
1

A Precise Description of a Computational Logic

Notes for CS 389R

Robert S. Boyer and J Strother Moore

1. Apologia

Traditionally, logicians keep their formal systems as simple as possible.  This is
desirable because logicians rarely use the formal systems themselves.  Instead,
they stay in the metatheory and (informally) prove results about their systems.

The system described here is intended to be used to prove interesting
theorems. Furthermore, we want to offer substantial mechanical aid in con-
structing proofs, as a means of eliminating errors.  These pragmatic considera-
tions have greatly influenced the design of the logic itself.

The set of variable and function symbols is influenced by conventions of half
a dozen different Lisp systems. The set of axioms is unnecessarily large from
the purely logical viewpoint. For example, it includes axioms for both the
natural numbers and ordered pairs as distinct classes of objects.  We found
certain formalization problems cumbersome when one of these classes is em-
bedded in the other, as is common in less pragmatically motivated logics.  Fur-
thermore, the distinction between the two classes makes it easier for us to
provide mechanical assistance appropriate to the particular domain.  Similarly, a
general purpose quantifier over finite domains is provided, even though recur-
sively defined functions suffice.  We provide an interpreter for the logic in the
logic—at the cost of complicating both the notation for constants and the
axioms to set up the necessary correspondence between objects in the logic and
the term structure of the language— so that certain useful forms of metath-
eoretic reasoning can be carried out in the logic.  Our induction principle is very
complicated in comparison to those found in many other logics; but it is
designed to be directly applicable to many problems and to produce simple
proofs.

To achieve our goal of providing assistance in the proof of interesting
theorems it must be possible, indeed, convenient, to state interesting theorems.
This requires that we allow the user to extend the logic to introduce new objects
and concepts.  Logically speaking, the main theorem and all the intermediate
lemmas are proved in the single final theory.  But practically speaking, the
theory ‘‘evolves’’ over time as the user repeatedly extends it and derives inter-
mediate results.  We provide three ‘‘extension’’ principles—the ‘‘shell prin-
ciple’’ for introducing new, inductively-defined data types, the ‘‘definitional
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principle’’ for defining new recursive functions, and the ‘‘constraint principle’’
for introducing functions that are undefined but constrained to have certain
properties. Our extension principles, while complicated, are designed to be
sound, easy to use and to mechanize, and helpful in guiding the discovery of
proofs.

While the logic is complicated compared to most mathematical logics, it is
simple compared to most programming languages and many specification lan-
guages. If our presentation of it makes it seem ‘‘too complicated’’ it is perhaps
merely that we are presenting all of the details.

2. Outline of the Presentation

In presenting our logic we follow the well-established tradition of incremental
extension. We begin by defining a very simple syntax, called the formal syntax,
of the language.  A much richer syntax, called the extended syntax, which
contains succinct abbreviations for constants such as numbers, lists, and trees, is
defined only after we have axiomatized the primitive data types of the logic.

Using the formal syntax we present the axioms and rules of inference for
propositional calculus with equality, the foundation of our theory.  Next we
embed propositional calculus and equality in the term structure of the logic by
defining functional analogues of the propositional operators.  We then present
the shell principle and use it to add the axioms for natural numbers, ordered
pairs, literal atoms, and negative integers.

At this point we have enough formal machinery to explain and illustrate the
extended formal syntax.

We then present our formalization of the ordinals up to ε0. The ‘‘less-than’’
relation on these ordinals plays a crucial role in our principles of mathematical
induction and recursive definition.

Next we add axioms defining many useful functions.
Then we embed the semantics of the theory in the theory by axiomatizing an

interpreter for the logic as a function.  In order to do this it is necessary to set up
a correspondence between the terms in the formal syntax and certain constants
in the logic, called the ‘‘quotations’’ of those terms.  Roughly speaking, the
quotation of a term is a constant in the logic whose value under the interpreter is
equal to the term.

We complete the set of axioms by defining our general purpose quantifier
function, which, much like the ‘‘mapping’’ functions of Lisp, includes among its
arguments objects denoting terms which are evaluated with the interpreter.

Finally, we state the principles of inductive proof and recursive definition.
We frequently pause during the presentation to illustrate the concepts dis-

cussed. However, we do not attempt to motivate the development or explain
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‘‘how’’ certain functions ‘‘work’’ or the role they play in the subsequent
development.

We classify our remarks into eight categories:

• Terminology: In paragraphs with this label we define syntactic
notions that let us state our axioms or syntactic conventions
precisely. The concept defined is italicized.

• Abbreviation: In paragraphs with this label we extend the
previously agreed upon syntax by explaining how some string of
characters is, henceforth, to be taken as shorthand for another.

• Example: We illustrate most of the terminology and abbreviations
in paragraphs with this label. Technically, these paragraphs contain
no new information, but they serve as a way for the reader to check
his understanding.

• Axiom or Defining Axiom: A formula so labelled is an axiom of
our system.  Axioms of the latter sort are distinguished because they
uniquely define a function.

• Shell Definition: A paragraph so labelled schematically specifies a
set of axioms of our system.

• Extension Principle: A paragraph so labelled describes a principle
which permits the sound introduction of new function symbols and
axioms.

• Rule of Inference: A paragraph so labelled describes a rule of
inference of our system.

• Note: Assorted remarks, such as alternative views, are collected in
paragraphs with this label.

3. Formal Syntax

Terminology. A finite sequence of characters, s, is a symbol if and only if s is
nonempty, each character in s is a member of the set

{A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
$ ^ & * _ - + = ~ { } ? < >},

and the first character of s is a letter, i.e., in the set

{A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z}.
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Examples. PLUS, ADD1, and PRIME-FACTORS are symbols. *1*TRUE,
123, A/B, and #.FOO are not symbols.

Terminology. The variable symbols and function symbols of our language are
the symbols other than T, F, and NIL.

Terminology. Associated with every function symbol is a nonnegative integer
called the arity of the symbol.  The arity indicates how many argument terms
must follow each application of the function symbol.  The arity of each function
symbol in the Ground Zero  logic is given in the table below.  We also include
brief descriptive comments in the hopes that they will make subsequent ex-
amples more meaningful.

Table 4.1

symbol arity comment

ADD1 1 successor function for natural numbers
ADD-TO-SET 2 adds an element to a list if not present
AND 2 logical and
APPEND 2 list concatenation
APPLY-SUBR 2 application of primitive fn to arguments
APPLY$ 2 application of fn to arguments
ASSOC 2 association list lookup
BODY 1 body of a fn definition
CAR 1 first component of ordered pair
CDR 1 second component of ordered pair
CONS 2 constructs ordered pairs
COUNT 1 size of an object
DIFFERENCE 2 natural difference of two natural numbers
EQUAL 2 equality predicate
EVAL$ 3 interpreter for the logic
FALSE 0 false object
FALSEP 1 predicate for recognizing FALSE
FIX 1 coerces argument to 0 if not numeric
FIX-COST 2 increments cost if argument is non-F
FOR 6 general purpose quantifier
FORMALS 1 list of formal arguments of a function
GEQ 2 greater than or equal on natural numbers
GREATERP 2 greater than on natural numbers
IDENTITY 1 identity function
IF 3 if-then-else
IFF 2 if and only if
IMPLIES 2 logical implication
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LEQ 2 less than or equal on natural numbers
LESSP 2 less than on natural numbers
LISTP 1 recognizes ordered pairs
LITATOM 1 recognizes literal atoms
MAX 2 maximum of two natural numbers
MEMBER 2 membership predicate
MINUS 1 constructs negative of a natural number
NEGATIVEP 1 recognizes negatives
NEGATIVE-GUTS 1 absolute value of a negative
NLISTP 1 negation of LISTP
NOT 1 logical negation
NUMBERP 1 recognizes natural numbers
OR 2 logical or
ORDINALP 1 recognizes ordinals
ORD-LESSP 2 less than on ordinals up to ε0
PACK 1 constructs a LITATOM from ASCII codes
PAIRLIST 2 pairs corresponding elements
PLUS 2 sum of two natural numbers
QUANTIFIER-INITIAL-VALUE

1 initial value of a quantifier
QUANTIFIER-OPERATION

3 operation performed by quantifier
QUOTIENT 2 natural quotient of two natural numbers
REMAINDER 2 mod
STRIP-CARS 1 list of CARs of argument list
SUB1 1 predecessor function on natural numbers
SUBRP 1 recognizes primitive function symbols
SUM-CDRS 1 sum of CDRs of elements of argument list
TIMES 2 product of two natural numbers
TRUE 0 true object
TRUEP 1 recognizes TRUE
UNION 2 union of two lists
UNPACK 1 explodes a LITATOM into ASCII codes
V&C$ 3 determines value and cost of an expr
V&C-APPLY$ 2 determines value and cost of fn application
ZERO 0 0
ZEROP 1 recognizes 0 and nonnatural numbers

The arity of each user-introduced function symbol is declared when the sym-
bol is first used as a function symbol.

Terminology. A term is either a variable symbol or else is a sequence consist-
ing of a function symbol of arity n followed by n terms.
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Note. Observe that we have defined a term as a tree structure rather than a
character sequence.  Of interest is how we display such trees.

Terminology. To display a symbol, we merely write down the characters in it.
To display a term that is a variable symbol, we display the symbol. To display a
non-variable term with function symbol fn and argument terms t1, ..., tn, we
write down an open parenthesis, a display of fn, a nonempty string of spaces
and/or carriage returns, a display of t1, a nonempty string of spaces and/or
carriage returns, ..., a display of tn and a close parenthesis.

Examples. The following are (displays of) terms:

(ZERO)

(ADD1 X)

(PLUS (ADD1 X) (ZERO))

(IF B
(ZERO)
(ADD1 X))

(IF B (ZERO) (ADD1 X))

Terminology. Our axioms are presented as formulas in propositional calculus
with equality.  The formulas are constructed from terms, as defined above, using
the equality symbol and the symbols for ‘‘or’’ and ‘‘not’’.  More precisely, an
atomic formula is any string of the form t1=t2, where t1 and t2 are terms.  A
formula is either an atomic formula, or else of the form ¬(form1), where
form1 is a formula, or else of the form (form1 ∨ form2), where form1
and form2 are both formulas.  Parentheses are omitted when no ambiguity
arises.

Abbreviations. We abbreviate ¬(t1 = t2) by (t1≠t2). If form1 and
form2 are formulas then (form1 → form2) is an abbreviation for
(¬(form1) ∨ form2) and (form1 ∧ form2) is an abbreviation for
¬(¬(form1) ∨ ¬(form2)).
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3.1. Terminology about Terms

Terminology. To talk about terms, it is convenient to use so-called ‘‘metavari-
ables’’ that are understood by the reader to stand for certain variables, function
symbols, or terms.  In this presentation of the logic we use lower case words to
denote metavariables.

Example. If f denotes the function symbol PLUS, and t denotes the term
(ADD1 Y), then (f t X) denotes the term (PLUS (ADD1 Y) X).

Terminology. If i is a nonnegative integer, then we let Xi denote the variable
symbol whose first character is X and whose other characters are the decimal
representation of i.

Example. If i is 4, Xi is the variable symbol X4.

Terminology. A term t is a call of fn with arguments a1, ..., an iff t has the
form (fn a1 ... an).

Terminology. If a term t is a call of fn we say fn is the top function symbol
of t. A function symbol fn is called in a term t iff either t is a call of fn or t
is a nonvariable term and fn is called in an argument of t. The set of subterms
of a term t is {t} if t is a variable symbol and otherwise is the union of {t}
together with the union of the subterms of the arguments of t. The variables of
a term t is the set of variable subterms of t.

Examples. The term (PLUS X Y) is a call of PLUS with arguments X and Y.
PLUS is called in (IF A (PLUS X Y) B). The set of subterms of (PLUS
X Y) is {(PLUS X Y) X Y}. The set of variables of (PLUS X Y) is {X
Y}.

3.2. Terminology about Theories

Notes. Theories evolve over time by the repeated application of extension
principles. For example, to construct our logic we start with propositional
calculus with equality and extend it by adding the axioms for the natural num-
bers. Then we extend it again to get ordered pairs and again to get symbols...
We eventually start adding axioms defining functions such as Peano sum,
product, etc.  When we stop, the user of the theorem prover starts by invoking
the extension principles to add his own data types and concepts.
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Each extension principle preserves the consistency of the original logic,
provided certain ‘‘admissibility’’ requirements are met.  In order to describe
these requirements it is necessary that we be able to talk clearly about the
sequence of steps used to create the ‘‘current’’ extension.

Terminology. Formula t can be proved directly from a set of axioms A if and
only if t may be derived from the axioms in A by applying the rules of in-
ference of propositional calculus with equality and instantiation (see page 9) and
the principle of induction (see page 59).

Terminology. There are four kinds of axiomatic acts: (a) an application of the
shell principle (page 13), (b) an application of the principle of definition (page
60), (c) an application of the constraint principle, and (d) the addition of an
arbitrary formula as an axiom.

Terminology. Each such act adds a set of axioms.  The axioms added by an
application of the first three acts are described in the relevant subsections.  The
axioms added by the addition of an arbitrary formula is the singleton set consist-
ing of the formula.

Terminology. A history h is a finite sequence of axiomatic acts such that either
(a) h is empty or (b) h is obtained by concatenating to the end of a history h’ an
axiomatic act that is ‘‘admissible’’ under h’. An arbitrary axiom is admissible
under any h’. The specification of the shell and definitional principles define
‘‘admissibility’’ in those instances.

Terminology. The axioms of a history h is the union of the axioms added by
each act in h together with the axioms described in this presentation of the logic.

Terminology. We say a formula t is a theorem of history h iff t can be proved
directly from the axioms of h.

Terminology. A function symbol fn is new in a history h iff fn is called in no
axiom of h (except for the propositional, reflexivity, and equality axioms of page
10), fn is not a CAR/CDR symbol (see below), and fn is not in the set {CASE
COND F LET LIST LIST* NIL QUOTE T}.

Terminology. We say a symbol fn is a CAR/CDR symbol if there are at least
three characters in fn, the first character in fn is C, the last character is R, and
each other character is either an A or a D.

Examples. The symbol CADDR is a CAR/CDR symbol. We will eventually



9

introduce an abbreviation that ‘‘defines’’ such symbols to stand for nests of
CARs and CDRs. Because CADDR is a CAR/CDR symbol it is not new.  The
definitional principle requires that the function symbol defined be ‘‘new.’’
Hence, it is impossible to define CADDR. Similarly, it is impossible to define
nine other perfectly acceptable symbols, CASE, COND, F, LET, LIST, LIST*,
NIL, QUOTE, and T. All of these prohibited symbols will be involved in our
abbreviation conventions.

4. Embedded Propositional Calculus and Equality

Notes. Our logic is a quantifier-free first order extension of propositional cal-
culus with equality, obtained by adding axioms and rules of inference.  Any
classical formalization of propositional calculus and equality will suit our pur-
poses. So that this presentation of the logic is self-contained we have included
as the first subsection below, one such formalization, namely that of
Shoenfield [2].

We then add axioms to define the functional analogues of the propositional
operators and the equality relation.  This effectively embeds propositional cal-
culus and equality into the term structure of the logic.  That is, we can write
down and reason about terms that contain propositional connectives, equality,
and case analysis.  For example, we can write

(IF (EQUAL N 0)
1
(TIMES N (FACT (SUB1 N))))

which is a term equal to 1 if N is 0 and equal to (TIMES N (FACT (SUB1
N))) otherwise. The ability to write such terms is very convenient later when
we begin defining recursive functions.

4.1. Propositional Calculus with Equality

Shoenfield’s system consists of one axiom schema and four inference rules. A
Propositional Axiom is any formula of the form

Axiom Schema.
(¬(a) ∨ a).

The four rules of inference are

Rules of Inference.
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Expansion: derive (a ∨ b) from b;

Contraction: derive a from (a ∨ a);

Associativity: derive ((a ∨ b) ∨ c) from (a ∨ (b ∨ c)); and

Cut: derive (b ∨ c) from (a ∨ b) and (¬(a) ∨ c).

To formalize equality we also use Shoenfield’s approach, which involves
three axiom schemas.  A Reflexivity Axiom is any formula of the form

Axiom Schema.
(a = a).

For every function symbol fn of arity n we add an Equality Axiom for fn.

Axiom Schema.
((X1=Y1) →
(... →
((Xn=Yn) →

(fn X1 ... Xn) = (fn Y1 ... Yn))...))

Finally, we add

Axiom.
((X1=Y1) → ((X2=Y2) → ((X1=X2) → (Y1=Y2)))).

This axiom is the only instance we need of Shoenfield’s ‘‘equality axiom
(schema) for predicates.’’

Note. Finally, we add the rule of inference that any instance of a theorem is a
theorem. To make this precise we first define substitution.

Terminology. A finite set s of ordered pairs is said to be a substitution provided
that for each ordered pair <v, t> in s, v is a variable, t is a term, and no other
member of s has v as its first component. The result of substituting a substitu-
tion s into a term or formula x (denoted x/s) is the term or formula obtained by
simultaneously replacing, for each <v, t> in s, each occurrence of v as a
variable in x with t. We sometimes say x/s is the result of instantiating x with
s. We say that x’ is an instance of x if there is a substitution s such that x’ is
x/s.

Example. If s is {<X, (ADD1 Y)> <Y, Z> <G, FOO>} then s is a substitution.
If p is the term

(PLUS X (G Y X))
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then p/s is the term

(PLUS (ADD1 Y) (G Z (ADD1 Y))).

Note that even though the substitution contains the pair <G, FOO> the occur-
rence of G in p was not replaced by FOO since G does not occur as a variable in
p.

Rule of Inference. Instantiation:
Derive a/s from a.

4.2. The Axioms for TRUE, FALSE, IF, and EQUAL

Abbreviation. We will abbreviate the term (TRUE) with the symbol T and the
term (FALSE) with the symbol F.

Axiom 1.
T ≠ F

Axiom 2.
X = Y → (EQUAL X Y) = T

Axiom 3.
X ≠ Y → (EQUAL X Y) = F

Axiom 4.
X = F → (IF X Y Z) = Z

Axiom 5.
X ≠ F → (IF X Y Z) = Y.

4.3. The Propositional Functions

Defining Axiom 6.
(TRUEP X) = (EQUAL X T)

Defining Axiom 7.
(FALSEP X) = (EQUAL X F)

Defining Axiom 8.
(NOT P)

=
(IF P F T)
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Defining Axiom 9.
(AND P Q)

=
(IF P (IF Q T F) F)

Defining Axiom 10.
(OR P Q)

=
(IF P T (IF Q T F))

Defining Axiom 11.
(IMPLIES P Q)

=
(IF P (IF Q T F) T)

Abbreviation. When we refer to a term t as a formula, one should read in
place of t the formula t≠F.

Example. The term

(IMPLIES (AND (P X) (Q Y)) (R X Y)),

if used where a formula is expected (e.g., in the allegation that it is a theorem), is
to be read as

(IMPLIES (AND (P X) (Q Y)) (R X Y)) ≠ F.

Given the foregoing axioms and the rules of inference of propositional calculus
and equality, the above formula can be shown equivalent to

((P X)≠F ∧ (Q Y)≠F) → (R X Y)≠F

which we could abbreviate

((P X) ∧ (Q Y)) → (R X Y).

Note. The definitional principle, to be discussed later, permits the user of the
logic to add new defining axioms under admissibility requirements that ensure
the unique satisfiability of the defining equation.  The reader may wonder why
we did not invoke the definitional principle to add the defining axioms
above—explicitly eliminating the risk that they render the system inconsistent.
In fact, we completely avoid use of the definitional principle in this presentation
of the logic. There are two reasons.  First, the definitional principle also adds an
axiom (the non-SUBRP axiom) that connects the defined symbol to the inter-
preter for the logic—an axiom we do not wish to have for the primitives.
Second, the admissibility requirements of the definitional principle are not al-
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ways met in the development of the logic.

5. The Shell Principle and the Primitive Data Types

Note. The shell principle permits the extension of the logic by the addition of a
set of axioms that define a new data type.  Under the conditions of admissibility
described, the axioms added are guaranteed to preserve the consistency of the
logic. The axioms are obtained by instantiating a set of axiom schemas
described here.  In order to describe the axiom schemas it is first necessary to
establish several elaborate notational conventions.  We then define the shell
principle precisely. Then we invoke the shell principle to obtain the axioms for
the natural numbers, the ordered pairs, the literal atoms, and the negative in-
tegers.

5.1. Conventions

Terminology. We say t is the fn nest around b for s iff t and b are terms, fn
is a function symbol of arity 2, s is a finite sequence of terms, and either (a) s is
empty and t is b or (b) s is not empty and t is (fn t1 t2) where t1 is the
first element of s and t2 is the fn nest around b for the remaining elements of
s. When we write (fn t1 ... tn)⊗b where a term is expected, it is an
abbreviation for the fn nest around b for t1, ..., tn.

Note. In the first edition used ‘‘(fn t1 ... tn)@b’’ to denote what we
now denote with ‘‘(fn t1 ... tn)⊗b.’’ We changed from ‘‘@’’ to ‘‘⊗’’
in the second edition because the ‘‘@’’ character is now permitted to occur in
the extended syntax, in conjunction with backquote notation.

Examples. The OR nest around F for A, B, and C is the term (OR A (OR B
(OR C F))), which may also be written (OR A B C)⊗F.

Terminology. Each application of the shell principle introduces several ‘‘new’’
function symbols. The invocation explicitly names one symbol as the
constructor and another as the recognizer. Zero or more other symbols are
named as accessors, and one may be named as the base function symbol for that
shell.

Terminology. The constructor function symbols of a history h consists exactly
of the constructor function symbols of applications of the shell principle in h.
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The recognizer function symbols of a history h is the union of {TRUEP
FALSEP} with the set consisting exactly of the recognizer function symbols of
the applications of the shell principle in h. The base function symbols of a
history h is the union of {TRUE FALSE} with the set consisting exactly of the
base function symbols of the applications of the shell principle in h for which a
base function symbol was supplied.

Terminology. We say r is the type of fn iff either (a) r is given as the type of
fn in Table 2 or (b) fn is a constructor or base function symbol introduced in
the same axiomatic act in which r was the recognizer function symbol.

Table 2

fn type of fn

TRUE TRUEP
FALSE FALSEP

Terminology. A type restriction over a set of function symbols s is a nonempty
finite sequence of symbols where the first symbol is either the word ONE-OF or
NONE-OF and each of the remaining is an element of s.

Terminology. A function symbol fn satisfies a type restriction (flg s1 ...
sn) iff either flg is ONE-OF and fn is among the si or flg is NONE-OF and
fn is not among the si.

Terminology. We say t is the type restriction term for a type restriction (flg
r1 ... rn) and a variable symbol v iff flg is ONE-OF and t is (OR (r1
v) ... (rn v))⊗F or flg is NONE-OF and t is (NOT (OR (r1 v)

... (rn v))⊗F).

Examples. Let tr1 be (ONE-OF LISTP LITATOM). Then tr1 is a type
restriction over the set {NUMBERP LISTP LITATOM}. The function symbol
LISTP satisfies tr1 but the function symbol NUMBERP does not. The type
restriction term for tr1 and X1 is (OR (LISTP X1) (OR (LITATOM X1)
F)). Let tr2 be (NONE-OF NUMBERP). Then tr2 is a type restriction over
the set {NUMBERP LISTP LITATOM}. The function symbol LISTP satisfies
tr2 but the function symbol NUMBERP does not. The type restriction term for
tr2 and X2 is (NOT (OR (NUMBERP X2) F)).
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5.2. The Shell Principle

Extension Principle. Shell Principle

The axiomatic act

Shell Definition.
Add the shell const of n arguments
with (optionally, base function base,)
recognizer function r,
accessor functions ac1, ..., acn,
type restrictions tr1, ..., trn, and
default functions dv1, ..., dvn,

is admissible under the history h provided

(a) const is a new function symbol of n arguments,
(base is a new function symbol of no arguments,
if a base function is supplied), r, ac1, ..., acn
are new function symbols of one argument, and
all the above function symbols are distinct;

(b) each tri is a type restriction over the recognizers
of h together with the symbol r;

(c) for each i, dvi is either base or one of the
base functions of h; and

(d) for each i, if dvi is base then r satisfies tri
and otherwise the type of dvi satisfies tri.

If the tri are not specified, they should each be assumed to be (NONE-OF).
If admissible, the act adds the axioms shown below. In the special case that

no base is supplied, T should be used for all occurrences of (r (base))
below, and F should be used for all terms of the form (EQUAL x (base))
below.

(1) (OR (EQUAL (r X) T)
(EQUAL (r X) F))

(2) (r (const X1 ... Xn))

(3) (r (base))
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(4) (NOT (EQUAL (const X1 ... Xn) (base)))

(5) (IMPLIES (AND (r X)
(NOT (EQUAL X (base))))

(EQUAL (const (ac1 X) ... (acn X))
X))

For each i from 1 to n, the following formula
(6) (IMPLIES trti

(EQUAL (aci (const X1 ... Xn))
Xi))

where trti is the type restriction term for tri and Xi.

For each i from 1 to n, the following formula
(7) (IMPLIES (OR (NOT (r X))

(OR (EQUAL X (base))
(AND (NOT trti)

(EQUAL X
(const X1 ... Xn)))))

(EQUAL (aci X) (dvi)))

where trti is the type restriction term for tri and Xi.

For each recognizer, r’, in the recognizer functions of h the
formula

(8) (IMPLIES (r X) (NOT (r’ X)))

(9) (IMPLIES (r X)
(EQUAL (COUNT X)

(IF (EQUAL X (base))
(ZERO)
(ADD1
(PLUS
(COUNT (ac1 X))
...
(COUNT (acn X)))⊗(ZERO)))))

(10) The SUBRP axiom for each of the symbols const, base (if supplied),
r, ac1, ..., acn. We define the ‘‘SUBRP axiom’’ on page 54.

Note. In the first edition, the shell principle included two additional axioms,
there labeled (8) and (9), which were in fact derivable from axiom (10) of the
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first edition.  Their deletion from the second edition has caused renumbering of
the subsequent axioms.

5.3. Natural Numbers—Axioms 12.n

Shell Definition.
Add the shell ADD1 of one argument
with base function ZERO,
recognizer function NUMBERP,
accessor function SUB1,
type restriction (ONE-OF NUMBERP), and
default function ZERO.

Axiom 13.
(NUMBERP (COUNT X))

Axiom 14.
(EQUAL (COUNT T) (ZERO))

Axiom 15.
(EQUAL (COUNT F) (ZERO))

Defining Axiom 16.
(ZEROP X)

=
(OR (EQUAL X (ZERO)) (NOT (NUMBERP X)))

Defining Axiom 17.
(FIX X) = (IF (NUMBERP X) X (ZERO))

Defining Axiom 18.
(PLUS X Y)

=
(IF (ZEROP X)

(FIX Y)
(ADD1 (PLUS (SUB1 X) Y)))

5.4. Ordered Pairs—Axioms 19.n

Shell Definition.
Add the shell CONS of two arguments
with recognizer function LISTP,
accessor functions CAR and CDR, and
default functions ZERO and ZERO.



18

Notes. This invocation of the shell principle is, strictly speaking, inadmissible
because there are axioms about CONS, CAR, and CDR in the SUBRP axioms
added on behalf of the preceding shell. We ignore this inadmissibility and add
the corresponding axioms anyway.

5.5. Literal Atoms—Axioms 20.n

Shell Definition.
Add the shell PACK of one argument
with recognizer function LITATOM,
accessor function UNPACK, and
default function ZERO.

Notes. This invocation of the shell principle is, strictly speaking, inadmissible
because there are axioms about PACK in the SUBRP axioms added on behalf of
the preceding shells.  We ignore this inadmissibility and add the corresponding
axioms anyway.

5.6. Negative Integers—Axioms 21.n

Shell Definition.
Add the shell MINUS of one argument
with recognizer function NEGATIVEP,
accessor function NEGATIVE-GUTS,
type restriction (ONE-OF NUMBERP), and
default function ZERO.

6. Explicit Value Terms

Note. This section is technically an aside in the development of the logic.  We
define a particularly important class of terms in the logic, called the ‘‘explicit
value terms.’’  Intuitively, the explicit value terms are the ‘‘canonical con-
stants’’ in the logic.  It is almost the case that every constant term—every
variable-free term—can be mechanically reduced to a unique, equivalent ex-
plicit value.  The only terms not so reducible are those involving (at some level
in the definitional hierarchy) undefined functions, constrained functions, or calls
of metafunctions such as V&C$. Thus, the explicit value terms are the terms
upon which we can ‘‘compute’’ in the logic. They are the basis for our encod-
ing of the terms as objects in the logic, and elaborate syntactic conventions are
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adopted in the extended syntax to permit their succinct expression.

Terminology. We say tr is the ith type restriction for a constructor function
symbol fn of arity n iff 1 ≤ i ≤ n, and tr is the ith type restriction specified in
the axiomatic act in which fn was introduced.

Examples. The first type restriction for ADD1 is (ONE-OF NUMBERP). The
second type restriction for CONS is (NONE-OF).

Terminology. We say t is an explicit value term in a history h iff t is a term
and either (a) t is a call of a base function symbol in h, or (b) t is a call of a
constructor function symbol fn in h on arguments a1, ..., an and for each 1 ≤ i ≤
n, ai is an explicit value term in h and the type of the top function symbol of ai
satisfies the ith type restriction for the constructor function fn. We frequently
omit reference to the history h when it is obvious by context.

Examples. The following are explicit value terms:

(ADD1 (ADD1 (ZERO)))

(CONS (PACK (ZERO)) (CONS (TRUE) (ADD1 (ZERO))))

The term (ADD1 X) is not an explicit value, since X is neither a call of a base
function symbol nor a call of a constructor.  The term (ADD1 (TRUE)) is not
an explicit value, because the top function symbol of (TRUE) does not satisfy
the type restriction, (ONE-OF NUMBERP), for the first argument of ADD1.

7. The Extended Syntax

Note on the Second Edition. The presentation of the logic given here extends
the syntax of an earlier presentation by adding

• the Common Lisp convention for writing comments both with semi-
colon and with balanced occurrences of #| and |#;

• more of Common Lisp’s notation for writing integers, including
binary, octal and hexadecimal notation, e.g., #B1000 as an ab-
breviation of 8;

• Common Lisp’s ‘‘backquote’’ notation, so that ‘(A ,@X B) is an
abbreviation of (CONS ’A (APPEND X (CONS ’B NIL)));

• COND and CASE, which permit the succinct abbreviations of com-
monly used nests of IF-expressions;
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• LIST*, which permits the succinct abbreviation of commonly used
nests of CONS-expressions; and

• LET, which permits the ‘‘binding’’ of ‘‘local variables’’ to values,
permitting the succinct abbreviation of terms involving multiple oc-
currences of identical subterms.

To explain the new integer notation and the backquote notation in a way that
is (we believe) perfectly accurate and permits their use ‘‘inside QUOTEs’’ it was
necessary to redevelop the foundation of the syntax as it was presented in the
first edition.  In particular, in the second edition we start with a class of struc-
tures larger than the first edition’s ‘‘s-expressions’’—structures which include
such utterances as ‘(,X). Because the foundation changed, virtually all of the
first edition’s Section 4.7 (pages 112-124), has changed.  But the new syntax is
strictly an extension of the old; every well-formed term in the old ‘‘extended
syntax’’ is well-formed in the new and abbreviates the same formal term.  So
despite the relatively massive change to the description, the impact of the second
edition is only to add and fully document the features noted above.

Notes. The extended syntax differs from the formal syntax only in that it
permits certain abbreviations.  That is, every term in the formal syntax is also a
term in the extended syntax, but the extended syntax admits additional well-
formed utterances that are understood to stand for certain formal terms.  These
abbreviations primarily concern notation for shell constants such as numbers,
literal atoms, and lists.  In addition, the extended syntax provides some ab-
breviations for commonly used function nests and for the general purpose
bounded quantifier function FOR. We delay the presentation of the quantifier
abbreviations until after we have axiomatized FOR (see section 11, page 56) but
discuss all other aspects of the extended syntax in this section.

We define the extended syntax in six steps.

1. We define a set of tree structures called ‘‘token trees’’ that in-
cludes the formal terms and some other structures as well.

2. We explain how token trees are displayed.

3. We identify three nested subsets of the token trees: the ‘‘readable’’
token trees, the ‘‘s-expressions,’’ and the ‘‘well-formed’’ s-
expressions.

4. We define a mapping, called ‘‘readmacro expansion,’’ from the
readable token trees to s-expressions.

5. We define a mapping, called ‘‘translation,’’ from the well-formed
s-expressions to formal terms.

6. Finally, we make the convention that a readable token tree may be
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used as a term in the extended syntax provided its readmacro ex-
pansion is well-formed.  Such a token tree abbreviates the trans-
lation of its readmacro expansion.

For example, the token tree we display as (LIST* X #B010 ’(0 . 1))
is readable.  Its readmacro expansion is (LIST* X 2 (QUOTE (0 .
1))). This s-expression is well-formed.  Its translation is the formal term:

(CONS X
(CONS (ADD1 (ADD1 (ZERO)))

(CONS (ZERO)
(ADD1 (ZERO))))).

Thus, (LIST* X #B010 ’(0 . 1)) may be used as a term in the extended
syntax and abbreviates the CONS-nest above.

The token tree (LIST* X ,A) is not readable, because it violates rules on
the use of the ‘‘the comma escape from backquote.’’  The token tree (EQUAL
‘(,X . ,Y)) is readable.  However, its readmacro expansion is (EQUAL
(CONS X Y)), which is not well-formed, because the function symbol EQUAL
requires two arguments.

We apologize to readers expecting a definition of our syntax presented in a
formal grammar (e.g., BNF).  We have three reasons for proceeding in this
fashion. First, despite the apparent simplicity of our syntax, it has extremely
powerful and complicated provisions for describing structures.  These provisions
allow a natural embedding of the language into its constants, which facilitates
the definition of a formal metatheory in the logic, as carried out in the final
sections of this presentation of the logic.  Thus, much of the verbiage here
devoted to syntax can be thought of as devoted to the formal development of the
metatheory.

Second, we not only wish to specify the legal expressions in the extended
syntax but also to map them to terms in the formal syntax.  We think it unlikely
that an accurate formal presentation of our syntax and its meaning would be any
more clear than the informal but precise one offered here; furthermore, it would
be much less accessible to most readers.

Finally, this presentation is closely related to the actual implementation of the
syntax in the Nqthm system.  In our implementation the user types ‘‘displayed
token trees.’’  These character strings are read by the Common Lisp read
routine. The read routine causes an error if the token tree presented is not
‘‘readable’’ (e.g., uses a comma outside a backquote).  Otherwise, the read
routine ‘‘expands’’ the ‘‘read macros’’ (single quote, backquote, and #) and
returns the s-expression as a Lisp object.  It is only then that our theorem prover
gets to inspect the object to determine if it is ‘‘well-formed’’ and, if so, what
term it abbreviates.
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7.1. Token Trees and Their Display

Note. Our token trees are essentially the parse trees of Common Lisp s-
expressions, except for the treatment of read macro characters (such as # and
’) and certain atoms. For example, #B010, +2. and 2 are three distinct token
trees. We define ‘‘readmacro expansion’’ so that these three trees expand into
the same ‘‘s-expression.’’  We start the development with the definition of the #
convention for writing down integers in various bases.  Then we introduce the
tokens involved in the single quote and backquote conventions.  Finally, we
define token trees and how to display them.

Terminology. A character c is a base n digit character if and only if n≤16 and c
is among the first n characters in the sequence 0123456789ABCDEF. The
position of c (using zero-based indexing) in the sequence is called its digit value.

Note. When we define how we display ‘‘token trees’’ and the digit characters in
them we will make it clear that case is irrelevant.  Thus, while this definition
makes it appear that only the upper case characters A-F are digit characters, we
will effectively treat a-f as digit characters also.

Example. The base 2 digits are 0 and 1. Their digit values are 0 and 1,
respectively. Among the base 16 digits are A and F. The digit value of A is 10
and the digit value of F is 15.

Terminology. A sequence of characters, s, is a base n digit sequence if and
only if s is nonempty and every element of s is a base n digit character.  The
base n value of a base n digit sequence ck...c1c0 is the integer cknk + ... + c1n1 +

c0n0, where ci is the value of the digit ci.

Example. 1011 is a base 2 digit sequence.  Its base 2 value is the integer
eleven. 1011 is also a base 8 digit sequence.  Its base 8 value is the integer five
hundred and twenty one.

Terminology. A sequence of characters, s, is an optionally signed base n digit
sequence if and only if s is either a base n digit sequence or s is nonempty, the
first character of s is either a + or -, and the remaining characters constitute a
base n digit sequence. If the first character of s is -, the base n signed value of s
is the negative of the base n value of the constituent base n digit sequence.
Otherwise, the base n signed value of s is the base n value of the constitutent
base n digit sequence.

Example. A2 and +A2 are both optionally signed base 16 digit sequences
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whose signed values (in decimal notation) are both 162. -A2 is also such a
sequence; its signed value is -162.

Terminology. A sequence of characters, s, is a #-sequence if and only if the
length of s is at least three, the first character in s is #, the second character in s
is in the set {B O X}, and the remaining characters in s constitute an optionally
signed base n digit sequence, where n is 2, 8, or 16 according to whether the
second character of s is B, O, or X, respectively.

Note. Our convention of disregarding case will allow b, o, and x in the second
character position of #-sequences.

Terminology. Finally, a sequence of characters, s, is a numeric sequence if and
only if one of the following is true:

• s is an optionally signed base 10 digit sequence (in which case its
numeric value is the base 10 signed value of s);

• s is an optionally signed base 10 digit sequence with a dot character
appended on the right (in which case its numeric value is the base
10 signed value of s with the dot removed);

• s is a #-sequence (in which case its numeric value is the base n
signed value of the sequence obtained from s by deleting the first
two characters, where n is 2, 8, or 16 according to whether the
second character of s is B, O, or X).

Example. Table 3 shows some numeric sequences and their numeric values
written in decimal notation.

Table 3

sequence value
123 123
-5. -5

#B1011 11
#O-123 -83
#Xfab 4011

Terminology. The character sequence containing just the single quote (some-
times called ‘‘single gritch’’) character (’) is called the single quote token. The
character sequence containing just the backquote character (‘) is called the
backquote token. The character sequence containing just the dot character (.)
is called the dot token. The character sequence containing just the comma
character (,) is called the comma token. The character sequence containing just
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the comma character followed by the at-sign character (,@) is called the comma
at-sign token. The character sequence containing just the comma character
followed by the dot character (,.) is called the comma dot token.

Terminology. A sequence of characters, s, is a word if and only if s is a
numeric sequence or s is nonempty and each character in s is a member of the
set

{A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
$ ^ & * _ - + = ~ { } ? < >}.

Note. All of our symbols are words, but the set of words is larger because it
includes such non-symbols as *1*TRUE, 123, 1AF, and #B1011 that begin
with non-alphabetic characters.

Terminology. A token tree is one of the following:

• an integer;

• a word;

• a nonempty sequence of token trees (a token tree of this kind is said
to be an undotted token tree);

• a sequence of length at least three whose second-to-last element is
the dot token and all of whose other elements are token trees (a
token tree of this kind is said to be a dotted token tree); or

• a sequence of length two whose first element is one of the tokens
specified below and whose second element is a token tree (called
the constitutent token tree):

• the single quote token (such a token tree is said to be a single
quote token tree),

• the backquote token (a backquote token tree),

• the comma token (a comma escape token tree), or

• the comma at-sign or comma dot tokens (such token trees are
said to be splice escape token trees).

Note. In order to explain how token trees are displayed we must first introduce
the notion of ‘‘comments.’’  Following Common Lisp, we permit both ‘‘semi-
colon comments’’ and ‘‘number sign comments.’’  The latter are, roughly
speaking, text delimited by balanced occurrences of #| and |#. To define this
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notion precisely, we must introduce the terminology to let us talk about #| and
|# clearly.

Terminology. The integer i is a #|-occurrence in the character string s of
length n iff 0≤i≤n-2, the ith (0-based) character of s is the number sign character
(#) and the i+1st character of s is the vertical bar character, |. We define what
it is for i to be a |#-occurrence in strict analogy.  A |#-occurrence, j, is strictly
to the right of a #|-occurrence, i, iff j>i+1.  Finally, if i is a #|-occurrence in s
and j is a |#-occurrence in s that is strictly to the right, then the substring of s
delimited by i and j is the substring of s that begins with the i+2nd character and
ends with the j-1st character.

Examples. Consider the string #|Comment|#. The string has eleven charac-
ters in it.  The only #|-occurrence is 0.  The only |#-occurrence is 9.  The
substring delimited by these occurrences is Comment. In the string #||# the
only #|-occurrence is 0 and the only |#-occurrence is 2, which is strictly to the
right of the former.  The substring delimited by these two occurrences is the
empty string.

Terminology. A string of characters, s, has balanced number signs iff all the
#|- and |#-occurrences can be paired (i.e., put into 1:1 correspondence) so that
every #| has its corresponding |# strictly to its right and the text delimited by
the paired occurrences has balanced number signs.

Examples. The string Comment has balanced number signs because there are
no #|- or |#-occurrences. The string

code #|Comment|# and code

also has balanced number signs.  The following string does not have balanced
number signs:

#|code #|Comment|# and code.

Terminology. A string of characters, s, is a #-comment iff s is obtained from a
string, s’, that has balanced number signs, by adding a number sign character
immediately followed by a vertical bar (#|) to the left-hand end and a vertical
bar immediately followed by a number sign (|#) to the right-hand end.

Notes. Generally speaking, any string of characters not including #| or |# can
be made into a #-comment by surrounding the string with #| and |#. Such
comments will be allowed in certain positions in the display of terms.  Roughly
speaking, the recognition that a string is a comment is license to ignore the
string; that is the whole point of comments.  Comments can be added to the
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display of a term without changing the term displayed.  We are more specific in
a moment. The display of such a commented term can itself be turned into a
#-comment by again surrounding it with #| and |#. If we did not insist on
‘‘balancing number signs’’ the attempt to ‘‘comment out’’ a term could produce
ill-formed results because the ‘‘opening’’ #| would be ‘‘closed’’ by the first |#
encountered in the term’s comments and the rest of the term would not be part
of the comment.

The question of where #-comments are allowed is difficult to answer, but it is
answered below.  The problem is that in Common Lisp (whose read routine we
actually use to parse terms) the number sign character does not automatically
terminate the parsing of a lexeme.  Thus, (H #|text|# X) reads as a list
containing the lexeme H followed by the lexeme X, but (H#|text|# X) reads
as the list containing the lexeme H#text# followed by the lexeme X. So some
‘‘white space’’ must appear after H and before the number sign in order for the
number sign to be read as the beginning of a comment.  As for the end of the
comment, the |# closes the comment no matter what follows.  Thus,
(H #|text|#X) is also read as H followed by X, even though there is no
space after the second number sign.  The naive reader might conclude that #|
must always be preceded by white space and |# may optionally be followed by
white space.  Unfortunately, the rule is a little more complicated.  The display
(FN (H X)#|text|# X) is read as (FN (H X) X). The reason is that
the close parenthesis in (H X) is a ‘‘lexeme terminating character’’ that ter-
minates the lexeme before it, i.e., X, and constitutes a lexeme in itself.  Thus, the
#| is recognized as beginning a comment.  We now explain this precisely.

Terminology. The white space characters are defined to be space, tab, and
newline (i.e., carriage return).  The lexeme terminating characters are defined to
be semicolon, open parenthesis, close parenthesis, single quote mark, backquote
mark, and comma.  (Note that # is not a lexeme terminator!) The union of the
white space characters and the lexeme terminating characters is called the break
characters.

Terminology. A comment is any of the following:

• a (possibly empty) sequence of white space characters,

• a #-comment,

• a sequence of characters that starts with a semicolon, ends with a
newline, and contains no other newlines, or

• the concatenation of two comments.

A comment is said to be a separating comment if it is nonempty and its first
character is either a white space character or a semicolon.
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Example. Thus,

;This is a comment.

is a separating comment.  The string #|And this is a comment.|# is a
comment but not a separating comment. It can be made into a separating
comment by adding a space before the first #. The following is a display of a
separating comment (since it starts with a semicolon) that illustrates that com-
ments may be strung together:

; This is a long comment.
; It spans several lines and
#|Contains both semicolon and
number sign comments.  In addition,
immediately after the following
number sign is a white space
comment.|# ; And here’s another
;semicolon comment.

Terminology. Suppose s1 and s2 are non-empty character strings.  Then
suitable separation between s1 and s2 is any comment with the following
properties. Let c1 be the last character in s1, and let c2 be the first character in
s2.

• If c1 is a break character, suitable separation is any comment.

• If c1 is not a break character but c2 is a break character, suitable
separation is either the empty comment or any separating comment.

• If neither c1 nor c2 is a break character, suitable separation is any
separating comment.

When we use the phrase ‘‘suitable separation’’ it is always in a context in which
s1 and s2 are implicit.

Terminology. A suitable trailer after a string s is any suitable separation
between s and a string beginning with a break character.  That is, a suitable
trailer may be any comment if the last character of s is a break character and
otherwise may be either an empty comment or a separating comment.

Examples. We use suitable separations and trailers to separate the lexemes in
our displays of terms in the extended syntax. For example, in (FN X) the
lexeme FN is separated from the lexeme X by the separating comment consisting
of a single space.  Any separating comment is allowed in the extended syntax.
Thus,
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(FN;Comment
X)

is an acceptable display.  The empty string is not a separating comment.  Thus,
(FNX) is an unacceptable display.  Similarly, because #|Comment|# is not a
separating comment, (FN#|Comment|#X) is unacceptable.  On the other
hand, by adding a space to the front of the #-comment above we obtain a
separating comment and thus (FN #|Comment|#X) is an acceptable display.
Now consider (FN (H X) Y). Because the last character of FN is not a break
character but open parenthesis is a break character, suitable separation between
displays of FN and (H X) is either the empty string or a separating comment.
Thus, the first four of the following five displays will be acceptable.  The last
will not, because the comment used is not a separating comment or the empty
comment.

(FN(H X) Y) ; the empty comment

(FN
(H X) Y) ; a white space comment

(FN;text ; a semicolon comment
(H X) Y)

(FN #|text|# (H X) Y) ; a separating #-comment

(FN#|text|# (H X) Y)  ; unacceptable!

Any comment may be used to separate (H X) and Y, because the close paren-
thesis character is a break character.  Thus, (FN(H X)Y) will be an allowed
display, as will (FN(H X)#|text|#Y).

Terminology. To display a token tree that is an integer or word, we write down
a comment, a decimal representation of the integer or the characters in the word,
followed by a suitable trailer.  Upper case characters in a word may be displayed
in lower case.  To display a dotted or undotted token tree consisting of the
elements t1, ..., tn, where tn-1 may or may not be the dot token, we write
down a comment, an open parenthesis, suitable separation, a display of t1,
suitable separation, a display of t2, suitable separation, ..., a display of tn,
suitable separation, a close parenthesis, and a comment, where we display the
dot token as though it were a word.  All other token trees consist of a token and
a constituent token tree. To display them we write down a comment, the charac-
ters in the token, a comment, a display of the constituent token tree, and a
suitable trailer.
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Note. What token tree displays as 123? Unfortunately, there are two: the tree
consisting of the integer 123 and the tree consisting of the numeric sequence
123. These two trees readmacro expand to the same tree and since readmacro
expansion is involved in our abbreviation convention, it is irrelevant which of
the two trees was actually displayed.

Example. Below we show some (displays of) token trees:

(EQUAL X ;Comments may
(QUOTE (A B . C))) ;be included

(EQUAL X (QUOTE (A B . C)))

(equal x (quote (a b . c)))

(QUOTE (A . B))

’(A . B)

‘(A ,X ,@(STRIP-CARS Y) B)

((1AB B**3 C) 12R45 (ADD1))

The first, second and third are different displays of the same token tree—the
only difference between them is the comments used and the case of the charac-
ters. The fourth and fifth are displays of two different token trees, both of length
two with the same second element, (A . B), but one having the word QUOTE
as its first element and the other having the single quote token as its first
element. Note the difference in the way they are displayed. It will turn out that
these two different token trees readmacro expand to the same s-expression.  The
sixth display shows how a backquote token tree containing two escapes may be
displayed. Once we have defined readmacro expansion and translation it will be
clear that all of the token trees except the last abbreviate terms.

Notes. Because of our convention of using lower case typewriter font words as
metavariables, we will refrain from using lower case when displaying token
trees. Thus, if fn is understood to be any function symbol of two arguments,
then (PLUS X Y) is to be understood to be ‘‘of the form’’ of the token tree we
display as (fn X Y) while it is not ‘‘of the form’’ of the tree we display as
(FN X Y). The reader may wonder why we permit token trees to be displayed
in lower case if we never so display them.  The point is that we never so display
them in this presentation of the logic.  But in other papers in which formulas are
displayed, users frequently find lowercase characters more attractive.  Further-
more, our implementation of Nqthm inherits from the host Lisp system the
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default action of raising lower case characters to upper case characters when
reading from the user’s terminal or files.  (Special action has to be taken to
prevent this.)  Thus, many users type formulas in lower case.  Since metavari-
ables are not part of the system, this presents no ambiguity.

7.2. Readable Token Trees, S-Expressions and Readmacro
Expansion

Note. The token tree displayed as ‘(,,X) is problematic because it contains a
doubly-nested backquote escape in a singly nested backquote tree.  The token
trees displayed as ‘,@X and ‘(1 . ,@X) are problematic because they use
the ,@ notation in ‘‘non-element positions.’’  We make precise these require-
ments by defining the notion of ‘‘readable’’ token trees for depth n and then
restricting our attention later to the readable token trees for depth 0.

Terminology. A token tree s is readable from depth n iff one of the following
holds:

• s is an integer or word;

• s is an undotted token tree and each element of s is readable from
n;

• s is a dotted token tree and each element of s (other than the dot
token) is readable from n and the last element of s is not a splice
escape tree;

• s is a single quote token tree and the constituent token tree is
readable from n;

• s is a backquote token tree and the constituent token tree is readable
from n+1 and is not a splice escape tree; or

• s is a comma escape or splice escape token tree, n>0, and the
constituent token tree is readable from n-1.

Example. The token tree (A ,X B) is not readable from depth 0 but is read-
able from depth 1.  Thus, ‘(A ,X B) is readable from depth 0.  The expres-
sions ‘,@X and (A . ,@X) are not readable from any depth.

Terminology. An s-expression is a token tree containing no numeric sequences
or tokens other than the dot token.

Terminology. If s is a token tree readable from depth 0, then its readmacro
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expansion is the s-expression obtained by the following four successive transfor-
mations.

• Replace every numeric sequence by its numeric value.

• Replace every single quote token by the word QUOTE.

• Replace every backquote token tree, ‘x, by the ‘‘backquote expan-
sion’’ of x (see below), replacing innermost trees first.

• At this point the transformed tree contains no tokens other than,
possibly, the dot token. Replace every subtree of s of the form,
(x1 x2 ... xk . (y1 ... yn)), by (x1 x2 ... xk y1
... yn) and every subtree of the form (x1 x2 ... xk .
NIL) by (x1 x2 ... xk). That is, a subtree should be replaced
if it is a dotted token tree and its last element is either a dotted or
undotted token tree or the word NIL. Let x be such a tree and let y
be its last element.  If y is a dotted or undotted token tree, then x is
replaced by the concatenation of y onto the right-hand end of the
sequence obtained from x by deleting the dot and the last element.
If y is the word NIL then x is replaced by the sequence obtained
from x by deleting the dot and the last element.

Examples. The readmacro expansion of (A B . ’(#B100 . C)) proceeds
in the following steps.  First, the numeric sequence is replaced by its integer
value, producing (A B . ’(4 . C)). Second, the single quote token tree is
replaced by a QUOTE tree, (A B . (QUOTE (4 . C))). Since there are
no backquote tokens in the tree, that step of readmacro expansion is irrelevant
here. Finally we consider the dotted token trees. The innermost one is not of
the form that is replaced.  The outermost one is replaceable.  The result is (A B
QUOTE (4 . C)).

The readmacro expansion of (PLUS #B100 (SUM ’(1 2 3))) is
(PLUS 4 (SUM (QUOTE (1 2 3)))). Note that the ambiguity concern-
ing the display of integers and numeric sequences makes it impossible to
uniquely determine the token tree initially displayed.  For example, we do not
know if it contained the integer two or the numeric sequence 2. However, the
second tree displayed is the readmacro expansion of the first.  As such, it is an
s-expression and contains no numeric sequences.  Thus, the second token tree is
uniquely determined by the display and the fact that it is known to be an s-
expression.

Note. We now define ‘‘backquote expansion.’’  It is via this process that ‘(,X
,Y . ,Z) is readmacro expanded into (CONS X (CONS Y Z)), for ex-
ample. Our interpretation of backquote is consistent with the Common Lisp
interpretation [3, 4]. However, Common Lisp does not specify what s-
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expression is built by backquote; instead it specifies what the value of the
s-expression must be.  Different implementations of Common Lisp actually
produce different readmacro expansions.  For example, in one Common Lisp,
‘(,X) might be (CONS X NIL) and in another it might be (LIST X). The
values of these expressions are the same.  But consider what happens when a
backquoted form is quoted, e.g., ’‘(,X). In one of the two hypothetical Lisps
mentioned above, this string reads as the constant ’(CONS X NIL), while in
the other it reads as ’(LIST X). This is intolerable in our setting since it
would mean that the token tree (EQUAL (CAR ’‘(,X)) ’CONS) might
read as a theorem in one Common Lisp and read as a non-theorem in another.
We therefore have to choose a particular readmacro expansion of backquote
(consistent with Common Lisp). We document it here.  It is implemented by
suitable changes to the Lisp readtable in Nqthm.

Terminology. If s is a token tree readable from some depth n and s contains no
numeric sequences, single quote tokens or backquote tokens, then its backquote
expansion is the token tree defined as follows.

• If s is an integer or a word, then (QUOTE s) is its backquote
expansion.

• If s is a comma escape token tree, ,x, or a splice escape token tree,
,@x or ,.x, then x is its backquote expansion.

• If s is an undotted token tree or a dotted token tree, then its back-
quote expansion is the ‘‘backquote-list expansion’’ of s (see
below).

Terminology. We now define the backquote-list expansion for a dotted or
undotted token tree, s, that is readable from some depth n and contains no
numeric sequences, single quote tokens, or backquote tokens. Let x be the
backquote expansion of the first element of s. Let y be as defined by cases
below. Then the backquote-list expansion of s is either (APPEND x y) or
(CONS x y), according to whether the first element of s is a splice escape
token tree or not.  The definition of y is by cases:

• If s is a token tree of length 1, then y is (QUOTE NIL).

• If s is a dotted token tree of length 3, then y is the backquote
expansion of the last element of s.

• If s is any other dotted or undotted token tree, then y is the
backquote-list expansion of the token tree obtained by removing the
first element from s.

Examples. To illustrate the first case above, where s is an undotted token tree
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of length 1, consider the backquote-list expansion of (A). The result is (CONS
(QUOTE A) (QUOTE NIL)) because the backquote expansion of A is
(QUOTE A). The second case is illustrated by (B . ,Z). Its backquote-list
expansion is (CONS (QUOTE B) Z). We combine these to illustrate the
third case.  The backquote-list expansion of ((A) B . ,Z) is (CONS
(CONS (QUOTE A) (QUOTE NIL)) (CONS (QUOTE B) Z)). The
backquote-list expansion of (A ,@Z B) is (CONS (QUOTE A) (APPEND
Z (CONS (QUOTE B) (QUOTE NIL)))).

Since the readmacro expansion of ‘(A) is just the backquote expansion of
(A), which, in turn, is the backquote-list expansion of (A), we see that the
readmacro expansion of ‘(A) is (CONS (QUOTE A) (QUOTE NIL)). In
Table 4 we show some other examples of the readmacro expansion of backquote
trees.

Table 4

token tree readmacro expansion

‘(X ,X ,@X) (CONS (QUOTE X)
(CONS X

(APPEND X
(QUOTE NIL))))

‘((A . ,X) (CONS (CONS (QUOTE A) X)
(B . ,Y) (CONS (CONS (QUOTE B) Y)
. ,REST) REST))

‘‘(,,X) (CONS (QUOTE CONS)
(CONS X
(CONS (CONS (QUOTE QUOTE)

(CONS (QUOTE NIL)
(QUOTE NIL)))

(QUOTE NIL))))

We can explain the last example of Table 4.  The readmacro expansion of
‘‘(,,X) proceeds by first replacing the innermost backquote tree by its back-
quote expansion.  So let us consider the backquote expansion of ‘(,,X). We
might first observe that while this tree is not readable from depth 0, its back-
quote expansion is nevertheless well defined.  Indeed, its backquote expansion is
the token tree (CONS ,X (QUOTE NIL)) because the backquote expansion
of ,,X is ,X. So replacing the constituent token tree, ‘(,,X), of ‘‘(,,X)
by its backquote expansion produces ‘(CONS ,X (QUOTE NIL)). It is
easy to check that the readmacro expansion of this tree is as shown in the table.

Observe that backquote expansion does not always yield an s-expression:  the
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backquote expansion of ,,X is ,X. However, the backquote expansion of a
token tree readable from depth 0 produces an s-expression because each escape
token tree is embedded in enough backquotes to ensure that all the escape and
backquote tokens are eliminated.

7.3. Some Preliminary Terminology

Note. We have described how readmacro expansion transforms readable token
trees into s-expressions.  We now turn to the identification of a subset of the
s-expressions, called ‘‘well-formed’’ s-expressions and the formal terms they
abbreviate. We need a few preliminary concepts first.

Terminology. The NUMBERP corresponding to a nonnegative integer n is the
term (ZERO) if n is 0, and otherwise is the term (ADD1 t), where t is the
NUMBERP corresponding to n-1. The NEGATIVEP corresponding to a negative
integer n is the term (MINUS t), where t is the NUMBERP corresponding to
-n.

Examples. The NUMBERP corresponding to 2 is (ADD1 (ADD1 (ZERO))).
The NEGATIVEP corresponding to -1 is (MINUS (ADD1 (ZERO))).

Terminology. If fn is a CAR/CDR symbol, we call the sequence of characters
in fn starting with the second and concluding with the next to last the A/D
sequence of fn.

Terminology. If s is a character sequence of A’s and D’s, the CAR/CDR nest
for s around a term b is the term t defined as follows.  If s is empty, t is b.
Otherwise, s consists of either an A or D followed by a sequence s’. Let t’ be
the CAR/CDR nest for s’ around b. Then t is (CAR t’) or (CDR t’),
according to whether the first character of s is A or D.

Example. The symbol CADDAAR is a CAR/CDR symbol. Its A/D sequence is
the sequence ADDAA. The CAR/CDR nest for ADDAA around L is (CAR (CDR
(CDR (CAR (CAR L))))).

Terminology. We say a term e is the explosion of a sequence of ASCII charac-
ters, s, iff either (a) s is empty and e is (ZERO) or (b) s is a character c
followed by some sequence s’ and e is (CONS i e’) where i is the
NUMBERP corresponding to the ASCII code for c and e’ is the explosion of s’.

Example. The ASCII codes for the characters A, B, and C are 65, 66, and 67
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respectively. Let t65, t66, and t67 denote, respectively, the NUMBERPs cor-
responding to 65, 66, and 67. For example, t65 here denotes a nest of ADD1s
65 deep with a (ZERO) at the bottom.  Then the explosion of ABC is the formal
term

(CONS t65 (CONS t66 (CONS t67 (ZERO)))).

Terminology. We say the term e is the LITATOM corresponding to a symbol s
iff e is the term (PACK e’) where e’ is the explosion of s.

Example. The LITATOM corresponding to the symbol ABC is

(PACK (CONS t65 (CONS t66 (CONS t67 (ZERO))))),

where t65, t66, and t67 are as in the last example.

7.4. Well-Formed S-Expressions and Their Translations

Notes. The terminology we have developed is sufficient for defining what it
means for an s-expression to be ‘‘well-formed’’ and what its ‘‘translation’’ is,
for all s-expressions except those employing QUOTE or abbreviated FORs.
Rather than define the concepts necessary to pin down these conventions, we
now jump ahead in our development of the syntax and define ‘‘well-formed’’
and ‘‘translation.’’ Such a presentation here necessarily involves undefined
concepts—the notions of well-formedness and translation of both QUOTE and
FOR expressions. However, by providing the definition at this point in the
development we can use some s-expressions to illustrate and motivate the dis-
cussion of the more elaborate notations.

Terminology. Below we define two concepts: what it means for an s-
expression x to be a well-formed term in the extended syntax and, for well-
formed s-expressions, what is the translation into a term in the formal syntax.
These definitions are made implicitly with respect to a history because QUOTE
notation permits the abbreviation of explicit values, a concept which, recall, is
sensitive to the history.  Our style of definition is to consider any s-expression x
and announce whether it is well-formed or not and if so, what its translation is.

• If x is an integer, it is well-formed and its translation is the explicit
value term denoted by x (see page 39).

• If x is a symbol then

• If x is T, it is well-formed and its translation is the formal
term (TRUE).
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• If x is F, it is well-formed and its translation is the formal
term (FALSE).

• If x is NIL, it is well-formed and its translation is the explicit
value term denoted by NIL (see page 39).

• If x is any other symbol, it is well-formed and its translation
is the formal term x.

• If x is a dotted s-expression, it is not well-formed.

• If the first element of x is the symbol QUOTE, then x is well-formed
iff it is of the form (QUOTE e) where e is an explicit value
descriptor (see page 39).  If well-formed, the translation of x is the
explicit value term denoted by e (see page 39).

• If the first element of x is the symbol COND, then the well-
formedness of x and its translation are defined by cases as follows.

• If x is of the form (COND (T v)), then it is well-formed
iff v is well-formed.  If x is well-formed, the translation of x
is the translation of v.

• If x is of the form (COND (w v) x1 ... xn), where
n>0, then x is well-formed iff w is not T and w, v and (COND
x1 ... xn) are well-formed.  If x is well-formed, let
test, val, and rest be, respectively, the translations of w,
v, and (COND x1 ... xn). Then the translation of x is
(IF test val rest).

• Otherwise, x is not well-formed.

• If the first element of x is the symbol CASE, then the well-
formedness of x and its translation are defined by cases as follows.

• If x is of the form (CASE w (OTHERWISE v)), then x is
well-formed iff w and v are well-formed.  If x is well-formed,
the translation of x is the translation of v.

• If x is of the form (CASE w (e v) x1 ... xn),
where n>0, then x is well-formed iff no xi is of the form (e
x’i) and in addition w, (QUOTE e), v, and (CASE w x1
... xn) are well-formed. If x is well-formed, then let key,
obj, val, and rest be, respectively, the translations of w,
(QUOTE e), v, and (CASE w x1 ... xn). Then the
translation of x is (IF (EQUAL key obj) val
rest).

• Otherwise, x is not well-formed.
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• If the first element of x is the symbol LET, then x is well-formed iff
x is of the form (LET ((w1 v1) ...  (wn vn)) y), the wi,
vi and y are well-formed, the translation of each wi is a symbol
and the translation of wi is different from that of wj when i is
different from j. If x is well-formed, let vari be the translation of
wi, let ti be the translation of vi and let body be the translation of
y. Let s be the substitution that replaces vari by ti, i.e., {<var1,
t1> ... <varn, tn>}. Then the translation of x is body/s.

• Otherwise, x is of the form (fn x1 ... xn), where fn is a
symbol other than QUOTE, COND, CASE, or LET, and each xi is an
s-expression. If some xi is not well-formed, then x is not well-
formed. Otherwise, let ti be the translation of xi below:

• If fn is in the set {NIL T F}, x is not well-formed.

• If fn is the symbol LIST then x is well-formed and its
translation is the CONS nest around the translation of NIL for
t1, ..., tn.

• If fn is the symbol LIST* then x is well-formed iff n≥1. If
x is well-formed, its translation is the CONS nest around tn
for t1, ..., tn-1.

• If fn is a CAR/CDR symbol, then x is well-formed iff n is 1
and, if well-formed, its translation is the CAR/CDR nest
around t1 for the A/D sequence of fn.

• If fn is a function symbol of arity n, then x is well-formed
and its translation is the formal term (fn t1 ... tn).

• If fn is the symbol FOR and n is 5 or 7, then x is well-formed
iff x is an abbreviated FOR (see page 58).  If well-formed, the
translation of x is the FOR expression denoted by x (see page
58).

• If fn is in the set {AND OR PLUS TIMES} and n>2, then
x is well-formed and its translation is the fn nest around tn
for t1, ..., tn-1.

• Otherwise, x is not well-formed.

Examples. Table 5 shows well-formed s-expressions on the left and their trans-
lations to formal terms on the right.

Certain formal terms, such as the translation of NIL, are exceedingly painful
to write down because they contain deep nests of ADD1s. Table 6 also contains
translations, except this time the right-hand column is, technically, not a formal
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Table 5

s-expression translation

T (TRUE)

2 (ADD1 (ADD1 (ZERO)))

(COND (P X) (IF P X (IF Q Y Z))
(Q Y)
(T Z))

(LIST* A B C) (CONS A (CONS B C))

(CADR X) (CAR (CDR X))

(PLUS I J K) (PLUS I (PLUS J K))

term but rather another well-formed s-expression with the same translation.  In
particular, in Table 6 we use decimal notation in the right-hand column, but
otherwise confine ourselves to formal syntax.

Table 6

s-expression with
s-expression same translation

NIL (PACK
(CONS 78
(CONS 73
(CONS 76 0))))

(LIST 1 2 3) (CONS 1 ;first element
(CONS 2 ;second element
(CONS 3 ;third element
(PACK ;NIL
(CONS 78
(CONS 73
(CONS 76 0)))))))
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7.5. QUOTE Notation

Notes and Example. In this subsection we define what we mean by an ‘‘ex-
plicit value descriptor’’ and the ‘‘explicit value denoted’’ by such a descriptor.
These are the concepts used to define the well-formedness and meaning of
s-expressions of the form (QUOTE e).

Each explicit value term can be written in QUOTE notation. That is, for each
explicit value term t there is exactly one s-expression e such that the s-
expression (QUOTE e) is well-formed and translates to t. We call e the
‘‘explicit value descriptor’’ of t. For example, consider the s-expression

(CONS 1
(CONS (PACK

(CONS 65 (CONS 66 (CONS 67 0))))
(CONS 2 3))).

This s-expression is well-formed and translates to an explicit value— indeed,
except for the use of decimal notation, this s-expression is an explicit value.
Call that explicit value term t. The explicit value descriptor for t is the s-
expression (1 ABC 2 . 3). Thus, the translation of (QUOTE (1 ABC 2
. 3)) is t.

Our QUOTE notation is derived from the Lisp notation for data structures
composed of numbers, symbols, and ordered pairs, but is complicated by the
need to denote structures containing user-defined shell constants.  That is, after
the theory has been extended by the addition of a new shell, it is possible to
build constants containing both primitive shells and user-defined ones, e.g., lists
of stacks.  Unlike Lisp’s QUOTE notation, the notation described here permits
such constants to be written down, via an ‘‘escape’’ mechanism.

Following the precedent set for well-formedness and translation, we proceed
in a top-down fashion to define what we mean by an ‘‘explicit value descriptor’’
and its ‘‘denoted explicit value’’ without first defining the terminology to dis-
cuss the ‘‘escape’’ mechanism.  Immediately following the definition below we
illustrate the use of QUOTE notation on primitive shell constants, e.g., lists,
numbers, and literal atoms.  We define the escape mechanism for user-declared
shells in the next subsection.

Terminology. Below we define two concepts: what it is for an s-expression e
to be an explicit value descriptor and, for explicit value descriptors, what is the
denoted explicit value term. These definitions are made with respect to a history
which is used implicitly below.  Our style of definition is to consider any
s-expression e and announce whether it is an explicit value descriptor or not and
if so, what its denoted explicit value term is.
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• If e is an integer, it is an explicit value descriptor and the explicit
value term it denotes is the NEGATIVEP or NUMBERP correspond-
ing to e, according to whether e is negative or not.

• If e is a word, then

• If e is the word *1*TRUE, e is an explicit value descriptor
and denotes the explicit value (TRUE).

• If e is the word *1*FALSE, e is an explicit value descriptor
and denotes the explicit value (FALSE).

• If e is a symbol, e is an explicit value descriptor and denotes
the LITATOM corresponding to e.

• Otherwise, e is not an explicit value descriptor.

• If the first element of e is the word *1*QUOTE, e is an explicit
value descriptor iff it is an explicit value escape descriptor (see the
next subsection).  If so, it has the form (*1*QUOTE fn e1 ...
en), where fn is a constructor or base function symbol of arity n
and each ei is an explicit value descriptor denoting an explicit
value ti. The explicit value denoted by e is then (fn t1 ...
tn). (That this is, indeed, an explicit value is assured by the defini-
tion of ‘‘explicit value escape descriptor.’’)

• If e is a dotted s-expression of length 3, i.e., (e1 . e2), then e is
an explicit value descriptor iff each ei is an explicit value descrip-
tor. If so, let ti be the explicit value denoted by ei. Then the
explicit value denoted by e is (CONS t1 t2).

• If e is an s-expression of length 1, i.e., (e1), e is an explicit value
descriptor iff e1 is an explicit value descriptor.  If so, let t1 be the
explicit value denoted by e1 and let nil be the explicit value
denoted by NIL. Then the explicit value denoted by e is (CONS
t1 nil).

• Otherwise, either e is a dotted s-expression of length greater than 3
or e is a non-dotted s-expression of length greater than 1.  Let e1 be
the first element of e and let e2 be the sequence consisting of the
remaining elements of e. Observe that e1 and e2 are both s-
expressions. e is an explicit value descriptor iff each ei is an
explicit value descriptor.  If so, let ti be the explicit value denoted
by ei. Then the explicit value denoted by e is (CONS t1 t2).

Examples. Table 7 illustrates the QUOTE notation. The two columns contain
token trees rather than s-expressions simply to save space—we write ’x in
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place of the s-expression (QUOTE x). Each token tree is readable and read-
macro expands to a well-formed s-expression.  The s-expressions of the left-
hand column are all examples of QUOTE forms. The s-expressions of the right-
hand column use QUOTE only to represent literal atoms.  Corresponding s-
expressions in the two columns have identical translations.

Table 7

token tree for token tree for
s-expression in s-expression with
QUOTE notation same translation

’123 123

’ABC (PACK ’(65 66 67 . 0))

’(65 66 67 . 0) (CONS 65
(CONS 66 (CONS 67 0)))

’(PLUS I J) (CONS ’PLUS
(CONS ’I
(CONS ’J ’NIL)))

’((I . 2) (J . 3)) (LIST (CONS ’I 2)
(CONS ’J 3))

’((A . *1*TRUE) (LIST (CONS ’A (TRUE))
(B . T)) (CONS ’B

(PACK (CONS 84 0))))

Note. Of particular note is the possible confusion of the meaning of the symbol
T (and, symmetrically, of F) in s-expressions.  If T is used ‘‘outside a QUOTE’’
it denotes (TRUE). If T is used ‘‘inside a QUOTE’’ it denotes the literal atom
whose ‘‘print name’’ is the single character T. To include (TRUE) among the
elements of a QUOTEd list, the non-symbol *1*TRUE should be written.

If the s-expression (QUOTE ABC) is used as a term it denotes the term also
denoted by (PACK (QUOTE (65 66 67 . 0))). However, if the s-
expression (QUOTE ABC) is used ‘‘inside a QUOTE,’’ i.e., as an explicit value
descriptor as in the term (QUOTE (QUOTE ABC)), it denotes the term also
denoted by (LIST (QUOTE QUOTE) (QUOTE ABC)). The translation of
(QUOTE ABC) is a LITATOM constant; the translation of (QUOTE (QUOTE
ABC)) is a LISTP constant.
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Here is another example illustrating the subtlety of the situation.  The in-
nocent reader may have, by now, adopted the convention that whenever (CADR
X) is seen, (CAR (CDR X)) is used in its place.  This is incorrect.  When
(CADR X) is used as a term, i.e., when we are interested in its translation into a
formal term, it denotes (CAR (CDR X)). But if (CADR X) is ‘‘inside a
QUOTE’’ it is not being used as a term but rather as an explicit value descriptor.
In particular, the translation of (QUOTE (CADR X)) is a list whose first ele-
ment is the LITATOM denoted by the term (QUOTE CADR), not a list whose
first element is the LITATOM denoted by (QUOTE CAR). While the trans-
lations of (CADR X) and (CAR (CDR X)) are the same, the translations of
(QUOTE (CADR X)) and (QUOTE (CAR (CDR X))) are different.
Similarly the translation of (QUOTE 1) is not the same as that of (QUOTE
(ADD1 (ZERO))); the first is a NUMBERP, the second is a LISTP.

7.6. *1*QUOTE Escape Mechanism for User Shells

Notes and Example. In this section we describe how to use the *1*QUOTE
convention to write down user-declared shell constants.  In particular, we define
the notion of the ‘‘explicit value escape descriptor’’ used above.

Roughly speaking, an explicit value escape descriptor is an s-expression of
the form (*1*QUOTE fn e1 ... en) where fn is a shell constructor or
base function and the ei are explicit value descriptors denoting its arguments.
Thus, if PUSH is a shell constructor of two arguments and EMPTY is the cor-
responding base function then (*1*QUOTE PUSH 3 (*1*QUOTE
EMPTY)) is an explicit value escape descriptor, and hence an explicit value
descriptor, that denotes the constant term also denoted by (PUSH 3
(EMPTY)). We restrict the legal escape descriptors so that the mechanism
cannot be used to write down alternative representations of constants that can be
written in the conventional QUOTE notation. For example, (*1*QUOTE CONS
1 2) is not an explicit value escape descriptor because if it were it would be an
alternative representation of (CONS 1 2). Furthermore, we must restrict the
escape descriptors so that they indeed denote explicit values. Is (PUSH 3
(EMPTY)) an explicit value?  The answer depends upon the type restrictions
for the PUSH shell. To answer this question it is necessary to know the current
history.

Terminology. The s-expression e is an explicit value escape descriptor with
respect to a history h iff e has the form (*1*QUOTE fn e1 ... en) and
each of the following is true:

• fn is a constructor or base function symbol of arity n in history h;
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• fn is not ADD1, ZERO, or CONS;

• each ei is an explicit value descriptor with corresponding denoted
term ti in h;

• if fn is a constructor, the top function symbol of each ti satisfies
the corresponding type restriction for fn;

• if fn is PACK, t1 is not the explosion of any symbol; and

• if fn is MINUS, t1 is (ZERO).

Notes and Examples. We now illustrate the use of the *1*QUOTE escape
mechanism. Suppose we are in a history obtained by extending the current one
with the following:

Shell Definition.
Add the shell PUSH of 2 arguments
with base function EMPTY,
recognizer function STACKP,
accessor functions TOP and POP
type restrictions (ONE-OF NUMBERP) and (ONE-OF STACKP), and
default functions ZERO and EMPTY.

Table 8 contains some example s-expressions employing the *1*QUOTE
mechanism. To save space we again exhibit token trees whose readmacro ex-
pansions are the s-expressions in question.

Table 8

token tree for
token tree for s-expression with
s-expression same translation

’(A (*1*QUOTE MINUS 0))  (LIST ’A (MINUS 0))

’((*1*QUOTE PUSH 2 (CONS
(*1*QUOTE PUSH 3 (PUSH 2
(*1*QUOTE EMPTY))) (PUSH 3 (EMPTY)))

FOO . 45) (CONS ’FOO 45))

’(*1*QUOTE PACK (PACK
(97 98 99 . 0)) ’(97 98 99 . 0))

*1*QUOTE can be used not only to denote constants of ‘‘new’’ types but also
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to write down ‘‘unusual’’ constants of the primitive types, namely (MINUS 0)
and ‘‘LITATOMs corresponding to non-symbols.’’
*1*QUOTE notation is actually a direct reflection of the internal represen-

tation of shell constants in the Nqthm system.  If STACKP constants, say, are
allowed as terms, then it is desirable to have a unique representation of them that
can be used in the representation of other constants as well.  The representation
we developed is the one suggested by *1*QUOTE notation. We did not have to
make this implementation decision be visible to the user of the logic.  We could
have arranged for only the primitive data types to be abbreviated by QUOTE
notation and all other constants built by the application of constructor and base
functions. Making the convention visible is actually an expression of our
opinion that the syntax should not hide too much from the user. For example,
the user writing and verifying metafunctions will appreciate knowing the inter-
nal forms.

Finally, it should be noted that backquote notation can often be used where
*1*QUOTE is otherwise needed. For example, (QUOTE (A (*1*QUOTE
EMPTY) B)) can also be written as ‘(A ,(EMPTY) B). The translation of
the former is the same as the translation of the readmacro expansion of the latter.

7.7. The Definition of the Extended Syntax

Abbreviation. When a token tree that is readable from depth 0 and that is not
an s-expression is used as an s-expression, we mean the s-expression obtained
by readmacro expanding the token tree.  Thus, henceforth, when we say some-
thing like ‘‘consider the s-expression ’ABC’’ we mean ‘‘consider the s-
expression (QUOTE ABC).’’

Terminology. The extended syntax consists of the token trees readable from
depth 0 whose readmacro expansions are well-formed.

Abbreviation. When an expression in the extended syntax is used as a term, it
is an abbreviation for the translation of its readmacro expansion.  When an
expression in the extended syntax is used as a formula, it is an abbreviation for
t≠(FALSE), where t is the translation of the readmacro expansion of the
expression.

]
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8. Ordinals

Defining Axiom 22.
(LESSP X Y)

=
(IF (ZEROP Y)

F
(IF (ZEROP X)

T
(LESSP (SUB1 X) (SUB1 Y))))

Axiom 23.
(IMPLIES (NOT (ZEROP I))

(LESSP (SUB1 I) I))

Note. Axiom 23 permits us to apply the induction principle to prove the fun-
damental properties of LESSP, PLUS, and COUNT, which in turn permit us to
induct in more sophisticated ways.

Defining Axiom 24.
(ORD-LESSP X Y)

=
(IF (NOT (LISTP X))

(IF (NOT (LISTP Y))
(LESSP X Y)
T)

(IF (NOT (LISTP Y))
F
(IF (ORD-LESSP (CAR X) (CAR Y))

T
(AND (EQUAL (CAR X) (CAR Y))

(ORD-LESSP (CDR X) (CDR Y))))))

Defining Axiom 25.
(ORDINALP X)

=
(IF (LISTP X)

(AND (ORDINALP (CAR X))
(NOT (EQUAL (CAR X) 0))
(ORDINALP (CDR X))
(OR (NOT (LISTP (CDR X)))

(NOT (ORD-LESSP (CAR X) (CADR X)))))
(NUMBERP X))
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9. Useful Function Definitions

9.1. Boolean Equivalence

Defining Axiom 26.
(IFF P Q)

=
(IF P

(IF Q T F)
(IF Q F T))

9.2. Natural Number Arithmetic

Defining Axiom 27.
(GREATERP I J) = (LESSP J I)

Defining Axiom 28.
(LEQ I J) = (NOT (LESSP J I))

Defining Axiom 29.
(GEQ I J) = (NOT (LESSP I J))

Defining Axiom 30.
(MAX I J) = (IF (LESSP I J) J (FIX I))

Defining Axiom 31.
(DIFFERENCE I J)

=
(IF (ZEROP I)

0
(IF (ZEROP J)

I
(DIFFERENCE (SUB1 I) (SUB1 J))))

Defining Axiom 32.
(TIMES I J)

=
(IF (ZEROP I)

0
(PLUS J (TIMES (SUB1 I) J)))

Defining Axiom 33.
(QUOTIENT I J)

=
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(IF (ZEROP J)
0
(IF (LESSP I J)

0
(ADD1 (QUOTIENT (DIFFERENCE I J) J))))

Defining Axiom 34.
(REMAINDER I J)

=
(IF (ZEROP J)

(FIX I)
(IF (LESSP I J)

(FIX I)
(REMAINDER (DIFFERENCE I J) J)))

9.3. List Processing

Defining Axiom 35.
(NLISTP X) = (NOT (LISTP X))

Defining Axiom 35a.
(IDENTITY X) = X

Defining Axiom 36.
(APPEND L1 L2)

=
(IF (LISTP L1)

(CONS (CAR L1) (APPEND (CDR L1) L2))
L2)

Defining Axiom 37.
(MEMBER X L)

=
(IF (NLISTP L)

F
(IF (EQUAL X (CAR L))

T
(MEMBER X (CDR L))))

Defining Axiom 38.
(UNION L1 L2)

=
(IF (LISTP L1)

(IF (MEMBER (CAR L1) L2)
(UNION (CDR L1) L2)
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(CONS (CAR L1) (UNION (CDR L1) L2)))
L2)

Defining Axiom 39.
(ADD-TO-SET X L)

=
(IF (MEMBER X L)

L
(CONS X L))

Defining Axiom 40.
(ASSOC X ALIST)

=
(IF (NLISTP ALIST)

F
(IF (EQUAL X (CAAR ALIST))

(CAR ALIST)
(ASSOC X (CDR ALIST))))

Defining Axiom 41.
(PAIRLIST L1 L2)

=
(IF (LISTP L1)

(CONS (CONS (CAR L1) (CAR L2))
(PAIRLIST (CDR L1) (CDR L2)))

NIL)

10. The Formal Metatheory

Note. In this section we describe the interpreter for the logic.  We start by
presenting the notion of the ‘‘quotation’’ of terms. Roughly speaking, the
quotation of a term is an explicit value that has a structure isomorphic to that of
the term; for example, the quotation of (PLUS X Y) is the explicit value
’(PLUS X Y). An important property of quotations is that, for most terms,
the interpreted value of the quotation under a certain standard assignment is
equal to the term.  For example, the value of ’(PLUS X Y) as determined by
our interpreter, when ’X has the value X and ’Y has the value Y, is (PLUS X
Y). After defining quotations we define the interpreter.  Finally, we describe
the SUBRP and non-SUBRP axioms that tie QUOTEd symbols to the interpreter.
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10.1. The Quotation of Terms

Note. The ‘‘quotation’’ of an explicit value term may be rendered either by
nests of constructor function applications or by embedding the term in a QUOTE
form. This makes the notion of ‘‘quotation’’ depend upon the notion of ‘‘ex-
plicit value,’’ which, recall, involves a particular history h from which the con-
structor and base functions are drawn.  This is the only sense in which the notion
of ‘‘quotation’’ depends upon a history.

Terminology. We say e is a quotation of t (in some history h which is implicit
throughout this definition) iff e and t are terms and either (a) t is a variable
symbol and e is the LITATOM corresponding to t, (b) t is an explicit value
term and e is (LIST ’QUOTE t), or (c) t has the form (fn a1 ... an)
and e is (CONS efn elst) where efn is the LITATOM corresponding to
fn and elst is a ‘‘quotation list’’ (see below) of a1 ... an. Note that clauses
(b) and (c) are not mutually exclusive.

Terminology. We say elst is a quotation list of tlst (in some history h
which is implicit throughout this definition) iff elst is a term and tlst is a
sequence of terms, and either (a) tlst is empty and elst is NIL or (b) tlst
consists of a term t followed by a sequence tlst’ and elst is (CONS e
elst’) where e is a quotation of t and elst’ is a quotation list of tlst’.

Examples. In Table 9 we give some terms and examples of their quotations.

Table 9

quotation displayed in
term the extended syntax

ABC ’ABC

(ZERO) ’(ZERO)

(ZERO) ’(QUOTE 0)

(PLUS 3 (TIMES X Y)) ’(PLUS (QUOTE 3)
(TIMES X Y))

Note. To describe the axioms for the BODY function, we wish to say something
like ‘‘for each defined function symbol, fn, (BODY ’fn) is the quotation of
the body of the definition of fn.’’ But note that explicit values, e.g., (ZERO)



50

above, have multiple quotations.  (Indeed, all terms containing explicit values
have multiple quotations.)  Consequently, we cannot speak of ‘‘the’’ quotation
of a term. To get around this we define the notion of the ‘‘preferred quotation.’’
The preferred quotation of (ZERO) is ’(QUOTE 0). In general, the defini-
tions of ‘‘preferred quotation’’ and ‘‘preferred quotation list,’’ below, are
strictly analogous to the definitions of ‘‘quotation’’ and ‘‘quotation list,’’ above,
except that explicit values must be encoded in ’QUOTE form. This is done by
making clauses (b) and (c) of the definition of ‘‘quotation’’ be mutually ex-
clusive with clause (b) the superior one.

Terminology. We say e is the preferred quotation of t (in some history h
which is implicit throughout this definition) iff e and t are terms and either (a)
t is a variable symbol and e is the LITATOM corresponding to t, (b) t is an
explicit value term and e is (LIST ’QUOTE t), or (c) t has the form (fn
a1 ... an), t is not an explicit value, and e is (CONS efn elst) where
efn is the LITATOM corresponding to fn and elst is the ‘‘preferred quota-
tion list’’ (see below) of a1 ... an.

Terminology. We say elst is the preferred quotation list of tlst (in some
history h which is implicit throughout this definition) iff elst is a term and
tlst is a sequence of terms, and either (a) tlst is empty and elst is NIL or
(b) tlst consists of a term t followed by a sequence tlst’ and elst is
(CONS e elst’) where e is the preferred quotation of t and elst’ is the
preferred quotation list of tlst’.

10.2. V&C$ and EVAL$

Note. The axiomatization of V&C$ and EVAL$ are rather subtle.

Defining Axiom 42.
(FIX-COST VC N)

=
(IF VC

(CONS (CAR VC) (PLUS N (CDR VC)))
F)

Defining Axiom 43.
(STRIP-CARS L)

=
(IF (NLISTP L)

NIL
(CONS (CAAR L) (STRIP-CARS (CDR L))))
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Defining Axiom 44.
(SUM-CDRS L)

=
(IF (NLISTP L)

0
(PLUS (CDAR L) (SUM-CDRS (CDR L))))

Note. We now ‘‘define’’ V&C$. This axiom defines a partial function and
would not be admissible under the definitional principle.  Because of its com-
plexity we include comments in the axiom.

Defining Axiom 45.
(V&C$ FLG X VA)

=
(IF (EQUAL FLG ’LIST)

;X is a list of terms.  Return a list of value-cost
;‘‘pairs’’—some ‘‘pairs’’ may be F.

(IF (NLISTP X)
NIL
(CONS (V&C$ T (CAR X) VA)

(V&C$ ’LIST (CDR X) VA)))

;Otherwise, consider the cases on the X.

(IF (LITATOM X) ;Variable
(CONS (CDR (ASSOC X VA)) 0)

(IF (NLISTP X) ;Constant
(CONS X 0)

(IF (EQUAL (CAR X) ’QUOTE) ;QUOTEd
(CONS (CADR X) 0)

(IF (EQUAL (CAR X) ’IF) ;IF-expr

;If the test of the IF is defined, test the value and
;interpret the appropriate branch.  Then, if the branch
;is defined, increment its cost by that of the test plus
;one. If the test is undefined, X is undefined.

(IF (V&C$ T (CADR X) VA)
(FIX-COST
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(IF (CAR (V&C$ T (CADR X) VA))
(V&C$ T (CADDR X) VA)
(V&C$ T (CADDDR X) VA))

(ADD1 (CDR (V&C$ T (CADR X) VA))))
F)

;Otherwise, X is the application of a SUBRP or
;defined function.  If some argument is undefined, so is X.

(IF (MEMBER F (V&C$ ’LIST (CDR X) VA))
F

(IF (SUBRP (CAR X)) ;SUBRP

;Apply the primitive to the values of the arguments and
;let the cost be one plus the sum of the argument costs.

(CONS (APPLY-SUBR (CAR X)
(STRIP-CARS

(V&C$ ’LIST (CDR X) VA)))
(ADD1 (SUM-CDRS

(V&C$ ’LIST (CDR X) VA))))

;Defined fn

;Interpret the BODY on the values of the arguments
;and if that is defined increment the cost by one plus
;the sum of the argument costs.

(FIX-COST
(V&C$ T (BODY (CAR X))

(PAIRLIST
(FORMALS (CAR X))
(STRIP-CARS (V&C$ ’LIST (CDR X) VA))))

(ADD1
(SUM-CDRS
(V&C$ ’LIST (CDR X) VA)))))))))))

Note. Having defined V&C$ we can now define the general purpose ‘‘apply’’
function in terms of it:

Defining Axiom 46.
(V&C-APPLY$ FN ARGS)

=
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(IF (EQUAL FN ’IF)
(IF (CAR ARGS)

(FIX-COST (IF (CAAR ARGS)
(CADR ARGS)
(CADDR ARGS))

(ADD1 (CDAR ARGS)))
F)

(IF (MEMBER F ARGS)
F
(IF (SUBRP FN)

(CONS (APPLY-SUBR
FN
(STRIP-CARS ARGS))

(ADD1 (SUM-CDRS ARGS)))
(FIX-COST
(V&C$ T

(BODY FN)
(PAIRLIST (FORMALS FN)

(STRIP-CARS ARGS)))
(ADD1 (SUM-CDRS ARGS))))))

Note. A trivial consequence of the definitions of V&C$ and V&C-APPLY$ is
that the following is a theorem:

Theorem.
(V&C$ FLG X VA)

=
(IF (EQUAL FLG ’LIST)

(IF (NLISTP X)
NIL
(CONS (V&C$ T (CAR X) VA)

(V&C$ ’LIST (CDR X) VA)))
(IF (LITATOM X) (CONS (CDR (ASSOC X VA)) 0)

(IF (NLISTP X) (CONS X 0)
(IF (EQUAL (CAR X) ’QUOTE)

(CONS (CADR X) 0)
(V&C-APPLY$
(CAR X)
(V&C$ ’LIST (CDR X) VA))))))

Note. We finally define the functions APPLY$ and EVAL$:

Defining Axiom 47.
(APPLY$ FN ARGS)

=
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(CAR (V&C-APPLY$ FN (PAIRLIST ARGS 0)))

Defining Axiom 48.
(EVAL$ FLG X A)

=
(IF (EQUAL FLG ’LIST)
(IF (NLISTP X)

NIL
(CONS (EVAL$ T (CAR X) A)

(EVAL$ ’LIST (CDR X) A)))
(IF (LITATOM X) (CDR (ASSOC X A))

(IF (NLISTP X) X
(IF (EQUAL (CAR X) ’QUOTE) (CADR X)

(APPLY$ (CAR X)
(EVAL$ ’LIST (CDR X) A))))))

10.3. The SUBRP and non-SUBRP Axioms

Notes. We now axiomatize the functions SUBRP, APPLY-SUBR, FORMALS,
and BODY and define what we mean by the ‘‘SUBRP’’ and ‘‘non-SUBRP
axioms.’’

The function SUBRP is Boolean:

Axiom 49.
(OR (EQUAL (SUBRP FN) T) (EQUAL (SUBRP FN) F))

The three functions SUBRP, FORMALS, and BODY ‘‘expect’’ LITATOMs as
arguments, i.e., the quotations of function symbols.  We tie down the three
functions outside their ‘‘expected’’ domain with the following three axioms:

Axiom 50.
(IMPLIES (NOT (LITATOM FN)) (EQUAL (SUBRP FN) F))

Axiom 51.
(IMPLIES (NOT (LITATOM FN)) (EQUAL (FORMALS FN) F))

Axiom 52.
(IMPLIES (NOT (LITATOM FN)) (EQUAL (BODY FN) F))

Note. In a similar spirit, we define the FORMALS and BODY of SUBRPs to be F,
and we define the result of applying a non-SUBRP with APPLY-SUBR to be F:

Axiom 53.
(IMPLIES (SUBRP FN) (EQUAL (FORMALS FN) F))
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Axiom 54.
(IMPLIES (SUBRP FN) (EQUAL (BODY FN) F))

Axiom 55.
(IMPLIES (NOT (SUBRP FN)) (EQUAL (APPLY-SUBR FN X) F))

Note. In section 12 we enumerate the primitive SUBRPs and non-SUBRPs. For
each we will add either the ‘‘SUBRP axiom’’ or the ‘‘non-SUBRP axiom,’’
which we now proceed to define.

Terminology. We say term t is the nth CDR nest around the term x iff n is a
natural number and either (a) n is 0 and t is x or (b) n>0 and t is (CDR t’)
where t’ is the n-1st CDR nest around x. When we write (CDRn x) where a
term is expected it is an abbreviation for the nth CDR nest around x.

Example. (CDR2 A) is (CDR (CDR A)).

Terminology. The SUBRP axiom for fn, where fn is a function symbol of
arity n, is

(AND (EQUAL (SUBRP ’fn) T)
(EQUAL (APPLY-SUBR ’fn L)

(fn (CAR (CDR0 L))
...
(CAR (CDRn-1 L)))))

where ’fn is the LITATOM corresponding to fn.

Example. The SUBRP axiom for PLUS is

(AND (EQUAL (SUBRP ’PLUS) T)
(EQUAL (APPLY-SUBR ’PLUS L)

(PLUS (CAR L) (CAR (CDR L)))))

Terminology. The standard alist for a sequence of variable symbols args is
NIL if args is empty and otherwise is (CONS (CONS ’v v) alist)
where v is the first symbol in args, ’v is the LITATOM corresponding to v,
and alist is the standard alist for the sequence of symbols obtained by delet-
ing v from args.

Example. The standard alist for X, ANS, and L is

(LIST (CONS ’X X)
(CONS ’ANS ANS)
(CONS ’L L))
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Terminology. The non-SUBRP axiom for fn, args, and body, where fn is a
function symbol, args is a sequence of variable symbols, and body is a term,
is

(AND (EQUAL (SUBRP ’fn) F)
(EQUAL (FORMALS ’fn) eargs)
(EQUAL (BODY ’fn) ebody))

where ’fn is the LITATOM corresponding to fn, eargs is the quotation list
for args, and ebody is the preferred quotation of body unless body has the
form (EVAL$ flg ebody1 alist) where

1. flg is an explicit value other than ’LIST;

2. ebody1 is an explicit value that is a quotation of some term
body1;

3. alist is the standard alist for args; and

4. the set of variables in body1 is a subset of those in args,

in which case ebody is the preferred quotation of body1.

Examples. The non-SUBRP axiom for ADD2, (X Y), and (PLUS 2 X Y) is

(AND (EQUAL (SUBRP ’ADD2) F)
(EQUAL (FORMALS ’ADD2) ’(X Y))
(EQUAL (BODY ’ADD2)

’(PLUS (QUOTE 2) (PLUS X Y)))).

The non-SUBRP axiom for RUS, (), and

(EVAL$ T ’(ADD1 (RUS)) NIL)

is

(AND (EQUAL (SUBRP ’RUS) F)
(EQUAL (FORMALS ’RUS) NIL)
(EQUAL (BODY ’RUS) ’(ADD1 (RUS)))).

11. Quantification
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11.1. The Definition of FOR and its Subfunctions

Defining Axiom 56.
(QUANTIFIER-INITIAL-VALUE OP)

=
(CDR (ASSOC OP ’((ADD-TO-SET . NIL)

(ALWAYS . *1*TRUE)
(APPEND . NIL)
(COLLECT . NIL)
(COUNT . 0)
(DO-RETURN . NIL)
(EXISTS . *1*FALSE)
(MAX . 0)
(SUM . 0)
(MULTIPLY . 1)
(UNION . NIL))))

Defining Axiom 57.
(QUANTIFIER-OPERATION OP VAL REST)

=
(IF (EQUAL OP ’ADD-TO-SET) (ADD-TO-SET VAL REST)
(IF (EQUAL OP ’ALWAYS) (AND VAL REST)
(IF (EQUAL OP ’APPEND) (APPEND VAL REST)
(IF (EQUAL OP ’COLLECT) (CONS VAL REST)
(IF (EQUAL OP ’COUNT) (IF VAL (ADD1 REST) REST)
(IF (EQUAL OP ’DO-RETURN)  VAL
(IF (EQUAL OP ’EXISTS) (OR VAL REST)
(IF (EQUAL OP ’MAX) (MAX VAL REST)
(IF (EQUAL OP ’SUM) (PLUS VAL REST)
(IF (EQUAL OP ’MULTIPLY) (TIMES VAL REST)
(IF (EQUAL OP ’UNION) (UNION VAL REST)

0)))))))))))

Defining Axiom 58.
(FOR V L COND OP BODY A)

=
(IF (NLISTP L)

(QUANTIFIER-INITIAL-VALUE OP)
(IF (EVAL$ T COND (CONS (CONS V (CAR L)) A))

(QUANTIFIER-OPERATION OP
(EVAL$ T BODY (CONS (CONS V (CAR L)) A))
(FOR V (CDR L) COND OP BODY A))

(FOR V (CDR L) COND OP BODY A)))
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11.2. The Extended Syntax for FOR—Abbreviations II

Note. This section completes the precise specification of the extended syntax by
defining when an s-expression is an ‘‘abbreviated FOR’’ and the ‘‘FOR expres-
sion denoted’’ by such an s-expression.

Terminology. An s-expression x of the form (FOR v IN lst WHEN cond
op body)—i.e., x is an s-expression of length eight whose first element is the
word FOR, third element is the word IN, and fifth element is the word
WHEN—is an abbreviated FOR iff each of the following is true:

• v is a variable symbol,

• lst, cond, and body are well-formed s-expressions whose trans-
lations are the terms t-lst, t-cond, and t-body, and

• op is an element of the set {ADD-TO-SET ALWAYS APPEND
COLLECT COUNT DO-RETURN EXISTS MAX SUM MUL-
TIPLY UNION}.

The FOR expression denoted by such an x is (FOR ’v t-lst ’t-cond
’op ’t-body alist) where ’v, ’t-cond, ’op, and ’t-body are the
preferred quotations (see page 50) of v, t-cond, op, and t-body respec-
tively, and alist is the standard alist (see page 55) on the sequence of variable
symbols obtained by deleting v from the union of the variable symbols of
t-cond with those of t-body and then sorting the resulting set alphabetically.
An s-expression of the form (FOR x IN lst op body) is an abbreviated
FOR iff (FOR x IN lst WHEN T op body) is an abbreviated FOR and,
if so, denotes the same FOR expression as that denoted by (FOR x IN lst
WHEN T op body). No other form of s-expression is an abbreviated FOR.

12. SUBRPs and non-SUBRPs

Note. The symbol QUOTE, which is treated specially by V&C$ and cannot be
defined by the user, is not a SUBRP.

Axiom 59.
(NOT (SUBRP ’QUOTE)).

Axioms 60-64. We now add the non-SUBRP axiom for each of the following
five function symbols: APPLY$, EVAL$, V&C$, V&C-APPLY$, and FOR.
Each of these symbols was introduced with a defining axiom of the form (fn
x1 ... xn) = body. For each of the five function symbols we add the
non-SUBRP axiom for fn, (x1 ... xn), and body.
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Axioms 65-121. We add the SUBRP axiom for every other function symbol
that is mentioned in an axiom of the current theory.  The complete list of
SUBRPs is: ADD1, ADD-TO-SET, AND, APPEND, APPLY-SUBR, ASSOC,
BODY, CAR, CDR, CONS, COUNT, DIFFERENCE, EQUAL, FALSE, FALSEP,
FIX, FIX-COST, FORMALS, GEQ, GREATERP, IDENTITY, IF, IFF,
IMPLIES, LEQ, LESSP, LISTP, LITATOM, MAX, MEMBER, MINUS,
NEGATIVEP, NEGATIVE-GUTS, NLISTP, NOT, NUMBERP, OR, ORDINALP,
ORD-LESSP, PACK, PAIRLIST, PLUS, QUANTIFIER-INITIAL-VALUE,
QUANTIFIER-OPERATION, QUOTIENT, REMAINDER, STRIP-CARS,
SUB1, SUBRP, SUM-CDRS, TIMES, TRUE, TRUEP, UNION, UNPACK, ZERO,
and ZEROP.

13. Induction and Recursion

13.1. Induction

Rule of Inference. Induction

Suppose

(a) p is a term;
(b) m is a term;
(c) q1, ..., qk are terms;
(d) h1, ..., hk are positive integers;
(e) it is a theorem that (ORDINALP m);

and
(f) for 1 ≤ i ≤ k and 1 ≤ j ≤ hi, si,j

is a substitution and it is a theorem that

(IMPLIES qi (ORD-LESSP m/si,j m)).

Then p is a theorem if

(1) (IMPLIES (AND (NOT q1) ... (NOT qk))⊗T
p)

is a theorem and

for each 1 ≤ i ≤ k,

(2) (IMPLIES (AND qi p/si,1 ... p/si,hi
)⊗T
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p)

is a theorem.

Notes. In informally describing an application of the induction principle to
some conjecture p we generally say the induction is on the variables occurring
in the term m, which is called the measure. An inductive proof splits the
problem into k+1 cases, a base case, given by formula (1) above, and k
induction steps, given by the k formulas of form (2) above.  The cases are given
by the qi. The ith induction step requires proving p under case qi. The base
case requires proving p under the conjunction of the negations of the qi. In the

ith induction step one may assume an arbitrary number (namely hi) of in-

stances, p/si,j, of the conjecture being proved.  The jth instance for the ith

case is given by substitution si,j. Each instance is called an induction
hypothesis. To justify an induction one must show in the theorems of supposi-
tion (f) that some ordinal measure m of the induction variables decreases under
each substitution in each respective case.

13.2. The Principle of Definition

Terminology. We say that a term t governs an occurrence of a term s in a term
b iff (a) either b contains a subterm of the form (IF t p q) and the occur-
rence of s is in p or (b) if b contains a subterm of the form (IF t’ p q),
where t is (NOT t’) and the occurrence of s is in q.

Examples. The terms P and (NOT Q) govern the first occurrence of S in

(IF P
(IF (IF Q A S)

S
B)

C)

The terms P and (IF Q A S) govern the second occurrence of S.

Note. The mechanization of the logic is slightly more restrictive because it only
inspects the ‘‘top-level’’ IFs in b. Thus, the mechanization recognizes that P
governs S in (IF P (FN (IF Q S A)) B) but it does not recognize that Q
governs S also.
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Extension Principle. Definition

The axiomatic act

Definition. (f x1 ... xn) = body

is admissible under the history h provided

(a) f is a function symbol of n arguments and
is new in h;

(b) x1, ..., xn are distinct variables;

(c) body is a term and mentions no symbol as a
variable other than x1, ..., xn;

(d) there is a term m such that (a) (ORDINALP m)
can be proved directly in h, and (b) for each
occurrence of a subterm of the form (f y1 ... yn)
in body and the terms t1, ..., tk governing it,
the following formula can be proved directly in h:

(IMPLIES (AND t1 ... tk)⊗T
(ORD-LESSP m/s m)),

where s is the substitution {<x1, y1> ... <xn, yn>}.

If admissible, we add the

Defining Axiom.
(f x1 ... xn) = body.

In addition, we add

Axiom.
the non-SUBRP axiom for f, (x1, ..., xn), and body.
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14. Contraints and Functional Instantiation

Notes. In this section we describe another extension principle and a new rule of
inference: the introduction of function symbols by ‘‘constraint’’ and derivation
by ‘‘functional instantiation.’’  The validity of these principles can be derived
from the foregoing material, but because they change the ‘‘flavor’’ of the logic
by permitting certain apparently higher-order acts we prefer to include their
description here.

Functional instantiation permits one to infer new theorems from old ones by
instantiating function symbols instead of variables.  To be sure that such an
instantiation actually produces a theorem, we first check that the formulas that
result from similarly instantiating certain of the axioms about the function sym-
bols being replaced are also theorems.  Intuitively speaking, the correctness of
this derived rule of inference consists of little more than the trivial observation
that one may systematically change the name of a function symbol to a new
name in a first-order theory without losing any theorems, modulo the renaming.
However, we have found that this trivial observation has important potential
practical ramifications in reducing mechanical proof efforts.  We also find that
this observation leads to superficially shocking results, such as the proof of the
associativity of APPEND by instantiation rather than induction.  And finally, we
are intrigued by the extent to which such techniques permit one to capture the
power of higher-order logic within first-order logic.

In order to make effective use of functional instantiation, we have found it
necessary to augment the logic with an extension principle that permits the
introduction of new function symbols without completely characterizing them.
This facility permits one to add axioms about a set of new function symbols,
provided one can exhibit ‘‘witnessing’’ functions that have the alleged
properties. The provision for witnesses ensures that the new axioms do not
render the logic inconsistent.

An example of the use of such constraints is to introduce a two-place function
symbol, FN, constrained to be commutative.  Any commutative function, e.g., a
constant function of two arguments, suffices to witness the new axiom about FN.
One can then prove theorems about FN. These theorems necessarily depend
upon only one fact about FN, the fact that it is commutative.  Thus, no matter
how complicated these theorems are to prove, the analogous theorems about
some other function symbol can be inferred via functional instantiation at the
mere cost of confirming that the new symbol is commutative.

Terminology. A LAMBDA expression is an s-expression of the form (LAMBDA
(a1 ... an) body), where the ai are distinct variable symbols and body
is a term.  The arity of such a LAMBDA expression is n, its argument list is the
sequence a1, ..., an, and its body is body.
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Terminology. A functional substitution is a function on a finite set of function
symbols such that for each pair <f, g> in the substitution, g is either a function
symbol or LAMBDA expression and the arity of f is the arity of g.

Terminology. We recursively define the functional instantiation of a term t
under a functional substitution fs. If t is a variable, the result is t. If t is the
term (f t1 ... tn), let ti’ be the functional instantiation of ti, for i
from 1 to n inclusive, under fs.  If, for some function symbol f’, the pair <f,
f’> is in fs, the result is (f’ t1’ ...  tn’). If a pair <f, (LAMBDA (a1
... an) term)> is in fs, the result is term/{... <ai, ti’> ...}.  Otherwise,
the result is (f t1’ ...  tn’).

Note. Recall that ‘‘term/σ’’ denotes the result of applying the ordinary (vari-
able) substitution σ to term. If σ is the variable substitution {<X, (FN A)>
<Y, B>}, then (PLUS X Y)/σ is (PLUS (FN A) B).

Example. The functional instantiation of the term (PLUS (FN X) (TIMES
Y Z)) under the functional substitution {<PLUS, DIFFERENCE> <FN,
(LAMBDA (V) (QUOTIENT V A))>} is the term (DIFFERENCE
(QUOTIENT X A) (TIMES Y Z)).

Terminology. We recursively define the functional instantiation of a formula φ
under a functional substitution fs. If φ is φ1 ∨ φ2, then the result is φ1’ ∨ φ2’,
where φ1’ and φ2’ are the functional instantiations of φ1 and φ2 under fs. If φ is
¬φ1, then the result is ¬φ1’, where φ1’ is the functional instantiation of φ1
under fs.  If φ is (x = y), then the result is (x’ = y’), where x’ and y’ are
the functional instantiations of x and y under fs.

Terminology. A variable v is said to be free in (LAMBDA (a1 ... an)
term) if and only if v is a variable of term and v is not among the ai. A
variable v is said to be free in a functional substitution if and only if it is free in
a LAMBDA expression in the range of the substitution.  A variable v is said to be
bound in (LAMBDA (a1 ... an) term) if and only if v is among the ai.

Terminology. We denote functional instantiation with \ to distinguish it from
ordinary (variable) substitution, which is denoted with /.

Example. If ρ is the functional substitution {<PLUS, (LAMBDA (U V)
(ADD1 U))>} then (PLUS X Y)\ρ is (ADD1 X).

Extension Principle. Conservatively constraining new function symbols.

The axiomatic act
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Constraint.
Constrain f1, ..., and fn to have property ax,

is admissible under the history h provided there exists a functional substitution
fs with domain {f1 ... fn} such that

1. the fi are distinct new function symbols,

2. each member of the range of fs is either an old function symbol or
is a LAMBDA expression whose body is formed of variables and
old function symbols,

3. no variable is free in fs, and

4. ax\fs is a theorem of h.

If admissible, the act adds the axiom ax to the history h. The image of fi under
fs is called the witness for fi.

Note. Unlike the shell and definitional events, the constraint event does not add
any SUBRP or non-SUBRP axioms about the new function symbols.

Terminology. A functional substitution fs is tolerable with respect to a history
h provided that the domain of fs contains only function symbols introduced into
h by the user via extension principles other than the shell mechanism.

Notes. We do not want to consider functionally substituting for built-in function
symbols or shell function symbols because the axioms about them are so diffuse
in the implementation.  We especially do not want to consider substituting for
such function symbols as ORD-LESSP, because they are used in the principle of
induction.

The rule of functional instantiation requires that we prove appropriate func-
tional instances of certain axioms.  Roughly speaking, we have to prove that the
‘‘new’’ functions satisfy all the axioms about the ‘‘old’’ ones.  However we
must be careful to avoid ‘‘capture’’-like problems.  For example, if the axiom
constraining an old function symbol happens to involve a variable that is free in
the functional substitution, then the functional instantiation of that axiom may be
a weaker formula than the soundness argument in [1] requires.  We illustrate this
problem in the example below.

Example. Imagine that ID1 is a function of two arguments that always returns
its first argument.  Let the defining axiom for ID1 be the term (EQUAL (ID1
X Y) X). Call this term t. Let fs be the functional substitution {<ID1,
(LAMBDA (A B) X)>}. This substitution replaces ID1 by the constant func-
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tion that returns X. Observe that the fs instance of the defining axiom for ID1 is
a theorem, i.e., t\fs is (EQUAL X X). A careless definition of the rule of
functional instantiation would therefore permit the conclusion that any fact
about ID1 holds for the constant function that returns X. But this conclusion is
specious: (EQUAL (ID1 (ADD1 X) Y) (ADD1 X)) is a fact about ID1
but its functional instance under fs, (EQUAL X (ADD1 X)), is not. What is
wrong? A variable in the defining axiom, t, occurs freely in fs.  We were just
‘‘lucky’’ that the fs instance of the defining axiom, t, was a theorem.  Had ID1
been defined with the equivalent axiom (EQUAL (ID1 U V) U), which we
will call t’, we would have been required to prove t’\fs which is (EQUAL X
U) and is unprovable.  The point is that when we attempt to prove the functional
instances of the axioms, we must first rename the variables in the axioms so as
to avoid the free variables in the functional substitution.

Terminology. Term t1 is a variant of term t2 if t1 is an instance of t2 and t2
is an instance of t1.

Example. (EQUAL (ID1 U V) U) is a variant of (EQUAL (ID1 X Y)
X).

Terminology. If fs is a functional substitution and t is a term, then an fs
renaming of t is any variant of t containing no variable free in fs.

Derived Rule Of Inference. Functional Instantiation.

If h is a history, fs is a tolerable functional substitution, thm is a theorem of h,
and the fs instance of an fs renaming of every axiom of h can be proved in h,
then thm\fs is a theorem of a definitional/constrain extension of h.

Note. In [1] we show that the introduction of constrained function symbols
preserves the consistency of the logic and we derive the rule of functional
instantiation. In fact, we prove a more general version of it that permits us to
ignore the ‘‘irrelevant’’ axioms and definitions in h.

This document is a revision of Chapter 4 of A Computational Logic
Handbook, Robert S. Boyer and J Strother Moore, and is Copyright (c) 1988 by
Academic Press, Inc.  This revision is reprinted with the permission of the
publisher. The book is available for purchase directly from Academic Press, at a
price of $54.50, by phoning 1-800-321-5068, FAX: 1-800-874-6418, or by writ-
ing to: Academic Press Books Customer Service Department Orlando, FL
32887.
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