurrences. The first
circuit module body occurrence is (GO(SUM) B-XOR(A B)); the output of the
primitive reference B-XO0R(A B) is SUM; GO is the occurrence name. The final NIL
in the HALF-ADDER module indicates that this module contains no state-holding
devices.

A full-adder schematic is shown in Figure 4. FULL-ADDER references the
HALF-ADDER circuit module twice.

> (FULL-ADDER (A B C)
(SUM CARRY)
((TO(SUM1 CARRY1) HALF-ADDER(A B))
(T1(SUM CARRY2) HALF-ADDER(SUM1 C))
(T2(CARRY) B-OR(CARRY1 CARRY2)))
NIL)

We introduce the internal names (wires) SUM1, CARRY1, and CARRY2 to inter-
connect the half-adders and the primitive B-0R gate. In addition to the purely
combinational primitives such as B-0R, our HDL contains primitive state-holding
devices such as latches. We also have primitives for tri-state busses, I/O buffers,
scanned latches, and clock buffers.

Below is a an example of a translation of our format to LSI Logic, Inc.,
Network Description Language (NDL). A netlist containing FULL-ADDER and
HALF-ADDER is positioned on the right and the result of our translation is on
the left. To have the FM9001 fabricated, we have written a translator in Com-
mon Lisp to translate the entire FM9001 implementation netlist into NDL. The
translation is primarily concerned with added commas to separate input and

A Formal HDL and its use 8
in the FM9001 Verification
Technical Report #79

D
CARRY

B

j% SUM

Figure 3: Half-Adder Circuit

provide a structure for our circuit descriptions. If we replace B in the previous
list by (D E F) we get (A (D E F) ©).

A well-formed netlist is composed of a list of well-formed modules. Every
module name in the netlist must be unique and different from every primitive
name. Each module is composed of five elements: a module name, a module
input list, a module output list, a body containing a list of occurrences, and
either a reference to a single state-holding occurrence or a list of state-holding
occurrence names. Module input and output names must be distinct; however,
a name may appear in both the input and output name list, indicating a bi-
directional name. A circuit module body is a list of occurrences that reference
other modules or primitives. The occurrence list describes how these are in-
terconnected or “wired” together. Each occurrence in a module body contains
four fields: an occurrence name, an output list, a module reference, and an
input list. All occurrence names in a module body must be distinct. A module
reference in every occurrence must refer to either a primitive or another module
defined later in the netlist. Our HDL definition includes simple Boolean gates,
registers, register files, and integrated circuit 1/O buffers as primitives. Output
names of an occurrence must be distinct from any module input name (except
for bi-directional nets), but they can include module output names. No name
may appear twice in occurrence output lists; that is, a name may not be set by
more than one occurrence output. The input list of an occurrence may reference
only the module input names or other wire names as set by other occurrence
outputs. The last element of a module definition must have an entry for every
occurrence containing state-holding devices. If only one occurrence contains
state, then that occurrence name is the module’s fifth element; otherwise, the
state-holding occurrence names are combined into a list.

Below we present our HDL description of a full adder composed of two half
adders. Below is our formal module definition of the half-adder schematic in
Figure 3.

A Formal HDL and its use 7
in the FM9001 Verification
Technical Report #79

types: Booleans, natural numbers, lists, literal atoms, and integers. Additional
data types can be defined. The syntax, axioms, and rules of inference of the
logic are given precisely in A Computational Logic Handbook [2].

The Boyer-Moore logic can be extended by the application of the following
axiomatic acts: defining functions, adding recursively constructed data types,
and adding arbitrary axioms. Adding an arbitrary formula as an axiom does
not guarantee the soundness of the logic; we do not use this feature.

The Boyer-Moore theorem proving system (theorem prover) is a Common
Lisp [12] program that provides a user with various commands to extend the
logic and to prove theorems. A user enters theorem prover commands through
the top-level Common Lisp interpreter. The theorem prover manages the axiom
database, function and data type definitions, and proved theorems, thus allow-
ing a user to concentrate on the less mundane aspects of proof development.
The theorem prover contains a simplifier and rewriter and decision procedures
for propositional logic and linear arithmetic. It also can perform structural
inductions automatically.

While the Boyer-Moore logic is formal, the theorem-prover does not con-
struct a formal proof. To the best of their abilities, Boyer and Moore have
convinced themselves by the traditional, rigorous methods of informal mathe-
matics of the following claim: “If the theorem prover asserts it has proved a
formula, then there exists a formal proof of that formula.” The validity of their
claim has been subjected to the scrutiny of the “social process” of the mathe-
matics and computer science communities through books and classes, and the
full distribution of the theorem prover code, for almost two decades without
serious challenge. This time span is important, as this is not a long time for
certification in mathematics. It must be noted that the Boyer-Moore theorem
prover i1s about 15,000 lines of Common Lisp, and it is quite possible that the
proving mechanism in the theorem prover has soundness flaws.

We use the theorem prover as a proof checker. We lead it to difficult theorems
by providing it with a graduated sequence of more and more difficult lemmas
until a final result can be established.

5 Circuit Netlists

We use our formally defined HDL to define the FM9001 implementation. Our
definition of the HDL contains two main pieces: a recognizer of well-formed
circuits and the unit-clock simulator. The well-formed circuit recognizer pred-
icate checks a netlist for a number of static circuit properties. The simulator,
when given a netlist, a module reference, the module’s input values, and the
module internal state, computes both the outputs and the next internal state.
The unit-clock simulator provides a circuit simulation capability.

HDL circuits are written using the Lisp quote notation. For example, (A B ¢)
is a list of three literal atoms; its second element is B. We use nested lists to

A Formal HDL and its use 6
in the FM9001 Verification
Technical Report #79
31 2827 2423 2019181716151413 109 8 6543 0
BEEERERERE \\\H\ H\\\H\
UNUSED | OP-CODE | STORE-CC |C |V |N |z MODEB 0|UNUSED MODEA REGA

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

31 2827 2423 2019181716151413 109 8 0
TR [T TT] T T T
UNUSED OP-CODE | STORE-CC |C |V |N |ZMODEB REGB 1 IMMEDIATE
Ll b
MODE OPERAND DESCRIPTION
00 Rn Register Direct
01 (Rn) Register Indirect
10 -(Rn) Register Indirect Pre-decrement
11 (Rn)+ Register Indirect Post-increment
OP-CODE OPERATION DESCRIPTION STORE-CC CONDITION
b<-a Move 0000 Carry clear
b< a+l Increment 0001 Carry set
b < a+b+c Add with carry 0010 Overflow clear
b< b+a Add 0011 Overflow set
b<-0-a Negation 0100 Not negative
b<-a-1 Decrement 0101 Negative
b < b-a-c Subtract with borrow 0110 Not zero
b< b-a Subtract 0111 Zero
b < a>1 Rotate right through carry 1000 Higher
b < a>1 Arithmetic shift right 1001 Lower or same
b < a>1 Logical shift right 1010 Greater or equal
b <- bXORa XOR 1011 Less
b <- bORa OR 1100 Greater
b <- bAND a AND 1101 Lessor equal
b <- NOT a NOT 1110 True
b< a Move 1111 False

1111

Figure 2: Instruction Word Format

A Formal HDL and its use 5
in the FM9001 Verification
Technical Report #79

increment, and register indirect with post-increment. Thus, the FM9001 has
five addressing modes for operand A and four addressing modes for operand B.
Every addressing mode works with all instructions. There are 15 different arith-
metic instructions. Each instruction contains four bits that allow the arithmetic
flags, carry, overflow, zero, and negative, to be selectively updated. Also, each
instruction contains four bits that specify whether the result computed by an
instruction is stored, based on the values of the arithmetic flags at the beginning
of an instruction.

The user-visible state of the FM9001 is shown as a part of the user level
in Figure 1. This state includes a general-purpose 16-element register file, four
arithmetic flags, and the external memory. Register 15 is overloaded to contain
the program counter address, but in all other respects operates like the other
registers. To perform a conditional branch, operand A is added to the program
counter, and the result is conditionally stored based on the STORE-CC field of the
instruction. Since the results of any instruction may be conditionally stored,
there are no differences between control and data operations. This is even true of
the program counter because the implementation allows any of the 16 registers
to be used as the program counter.

The FM9001 specification is derived from the FM8502 specification [14].
There are three main differences. The FM9001 has the ability to conditionally
store any result — only conditional moves were permitted in the FM8502. The
FM9001 interleaves the post-increment operations; the FM8502 post-increment
operations were done after both operands were fetched. And finally, the FM9001
has an immediate data mode for operand A; the FM8502 did not have this
feature. The ALU operations remained the same as did the fetch-execute cycle.

The two-valued and the four-valued specification levels are artifacts of the
approach we used to mechanically check the implementation of the FM9001.
The two-valued level can be thought of as a Boolean model of the implementa-
tion with the tri-state memory interface bus abstracted away. The four-valued
level has functionality similar to the two-valued level, except the tri-state mem-
ory bus is included. It is at this level that we prove that the FM9001 can be
reset; we discuss this later. The netlist specification level describes the actual
FM9001 implementation in terms of Boolean gates and latches, I/O buffers, and
test logic. We translate our netlist into vendor-specific languages so a manufac-
turer can build a physical implementation.

4 The Boyer-Moore Logic

We express our netlists as Boyer-Moore list constants. Before we explain our
netlist syntax, we introduce the Boyer-Moore logic. The Boyer-Moore logic is a
quantifier-free, first-order predicate calculus with equality and induction. Logic
formulas are written in a prefix-style, Lisp-like notation. Recursive functions
may be defined, provided they terminate. The logic includes several built-in data

A Formal HDL and its use
in the FM9001 Verification
Technical Report #79

Integer Interpretation
reg file Natural Number f— reg file
memory | | 16x 32bit Interpretation memory | | 16x32bit
32 } 32 i
27 x 32-bit —_ > 2°7 X 32-bit
Boolean Interpretation

Two-valued level E\/S
/ 4>
T n | | n

Four-valued level
O e

Netlist level

Figure 1: Specification Levels

A Formal HDL and its use 3
in the FM9001 Verification
Technical Report #79

model of circuit implementations, well-formed circuits cannot be recognized, nor
can the model be thoroughly studied for its mathematical consistency. Clearly,
our HDL is a model of physical reality, and as such, it should be subjected
to thorough study; our HDL should be inspected by digital design engineers
to determine whether our model corresponds with physical reality. Our model
represents circuits as interconnected networks of simple Boolean connectives
and storage devices. Circuits at this simple Boolean level are still far removed
from actual physical implementation.

Our HDL has been designed with a structure similar to that of commercial
HDLs, thus allowing a simple mechanical means of converting our design speci-
fications into existing informally defined HDLs. Clearly this conversion process
has no formal basis; therefore, it is important that conversions can be performed
with a simple, mechanical, believable process.

3 The FM9001 Microprocessor Specification

The FM9001 is specified at four levels of abstraction — user, two-valued, four-
valued, and netlist — shown in Figure 1. There are three user-level specifications:
Boolean, natural number, and integer. Each gives identical results, but by way
of different interpretations of each FM9001 user-level operation. All of the
horizontal arrows represent interpreters that repeatedly take a state and map
it to a new state. The netlist level state, represented with circles, is the actual
state in the FM9001 implementation. The two-valued and four-valued levels
have a slightly more abstract representation of the netlist state. The user-level
state contains only what is available to a FM9001 programmer. The user-
level specifications are interpreters that step once per instruction and provide
the programmer’s view of the FM9001. The two-valued and four-valued levels
are different abstractions of the netlist level; these interpreters step once per
machine clock cycle. The netlist itself is not an interpreter, but it can be
evaluated on a clock-by-clock basis with our netlist simulator. The vertical
arrows represent trivial mapping functions except between the user and two-
valued levels. Mapping here converts between the user visible state and the
state in the FM9001 implementation; additionally, there is a time abstraction
because of the different step rates between these two levels.

Informally, the FM9001 is a simple 32-bit microprocessor with a two address
architecture. Each FM9001 instruction fetches operand A, and operand B if
necessary, computes a result, and stores the result in the location referenced by
operand B. Figure 2 shows the two FM9001 instruction formats, a two-address
instruction or an immediate datum instruction. The formats only differ in se-
lection of operand A. In the immediate datum case there is a nine-bit datum
that is sign-extended to 32-bits; otherwise, operand A is selected in the same
manner as operand B. Except for the immediate datum mode there are four
addressing modes: register direct, register indirect, register indirect with pre-

A Formal HDL and its use 2
in the FM9001 Verification
Technical Report #79

mechanisms similar to those provided by CAD tools: simulation; synthesis; anal-
ysis of loadings, fanouts, and drive strengths; and syntax checking. Our HDL is
our lowest level model; that is, with our approach the most concrete means of
describing a circuit is to represent it as a valid HDL constant. We mechanically
translate these constants to other hardware description languages for physical
implementation purposes.

The FM9001 microprocessor is a general-purpose, two-address, 32-bit mi-
croprocessor with five addressing modes. Our implementation of the FM9001
has 32 address lines, a 32-bit data bus, 32-bit internal registers, and Boolean
arithmetic flags. The FM9001 user-level specification is an instruction inter-
preter that steps once per instruction. An implementation of the FM9001 has
been specified as a well-formed circuit netlist. We have led the Boyer-Moore
theorem-proving system to a mechanically checked proof that for all possible
simulations of the FM9001 netlist, it implements its specification, given certain
restrictions on the memory interface. To facilitate manufacturing we convert
the FM9001 netlist into a commercial netlist language.

In this note we present an introduction to our HDL and the FM9001. We
describe the approach of using an HDL like ours for the mechanical verification
of hardware designs, and we use the FM9001 microprocessor verification effort
to demonstrate this approach. We also document the size of this effort and
conclude with some comments about our experience.

2 Hardware Verification

Our “hardware verification” approach advocates the use of formal logic for both
hardware designs and their more abstract specifications. We envision providing
a mathematical statement, which we call a formula manual, that completely
specifies the operation of a hardware component. Much effort is being invested
in pursuing this goal [1, 3, 4, 5, 6, 7, 10, 11, 18]; however, most of the effort is
directed toward proving the logical correctness of various circuits. Conceptually,
we think of a formula manual specifying much more than logical correctness.
For instance, imagine a microprocessor user’s manual containing a series of
formulas that describe the programming model, the timing diagrams, the mem-
ory interface, the pin-out, the power requirements, cooling requirements, etc.
Further, imagine that available implementations of this microprocessor were
formally checked to meet every specification contained in the formula manual.
The formula manual would then provide a precise specification that would allow
hardware engineers to use implementations with confidence and would permit
software engineers to accurately predict the results of programming the device.
The formalization of our HDL represents a very modest attempt toward formal-
izing the hardware design process.

Our HDL explicitly models (with varying degrees of precision) circuit fanout,
loading, test circuitry, I/O ports, and circuit hierarchy [8]. Without a formal

A Formal HDL and its use 1
in the FM9001 Verification
Technical Report #79

Abstract

A synchronous, hierarchical, occurrence-oriented, hardware description language
(HDL) has been formalized with the Boyer-Moore logic. Well-formed HDL
circuits are recognized by a predicate, and a unit-clock simulator defines the
meaning of circuits expressed in the HDL. This HDL has been used to specify
an implementation of the FM9001 microprocessor that has been mechanically
proved to implement the FM9001 instruction-level specification. All proofs were
mechanically checked using the Boyer-Moore theorem-proving system. The for-
malization of the HDL, the FM9001 user-level specification, and the FM9001
HDL implementation architecture specification required more than seven hun-
dred function definitions. The mechanical proof is composed of thousands of
theorem prover proof requests and millions of theorem prover inference steps.

1 Introduction

The formalization of a hierarchical, occurrence-oriented, hardware description
language has been specified using the Boyer-Moore logic [2]. Circuits are repre-
sented as Boyer-Moore list constants, and the Boyer-Moore logic is used to define
circuit semantics. An implementation of the FM9001 microprocessor has been
specified with this hardware description language. By using the Boyer-Moore
theorem proving system, we have mechanically checked that our HDL-based
FM9001 implementation specification is both an admissible circuit and that it
implements its user-level specification.

Our hardware description language (HDL) only admits sequential circuits
with a single clock; all state-holding devices update their internal states si-
multaneously. Well-formed circuits are recognized by a predicate that inspects
circuits for well-formed names, the absence of combinational loops, loading and
fanout violations, wire type mismatches, clock distribution, and other circuit
parameters. The meaning of interconnected collections of well-formed circuits
(netlists) is defined by a unit-clock simulator. Well-formed circuits may be
mechanically analyzed using the Boyer-Moore theorem-proving system.

The formalization of our HDL was motivated by the desire for the expres-
sive power normally found in hardware description languages, i.e., the ability to
identify both active circuit elements and the interconnecting wiring networks.
In our previous work [13, 14, 15] we modeled combinational logic with Boolean
Boyer-Moore logic expressions. The intended hardware derived from the struc-
ture of these expressions. State-holding modules could not be described this
way and all notion of state was confined to a “register-transfer level.” Fur-
thermore, fanout and other important engineering considerations could not be
addressed. Another approach we investigated was the use of predicates — this
allows arbitrary circuit descriptions, but then no direct simulation capability
is available. By expressing circuits as logical constants, we are able to provide

A Formal HDL and its use
in the FM9001 Verification

Warren A. Hunt, Jr., Bishop C. Brock

Technical Report 79 July, 1992

Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas 78703-4776

TEL: +1 512 322 9951
FAX: 41 512 322 0656

EMAIL: hunt@cli.com

This paper appeared in the Philosophical Transactions of the Royal Society of
London. Series A, Vol. 339. This work was sponsored in part at Computational
Logic, Inc., by the Defense Advanced Research Projects Agency, ARPA Order
7406. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, ei-
ther expressed or implied, of Computational Logic, Inc., the Defense Advanced
Research Projects Agency or the U.S. Government.

