A Mathematical Model
of the Mach Kernel:
Atomic Actions and Locks

William R. Bevier and Lawrence M. Smith
Technical Report 89 November 18, 1994

Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas 78703-4776

TEL: +1 512 322 9951
FAX: +1 512 322 0656

EMAIL: bevierQcli.com, Ismith@cli.com

The views and conclusions contained in this document are those of the author(s)
and should not be interpreted as representing the official policies, either expressed
or implied, of Computational Logic, Inc.

Copyright © 1994 Computational Logic, Inc.

Contents
1 Introduction
2 Goals

3 A Model of a Mach Kernel State
3.1 An Axiomatic Model
3.2 Other Views of the Model

4 An Interface to Kernel Atomic Actions
4.1 Classification of Actions
4.2 Interfaces for Atomic Actions
4.3 Summary e e e
4.4 A Program that Uses Atomic Actions

5 The Meaning of Locks

6 Performance Issues
6.1 Locks.
6.2 Return Codes

7 Conclusion

1 Introduction

This report discusses the identification and use of Mach kernel atomic actions.
Mach kernel calls may be programmed as compositions of these fine-grained
steps. An atomic action has well-defined output properties, so a kernel call
that is programmed as a sequence of atomic actions has predictable interme-
diate states. This is important for dealing with such issues as error recovery,
pre-emption of kernel calls, security, kernel state testing, and reasoning about
the concurrent execution of kernel calls. We also discuss an important related
subject: the meaning of locks.

The identification of atomic actions is based on a model of a Mach kernel
state in which relations on Mach entities are axiomatically introduced [BS93].
In this view, the logical form of a datum that is manipulated by the Mach
kernel resembles a tuple in a relational database. The atomic action and
locking interfaces present this logical view to the programmer, and hide the
data structures that implement this view.

Section 2 of this report reviews the goals of our modeling work. Section
3 summarizes the main ideas of the Mach kernel state model. Section 4
discusses an interface to kernel atomic actions. Section 5 discusses locking
primitives. Section 6 discusses some performance issues pertaining to atomic
actions and locks.

2 Goals

The purpose of our work is to construct a model of the Mach kernel that
captures the essence of its features and omits implementation details. Like
conventional documentation, the model provides a conceptual framework for
understanding the kernel. Unlike conventional documentation, the model is
a self-contained description of the kernel. One need not refer to the imple-
mentation to understand a concept (but it is sometimes helpful). The model
provides an independent and thorough statement of requirements. Such a
model could become the definitive statement of requirements, and the source
code could occupy a role as an efficient implementation of those requirements.

The interests of the authors go beyond documentation. We wish to apply
tools to the analysis of the model. We use a theorem proving tool called
Ngthm [BM88] (also known as the Boyer-Moore prover) to state and analyze

the model. We have proved consistency of a part of the model with the
theorem prover. We are investigating ways to model execution of kernel calls
and prove theorems about these executions.

3 A Model of a Mach Kernel State

3.1 An Axiomatic Model

A kernel state consists of entities from several classes such as tasks, threads,
ports, messages, pages, and memory objects. In [BS93] we identify relations
in which entities may participate. For example, a port right is a relation
involving a task and a port that characterizes a task’s capability on a port.
With axioms we place constraints on the relations that may hold in a kernel
state — for instance, at most one task may hold a recewe right on a given
port. Our description of the entities, relations, and constraints provides a
characterization of a legal Mach state.

To illustrate our approach, here is a brief presentation of some mathemat-
ical requirements on a legal Mach state. The requirements are expressed by
identifying a collection of functions and predicates, and giving axioms about
them. The description of each Mach concept involves a state variable o. One
thinks of a Mach property as holding in a given state.

We identify a recognizer predicate for elements of each of the Mach entity
classes. For example, an entity z that satisfies the predicate taskp(z, o) is a
task in state o. (The p in the name taskp indicates that it is a predicate.) A
thread is recognized by the predicate threadp(zx, o). The entity classes are
required to be mutually disjoint. Here is the axiom expressing the disjointness
of taskp and threadp.

Axiom 1 taskp(z, o) — —threadp(z, o)
The relation task_thread formalizes the notion of thread ownership. The
expression task_thread(t, th, o) holds in state o if th is a thread in task ¢.

For task_thread to hold, its arguments must be members of the right entity
classes. This requirement is stated as follows.

Axiom 2 —taskp(t, o) V —threadp(th, o) — -task_-thread(t, th, o)

A thread may occur in at most one task. That is, the owning task of a
thread is unique. This requirement is expressed by the following formula.

Axiom 3 task_thread(ty, th, o) A task_thread(ty, th, o) — t; =1,

The expression threads(t, o) is the set of threads associated with task ¢.
A thread th is an element of threads(t, o) if and only if is owned by t.

Axiom 4 th € threads(t, o) < task_thread(t, th, o)

Some relations have non-entity attributes. For example, the port right
relation has three attributes: a local name, a set of rights, and a reference
count. The assertion port_right(t, p, n, R, i, o) is understood to mean that
task t holds rights to port p via local name n in state . The set R C
{send, receive, send_once} identifies which rights are held, and i gives the
reference count of the port right.

Currently, our mathematical description of Mach requirements includes
about fifty relations on elements of the entity classes, and a large number of
axioms on these relations. We believe that this is an accurate but incomplete
set of requirements on a legal Mach state. More relations and constraints
may be added after further investigation and public review.

A legal Mach kernel state can be defined from the complete set of axioms.
For each axiom, construct a formula in which every free variable except o is
universally quantified, so that ¢ is the only parameter to the formula. Call
this the closure of the axiom. For example, the closure of Axiom 1 is

Vz (taskp(x, o) — —threadp(z, 7)).

A legal Mach state can be defined as the conjunction of the closures of the
axioms.

Definition 1 legal_state(c) = Vz (taskp(x, 0) — —threadp(z, o)) A ...

We expect that Mach kernel atomic actions will be defined and used in
such a way as to preserve legality. That is, an atomic action will produce a
legal state from legal state.

3.2 Other Views of the Model

A Mach kernel state can be visualized as a graph. An entity is a node. A rela-
tion is either a link between two nodes (possibly annotated with attributes),
or is a line dangling from a single node in the case of a relation that involves
a member of only one entity class. An example of the latter is the relation
dead_right, which relates a task to a dead name in its name space.

If task ¢ owns thread th, we imagine the following to be a part of the
current state graph.

@ task_thread @

If task t holds a send right to port p, the following annotated link may occur
in the state graph.

ort_right
O ®)
(n,{send},1)

The graph representation of the axiomatic Mach kernel state model pro-
vides some useful intuition. Alternatively, one may think of the model in
terms of a relational database!. Each Mach relation introduced in [BS93]
corresponds to a relation in the database. For example, if task ¢ owns thread
th, the tuple [t,th] is an element of the TASK_THREAD relation. The require-
ment that a thread has at most one owning task suggests that the thread
field of a TASK_THREAD tuple is the key of the relation.

An entity class is thought of as a relation consisting of singleton tuples.
If ¢ is a task, then the tuple [¢] is in the TASK relation.

In the database literature, the term consistency constraint is used to de-
note what we have called a legal state aziom. Using our previous example, in a
consistent state we don’t allow tuples [t,th] and [ty,th] in the TASK_THREAD
relation if t; # 2.

1See [KS86] for background on relational databases.

The relational database analogy provides an appealing logical view of
a kernel state. The logical form of a datum that is manipulated by the
Mach kernel is a tuple in some relation. As we shall see, the logical actions
performed by the kernel can be viewed as tuple reads and writes. Locks are
defined to hold sets of tuples fixed.

In the remainder of this report we are not careful to distinguish the ax-
iomatic, graph, and database representations of the Mach kernel state model.
We simultaneously think of an instance of a predicate p(z, y, o) as a link in
a graph connecting nodes x and y, and as the tuple [z,y] in relation P. We
think of an entity recognizer as a node in a graph, or as a singleton tuple in
a database relation that models the entity.

4 An Interface to Kernel Atomic Actions

4.1 Classification of Actions

The graph view of the Mach kernel state model suggests the following clas-
sification of Mach kernel atomic actions.

e Creation of a node (i.e., allocation of an entity).

Destruction of an unconnected node (deallocation of an entity).

Creation of a link (assertion of a relation)

Destruction of a link (dis-assertion of a relation).

Modification of a link attribute.

We find the database analogy to be useful for refining our intuition about
classes of atomic actions. We may think of a program that implements a
kernel call as a transaction on the kernel state. A transaction consists of a
sequence of atomic actions. A fine-grained action on a database is the reading
or writing of a single tuple, where writing includes insertion, deletion, or
modification.

The following table identifies categories of Mach kernel atomic actions.
The interpretation of the classes in terms of the axiomatic representation,
the state graph representation, and the relational database representation

are shown. Where there is not a conveniently described interpretation, we
leave a table entry blank.

CLASS Axiomatic Graph Database
ALLOC allocate an unused
relation key
INSERT | assert an instance create a node | insert a tuple

of a relation or link in a relation
DELETE | disassert a relation | remove a node | delete a tuple
instance or link from a relation

MODIFY | disassert a relation | modify a link | modify a tuple
instance, and assert | attribute, or
a modification of it | move a link
READ test the presence
of a tuple, or read
a tuple

Given this logical view of actions on a kernel state, we are faced with
the necessity of defining interface functions within each class for the Mach
kernel implementation. One can methodically examine all the relations given
in [BS93| and identify the atomic actions in each class which can be derived
from that relation. The method is not entirely algorithmic since within each
class one must make various decisions that address practical issues: What are
the desired input and outputs for an action? Which attributes of a relation
may be modified? Are any of the entity fields of a relation modifiable? (This
corresponds to atomically detaching a link from one node and attaching it
to another.) In the next section we illustrate these decision points with
examples.

4.2 Interfaces for Atomic Actions

Each atomic action is specified as a function from a set of inputs that in-
cludes the current state o, to a set of outputs that includes a return code
rc indicating the success or failure of the action. When the action changes
state, a state variable ¢’ is among the outputs. We give the signature of an

action by naming the inputs on the left side of an arrow, and the outputs on
the right side. We use standard parameter names to denote types: t - task,
th - thread, p - port, n - local name, 7, j - natural numbers. Other types are
introduced as needed.

Implementation Note. Comments on the current implementation of
the Mach kernel are made in boxes. These can be ignored by the reader
unfamiliar with or uninterested in the Mach implementation.

First, let us identify the atomic actions associated with an entity class.
An entity class can be thought of as a relation consisting of singleton tu-
ples. Since there are no attributes to this relation, we expect there to be no
MODIFY actions on an entity relation. For the TASK relation we identify
the following actions for each of the other classes.

Signature 1 task_alloc: (o) — (t, rc, o)
Signature 2 task_delete: (t, 0) — (rc, o)
Signature 3 task_read: (t, o) — (rc)

A successful task_alloc finds an unused task identifier and inserts it as a
task. One thinks of the resulting state graph as having a new, unconnected
task node. Task_delete deallocates a task. T'ask_read tests for the presence
of a task, i.e., it checks whether its argument is a task entity. Task_alloc
combines the ALLOC and INSERT actions. Because there are no attributes
to worry about, it makes sense to do both as one atomic step. We’ll see
later with port rights that it’s natural to separate the steps of allocating an
unused name and using it.

Implementation Note. Entity allocation in the Mach kernel is imple-
mented by finding free space in some zone. Kernel consistency constraints
require that at the time an entity is deallocated it participate in no re-
lations with other entities. This is to avoid dangling pointers in other
data structures. A reference count is used to keep track of the number of
relations in which an entity participates. Deallocation of an entity’s data
structure is performed lazily only when its reference count reaches zero.
The active bit of a data structure, when false, is used to prevent further
insertions involving the entity implemented by that data structure.

Next we identify the atomic actions associated with the task_thread re-
lation. Recall that this is a relation on a task and a thread, with the require-
ment that a thread may be associated with at most one task. This relation
has no attributes to modify. Nor does it make sense, in this case, to permit
modification of either of the entity fields. Therefore, we derive no MODIFY
actions on this relation. Also, there are no ALLOC actions, since we rely
on task and thread allocation to create the entities involved in this relation.
Therefore we derive the following atomic actions.

Signature 4 task_thread_insert: (t, th, o) — (rc, o)
Signature 5 task_thread_delete: (t, th, o) — (rc, o)
Signature 6 owning-task: (th, o) — (re, t)
Signature 7 threads: (t, o) — (re, th_list)

On success, task_thread_insert asserts the ownership of a thread by a
task. Task_thread_delete dissolves this relationship. It just removes a link
between the task and the thread, leaving the task and thread still in existence.
The remaining two actions are from the READ class. The first, owning_task
is the obvious atomic read on a task_thread tuple: given a thread (a key for
the tuple) read its associated task. The other READ action is perhaps less
obvious. This is the action that atomically reads all threads associated with
a given task. Such actions that read multiple tuples are not necessary for
every relation, but in the case of task_thread it is required to implement the
kernel call task_threads that reports the names of all threads owned by a
task.

Implementation Note. The assertion of a task_thread relation is ac-
complished in the Mach implementation by atomically setting a pointer
in a thread to its owning task, and inserting the thread in a linked list in
the owning task.

Finally, we identify atomic actions for the port right relation. Recall that
a port right is a relation on a task, a port, a name, a set of rights, and a ref-
erence count in a given kernel state. Let the term port_right(t, p, n, R, i, 0)
be an instance of a port right assertion. We consider n, R, ¢ to be the at-
tributes of this relation. The key is the pair (¢, n) which means that the task

and the name determine the other values. Since the name is a key, it is not
a modifiable attribute of the relation.

Here are the candidate atomic actions on port rights. We have one AL-
LOC action: given a task, allocate an unused local name n. In the resulting
state (t, n) can be used as a key in a port right relation.

Signature 8 port_right_-name_alloc: (t, o) — (re, n, o)

The action that asserts a port right must be given initial values for all
fields. The action that deletes a port right needs only a key for an argument.

Signature 9 port_right_insert: (t, p, n, R, i, o) — (re, o)
Signature 10 port_right_delete: (t, n, o) — (rc, ')

There are decisions to be made concerning the MODIFY actions. Which
attributes are modifiable? Are there groups of attributes that must be mod-
ified together? We have already justified the decision to make the name of
a port right a non-modifiable parameter. In Mach, the set of rights and
the reference count are independently modified. This suggests two atomic
MODIFY actions.

Signature 11 port_right_chg_rights: (t, n, R, o) — (rc, o)
Signature 12 port_right_chg_refcount: (t, n, i, o) — (rc, o')

We face similar decisions with regard to READ actions. Given a key,
for which fields do we wish to have a read action — all of them, some of
them, grouped in any particular way? Secondly, do we need to read multiple
tuples? For task_thread we identified the need to read all threads associated
with a task. We’ve chosen to display the signature of only one READ action
for port rights which is the action that returns all three of the attributes of
a port right. It may prove to be more convenient to identify three separate
interfaces.

Signature 13 port_right_read: (t, n, o) — (rc, n, R, i)

10

4.3 Summary

We have attempted to make the identification of Mach entities and relations
given in [BS93] the only activity that requires “art”. Given this model,
there are several obvious classes of atomic actions. Pragmatic decisions are
required to derive interface functions for atomic actions within each class for
each relation. The resulting interface gives a logical view of a kernel state
that is easy to understand, to program and to formally model.

The identification of atomic actions is not algorithmic, but we have been
able to impose some order. Three properties of a relation have an impact on
the choice of atomic action.

e Entities. From the relational database point of view, the TASK relation
has no priority over the TASK_THREAD relation. But, in fact, we make
use of the knowledge that some relations model entities (i.e., nodes in
a graph), and others model relationships between entities (links in a
graph). This affects our decisions for atomic actions in many relations.

e Keys. A key is a collection of relation fields that determine a tuple.
Some relations have more than one key. For example, the relation
between a task and its self port is 1-1, and both are keys. We have not
found a relation for the Mach kernel that has more than two keys.

o Attributes. Attributes are the non-entity fields of a tuple. The at-
tributes of a relation may overlap with a key. For example, the name
field of a port right relation is both an attribute and part of a key.

How does one identify the atomic actions that are associated with a rela-
tion R? One picks actions from each of the atomic action classes. The issues
that determine choices within each class cannot be decided algorithmically
from the relational model because they depend upon knowledge of which ac-
tions will be used, and how they will be used?. For each action class below,
we indicate the questions that arise about a relation R in deciding which
actions should be derived from R.

2Perhaps one can algorithmically generate the signatures for all possible atomic actions
derived from a set of relations. This set is likely to be far larger than is useful.

11

ALLOC. An action from this class atomically finds an unused key for a
relation.

e Does R have a key that requires allocation?

All of the entity relations have such a key. (Since there are no other attributes
to an entity relation, it’s reasonable to combine the key allocation and tuple
insertion actions into one.) For other relations, we largely rely on entity
allocation to supply the keys. That is, in any program, an entity that serves
as the key of a relation will already have been allocated. There are some
fields that still require allocation: local names, and virtual page addresses in
an address space.

INSERT. An action in this class states a new fact, analogous to inserting
a tuple in a database, or inserting a node or link in a graph.

e What is the signature of the INSERT action for R?

In some cases all fields of the tuple must be provided as arguments. In other
cases, there are reasonable default initial values that may cause some fields
to be omitted from the inputs. For example, 1 may be a reasonable default
initial value for a port right reference count.

DELETE. An action in this class removes a fact (deletes a tuple).
e How many ways can an instance of R be deleted?

There is potentially one DELETE action for each key. The inputs for a
DELETE action should be only a set of key fields.

MODIFY. An action in this class is the composition of a delete and an
insert that is convenient to treat as atomic.

e Which are the modifiable attributes of R?
e Should any groups of such attributes be modified atomically?

e Which of the entity fields are modifiable?

The examples given in Section 4.2 elaborate on these issues. A modifiable
entity field permits one to atomically detach a link from one node and attach
it to another.

12

READ. A READ action senses the kernel state but does not change it.
In database terminology, we restrict a read action to be the subsetting of
a single relation. We do not support the construction of arbitrary views of
multiple relations.

e For each of R’s keys, what READ actions should be implemented?
e What aggregate READ actions should be implemented?

One expects there to be a read action with a key as input parameter. For
relations with multiple non-key fields, there is a choice of signatures. Should
there be one READ action for each non-key field, or should any of these fields
be read in a group? Occasionally, as with task_thread, it is desirable to read
all tuples that are associated with one or more non-key fields. These must
be identified case by case.

The actions that result from applying this method are quite fine-grained.
Many of them can be implemented with one line of C code. The interface
to these simple ones can be defined with macros. Others, like insertion of a
thread into a task, require modification of several locked entities. These can
be defined as routines.

In the examples of the previous section, we have made some choices. Util-
ity in coding kernel calls is the test for reasonableness of these choices. In our
current work, we are applying this method to build an executable model of the
kernel in the Nqthm logic [BM88|. This model will allow us to analyze both
sequential and concurrent interpretations of kernel call implementations.

4.4 A Program that Uses Atomic Actions

In this section we display a pseudo code implementation of the kernel call
thread_create in terms of atomic actions. This pseudo code corresponds to
the routine thread_create in the kernel implementation. It does not describe
the user callable interface. We assume that the parent task argument has
been resolved to an actual task address, i.e., it is not the name of some port.
For simplicity, we have left out some of the required behavior of this call. We
do not show, for example, initialization of a thread’s scheduling information
and machine state.

13

The example shows a very literal application of an atomic action interface.
As a result, some performance issues become apparent. For example, from
an efficiency standpoint, there is an excessive setting of return codes. The
purpose of this example is to illustrate the use of atomic actions. In Section
6 we discuss performance issues.

We've followed several conventions in the pseudo code. In the signature
of thread_create, parameters to the left of the arrow are read-only inputs,
parameters to the right can be written to and are visible to the caller. We've
left out the state parameters o and o/, which are useful for specifying the
interface of an atomic action but are implicit in any real implementation.
We have permitted outselves the use of an assignment statement that has
multiple variables on the left hand side which we assume are performed in
parallel. The return statement transmits a return code back to the caller

We have omitted locks from this pseudo code. A set of atomic ac-
tions for locking and unlocking data structures must be added to the set
of atomic actions (see Section 5). We have omitted from this implementa-
tion of thread create the part which checks for the continued existence of
the parent task.

thread _create (parent_task) — (child_thread)
local: new_thread, port, procset;

rc := task read(parent_task);
if rc # SUCCESS
child_thread := NULL_THREAD;

return (INVALID ARGUMENT) ;

new_thread, rc := thread_alloc();
if rc # SUCCESS
child thread := NULL_THREAD;

return (RESOURCE_SHORTAGE) ;
/* 1 x/
/* Allocate the sself port. x*/

port, rc := port_alloc();

14

if rc # SUCCESS
child_thread := NULL_THREAD;
return (PANIC);

/* 2 x/
rc := thread sself insert(new_thread,port);
/* 3 */
procset, rc := procset_task read(parent_task);
if rc # SUCCESS

procset, rc := default_proc_set();
rc := procset_thread insert(procset,new_thread);
/* 4 x/
rc := task thread insert(parent_task,new_thread);
/* 5 */

/* Connect the thread to its self port. */

rc := thread self_insert(new_thread,port);
/* 6 x/

child_thread := new_thread;
return (SUCCESS);

The main point to observe about this example is that one can write the
thread_create kernel call in a natural way based on an atomic action inter-
face. As a result of using this interface, the implementation has well-defined
intermediate states. We have numbered some of these intermediate states.
The assertions corresponding to each of these states can be summarized as
follows.

15

1. A new thread exists.
2. A new port exists.
3. The port is inserted as the thread’s sself port.

4. The thread is contained in the parent task’s processor set, or in the
default processor set.

5. The thread is associated with the parent task.

6. The new port is the thread’s self port.

5 The Meaning of Locks

A lock may be used for two reasons: to implement an atomic modification
to a state, and to hold some properties of a state fixed over a sequence of
atomic steps. The former use requires a write lock, the latter use requires a
read lock.

We seek an interface to locks at the same level of abstraction as the atomic
transitions. The interface should have the following properties.

1. Each interface function locks a well-defined set of tuples.
2. Lock granularity provides reasonable concurrency.

3. Resolution of conflicting locks is efficient.

[EGLT76] proposes the notion of predicate locks, which allows one to
lock arbitrary sets of tuples. This generality entails a potentially high cost
in determining when two locking requests conflict. A less general interface
that is more efficient in determining conflicts is desirable.

We apply locks to data structures that implement the abstract relations
on Mach entities. To satisfy property 1, the set of abstract tuples held fixed
by any data structure lock must be precisely defined. To satisfy 2, a data
structure lock must hold a reasonably small number of tuples fixed. Data
structure locks satisfy property 3 since one cannot lock an arbitrary set of
tuples, but only those sets which correspond to some data structure.

16

In the following discussion we assume that Mach will continue to be im-
plemented in an “entity-oriented” way.® That is, there will be a C data
structure type corresponding to each entity class. Each of these data struc-
tures will contain (i.e., implement) a set of relations in which an entity may
participate. This data structure organization is desirable because it provides
efficient computation of an entity’s properties, but it results in an implemen-
tation of the abstract relations on which the fields of a tuple are not directly
represented as contiguous data in memory.

Let us assume for now that the C data structures corresponding to the
abstract entities are the only lockable data structures in the implementation,
and that there is exactly one lock per data structure. What set of tuples is
held fixed by each lock in this implementation? To address this question, we
must understand how each abstract relation is implemented by one or more
entity structures. In the current Mach implementation a thread structure
contains a pointer to its owning task, and a task structure contains a linked
list of threads which it owns. Thus, the implementation of the task_thread
relation involves two data structures, task and thread.

Detailed documentation on the implementation of each relation would be
useful, but for the purposes of understanding the entity data structure locks,
we need identify only the lockable structures that implement a relation, not
the fields within a structure that are used. Given the above kind of analysis,
we can construct a dictionary that associates with each relation a set of entity
data structures that are involved in the implementation of that relation. We
give some sample dictionary entries in Figure 1.

From this dictionary, one can build a cross reference that indicates, for
each data structure, the tuples in various relations which this data structure
implements. Figure 2 shows the cross reference for Figure 1. This cross
reference defines the meaning of each data structure lock. According to this
table, locking a thread structure holds fixed the set of all tuples, in any
abstract relation, in which a given thread participates. Among the tuples
implemented by a thread structure is the task_thread tuple containing the
thread implemented by the pointer to that structure.

To acquire read access to a particular abstract tuple fixed, one applies a
read lock to any one of the data structures that implement the tuple. To
acquire write access to an abstract tuple, one holds a write lock on all of

3We refrain from using the heavily loaded term “object-oriented”.

Implementing
Relation Data Structures
task_thread | task

thread
port_right | task

port
port_set task

dead_right | task
task_sel f task
port
thread_self | thread
port

Figure 1: Implementation of Relations

Data Implemented
Structure Relations
task task_thread
task_sel f
port_right
port_set
dead_right
port port_right
task_sel f
thread_sel f
thread task_thread
thread_sel f

Figure 2: Implementation Cross Reference

17

18

Data Implemented
Structure Relations
task task_thread
task_sel f
port_right
port_set
dead_right
port port_right
task_sel f
thread_sel f
thread task_thread
thread_sel f

Figure 3: Cross Reference Partition

the data structures that implement a tuple. There must be an agreed upon
ordering for lock acquisition to avoid deadlock.

Having one lock per entity may or may not provide adequate granularity
of locked tuples. The current Mach implementation includes more locks,
but the authors are not aware of any tests that indicate whether or not
the extra locks significantly increase concurrency.? If the extra locks do not
significantly increase concurrency, then the simplicity of the one-lock-per-
entity approach makes it a desirable implementation.

In case the extra locks are deemed desirable, one can modify the cross
reference by partioning the table entries. Figure 3 shows a partition of the
task entry, which indicates that port rights, port sets and dead rights are
to be locked separately from the others. This partition exists in the current
Mach implementation. These three relations are implemented by a task’s
ipc_space structure.

Partitioning raises the issues of a hierarchy of lockable structures. Does
locking a task imply a lock on its IPC space, or is the space to be considered
an independently locked set of tuples? If a hierarchy is intended, then the
techniques for locking hierarchies outlined in [GLP75] can be used.

4This should be taken as a comment on the ignorance of the authors.

19

6 Performance Issues

In this section we discuss locks and return codes and how they impact per-
formance.

6.1 Locks

A straightforward implementation of an atomic action begins with a request
for one or more read or write locks, performance of some computation, fol-
lowed by release of the locks. Since the atomic actions are fine-grained, this
implementation approach may result in an unacceptable performance cost.

To minimize locking, the atomic actions may be implemented with the
assumption that the caller has acquired the necessary locks. This will permit
a caller to acquire locks that will span a number of atomic steps. While
increasing performance, this approach runs the risk of coding errors. A pro-
gram may erroneously fail to acquire a necessary lock.

A compromise exists. Implement each atomic action with locks. A calling
program may acquire a lock that is redundantly requested by several atomic
actions that it calls. These redundant requests can be eliminated at compile
time by a pass through the code. In a typical case, the program will acquire
all of the locks it needs for its atomic actions, and the compiler will not
generate lock acquisition code for any atomic actions.

This lock-checker will help the programmer to avoid mistakes due to fail-
ure to acquire locks. When a program does not acquire a lock, an atomic
action will protect itself at run time by acquiring and releasing a lock. The
lock-checker can be engineered to report when locking code for an atomic
action is generated, indicating a potential failure to acquire a lock by the
caller.

6.2 Return Codes

Return codes are another source of inefficiency in the literal use of atomic
actions. A return code makes each atomic action a total function. That is,
it always returns some value: either success, or some flavor of failure.

In many cases, it can be predicted that an atomic action will not fail
due to pre-conditions of a kernel call, or conditions tested on the code path
to the call site of the atomic action. For example, when a TASK_THREAD

20

tuple is inserted, and current locks guarantee the stability of this insertion,
we can conclude that the READ action owning_task applied to the thread
will succeed. There is no need to set or test a return code.

One rather tedious way to address this problem is to have two interfaces
for each action: one that gives a return code, and one that does not. With
a macro facility that performs compile time computation, a single interface
can be defined with a flag parameter that lets the caller indicate whether
the pre-condition on the action warrants a return code or not. As a side-
effect, this would provide useful documentation throughout the code about
intermediate assumptions.

7 Conclusion

We have presented a method for identifying atomic actions on a Mach kernel
state in terms of which kernel calls can be programmed. The method is based
on a relational model of the Mach kernel state. An atomic action has well-
defined output properties, so a kernel call that is programmed as a sequence
of atomic actions has predictable intermediate states. As a by-product of this
analysis, we have discussed the abstract meaning of data structure locks.

It is possible to apply this method to a Mach kernel implementation in
a partial way only on relations of interest. Other features of Mach can be
dealt with in a traditional way. A thorough application of this method will
require extension of the Mach kernel state model to include all relations of
interest, and creation of a relation dictionary that defines how each relation
is implemented in data structures.

The atomic action and locking interfaces present a logical view of a ker-
nel state to the kernel call implementor, and hide the data structures that
implement this view. This should result in cleaner, easier to maintain code.
Additionally, these interfaces provide an abstraction of kernel behavior for
which there is a tractable formal model.

21

References

[BMsg]

[BS93]

[EGLT76]

[GLP75)]

[KSS6]

Robert S. Boyer and J Strother Moore. A Computational Logic
Handbook. Academic Press, Boston, 1988.

William R. Bevier and Lawrence M. Smith. A mathematical
model of the mach kernel: Entities and relations. Technical Re-
port 88, Computational Logic, Inc., April 1993.

K. P. Eswaren, J. N. Gray, R. A. Lorie, and I. L. Traiger. The
notions of consistency and predicate locks in a database system.
CACM, 19(11):624-633, November 1976.

J.N. Gray, R.A. Lorie, and G.R. Putzolu. Granularity of locks in
a shared data base. In Proc. of the Intl. Conf. on Very Large Data
Bases, September 1975.

Henry F. Korth and Abraham Silberschatz. Database System Con-
cepts. McGraw-Hill, 1986.

