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ACL2 is a theorem prover over a total, first-order, mostly quantifier-free logic, supporting

defined and constrained functions, equality and congruence rewriting, induction, and other

reasoning techniques. With its powerful induction engine and direct support for the rational

and complex-rational numbers, ACL2 can be used to verify recursive rational algorithms.

However, ACL2 can not be used to reason about real-valued algorithms that involve the

irrational numbers. For example, there are elegant proofs of the correctness of the Fast

Fourier Transform (FFT) which could be formulated in ACL2, but since ACL2’s sparse

number system permits the proof that the square root of two, and hence the eighth principal

root of one, does not exist, it is impossible to reason directly about the FFT in ACL2.

This research extends ACL2 to allow reasoning about the real and complex irra-

tional numbers. The modifications are based on non-standard analysis, since infinitesimals

are more natural than limits in a quantifier-free context. It is also shown how the trigono-

metric functions can be defined in the modified ACL2. These definitions are then used to

prove that the FFT correctly implements the Fourier Transform.
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Chapter 1

Introduction

ACL2 is a total, first-order, mostly quantifier-free logic based on the programming language

Common LISP. ACL2 is also an automated theorem prover for this logic. The theorem

prover excels in using induction to prove theorems about recursive functions. At its heart

is a rewriter, which uses a database of previously proved theorems to transform a term

while maintaining an appropriate equivalence relation, e.g., equality or if-and-only-if. In

addition, it supports many other inference mechanisms. For instance, numeric inequalities

are automatically verified using a linear arithmetic decision procedure, and propositional

tautologies can be proved using a decision procedure based on binary decision diagrams

(BDDs). Moreover, ACL2 supports the introduction of constrained functions, allowing a

limited amount of higher-order reasoning. ACL2 is a direct descendant of Nqthm, also

known as the Boyer-Moore theorem prover. It is fair to say that ACL2 grew out of a desire

to “do Nqthm, only better” [40, 12].

Among the enhancements of ACL2 over Nqthm is a richer number system. Nqthm

had some native support for the integers, and it was primarily designed for working with the

naturals. ACL2, on the other hand, introduced the rational and the complex-rational num-

bers. However, the irrationals were deliberately excluded from the ACL2 number system.

This exclusion stems from the desire to keep ACL2 as close to Common LISP as possible,
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and Common LISP does not include the irrationals. Since the primary goal of ACL2 is to

prove properties about Common LISP functions, it makes sense to exclude objects that do

not exist in the Common LISP universe.

However, the omission of the reals places an artificial limit on the theories that

ACL2 can verify. For example, an important application of ACL2 is the proof of correctness

of various micro-processor algorithms, such as floating-point arithmetic operations, roots,

and other transcendental functions. In [54], Russinoff uses ACL2 to prove the correctness

of the square root floating-point microcode in the AMD K5 processor. However, since the

number
√
x is possibly irrational for a given rationalx, his theory “meticulously avoids any

reference” to
√
x. In particular, the correctness theorem has the (simplified) form

l2 ≤ x ≤ h2 ⇒ rnd(l) ≤ sqrt(x) ≤ rnd(h)

wherernd rounds a number to its nearest floating-point representation andsqrt is the AMD

K5 microcode algorithm for finding floating-point square roots. This theorem is equivalent

to the desired statement of correctness:

sqrt(x) = rnd(
√
x)

However, this equivalence can not be stated in ACL2.

The difference between these two theorems is more than a matter of aesthetics.

Consider the norm given by||x|| =
√
Re2(x) + Im2(x), whereRe(x) andIm(x) are the

real and imaginary parts ofx, respectively. An algorithm may require the value||x · y||,

but it may compute it using||x|| · ||y|| because those values are already known. The results

are mathematically equivalent, even if it is false when the approximationsqrt(x) is used

instead of the function
√
x.

This is a general phenomenon. The correctness of many algorithms depend on prop-

erties that are true of real-valued functions, even though the algorithms are implemented

entirely in terms of rational or floating-point values. That is, an algorithm may compute

the value of the functionf at a pointx not directly by approximating the equation defining
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f(x), but indirectly by approximating the equation definingg(x), where it can be proved

that the functionsf andg are equal. In the example above, the equationf(x, y) would

suggest multiplyingx andy and taking the norm of the product, whileg(x, y) multiplies

the normsx andy. The key fact is that in order to prove the correctness of the algorithm

following the defining equationg(x), it may be necessary to prove thatf(x) = g(x) and

such arguments are often impossible without using the language of irrational numbers and

irrational functions.

Note, it is quite possible that the defining equation forg(x) is more amenable for ap-

proximation using floating-point arithmetic thanf(x). This happens when the computation

of f(x) accumulates errors, whereas the errors tend to cancel out during the computation

of g(x). In the language of numerical analysis,g(x) is called stable andf(x) unstable. For

example, stability is the reason pivoting is important when finding the inverse of a matrix,

even though the algorithms with and without pivoting are mathematically equivalent [25].

When the equation forf(x) is unstable and that ofg(x) stable, the floating-point imple-

mentation off(x) may be very different than that ofg(x); ironically, the approximation to

g(x) may be closer to the true, possibly irrational, valuef(x).

This thesis describes an extension to ACL2 so that it can reason about the irrational

real and complex numbers. The extension rests on the theory of non-standard analysis,

first proposed by Robinson [52] and later advanced by Nelson [49] among others. Non-

standard analysis provides a natural mechanism to reason about the irrationals in ACL2

for two reasons. First, many of the arguments in traditional analysis are simplified in non-

standard analysis by the replacement of functions with numbers. For example, to prove that

a functionf is continuous in standard analysis, it is necessary to find a function mapping a

positiveε to a positiveδ with certain properties. However, in non-standard analysis it is only

necessary to show thatf(x)−f(x−ε) — anumber— is “sufficiently small.” In ACL2, the

proof using non-standard analysis will generally be much easier. The second reason why

non-standard analysis fits well with ACL2 is that many arguments in non-standard analysis
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are proved using induction. For example, using standard analysis, the intermediate value

theorem is proved by looking at least upper bounds of sets. In contrast, the non-standard

analysis proof proceeds by using induction on a step-function approximating the continuous

function in question. This plays to the strength of ACL2 and avoids ACL2’s weaknesses

with quantification, leading to the natural proof of the result, as presented in section6.1.3.

Using the techniques of non-standard analysis, it will also be shown how some

transcendental functions can be defined in ACL2, such as the square root, exponential, and

trigonometric functions. Many of the classical results about these functions will also be

verified in ACL2, including Euler’s beautiful equationeiπ = −1.

To demonstrate how these results about abstract mathematical functions are relevant

to the mechanical verification of real-valued algorithms, this thesis will also present a proof

in ACL2 of the correctness of the Fast Fourier Transform (FFT). This proof also illustrates

an important point about ACL2. The proof is based on the notation of powerlists, introduced

by Misra in [46] to express and reason about data-parallel, recursive algorithms. ACL2

is sufficiently powerful that it can embed the theory of powerlists and reason effectively

about them. Such an embedding is presented in chapter7, where many difficult theorems

from [46] are mechanically verified.

There is a synergy between non-standard analysis and ACL2. That is why ACL2

is an ideal medium for mechanically verifying real-valued algorithms. ACL2 is expressive

enough to describe complex algorithms, and it boasts a theorem prover powerful enough

to prove difficult theorems about such algorithms. Witness, for example, the theorems

about floating-point algorithms proved in [47, 54, 55]. The addition of the irrationals and

the principles of non-standard analysis makes it powerful enough to define the common

transcendental functions and to prove their fundamental properties. It opens a new domain

to ACL2, the verification of real-valued algorithms. It is because of the traditional strengths

of ACL2 — term rewriting, linear arithmetic, induction, etc. — that it succeeds in this new

domain.
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1.1 Related Work

There is a long history of real analysis in automated theorem proving, some projects us-

ing analysis as a test-bed for theorem provers, others pursuing analysis for more pragmatic

reasons, for example, because the correctness of an algorithm hinges on a property of con-

tinuous functions.

In his wonderful dissertation [28], Harrison showed how the real numbers can be

formalized in the theorem prover HOL [26]. Harrison’s approach was to construct the

real numbers, rather than to introduce them axiomatically. Real numbers are defined as

equivalence classes of Cauchy, rational sequences. All their properties are then developed

from first principles.

His approach differs dramatically from the one presented in this thesis. HOL is a

higher-order theorem prover, allowing a natural vehicle for reasoning about the equivalence

classes of functions. In contrast, ACL2 does not provide sufficiently strong set-theoretic

axioms for this task. Moreover, Harrison’s primary interest was in developing a mechanized

theory of analysis, whereas this thesis is interested in developing the pragmatic subset that

is needed for the verification of real-valued algorithms.

The theorem prover PVS offers built-in support for the real numbers [50]. In PVS,

the reals are axiomatized using the usual field and ordering axioms, as well as a version

of the completeness axiom. PVS makes similar tradeoffs as ACL2, emphasizing issues of

pragmatics and usability. As with ACL2, a large portion of the reasoning engine is encoded

not in axioms, but in decision procedures built into the theorem prover. This includes deci-

sion procedures for theories about the reals, such as linear rewriting. In [21], Dutertre de-

scribes a theory of simple mathematical analysis developed using PVS. This theory presents

basic notions of analysis, such as sequences, convergence, continuity, and differentiability.

Dutertre’s motivation in developing his theory of the reals echoes the current motivation in

extending ACL2 to include the reals. Rather than focusing on analysis per se, the goal is to

prove enough results from analysis to reason about certain algorithms or computer systems.
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IMPS offers axiomatic support for the reals [22]. IMPS has a partial and higher-order

logic, which supports a proof style close to the one used by working mathematicians. More-

over, IMPS allows separate pieces of the theory to be developed in isolation, the so-called

“little-theory approach.” Separate theories can be related through theory interpretations,

which allow the reuse of theorems in different settings. Real and abstract analysis have

been a focus throughout the development ofIMPS. Among the many theorems proved

are the Bolzano-Weierstrass theorem, some fixpoint theorems similar to Banach’s, and the

mean value theorem for integration. Proofs inIMPS are developed by a sequence of goal

transformations. The user is directly responsible for guidingIMPS through the “high-level”

inferences, whileIMPS takes care of the “low-level” computational details.

M IZAR also contains axiomatic support for the reals [53, 57]. The emphasis in

M IZAR is on the development of a syntax suitable for the formalization of large portions

of mathematics. The MIZAR system, available on PCs, encourages the development of

large theories which depend on previously proved theorems. It allows the user to define

new syntax and parsing rules, to accommodate new notions. On the other hand, MIZAR

provides a relatively weak reasoning engine, relying on the user to provide explicit proofs,

including references to previous theorems.

Bledsoe developed several theorem provers that were able to prove many results

from elementary analysis, such as the intermediate value theorem [8, 9]. Hines and Bledsoe

also pursued inference mechanisms that would be useful in an analysis theorem prover,

such as the inequality prover STRIVE [30]. Ballantyne and Bledsoe describe a version

of Bledsoe’s theorem prover IMPLY which proves theorems in the theory of non-standard

analysis [3, 2]. Using this system, they were able to prove several theorems of elementary

analysis, including the equivalence of the “standard” and “non-standard” definitions of the

basic analysis concepts. For example, they present a mechanical proof that the traditional

definition of sequence convergence is equivalent to the non-standard version. These results

are impressive.
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More recently, Fleuriot and Paulson used non-standard analysis to formalize an in-

finitesimal geometry based on Newton’s Principia [23]. Using the Isabelle theorem prover,

they were able to prove many of the theorems in the Principia using Newton’s original

arguments.

A different approach to theorem proving over the reals is to use a computer algebra

system, such as Macsyma or Mathematica. Such an approach is suggested by Clarke and

Zhao, whose theorem prover Analytica is coded in Mathematica [14]. Analytica uses the

Mathematica rewriting engine, which makes minor concesions to soundness in favor of

utility. Analytica compensates for this potential unsoundness by checking certain steps in

Mathematica’s computation and avoiding the more common errors, such as division by an

expression which can be equal to zero. The approach seems promising, in that Analytica

is able to prove an impressive array of theorems, including key steps in the construction

of a continuous, but differentiable nowhere function. Future work on Analytica may entail

a closer coupling between the theorem prover and computer algebra system, so that each

simplification performed by the computer algebra system can be rigorously justified.

Another approach based on computer algebra is given by Beeson, whose MATH-

PERT system is designed for pedagogical use [5]. MATHPERT is capable of solving el-

ementary algebra, trigonometry, and calculus problems. The problems are solved by ap-

plying a sequence of operators, elsewhere referred to as rewrite rules. Since the primary

interest of MATHPERT is in pedagogy, extreme care has been spent in choosing the appro-

priate operators, so that they correspond, roughly, to “nuggets” of knowledge that a student

should acquire. Moreover, the way in which these operators are applied is also given great

consideration, so that the results mimic the way students would tackle the problem. The end

result is that MATHPERT provides more than just a solution to a given problem. It provides

an intelligible solution from which students can learn and profit. Of particular interest is

that MATHPERT uses non-standard analysis internally to formally justify that the answer

returned is correct. While these details are kept from the student, non-standard analysis is
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used, for example, to verify that terms inside a limit are well-defined [6].

Cowles has proved the irrationality of the square root of two in ACL2. In fact,

he has formalized several versions of this proof. He has also proved some properties of

McCarthy’s “91 function.” These proofs were originally done in Nqthm in the context

of integers and Archimedean ordered fields. They have also been proved in ACL2 in the

context of Archimedean ordered fields, but this foregoes ACL2’s special treatment of the

numbers, such as linear rewriting. The modifications to ACL2 described in this thesis will

probably benefit his research [17, 16, 18].

Others have tried using a rewrite-based theorem prover with support for induction

to reason mechanically about powerlists. Kapur and Subramaniam have used the theorem

prover RRL to verify some of the powerlist theorems proved by Misra [33, 32, 35]. In

addition, they have used this foundation to prove the correctness of arithmetic circuits [34].

1.2 Outline

There are two main products of this thesis. The first is a modified version of ACL2 that

can reason about non-standard analysis. The second is a set of theories verified with the

modified ACL2. These theories can be used by others who want to reason mechanically

about real-valued algorithms. The complete source tree of the modified version of ACL2

as well as the source files describing the theories described in this thesis can be found in

the accompanying CD-ROM. The latest versions of these can also be found on the web at

http://www.lim.com/˜ruben/research/thesis .

These two products are described in this thesis as follows. In chapter2, it is shown

that the trascendental functions can not be introduced into ACL2. This is demonstrated by

proving that the fundamental property of
√
x — i.e.,x ≥ 0⇒

√
x ·
√
x = x — can be dis-

proved by ACL2. However, it is also shown that ACL2 can define rational approximations

that are arbitrarily close to the square root function.

In chapter3, the basic principles of non-standard analysis are introduced. Moreover,
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the modifications to ACL2 necessary to include non-standard analysis are described. This

chapter also offers a proof that the modifications are sound. Particularly interesting is how

induction needs to be modified to support non-standard analysis. The chapter presents a

soundness proof for the modified induction principle.

Chapter4 uses the rational approximation scheme for
√
x described in chapter2 to

define the
√
x function in ACL2, using the non-standard modifications to ACL2 described

in chapter3. The basic properties of
√
x are also verified in ACL2.

The exponential function is introduced in chapter5. This is defined in terms of

the Taylor expansion forex, and it requires the development of a significant theory of con-

verging series in the complex plane, including geometric series and the comparison test of

absolutely convergent series. Comparisons on the complex numbers are based on a norm

defined using the square root function introduced in chapter4. This chapter also proves a

fundamental property of the exponential function, namely thatex+y = ex ·ey. This difficult

proof depends on many facts about the binomial function and the theory of nested sums.

The property plays a key role in showing that the exponential function is continuous.

In chapter6, the trigonometric functions are defined in terms of the exponential

function. Particularly interesting is the definition of the constantπ, as it depends on the

continuity of the cosine function, the theory of alternating series, and the intermediate value

theorem. This chapter also develops a comprehensive theory of trigonometry, finding ex-

plicit values of the trigonometric functions at the common angles, as well as the sign of the

trigonometric functions in the four quadrants. Moreover, it verifies many of the familiar

identities from trigonometry.

Chapter7 develops the theory of powerlists in ACL2. It also proves generalizations

of many of the theorems presented by Misra in [46]. The proof of the correctness of Batcher

sorting deserves notice. Also proved in this chapter are the correctness of some parallel

prefix sum algorithms, as well as a carry-lookahead adder.

Chapter8 uses the trigonometric functions defined in chapter6 and the theorems
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about powerlists proved in chapter7 to prove the correctness of the Fast Fourier Trans-

form. This illustrates how the traditional strengths of ACL2, represented by the reasoning

about powerlists, combine with the enhancements based on non-standard analysis to prove

theorems about real-valued algorithms.

The syntax of ACL2 will be used throughout this dissertation. This syntax is es-

sentially that of Common LISP, with a few primitives defined to support theorem proving,

such as the functiondefthm which introduces a new theorem. This choice of syntax may

frustrate some readers who are unfamiliar with ACL2 or any LISP dialect. Those readers

who feel uncomfortable with the notation may wish to read appendixA, which presents a

gentle introduction to ACL2 and its syntax.

In the following chapters, only the main theorems and lemmas are included. The

remaining lemmas, which are required to guide ACL2 towards the eventual proof, are

omitted for the sake of brevity and clarity. For the same reason, the ACL2 statements

shown have been stripped of the ACL2-specific annotations, such as hints, guards, and rule-

classes. The complete ACL2 input can be found elsewhere on the CD-ROM, as well as

from http://www.lim.com/˜ruben/research/thesis .
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Chapter 2

Learning from the Square Root

Function

This chapter illustrates how the lack of irrational numbers in ACL2 can lead to surprising

results. In particular, it is shown that ACL2 can prove thatx · x is not equal to2 for any

value ofx. This result is more limiting than it appears. It demonstrates that the introduction

of the square root function into ACL2 — through the addition of an axiom — would result

in a contradictory theory. In [54] Russinoff uses ACL2 to prove the correctness of the AMD

K5 square root implementation. However, he observes the lack of the square root function

in ACL2 prevented him from mechanically proving the square root microcode against the

precise IEEE specification.

The results in this chapter have been verified in ACL2 versions 1.8 through 2.1.

Chapter3 will introduce ACL2 v2.1(r), which supports the irrationals and therefore fails to

prove some of the theorems presented in this chapter. Although the explicit version number

will not be used, it should be clear that “ACL2” refers to ACL2 v2.1 and not to ACL2 v2.1(r)

for the remainder of this chapter.
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2.1 The Non-Existence of the Square Root of Two

To prove that

(not (equal (* x x) 2))

is a theorem in ACL2, it is sufficient to rule out suitable candidates forx . The first step is

the most interesting from a mathematical viewpoint – no rational number satisfiesx ·x = 2:

(implies (rationalp x)

(not (equal (* x x) 2)))

The proof follows the classic argument of the irrationality of
√

2. After ruling out the

rationals, the proof is nearly complete. The complex rationals can be ruled out, since all

their squares are either complex or negative. Since all other objects (i.e., non-numbers) in

ACL2 have zero squares, that will complete the proof.

Begin by considering the rationals and showing that none of them can be equal to
√

2. Suppose for now that
√

2 is rational. Then, for some relatively prime integersp andq,

(pq )2 = 2. This implies thatp2 = 2q2, sop2 is even. But sincep is an integer, this implies

thatp must be even as well. That is, there is some integerp′ with p = 2p′. Then it follows

that4p′2 = 2q2, and henceq2 is even. Again, this implies thatq is even. But then,p andq

are not relatively prime as claimed, and therefore
√

2 can not be rational.

The first step in formalizing this argument is to prove the following lemmas:

(defthm even-square-implies-even

(implies (and (integerp p)

(divisible (* p p) 2))

(divisible p 2)))

(defthm even-implies-square-multiple-of-4

(implies (and (integerp p)
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(divisible p 2))

(divisible (* p p) 4)))

Given the equationp2 = 2q2, the lemmaeven-square-implies-even establishes

that p is even, andeven-implies-square-multiple-of-4 that q2 is even. Ap-

plying even-square-implies-even again, it follows thatq is even. That is, ACL2

can prove the following lemmas:

(defthm sqrt-lemma-1.1

(implies (and (integerp p)

(integerp q)

(equal (* p p) (* 2 (* q q))))

(divisible q 2)))

(defthm sqrt-lemma-1.2

(implies (and (integerp p)

(integerp q)

(equal (* p p) (* 2 (* q q))))

(divisible p 2)))

To complete the argument, only the key property thatp andq are relatively prime is needed.

Equivalently,pq must be expressed in lowest terms. The ACL2 functionsnumerator and

denominator can be used to express an arbitrary rational number in lowest terms. Using

these functions converts the lemmas above into the following:

(defthm sqrt-lemma-1.3

(implies (and (rationalp x)

(equal (* x x) 2))

(equal (* (numerator x) (numerator x))

(* 2 (* (denominator x)

13



(denominator x))))))

Combining all the results above yields the basic fact contradicting the rationality of
√

2:

(defthm sqrt-lemma-1.4

(implies (and (rationalp x)

(equal (* x x) 2))

(and (divisible (numerator x) 2)

(divisible (denominator x) 2))))

(defthm sqrt-lemma-1.5

(implies (and (divisible (numerator x) 2)

(divisible (denominator x) 2))

(not (rationalp x))))

(defthm sqrt-2-is-not-rationalp

(implies (rationalp x)

(not (equal (* x x) 2))))

Having ruled out the rationals from the list of candidates for
√

2, it is only necessary

to eliminate the remaining ACL2 objects, namely the complex rationals and non-numeric

objects. This is much easier. A complex rational has the forma + bi, whereb 6= 0 anda

andb are rationals. None of these objects can be the square root of 2, because their squares

all have the forma2 − b2 + 2abi, and for that to be equal to2, a must be zero. But then,

the square ofbi is equal to−b2, which is negative sinceb is rational. This argument can be

easily verified in ACL2:

(defthm complex-squares-rational-iff-imaginary

(implies (and (complex-rationalp x)

(rationalp (* x x)))

14



(equal (realpart x) 0)))

(defthm imaginary-squares-are-negative

(implies (and (complex-rationalp x)

(equal (realpart x) 0))

(< (* x x) 0)))

From these theorems, it is easy to rule out the complex rational numbers from the list of

candidates:

(defthm sqrt-2-is-not-complex-rationalp

(implies (complex-rationalp x)

(not (equal (* x x) 2))))

Since the ACL2 number system includes only the rational and complex rational

numbers, this establishes that no number can be equal to
√

2 in the ACL2 universe. But

by simple type analysis, ACL2 can verify that only numbers can have non-zero squares.

Therefore, all ACL2 objects are ruled out. This establishes the following theorem:

(defthm there-is-no-sqrt-2

(not (equal (* x x) 2)))

As mentioned earlier, this theorem does more than simply rule out the possibility that some

ACL2 object is equal to
√

2. It also explicitly rules out the possibility of introducing — by

definition or otherwise — a function with the properties of the square root function. Similar

arguments would rule out other irrational functions. This is especially sad when the power

of ACL2 is considered. This power will become evident in the next section, where ACL2

demonstrates the existence of rational functions arbitrarily close to the square root function.

That is, it is possible to define arbitrarily good approximations to the square root function

and other irrational functions in ACL2.
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2.2 Approximating the Square Root Function

The previous section showed that the fundamental theorem of square roots —x ≥ 0 ⇒
√
x ·
√
x = x — is inconsistent with the axioms of ACL2. However, it is possible to prove

weaker versions of this theorem. One such approach is to require that it only hold when

bothx and
√
x are rational; at other points, no claims are made about the function, so it

is free to take on any value, say zero. That such a function exists in the ACL2 logic is

clear, since for rationalp/q in least terms,
√
p/q is given by

√
p/
√
q and sincep andq are

relatively prime, this is rational if and only if
√
p and

√
q are integers. Unfortunately, the

likelihood that an arbitrary integer has an integer square root is small, so this would only

cover a small fraction of the rationals, and the modified theorem would be too weak.

A better alternative is to substitute closeness for strict equality. For example, require

that |
√
x ·
√
x − x| < ε for some fixedε > 0. There are many different approximation

schemes that can be used to come close to the square root function. Although other schemes

offer better performance, the simplicity of the bisection algorithm makes it a promising

approximation scheme in ACL2.

The convergence criterion is interesting, since the result
√
x to which the approx-

imation converges is not necessarily in the ACL2 universe, so it is not able to guarantee

something similar to|x̂−
√
x| < ε (cf. [54]). For this reason,|x̂2−x| < ε will serve as the

test of convergence.

An iterative approximation to the square root function can be defined as follows:

(defun iterate-sqrt-range (low high x num-iters)

(if (<= (nfix num-iters) 0)

(cons (rfix low) (rfix high))

(let ((mid (/ (+ low high) 2)))

(if (<= (* mid mid) x)

(iterate-sqrt-range mid high x (1- num-iters))

(iterate-sqrt-range low mid x
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(1- num-iters))))))

Because the convergence ofiterate-sqrt-range is not obvious to ACL2 and ACL2

only accepts definitions when it can prove their termination on all inputs, it is convenient

to divorce the convergence result from the terminating condition of the iterative function.

In particular,iterate-sqrt-range accepts a non-empty range of real numbers spec-

ified by low andhigh , and it divides the range in halfnum-iters times. It returns the

resultinglow-high range, and subsequently the returnedlow will be used as the approx-

imation to
√
x. At each split of the range, the parameterx is used to decide which half

to keep and which to discard. For example,(iterate-sqrt-range 0 2 2 1) will

return(1 . 2) , since after the first iteration
√

2 can be contained in this range. Letting

the function iterate 5 times as in(iterate-sqrt-range 0 2 2 5) yields (11/8

. 23/16) . Notice the original range of width 2 has been reduced to one with width of

1/16, or25 times smaller.

The proof of convergence can be split into two parts. First, ifnum-iters is large

enough, the difference between the finalhigh and low can be made arbitrarily small.

Second, if thehigh andlow are very close to each other, the square oflow is very close

to x .

Before proceeding, some basic properties ofiterate-sqrt-range need to be

established. For example, if the originalhigh-low range is not vacuous, then neither is

the finalhigh-low range after iterating any number of times:

(defthm iterate-sqrt-range-reduces-range

(implies (and (rationalp low)

(rationalp high)

(< low high))

(< (car (iterate-sqrt-range low high x

num-iters))

(cdr (iterate-sqrt-range low high x
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num-iters)))))

A particularly crucial lemma is that the finalhigh estimate is not larger than the initial

one. That is, no iteration can increase the current upper estimate.

(defthm iterate-sqrt-range-non-increasing-upper-range

(implies (and (rationalp low)

(rationalp high)

(< low high))

(<= (cdr (iterate-sqrt-range low high x

num-iters))

high)))

Nonetheless, the finalhigh estimate is large enough that it does not cross below the square

root ofx , so long as the initialhigh estimate is not below the square root ofx :

(defthm iterate-sqrt-range-upper-sqrt-x

(implies (and (rationalp low)

(rationalp high)

(rationalp x)

(<= x (* high high)))

(<= x

(* (cdr (iterate-sqrt-range low high x

num-iters))

(cdr (iterate-sqrt-range low high x

num-iters))

))))

This provides a tight bound on how far the values ofhigh can range. Similarly, the analo-

gous theorems for thelow bound of the range can be established.
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With these lemmas, the continuity ofx2 is sufficient to show that if thehigh-low

range is small enough, then the range of their squares is arbitrarily small. Specifically, for

any ε > 0 anda > 0, it is possible to find aδ such that for anyb with 0 < b − a < δ,

it follows that b2 − a2 < ε. In fact, algebraic manipulation will show that this is true for

anyδ ≤ ε/(a + b). Moreover, for ranges[a, b] such thata ≤
√
x ≤ b, the termb2 can be

replaced by the smallerx to conclude thatx − a2 < ε. The continuity condition can be

stated as follows:

(defthm sqrt-epsilon-delta-aux-4

(implies (and (rationalp a)

(rationalp b)

(rationalp x)

(rationalp epsilon)

(<= 0 a)

(< a b)

(<= x (* b b))

(< (- b a) delta)

(<= delta (/ epsilon (+ b a))))

(< (- x (* a a)) epsilon)))

Unfortunately, this result is stated in terms of(+ b a) , which will correspond to

thefinal high-low estimates of the approximation. It would be more convenient to define

δ in terms of the original estimates or guesses. Since thehigh estimates are monotonically

decreasing and thelow estimates are monotonically increasing, it is not possible to readily

conclude anything about the sum of the finalhigh and low . However, observe that the

claim remains true forδ ≤ ε/2b, since for0 ≤ a ≤ b, ε/2b ≤ ε/(a + b). Now, δ will only

depend on the finalhigh estimate, and since we knowhigh is monotically decreasing we

can replace the finalhigh estimate with the initial guess. This is important, because it al-

lows the number of iterations required to be computed before the square root approximation
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is begun. Combining these observations results in the first half of the convergence result:

(defthm iter-sqrt-epsilon-delta

(implies (and (rationalp low)

(rationalp high)

(rationalp epsilon)

(rationalp delta)

(rationalp x)

(< 0 epsilon)

(<= 0 low)

(< low high)

(<= x (* high high))

(<= delta (/ epsilon (+ high high))))

(let ((range (iterate-sqrt-range low high x

num-iters)))

(implies (< (- (cdr range) (car range))

delta)

(< (- x

(* (car range) (car range)))

epsilon)))))

It remains only to be shown that the finalhigh-low estimate will be sufficiently

close together so that the theorem above can apply, as long as enough iterations are per-

formed. It is possible to define a functionguess-num-iters that computes the required

number of iterations for a specificx andε. Since the iteration scheme halves the estimate

range at each step, only the size of the initial estimate is needed. The function, which

essentially computes the base-2 logarithm of the initial range, is given below:

(defun guess-num-iters-aux (range num-iters)

(if (and (integerp range)

20



(integerp num-iters)

(> num-iters 0)

(> range (2-to-the-n num-iters)))

(guess-num-iters-aux range (1+ num-iters))

(1+ (nfix num-iters))))

(defmacro guess-num-iters (range delta)

‘(guess-num-iters-aux (ceiling ,range ,delta) 1))

The function2-to-the-n returns2n for non-negative integern; its definition is omitted

in favor of brevity. Before proving thatguess-num-iters returns a sufficiently large

value for any choice ofrange andepsilon , it is important to consider howiterate-

sqrt-range reduces thehigh-low range after a number of iterations. The following

theorem proves that the range is halved at each step:

(defthm iterate-sqrt-reduces-range-size

(implies (and (<= (* low low) x)

(<= x (* high high))

(rationalp low)

(rationalp high)

(integerp num-iters))

(let ((range (iterate-sqrt-range low high x

num-iters)))

(equal (- (cdr range) (car range))

(/ (- high low)

(2-to-the-n num-iters))))))

With this result and some algebraic rewriting, the second half of the convergence theorem

can be proved. Specifically, it can be shown that by iteratingguess-num-iters times

the finalhigh-low range is sufficiently small for the first convergence theorem to apply:
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(defthm iterate-sqrt-range-reduces-range-size-to-delta

(implies (and (rationalp high)

(rationalp low)

(rationalp delta)

(< 0 delta)

(< low high)

(<= (* low low) x)

(<= x (* high high)))

(let ((range (iterate-sqrt-range

low

high

x

(guess-num-iters (- high low)

delta))))

(< (- (cdr range) (car range)) delta))))

The only remaining task is choosing appropriate starting values forhigh andlow . Given

anx > 0, an initial range containing
√
x can be[0, x] if x > 1, and[0, 1] otherwise. It is

clear that this range includes
√
x, is not empty, and includes only non-negative numbers.

Hence it can be used to begin the iteration.

The resulting ACL2 function to approximate square root can be defined as follows:

(defun iter-sqrt (x epsilon)

(if (and (rationalp x)

(<= 0 x))

(let ((low 0)

(high (if (> x 1) x 1)))

(let ((range (iterate-sqrt-range

low high x
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(guess-num-iters (- high low)

(/ epsilon

(+ high

high))))))

(car range)))

nil))

For example, an estimate to
√

2 with precision±1/1000 can be found with(iter-sqrt

2 1/32) ; the value returned is 11585/8192, roughly 1.41418 which is indeed close to
√

2.

With little more than propositional reasoning, ACL2 can now prove the main convergenge

result:

(defthm convergence-of-iter-sqrt

(implies (and (rationalp x)

(rationalp epsilon)

(< 0 epsilon)

(<= 0 x))

(and (<= (* (iter-sqrt x epsilon)

(iter-sqrt x epsilon))

x)

(< (- x (* (iter-sqrt x epsilon)

(iter-sqrt x epsilon)))

epsilon))))

In section2.1, it is established that the square root function can not be defined in

ACL2. Nevertheless, as seen above it is possible to define approximation schemes that are

as close to the square root function as desired. The next chapter will show how ACL2 can be

modified to reason about irrational as well as rational numbers. Subsequently, the results of

this chapter will be used to actually define the square root function in the modified version

of ACL2.
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Chapter 3

Non-Standard Analysis in ACL2

This chapter describes the non-standard analysis modifications to ACL2. It begins by in-

troducing an axiomatic treatment of non-standard analysis. This serves as the foundation

for non-standard analysis in ACL2, which is described next. The chapter concludes by

describing an ACL2 library consisting of non-standard analysis axioms and theorems.

3.1 An Introduction to Non-Standard Analysis

The formalism of non-standard analysis in ACL2 follows the axiomatic approach pioneered

by Nelson in Internal Set Theory (IST) [49]. This section presents a simple introduction to

Internal Set Theory, so that the following material is self-contained. However, this section

is not intended to be a comprehensive introduction to non-standard analysis. Several good

introductions to non-standard analysis are readily available, including [51, 19, 48].

Internal Set Theory (IST) is a conservative extension to Zermelo-Fraenkel set theory

(ZF)1. It introduces the unary predicatestandardwhich is left undefined, just as the∈

predicate is undefined. Note, it is possible to ask whether any set isstandardor not. In

particular, this means that all mathematical objects built using set theory — sets, numbers,

1The specific set theory that is extended is largely irrelevant. ZF is used for concreteness.
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functions, graphs — may bestandardor not.

The axioms of naive set theory describe how sets may be constructed. They include

the following [27, 56]:

• Extension: Two sets are equal if and only if they contain the same elements.

• Specification: Given a setA and a conditionP (x), there exists a setB whose

elements are those elementsa of A for which P (a) is true. This is written as

B = {a ∈ A | P (a)}.

• Replacement:Given a setA and a unary functionf , there exists a set that contains

f(a) for each elementa of A.

The remaining axioms are used to define valid ways of constructing sets from other sets.

The specification axiom provides the only mechanism to construct a set from a predicate. In

Internal Set Theory, this axiom is restricted so that the predicateP (x) in {x ∈ S | P (x)}

can be neitherstandardnor any predicate defined fromstandard. Notice, this does not

disallow the construction of any set that was possible in ZF, since the only terms that are

affected are terms in the language of IST that are not already in the language of ZF.

To simplify future discussions, define a formula to beclassicalif it does not contain

the predicatestandardnor any functions or predicates defined using the predicatestandard.

This is a purely syntactic notion on the formulas of the language of Internal Set Theory,

and it should be differentiated from the notionstandard, which is a formal property of

the objects, i.e., sets, of Internal Set Theory. It will be shown later that all classically

constructed objects arestandard. However, the converse is not true. For example, a non-

classical formula may be used to construct a classical function, as the non-classical formula

standard(x) ∨ ¬standard(x) defining the classical function “true” illustrates.

In addition to the axioms from set theory, Internal Set Theory introduces three new

axioms to deal explicitly with the predicatestandard. The first axiom is the idealization

axiom.
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• Idealization: For any classical binary relationR(x, y), the following are equivalent:

– For everystandard, finite setF there is ay so thatR(x, y) is true for allx in F .

– There is ay so thatR(x, y) holds for allstandardx.

This axiom guarantees the existence of at least one non-standardelement. As an example,

letR be the< relation. It is certainly the case that there is an upper bound for every finite

set of reals. The idealization axiom asserts the existence of a, necessarily non-standard, real

y that is greater than allstandardreals.

The second axiom is the standardization axiom.

• Standardization: Given astandardsetA and a conditionP (x), there exists a unique

standardsubsetB ⊂ Awhosestandardelements are precisely thestandardelements

a of A for whichP (a) is true. This is written asB = ◦{a ∈ A | P (a)}.

Note that this axiom is strictly weaker than the specification axiom whenP (x) is a classical

property. For non-classical propertiesP (x), it serves as a replacement to the specification

axiom. However, the axiom does not guarantee anything about the non-standardelements

of B. In particular,B may contain a non-standardelementx for whichP (x) is false, or it

may fail to contain a non-standardelementx ∈ A for whichP (x) is true. For example, let

P (x) be the propertystandard(x), and consider the setA′ = {x ∈ R | standard(x)}. Since

standardis a non-classical predicate,A′ is not an admissible set. However, the standard-

ization principle guarantees the existence of a uniquestandardsetB so that, forstandard

x, x ∈ R if and only if x ∈ R andstandard(x). That is,B is astandardsubset of the reals

containing all thestandardreals. SinceR is itself astandardsubset ofR containing all

standardreals, it follows thatB = R, since the axiom guarantees the subsetB is unique.

The standardization axiom permits a very useful construction, known asshadow

sets. It is defined as◦S = {x ∈ U | x ∈ S}, whereU is an arbitrarystandardsuperset of

S. The notation◦S is read as “the shadow ofS.” ◦S is the uniquestandardset that agrees

with S on all standardelements. Note, ifS is standard, then◦S is necessarily equal toS.
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The notation◦{x ∈ S | P (x)} whereP (x) is not a classical formula will be used to refer to

the unique set guaranteed by the standardization axiom for the formulaP (x). The notation

offers the intuitive appeal of taking the shadow of the “set” of elements satisfyingP (x),

even though this “set” can not be formally constructed. Such “sets” are commonly referred

to as “external sets” in contrast to “internal sets,” which are the ordinary sets of set theory.

The name “Internal Set Theory” reflects this convention.

The third and final axiom introduced in Internal Set Theory is the transfer axiom.

• Transfer: Let P (x) be a classical formula referencing onlystandardparameters. If

P (x) is true for allstandardvalues ofx, it is also true for all possible values ofx.

A useful corollary of this axiom is that any classical predicateP (x) with only standardpa-

rameters that is satisfied by someP (x0) must also be satisfied by astandardx1. Otherwise,

¬P (x) would be a classical formula withstandardparameters that is true of allstandard

values ofx, so by the transfer axiom it would be true of all values ofx, includingx0. In

particular, this means that if the propertyP (x) is satisfied by auniqueelementx0, then this

element must bestandard. Examples of such elements include0, 1, π, R, etc.

Another useful corollary of the transfer axiom is a modified version of the extension

axiom. TwostandardsetsA andB are equal if and only if they contain the samestandard

elements. This follows from the transfer axiom, since the formulax ∈ A ⇔ x ∈ B is true

of all x if it is true of all standardx, as it is a classical formula mentioning only thestandard

parametersA andB.

The restriction imposed on the axioms of specification and transfer that limit their

use to only classical properties is crucial. Consider, for example, the following flawed

“proof” that all natural numbers arestandard. 0 is a standardnatural number. Ifn is a

natural number andn is standard, so isn + 1. (This follows from the axiom of transfer,

sincen + 1 is uniquely determined andn and1 arestandard.) Appealing to the principle

of induction, therefore, it can be concluded that all the natural numbers arestandard. This

is false. To understand the error, recall that the induction principle is based on the well-
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foundedness of the naturals: every non-empty set of naturals has a least element. Induction

is sound, because the induction hypothesis guarantees the set of counter-examples to the

theorem can not have a least element, hence it must be empty. However, in this case the set

of counterexamples isS = {n ∈ N | ¬standard(n)}, and sincestandardis not a classical

property, this set is not well-formed. What this means is that the principle of induction can

not be used to prove non-classical properties. As was the case with the specification axiom,

notice that this restriction does not invalidate any inductive proof that was possible before

the introduction of thestandardpredicate.

Using the concept of a shadow set, it is possible to derive a weaker induction princi-

ple that is applicable to any predicate. LetP (n) be a classical or non-classical property de-

fined over the natural numbersn ∈ N, and further assume thatP (0) andP (n)⇒ P (n+ 1)

have been established. LetS = ◦{n ∈ N | P (n)}. That is,S is theshadowof the “set” of

natural numbersn satisfyingP (n). Observe,S is the set of all naturals, sinceS is aclassical

set, and therefore membership inS can be established using the classical induction princi-

ple. But sinceS is a shadow set, it can only be concluded thatP (n) is true forstandardn.

Therefore, the non-standard induction principle can concludestandard(n) ⇒ P (n) from

P (0) andP (n)⇒ P (n+ 1) for any propertyP (n).

The concept of shadows allows more powerful constructions. Consider a non-

classical functionf : R → R — that is, one whose definition uses the functionstandard

or some other non-classical function — so thatf(x) is standardfor everystandardx. The

function f can be used to implicitly define aclassicalfunction ◦f that agrees withf on

standardarguments. The function◦f is classical in the sense that it has astandardgraph,

and it could be given an explicit definition in the language of set theory, without the use

of the predicatestandard. The construction of◦f is as follows. The functionf is a set of

tuples(x, f(x)), with the restriction that no two tuples have the same first element. Ob-

serve, the shadow of this set◦f is also a function. This follows because a tuple(x, f(x))

is standardprecisely when bothx andf(x) are, which from the hypothesis is precisely
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whenx is standard. Since◦f is standard(as it is the result of a shadow construction) and

the set{x} × R is standardfor standardx, it follows thatX = ◦f ∩ ({x} × R) is nec-

essarilystandard. But (x, f(x)) can be the onlystandardelement ofX with x as its first

coordinate, since(x, f(x)) is standard, and it is the only element off with x as its first

coordinate. Similarly,(x, f(x)) must be inX. This means thatX = {(x, f(x))}, as both

X and{(x, f(x))} arestandardsets containing the samestandardelements. It follows that

for standardx, there is only oney such that(x, y) ∈ ◦f . Equivalently, forstandardx, the

cardinality of◦f ∩ ({x} × R) must be equal to1. From the transfer principle again, the

cardinality of◦f ∩ ({x} × R) is equal to1 for all x, and so◦f is a function. What this

shows is that given any functionf so thatf(x) is standardwheneverx is, it is possible

to implicitly define astandardfunction g so thatg(x) = f(x) for all standardx. As in

the case with all shadow constructions, it is not possible to say what the value ofg is for a

non-standardx, except by indirect means. For example, ifg(x) = x2 for all standardx,

then using the transfer principle it follows thatg(x) = x2 for all x, even thoughf(x) may

not bex2 for a non-standardx.

Thestandardpredicate and the idealization, standardization, and transfer principles

are surprisingly powerful. The real benefit of Internal Set Theory to analysis, however,

is that it is possible to define (non-classical) predicates which correspond to many of the

intuitive notions from analysis, such as “infinitely small” and “infinitely close.” Analysis in

the language of Internal Set Theory is commonly referred to as “non-standard analysis.”2

A number isi-small if it is smaller in magnitude than all positivestandardnumbers.

That is,ε is i-small if |ε| < x is true for allstandardx > 0. Clearly0 is i-small, but it

is not the onlyi-small number. Recall, theidealization axiom demonstrates the existence

of a numbery< which is greater than allstandardreals. Consequently,1/y< is smaller in

2The phrase shows the historical development of Internal Set Theory, which followed from the study of

“non-standard” models of arithmetic. In this view of real analysis, the predicatestandardis used to recognize

the numbers in the real number line. Quantifiers, however, range not over the real numbers, but over the

“hyperreals,” which include the reals as well as “infinitesimals” and their arithmetic closure.
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magnitude than all non-zerostandardreals, and so it isi-small. The formal notion ofi-small

captures the informal notion of “infinitesimal.” Similarly, a numberx is calledi-large if it

is larger in magnitude than allstandardnumbers. The numbery< serves as an example. It

is clear thaty is i-large if and only if it is non-zero and1/y is i-small, and thaty is i-small

if and only if 1/y is i-large or y = 0. A number that is noti-large is calledi-limited. It is

clear that allstandardnumbers must bei-limited. Two numbersx andy are i-closewhen

x− y is i-small. Since0 is the onlystandard i-smallnumber, it follows that twostandard

numbers arei-closeif and only if they are equal.

In addition, it can be shown that there is a functionstandard-partwhich assigns a

standardnumberi-closeto eachi-limited real. That is, fori-limited x, standard-part(x) is

standardand i-closeto x. The numberstandard-part(x) can be defined as the supremum

of ◦{y ∈ R | y ≤ x}. This set is bounded above, sincex is i-limited, and so there must

be astandardnumberM with |x| ≤ M . From the transfer principle,standard-part(x) is

standard, since it is the supremum of astandardset. Thatstandard-part(x) is i-closeto x

follows from the fact that for anystandardc > 0, x − standard-part(x) ≥ c implies that

x ≥ standard-part(x) + c and sostandard-part(x) + c is in ◦{y ∈ R | y ≤ x}, since

it is standardand at mostx, but thenstandard-part(x) would not be a supremum of this

set. Similarly, ifstandard-part(x) − x ≥ c, it must be thatstandard-part(x) − c ≥ x

so ◦{y ∈ R | y ≤ x} would be bounded bystandard-part(x) − c, again contradicting

standard-part(x) as the supremum of the set. Therefore,standard-part(x) andx arei-close.

Sincestandard-part(x) is standard, it follows that it is the uniquestandardnumberi-close

to x.

These new functions —i-small, i-large, i-limited, i-closeandstandard-part— obey

simple algebraic properties. For example, it is obvious thatx + y is i-small (i-limited) if

bothx andy are i-small (i-limited). If x is i-limited andε is i-small, ε · x is i-small and

x/ε is i-large for ε 6= 0. If x is i-close to y andy is i-close to z, thenx is i-close to z.

Less obvious is the fact that fori-limited x andy, thestandard-partof x + y is the sum of
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standard-part(x) andstandard-part(y).

The convenience of non-standard analysis becomes evident when traditional notions

from analysis are written using the new language of non-standard analysis. For example,

a standardsequence{an} converges to thestandardpointA if A is i-close to aN for all

i-large integersN . A standardfunction f is continuous at astandardpoint x if f(y) is

i-closeto f(x) for all y i-closeto x. These definitions are easier to use than the traditional

definitions from analysis. Consider the functionf(x) = sin(1/x). It is a classical result

from analysis that this function can not be extended continuously atx = 0. The traditional

proof is to find two sequences{an} and{bn} converging to0, so that{f(an)} and{f(bn)}

converge to different values. In non-standard analysis, the argument is considerably more

direct. Considerx0 = 1
2πn andx1 = 1

2πn+π/2 , wheren is ani-large integer. Thenx0 and

x1 arei-close(both beingi-small), but f(x0) = 0 is not i-closeto f(x1) = 1. Therefore,

no value off(0) can bei-close to f(y) for all y i-close to 0, and hencef can not be

continuously extended atx = 0.

With all the new predicates of non-standard analysis, it is important to re-create the

traditional mental picture of the real number line. The integers are divided into two groups.

Thestandardintegers include0,±1,±2, . . . . There is at least one non-standardintegerN .

Necessarily,±N,±(N ± 1),±(N ± 2), . . . are also non-standard. Notice in particular that

there is no least non-standardinteger. Also notice that the propertiesstandardandi-limited

coincide for the integers.

The corresponding picture for the reals is a little more complex. Certainly, there are

i-large numbers, such as thei-large integerN , as well asN/2,
√
N , etc. As is the case with

the integers, all reals larger in magnitude thanN are alsoi-large, as is any numberN − x

for i-limited x. Moreover, there arei-small reals, all of which arei-closeto 0. All i-limited

reals arei-closeto astandardreal. That is, ifx is i-limited, it can be written asx = x∗ + ε,

wherex∗ is standardandε is i-small. The numberx∗ is equal tostandard-part(x).
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3.2 Non-Standard Analysis Primitives in ACL2

As chapter2 showed, the numeric system of ACL2 v2.1 is too restrictive to permit the real

numbers. Hence the first step towards analysis in ACL2 is the extension of the numeric

system to include the irrationals.

In addition to the type recognizersrationalp andcomplex-rationalp of

ACL2 v2.1, ACL2 v2.1(r) includes the new type recognizersrealp andcomplexp and

modifies the typeacl2-numberp to include them both. Moreover, the arithmetic ax-

ioms of ACL2 v2.1(r) have been modified to reflect the new elements in the ACL2 universe.

For many axioms, the required modifications are straight-forward. For example, thePos-

itive axiom, stating that ifx andy are positive rationals,x · y is a positive rational, is

extended to the reals simply by replacingrationalp with realp everywhere. Some

axioms, however, are too useful in their own right to simply replace rational with real ev-

erywhere. For example, an axiom built into the ACL2 type system states that the product

of two rationals is rational. Rather than weakening this axiom by replacing it with the cor-

responding axiom for the reals, ACL2 v2.1(r) adds the axiom asserting that the product of

two reals is real. Of the arithmetic axioms in ACL2 v2.1, only those explicitly dealing with

numerator and denominator can not be extended to the reals.

The initial ACL2 theory contains more than the basic arithmetic axioms. It also

contains many useful arithmetic functions, such asabs , floor , and trunc . All of

these functions need to be extended to accept irrational arguments. This is trivial in the

case of functions likeabs . However, the functionsfloor andtrunc are defined using

integer-quotient , which performs division by repeated subtraction. For example,

the floor of17/2 is found by dividing2 into 17 using repeated subtraction, giving a value

of 8. Clearly, a similar trick will not work for the reals. A simple solution to this problem is

to introduce a new undefined functionfloor1 which is axiomatized to return the correct

value ofbxc for an arbitrary numberx. Of course, it would be easier to axiomatizefloor

directly, but that would make the executable version of the functionfloor undefined for
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all arguments. By introducingfloor1 , it is possible to allow ACL2 to have an executable

version offloor , at least for rational constants. With the executable version, ACL2 can

evaluate a constant expression that appears in the middle of a proof, such as(floor 3/2

1) .

With these modifications, ACL2 is able to reason about the irrational numbers, but

it can not construct irrational numbers. In particular, there are no irrational constants, and

there is no mechanism to allow an ACL2 function to return an irrational result given rational

arguments. Nevertheless, it can reason effectively about the real and complex numbers. For

example, it shown in chapter2 thatx · x 6= 2 is a theorem of ACL2 v2.1. However, this

result can not be proved after the introduction ofrealp . Instead, it is possible to show that

if x ·x = 2 thenxmust be real but not rational. However, as described so far, ACL2 v2.1(r)

can not prove that there must be somex with x ·x = 2, nor can it define the functionsqrt

with the required property. To do that requires the knowledge that the real number line is

complete. This proof is accomplished in ACL2 v2.1(r) using non-standard analysis.

The primitive non-standard functions in ACL2 v2.1(r) arestandard-numberp ,

standard-part , andi-large-integer . Standard-numberp is a function that

tests whether a number isstandardor not. Note, this is a strict numeric type, so ACL2

treats all non-numeric objects as non-standard. The functionstandard-part returns

the standard part of a real or complex number, provided such a number exists, i.e., provided

the number isi-limited. For i-large numbers,standard-part is not defined, but it is

convenient to think of it as the identity function. As its name suggests, the constanti-

large-integer is an integer axiomatized to bei-large; it is also assumed to be positive.

The functionsi-small , i-large , i-limited , andi-close are given explicit defi-

nitions in terms ofstandard-part . A number isi-small if its standard-part

is zero; it isi-large if its inverse isi-small and non-zero; and it isi-limited if it

is not i-large . Two numbers arei-close if their difference isi-small .

All of these functions are special in two ways. First, none of the primitive non-
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standard functions is given an explicit definition. Instead, they are all treated as constrained

functions, as if they had been introduced usingencapsulate or defstub ; ACL2 can

not evaluate the value of any term that depends non-trivially on one of these functions.

Secondly, ACL2 introduces the notion of classical and non-classical functions. These new

functions are considered to be non-classical, as are any functions defined in terms of non-

classical functions. Note, any ACL2 v2.1(r) functions (formulas) that are also ACL2 v2.1

functions (formulas) are necessarily classical.

ACL2 v2.1(r) restricts the use of non-classical functions to prevent inadvertent uses

of the specification axiom on non-classical properties. A non-classical function can not

be defined recursively. In effect, non-classical functions in ACL2 are similar to macros,

since any term involving a non-classical function can always be “flattened” into a term

involving only the primitive non-classical functions. Moreover, non-classical constrained

functions are not permitted in ACL2 v2.1(r). When a function symbol is introduced using

encapsulate , ACL2 v2.1(r) considers the function to be classical, and it ensures that the

local witness function used to justify the introduction is also classical.

Moreover, the use of induction on non-classical formulas is restricted. Recall that

in Internal Set Theory induction can only be used over thestandardintegers. Similarly,

the induction principle in ACL2 can be used to establish the truth of non-classical formulas

only for standardinstances of their variables. The remaining cases are treated separately,

similar to the “base” cases. That is, for each variable appearing in the formula, the non-

standardinduction principle of ACL2 adds the proof obligation that the formula is true for

non-standardinstances of the variable.

Consider the functionfactorial defined as follows:

(defun factorial (n)

(if (and (integerp n) (< 0 n))

(* n (factorial (- n 1)))

1))
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Suppose an attempt is made to prove thatfactorial always returns astandardvalue:

(defthm standard-numberp-factorial-false

(standard-numberp (factorial n)))

The classical induction principle of ACL2 would reduce this theorem to the following two

goals:

(implies (not (and (integerp n) (< 0 n)))

(standard-numberp (factorial n)))

(implies (and (and (integerp n) (< 0 n)))

(standard-numberp (factorial (+ -1 n))))

(standard-numberp (factorial n)))

In addition, since the theorem uses the non-classical functionstandard-numberp , the

following goal is added by ACL2 v2.1(r):

(implies (not (standard-numberp n))

(standard-numberp (factorial n)))

Intuitively, the first two goals prove the theorem for anystandardvalue ofn, and the last

goal proves it for any non-standardn. In this case, the last goal can not be established, and

so ACL2 v2.1(r) does not prove that all integers have astandardfactorial. As can be seen,

this modification to the induction principle is crucial in preserving soundness.

The theoremstandard-numberp-factorial-false is false, because the

factorial of a non-standardinteger is also non-standard. However, the theorem is true if

only standardintegers are considered, as ACL2 v2.1(r) can prove:

(defthm standard-numberp-factorial

(implies (standard-numberp n)

(standard-numberp (factorial n))))
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In this case, the basis and induction steps are as follows:

(implies (and (not (and (integerp n) (< 0 n)))

(standard-numberp n))

(standard-numberp (factorial n)))

(implies (and (and (integerp n) (< 0 n))

(standard-numberp n)

(implies (standard-numberp (+ -1 n))

(standard-numberp (factorial

(+ -1 n)))))

(standard-numberp (factorial n)))

ACL2 can quickly prove both of these goals. In addition, ACL2 v2.1(r) adds the following

goal, since the theorem is non-classical:

(implies (and (not (standard-numberp n))

(standard-numberp n))

(standard-numberp (factorial n)))

This time, ACL2 is able to prove this goal, since the hypotheses are quickly found to be con-

tradictory, completing the proof of the original conjecture. In general, the only non-classical

theorems that can be proved by induction are those that specifically apply tostandardval-

ues, for example by havingstandard-numberp as a hypothesis, as instandard-

numberp-factorial .

Formally, the ACL2 non-standard induction principle is as follows:

Suppose:

• p is a term;

• r is a function symbol that denotes a classical well-founded relation;
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• m is a classical function symbol ofn arguments;

• x1, . . . , xn are distinct variables;

• q1, . . . , qk are terms;

• h1, . . . , hk are positive integers;

• for 1 ≤ i ≤ k and1 ≤ j ≤ hi, si,j is a classical substitution, and it is a

theorem that

(IMPLIES qi

( r ( m x1 . . . xn)/ si,j ( m x1 . . . xn)))

and

• y1, . . . , yu are the variables occurring inp that are one of thexi or are

changed by thesi,j .

Thenp is a theorem if

(IMPLIES (AND (NOT q1) ...(NOT qk))

p)

is a theorem, for each1 ≤ i ≤ u,

(IMPLIES (NOT (STANDARD-NUMBERPyi))

p)

is a theorem, and for each1 ≤ i ≤ k,

(IMPLIES (AND q1 p/ si,1 ... p/ si,hi)

p)

is a theorem.
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Compare this to the formal definition of the induction principle of Nqthm or ACL2, found

in [10, 38].

To understand why the non-standard induction principle is sound, consider a spe-

cific choicep, r, m, xi, qi, hi, si,j , andhk such that the conditions above as well as the

basis and induction steps can be established. Then the following proof in internal set theory

establishes the validity ofp.

PROOF: Without loss of generality, assume that thexi areX1,X2, . . . ,Xn; thatr isR; that

m isM ; thatXn+1,Xn+2, . . . ,Xz are all of the variables other thanX1,X2, . . . ,Xn in p,

theqi and either component of any pair in anysi,j ; thatp is (P X1 . . .Xz); thatqi is (Qi

X1 . . .Xz); thatsi,j replacesXv with some termdi,j,v; and that theYi are given byX1,X2,

. . . ,Xu, for somen ≤ u ≤ z. Note thatdi,j,v is equal toXv for u < v ≤ z.

LetRM be the function onu-tuples defined by

(RM 〈U1 . . . Uu〉 〈V1 . . . Vu〉) = (R (M U1 . . . Un) (M V1 . . . Vn)).

Note thatRM is classical and well-founded.

Let the tupleC = 〈Cu+1 Cu+2 . . . Cz〉 be a binding for the tuple of variables

〈Xu+1 Xu+2 . . . Xz〉. Define the setGC as the shadow set of allu-tuplesU for which

(p U C) is false. That is, it is defined as follows:

GC = ◦{〈U1 . . . Uu〉 | (P U1 . . . Uu Cu+1 Cu+2 . . . Cz) is false}

SinceGC is a standard set, membership inGC can be decided using the classical principle

of induction. In particular, ifGC is non-empty, it must have anRM -minimal tuple. More-

over,GC is a standard set, so by the transfer principle, if it is non-empty, it must have a

standardRM -minimal tuple. Let〈X1 X2 . . . Xu〉 be such a tuple. There are two cases to

consider.

Case 1:Suppose none of theqi is true. By the base case,(P X1 . . . Xu Cu+1 . . . Cz) is

true, and so〈X1 . . . Xu〉 should not be inGC, yielding a contradiction.
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Case 2:Suppose at least one of theqi is true. Without loss of generality, assume that the

term(Q1 X1 . . . Xu Cu+1 . . . Cz) is true. From the conditions onr,m, q, andsi,j , it follows

that

(R (M d1,1,1 . . . d1,1,n) (M X1 . . . Xn))

(R (M d1,2,1 . . . d1,2,n) (M X1 . . . Xn))
...

(R (M d1,h1,1 . . . d1,h1,n) (M X1 . . . Xn))

are all true. By the definition ofRM ,

(RM 〈d1,1,1 . . . d1,1,u〉 〈X1 . . . Xu〉)

(RM 〈d1,2,1 . . . d1,2,u〉 〈X1 . . . Xu〉)
...

(RM 〈d1,h1,1 . . . d1,h1,u〉 〈X1 . . . Xu〉)

are all true as well. Observe, the termsd1,i,j are all standard, since theXi are standard, and

the substitutionss1,i are assumed classical, hence they return standard values for standard

arguments. Since〈X1 . . . Xu〉 is anRM -minimal u-tuple such that(p U C) is false and

thed1,i,j are all standard, it follows that

(P d1,1,1 . . . d1,1,u Cu+1 . . . Cz)

(P d1,2,1 . . . d1,2,u Cu+1 . . . Cz)
...

(P d1,h1,1 . . . d1,h1,u Cu+1 . . . Cz)

are all true. Hence,(P X1 . . . Xu Cu+1 . . . Cz) follows from the first induction hypothesis,

contradicting the assumption that〈X1 . . . Xu〉 is inGC.

Therefore, it can be concluded thatGC is empty, since it is astandardset containing

no standardelements. From the definition ofGC, it follows that for any standard tuple
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〈X1 . . . Xu〉, (P X1 . . . Xu Cu+1 . . . Cz) must be true. Moreover, from the assumptions, if

〈X1 . . . Xu〉 is a non-standard tuple, it also follows that(P X1 . . . Xu Cu+1 . . . Cz) is true.

This is because if〈X1 . . . Xu〉 is non-standard, one of theXi must be non-standard, and

then the theorem follows from the hypothesis

(IMPLIES (NOT (STANDARD-NUMBERPXi))

p)

This establishes that(P X1 . . . Xu Cu+1 . . . Cz) is true for all tuples〈X1 . . . Xu〉.

Since this argument can be carried out for any values of〈Cu+1 . . . Cz〉, it follows

that(P X1 . . . Xu Xu+1 . . . Xz) is true for all values of theXi. This establishes the validity

of p. Q.E.D.

ACL2 v2.1(r) introduces two new events that deal exclusively with non-classical

formulas. The eventdefun-std is used to define astandard function using a non-

classical body. The newly introduced function is considered to be a classical function.

This is justified by the Internal Set Theory concept of shadow functions only when the

function body returns astandardvalue forstandardarguments. In these cases, the function

is explicitly defined only for thestandardarguments; that is, the function is defined by its

body only forstandardarguments. For the remaining arguments, the function is implic-

itly defined, as being the (unique)standardfunction that agrees with the body forstandard

arguments.

Consider, for example, the function introduced as follows:

(defun-std std-pt (x)

(standard-part x))

This function is accepted, because forstandardx, (standard-part x) is standard. It

is important to realize thatstd-pt is not the same as the functionstandard-part . The

standardfunction std-pt is guaranteed equal tostandard-part only for standard

values forx . Sincestandard-part returnsx for these values, it follows thatstd-pt
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is the identity function forstandardx. But, sincestd-pt is considered classical, it must

also be the identity function for all values ofx , since by the transfer axiom, two classical

functions that have equal values forstandardarguments must be equal to each other.

The other event introduced by ACL2 2.1(r) isdefthm-std , which serves as an

explicit invocation of the transfer axiom. Usingdefthm-std , it is possible to prove a

theorem by proving it only forstandardarguments; however, as is the case with the transfer

axiom,defthm-std can only be used to prove classical formulas. For example, consider

the following theorem:

(defthm-std std-pt-is-identity

(implies (acl2-numberp x)

(equal (std-pt x) x)))

Sincestd-pt is treated as a classical function, this theorem can be proved usingdefthm-

std . ACL2 v2.1(r) will prove this theorem by considering onlystandardvalues ofx . That

is, it attempts to prove the following formula instead:

(implies (and (standard-numberp x)

(acl2-numberp x))

(equal (std-pt x) x))

Sincex is known to bestandard, the term(std-pt x) can be expanded using the body

of std-pt , and the proof becomes trivial. Note, the theorem could not have been proved

usingdefthm instead ofdefthm-std , because the term(std-pt x) can not be ex-

panded without the hypothesis(standard-numberp x) , since the body ofstd-pt

can only be expanded forstandardarguments, asstd-pt was introduced usingdefun-

std . Moreover, a similar theorem aboutstandard-part instead ofstd-pt could not

have been proved usingdefthm-std , since the resulting formula is not classical.

The combination ofdefun-std anddefthm-std is particularly powerful. Us-

ing defun-std , it is possible to introduce functions mapping rationals to irrationals. A
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useful technique is to construct a rational approximation{fn(x)} to a particular function

f(x). The limit of the sequence{fn(x)}, namelyf(x), can be expressed in ACL2 us-

ing defun-std asstandard-part(fN (x)) for any i-large naturalN , such asi-large-

integer . Properties off(x) can be established usingdefthm-std . It is only necessary

to prove the given property forstandardvalues ofx, for which cases the definition off(x)

can be opened up tostandard-part(fN (x)). This approach is illustrated in chapter4, where

the square root function is defined in ACL2 and its relevant properties are proved. This

same approach will later be used to define the exponential function.

3.3 The Non-Standard Analysis ACL2 Library

The previous section described the non-standard analysis theory that ACL2 v2.1(r) recog-

nizes on startup. This theory by itself is not strong enough to do useful analysis in ACL2.

The theory is extended by a set of axioms3 and lemmas collected in the ACL2 “books” or

librariesnsa.lisp andnsa-complex.lisp . This section describes those libraries.

It is in nsa.lisp that the existence of a non-standard number is assumed; the

axiom i-large-integer-is-large asserts thati-large-integer is ani-large

number.

Another group of axioms relates how the arithmetic operators combine numbers

that arestandard. For example, the following axiom asserts that the sum of twostandard

numbers isstandard:

(defaxiom standard-numberp-plus

(implies (and (standard-numberp x)

(standard-numberp y))

3Adding the necessary axioms to the fileaxioms.lisp would build them into the theorem prover, so

they would be available to users on start-up. This will be the likely approach when ACL2(r) is released to the

general public; however, the current approach proved more friendly in the development of the theory, because

axioms could be tried out without requiring ACL2 to be recompiled.
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(standard-numberp (+ x y))))

Similar theorems treat unary minus, multiplication, and inversion. It is also assumed that a

complex number isstandardif its real and imaginary parts arestandard.

An important axiom states that the number1 is standardin ACL2. Using this fact

as well as the arithmetic axioms above, it is possible to prove that all rational numbers with

an arbitrary but fixed bound on their numerator and denominator must be standard. The

following two theorems are very useful in ACL2 v2.1(r) to prove that a particular number

is standard:

(defthm standard-numberp-integers-to-10000

(implies (and (integerp x) (<= -10000 x) (<= x 10000))

(standard-numberp x)))

(defthm standard-numberp-rationals-num-demom-10000

(implies (and (rationalp x)

(<= -10000 (numerator x))

(<= (numerator x) 10000)

(<= (denominator x) 10000))

(standard-numberp x)))

Note, the second theorem subsumes the first, but the rewrite engine of ACL2 favors the first

theorem when only integer values are present.

The properties ofstandard-part are also axiomatized. The two fundamental

properties are that thestandard-part of an i-limited number isstandardand that the

standard-part of astandardnumber is the number itself. This results in the following

axioms:

(defaxiom standard-part-of-standard-numberp

(implies (standard-numberp x)
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(equal (standard-part x) x)))

(defaxiom standardp-standard-part

(implies (i-limited x)

(standard-numberp (standard-part x))))

It is also assumed that thestandard-part of a complex number is formed by taking the

standard-part of its real and imaginary parts.

This leads up to thestandard-part of arithmetic expressions. In formulat-

ing these axioms, it is important that the functionstandard-part be applied only to

i-limited numbers. So for example, thestandard-partof the sum of two numbers is the sum

of theirstandard-part, but only if both numbers arei-limited:

(defaxiom standard-part-of-plus

(implies (and (i-limited x)

(i-limited y))

(equal (standard-part (+ x y))

(+ (standard-part x)

(standard-part y)))))

Similar axioms are introduced for multiplication and inverses. However, in the case of

unary minus, the axiom introduced is a little stronger. In particular, it is expected that the

standard-part of a negation is the negation of thestandard-part :

(defaxiom standard-part-of-uminus

(equal (standard-part (- x))

(- (standard-part x))))

This axiom is justified because functionstandard-part can be extended to return the

standard-partof x for i-limited x and simplyx whenx is not i-limited.
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An important axiom states thatstandard-part is a monotonic function on the

reals. In particular, ifx ≤ y, thenstandard-part(x) ≤ standard-part(y).

(defaxiom standard-part-<=

(implies (and (realp x) (realp y) (<= x y))

(<= (standard-part x) (standard-part y))))

Using this axiom, it is possible to prove a “squeeze” theorem forstandard-part . In

particular, ify is betweenx andz, and thestandard-partof x is the same as that ofz, then

thestandard-partof y must also be equal to that value.

(defthm standard-part-squeeze

(implies (and (realp x) (realp y) (realp z)

(<= x y) (<= y z)

(= (standard-part x) (standard-part z)))

(equal (standard-part y) (standard-part x))))

The remaining axioms and theorems define the theory of the predicatesi-small ,

i-limited , and i-large . The first axiom asserts thati-small numbers are also

i-limited . Similarly, it is assumed thatstandard-numberp numbers are alsoi-

limited . The converse of this axiom is not true in general, but it is assumed thati-

limited integers are alsostandard-numberp .

With the axioms introduced up to this point, ACL2 v2.1(r) can prove that the sum

of two i-small numbers isi-small , as is the product of ani-small number and an

i-limited number. It can also be proved that ani-limited number isi-close to

its standard-part .

To prove that the sum of twoi-limited numbers is alsoi-limited , it is

necessary to add an axiom asserting that the sum of astandard-numberp and ani-

small number isi-limited . In particular, ifx is i-limited, it can be written as∗x+ εx,

where∗x is standardandεx is i-small. Similarly, ani-limited y can be written as∗y + εy.
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Hence,x+y is equal to∗x+εx+∗y+εy, which is equal to(∗x+∗y)+(εx+εy), the sum of a

standardand ani-smallnumber which isi-limited by the above axiom. A similar argument

allows ACL2 v2.1(r) to prove that the negative of ani-limited number, the inverse of

an i-limited and noti-small number, and the product of twoi-limited numbers

are alli-limited .

No further axioms are required for non-standard analysis in ACL2 v2.1(r). The

libraries contain an additional number of useful theorems. In particular, it is proved that

the sum of ani-limited and ani-large number must bei-large . Also, it is

shown that the product of ani-large and ani-limited number that is noti-small

must bei-large . Moreover, it is shown that a number that isi-close to an i-

small (i-limited or i-large ) number is alsoi-small (i-limited or i-large

respectively). The predicatei-close is proved to define an equivalence relation.

The predicatesi-small , i-limited , andi-large split the real numbers into

broad orders of magnitude. ACL2 v2.1(r) is able to prove that if a number is smaller

in magnitude than ani-small (i-limited ) number, it must also bei-small (i-

limited ). Similarly, a number larger in magnitude than ani-large number must

be i-large . It is also shown that ani-small number is smaller in magnitude than an

i-limited number, which in turn is smaler in magnitude than ani-large number.

Whether a complex number is ani-small , i-limited , or i-large number

can be decided by inspecting its real and imaginary parts. It can be shown that a complex

number isi-small if and only if both its real and imaginary parts arei-small . Simi-

larly, it is i-limited precisely when both its real and imaginary parts arei-limited .

It is i-large when either of its real and imaginary parts isi-large .

This develops a non-standard analysis theory sufficiently powerful to prove many

useful theorems. The next chapters will illustrate this development, touching on the inter-

mediate value theorem, an order-of-magnitude preserving norm on the complex plane, and

the exponential and trigonometric functions.
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Chapter 4

The Square Root Function Revisited

This chapter combines the results of the previous two chapters to define the square root

function in ACL2 v2.1(r). Recall, chapter2 demonstrated that the square root function

could not be soundly introduced into ACL2 v2.1, even though an arbitrarily good approx-

imation to the square root could be defined. In this chapter, the non-standard analysis

techniques introduced in chapter3 will be used to derive the square root function from the

approximation defined in chapter2.

4.1 Defining the Square Root Function in ACL2

In chapter2, the following ACL2 v2.1 theorem was proved:

(defthm there-is-no-sqrt-2

(not (equal (* x x) 2)))

Recall, the proof of this theorem proceeded by eliminating all the possible candidates for

such anx . That the square of no rational number is equal to 2 followed from the classi-

cal observation that
√

2 is irrational. The complex numbers were eliminated using simple

algebraic means — the square of a non-real complex number is either a non-real complex
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number or a negative real. ACL2 objects other than numbers have zero squares. Thus were

all possibilities eliminated.

However, ACL2 v2.1(r) contains more objects in its universe than ACL2 v2.1. In

particular, it adds the numeric typesrealp andcomplexp . Therefore, the process of

elimination described above fails in ACL2 v2.1(r). Objects of typecomplexp can still be

eliminated with the same algebraic argument by which the complex rationals were elimi-

nated earlier. However, the possibility remains that the square of some irrational is equal to

2. The ACL2 v2.1 theoremthere-is-no-sqrt-2 is not a theorem of ACL2 v2.1(r).

In its stead, a weaker statement can be proved:

(defthm irrational-sqrt-2

(implies (equal (* x x) 2)

(and (realp x)

(not (rationalp x)))))

Given the above, it appears possible to axiomatize a function in ACL2 v2.1(r) cor-

responding to the square root function. In fact, such a function can be defined. In chapter2

the functioniter-sqrt was introduced, and it was shown that this function is a good ap-

proximation to the square root function. Recall in particular the following theorem, updated

to the real numbers:

(defthm convergence-of-iter-sqrt

(implies (and (realp x)

(realp epsilon)

(< 0 epsilon)

(<= 0 x))

(and (<= (* (iter-sqrt x epsilon)

(iter-sqrt x epsilon))

x)

(< (- x (* (iter-sqrt x epsilon)
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(iter-sqrt x epsilon)))

epsilon))))

The number(iter-sqrt x epsilon) can be bounded by a tight range. In particular,

it is non-negative, and it can be no larger than the maximum ofx and 1. This shows that

when x is an i-limited number, so is(iter-sqrt x epsilon) . In ACL2, we can

establish the following theorems, which verify the claimed bounds for the expression:

(defthm iter-sqrt-type-prescription

(and (realp (iter-sqrt x epsilon))

(<= 0 (iter-sqrt x epsilon))))

(defthm iter-sqrt-upper-bound-1

(implies (and (realp x)

(<= 1 x))

(<= (iter-sqrt x epsilon) x)))

(defthm iter-sqrt-upper-bound-2

(implies (and (realp x)

(< x 1))

(<= (iter-sqrt x epsilon) 1)))

From these lemmas, it is easy to show in ACL2 v2.1(r) thatiter-sqrt returns ani-limited

value when its argument isi-limited, as claimed above:

(defthm limited-iter-sqrt

(implies (and (i-limited x)

(realp x)

(<= 0 x))

(i-limited (iter-sqrt x epsilon))))
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This allows the functionacl2-sqrt to be introduced as the limit ofiter-sqrt . This

is accomplished using the ACL2 v2.1(r) eventdefun-std :

(defun-std acl2-sqrt (x)

(standard-part (iter-sqrt x (/ (i-large-integer)))))

This is the first example of a construction that will be used repeatedly in future chapters, so

it is useful to pause and reflect on what has happened. Recall,defun-std permits the defi-

nition of classicalfunctions from non-classical bodies. The body ofacl2-sqrt is clearly

non-classical, as it refers to the primitive non-standard analysis functionsstandard-

part andi-large-integer . However, the definition is only accepted when the body

returns astandardvalue forstandardarguments. The body ofacl2-sqrt does just that,

because theiter-sqrt term will return ani-limited result — since thestandardvalue of

x is alsoi-limited — and thestandard-partof ani-limited number is known to bestandard.

Hence, the definition is accepted by ACL2 v2.1(r). The body defines the value ofacl2-

sqrt only for standardargumentsx . In these cases, the number returned byiter-sqrt

is i-closeto the square root ofx — this is true, since its square is within(/ (i-large-

integer)) of the square ofx hence they arei-closeto each other, and the squares of two

non-negativei-limited numbers arei-close to each other only when the two numbers are

i-closeto each other. Therefore, thestandard-partof the iter-sqrt term must be equal

to
√
x, since

√
x is standardwhenx is standardand no two differentstandardnumbers are

i-closeto each other. Henceacl2-sqrt is equal to the mathematical square root function.

Thus far, it has only been mechanically verified that the function exists. Its proper-

ties follow from a formalization of the argument above. The first step is a restatement of the

convergence result foriter-sqrt . The restatement uses the language of non-standard

analysis:

(defthm convergence-of-iter-sqrt-strong

(implies (and (realp x)

(realp epsilon)
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(< 0 epsilon)

(i-small epsilon)

(<= 0 x))

(i-close (* (iter-sqrt x epsilon)

(iter-sqrt x epsilon))

x)))

The remainder of the argument can be formalized easily in ACl2 v2.1(r). The result is the

fundamental theorem of the square root function:

(defthm-std sqrt-sqrt

(implies (and (realp x)

(<= 0 x))

(equal (* (acl2-sqrt x) (acl2-sqrt x)) x)))

The use ofdefthm-std instead ofdefthm to introduce the theoremsqrt-sqrt is

important. It allows ACL2 v2.1(r) to restrict consideration tostandardvalues ofx . Only

for those values ofx can the definition ofacl2-sqrt be opened. When it is, the result

follows from the lemmaconvergence-of-iter-sqrt-strong .

4.2 Properties of the Square Root Function

ACL2 v2.1(r) can prove more properties of the square root function. Particularly useful

are theorems describing how to decide whether a number is less than or greater than the

square root of another. A familiar trick from algebra is to conclude that
√
x < y by veri-

fying thatx < y2 — and a familiar error in algebra is to forget to verify thatx andy are

non-negative before squaring both sides. This trick can be used in ACL2 by proving the

following theorem:

(defthm sqrt-<-y
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(implies (and (realp x)

(<= 0 x)

(realp y)

(<= 0 y))

(equal (< (acl2-sqrt x) y)

(< x (* y y)))))

Similar theorems can be proved to reason abouty <
√
x, as well as the cases involving>

instead of<.

In many cases, these theorems can be used to evaluate the value of
√
x. What is

necessary is to find a candidate valuey so thaty2 = x. It then follows thaty =
√
x:

(defthm y*y=x->y=sqrt-x

(implies (and (realp x)

(<= 0 x)

(realp y)

(<= 0 y)

(equal (* y y) x))

(equal (acl2-sqrt x) y)))

This theorem will serve as the only way to reduce constant expressions involvingacl2-

sqrt . It is immediate, for example, that(acl2-sqrt 0) is equal to 0 and(acl2-

sqrt 1) is equal to 1. The case of equalities involving non-constantacl2-sqrt terms

can also be solved by squaring both sides of the equality.

The theoremy*y=x->y=sqrt-x is extremely useful. Fromy*y=x->y=sqrt-

x , it is easy to verify that the square root of a product is the product of the square roots.

Similarly, the inverse of a square root is the square root of the inverse. Moreover, it can also

be shown that
√
x2 = |x|. A surprising theorem that follows fromy*y=x->y=sqrt-x

is that fori-limited numbers, thestandard-partof the square root is the same as the square

root of thestandard-part.
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In order to introduce the functionacl2-sqrt , it was required to show thatiter-

sqrt returnedi-limited values fori-limited arguments. ACL2 v2.1(r) can also prove that

acl2-sqrt returnsi-limited results fori-limited arguments. The proof follows from the

following two lemmas:

(defthm-std acl2-sqrt-x-<-1

(implies (and (realp x)

(<= 0 x)

(< x 1))

(<= (acl2-sqrt x) 1)))

(defthm-std acl2-sqrt-x-<-x

(implies (and (realp x)

(<= 0 x)

(<= 1 x))

(<= (acl2-sqrt x) x)))

Notice the use ofdefthm-std . It permits the body of the functionacl2-sqrt to be

opened up, since it restrictsx to standardvalues. After opening up the body ofacl2-

sqrt , the theorems follows from the analogous results foriter-sqrt and the mono-

tonicity of standard-part. From these two lemmas, it becomes clear thatacl2-sqrt is

i-limited:

(defthm limited-sqrt

(implies (and (realp x)

(<= 0 x)

(i-limited x))

(i-limited (acl2-sqrt x))))

This illustrates an approach that will be repeated in the next chapters. First an

approximation function —iter-sqrt — is defined. It is shown that this function returns
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i-limited values fori-limited arguments. Then, the desired function —acl2-sqrt —

is defined usingdefun-std by taking thestandard-partof the approximation function.

The definition is accepted, since the approximation function returnsi-limited values for

standardarguments, so itsstandard-partis standard. When a family of approximation

functions exists, the specific approximation chosen is one that give values that arei-close

to the desired values forstandardarguments. In the case ofiter-sqrt , the quality

of the approximation was specified with theepsilon argument, so the way to ensure

the approximated result wasi-close to the true value was to choose ani-small value of

epsilon . Later, examples using sequences will be shown, and in these cases thei-close

value is selected by choosing an element of the sequence withi-large index. Once the

function is defined, its properties are proved usingdefun-std . The properties need only

be proved forstandardvalues, and the result will follow for all values because of the transfer

axiom.
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Chapter 5

The Exponential Function

This chapter shows how the exponential function can be introduced into ACL2. The pro-

cedure follows the paradigm presented in chapter4 for the square root function. First, an

approximation to the exponential function is defined. This is based on the Taylor series to

ex. Then, it is shown that the approximation converges, hence using the principles of non-

standard analysis it is possible to define the functionex as thestandard-partof the partial

sum of the Taylor series up to an arbitraryi-large integerN . Important properties of the

exponential function are also established. In section5.2, it is shown thatex+y = ex · ey.

The proof proceeds by examining the partial sums of the Taylor series approximation of

ex+y as well as the product of the partial sums of the approximations forex andey. Using

this result, it is proved in section5.3that the functionex is continuous.

5.1 Defining the Exponential Function in ACL2

The functionex can be defined in ACL2 by considering approximations toex. The Taylor

series approximation toex is given by

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · .
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Let Tn(x) be the partial sum of this Taylor series through thexn

n! term. That is, letTn(x) be

defined as follows:

ex ≈ Tn(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
.

Since the Taylor series forex is convergent,Tn(x) is i-limited for i-limited values ofx,

regardless of the value ofn. In particular, ifx is i-limited, TN (x) is i-limited for an i-large

naturalN . Therefore,standard-part(TN (x)) is astandardnumber whenx is standard, and

it is possible to defineex = standard-part(TN (x)).

The key step in this construction is the assertion thatTn(x) is i-limited whenx is

i-limited. This can be proved by comparingTn(x) to a geometric series. However, this is

complicated by the fact that the terms inTn(x) are complex, not necessarily real numbers.

Since the numbersxn/n! are potentially complex, it is not possible to compare them directly

with a terma0 · rn from a geometric series. What is required is a norm||x|| on the complex

numbers. It is then possible to show that||xn/n!|| < ||a0 · rn||. Section5.1.1develops the

theory of a suitable norm over the complex numbers. Section5.1.2develops the theory of

geometric series, as well as some important lemmas, such as the comparison test. These

results are used in section5.1.3to define the exponential function.

5.1.1 A Complex Norm

A norm||x|| is a real-valued function with the following properties:

• ||x|| is real and||x|| ≥ 0 for all values ofx.

• ||0|| is equal to0. Moreover, if||x|| = 0, thenx is necessarily equal to0.

• ||x|| obeys the triangle inequality. That is,||x+ y|| ≤ ||x||+ ||y||.

In addition, ||x|| is calledmagnitude-preservingif ||x|| is i-small (i-limited, or i-large) if

and only ifx is i-small (respectively,i-limited, or i-large).
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Although any norm that satisfies the required properties will serve, this section will

focus on the norm defined by||a+ bi|| =
√
a2 + b2. In ACL2, this norm can be defined as

follows:

(defun norm (x)

(acl2-sqrt (+ (* (realpart x) (realpart x))

(* (imagpart x) (imagpart x)))))

This definition uses the functionacl2-sqrt , defined in chapter4.

It is immediate that||x|| is a non-negative real since the functionacl2-sqrt

always returns a non-negative real result. It is also clear that||x|| = 0 if and only if x = 0.

It is a less obvious but a well-known fact that||x|| obeys the triangle inequality. To see

this, define the conjugate of a complex numbera + bi as(a + bi)′ = a − bi. Observe that

conjugates obey simple algebraic properties, including(x + y)′ = x′ + y′, (xy)′ = x′y′,

x + x′ = Re(x) whereRe(x) is the real part of x, andx′′ = x. Since||x||2 = x · x′, it

follows that||x+ y||2 = (x+ y)(x+ y)′ = (x+ y)(x′ + y′) = xx′ + xy′ + x′y + yy′ =

xx′+xy′+ (xy′)′+ yy′ = xx′+ yy′+ 2Re(xy′). Clearly,Re(xy′) ≤ ||xy′|| = ||x|| · ||y||.

Therefore,||x+y||2 ≤ xx′+yy′+2||x||·||y|| = ||x||2+||y||2+2||x||·||y|| = (||x||+||y||)2.

Since both sides of the inequality involved non-negative reals, it is possible to take square

roots of both sides, proving that||x+ y|| ≤ ||x||+ ||y|| as required.

To recognize that||x|| is a magnitude-preserving norm, first notice that
√
x is a

magnitude-preserving function. That is,
√
x is i-small if and only if x is i-small, and simi-

larly for i-limited andi-large. Likewise,x2 is a magnitude-preserving function. Sincea+bi

is i-small if and only if botha andb arei-small, it follows thata+ bi is i-small if and only

if a2 + b2 is i-small. Hence,a + bi is i-small if and only if ||a + bi|| is i-small. Similar

arguments work fori-limited andi-large values ofa+ bi.

Whenx is i-limited, thestandard-partof ||x|| is given by||standard-part(x)||. This

follows from the fact that
√

standard-part(y) = standard-part(
√
y).
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Several other lemmas about the norm||x|| will be needed in the following sections.

Norms are idempotent; that is,|| ||x|| || = ||x||. Moreover, whenx andy are non-negative

reals, the norm is monotonic; ifx ≤ y, ||x|| ≤ ||y||. A very important lemma is that norms

distribute over products. That is,||xy|| = ||x|| · ||y||. Moreover, whena andb are positive

reals,||ax + bx|| = ||a|| · ||x|| + ||b|| · ||x||. All of these results can be easily proved in

ACL2 using nothing more than simple algebra.

5.1.2 Geometric Series

Mathematically, a real (complex) sequence is a function from the positive integers into the

real (complex) numbers. A sequence is commonly written as the enumeration of its values,

e.g.,a1, a2, a3, . . .. Using this notation, the sequence is specified as{an}. The sequence is

said to converge to a valueA if the terman is i-closetoA for all i-large integersn.

Informally, a series is the sum of all the terms in a sequence. Formally, a series is

defined by the partial sums of a sequence. Given the sequence{an}, the partial sums are

defined as the sequencea1, a1 + a2, a1 + a2 + a3, . . .. If this sequence of partial sums

converges to some valueS, the series{an} is said to converge toS.

It is natural to represent a sequence in ACL2 as a function mapping a positive integer

argumenti into theith element of the sequence,ai. It is more convenient, however, to write

the function to return the firsti elements of the sequence, not justai. This allows properties

of sequences — more precisely, properties of finite prefixes of sequences — to be written as

first-order predicates. Instead of saying that the functionseq is a geometric sequence, for

example, it is possible to say that the sequence returned byseq is geometric. Note the shift

from second-order to first-order logic: the expression(geometricp seq) , which is

inadmissible in ACL2, is replaced by(geometricp (seq n)) . Using this approach,

properties about sequences can be stated as properties about lists, an area where ACL2 is

particularly capable.

A sequence is geometric if the ratio of successive terms is constant. It can be written
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asa1, a1 · r, a1 · r2, a1 · r3, . . ., wherea1 is the initial element of the sequence andr is the

constant ratio. The following ACL2 function tests whether a sequence is geometric:

(defun geometric-sequence-p (seq ratio)

(if (consp seq)

(if (consp (cdr seq))

(and (acl2-numberp (car seq))

(equal (* (car seq) ratio)

(car (cdr seq)))

(geometric-sequence-p (cdr seq) ratio))

(acl2-numberp (car seq)))

nil))

The function expects two arguments, the sequence and the expected ratio. It is possible

to generate a geometric sequence from its first element and constant ratio. The following

function generates the firstnterms elements of such a sequence:

(defun geometric-sequence-generator (nterms a1 ratio)

(if (zp nterms)

nil

(cons a1

(geometric-sequence-generator (1- nterms)

(* a1 ratio)

ratio))))

For example, the sequence generated by(geometric-sequence-generator 3 7

1/2) is (7 7/2 7/4) . It is a simple matter to prove that any sequence generated by this

function is, in fact, geometric.

(defthm geometric-sequence-generator-is-geometric

(implies (and (not (zp nterms))
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(acl2-numberp x))

(geometric-sequence-p

(geometric-sequence-generator nterms x a)

a)))

It is a well-known result that the sum of the firstn elements of a geometric sequence

is given bya1−a1·rn
1−r , wherea1 is the first element of the sequence andr is the constant ratio.

The result follows because the sumS is given byS = a1 +a1 · r+a1 · r2 + · · ·+a1 · rn−1.

It follows thatrS = a1 · r+ a1 · r2 + · · ·+ a1 · rn. SubtractingrS fromS and simplifying,

S(1− r) = a1 − a1 · rn, thereforeS = a1−a1·rn
1−r . This argument can be easily formalized

in ACL2, yielding the following theorem:

(defthm sumlist-geometric

(implies (and (geometric-sequence-p seq ratio)

(acl2-numberp ratio)

(not (equal ratio 1)))

(equal (sumlist seq)

(if (consp seq)

(/ (- (car seq)

(* ratio (last-elem seq)))

(- 1 ratio))

0))))

As their names suggest, the functionsumlist adds up all the elements of a sequence, and

last-elem returns the last element of a sequence. Since the last element of a geometric

sequence can be derived from the first element, the constant ratio, and the length of the

sequence, it is possible to find a simpler formula for the geometric sum. In particular, the

last element of an geometric sequence withn elements is given bya1 · rn−1, as proved by

the following theorem:
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(defthm last-geometric

(implies (and (geometric-sequence-p seq ratio)

(consp seq))

(equal (last-elem seq)

(* (car seq)

(expt ratio (- (len seq) 1))))))

Combining these two theorems produces the classic result for the sum of a geometric se-

quence:

(defthm sumlist-geometric-useful

(implies (and (geometric-sequence-p seq ratio)

(acl2-numberp (car seq))

(acl2-numberp ratio)

(not (equal ratio 1)))

(equal (sumlist seq)

(* (car seq)

(/ (- 1 (expt ratio (len seq)))

(- 1 ratio))))))

While geometric series are important in their own right, their significance to the

exponential function is indirect. Consider the Taylor approximation toex:

ex = 1 + x+
x2

2!
+ · · ·

In particular, consider the successive termsxn

n! and xn+1

(n+1)! . These differ by a factor ofxn+1 .

It is clear that the terms in the Taylor sequence afterxn

n! are no larger than the terms in the

geometric series with starting numberx
n

n! and constant ratioxn+1 . It should be possible to

argue, therefore, that the Taylor series converges to some value less than the sum of the

geometric series.
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To formalize this argument, it is necessary to formalize the notion of “no larger”

used above. This can be done by using the complex norm introduced in section5.1.1.

What is also needed is a version of the comparison test: if||an|| ≤ ||bn|| for all indices

n, then
∑

n ||an|| converges if
∑

n ||bn|| converges. When
∑

n ||an|| converges, the series

is called absolutely convergent. Absolute convergence is a stronger property than simple

convergence: a sequence is convergent whenever it is absolutely convergent.

The needed theory of absolute convergence can be readily developed in ACL2.

First, the notion of the sum of the norms of a sequence is required; i.e., the value
∑

n ||an||

for a given sequence{an}:

(defun sumlist-norm (x)

(if (consp x)

(+ (norm (car x))

(sumlist-norm (cdr x)))

0))

From the definition, it is apparent thatsumlist-norm is a non-negative real. That the

sumlist-norm of a list is at least equal to the norm of the sum of the list is a simple

generalization of the triangle inequality for norms:

(defthm norm-sumlist-<=-sumlist-norm

(<= (norm (sumlist l))

(sumlist-norm l)))

As was the case with the sum of a geometric series, it is possible to find a closed

form solution for thesumlist-norm of a geometric sequence, provided the constant ratio

is a real between 0 and 1. This restriction is necessary to ensure the term1 − rn is always

positive. The result is similar to the sum of a geometric series:

(defthm sumlist-norm-real-geometric

(implies (and (geometric-sequence-p seq ratio)
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(acl2-numberp (car seq))

(realp ratio)

(<= 0 ratio)

(< ratio 1))

(equal (sumlist-norm seq)

(* (norm (car seq))

(norm (/ (- 1 (expt ratio

(len seq)))

(- 1 ratio)))))))

This theorem has some important consequences. When the first element of a geometric

sequence isi-limited, it follows that thesumlist-norm is also i-limited, provided the

constant ratio is noti-closeto 1. This also holds when the first element of the sequence is

i-small, in which case thesumlist-norm is alsoi-small.

The only remaining detail is the comparison test. The following function can be

used to recognize when a sequence is bounded below another sequence:

(defun seq-norm-<= (x y)

(if (consp x)

(and (consp y)

(<= (norm (car x)) (norm (car y)))

(seq-norm-<= (cdr x) (cdr y)))

t))

From the definition, it is simple to deduce that if a sequence is bounded by another, its

sumlist-norm is bounded by the other’s:

(defthm seq-norm-<=-sumlist-norm

(implies (seq-norm-<= x y)

(<= (sumlist-norm x)
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(sumlist-norm y))))

An important consequence is that if thesumlist-norm of a sequence isi-limited, the

sumlist-norm of any sequence that is bounded by it must also bei-limited. A similar

result holds when a sequence has ani-smallsumlist-norm . These two results combined

form the non-standard analysis equivalent of the comparison test for convergence.

5.1.3 The Definition of the Exponential Function

The stage is almost set for the introduction of the exponential function into ACL2. It is a

simple matter to define the Taylor series approximation toex in ACL2. Moreover, as argued

in the previous section, the seriesx
i

i! + xi+1

(i+1)! + xi+2

(i+2)! + · · · is bounded by a geometric

series with first elementx
i

i! and constant ratio||x||(i+1) . However, this geometric series is not

guaranteed to converge absolutely unless||x|| is less thani+1. So the first||x||+1 terms of

the Taylor series approximation must be accounted for differently. The following argument

suffices. Whenx is limited, so is||x|| + 1. Since each of thex
n

n! terms is limited whenx

andn are limited, it follows that the first||x||+ 1 terms of the Taylor approximation is the

sum of ani-limited number ofi-limited numbers, so it must bei-limited.

The Taylor approximation can be defined as follows:

(defun taylor-exp-term (x counter)

(* (expt x counter)

(/ (factorial counter))))

(defun taylor-exp-list (nterms counter x)

(if (or (zp nterms)

(not (integerp counter))

(< counter 0))

nil

(cons (taylor-exp-term x counter)
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(taylor-exp-list (1- nterms)

(1+ counter)

x))))

For example,(taylor-exp-term 2 3) is equal to8/6 = 4/3 and(taylor-exp-

list 4 0 2) is ’(1 2 2 4/3) . Since the termxn is i-limited whenx andn are

i-limited andn is non-negative, it follows thattaylor-exp-term is i-limited under

these circumstances. In particular, the following theorem holds:

(defthm limited-taylor-exp-term

(implies (and (<= 0 counter)

(i-limited counter)

(i-limited x))

(i-limited (taylor-exp-term x counter))))

Since each term in the sum isi-limited, the sum of ani-limited number of terms is also

i-limited. This shows that ani-limited prefix of the Taylor expansion adds up to ani-limited

number:

(defthm taylor-exp-list-limited-up-to-limited-counter

(implies (and (i-limited nterms)

(integerp counter)

(i-limited counter)

(i-limited x))

(i-limited (sumlist

(taylor-exp-list nterms

counter

x)))))

All that remains is to show that the remaining terms in the Taylor approximation

really are bounded by a geometric sequence. The proof is simplified if a different definition
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of taylor-exp-list is used. In particular, consider the following function:

(defun taylor-exp-list-2 (nterms prev i x)

(if (or (zp nterms)

(not (integerp i))

(< i 0))

nil

(cons prev

(taylor-exp-list-2 (1- nterms)

(* prev (/ x (+ 1 i)))

(+ 1 i)

x))))

This definition makes it immediately apparent that the ratio of successive terms in the Tay-

lor approximation toex is x
i+1 . Simple induction verifies that this function is identical to

taylor-exp-list . It is easy to show that this function is bounded above by a geometric

sequence:

(defthm taylor-exp-list-2-seq-<=geom-sequence-generator

(implies (and (<= (norm prev) (norm a1))

(integerp i)

(<= 0 i)

(realp ratio)

(<= (norm (/ x (+ 1 i))) (norm ratio)))

(seq-norm-<= (taylor-exp-list-2 nterms

prev

i

x)

(geometric-sequence-generator

nterms
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a1

ratio))))

The only restriction on the geometric sequence is that the norm of its first element be no

less than the norm of the first element of the Taylor series, and that the norm of its constant

ratio be no less than the norm ofxi+1 .

These theorems are sufficient to prove the Taylor sum ofex is i-limited for i-limited

values ofx. The important lemma tying all these results together is the division of the

terms in the Taylor sum into those with exponent less than||x|| and the remainder; the

sum of both sublists is known to bei-limited, so their combined sum is alsoi-limited. In

anticipation of the eventual definition ofex in ACL2, it is convenient to phrase this split

using the designated constanti-large-integer :

(defthm taylor-exp-list-split-for-limited

(implies (and (i-limited x)

(integerp counter)

(<= 0 counter))

(equal (taylor-exp-list (i-large-integer)

counter

x)

(append (taylor-exp-list

(next-integer

(next-integer (norm x)))

counter

x)

(taylor-exp-list

(- (i-large-integer)

(next-integer

(next-integer (norm x))))
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(+ counter

(next-integer

(next-integer (norm x))))

x)))))

Trivially, it is now possible to show that the Taylor approximation ofex is i-limited:

(defthm taylor-exp-list-limited

(implies (i-limited x)

(i-limited

(sumlist

(taylor-exp-list (i-large-integer) 0 x)))))

In fact, it is possible to derive a stronger result: the Taylor series converges absolutely.

(defthm taylor-exp-list-norm-limited

(implies (i-limited x)

(i-limited

(sumlist-norm

(taylor-exp-list (i-large-integer) 0 x)))))

The way is now paved for the definition ofex in ACL2.

(defun-std acl2-exp (x)

(standard-part

(sumlist (taylor-exp-list (i-large-integer) 0 x))))

This definition uses ACL2’s newdefun-std primitive, which allows astandardfunc-

tion to be defined implicitly by specifying its values only forstandardarguments. In or-

der for the definition to be accepted, it must be shown that forstandardarguments, the

function yieldsstandardresults. This follows, since the function body is of the form
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standard-part(S), whereS is the Taylor approximation toex, known to bei-limited for

i-limited values ofx.

This definition is sufficient, but it leaves open the question of whether the function

defined depends on the value ofi-large-integer . To see that this is not the case, it

is necessary to consider what would happen when some other positivei-large integerM is

used instead ofi-large-integer . Specifically, the difference between the two Taylor

approximations must bei-small.

This is simple to visualize. SupposeN andM are positivei-large integers such

thatN < M , and supposex is ani-limited number. The termxN+1

(N+1)! is necessarilyi-small,

because it is less than the termxk ·
(

x
k+1

)N−k
for somei-limited k with k > x (e.g.,

k = dxe). But this is the product of thei-limited number,xk, and ani-small number,(
x
k+1

)N−k
, hence it isi-small. Therefore, the seriesx

N+1

(N+1)! + xN+2

(N+2)! + · · ·+ xN

N ! is bounded

by a geometric series with ani-smallstarting element and constant ratio with norm less than

1, implying the sum of this series isi-small.

This argument can be formalized in ACL2 in a manner similar to the proof of

taylor-exp-list-limited . The result yields the following convergence theorem:

(defthm exp-convergent

(implies (and (i-limited x)

(integerp M) (<= 0 M) (i-large M)

(integerp N) (<= 0 N) (i-large N))

(i-close (sumlist (taylor-exp-list M 0 x))

(sumlist (taylor-exp-list N 0 x)))))

An analogous result holds forsumlist-norm instead ofsumlist . This second form of

the theorem will prove important in the subsequent development of the theory.

It is now apparent that the use ofi-large-integer in the definition ofex was

inconsequential. In other words,(acl2-exp x) is preciselyex.
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5.2 The Exponent of a Sum:ex+y = ex · ey

An important property of the exponential function is thatex+y = ex · ey. This section

presents a proof of this theorem in ACL2. The proof proceeds by considering finite Taylor

approximations toex+y and ex · ey. Consider
∑n

i=0
(x+y)i

i! . The term(x + y)i can be

expanded using the binomial theorem. The resulting terms can be simplified as follows:

n∑
i=0

(x+ y)i

i!
=

n∑
i=0

∑i
j=0

(
i
j

)
xi−jyj

i!

=
n∑
j=0

 n∑
i=j

(
i
j

)
xi−j

i!

 · yj
=

n∑
j=0

 n∑
i=j

xi−j

j! (i− j)!

 · yj
=

n∑
j=0

 n∑
i=j

xi−j

(i− j)!

 · yj
j!

=
n∑
j=0

(
n−j∑
i=0

xi

i!

)
· y

j

j!

This last term is very close to
∑n

j=0

(∑n
i=0

xi

i!

)
· y

j

j! , which is the product of
∑n

i=0
xi

i! and∑n
j=0

yj

j! . The difference between these two terms is
∑n

j=1

(∑n
i=n−j+1

xi

i!

)
· y

j

j! . Notice

that all terms in this difference are of a high order; each term contains a large exponent on

eitherx or y.

It is best to visualize the situation in a 2-dimensional grid. The columns of the grid

correspond to thex
i

i! terms, and the rows to they
j

j! terms, so the termti,j in position(i, j) of

the grid corresponds to the productxi

i! ·
yj

j! . The product of
∑n

i=0
xi

i! and
∑n

j=0
yj

j! is the sum

of all the termsti,j in the grid. The sum
∑n

i=0
(x+y)i

i! corresponds to the sum of the terms

“below” the triangular; i.e., those terms withi + j ≤ n. Now, consider the sum of theti,j

terms in the bottom “quadrant” of this grid; that is, those terms with bothi andj less than

n/2. It is clear that
∑n

i=0
(x+y)i

i! lies between the sum of the terms in the bottom quadrant
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and those in the entire grid. But the sum of the terms in the bottom quadrant correspond to

the product of
∑n/2

i=0
yi

i! and
∑n/2

j=0
xj

j! . If n is i-large so isn/2, so the sum of the bottom

quadrant and the entire grid arei-close to each other, since the Taylor series is known to

converge. Since
∑n

i=0
(x+y)i

i! lies between these, it is also close to both of them. Hence,

taking thestandard-partof both expressions yieldsex+y = ex · ey.

The following sections build the ACL2 theory necessary to formalize this argument.

First, a proof of the binomial theorem is presented. Then some lemmas dealing with sum-

mations and nested summations are derived. With these pieces in place, the main theorem

can be summarily proved.

5.2.1 The Binomial Theorem

The binomial theorem states that(x + y)n =
∑n

i=0

(
n
i

)
xiyn−i for non-negative integer

values ofn. This section develops an ACL2 proof of this well-known result.

The binomial function
(
n
k

)
= n!

k!(n−k)! can be defined in ACL2 as follows:

(defun choose (k n)

(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))

(/ (factorial n)

(* (factorial k) (factorial (- n k))))

0))

Intuitively, this function counts the number of differentk-element subsets that can be

formed from ann-element set — there aren!
(n−k)! ways of choosing thek elements, and

dividing this byk! eliminates the duplicate counting of permutations. However, without

this intuition, it is not immediately obvious that
(
n
k

)
is always an integer.

However, it is possible to provide an alternative and well-known definition of
(
n
k

)
that makes its properties more apparent. Consider the process of choosing ak-element

subsetS′ from a set ofn-elementsS. A reasonable approach is to pick an arbitrary element

x0 ∈ S and consider two possibilities. Ifx0 is chosen as a member ofS′, then the remaining
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elements ofS′ can be chosen in
(
n−1
k−1

)
different ways — i.e.,k − 1 elements remain to be

chosen fromS − {x0}. Conversely, ifx0 is not chosen as a member ofS′, then allk

elements ofS′ must be chosen from then− 1 elements inS − {x0}. Therefore, it appears

that
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.

This key observation can be proved in ACL2 as follows:

(defthm choose-reduction

(implies (and (integerp k)

(integerp n)

(< 0 k)

(< k n))

(equal (choose k n)

(+ (choose (1- k) (1- n))

(choose k (1- n))))))

It now becomes a simple matter to observe thatchoose is an integer function:

(defthm choose-is-non-negative-integer

(and (integerp (choose k n))

(<= 0 (choose k n))))

The theoremchoose-reduction also holds the key for the binomial theorem.

Consider the inductive case in the proof of the theorem. From the induction hypothesis,

it follows that (x + y)n−1 =
∑n−1

i=0

(
n−1
i

)
xiyn−1−i. The binomial theorem can now be

proved by the following argument:

(x+ y)n = (x+ y) · (x+ y)n−1

= x · (x+ y)n−1 + y · (x+ y)n−1

= x ·
n−1∑
i=0

(
n− 1
i

)
xiyn−1−i + y ·

n−1∑
i=0

(
n− 1
i

)
xiyn−1−i
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=
n−1∑
i=0

(
n− 1
i

)
xi+1yn−1−i +

n−1∑
i=0

(
n− 1
i

)
xiyn−i

=
n∑
i=1

(
n− 1
i− 1

)
xiyn−i +

n−1∑
i=0

(
n− 1
i

)
xiyn−i

=
(
n− 1

0

)
x0yn−0 +

n−1∑
i=1

((
n− 1
i− 1

)
+
(
n− 1
i

))
xiyn−i +(

n− 1
n− 1

)
xnyn−n

=
(
n

0

)
x0yn−0 +

n−1∑
i=1

(
n

i

)
xiyn−i +

(
n

n

)
xnyn−n

=
n∑
i=0

(
n

i

)
xiyn−i

Other thanchoose-reduction , the only facts needed are
(
n
0

)
= 0 for all n and

(
n
n

)
= 1

for n 6= 0.

It remains only to define the binomial expansion of(x+ y)n in ACL2. This can be

done with the following function:

(defun binomial-expansion (x y k n)

(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))

(cons (* (choose k n) (expt x k) (expt y (- n k)))

(binomial-expansion x y (1+ k) n))

nil))

The functionbinomial-expansion actually computes the value of
∑n

i=k

(
n
i

)
xiyn−i.

For example, the value of(binomial-expansion 1 1 0 3) is ’(1 3 3 1) and

that of (binomial-expansion 1 2 0 3) is ’(8 12 6 1) . In ACL2, the bino-

mial theorem can be expressed as follows:

(defthm binomial-theorem

(implies (and (integerp n) (<= 0 n))

(equal (expt (+ x y) n)
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(sumlist

(binomial-expansion x y 0 n)))))

An interesting corollary follows from this theorem. It is not immediately obvious that∑n
i=0

(
n
i

)
xiyn−i =

∑n
i=0

(
n
i

)
xn−iyi. However, this is a trivial observation using the bino-

mial theorem, since it reduces to(x+ y)n = (y + x)n.

5.2.2 Nested Summations

As seen earlier, the proof ofex+y = ex · ey depends heavily on properties of nested sums.

Particularly pertinent are lemmas that allow summations to be permuted; i.e.,
∑

i

∑
j ai,j =∑

j

∑
i ai,j . Moreover, some of the summations to follow will be triangular, for example in

the sum
∑n

i=0

∑i
j=0 ai,j =

∑n
j=0

∑n
i=j ai,j .

A generic sum can be captured in ACL2 using theencapsulate operator. Take,

for example, the following definition that captures the valueai,j above:

(encapsulate

((binop (i j) t))

(local

(defun binop (i j)

(+ i j)))

(defthm binop-type-prescription

(acl2-numberp (binop i j)))

)

The only constraint onbinop is that it return a numeric value.

The sum of the termsti,j can be computed in one of two ways, either by adding up

the rowsti,∗ one at a time or by adding up the sum of each columnt∗,j . Capturing the sum

by adding up the totals in each row can be performed with the following pair of functions:
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(defun row-expansion-inner (i j n)

(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))

(cons (binop i j)

(row-expansion-inner i (1+ j) n))

nil))

(defun row-expansion-outer (i m n)

(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))

(cons (sumlist (row-expansion-inner i 0 n))

(row-expansion-outer (1+ i) m n))

nil))

Notice thatrow-expansion-inner collects all the values(binop i j) for

a fixedi . Hence, thesumlist of therow-expansion-inner is the sum of the terms

in that row. Similarly,row-expansion-outer collects the sums of all the rows, hence

its sumlist will be the sum of all the terms.

The two functionscol-expansion-inner and col-expansion-outer

are analogous to the functions defined above, but collecting the elementsti,j a column at a

time, instead of a row at a time. It is straight-forward to prove thatcol-expansion-

outer computes the same sum asrow-expansion-outer :

(defthm ok-to-swap-inner-outer-sums

(equal (sumlist (row-expansion-outer 0 m n))

(sumlist (col-expansion-outer 0 m n))))

The treatment of triangular summations is similar. The following function defines

a “lower-triangular” summation, expanding the elements a row at a time:

(defun row-expansion-outer-lt (i m n)

(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))
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(cons (sumlist (row-expansion-inner

i 0 (if (< i n) i n)))

(row-expansion-outer-lt (1+ i) m n))

nil))

Notice howrow-expansion-outer-lt uses the same function to add up the elements

in a given row; the only difference is in the number of columns assumed in the row, which

now changes from row to row. A similar function adds the values a column at a time.

To prove that these functions compute the same value, it is possible to useok-to-

swap-inner-outer-sums , the previous result about arbitrary sums. The trick is to

find a suitable function to take the place ofbinop above. The following function does as

required:

(defun lt-binop (i j)

(if (< i j)

0

(binop i j)))

This is a classic example of the power of ACL2’sencapsulate primitive in tandem with

functional instantiation hints.

The results above deal with arbitrary ranges for the rows and columns being added.

An important special case occurs when these ranges are equal, as in
∑n

i=0

∑n
j=0 ai,j . It is

easy to derive special results for this case as instances of the more generic theorems.

Besides the main results above, there are a number of other useful lemmas about

summations. For example, scalars can be factored out of summations without altering the

value of the sum; i.e.,
∑

i c · ai = c ·
∑

i ai. These lemmas are easy to prove in ACL2. It is

convenient to prove them once in a generic setting — i.e., usingencapsulate .
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5.2.3 Provingex+y = ex · ey

In this section, the informal argument given in the beginning of section5.2is formalized in

ACL2. The proof will follow the overall plan given there almost exactly.

The proof begins with the following definition of the sum
∑n

k=0
(x+y)k

k! :

(defun binomial-over-factorial-unswapped (x y k n)

(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))

(cons (/ (sumlist (binomial-expansion x y 0 k))

(factorial k))

(binomial-over-factorial-unswapped

x y (1+ k) n))

nil))

For example,(binomial-over-factorial-unswapped 1 0 0 3) is equal to

’(1 1 1/2 1/6) and (binomial-over-factorial-unswapped 1 1 0 3)

is equal to’(1 2 2 4/3) . Since the Taylor expansion ofex is given as
∑n

i=0
xi

i! , it

follows that the sum above is equal to the Taylor expansion ofex+y:

(defthm exp-x+y-binomial-unswapped-expansion

(implies (and (integerp nterms)

(<= 0 nterms)

(integerp counter)

(<= 0 counter))

(equal (taylor-exp-list nterms

counter

(+ x y))

(binomial-over-factorial-unswapped

x

y
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counter

(1- (+ nterms counter))))))

In the sequel, it is convenient to expand(y + x)i instead of(x + y)i. This leads to the

following alternative definition of
∑n

k=0
(x+y)k

k! :

(defun binomial-over-factorial (x y k n)

(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))

(cons (/ (sumlist (binomial-expansion y x 0 k))

(factorial k))

(binomial-over-factorial x y (1+ k) n))

nil))

From binomial-sum-commutes , it follows that binomial-over-factorial-

unswapped is the same asbinomial-over-factorial . Therefore, the term con-

taining binomial-over-factorial-unswapped can be replaced with an equiv-

alent binomial-over-factorial term in exp-x+y-binomial-unswapped-

expansion .

The functionbinomial-over-factorial follows the pattern of a nested sum;

it sums the values of various inner sums. Therefore, the theorems developed in section5.2.2

apply, as long as the functionbinomial-over-factorial is defined to match the

constrained functions defined there. This can be done with the following pair of functions:

(defun binomial-over-factorial-inner-sum (x y j i)

(if (and (integerp i) (integerp j) (<= 0 j) (<= j i))

(cons (/ (* (choose j i)

(expt x (- i j)) (expt y j))

(factorial i))

(binomial-over-factorial-inner-sum

x y (1+ j) i))
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nil))

(defun binomial-over-factorial-outer-sum (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(cons (sumlist

(binomial-over-factorial-inner-sum

x y 0 i))

(binomial-over-factorial-outer-sum

x y (1+ i) n))

nil))

The first function collects all the terms in the binomial expansion of(x+y)i

i! while the second

collects the sum of these expansions. Notice, the two functions follow the pattern of a trian-

gular nested sum, as discussed in section5.2.2. It is easily noted thatbinomial-over-

factorial-outer-sum is the same function asbinomial-over-factorial .

The next step simplifies the terms inbinomial-over-factorial-inner-

sum using the identity
(ij)
i! = 1

j!(i−j)! . This yields the following function:

(defun inner-sum-1 (x y j i n)

(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))

(cons (/ (* (expt x (- i j)) (expt y j))

(* (factorial j) (factorial (- i j))))

(inner-sum-1 x y (1+ j) i n))

nil))

Note,inner-sum-1 is the same function asbinomial-over-factorial-inner-

sum. An outer sum equivalent tobinomial-over-factorial-outer-sum using

inner-sum-1 instead ofbinomial-over-factorial-inner-sum will compute

the same value asbinomial-over-factorial-outer-sum . Such a function can

be defined as follows:
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(defun outer-sum-1 (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(cons (sumlist (inner-sum-1 x y 0 i i))

(outer-sum-1 x y (1+ i) n))

nil))

The next step in the proof is crucial. The inner suminner-sum-1 collects the

terms of the binomial expansion of(x+y)i

i! . The following function collects all the terms

in these expansions containingyj for a givenj. Following the intuition developed in sec-

tion 5.2.2, this amounts to adding the values a column at a time instead of a row at a time.

The function can be defined as follows:

(defun inner-sum-2 (x y i j n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(cons (/ (* (expt x (- i j)) (expt y j))

(* (factorial j) (factorial (- i j))))

(inner-sum-2 x y (1+ i) j n))

nil))

The functionouter-sum-2 collects the inner sums generated byinner-sum-2 :

(defun outer-sum-2 (x y j n)

(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))

(cons (sumlist (inner-sum-2 x y j j n))

(outer-sum-2 x y (1+ j) n))

nil))

Thatouter-sum-2 returns the same values asouter-sum-1 follows from the lemma

ok-to-swap-inner-outer-expansions-lt-m=n proved in section5.2.2.

The termyj

j! appearing ininner-sum-2 does not depend on the value ofi, which

is the index of the inner sum. Therefore, it can be factored out of the sum. This observation
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leads to the definition ofinner-sum-3 and the correspondingouter-sum-3 :

(defun inner-sum-3 (x i j n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(cons (/ (expt x (- i j)) (factorial (- i j)))

(inner-sum-3 x (1+ i) j n))

nil))

(defun outer-sum-3 (x y j n)

(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))

(cons (/ (* (sumlist (inner-sum-3 x j j n))

(expt y j))

(factorial j))

(outer-sum-3 x y (1+ j) n))

nil))

Using the lemmafactor-constant-from-expansion , it follows that outer-

sum-3 computes the same function asouter-sum-2 .

To complete the argument, it is only necessary to recognizeinner-sum-3 as a

specific portion of the Taylor expansion ofex:

(defthm taylor-exp-list-is-inner-sum-3

(implies (and (integerp i)

(integerp j) (<= 0 j) (<= j i)

(integerp n))

(equal (inner-sum-3 x i j n)

(taylor-exp-list (1+ (- n i))

(- i j)

x))))
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This leads to a final definition of the outer sum, directly invokingtaylor-exp-list as

the inner sum:

(defun exp-x-y-k-n (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(cons (* (sumlist

(taylor-exp-list (1+ (- n i)) 0 x))

(taylor-exp-term y i))

(exp-x-y-k-n x y (1+ i) n))

nil))

It is an obvious corollary oftaylor-exp-list-is-inner-sum-3 that this function

is the same asouter-sum-3 . Combining all the equalities results in the following main

theorem:

(defthm exp-k-n-sum-simplification

(implies (and (integerp nterms) (<= 0 nterms))

(equal (sumlist

(taylor-exp-list nterms 0 (+ x y)))

(sumlist

(exp-x-y-k-n x y 0 (1- nterms))))))

This theorem formalizes the argument that
∑n

i=0
(x+y)i

i! =
∑n

j=0

(∑n−j
i=0

xi

i!

)
· y

j

j! infor-

mally presented in the beginning of section5.2.

The product of the Taylor expansions ofex andey can be computed as follows:

(defun exp-x-*-exp-y-n (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(cons (* (sumlist (taylor-exp-list (1+ n) 0 x))

(taylor-exp-term y i))

(exp-x-*-exp-y-n x y (1+ i) n))
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nil))

It is easy to verify that thesumlist of this function does in fact return
(∑n

i=0
xi

i!

)
·(∑n

j=0
yj

j!

)
.

(defthm exp-x-*-exp-y-n-=-exp-x-n-*-exp-y-n

(implies (and (integerp nterms)

(<= 0 nterms))

(equal (* (sumlist

(taylor-exp-list nterms 0 x))

(sumlist

(taylor-exp-list nterms 0 y)))

(sumlist

(exp-x-*-exp-y-n x y 0

(1- nterms))))))

Clearly, the functionsexp-x-y-k-n andexp-x-*-exp-y-n are very similar.

If it is the case that their difference isi-small for arbitrary i-large values ofn, then it will

follow that the Taylor approximation ofex+y is i-closeto the product of the approximations

for ex andey and therefore thatex+y = ex · ey. This difference can be computed using the

following function:

(defun prod-sum-delta (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(cons (* (sumlist

(taylor-exp-list i (1+ (- n i)) x))

(taylor-exp-term y i))

(prod-sum-delta x y (1+ i) n))

nil))
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This function can be simplified by pushing the termy
i

i! into the inner sum. The result is the

following definition:

(defun prod-sum-delta-2 (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(append (mult-scalar

(taylor-exp-list i (1+ (- n i)) x)

(taylor-exp-term y i))

(prod-sum-delta-2 x y (1+ i) n))

nil))

The functionmult-scalar simply multiplies all elements of a list by the given scalar

value. To simplify matters, it is convenient to pad the inner sums with zeros. The function

taylor-exp-list-3 returns the same values astaylor-exp-list , but it adds a

zero in place of all thex
i

i! terms fori below a given value:

(defun taylor-exp-list-3 (nterms counter llimit x)

(if (or (zp nterms)

(not (integerp counter))

(< counter 0))

nil

(cons (if (< counter llimit)

0

(taylor-exp-term x counter))

(taylor-exp-list-3 (1- nterms)

(1+ counter)

llimit

x))))
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The connection between the functionstaylor-exp-list andtaylor-exp-list-

3 is demonstrated by the following theorem; a partial sum oftaylor-exp-list can be

replaced by a full — that is, starting at index 0 — sum usingtaylor-exp-list-3 :

(defthm taylor-exp-list-=-taylor-exp-list-3

(implies (and (integerp counter)

(integerp nterms)

(<= 0 counter)

(<= 0 nterms))

(equal (sumlist

(taylor-exp-list nterms counter x))

(sumlist

(taylor-exp-list-3 (+ nterms counter)

0

counter

x)))))

This leads to a redefinition ofprod-sum-delta , usingtaylor-exp-list-3 instead

of taylor-exp-list :

(defun prod-sum-delta-3 (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(append (mult-scalar

(taylor-exp-list-3 (1+ n)

0

(1+ (- n i))

x)

(taylor-exp-term y i))

(prod-sum-delta-3 x y (1+ i) n))

nil))
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A similar process defines the functionexp-x-*-exp-y-n-2 which pushes the

the termyi

i! into the inner sum:

(defun exp-x-*-exp-y-n-2 (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(append (mult-scalar (taylor-exp-list (1+ n) 0 x)

(taylor-exp-term y i))

(exp-x-*-exp-y-n-2 x y (1+ i) n))

nil))

Clearly, this function is simply a different version ofexp-x-*-exp-y-n .

It remains to show thatprod-sum-delta-3 is i-small. Intuitively, this is possi-

ble by showing thatprod-sum-delta-3 is bounded by ani-small number. Recall, the

value ofprod-sum-delta-3 can be thought of as the sum of the termsti,j = xi

i! ·
yj

j! in

ann × n matrix that lie above the diagonal; that is, the some of those termsti,j for which

i + j > n. For i-large values ofn, the sum of all theti,j terms isi-closeto ex · ey. But if

n is i-large, so isn/2, and hence the sum of all theti,j terms isi-closeto the sum of just

the ti,j terms for whichi < n/2 andj < n/2. In other words, the sum of all the terms

ti,j with i ≥ n/2 or j ≥ n/2 must bei-small, and these terms include all the terms in

prod-sum-delta-3 . It is tempting, therefore, to conclude that the sumprod-sum-

delta-3 is less than the sum of all the termsti,j with i ≥ n/2 or j ≥ n/2 and therefore

i-small. However, for this crucial step to be true, it is necessary to ensure that all theti,j are

non-negative reals. The way to do this is to add up not theti,j terms themselves, but their

norm. What remains is to verify the argument outlined here with the sum of the norm of the

ti,j terms.

The termsti,j for which i > n/2 or j > n/2 can be collected as follows:

(defun exp-x-*-exp-y-n-3 (x y i n)

(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(append (mult-scalar
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(if (< i (next-integer (/ n 2)))

(taylor-exp-list-3

(1+ n)

0

(next-integer (/ n 2))

x)

(taylor-exp-list-3 (1+ n) 0 0 x))

(taylor-exp-term y i))

(exp-x-*-exp-y-n-3 x y (1+ i) n))

nil))

It is expected that fori-large values ofn, the sum of the terms inexp-x-*-exp-y-n-3

is i-small. To see this, consider thesumlist-norm of taylor-exp-list-3 . Recall

thattaylor-exp-list-3 returns a list generated by replacing a prefix of the analogous

taylor-exp-list with zeros. It follows, therefore, that the sum of the norm of the

terms intaylor-exp-list-3 is the difference of the sum of the norm of the terms in

the analogoustaylor-exp-list minus the norm of the prefix replaced.

(defthm sumlist-norm-taylor-exp-list

(implies (and (integerp m) (<= 0 m)

(integerp i) (<= 0 i)

(integerp n) (<= m n))

(equal (sumlist-norm

(taylor-exp-list-3 n i m x))

(- (sumlist-norm

(taylor-exp-list n i x))

(sumlist-norm

(taylor-exp-list (- m i)

i
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x))))))

From this lemma, it is easy to see that thesumlist-norm of exp-x-*-exp-y-n-3 is

simply the difference of thesumlist-norm of theexp-x-*-exp-y-n-2 given values

of n andn/2:

(defthm sumlist-norm-exp-x-*-exp-y-n-3

(implies (and (integerp i) (integerp n)

(<= 0 i) (<= 2 n))

(equal (sumlist-norm

(exp-x-*-exp-y-n-3 x y i n))

(- (sumlist-norm

(exp-x-*-exp-y-n-2 x y i n))

(sumlist-norm

(exp-x-*-exp-y-n-2

x

y

i

(1- (next-integer (/ n 2)))))))))

The lemmaexp-x-*-exp-y-n-=-exp-x-n-*-exp-y-n shows that thesumlist

of a exp-x-*-exp-y-n-2 is the product of the separate Taylor series forex andey.

It is an important lemma that this claim holds whensumlist-norm is used instead of

sumlist :

(defthm sumlist-norm-exp-x-*-exp-y-n-2

(implies (and (integerp i) (integerp n)

(<= 0 i) (<= 0 n))

(equal (sumlist-norm

(exp-x-*-exp-y-n-2 x y i n))
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(* (sumlist-norm

(taylor-exp-list (1+ n) 0 x))

(sumlist-norm

(taylor-exp-list (- (1+ n) i)

i

y))))))

It is now a simple matter to verify thatexp-x-*-exp-y-n-3 is i-small:

(defthm sumlist-norm-exp-x-*-exp-y-n-3-small

(implies (and (integerp n) (<= 2 n)

(i-limited x) (i-limited y) (i-large n))

(i-small (sumlist-norm

(exp-x-*-exp-y-n-3 x y 0 n)))))

To show thatprod-sum-delta-3 is alsoi-small, it is only necessary to show that it is

bounded byexp-x-*-exp-y-n-3 :

(defthm prod-sum-delta-3-seq-<=-exp-x-*-exp-y-n-3

(implies (<= 2 n)

(seq-norm-<= (prod-sum-delta-3 x y i n)

(exp-x-*-exp-y-n-3 x y i n))))

At this time, it is trivial to conclude that thesumlist-norm of prod-sum-delta is

i-small, and hence so is itssumlist . What this means is that the difference between the

Taylor approximation ofex+y and the product of the Taylor approximations toex andey is

i-small:

(defthm expt-x-*-expt-y-n---exp-x-y-k-n-small

(implies (and (integerp nterms) (<= 0 nterms)

(i-limited x) (i-limited y)
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(i-large nterms))

(i-small (- (* (sumlist

(taylor-exp-list nterms 0 x))

(sumlist

(taylor-exp-list nterms 0

y)))

(sumlist

(taylor-exp-list nterms

0

(+ x y)))))))

In turn, this means that the two sums arei-closeto each other, and hence they have the same

standard-part. To conclude the proof, it is only necessary to usedefthm-std to transfer

the proof of thei-large Taylor sums to the actual exponential function:

(defthm-std exp-sum

(implies (and (acl2-numberp x)

(acl2-numberp y))

(equal (acl2-exp (+ x y))

(* (acl2-exp x) (acl2-exp y)))))

5.3 The Continuity of the Exponential Function

The continuity ofex follows almost directly from the theoremexp-sum . A functionf is

continuous if given any standard pointx andi-small numberε, f(x+ ε) is i-closeto f(x).

Considerex+ε. This is equal toex · eε, so it isi-closeto ex if eε is i-closeto 1.

So it is sufficient to show that fori-small ε, eε is i-closeto 1. Consider the Taylor

approximation ofeε = 1 + ε+ ε2

2! + · · ·. It is clear that the sumε+ ε2

2! + · · ·must bei-small.

The trick is to show that the terms
∑n

i=2
εi

i! are bounded by
∑n

i=2
ε

2i−1 . The latter sum can
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be computed, since it is the sum of a geometric sequence. In particular, this sum must be

less thanε. Therefore, the Taylor expansion ofeε is within 2ε of 1; that is to say, it isi-close

to 1.

The first step is to show that fori-small ε, εn ≤ ε:

(defthm lemma-1

(implies (and (< (norm x) 1)

(integerp n)

(<= 2 n))

(<= (norm (expt x n)) (norm x))))

Moreover, the factorial termsn! are larger than2n−1:

(defthm lemma-2

(implies (and (integerp n)

(<= 2 n))

(<= (norm (expt-2-n (+ -1 n)))

(norm (factorial n)))))

In this theorem, the functionexpt-2-n computes the value of2n. Together, these theo-

rems show how the magnitude of the termsεi

i! can be bounded byε
2i−1 :

(defthm lemma-4

(implies (and (< (norm x) 1)

(integerp n)

(<= 2 n))

(<= (norm (taylor-exp-term x n))

(* (norm x)

(/ (norm (expt-2-n (+ -1 n))))))))

With these theorems, it is possible to give a precise bound for the norm of the Taylor ap-

proximation ofeε:
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(defthm lemma-6

(implies (and (< (norm x) 1)

(integerp n)

(<= 2 n))

(<= (sumlist-norm

(taylor-exp-list nterms n x))

(* (norm x)

(sumlist-norm

(expt-2-n-list nterms n))))))

Here, the functionexpt-2-n-list returns the list of terms1
2i

, and the functionexpt-

2-n-list-norm returns the sum of the norm of these terms. It is easy to see that the sum

of the terms inexpt-2-n-list can add up to no more than one:

(defthm sumlist-expt-2-n-list-norm-best

(implies (and (not (zp nterms))

(integerp n)

(<= 2 n))

(<= (sumlist (expt-2-n-list-norm nterms n))

1)))

Combining this theorem withlemma-6 finds a bound for all the terms in the sequence∑n
i=2 ||

εi

i! ||:

(defthm lemma-15

(implies (and (< (norm x) 1)

(not (zp nterms))

(integerp n)

(<= 2 n))

(<= (sumlist-norm
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(taylor-exp-list nterms n x))

(norm x))))

It is therefore possible to establish that the difference between the Taylor approximation of

eε and1 can be no more than twiceε:

(defthm lemma-28

(implies (and (standard-numberp x)

(< (norm x) 1))

(<= (norm

(standard-part (+ -1

(sumlist

(taylor-exp-list

(i-large-integer)

0

x)))))

(+ (norm x) (norm x)))))

From this, a simple application of the transfer principle shows thateε − 1 is no more than

2ε:

(defthm-std lemma-30

(implies (and (acl2-numberp x)

(< (norm x) 1))

(<= (norm (+ -1 (acl2-exp x)))

(+ (norm x) (norm x)))))

There is a subtlety here, however. The transfer principle only applies to classical formulas;

that is, it applies only to formulas with classical predicates andstandardparameters. What

this means is that it would be impossible to use the transfer principle to a formula that

referred directly toε, since this is a non-standardnumber. That is the reason that the
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hypothesis requires that||x|| < 1 rather than thatx bei-small. The limitation of the transfer

principle to classical formulas forces the use of this type of subterfuge often.

It is a simple matter to applylemma-30 to the case whenx is i-small:

(defthm lemma-35

(implies (and (acl2-numberp x)

(i-small x))

(i-small (+ -1 (acl2-exp x)))))

In these cases, it is possible to conclude that the norm of1− ex is i-small, and so1− ex is

also i-small. Putting this result together with the theoremexp-sum yields the continuity

of ex:

(defthm exp-continuous-2

(implies (and (standard-numberp x)

(i-close x y))

(i-close (acl2-exp x) (acl2-exp y))))

The functionex will play an important role in the sequel. It will be used to define

the trigonometric functions. Its properties, notably the theoremexp-sum , will be used to

prove the usual trigonometric identities, such assin(2x) = 2 sin(x) cos(x). Moreover, the

continuity ofex will play a crucial role in the definition ofπ, which can be found as twice

the value of the first positive zero of cosine. That such a zero exists is guaranteed by the

intermediate value theorem, which applies only to continuous functions.
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Chapter 6

Trigonometric Functions

This chapter develops a small part of the theory of trigonometry. The trigonometric func-

tions themselves are defined using the exponential function. Notice that the resulting

trigonometric functions are general complex functions; however, for real arguments, their

values follow the familiar constraints. For example, it is possible to show that for real

x, sin(x) and cos(x) are both real andsin2(x) + cos2(x) = 1. The definition ofπ is

particularly interesting, since it derives from the continuity of the cosine function and the

intermediate value theorem. Moreover, the theory of alternating series comes into play in

showing thatcos(0) = 1 andcos(2) < 0, and hence cosine has a zero between0 and2 —

that zero is necessarily equal toπ/2. A large part of trigonometry — the area concerned

with trigonometric identities — is particularly well-suited to mechanical verification using

a rewriting theorem prover. This chapter concludes with a demonstration of how ACL2 can

prove many such identities.
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6.1 Defining the Trigonometric Functions in ACL2

6.1.1 The Definition of Sine and Cosine

The definition of the trigonometric functions in ACL2 follows from the following theorems

in analysis:

sin(x) =
eix − e−ix

2i

cos(x) =
eix + e−ix

2

This suggests the following definitions in ACL2:

(defun acl2-sine (x)

(/ (- (acl2-exp (* #c(0 1) x))

(acl2-exp (* #c(0 -1) x)))

#c(0 2)))

(defun acl2-cosine (x)

(/ (+ (acl2-exp (* #c(0 1) x))

(acl2-exp (* #c(0 -1) x)))

2))

From sine and cosine, it is straightforward to define the remaining trigonometric functions:

(defmacro acl2-tangent (x)

‘(/ (acl2-sine ,x) (acl2-cosine ,x)))

(defmacro acl2-cotangent (x)

‘(/ (acl2-cosine ,x) (acl2-sine ,x)))

(defmacro acl2-secant (x)
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‘(/ (acl2-cosine ,x)))

(defmacro acl2-cosecant (x)

‘(/ (acl2-sine ,x)))

The sine and cosine functions can also be defined from their Taylor approximation,

as was the exponential function. In fact, it is possible to show that the two definitions are

equivalent. Consider first this approximation to the Taylor series forsin(x):

(defun taylorish-sin-list (nterms counter sign x)

(if (or (zp nterms)

(not (integerp counter))

(< counter 0))

nil

(if (nat-even-p counter)

(cons 0 (taylorish-sin-list (1- nterms)

(1+ counter)

sign

x))

(cons (* sign

(expt x counter)

(/ (factorial counter)))

(taylorish-sin-list (1- nterms)

(1+ counter)

(- sign)

x)))))

The functionnat-even-p tests whether its argument is a natural even number. This

sequence generates the complete Taylor series forsin(x) = 0 + x − 0 − x3

3! + · · ·. A

similar function produces the Taylor sequence forcos(x). It is a simple matter to show
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that the functiontaylorish-sin-list generates the same results as theacl2-sine

function:

(defthm taylorish-sin-valid

(implies (standard-numberp x)

(equal (acl2-sine x)

(standard-part

(sumlist

(taylorish-sin-list

(i-large-integer)

0

1

x))))))

One advantage of the Taylor definition ofsin(x) is that it makes it immediately obvious

thatsin(x) is real for real values ofx. Thus, it is possible to prove the following important

theorems:

(defthm-std realp-sine

(implies (realp x)

(realp (acl2-sine x))))

(defthm-std realp-cosine

(implies (realp x)

(realp (acl2-cosine x))))

The Taylor series defined bytaylorish-cos-list is of the form1 + 0− x2

2! −

0+ x4

4! +· · ·. If the zeros are eliminated, then this series is clearly alternating, so it is possible

to estimate values of the cosine function. To this purpose, consider the following function,

which simply removes the zeros fromtaylorish-sin-list andtaylorish-cos-

list :
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(defun taylor-sincos-list (nterms counter sign x)

(if (or (zp nterms)

(not (integerp counter))

(< counter 0))

nil

(cons (* sign

(expt x counter)

(/ (factorial counter)))

(taylor-sincos-list (nfix (- nterms 2))

(+ counter 2)

(- sign)

x))))

It is easy to show that this function computes the same values astaylor-sin-list

when the initial value ofcounter is odd andtaylor-cos-list when the initial value

of counter is even.

A particularly relevant value iscos(2). It is clear from the definition of cosine that

cos(0) is equal to 1. From an analysis of the alternating sequencetaylor-sincos-

list , it will follow that cos(2) < 0. According to the intermediate-value theorem, this

implies the cosine function has a root between0 and2, sayx0. This root is unique, since

it can be shown that for0 < x < x0, cos(x) > 0 and forx0 < x < 2 · x0, cos(x) < 0.

Therefore, the value ofx0 is none other thanπ/2, and it serves to defineπ. But in order to

do this, the theory of alternating series needs to be developed, as well as the intermediate

value theorem.

6.1.2 Alternating Sequences

An alternating sequence is one whose terms meet two criteria:

• Successive terms alternate in sign.
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• Terms decrease in magnitude.

A strict interpretation of these rules would disqualify a sequence consisting of zeros as an

alternating sequence. It is convenient, however, to relax the restrictions so that tails of zero

terms are ignored.

These more liberal properties can be easily defined in ACL2. Consider the first

property:

(defun opposite-signs-p (x y)

(or (= x 0)

(= y 0)

(equal (sign x) (- (sign y)))))

(defun alternating-sequence-1-p (lst)

(if (null lst)

t

(if (null (cdr lst))

t

(and (opposite-signs-p (car lst) (cadr lst))

(alternating-sequence-1-p (cdr lst))))))

The second property can be verified using the following function:

(defun alternating-sequence-2-p (lst)

(if (null lst)

t

(if (null (cdr lst))

t

(and (or (and (equal (car lst) 0)

(equal (cadr lst) 0))
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(< (abs (cadr lst))

(abs (car lst))))

(alternating-sequence-2-p (cdr lst))))))

Again, notice the special treatment of zeros. Taken together, these functions define an

alternating sequence:

(defun alternating-sequence-p (lst)

(and (alternating-sequence-1-p lst)

(alternating-sequence-2-p lst)))

This function is true of’(1 -1/2 1/4) and false of both’(1 1/2 1/4) and ’(1

-1 1) .

The reason alternating sequences are important is that the first element of such a

sequence is an upper bound on the sum of all the elements. In particular, the following is

possible to prove:

(defthm sumlist-alternating-sequence

(implies (and (alternating-sequence-p x)

(real-listp x)

(not (null x)))

(not (< (abs (car x)) (abs (sumlist x))))))

Using this theorem, it is possible to approximate the sum of an alternating sequence with

as high degree of accuracy as required. It is only necessary to add the first elements of the

sequence up until a term that is smaller in magnitude than the degree of accuracy desired.

6.1.3 The Intermediate Value Theorem

The remaining piece of mathematics needed beforeπ can be defined is the intermediate

value theorem. To prove this result in ACL2 requires developing a theory of continuous

functions.
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The concept of continuity can be captured in ACL2 using theencapsulate fa-

cility. Continuity is a second-order notion, but usingencapsulate it is possible to derive

the basic theorems and apply them later to arbitrary continuous functions.

The definition of continuity in non-standard analysis captures the intuitive notion

very well. A functionf is continuous at a pointx if for all y i-closeto x, f(x) is i-close

to f(y). A function is continuous if it is continuous at allstandardpoints. Moreover, if

it is continuous at all points,standardor not, it is uniformly continuous. The definition of

continuity can be specified as follows:

(encapsulate

((rcfn (x) t))

(local (defun rcfn (x) x))

(defthm rcfn-standard

(implies (standard-numberp x)

(standard-numberp (rcfn x))))

(defthm rcfn-real

(implies (realp x)

(realp (rcfn x))))

(defthm rcfn-continuous

(implies (and (standard-numberp x)

(realp x)

(i-close x y)

(realp y))

(i-close (rcfn x) (rcfn y)))))
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Three constraints are placed on the functionrcfn . First, it must returnstandardvalues

for standardarguments, a condition is satisfied by all classical functions. Second, it must

return real values for real arguments —rcfn stands for “Real Continuous Function.” And

third, it must satisfy the non-standard continuity constraint.

Recall from analysis that a continuous function is uniformly continuous on a closed

and bounded interval. Now consider an arbitraryi-limited numberx. Sincex is i-limited,

it follows thatx ∈ [−M,M ] for somestandardnumberM . In other words,x belongs to a

closed and bounded interval, wherercfn is uniformly continuous. From the non-standard

definition of continuity, it follows thatrcfn is continuous atx, regardless of whetherx is

standardor not. This justifies the following theorem:

(defthm rcfn-uniformly-continuous

(implies (and (i-limited x)

(realp x)

(i-close x y)

(realp y))

(i-close (rcfn x) (rcfn y))))

The proof of this theorem actually follows from considering thestandard-partof x. This

number isstandardsincex is i-limited. Moreover,y must bei-close to standard-part(x)

sincey is i-closeto x and alli-limited numbers arei-closeto theirstandard-part. Applying

the continuity ofrcfn at standard-part(x) twice, it follows thatrcfn(standard-part(x))

is i-closeto bothrcfn(x) andrcfn(y), hencercfn(x) must bei-closeto rcfn(y).

The derivation of the intermediate value theorem in non-standard analysis is very

direct. Given astandardinterval[a, b] so thatrcfn(a) < z andrcfn(b) > z for astandard

real numberz, it is possible to find a valuec ∈ [a, b] so thatrcfn(c) = z as follows. First,

partition the interval[a, b] into {a, a + ε, a + 2ε, . . . , a + Nε = b}, whereN is a positive

integer andε = b−a
N . Then, observe there must be ak < N so thatrcfn(a+kε) < z while

rcfn(a+(k+1)ε) ≥ z. Here continuity comes into play. IfN is i-large, the numbera+kε
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is not necessarilystandard, however it must bei-limited since it belongs to thestandard

interval [a, b]. Therefore, lemmarcfn-uniformly-continuous applies, and it is

possible to conclude thatrcfn(a+kε), rcfn(a+(k+1)ε), andrcfn(standard-part(a+kε))

are all i-close to each other. Since the choice ofk ensures thatrcfn(a + kε) < z ≤

rcfn(a+(k+1)ε), it follows thatz is alsoi-closeto all these three values. Hencez is i-close

to rcfn(standard-part(a + kε)); since both numbers arestandard, they must be equal to

each other. The only remaining detail is to observe thatstandard-part(a + kε) ∈ (a, b).

This follows becausea ≤ a + kε and soa = standard-part(a) ≤ standard-part(a + kε);

similarly, b ≥ standard-part(a + kε) — note thatstandard-part(a + kε) is not equal to

eithera or b is guaranteed becausercfn(standard-part(a + kε)) = z, rcfn(a) < z, and

rcfn(b) > z.

The formalization of this argument in ACL2 begins with the definition of the fol-

lowing function, which finds the value ofk above:

(defun find-zero-n (a z i n eps)

(if (and (realp a)

(integerp i)

(integerp n)

(< i n)

(realp eps)

(< 0 eps)

(< (rcfn (+ a eps)) z))

(find-zero-n (+ a eps) z (1+ i) n eps)

(realfix a)))

Notice thatfind-zero-n is a classical function, so it is possible to use unrestricted

induction to prove theorems about it.

The key properties offind-zero-n are easy to prove by induction. The fol-

lowing theorems demonstrate thatfind-zero-n does in fact return a suitable value for
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k:

(defthm rcfn-find-zero-n-<-z

(implies (and (realp a) (< (rcfn a) z))

(< (rcfn (find-zero-n a z i n eps)) z)))

(defthm rcfn-find-zero-n+eps->=-z

(implies (and (realp a)

(integerp i)

(integerp n)

(< i n)

(realp eps)

(< 0 eps)

(< (rcfn a) z)

(< z (rcfn (+ a (* (- n i) eps)))))

(<= z (rcfn (+ (find-zero-n a z i n eps)

eps)))))

Moreover, it is easy to prove that the value returned byfind-zero-n is in the range

[a, b):

(defthm find-zero-n-lower-bound

(implies (and (realp a) (realp eps) (< 0 eps))

(<= a (find-zero-n a z i n eps)))))

(defthm find-zero-n-upper-bound

(implies (and (realp a)

(integerp i)

(integerp n)

(<= 0 i)
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(<= i n)

(realp eps)

(< 0 eps))

(<= (find-zero-n a z i n eps)

(+ a (* (- n i) eps))))

It is important thatfind-zero-n is a classical function, because the non-standard

principle of induction in ACL2 is not powerful enough to prove these theorems. Take the

theoremrcfn-find-zero-n-<-z , for example. The induction scheme is based on the

variablen, so the non-standard principle of induction requires that the following formula

be established:

(implies (and (not (standard-numberp n))

(< (rcfn z) z))

(< (rcfn (find-zero-n a z i n eps)) z))

However, the extra hypothesis does not directly contribute to a proof, so the proof attempt

will fail.

Sincefind-zero-n returns a value in the range[a, b), if a andb arestandardit

follows thatfind-zero-n returns ani-limited value. This justifies the following defini-

tion:

(defun-std find-zero (a b z)

(if (and (realp a)

(realp b)

(realp z)

(< a b))

(standard-part

(find-zero-n a

z
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0

(i-large-integer)

(/ (- b a) (i-large-integer))))

0))

Note that since the definition is usingdefun-std , it is accepted only if the body is

standardfor standardarguments, and this follows since the body takes thestandard-part

of the i-limited instance offind-zero-n . The functionfind-zero fills the parame-

ters offind-zero-n to conform to the argument described above; in particular, it is in

find-zero that it is guaranteed that theeps used infind-zero-n is i-small.

Given the properties of the classical functionfind-zero-n , it is easy to establish

similar facts about the non-classical functionfind-zero by using the transfer principe.

In particular, the following theorems are easy to prove:

(defthm-std rcfn-find-zero-<=-z

(implies (and (realp a)

(realp b)

(< a b)

(realp z)

(< (rcfn a) z))

(<= (rcfn (find-zero a b z)) z)))

(defthm-std rcfn-find-zero->=-z

(implies (and (realp a)

(realp b)

(< a b)

(realp z)

(< (rcfn a) z)

(< z (rcfn b)))
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(<= z (rcfn (find-zero a b z)))))

(defthm-std find-zero-lower-bound

(implies (and (realp a) (realp b) (realp z)

(< a b))

(<= a (find-zero a b z))))

(defthm-std find-zero-upper-bound

(implies (and (realp a) (realp b) (realp z)

(< a b))

(<= (find-zero a b z) b)))

To provercfn-find-zero->=-z it is sufficient to observe that(find-zero a b

z) and (+ (find-zero a b z) (/ (- b a) (i-large-integer))) must

be i-closesince(/ (- b a) (i-large-integer)) is i-small. The result then fol-

lows from the continuity ofrcfn and the lemmarcfn-find-zero-n+eps->=-z .

These four theorems taken together result in the intermediate value theorem:

(defthm intermediate-value-theorem

(implies (and (realp a)

(realp b)

(realp z)

(< a b)

(< (rcfn a) z)

(< z (rcfn b)))

(and (realp (find-zero a b z))

(< a (find-zero a b z))

(< (find-zero a b z) b)

(equal (rcfn (find-zero a b z))
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z))))

The theorem above assumes the functionrcfn takes on a higher value atb than at

a. If the opposite is true, the theorem can not be used directly to establish thatrcfn must

have an intermediate value. However, since the functionrcfn is a constrained function, it

is possible to prove a version of the intermediate value theorem for functions with a higher

value ata thanb. The first step is to define a new function for finding the valuek:

(defun find-zero-n-2 (a z i n eps)

(if (and (realp a)

(integerp i)

(integerp n)

(< i n)

(realp eps)

(< 0 eps)

(< z (rcfn (+ a eps))))

(find-zero-n-2 (+ a eps) z (1+ i) n eps)

(realfix a)))

(defun-std find-zero-2 (a b z)

(if (and (realp a)

(realp b)

(realp z)

(< a b))

(standard-part

(find-zero-n-2 a

z

0

(i-large-integer)
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(/ (- b a) (i-large-integer))))

0))

To accept the functionfind-zero-2 it is necessary to prove that its body returnsstandard

values forstandardarguments. This can be done by functionally instantiating the analogous

lemma forfind-zero-n .

The second version of the intermediate value theorem can be proved as follows:

(defthm intermediate-value-theorem-2

(implies (and (realp a)

(realp b)

(realp z)

(< a b)

(< z (rcfn a))

(< (rcfn b) z))

(and (realp (find-zero-2 a b z))

(< a (find-zero-2 a b z))

(< (find-zero-2 a b z) b)

(equal (rcfn (find-zero-2 a b z))

z)))

:hints (("Goal"

:use ((:instance

(:functional-instance

intermediate-value-theorem

(rcfn (lambda (x) (- (rcfn x))))

(find-zero (lambda (a b z)

(find-zero-2 a b

(- z))))

(find-zero-n (lambda (a z i n
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eps)

(find-zero-n-2

a (- z) i n eps))))

(z (- z))

))

:in-theory

(disable intermediate-value-theorem))))

Notice how the proof of the theorem instantiatesintermediate-value-theorem

with the negatives ofrcfn andz .

6.1.4 π for Dessert

Recall the functiontaylor-sincos-list is defined as follows:

(defun taylor-sincos-list (nterms counter sign x)

(if (or (zp nterms)

(not (integerp counter))

(< counter 0))

nil

(cons (* sign

(expt x counter)

(/ (factorial counter)))

(taylor-sincos-list (nfix (- nterms 2))

(+ counter 2)

(- sign)

x))))

It is easy to see thattaylor-sincos-list satisfies the first alternating sequence prop-

erty — that is, successive elements of the list alternate in sign.
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(defthm alternating-sequence-1-p-taylor-sincos

(implies (and (realp sign)

(realp x))

(alternating-sequence-1-p

(taylor-sincos-list nterms

counter

sign

x))))

If it can be shown that it also satisfies the second criteria for alternating sequences, namely

that successive terms decrease in magnitude, it will be possible to estimate values for sine

and cosine.

However, showing thattaylor-sincos-list satisfies the second alternating

sequence property is more difficult. The problem is similar to the one found in chapter5,

where it was desired to show that the Taylor approximation toex was bounded by a geomet-

ric sequence. The problem is that the condition is true, but only after eliminating a suitable

prefix of the series.

Since only the value ofcos(2) is needed for the definition ofπ, a weaker theorem

will be sufficient. All that must be shown is thattaylor-sincos-list satisfies the

second alternating sequence property whenx is equal to2. That sequence begins with1,

−24

4! = −2, 26

6! = 4
45 . . . . It is easy to see that the property holds after the initial1 is

removed:

(defthm alternating-sequence-2-p-taylor-sincos-2

(implies (and (realp sign)

(not (equal sign 0))

(integerp counter)

(integerp nterms)

(<= 0 nterms)
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(<= 2 counter)

(realp x)

(< 0 x)

(<= x 2))

(alternating-sequence-2-p

(taylor-sincos-list nterms

counter

sign

x))))

In particular, this implies that forx = 2 taylor-sincos-list is an alternating se-

quence, after the initial term is removed.

(defthm alternating-sequence-p-taylor-sincos-2

(implies (and (integerp nterms)

(<= 0 nterms))

(alternating-sequence-p

(taylor-sincos-list nterms 4 1 2))))

The important point is that the sum of the elements after the first two terms in the ex-

pansion ofcos(2) can be no more than2/3. This is a straightforward application of the

lemmasumlist-alternating-sequence and the simple expansion of the first few

elements oftaylor-sincos-list for x = 2.

(defthm remainder-taylor-cos-2

(implies (and (integerp nterms)

(< 0 nterms))

(<= (abs (sumlist

(taylor-sincos-list nterms 4 1 2)))

2/3)))
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It is thus possible to conclude that the Taylor expansion ofcos(2) must be smaller than

−1
3 = 1− 2 + 2

3 :

(defthm sumlist-taylor-cos-2-negative

(implies (and (integerp nterms)

(<= 4 nterms))

(<= (sumlist

(taylor-sincos-list nterms 0 1 2))

-1/3)))

Takingstandard-parton both sides of the inequality establishes thatcos(2) ≤ −1
3 :

(defthm acl2-cos-2-negative-lemma

(<= (acl2-cosine 2) -1/3))

The stage is now set for the definition ofπ; bothcos(0) = 1 > 0 andcos(2) ≤ −1
3 < 0 are

established. It remains only to define the functionfind-zero-cos-2 that can be used

to invoke the second version of the intermediate value theorem:

(defun find-zero-cos-n-2 (a z i n eps)

(if (and (realp a)

(integerp i)

(integerp n)

(< i n)

(realp eps)

(< 0 eps)

(< z (acl2-cosine (+ a eps))))

(find-zero-cos-n-2 (+ a eps) z (1+ i) n eps)

(realfix a)))

(defun-std find-zero-cos-2 (a b z)
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(if (and (realp a)

(realp b)

(realp z)

(< a b))

(standard-part

(find-zero-cos-n-2 a

z

0

(i-large-integer)

(/ (- b a)

(i-large-integer))))

0))

Note that the definition offind-zero-cos-2 is not accepted until its body is shown to

returnstandardvalues forstandardarguments. This lemma can be proved by functionally

instantiating the analogous theorem forfind-zero-2 .

The continuity ofacl2-cosine can be easily deduced from the continuity ofex,

proved in chapter5.

(defthm cosine-continuous

(implies (and (standard-numberp x)

(i-close x y))

(i-close (acl2-cosine x)

(acl2-cosine y))))

The intermediate value theorem can now be applied to the functionacl2-cosine , yield-

ing the following theorem:

(defthm find-zero-cosine

(and (realp (find-zero-cos-2 0 2 0))
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(< 0 (find-zero-cos-2 0 2 0))

(< (find-zero-cos-2 0 2 0) 2)

(equal (acl2-cosine (find-zero-cos-2 0 2 0)) 0)))

The only remaining detail is the actual definition ofπ.

(defun acl2-pi ()

(* 2 (find-zero-cos-2 0 2 0)))

It is immediate from the definition thatacl2-pi is a real number between0 and4.

The possibility remains that the value ofπ defined is not the usual one. This would

happen iffind-zero-cos-2 returned a zero of cosine that was notπ/2. In reality this

can not be; it is a basic fact of trigonometry that the cosine function has no other roots

between0 and2. However, this fact has yet to be established in ACL2. Subsequent sections

will show ACL2 proofs that explore the sign of the sine and cosine functions in the different

quadrants, as sectioned off byacl2-pi . This will establish thatacl2-pi can be no other

than the usual value ofπ. Moreover, a much smaller interval containingπ, equivalently a

better approximation toπ, will be presented in section6.3.1.

6.2 Basic Trigonometric Identities

Many basic trigonometric identities are easy to prove in ACL2. The formulas forsin(x+y)

andcos(x + y) are particularly useful. They can be proved directly from the definition of

sine and cosine in terms of theex function. Here, the important lemma isex+y = ex · ey,

which was proved in chapter5.

(defthm sine-of-sums

(equal (acl2-sine (+ x y))

(+ (* (acl2-sine x) (acl2-cosine y))

(* (acl2-cosine x) (acl2-sine y)))))
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(defthm cosine-of-sums

(equal (acl2-cosine (+ x y))

(- (* (acl2-cosine x) (acl2-cosine y))

(* (acl2-sine x) (acl2-sine y)))))

Similarly, the familiar identitysin2(x) + cos2(x) = 1 follows from the definitions

of sine and cosine and a little algebra:

(defthm sin**2+cos**2

(equal (+ (* (acl2-sine x) (acl2-sine x))

(* (acl2-cosine x) (acl2-cosine x)))

1))

Other simple theorems includesin(−x) = − sin(x) andcos(−x) = cos(x):

(defthm sin-uminus

(equal (acl2-sine (- x))

(- (acl2-sine (fix x)))))

(defthm cos-uminus

(equal (acl2-cosine (- x))

(acl2-cosine (fix x))))

Section6.1.4showed how the Taylor approximation tocos(2) is an alternating se-

quence. In fact,alternating-sequence-p-taylor-sincos-2 can be strength-

ened to include all values ofx ∈ [0, 2]. An analysis of the first few elements of the Taylor

approximation tosin(x) for thesex shows that the sum must be larger thanx − x3

3! ≥ 0.

Therefore, forx ∈ [0, 2], sin(x) ≥ 0:

(defthm-std acl2-sin-x-positive
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(implies (and (realp x)

(< 0 x)

(<= x 2))

(<= 0 (acl2-sine x))))

In particular,sin(π/2) ≥ 0. Sincecos(π/2) = 0 by definition,sin**2+cos**2 implies

thatsin(π/2) = 1:

(defthm sine-pi/2

(equal (acl2-sine (* (acl2-pi) 1/2)) 1))

The theoremssine-of-sums andcosine-of-sums can now be used to find

the value of sine and cosine at the cardinal points. In particular, the following theorems are

all easy consequences of the above:

(defthm sine-0

(equal (acl2-sine 0) 0))

(defthm cosine-0

(equal (acl2-cosine 0) 1))

(defthm sine-pi

(equal (acl2-sine (acl2-pi)) 0))

(defthm cosine-pi

(equal (acl2-cosine (acl2-pi)) -1))

(defthm sine-3pi/2

(equal (acl2-sine (* (acl2-pi) 3/2)) -1))

(defthm cosine-3pi/2

(equal (acl2-cosine (* (acl2-pi) 3/2)) 0))

(defthm sine-2pi

(equal (acl2-sine (* (acl2-pi) 2)) 0))

(defthm cosine-2pi
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(equal (acl2-cosine (* (acl2-pi) 2)) 1))

Together withsine-of-sums andcosine-of-sums , these theorems prove a

number of famous identities, such assin(x+π/2) = sin(x) cos(π/2)+cos(x) sin(π/2) =

cos(x):

(defthm sin-pi/2+x

(equal (acl2-sine (+ (* (acl2-pi) 1/2) x))

(acl2-cosine x)))

Similar theorems can be found for the other multiples ofπ/2.

For arbitrary angles between0 and2π, it is not possible to find exact values of sine

and cosine1, but it is possible to find their sign.

The following theorem is simply a weaker version ofacl2-sin-x-positive :

(defthm sine-positive-in-0-pi/2

(implies (and (realp x)

(< 0 x)

(< x (* (acl2-pi) 1/2)))

(< 0 (acl2-sine x))))

It demonstrates thatsin(x) is positive in the first quadrant. To show thatcos(x) is also

positive in this quadrant follows from the fact thatcos(x) = sin(π/2 − x). So in the first

quadrant, sine and cosine have the same sign:

(defthm cosine-positive-in-0-pi/2

(implies (and (realp x)

(< 0 x)

(< x (* (acl2-pi) 1/2)))

(< 0 (acl2-cosine x))))

1However, it is possible to find arbitrarily close approximations to the sine and cosine functions, as sec-

tion 6.3.2demonstrates.
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Note, this theorems ensures thatπ/2 is the first positive root of the cosine function. This

provides a justification in ACL2 that the value ofacl2-pi is in fact equal toπ.

In the second quadrant,sin(x) > 0 while cos(x) < 0. This follows from the

formulas forsin(x + π/2) andcos(x + π/2) and the corresponding theorems for sine and

cosine in the first quadrant.

(defthm sine-positive-in-pi/2-pi

(implies (and (realp x)

(< (* (acl2-pi) 1/2) x)

(< x (acl2-pi)))

(< 0 (acl2-sine x))))

(defthm cosine-negative-in-pi/2-pi

(implies (and (realp x)

(< (* (acl2-pi) 1/2) x)

(< x (acl2-pi)))

(< (acl2-cosine x) 0)))

Similar theorems are readily achieved for angles in the other quadrants.

For angles not in the range[0, 2π], the theorems above can still be applied. It is

only necessary to normalize the angle into the range[0, 2π]. This can be justified using the

following theorem:

(defthm sin-2npi

(implies (integerp n)

(equal (acl2-sine (* (acl2-pi) 2 n))

0)))

It is easy to derive the equivalent theorem about cosine.

The double-angle rules are easy to derive from the theoremssine-of-sums and

cosine-of-sums . In particular, the following are easy to prove:
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(defthm sine-2x

(implies (syntaxp (not (equal x ’0)))

(equal (acl2-sine (* 2 x))

(* 2 (acl2-sine x) (acl2-cosine x)))))

(defthm cosine-2x

(implies (syntaxp (not (equal x ’0)))

(equal (acl2-cosine (* 2 x))

(+ (* (acl2-cosine x) (acl2-cosine x))

(- (* (acl2-sine x)

(acl2-sine x)))))))

These theorems can be used to find the half-angle formulas:

(defthm sine**2-half-angle

(equal (* (acl2-sine (* 1/2 x))

(acl2-sine (* 1/2 x)))

(/ (- 1 (acl2-cosine x)) 2)))

(defthm cosine**2-half-angle

(equal (* (acl2-cosine (* 1/2 x))

(acl2-cosine (* 1/2 x)))

(/ (+ 1 (acl2-cosine x)) 2)))

Note, square roots are not taken on both sides because there is no guarantee the sign of

the left-hand sides is positive. A wonderful consequence of these formulas is that it makes

it possible to find the sine and cosine of more angles, such asπ/4. In fact, the following

theorems are trivial corollaries of the above:

(defthm sine-pi/4
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(equal (acl2-sine (* (acl2-pi) 1/4))

(acl2-sqrt 1/2)))

(defthm cosine-pi/4

(equal (acl2-cosine (* (acl2-pi) 1/4))

(acl2-sqrt 1/2)))

The remaining well-loved angles areπ/3 andπ/6. It is possible to find their sine

and cosine using a similar trick, only a triple-angle formula is needed. This can be derived

with some algebra:

(defthm sine-3x

(implies (syntaxp (not (equal x ’0)))

(equal (acl2-sine (* 3 x))

(- (* 3 (acl2-sine x))

(* 4

(acl2-sine x)

(acl2-sine x)

(acl2-sine x))))))

From this formula it follows thatsin(π/3) =
√

3/2. The remaining values of sine and

cosine ofπ/3 andπ/6 are almost immediate.

(defthm sine-pi/3

(equal (acl2-sine (* (acl2-pi) 1/3))

(/ (acl2-sqrt 3) 2)))

(defthm cosine-pi/3

(equal (acl2-cosine (* (acl2-pi) 1/3)) 1/2))
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(defthm sine-pi/6

(equal (acl2-sine (* (acl2-pi) 1/6)) 1/2))

(defthm cosine-pi/6

(equal (acl2-cosine (* (acl2-pi) 1/6))

(/ (acl2-sqrt 3) 2)))

The study of trigonometry involves the proof of many amusing identities, some of

them of dubious value. The proofs proceed more or less in the same manner: one term is re-

peatedly simplified until it looks identical to another. This style of proof seems particularly

well-suited to ACL2 and its rewriting engine.

To illustrate the point, consider some identities from [29], a standard trigonometry

textbook. A good place to start is with the identity3 cos4(x) + 6 sin2(x) = 3 + 3 sin4(x).

This fact can be easily verified in ACL2:

(defthm identity-1

(equal (+ (* 3 (expt (acl2-cosine x) 4))

(* 6 (expt (acl2-sine x) 2)))

(+ 3

(* 3 (expt (acl2-sine x) 4)))))

To do so requires a few illustrative rewrite lemmas. First, notice the theorem has several

exponents of sine and cosine. All the trigonometric theorems defined above are in terms of

products of sine and cosine, so it is best to do away with the exponents. A few rules such

as the following to do the trick:

(defthm expt-2

(equal (expt x 2) (* x x)))

The key lemma converts3 cos4(x) into 3(1 − sin2(x))2. This step can be suggested to

ACL2 by introducing the following lemma:
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(defthm lemma-1

(equal (* 3

(acl2-cosine x) (acl2-cosine x)

(acl2-cosine x) (acl2-cosine x))

(* 3

(- 1 (* (acl2-sine x) (acl2-sine x)))

(- 1 (* (acl2-sine x) (acl2-sine x))))))

The remainder of the proof is automatically handled by ACL2.

Another identity along this vein is the following:

(defthm identity-2

(equal (+ (expt (acl2-secant x) 2)

(expt (acl2-tangent x) 2))

(- (expt (acl2-secant x) 4)

(expt (acl2-tangent x) 4))))

The only needed lemmas are the rewrite rule favoring(x2 + y2)(x2− y2) overx4− y4 and

a technical algebraic lemma.

No extra lemmas are needed to prove the following identity:

(defthm identity-3

(implies (not (equal (acl2-cosine x) 0))

(equal (/ (+ (acl2-sine x)

(acl2-cotangent x))

(acl2-cosine x))

(+ (acl2-tangent x)

(acl2-cosecant x)))))

It is worth noting that trigonometry texts routinely omit the hypothesis above. It is simply

understood that the equalities are required to hold only when both terms are defined.

124



A fourth identity states that sin(x)
1+cos(x) + 1+cos(x)

sin(x) = 2 csc(x). To establish this result,

it is necessary to show that1 + cos(x) is not equal to 0 whenx is real andsin(x) 6= 0.

It is also necessary to prove a simple algebraic lemma, and then it is possible to prove the

identity:

(defthm identity-4

(implies (realp x)

(equal (+ (/ (acl2-sine x)

(+ 1 (acl2-cosine x)))

(/ (+ 1 (acl2-cosine x))

(acl2-sine x)))

(* 2 (acl2-cosecant x)))))

A final example is possible to prove after some basic algebraic lemmas are proved:

(defthm identity-5

(implies (realp x)

(equal (/ (acl2-cotangent x)

(- (acl2-cosecant x) 1))

(/ (+ (acl2-cosecant x) 1)

(acl2-cotangent x)))))

6.3 Computations with the Trigonometric Functions

One of the virtues of Nqthm and ACL2 is that they arecomputationallogics. That is,

functions defined in them can be directly executed. However, functions defined using the

non-standard primitives of ACL2(r) lose this important property. For example, the value of

(i-large-integer) is not known. But it is still possible to perform useful computa-

tions in ACL2(r). This section illustrates two approaches. First, ACL2 is used to verify the
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value ofπ to 20 decimal places. The computational aspect of ACL2 is evident here, espe-

cially when the size of the intermediate terms is taken into account. Second, it is shown

how ACL2 can be used to define arbitrarily close approximations to the sine and cosine

functions, similar to theiter-sqrt approximation to square root presented in chapter2.

6.3.1 Estimatingπ

This section will illustrate how ACL2 can carry out trigonometric computations by using

ACL2 to verify an approximation toπ. Recall thatπ was defined by finding the value

of x ∈ [0, 2] for which cos(x) = 0. It followed immediately thatπ was a real number

between0 and4. Sincesin(π) = 0 and it can be shown thatsin(x) > 0 for x ∈ (0, 2), it

is possible to prove that2 ≤ π < 4. The challenge is to find a better estimate forπ, and

that will require that several trigonometric computations be carried out with a high degree

of accuracy.

The math.h header file that ships with HPUX 10.20 declares the following ap-

proximation forπ:

# define M_PI 3.14159265358979323846

ACL2 does not support the decimal notation, so the value ofMPI must be defined as

follows:

(defun m-pi ()

314159265358979323846/100000000000000000000)

The following theorems will verify that this is, in fact, a good approximation.

The first question is whetherm-pi is too small or too large. This question can be

decided by ACL2. Consider the Taylor series forcos(x) = 1− x2

2! + x4

4! −. . .. Since this is an

alternating sequence, the sign ofcos(x) can be determined by finding an indexi so that, for

example,1− x2

2! + . . .+ xi

i! is negative and so is− xi+2

(i+2)! . It is particularly easy to determine
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if a specific indexi satisfies this requirement. In ACL2, this test can be performed using the

following function:

(defun cosine-clearly-negative (x nterms)

(and (< (sumlist (taylor-sincos-list nterms 0 1 x)) 0)

(< (car (taylor-sincos-list 2

nterms

(if (evenp

(/ nterms 2))

1

-1)

x))

0)))

A similar function checks whether the series is clearly positive, by inspecting the suggested

index.

These two functions can be used to determine whether the cosine ofm-pi is pos-

itive or negative. What is needed is simply to check if the index1 settles the question or

not. If not, then it is necessary to check whether the issue is resolved by index2, and so on.

This process can be mechanized in ACL2, using the following function:

(defun cosine-clear-sign (x nterms)

(declare (xargs :mode :program))

(if (cosine-clearly-negative x nterms)

(cons ’negative nterms)

(if (cosine-clearly-positive x nterms)

(cons ’positive nterms)

(cosine-clear-sign x (+ nterms 2)))))

There is an interesting problem with this function: its termination is not immediately ob-

vious. For example, consider what happens when the value ofx is equal toπ/2. The
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function would continue expanding the Taylor series, trying to find an initial sequence that

determinescos(π/2) as definitely positive or definitely negative. There is no such sequence

since the value ofcos(π/2) is zero, and so the function will recurse forever. Recall, ACL2

does not accept the definition of a function, unless it can prove that the function terminates

on all inputs, so it should not accept the definition ofcosine-clear-sign . However,

ACL2 allows the introduction of arbitrary functions, as long as they are declared in:pro-

gram mode, which means ACL2 does not introduce any axioms about the function, so it

can not prove any theorems about it. This is a perfect use of this feature, since the interest is

not in reasoning aboutcosine-clear-sign , but rather in executing it to find the value

of certain constants, namely an index large enough to decide whether the cosine of half of

m-pi is positive or negative. Runningcosine-clear-sign on (/ m-pi 2) with an

initial index of 0 returns’(POSITIVE . 28) . It follows thatm-pi is a lower bound on

π.

If the math.h header file is to be believed, then changing the last digit ofm-pi

from a 6 to a 7 should result in an upper bound forπ. In particular, ACL2 should be able to

verify that the following is larger thanπ:

(defun m-pi+eps ()

314159265358979323847/100000000000000000000)

Runningcosine-clear-sign on this number returns’(NEGATIVE . 26) , which

confirms that its cosine is negative and that the sum of all terms in the Taylor series up to

the x26

26! is required to prove this fact.

It is easy to overlook an important fact. The termx
26

26! wherex ≈ π/2 is very

close to zero. The only reason why these computations can be carried out with confidence

is that ACL2 uses infinite precision arithmetic on the rationals. In particular, it does not

assume the numerator of a rational is less than231 or some other arbitrary limit. That the

functioncosine-clear-sign can be written is a testament to the computational power

of ACL2.
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To prove thatπ lies betweenm-pi andm-pi+eps is relatively easy. The first

step is to prove that the cosine of half ofm-pi is positive and that of halfm-pi+eps is

negative. This formalizes the intuition behindcosine-clear-sign . Next, observe that

half of m-pi must be in the first quadrant, since its cosine is positive and it must be between

0 andπ. Similarly, m-pi+eps must be in the second quadrant. But thenπ/2 is between

half of m-pi and half ofm-pi+eps . Equivalently,π is betweenm-pi andm-pi+eps .

Formalizingcosine-clear-sign requires that the Taylor series forcos(x) be

split into a prefix and a suffix so that the sum of each part has the same sign. According

to the results of runningcosine-clear-sign , the split form-pi should be performed

after thex
28

28! term. This split can be justified according to the following ACL2 theorem:

(defthm taylor-sincos-list-split-for-m-pi

(equal (taylor-sincos-list (i-large-integer)

0

1

(* (m-pi) 1/2))

(append (taylor-sincos-list 28 0 1

(* (m-pi) 1/2))

(taylor-sincos-list (-

(i-large-integer)

28)

28

1

(* (m-pi) 1/2)))))

A similar theorem finds the appropriate split form-pi+eps .

The important thing about this split is that the sum of each term is positive form-pi

and negative form-pi+eps . The sum of the first part can be directly computed by ACL2,

so it can easily prove that it is positive in the case ofm-pi :
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(defthm taylor-sincos-list-prefix-m-pi->-0

(> (sumlist (taylor-sincos-list 28 0 1

(* (m-pi) 1/2))) 0))

Similarly, the sum of the first part form-pi+eps must be negative.

The sum of the second part can not be computed directly, since the value ofi-

large-integer is unspecified. However, sincetaylor-sincos-list is an alter-

nating sequence, the sum can be bounded by the first element in the sequence. The value of

this first element can be computed directly in ACL2. Therefore, it can prove that the sum

of the second part is positive form-pi :

(defthm taylor-sincos-list-postfix-m-pi->-0

(> (sumlist (taylor-sincos-list (- (i-large-integer)

28)

28

1

(* (m-pi) 1/2)))

0))

A similar theorem applies tom-pi+eps .

This demonstrates that the sum of the firsti-large-integers of the Taylor

series for cosine ofm-pi is positive. The value of cosine ofm-pi is thestandard-partof

this Taylor sum. However, just because the sum is positive does not mean itsstandard-part

is positive. To conclude that, it is necessary to observe that thestandard-partof the sum

is equal to the sum of thestandard-partof each of the two parts. This follows since the

two parts arei-limited. Moreover, since the first part of the sum is only adding ani-limited

number ofstandardterms, it must bestandardso it is its ownstandard-part. In other words,

thestandard-partof the first is positive. Since thestandard-partof the second sum can not

be negative, it follows that the entire sum is positive. A similar argument establishes that

the cosine ofm-pi+eps is negative.
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The first necessary lemma is that the sum of the first part isstandard. This follows

from the fact that the sum of anyi-limited prefix of the Taylor series isstandard, since it is

adding ani-limited number ofstandardvalues:

(defthm taylor-sincos-list-standard

(implies (and (standard-numberp sign)

(integerp counter)

(<= 0 counter)

(standard-numberp counter)

(integerp nterms)

(<= 0 nterms)

(standard-numberp nterms)

(standard-numberp x))

(standard-numberp

(sumlist (taylor-sincos-list nterms

counter

sign

x)))))

Also necessary is the fact that the sum of the second part isi-limited. Since the Taylor series

is alternating, this follows directly.

(defthm taylor-sincos-list-postfix-limited

(i-limited

(sumlist (taylor-sincos-list (+ (i-large-integer)

-28)

28

1

(* (m-pi) 1/2)))))
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It is an immediate corollary of the theorems above that the cosine of half ofm-pi

must be positive.

(defthm cosine-m-pi/2->-0

(> (acl2-cosine (* (m-pi) 1/2)) 0))

In turn, this forces half ofm-pi to lie in the first quadrant, or equivalentlym-pi to be less

thanπ. An analogous theorem proves thatm-pi+eps is larger thanπ. This results in the

following tight estimate forπ:

(defthm pi-tight-bound

(and (< (m-pi) (acl2-pi))

(< (acl2-pi) (m-pi+eps))

(<= (abs (- (m-pi) (m-pi+eps)))

1/100000000000000000000)))

As the theorem states, the estimate forπ is correct up to 20 significant digits. Moreover,

the computation described in this section can obviously be modified to yield an arbitrary

degree of precision.

Kaufmann used a similar technique to compute the value ofsin(1/2) with an accu-

racy of±1/645120 [36]. That proof, limited by the numeric system of the contemporary

ACL2, served to motivate and guide the introduction of non-standard analysis into ACL2

as described in this thesis.

6.3.2 Approximating sine and cosine

This section presents an epsilon approximation scheme for the sine and cosine functions.

The basic idea is simple. Recall that sine and cosine are defined in terms of the exponential

function. Moreover, these functions have been proved equal to their usual Taylor series

expansion:
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(defthm taylor-sin-valid

(implies (standard-numberp x)

(equal (acl2-sine x)

(standard-part

(sumlist (taylor-sincos-list

(1- (i-large-integer))

1

1

x))))))

(defthm taylor-cos-valid

(implies (standard-numberp x)

(equal (acl2-cosine x)

(standard-part

(sumlist (taylor-sincos-list

(i-large-integer)

0

1

x))))))

Since the Taylor series is an alternating series, it is possible to approximate its sum

by adding a prefix of it. Moreover, the error of the approximation is bounded by the first

element of the suffix not included in the approximate sum. To find the value ofsin(x) within

an error bound of±ε, it is only necessary to find a termxn/n! of the Taylor approximation

to sin(x) such that|xn/n!| < ε.

The first step is to show thattaylor-sincos-list returns an alternating se-

quence. Recall from section6.1.4that taylor-sincos-list is alternating for allx in

the rangex ∈ (0, 2]. To generalize this theorem to all values ofx, it is necessary to divide
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taylor-sincos-list into ani-limited prefix and an alternating suffix. A possible split

places the firstdxe elements in the prefix and the remaining terms in the suffix. A similar

approach was taken in chapter5 when the functionex was introduced.

That the sum of the prefix isi-limited can be proved with the following theorem:

(defthm limited-taylor-sincos-list

(implies (and (i-limited nterms)

(i-limited counter)

(standard-numberp sign)

(i-limited x))

(i-limited (sumlist

(taylor-sincos-list nterms

counter

sign

x)))))

This theorem is true because the sum of ai-limited number ofi-limited numbers isi-limited.

To prove that the suffix is alternating, it is almost sufficient to show thatxn/n! <

xn+2/(n+ 2)! when|x| < n. Care must be taken to account for the cases whenx is zero.

(defthm alternating-sequence-2-p-taylor-sincos

(implies (and (realp x)

(realp sign)

(integerp counter)

(< (abs x) counter))

(alternating-sequence-2-p

(taylor-sincos-list nterms

counter

sign

x))))
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Using the properties of alternating series, it is now possible to find an upper bound for the

sum of the suffix:

(defthm sumlist-taylor-sincos-list-bound

(implies (and (realp x)

(realp sign)

(integerp counter)

(< (abs x) counter))

(<= (abs (sumlist (taylor-sincos-list nterms

counter

sign

x)))

(abs (taylor-sin-term sign counter x))))

The functiontaylor-sin-term simply returns an element of the Taylor expansion for

sine or cosine:

(defun taylor-sin-term (sign counter x)

(* sign

(expt x counter)

(/ (factorial counter))))

What remains is to find a large enoughn so that|x|n/n! < ε for an arbitrary choice

of x andε > 0. To find such ann, first observe that for an integerm less thann, |x|n/n! can

be written as
∏m
i=1

|x|
i ·
∏n
i=m+1

|x|
i and so|x|n/n! < M ·

(
|x|
m

n−m)
whereM =

∏m
i=1

|x|
i .

If m is chosen so that|x|/m ≤ 1/2, it follows that |x|n/n! < ε if |x|m
n−m

< 1/2n−m <

ε/M . So the problem is simply to find ann large enough so that1/2n−m < ε/M for some

ε/M > 0. The functionguess-num-iters introduced in chapter2 can be used to find

such ann.

The approximations to sine and cosine can be defined as follows:
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(defun sine-approx (x eps)

(sumlist

(taylor-sincos-list (n-for-sincos x eps)

1

1

x)))

(defun cosine-approx (x eps)

(sumlist

(taylor-sincos-list (n-for-sincos x eps)

0

1

x)))

The functionn-for-sincos simply finds a suitablen givenx andeps. It finds this value

as suggested by the argument above.

The remainder of the proof is simple. Forstandardvalues ofx andeps , (n-for-

sincos x eps) is i-limited and therefore less than(i-large-integer) . So the

Taylor series for sine or cosine can be split after(n-for-sincos x eps) terms as

follows:

(defthm standard-part-sumlist-taylor-sincos-list-split-2

(implies (and (integerp nterms)

(<= 0 nterms)

(i-large nterms)

(realp x) (standard-numberp x)

(realp eps) (< 0 eps) (< eps 1)

(standard-numberp eps)

(equal n (n-for-taylor-sin-term x eps)))
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(equal (standard-part

(sumlist (taylor-sincos-list nterms

1

1

x)))

(+ (sumlist

(taylor-sincos-list n 0 1 x))

(standard-part

(sumlist

(taylor-sincos-list (- nterms n)

(1+ n)

(if (evenp

(/ n 2))

1

-1)

x))))))

The functionn-for-taylor-sin-term , used byn-for-sincos , returns a suitably

large value ofn but only forε < 1. The functionn-for-sincos adjusts the value ofε if

necessary before passing it ton-for-taylor-sin-term . The first term of this sum is

equal to(sine-approx x eps) . The second sum can be bounded by its first element,

and the value ofn is chosen so that this element is less thanε. This proves the correctness

of the approximation functionsine-approx :

(defthm-std sine-approx-valid

(implies (and (realp x)

(realp eps) (< 0 eps))

(< (abs (- (acl2-sine x)

(sine-approx x eps)))
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eps)))

A similar argument showscosine-approx is an epsilon approximation scheme for co-

sine.

It should be emphasized that thesine-approx andcosine-approx functions

are executable. For example, in section6.1.4it was shown that the cosine of 2 is negative,

but its value was left undetermined. Usingcosine-approx , it is possible to find esti-

mates tocos(2) with as much accuracy as desired. ACL2 evaluates(cosine-approx

2 1/1000) to -265715113/638512875 or -0.4161 . This number is guaranteed to

be within1/1000 of the actual value ofcos(2), as can be verified with a calculator.

This chapter began by introducing the sine and cosine functions into ACL2. How-

ever, the previous results show that significantly more has been accomplished. ACL2 has a

fair amount of trigonometric knowledge, and with some help and guidance it is able to prove

quite interesting trigonometric facts and approximate complex trigonometric expressions.
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Chapter 7

Powerlists in ACL2

This chapter makes a sharp departure from the earlier ones. It is time for the spotlight to

move away from the real numbers and non-standard analysis and into the world of data

structures.

In [46], Misra introduced the powerlist data structure, which is well suited to express

recursive, data-parallel algorithms. Misra and others have shown how powerlists can be

used to prove the correctness of several algorithms. Naturally, this success has encouraged

some researchers to pursue automated proofs of theorems about powerlists[32, 33, 34]. This

chapter shows how such theorems can be proved in ACL2.

7.1 Regular Powerlists

Misra defines powerlists as follows. For any scalarx, the object〈x〉 is a singleton powerlist.

If x andy are “similar” powerlists — that is, they have the same number of elements, and

corresponding elements are similar — the new powerlistsx | y andx 1 y, called the tie

and zip ofx andy, respectively, can be constructed. The powerlistx | y consists of all

elements ofx followed by the elements ofy. In contrast,x 1 y contains the elements

of x interleaved with the elements ofy. Since tie and zip are defined only for similar
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powerlists, all powerlists are of length2n for some integern, and moreover all elements of

a powerlist are similar to each other. In the sequel, a more general notion of powerlist will

be introduced. To avoid confusion, powerlists adhering to Misra’s original criteria will be

referred to as “regular” powerlists.

For example,〈1〉, 〈1, 2〉, 〈3, 4〉, 〈1, 2, 3, 4〉 and〈1, 3, 2, 4〉 are all powerlists. More-

over,〈1, 2〉 | 〈3, 4〉 = 〈1, 2, 3, 4〉 and〈1, 2〉 1 〈3, 4〉 = 〈1, 3, 2, 4〉.

The theory of powerlists is given by the following axioms (laws in [46]):

L0. For singleton powerlists〈x〉 and〈y〉, 〈x〉 | 〈y〉 = 〈x〉 1 〈y〉.

L1a. For any non-singleton powerlistX, there are similar powerlistsL,R so thatX = L |

R.

L1b. For any non-singleton powerlistX, there are similar powerlistsO, E so thatX =

O 1 E.

L2a. For singleton powerlists〈x〉 and〈y〉, 〈x〉 = 〈y〉 iff x = y.

L2b. For powerlistsX1 | X2 andY1 | Y2,X1 | X2 = Y1 | Y2 iff X1 = Y1 andX2 = Y2.

L2c. For powerlistsX1 1 X2 andY1 1 Y2, X1 1 X2 = Y1 1 Y2 iff X1 = Y1 and

X2 = Y2.

L3. For powerlistsX1, X2, Y1, andY2, (X1 | X2) 1 (Y1 | Y2) = (X1 1 Y1) | (X2 1

Y2).

It is possible to find a smaller set of axioms to characterize powerlists. For example, lawL3

can be used to define zip in terms of tie, so that only tie remains as an undefined term.

What makes powerlists so special is that they provide a notation in which data-

parallel, recursive algorithms can be expressed naturally. Consider the functions(x) that

adds up all the elements in the powerlistx. It can be defined as follows:

s(〈x〉) = x

s(x | y) = s(x) + s(y)
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Notice that the recursive computation is recursing twice, once on each half ofx | y. The

result is that the partial sumss(x) ands(y) can be computed in parallel, resulting in the

classic addition binary tree implementation. This stands in sharp contrast to the function

t(x) which adds the elements of thelist (not powerlist)x:

t([x]) = x

t(a.x) = a+ t(x)

This time, notice how the computation is recursing only once, on a list that is almost as

long as the original list. The resulting computation tree is actually a linear tree as deep as

the input list is long. Clearly, the implied computation is inherently serial; it does not lend

itself to a parallel implementation.

Another benefit of powerlists is that the properties of powerlist functions can be

verified algebraically, proceeding from the powerlist axiomsL0 throughL3. Consider a

different function that also computes the sum of the elements in a powerlist:

u(〈x〉) = x

u(x 1 y) = u(x) + u(y)

It is possible to prove using a simple induction scheme thatu(x) is identical tos(x). Such

proofs will be presented in the following sections.

7.2 Defining Powerlists in ACL2

A Naive Representation of Powerlists

Choosing the right representation of powerlists in ACL2 is not trivial. One immediate

stumbling block is that ACL2 does not support partial functions, so the definitions of| and

1 must dosomethingfor non-similar powerlists, and in fact for non-powerlist operands.

A first approach might represent powerlists in ACL2 as lists of length2n. The function
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tie would take two powerlists and, if they are of equal length, return their concatenation,

otherwise a special error powerlist (e.g.,nil ). A similar definition would work forzip .

Such an approach is taken in [33], where partial constructors play a central role.

There are a few problems with taking this approach in ACL2. First of all, each

time a tie or zip operation is made, it must be proved that the arguments are of equal

length. These proof obligations can become expensive at best, and disastrous if they prevent

term simplification. Moreover, the proof obligations propagate into all theorems concerning

tie andzip ; these obligations can place a large burden on the ACL2 rewriter. The second

problem is that since ACL2 does not support function definitions over terms, powerlist

functions such as

rev(〈x〉) = x

rev(x | y) = rev(y) | rev(x)

need to be turned into the form

rev(X) =

 X if X is a singleton

rev(right(X)) | rev(left(X)) otherwise

where the functionsleft andright are defined so thatleft(X) | right(X) = X. But

defining these functions in ACL2 — more germanely, reasoning about them — is not sim-

ple. Intuitively, the problem is that to computeleft(X), it is necessary to count the elements

of X, divide by two, then walk back through the elements ofX and return half of them.

Reasoning about all these steps is necessary in every function invocation, so the overhead

quickly overwhelms the prover.

Another problem with this approach is that an explicit definition ofzip andtie

leaves open the possibility that the theory developed depends on the particular definitions of

zip andtie used, not just on the powerlist laws as defined by Misra. Simply showing that

the ACL2 functionszip andtie satisfy the axioms is not sufficient, since other properties

of the specific functionszip andtie may be used in the proof of some theorem.
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A Better Representation of Powerlists

The observations above suggest an alternative approach. Instead of representing powerlists

as lists, represent them as binary trees, e.g.,cons trees. Moreover, remove the restriction

that tie andzip only apply to similar powerlists. The operationtie is now replaced

by a simplecons and left andright can be defined in terms ofcar andcdr . The

definition ofzip requires a recursive function, very similar to the one used when represent-

ing powerlists as lists. The result of this representation is that reasoning about powerlists

requires much less overhead than before; however, the representation allows objects that

were previously not recognized as powerlists, for example〈1.〈2.3〉〉, where dotted notation

is used to emphasize the structural nature of the representation. In the sequel, the term

“powerlists” will be used to refer to arbitrary “dotted-pair” powerlists as above. The term

“regular powerlists” is reserved to powerlists satisfying Misra’s original constraints.

The generalized notion of powerlists allows the expression of some algorithms

which can not be stated in traditional powerlist theory, for example insertion sort. On the

other hand, it presents some new problems. First, it does not retain a 1-to-1 correspondence

between linear lists and powerlists. For example, the list(1, 2, 3, 4) can be viewed as ei-

ther of the powerlists〈1.〈2.〈3.4〉〉〉 or 〈〈1.2〉.〈3.4〉〉. This is not too troubling, because the

theorems presented here will be true of either powerlist representation. Naturally, in par-

allel processing applications, it is best to choose the powerlist with the smallest maximal

branch height. The choice, however, is made in the translation from lists to powerlists, not

in the powerlist theory. A second problem is that the operational semantics of certain func-

tions may not carry over to generalized powerlists. For example, the operational semantics

of zip is that it interleaves the elements from its two powerlist arguments. This is clearly

not possible if the arguments have different lengths. The functions defined here match

the operational semantics only for regular powerlists, but they retain the relevant algebraic

properties for all powerlists. For example, thezip operator interleaves the elements from

its two arguments when these are regular and similar to each other. Furthermore, for all
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powerlists,zip obeys the algebraic properties stated in lawsL1b, L2c, andL3.

The choice to use generalized powerlists was made taking these tradeoffs into ac-

count. Similar tradeoffs can be found in other approaches to generalized powerlists, such

as Kornerup’s parlists [44].

It is important that the resulting theory is nevertheless faithful to the original theory.

That is, the original axioms ofzip andtie hold in the new theory. At the very least, it is

important to ensure that the theorems about regular powerlists are precisely those of Misra’s

theory. To do so requires examining each of Misra’s powerlist axioms in turn.

Observe, since the scalar powerlist〈x〉 is simply represented asx in this scheme,

law L2a is trivially true. A drawback of this approach is that nested powerlists are not

implicitly allowed, e.g.,〈〈1, 2〉, 〈3, 4〉〉 is indistinguishable from〈1, 2, 3, 4〉 in this repre-

sentation. Where nested powerlists are needed, e.g., for matrices, an explicitnest operator

must be used, as in〈nest(〈1, 2〉), nest(〈3, 4〉)〉.

The Tie Constructor

The actual implementation begins with the definition of the data type powerlists. Recall the

intent of clearly separating the logical properties of powerlists from any special properties

deriving from the specific definitions oftie and zip . This separation can be cleanly

enforced by using the ACL2encapsulate primitive to introducetie as a constrained

function. Consider the following partial encapsulate:

(encapsulate

((powerlist (car cdr) t)

(powerlist-p (powerlist) t)

(powerlist-car (powerlist) t)

(powerlist-cdr (powerlist) t))

(local
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(defun powerlist (car cdr)

(cons ’powerlist (cons car (cons cdr nil)))))

(local

(defun powerlist-p (powerlist)

(and (consp powerlist) (consp (cdr powerlist))

(consp (cdr (cdr powerlist)))

(null (cdr (cdr (cdr powerlist))))

(eq (car powerlist) ’powerlist))))

(local

(defun powerlist-car (powerlist)

(car (cdr powerlist))))

(local

(defun powerlist-cdr (powerlist)

(car (cdr (cdr powerlist)))))

...

)

This exports the signatures of the powerlist constructorpowerlist , the powerlist rec-

ognizerpowerlist-p , and the destructorspowerlist-car andpowerlist-cdr ,

while completely hiding the details of the implementation. Note, the functionpowerlist

is intended to correspond to the tie operation. To emphasize this fact, it is convenient to

explicitly definep-tie as a macro:

(defmacro p-tie (x y)

‘(powerlist ,x ,y))
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Similarly, the macrosp-untie-l and p-untie-l can stand forpowerlist-car

andpowerlist-cdr , respectively. These destructors will be referred to as the “left” and

“right half” of a powerlist.

What remains is to present sufficient constraints on these functions so that they sat-

isfy Misra’s powerlist laws. For example,powerlist-p should be true of an object con-

structed withpowerlist . Moreover,powerlist-car andpowerlist-cdr should

behave as inverses topowerlist :

(encapsulate

...

(defthm defs-powerlist-p-powerlist

(equal (powerlist-p (powerlist car cdr)) t))

(defthm defs-read-powerlist

(and (equal (powerlist-car (powerlist car cdr))

car)

(equal (powerlist-cdr (powerlist car cdr))

cdr)))

(defthm defs-eliminate-powerlist

(implies (powerlist-p powerlist)

(equal (powerlist (powerlist-car powerlist)

(powerlist-cdr powerlist))

powerlist)))

)

Because powerlists are recursive data structures, it is no surprise that functions will be

defined recursing onpowerlist-car andpowerlist-cdr . So it is also necessary
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to prove that such recursions are justified; i.e., that there is a well-founded measure that is

reduced by invocations topowerlist-car andpowerlist-cdr :

(encapsulate

...

(defthm untie-reduces-count

(implies (powerlist-p x)

(and (< (acl2-count (powerlist-car x))

(acl2-count x))

(< (acl2-count (powerlist-cdr x))

(acl2-count x)))))

)

Becauseuntie-reduces-count is used so often in inductive definitions, it is worth-

while to make it a:builtin rule in ACL2. This requires only that the theorem is stated in

precisely the same way that ACL2’s definition procedure phrases the recursive termination

proof obligation. The easiest way to do so is simply to cut and paste the appropriate goal

from a run of ACL2. Finally, it is necessary to show some objects that are guaranteed not

to be powerlists, for example numbers and booleans:

(encapsulate

...

(defthm nesting-powerlists

(equal (powerlist-p (list ’nest x)) nil))

(defthm powerlist-non-boolean

(implies (powerlist-p x)

(not (booleanp x))))
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(defthm boolean-non-powerlist

(implies (booleanp x)

(not (powerlist-p x))))

(defthm powerlist-non-numeric

(implies (powerlist-p x)

(not (acl2-numberp x))))

(defthm numeric-non-powerlist

(implies (acl2-numberp x)

(not (powerlist-p x))))

)

Notice the theoremnesting-powerlists . Recall that in this representation it is im-

possible to represent nested powerlists without an explicit nesting operator. The theorem

nesting-powerlists guarantees that objects of the form’(nest X) can not possi-

bly be powerlists, hence a powerlistx can be nested inside another powerlist by placing it

in the term’(nest x) .

The Zip “Constructor”

It is now possible to define the functionp-zip which implements the zip “constructor”:

(defun p-zip (x y)

(if (and (powerlist-p x) (powerlist-p y))

(p-tie (p-zip (p-untie-l x) (p-untie-l y))

(p-zip (p-untie-r x) (p-untie-r y)))

(p-tie x y)))
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Note how the definition ofp-zip mirrorsL0 andL3, hence these axioms are satisfied by

these definition ofp-tie andp-zip . In order to accept definitions based onp-zip , the

functionsp-unzip-l andp-unzip-r , analogous top-untie-l andp-untie-r ,

need to be defined. This can be done as follows:

(defun p-unzip-l (x)

(if (powerlist-p x)

(if (powerlist-p (p-untie-l x))

(if (powerlist-p (p-untie-r x))

(p-tie (p-unzip-l (p-untie-l x))

(p-unzip-l (p-untie-r x)))

(p-untie-l x))

(p-untie-l x))

x))

(defun p-unzip-r (x)

(if (powerlist-p x)

(if (powerlist-p (p-untie-l x))

(if (powerlist-p (p-untie-r x))

(p-tie (p-unzip-r (p-untie-l x))

(p-unzip-r (p-untie-r x)))

(p-untie-r x))

(p-untie-r x))

nil))

Note, these functions provide the equivalent to Misra’s lawL1b. It is possible to prove

the validity of recursion based onp-zip , using a theorem similar tountie-reduces-

count .
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Notice thatp-unzip-l andp-unzip-r return every other element of a regular

powerlistx . If the elements ofx are indexed from 1,(p-unzip-l x) returns the odd-

indexed elements,and(p-unzip-r x) the even-indexed ones. Hence, in the sequelp-

unzip-l andp-unzip-r will be referred to as the odd- and even-indexed elements of

x , respectively. They will also be referred to as the “left unzip” and “right unzip” ofx .

The definitions ofp-unzip-l and p-unzip-r were carefully constructed so

that the following theorems are all true:

(defthm zip-unzip

(implies (powerlist-p x)

(equal (p-zip (p-unzip-l x)

(p-unzip-r x))

x)))

(defthm unzip-l-zip

(equal (p-unzip-l (p-zip x y)) x))

(defthm unzip-r-zip

(equal (p-unzip-r (p-zip x y)) y))

These three theorems prove the equivalent of lawL2c for the ACL2 powerlists. On an

implementation note,zip-unzip should be an:elim rule so that ACL2 can use it to

eliminate the destructorsp-unzip-l andp-unzip-r in favor of p-zip , in the same

way it removescar andcdr and replaces them usingcons .

7.2.1 Similar Powerlists

At this point, the definitions ofp-tie and p-zip are known to satisfy all of Misra’s

powerlist axioms, except for the notion of similarity. LawsL1a andL1b claim that thep-

untie-l andp-untie-r of a powerlist are similar, i.e. of the same length, as are its
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p-unzip-l andp-unzip-r . This is certainly not the case with ACL2 powerlists, since

powerlists are not required to be of length2n. However, it is possible to add conditions,

namely that the given powerlists be regular, that make these theorems true. Later, these

regularity conditions will surface as hypotheses in some of the example theorems proved.

As in [46], two powerlists are defined as similar if they have the sametie -tree

structure:

(defun p-similar-p (x y)

(if (powerlist-p x)

(and (powerlist-p y)

(p-similar-p (p-untie-l x) (p-untie-l y))

(p-similar-p (p-untie-r x) (p-untie-r y)))

(not (powerlist-p y))))

It follows immediately thatp-similar-p is an equivalence relation. This proves use-

ful, because ACL2 can use this fact in its generic “equivalence” reasoning, hence making

theorems aboutp-similar-p easier to prove.

The next task is to show howp-similar-p powerlists behave in conjunction

with the constructors and destructors based onp-tie andp-zip . These theorems are

trivial for regular powerlists, since powerlists are similar if and only if they have the same

length. Moreover, both zip and tie double the length of a powerlist, and unzip and untie

halve it.

Things are a little murkier in the case of general powerlists; this lost simplicity is

the price paid for not using a regular data structure as suggested by Misra. For starters, it is

easy to prove theorems about the destructors, such as the following:

(defthm unzip-l-similar

(implies (p-similar-p x y)

(p-similar-p (p-unzip-l x) (p-unzip-l y))))
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The analogous theorems forp-unzip-r as well as forp-untie are also trivial. These

theorems will be used most often in proving the antecedent of an inductive hypothesis. For

example, with the goal

(implies (p-similar-p x y)

(P x y))

where propertyP is defined in terms ofp-zip , the following subgoal is likely to be gener-

ated by induction:

(implies (and (powerlist-p x)

(p-similar-p x y)

(implies (p-similar-p (p-unzip-l x)

(p-unzip-l y))

(P (p-unzip-l x) (p-unzip-l y)))

(implies (p-similar-p (p-unzip-r x)

(p-unzip-r y))

(P (p-unzip-r x) (p-unzip-r y))))

(P x y))

At this point,unzip-l-similar can be used to establish that(P (p-unzip-l x)

(p-unzip-l y)) is true and the proof can proceed. Since this is the intended use, these

theorems can be turned into:forward-chaining rules, which are triggered before

ACL2’s general rewriting engine (and hence provide a modest performance improvement).

Remaining are the constructorsp-tie andp-zip . It should be possible to prove

that when a powerlist is zipped (tied) to one of two similar powerlists, the result is similar to

when it is zipped (tied) to the other. ACL2 provides a general way to reason about this type

of theorem, namely congruence rewriting. With congruence rewriting, ACL2 will deduce

(p-zip x1 y) is similar to(p-zip x2 y) whenx1 is similar tox2 , and similarly

that(p-zip x y1) and(p-zip x y2) are similar wheny1 andy2 are. Congruence

rules can be defined in ACL2 as follows:
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(defcong p-similar-p p-similar-p (p-zip x y) 1)

(defcong p-similar-p p-similar-p (p-zip x y) 2)

Thedefcong event is simply syntactic sugar for the following rules:

(defthm p-similar-p-implies-p-similar-p-p-zip-1

(implies (p-similar-p x x-equiv)

(p-similar-p (p-zip x y)

(p-zip x-equiv y)))

:rule-classes (:congruence))

(defthm p-similar-p-implies-p-similar-p-p-zip-2

(implies (p-similar-p y y-equiv)

(p-similar-p (p-zip x y)

(p-zip x y-equiv)))

:rule-classes (:congruence))

7.2.2 Regular Powerlists

Another useful property of powerlists isp-regular-p which is true of a perfectly bal-

anced powerlist, that is, one which corresponds to the theory in [46]. This condition is more

expensive to verify thanp-similar-p , because it requires passing information from one

half of the powerlist to the other, i.e., not only must the left and right halves of the powerlist

be regular, their depth must be the same. Rather than explicitly reasoning about depth, it

is convenient to usep-similar-p , since several theorems about it have already been

established. The result is the following definition:

(defun p-regular-p (x)

(if (powerlist-p x)

(and (p-similar-p (p-untie-l x) (p-untie-r x))
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(p-regular-p (p-untie-l x))

(p-regular-p (p-untie-r x)))

t))

Note that both the similarity and regularity conditions of the definition are required to re-

strict powerlists to be of length2n. For example, if the similarity condition were left out,

〈1.〈〈2.3〉.〈4.5〉〉〉 would be considered regular. Likewise, if the regularity conditions were

left out, the powerlist〈〈1.〈2.3〉〉.〈4.〈5.6〉〉 would be considered regular. It will be seen later

that both regularity conditions are not needed in the definition.

As was the case withp-similar-p , it is necessary to show howp-regular-p

interacts with the constructors and destructors ofp-tie andp-zip . This results in the

following type of theorem:

(defthm unzip-regular

(implies (p-regular-p x)

(and (p-regular-p (p-unzip-l x))

(p-regular-p (p-unzip-r x)))))

The converse theorem, about the constructor functions requires an extra hypothesis, namely

that the powerlists to be tied or zipped be similar. This is the formal equivalent of the

restriction that| and1 only apply to powerlists of the same length. The theorem can be

stated as follows:

(defthm zip-regular

(implies (and (p-regular-p x)

(p-similar-p x y))

(p-regular-p (p-zip x y))))

Another group of theorems explores the interaction betweenp-regular-p and

p-similar-p powerlists. For example, the unzips and unties of regular powerlists are

similar:
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(defthm regular-similar-unzip-untie

(implies (and (powerlist-p x)

(p-regular-p x))

(and (p-similar-p (p-unzip-l x)

(p-unzip-r x))

(p-similar-p (p-unzip-l x)

(p-untie-l x))

(p-similar-p (p-unzip-r x)

(p-untie-r x)))))

This particular theorem provides the missing similarity assertion of lawsL1aandL1b.

Similar theorems, such as a powerlist similar to a regular powerlist is also regular,

can be easily proved. This particular theorem justifies the removal of one of the recur-

sivep-regular-p instances in the definition ofp-regular-p . It is probably best to

leave the definition as is, because of symmetry and also because having the extra condition

immediately available may be useful whenp-regular-p is found as a hypothesis in a

theorem.

The notionp-similar-p appears much more useful thanp-regular-p , since

similarity ensures that a function taking more than one argument can recurse on one of

the arguments and still visit all the nodes of the other argument, e.g., for pairwise addition

of powerlists. In fact, the main use ofp-regular-p is to show that two powerlists are

similar. This occurs when a single powerlist is split and a function applied to the two

halves. It also occurs when two powerlists are traversed in a non-standard ordering, e.g., by

splitting them into left and right halves and then combining the left half of one with the right

half of the other or by splitting with unzip and combining with tie. In these cases, thep-

regular-p condition ensures that all of the pieces that can be split arep-similar-p

to each other, making it possible to use whatever function of two lists should process them.

155



7.2.3 Functions on Powerlists

When working with powerlists, many similar functions, usually small and incidental to the

main theorem, are encountered. For example, it may be necessary to add all the elements of

a powerlist, or find their minimum or maximum, etc. It may also be necessary to take two

powerlists and return their pairwise sum, product, etc. Moreover, often similar theorems

about these functions need to be proved, such as the sum (maximum, minimum) of the sum

(maximum, minimum) of two powerlists is the same as the sum (maximum, minimum)

of their zip. This is a perfect opportunity to use ACL2’s encapsulation primitive to prove

the appropriate theorem schemas, which can later be instantiated with specific functions in

mind.

To illustrate the approach, consider the following encapsulation:

(encapsulate

((fn1 (x) t)

(fn2-accum (x y) t)

(equiv (x y) t))

(local (defun fn1 (x) (fix x)))

(local (defun fn2-accum (x y) (+ (fix x) (fix y))))

(local (defun equiv (x y) (equal x y)))

(defthm fn1-scalar

(implies (not (powerlist-p x))

(not (powerlist-p (fn1 x)))))

(defthm fn2-accum-commutative

(equiv (fn2-accum x y) (fn2-accum y x)))
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(defthm fn2-accum-associative

(equiv (fn2-accum (fn2-accum x y) z)

(fn2-accum x (fn2-accum y z))))

(defcong equiv equiv (fn2-accum x y) 1)

(defcong equiv equiv (fn2-accum x y) 2)

(defequiv equiv))

This definesfn1 as a scalar function,fn2-accum as an associative-commutative binary

function, andequiv as an equivalence relation. Outside of the encapsulation, nothing is

known about the functions other than the constraints proved in the encapsulate. Hence, any

theorems that can be proved about these functions could also be proved about any functions

that satisfy the constraints. In effect, theorems aboutfn1 , fn2-accum , andequiv are

theorem schemas, which can be instantiated for any suitable function. This allows the basic

proof pattern to be derived once and to be used in multiple instances thereafter.

As a motivating example, consider applyingfn1 to all the elements of a powerlist,

e.g., squaring all values in a powerlist. Another example usesfn2-accum to accumulate

all the values in the powerlist into an aggregate. Both of these functions can be defined in

two obvious ways, namely recursing in terms of eitherp-tie or p-zip . Naturally, the

result is expected to be the same, regardless of which way the function is defined. So for

example, the following theorem should be established:

(defun a-zip-fn2-accum-fn1 (x)

(if (powerlist-p x)

(fn2-accum (a-zip-fn2-accum-fn1 (p-unzip-l x))

(a-zip-fn2-accum-fn1 (p-unzip-r x)))

(fn1 x)))
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(defun b-tie-fn2-accum-fn1 (x)

(if (powerlist-p x)

(fn2-accum (b-tie-fn2-accum-fn1 (p-untie-l x))

(b-tie-fn2-accum-fn1 (p-untie-r x)))

(fn1 x)))

(defthm a-zip-fn2-accum-fn1-same-as-b-tie-fn2-accum-fn1

(equiv (b-tie-fn2-accum-fn1 x)

(a-zip-fn2-accum-fn1 x)))

At this point, it is not clear that anything important has been accomplished. After all, the

abstract theorem proved seems a bit contrived. How often does one define a function first in

terms ofp-zip , then in terms ofp-tie ? If such duplicate definitions are avoided, say by

arbitrarily choosing to define them in terms ofp-tie always, the above is wasted effort.

The following intuition will suffice to explain why this effort is important. While

simple functions, such as the above, are just as easily defined in terms ofp-tie asp-

zip , this is not the case for more complex functions. For example, consider the function

p-ascending-p which is true for an ascending powerlist. This is much more easily

expressed in terms ofp-tie , since it is simpler to decide when thep-tie of two ascend-

ing powerlists is ascending than to decide when theirp-zip is ascending. On the other

hand the functionp-batcher-merge discussed later is naturally expressed in terms of

p-zip , since it works by successively merging the odd- and even-indexed elements of

a powerlist. Naturally, when proving theorems aboutp-ascending-p , auxiliary func-

tions should be defined in terms ofp-tie , so that all the recursions open up in the same

way. Such a function may find the minimum of a powerlist. But when reasoning about

p-batcher-merge , the same functions are needed, only this time it is preferable to re-

curse in terms ofp-zip , so that it “opens up” the same way in an inductive proof. What is

left then is the glue to tie the two definitions of each auxiliary function together. This is an
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explicit instance of the theorem schema above.

In fact, it should be pointed out that the creation of these theorem schemas came as

a direct result of having proved a seemingly endless stream of similar small theorems. It is

these theorems that formed the basis of the theorem schema above; i.e., all these abstract

theorems were constructed by “unifying” needed lemmas in one specific proof of another.

To reinforce this, consider the accumulators above. The scalar functionfn1 seems unnec-

essary, as does the equivalence relationequiv . It would be simpler to state the theorems

purely in terms offn2-accum which is the binary operator that is being abstracted and

equal . However, the forms above were suggested by the specific instances appearing in

the examples. One such instance isminimum where the accumulator is themin function

andequiv andfn1 are the equality and identity functions, respectively. Another instance

is list-of-type where the accumulator is theand function,equiv the iff function,

andfn1 a scalartype-p function.

Accepting for now that this effort is not wasted, consider the following useful theo-

rems. As expected by now, a key series of lemmas show how the functionsa-zip-fn2-

accum-fn1 andb-tie-fn2-accum-fn1 behave with respect to the constructors and

destructors ofp-tie andp-zip ; for example, the following theorems relateb-tie-

fn2-accum-fn1 to p-zip :

(defthm zip-b-tie-fn2-accum-fn1

(equiv (b-tie-fn2-accum-fn1 (p-zip x y))

(fn2-accum (b-tie-fn2-accum-fn1 x)

(b-tie-fn2-accum-fn1 y))))

(defthm unzip-b-tie-fn2-accum-fn1

(implies (powerlist-p x)

(equiv (fn2-accum

(b-tie-fn2-accum-fn1 (p-unzip-l x))

(b-tie-fn2-accum-fn1 (p-unzip-r x)))
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(b-tie-fn2-accum-fn1 x))))

Both of these theorems are useful in establishing the antecedent of induction hypotheses.

ACL2 provides a special type of rule which seems tailor made for this purpose. The

:definition rule type allows alternative definitions to be specified for a given function;

e.g., it allows the functionfn2-accum-fn1 to be given a definition in terms ofp-tie

and one in terms ofp-zip , provided their equivalence can be proved. The ACL2 rewriter

decides which definition to use when expandingfn2-accum-fn1 depending on the other

terms in the theorem to be proved. So for example, if a theorem contains many instances

of p-zip , thep-zip definition of fn2-accum-fn1 would be chosen. While this ap-

proach seems promising, it resulted in a significant performance degradation, because the

rewriter spent too much time deciding which definition to use. As a result, the approach

outlined here appears best, at least to those who prefer guiding the theorem prover towards

a particular proof rather than waiting for the prover to possibly discover deep proofs on its

own.

7.3 Simple Examples

In this section, various examples from [46] are formalized in ACL2. This illustrates how the

primitives defined in section7.2are sufficient for ACL2 to prove theorems about powerlists.

Start with thep-reverse function, which reverses a powerlist; e.g.,p-reverse

of 〈〈1.2〉.〈3.4〉〉 is 〈〈4.3〉.〈2.1〉〉. The definition, a straight transliteration from [46], is as

follows:

(defun p-reverse (p)

(if (powerlist-p p)

(p-tie (p-reverse (p-untie-r p))

(p-reverse (p-untie-l p)))

p))

160



Similarly, p-reverse-zip can be defined, reversing in terms ofp-zip instead ofp-

tie . ACL2 can immediately verify thatp-reverse is its own inverse. That is, it trivially

accepts the following theorem:

(defthm reverse-reverse

(equal (p-reverse (p-reverse x)) x))

Before proving thatp-reverse andp-reverse-zip are equal, however, the following

lemma is needed:

(defthm reverse-zip

(equal (p-zip (p-reverse x) (p-reverse y))

(p-reverse (p-zip y x))))

This lemma, typical of both Nqthm and ACL2 lemmas, tells ACL2 how to “push”p-zip

into ap-reverse . Given this lemma, ACL2 can now easily verify the following:

(defthm reverse-reverse-zip

(equal (p-reverse-zip x) (p-reverse x)))

It is interesting to note that the theorem above does not depend on the structure of the

powerlistx . Specifically, there is no requirement thatx is regular.

The functionsp-rotate-right andp-rotate-left which return a rotation

of their arguments are easily defined in terms ofp-zip ; indeed their simplicity is a tribute

to thep-zip constructor:

(defun p-rotate-right (x)

(if (powerlist-p x)

(p-zip (p-rotate-right (p-unzip-r x))

(p-unzip-l x))

x))

(defun p-rotate-left (x)
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(if (powerlist-p x)

(p-zip (p-unzip-r x)

(p-rotate-left (p-unzip-l x)))

x))

Again, ACL2 can prove a number of theorems unassisted. For example, it can show that

p-rotate-right andp-rotate-left are inverses with the following theorem:

(defthm rotate-left-right

(equal (p-rotate-left (p-rotate-right x)) x))

Notice again that the theorem remains true even for arbitrary powerlists, not just regular

powerlists. ACL2 can also prove the analogous theorem where the powerlist is rotated to

the left first.

In addition, ACL2 proves that zip and rotate “almost” commute. The operations are

not strictly commutative, because the direction of the rotation needs to be reversed:

(defthm reverse-rotate

(equal (p-reverse-zip (p-rotate-right x))

(p-rotate-left (p-reverse-zip x))))

This theorem can be used to prove the following “amusing identity” due to Misra:

(defthm reverse-rotate-reverse-rotate

(equal (p-reverse-zip

(p-rotate-right

(p-reverse-zip

(p-rotate-right x))))

x))

Next, consider repeated shifts. The functionp-rotate-right-k loops over

p-rotate-right k times:
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(defun p-rotate-right-k (x k)

(if (zp k)

x

(p-rotate-right (p-rotate-right-k x (1- k)))))

A subtler definition shifts the odd-indexed and even-indexed elements by about half ofk ,

then joins the result. This is given below:

(defun p-rotate-right-k-fast (x k)

(if (powerlist-p x)

(if (integerp (/ k 2))

(p-zip (p-rotate-right-k-fast (p-unzip-l x)

(/ k 2))

(p-rotate-right-k-fast (p-unzip-r x)

(/ k 2)))

(p-zip (p-rotate-right-k-fast (p-unzip-r x)

(1+ (/ (1- k) 2)))

(p-rotate-right-k-fast (p-unzip-l x)

(/ (1- k) 2))))

x))

ACL2 can prove the equality of these two functions, but only with a certain amount of help,

partly because ACL2 has a hard time reasoning about the values ink above.

Another function suggested by Misra is the shuffle function, which rotates not the

elements of a powerlist, but their indices, based on zero-indexing. For example, the low-

order bit of the index becomes the high-order bit, and hence the even-indexed elements will

appear at the front of the result. This function can be defined as follows:

(defun p-right-shuffle (x)

(if (powerlist-p x)
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(p-tie (p-unzip-l x) (p-unzip-r x))

x))

Particularly noteworthy is thatp-right-shuffle mixes thep-zip destructors with the

p-tie constructor. Once more, ACL2 is able to prove without assistance thatp-left-

shuffle andp-right-shuffle are inverses:

(defthm left-right-shuffle

(equal (p-left-shuffle (p-right-shuffle x)) x))

Notice again that the theorem is true regardless of whether the powerlistx is regular. This is

somewhat surprising given that the functions were defined precisely with a regular powerlist

in mind.

Another interesting permutation function isp-invert which reverses the bit vec-

tor of the index of a powerlist. This function is used, for example, in the Fast Fourier

Transform algorithm. It can be defined as follows:

(defun p-invert (x)

(if (powerlist-p x)

(p-zip (p-invert (p-untie-l x))

(p-invert (p-untie-r x)))

x))

Following [46], the following lemma can be proved:

(defthm invert-zip

(equal (p-invert (p-zip x y))

(p-tie (p-invert x) (p-invert y))))

It is interesting that this lemma, although typical of ACL2 lemmas, was actually needed

in Misra’s original hand proof. As in [46], ACL2 can now prove, without user interven-

tion, thatp-invert is its own inverse. Moreover, it can prove thatp-invert andp-

reverse commute:
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(defthm invert-invert

(equal (p-invert (p-invert x)) x))

(defthm invert-reverse

(equal (p-invert (p-reverse x))

(p-reverse (p-invert x))))

Finally, given an arbitrary binary functionfn2 (defined in anencapsulate similar to

the one in section7.2.3) applied pairwise to the elements of two lists, it can be shown that

p-invert andfn2 commute:

(defthm invert-zip-fn2

(implies (p-similar-p x y)

(equal (p-invert (a-zip-fn2 x y))

(a-zip-fn2 (p-invert x)

(p-invert y)))))

7.4 Sorting Powerlists

Consider the problem of sorting a powerlist. The specification of being sorted is as follows:

(defun p-sorted-p (x)

(if (powerlist-p x)

(and (p-sorted-p (p-untie-l x))

(p-sorted-p (p-untie-r x))

(<= (p-max-elem (p-untie-l x))

(p-min-elem (p-untie-r x))))

t))

where the functionsp-min-elem andp-max-elem return the minimum and maximum

elements of a powerlist respectively. The definition ofp-min-elem is as follows:
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(defun p-min-elem (x)

(if (powerlist-p x)

(if (<= (p-min-elem (p-untie-l x))

(p-min-elem (p-untie-r x)))

(p-min-elem (p-untie-l x))

(p-min-elem (p-untie-r x)))

(realfix x)))

For example, thep-min-elem of 〈3, 2, 4, 6〉 is 2. Notice howp-sorted-p is most

naturally expressed in terms ofp-tie ; in fact, it is not immediately obvious how an equiv-

alent definition can be written in terms ofp-zip . For this reason,p-min-elem in also

defined in terms ofp-tie , though it could just as easily have been defined in terms ofp-

zip . However, since it is likely that reasoning aboutp-zip will be needed in the future,

theorems such as the following should prove useful:

(defthm min-elem-zip

(equal (p-min-elem (p-zip x y))

(if (<= (p-min-elem x) (p-min-elem y))

(p-min-elem x)

(p-min-elem y))))

(defthm min-elem-unzip

(implies (powerlist-p x)

(and (>= (p-min-elem (p-unzip-l x))

(p-min-elem x))

(>= (p-min-elem (p-unzip-r x))

(p-min-elem x)))))

Both of these theorems are instances of generic theorems proved in section7.2.3, so ACL2

does not need to perform added work in proving them (given an appropriate hint to instanti-
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ate the generic theorems). Moreover, since different sorting algorithms are likely to require

similar theorems aboutp-min-elem , p-sorted-p , and so on, it pays to prove these up

front. For example, it can be established once and for all that the minimum of a powerlist is

no larger than its maximum. It can also be proved howp-sorted behaves in the presence

of p-zip , etc.

Another requirement of a sorting algorithm is that it return a permutation of its

argument. To ensure this, the following function can be used, returning the number of times

a given argument appears in a powerlist:

(defun p-member-count (x m)

(if (powerlist-p x)

(+ (p-member-count (p-untie-l x) m)

(p-member-count (p-untie-r x) m))

(if (equal x m) 1 0)))

Again, it is useful to prove basic theorems aboutp-member-count , such as how it be-

haves withp-zip , since these lemmas will likely prove useful to any sorting algorithm.

In summary, a proposed sorting algorithmp-sort should satisfy the following

theorems:

• (p-sorted-p (p-sort x))

• (equal (p-member-count (p-sort x) m)

(p-member-count x m))

Of course, specific sorting routines may impose restrictions on the original powerlistx , e.g.,

a routine may only work with numeric lists.

7.4.1 Merge Sorting

Merge sort is a very natural parallel sorting algorithm. An abstract merge sort over pow-

erlists can be defined as follows:
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(defun my-merge-sort (x)

(if (powerlist-p x)

(p-merge (my-merge-sort (p-split-1 x))

(my-merge-sort (p-split-2 x)))

x))

The functionsp-merge , andp-split-1 andp-split-2 instantiate specific merge

sort algorithms. Classically,p-merge will be a complicated function and the split func-

tions will be trivial. These functions and their relevant theorems can be encapsulated, and

the correctness of this generic merge sort should be provable from the constraints on these

functions. In particular, the following theorems should be established:

(defthm merge-sort-is-permutation

(implies (p-sortable-p x)

(equal (p-member-count (p-merge-sort x) m)

(p-member-count x m))))

(defthm merge-sort-sorts-input

(implies (p-sortable-p x)

(p-sorted-p (p-merge-sort x))))

Thep-sortable-p goal permits merge algorithms that only work for a subclass of pow-

erlists; the forthcoming Batcher merge, which only works for regular powerlists, is an ex-

ample of such an algorithm.

In order to prove the theorems above, the following assumptions about the generic

merge functions are needed:

(encapsulate

((p-sortable-p (x) t)

(p-mergeable-p (x y) t)
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(p-split-1 (x) t)

(p-split-2 (x) t)

(p-merge (x y) t)

(p-merge-sort (x) x))

...

(defthm *obligation*-split-reduces-count

(implies (powerlist-p x)

(and (e0-ord-< (acl2-count (p-split-1 x))

(acl2-count x))

(e0-ord-< (acl2-count (p-split-2 x))

(acl2-count x)))))

(defthm *obligation*-member-count-of-splits

(implies (powerlist-p x)

(equal (+ (p-member-count (p-split-1 x) m)

(p-member-count (p-split-2 x) m))

(p-member-count x m))))

(defthm *obligation*-member-count-of-merge

(implies (p-mergeable-p x y)

(equal (p-member-count (p-merge x y) m)

(+ (p-member-count x m)

(p-member-count y m)))))

(defthm *obligation*-sorted-merge

(implies (and (p-mergeable-p x y)

(p-sorted-p x)
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(p-sorted-p y))

(p-sorted-p (p-merge x y))))

(defthm *obligation*-merge-sort

(equal (p-merge-sort x)

(if (powerlist-p x)

(p-merge (p-merge-sort (p-split-1 x))

(p-merge-sort (p-split-2 x)))

x)))

(defthm *obligation*-sortable-split

(implies (and (powerlist-p x)

(p-sortable-p x))

(and (p-sortable-p (p-split-1 x))

(p-sortable-p (p-split-2 x)))))

(defthm *obligation*-sortable-mergeable

(implies (and (powerlist-p x)

(p-sortable-p x))

(p-mergeable-p (p-merge-sort

(p-split-1 x))

(p-merge-sort

(p-split-2 x))))))

Recall, however, that before ACL2 accepts such anencapsulate event, it must be given

a witness function; that is, an implementation of such a merging scheme. The easiest route

is to use a vacuous merger, i.e., by locally definingp-sortable-p to benil .
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7.4.2 Batcher Sorting

One of Batcher’s sorting algorithms can be defined as follows [4]:

(defun p-batcher-sort (x)

(if (powerlist-p x)

(p-batcher-merge (p-batcher-sort (p-untie-l x))

(p-batcher-sort (p-untie-r x)))

x))

The definition follows the pattern of the generic merging algorithm introduced in the previ-

ous section, usingp-batcher-merge as the merge operation. Therefore, the correctness

of this function can be verified simply by verifying thatp-batcher-merge correctly

merges two sorted lists.

The Batcher merge is given by the following:

(defun p-batcher-merge (x y)

(if (powerlist-p x)

(p-zip (p-min (p-batcher-merge (p-unzip-l x)

(p-unzip-r y))

(p-batcher-merge (p-unzip-r x)

(p-unzip-l y)))

(p-max (p-batcher-merge (p-unzip-l x)

(p-unzip-r y))

(p-batcher-merge (p-unzip-r x)

(p-unzip-l y))))

(p-zip (p-min x y) (p-max x y))))

The functionsp-min andp-max return respectively the pairwise minimum and maximum

of two powerlists. Sincep-zip features prominently in the definition ofp-batcher-

merge , it is not surprising to findp-min andp-max similarly defined.
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At first glance, the definition ofp-batcher-merge looks straight-forward. Cer-

tainly, it seems that a straight-forward structural induction should be sufficient to prove

all the properties about it one would wish. Howerver, there are two imposing challenges

ahead. The first is thatp-batcher-merge is defined in terms ofp-zip , whereas the

target predicatep-sorted-p is defined in terms ofp-tie . This is especially trouble-

some becausep-batcher-merge does not recurse evenly through its arguments. Notice

in particular how the theleft unzip ofx is merged with theright unzip ofy , and vice versa.

Consider first the proof of the following goal:

(equal (p-member-count (p-batcher-merge x y) m)

(+ (p-member-count x m)

(p-member-count y m)))

Sincep-min andp-max operate on the pairwise points ofx andy , it is reasonable to

require thatx and y be similar. Moreover, sincep-batcher-merge is recursing on

opposite halves ofx andy , it is reasonable to expect the powerlists must also be regular.

Moreover, it will be necessary to constrain the powerlist to contain only real numbers. This

is because the ordering imposed byp-max is only well-defined over the reals. Of course,

it will be necessary to prove the theorems that all intermediate results satisfy the structural

requirements of the hypothesis; i.e., for similarx andy their p-min andp-max are also

similar, etc.

The goal becomes the following:

(defthm member-count-of-merge

(implies (and (p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y))

(equal (p-member-count

(p-batcher-merge x y) m)
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(+ (p-member-count x m)

(p-member-count y m)))))

To prove the above claim, it must be established that all the values ofx andy can be found

somewhere in theirp-min andp-max . This can be proved generically; that is, it can be

shown that the sum of any scalar function overx andy is unaffected byp-min andp-max :

(defthm a-zip-plus-fn1-of-min-max

(implies (and (p-similar-p x y)

(p-number-list x)

(p-number-list y))

(equal (+ (a-zip-plus-fn1 (p-max x y))

(a-zip-plus-fn1 (p-min x y)))

(+ (a-zip-plus-fn1 x)

(a-zip-plus-fn1 y)))))

Notice that this is an extension of the generic theorems defined in section7.2.3to include

specific functions, such asp-min andp-max . The functiona-zip-plus-fn1 is an

instance ofa-zip-fn2-accum-fn1 ; it finds the sum of all the elements in a powerlist.

From the generic lemmas proved in section7.2.3, it follows that a-zip-plus-fn1 is

equivalent tob-tie-plus-fn1 , which is analogous tob-tie-fn2-accum-fn1 . Us-

ing this lemma, the similar result forp-batcher-merge follows easily:

(defthm a-zip-plus-fn1-of-merge

(implies (and (p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y))

(equal (a-zip-plus-fn1 (p-batcher-merge x y))

(+ (a-zip-plus-fn1 x)
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(a-zip-plus-fn1 y)))))

By instantiatingfn1 with the pseudo-function(lambda (x) (if (= x m) 1 0))

and using the equivalence ofa-zip-plus-fn1 andb-tie-plus-fn1 , the theorem

member-count-of-merge follows trivially.

Notice above how all the reasoning was done with respect top-zip , and only the

last step appealed to the equivalence ofp-member-count as defined in terms ofp-zip

andp-tie to complete the proof.

It is time to tackle the question of whenp-batcher-merge returns a sorted

powerlist. The recursive step returns a powerlist of the form

(p-zip (p-min (p-batcher-merge X1 Y2)

(p-batcher-merge X2 Y1))

(p-max (p-batcher-merge X1 Y2)

(p-batcher-merge X2 Y1)))

From the inductive hypothesis it will follow that both(p-batcher-merge X1 Y2)

and (p-batcher-merge X2 Y1) are sorted. It is natural to ask, therefore, whether

(p-zip (p-min X Y) (p-max X Y)) is sorted, given sortedX and Y. Unfortu-

nately, this is not the case, as the powerlists〈1, 2〉 and〈3, 4〉 demonstrate. The problem

is that thep-min of 2 and4 is 2, which is smaller than thep-max of 1 and3. What is

needed is an assurance that the elements of the lists are not only sorted independently, but

that one lists does not “grow” too much faster than the other.

ConsiderX = 〈x1, x2, x3, x4〉 andY = 〈y1, y2, y3, y4〉. The condition amounts to

the following:

max(xi, yi) ≤ min(xj , yj)

for all indicesi < j. This condition automatically implies thatX andY are sorted. In

ACL2, the required property can be defined as follows:

(defun p-interleaved-p (x y)
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(if (powerlist-p x)

(and (powerlist-p y)

(p-interleaved-p (p-untie-l x) (p-untie-l y))

(p-interleaved-p (p-untie-r x) (p-untie-r y))

(<= (p-max-elem (p-untie-l x))

(p-min-elem (p-untie-r x)))

(<= (p-max-elem (p-untie-l x))

(p-min-elem (p-untie-r y)))

(<= (p-max-elem (p-untie-l y))

(p-min-elem (p-untie-r x)))

(<= (p-max-elem (p-untie-l y))

(p-min-elem (p-untie-r y))))

(not (powerlist-p y))))

For example, the powerlists〈1, 2〉 and〈3, 4〉 do not satisfyp-interleaved-p , but the

powerlists〈1, 4〉 and〈2, 3〉 do.

If (p-interleaved-p x y) is true,(p-zip (p-min x y) (p-max x

y)) is sorted. Intuitively, this is a simple result. In the example above, the first two elements

of Z will be x1 andy1, in ascending order. Moreover, the hypothesis assures us these two

numbers are the smallest of thexj andyj for j ≥ 2. A similar argument will work forx2

andy2, and so on.

To prove the claim in ACL2, it is necessary to reason about the interaction ofp-

min andp-min-elem , as well as theirmax counterparts. Sincep-min is defined in

terms ofp-zip andp-min-elem in terms ofp-tie , it is easier to prove this theorem in

terms of a single recursive scheme, sayp-tie and then use the bridging lemmas to prove

the result:

(defthm zip-min-max-sorted-if-interleaved

(implies (and (p-interleaved-p x y)
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(p-similar-p x y)

(p-number-list x)

(p-number-list y))

(p-sorted-p (p-zip (p-min x y)

(p-max x y)))))

Again, it is easier to prove this theorem first for versions ofp-min andp-max defined in

terms ofp-tie instead ofp-zip , sincep-sorted-p is defined in terms ofp-tie .

It only remains to be shown that the recursive calls top-batcher-merge return

p-interleaved-p lists. That is, given sortedX andY,

L1 = (p-batcher-merge (p-unzip-l X) (p-unzip-r Y))

L2 = (p-batcher-merge (p-unzip-r X) (p-unzip-l Y))

are p-interleaved-p . Intuitively, it is clear why this must be the case. It can be

assumed that bothL1 and L2 are sorted, since this fact will follow from the induction

hypothesis. Any prefix ofL1 will have some values fromX and some fromY, sayi andj

values respectively. Moreover, sinceL1 has only odd-indexed elements ofX andL2 only

the even-indexed elements ofX, no prefix ofL1 can have more elements fromX than the

corresponding prefix ofL2 , and similarly for the elements fromY. For example, suppose

thatL1 starts withx1 andx3, but the corresponding prefix ofL2 does not containx2. In

this case,L2 must start withy1 andy3, which means thaty3 < x2, sinceL2 is sorted and

its prefix does not containx2. But, it follows fromL1 thatx3 ≤ y2, sinceL1 is also sorted.

Therefore,x3 ≤ y2 ≤ y3 < x2 andx3 < x2. But this is a contradiction, sinceX is sorted.

Formalizing the argument given above places a severe challenge on the powerlist

paradigm, since the reasoning involves indices so explicitly, whereas powerlists do away

with the index concept. In fact, the whole concept of “prefix” is strange, since these prefixes

will by definition be irregular, and it has already been observed howp-batcher-merge

requires regular arguments. This calls for a little subtlety. The “prefix” concept can be

replaced with the following:
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(defun p-member-count-<= (x m)

(if (powerlist-p x)

(+ (p-member-count-<= (p-untie-l x) m)

(p-member-count-<= (p-untie-r x) m))

(if (<= (realfix x) m) 1 0)))

This returns the number of elements inx which are less than or equal tom; that is, for an

elementmin x , it returns its (largest) index inx . With this notion, the argument involving

the “prefix” of a powerlist can be formalized.

Consider expressions of the form

M1 = (p-member-count-<= (p-batcher-merge (p-unzip-l x)

(p-unzip-r y))

m)

M2 = (p-member-count-<= (p-batcher-merge (p-unzip-r x)

(p-unzip-l y))

m)

The following theorem shows how these terms can be simplified:

(defthm member-count-<=-of-merge

(implies (and (p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y))

(equal (p-member-count-<=

(p-batcher-merge x y)

m)

(+ (p-member-count-<= x m)

(p-member-count-<= y m)))))
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This theorem justifies the removal ofp-batcher-merge from the computation ofp-

member-count-<= . The following terms remain:

M1 = (+ (p-member-count-<= (p-unzip-l x) m)

(p-member-count-<= (p-unzip-r y) m))

M2 = (+ (p-member-count-<= (p-unzip-r x) m)

(p-member-count-<= (p-unzip-l y) m))

So the next step is to compare thep-member-count-<= of the p-unzip-l andp-

unzip-r of a powerlist, specifically asortedpowerlist. Intuitively, these are expected to

differ by no more than 1; moreover, since thep-unzip-r starts counting from the second

position, itsp-member-count-<= should be smaller than that of thep-unzip-l . This

intuition suggests the following theorems:

(defthm member-count-<=-of-sorted-unzips-1

(implies (and (powerlist-p x)

(p-regular-p x)

(p-sorted-p x))

(<= (p-member-count-<= (p-unzip-r x) m)

(p-member-count-<= (p-unzip-l x) m))))

(defthm member-count-<=-of-sorted-unzips-2

(implies (and (powerlist-p x)

(p-regular-p x)

(p-sorted-p x))

(<= (p-member-count-<= (p-unzip-l x) m)

(1+ (p-member-count-<= (p-unzip-r x)

m)))))

All these results can be combined into a single theorem stating thatM1andM2differ by no

more than 1:
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(defthm member-count-<=-of-merge-unzips

(implies (and (powerlist-p x)

(p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y)

(p-sorted-p x)

(p-sorted-p y))

(let ((M1 (p-member-count-<= (p-batcher-merge

(p-unzip-l x)

(p-unzip-r y))

m))

(M2 (p-member-count-<= (p-batcher-merge

(p-unzip-r x)

(p-unzip-l y))

m)))

(or (equal M1 M2)

(equal (1+ M1) M2)

(equal (1+ M2) M1)))))

The next step is to show that for nonp-interleaved-p lists, there is somemso that the

respectivep-member-count-<= differ by more than 1. Thismcan be found by making

a “cut” through the two lists at the precise spot where they fail thep-interleaved-p

test. The following function performs such a “cut”:

(defun interleaved-p-cutoff (x y)

(if (and (powerlist-p x) (powerlist-p y))

(cond ((< (p-min-elem (p-untie-r x))

(p-max-elem (p-untie-l x)))
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(p-min-elem (p-untie-r x)))

((< (p-min-elem (p-untie-r x))

(p-max-elem (p-untie-l y)))

(p-min-elem (p-untie-r x)))

((interleaved-p-cutoff (p-untie-l x)

(p-untie-l y))

(interleaved-p-cutoff (p-untie-l x)

(p-untie-l y)))

((interleaved-p-cutoff (p-untie-r x)

(p-untie-r y))

(interleaved-p-cutoff (p-untie-r x)

(p-untie-r y))))

nil))

Whenx andy arep-interleaved-p , the functioninterleaved-p-cutoff will

return nil . In all other cases, it returns a valid choice ofm as a counterexample in

member-count-<=-of-merge-unzips . Thus, theinterleaved-p-cutoff of

〈1, 4〉 and〈2, 3〉 is nil , but that of〈1, 2〉 and〈3, 4〉 is 2.

The first observation can be verified with the following theorem:

(defthm interleaved-p-if-nil-cutoff

(implies (and (p-similar-p x y)

(p-number-list x)

(p-number-list y)

(not (numericp

(interleaved-p-cutoff x y)))

(not (numericp

(interleaved-p-cutoff y x))))

(p-interleaved-p x y)))
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In order to establish thatinterleaved-p-cutoff finds a valid counterexample when

x andy are notp-interleaved-p , notice thatinterleaved-p-cutoff always

returns an element ofx , and furthermore for sortedx this valuemis such that its “index” in

x is at least one more than its “index” iny , since it must satisfy

(< (p-min-elem (p-untie-r x))

(p-max-elem (p-untie-l y)))

for some corresponding subtree ofx andy . In ACL2, this establishes the following theo-

rem:

(defthm member-count-diff-2-if-interleaved-cutoff-sorted

(implies (and (p-similar-p x y)

(p-number-list x)

(p-number-list y)

(p-sorted-p x)

(p-sorted-p y)

(interleaved-p-cutoff x y))

(< (1+ (p-member-count-<=

y

(interleaved-p-cutoff x y)))

(p-member-count-<=

x

(interleaved-p-cutoff x y)))))

The counterexample needed by the lemmasmember-count-<=-of-merge-unzips

andinterleaved-p-if-nil-cutoff can be found using this theorem. The preced-

ing results can be summarized as follows:

(defthm inner-batcher-merge-call-is-interleaved-p

(implies (and (powerlist-p x)
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(p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y)

(p-sorted-p x)

(p-sorted-p y)

(p-sorted-p

(p-batcher-merge (p-unzip-l x)

(p-unzip-r y)))

(p-sorted-p

(p-batcher-merge (p-unzip-r x)

(p-unzip-l y))))

(p-interleaved-p

(p-batcher-merge (p-unzip-l x)

(p-unzip-r y))

(p-batcher-merge (p-unzip-r x)

(p-unzip-l y)))))

From this point, the remainder of the proof is almost propositional. The inductive case of the

correctness ofbatcher-merge follows directly from the lemmainner-batcher-

merge-call-is-interleaved-p . Notice that the inductive hypothesis shares the

antecedent ofinner-batcher-merge-call-is-interleaved-p .

(defthm recursive-batcher-merge-is-sorted

(implies (and (powerlist-p x)

(p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y)
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(p-sorted-p x)

(p-sorted-p y)

(p-sorted-p

(p-batcher-merge (p-unzip-l x)

(p-unzip-r y)))

(p-sorted-p

(p-batcher-merge (p-unzip-r x)

(p-unzip-l y))))

(p-sorted-p (p-batcher-merge x y))))

The main result, establishing the correctness of Batcher merging, is an almost immediate

corollary of the above:

(defthm sorted-merge

(implies (and (p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y)

(p-sorted-p x)

(p-sorted-p y))

(p-sorted-p (p-batcher-merge x y))))

With the theorem above and the meta-theorems about merge sorts proved in sec-

tion 7.4.1, the correctness of Batcher sorting can be easily established:

(defthm batcher-sort-is-permutation

(implies (and (p-regular-p x)

(p-number-list x))

(equal (p-member-count (p-batcher-sort x) m)

(p-member-count x m))))
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(defthm batcher-sort-sorts-inputs

(implies (and (p-regular-p x)

(p-number-list x))

(p-sorted-p (p-batcher-sort x))))

These theorems are instances of the generic merge sorting theorems proved in section7.4.1.

7.4.3 A Comparison with the Hand-Proof

It is instructive to compare the machine-verified proof of section7.4.2with the hand-proof

provided in [46] and verified in [33].

The proof starts by defining the functionz as follows:

z(〈x〉) = 1 if x = 0, 0 otherwise

z(p 1 q) = z(p) + z(q)

That is,z(x) counts the number of zeros inx. Assuming that all powerlists range only over

0’s and 1’s, this yields the following characterization of sorted powerlists:

sorted(〈x〉)

sorted(p 1 q) = sorted(p) ∧ sorted(q) ∧ 0 ≤ z(p)− z(q) ≤ 1

The 0-1 assumption completely characterizes the pairwise minimum and maximum of two

sorted lists as follows:

min(x, y) = x, if sorted(x), sorted(y), andz(x) ≥ z(y)

max(x, y) = y, if sorted(x), sorted(y), andz(x) < z(y)

Moreover, the following key lemma can be established:

sorted(min(x, y) 1 max(x, y)) if sorted(x), sorted(y), and|z(x)− z(y)| ≤ 1

184



With some algebraic reasoning, this yields the main correctness result:

sorted(pbm(x, y)) if sorted(x) andsorted(y)

wherepbm is the Batcher merge function on powerlists.

This proof is much simpler than that given in section7.4.2, and that may be taken

as an indication that ACL2 is ineffective in reasoning about powerlists. However, such a

conclusion is premature. In fact, ACL2 can verify the reasoning given above without too

much difficulty. But the end result would not be as satisfying as the main theorems proven

in 7.4.2for a number of reasons. First, the hand proof relies on the 0/1 principle, which

states that any sorting algorithm based on comparing pairs of elements from a list will

correctly sort an arbitrary list if it correctly sorts all lists consisting exclusively of zeros and

ones. The formal proof in the powerlist logic proves the correctness only for lists of zeros

and ones, and then it uses the 0/1 principle to “lift” this proof to the arbitrary case. But the

0/1 principle is certainly not obvious; if anything, it is more surprising than the proof of

Batcher merge itself. For instance, proving the 0/1 principle in ACL2 would be extremely

difficult, if not impossible, because the principle references all possible sorting functions

based on comparing input pairs, and there is no apparent way to express this notion in the

logic of ACL2.

Another problem with the hand proof is that the definition ofsorted used is not the

same as the “standard” definition of a sorted list. It isonly true for lists of 0’s and 1’s, and

it is not immediately clear how this property compares to the usual notion of sorted lists.

The definition supplied, however, is extremely useful since it is based onzip instead of

tie , so it works more naturally with the definition of Batcher merge. However, the proof

of the equivalence of the two definitions is missing. This is especially important if Batcher

sorting were being used as part of a more complex function, e.g. a search routine, since the

key property required in the complex function — that Batcher sort correctly sorts its input

— has not been established yet.

In fact, it is fair to say that the hand proof presents a mixture of formal reasoning
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and informal arguments. Such a mixture is extremely convenient when generating the proof

by hand, but it can also be the source of subtle errors, such as the failure to identify needed

hypotheses.

7.5 Prefix Sums of Powerlists

Prefix sums appear in many applications, e.g., arithmetic circuit design. For a powerlist

X = 〈x1, x2, . . . , xn〉, its prefix sum is given byps(X) = 〈x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕

· · · ⊕ xn〉. The operator⊕ is an arbitrary binary operator; for the purposes of this section,

it can be assumed to be associative and to have a left-identity0.

The functionsbin-op andleft-zero encapsulate the binary operator⊕ and its

left identity, respectively. By using ACL2’sencapsulate , the following theorems are

all really theorem schemas which can be instantiated with any suitable operator, e.g,plus ,

and , min , etc. The required axioms are as follows:

(encapsulate

((domain-p (x) t)

(bin-op (x y) t)

(left-zero () t))

(defthm booleanp-domain-p

(booleanp (domain-p x)))

(defthm scalar-left-zero

(domain-p (left-zero)))

(defthm domain-powerlist

(implies (domain-p x)

(not (powerlist-p x))))
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(defthm left-zero-identity

(implies (domain-p x)

(equal (bin-op (left-zero) x) x)))

(defthm bin-op-assoc

(equal (bin-op (bin-op x y) z)

(bin-op x (bin-op y z))))

(defthm scalar-bin-op

(domain-p (bin-op x y)))

)

The functiondomain-p recognizes the intended domain which is required to be scalar, i.e.

non-powerlist. The functionp-domain-list-p extendsdomain-p over powerlists;

i.e., it recognizes powerlists ofdomain-p elements. Note that the second argument to

bin-op is required to bedomain-p in left-zero-identity , but thatdomain-p

is not a requirement ofbin-op-assoc , and furthermore thatdomain-p is always true

of the result ofbin-op . This turns out to be important, in that ACL2 defines many binary

operators that meet these requirements precisely. Moreover, at least one of these theorems

needs to havedomain-p as a hypothesis. For example, if the hypothesis is removed from

left-zero-identity , then for an arbitrary powerlistx, it would follow that0⊕x = x

and so⊕ would not always return a scalar.

There is a natural definition of prefix sums in terms of indices. That is, entryyj

in the prefix sum ofX is equal to the sum of all thexi up toxj . However, this definition

does not extend nicely to powerlists, since the two halves of a prefix sum are not themselves

prefix sums. The trick is to generalize prefix sums to allow an arbitrary value to be added

to the first element, in a manner analogous to a carry-in bit. This leads to the following
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definitions:

(defun p-prefix-sum-aux (prefix x)

(if (powerlist-p x)

(p-tie (p-prefix-sum-aux prefix (p-untie-l x))

(p-prefix-sum-aux (p-last (p-prefix-sum-aux

prefix

(p-untie-l x)))

(p-untie-r x)))

(bin-op prefix x)))

(defmacro p-prefix-sum (x)

‘(p-prefix-sum-aux (left-zero) ,x))

wherep-last returns the last element of a powerlist. Most of the following theorems

will be aboutp-prefix-sum-aux , though a few will have to be proved exclusively for

p-prefix-sum . Note,p-prefix-sum-aux could have been defined to pass the sum

of the left half ofx instead of the last element of the left prefix sum. The current definition

was preferred, simply because it is closer to the usual way the author computes prefix sums.

7.5.1 Simple Prefix Sums

The definition ofp-prefix-sum is inherently sequential. In this section, it is shown that

the following definition, more amenable to a parallel implementation, is equivalent:

(defun p-simple-prefix-sum (x)

(if (powerlist-p x)

(let ((y (p-add (p-star x) x)))

(p-zip (p-simple-prefix-sum (p-unzip-l y))

(p-simple-prefix-sum (p-unzip-r y))))

x))
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The functionp-add returns the pairwise sum of two powerlists, andp-star shifts a

powerlist to the right, prefixing the result withleft-zero :

(defun p-star (x)

(if (powerlist-p x)

(p-zip (p-star (p-unzip-r x)) (p-unzip-l x))

(left-zero)))

(defun p-add (x y)

(if (powerlist-p x)

(p-zip (p-add (p-unzip-l x) (p-unzip-l y))

(p-add (p-unzip-r x) (p-unzip-r y)))

(bin-op x y)))

An immediate problem is that ACL2 does not accept the definition given above for

p-simple-prefix-sum . The difficulty is that the definition recurses withx chang-

ing to (p-unzip-l (p-add (p-star x) x)) and the latter term is not obviously

“smaller” thanx . Therefore, ACL2 can not prove that the recursive definition is well-

founded. To circumvent this, a new “measure” on powerlists is needed, one that is reduced

when(p-unzip-l (p-add (p-star x) x)) is substituted forx :

(defun p-measure (x)

(if (powerlist-p x)

(+ (p-measure (p-unzip-l x))

(p-measure (p-unzip-r x)))

1))

The measure, in effect, counts the number of elements in a powerlist. Intuitively,p-

star andp-add should not affect the measure of a powerlist, whilep-unzip-l and

p-unzip-r should halve it. The first observation can be verified with the following pair

of theorems:
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(defthm measure-star

(equal (p-measure (p-star x)) (p-measure x)))

(defthm measure-add

(<= (p-measure (p-add x y)) (p-measure x)))

The second observation does not need an explicit lemma, because ACL2 can tell from

the definition ofp-measure that bothp-unzip-l and p-unzip-r reduce thep-

measure by at least 1. This means that whenp-simple-prefix-sum is introduced,

ACL2 needs a hint to usep-measure to prove that the definition is well-founded, and

then it is able to accept the definition.

Now consider the correctness ofp-simple-prefix-sum . The definition of this

function suggests two possible approaches: explore the powerlist given by(p-add (p-

star x) x) , or consider theunzip of the prefix sum ofx . The first approach seems

more promising. Recall thatp-star shifts its argument to the right, and thatp-add

returns a pairwise sum. Thus, forx given by

X = 〈x1, x2, x3, . . . , xn〉

(p-add (p-star x) x) is

Y = X∗ ⊕X = 〈x1, x1 ⊕ x2, x2 ⊕ x3, · · · , xn−1 ⊕ xn〉

Taking thep-unzip of this powerlist, gives the following:

Y1 = 〈x1, x2 ⊕ x3, . . . , xn−2 ⊕ xn−1〉

Y2 = 〈x1 ⊕ x2, x3 ⊕ x4, . . . , xn−1 ⊕ xn〉

whereY = Y1 1 Y2. It is clear now that indeed the prefix sum ofY1 yields precisely the

odd-indexed elements of the prefix sum ofX and, similarly, the prefix sum ofY2 yields the

even-indexed elements. Intuitively, this verifies the correctness ofp-simple-prefix-

sum. To formalize the argument, it will be convenient to think ofY1 andY2 not as compo-

nents ofY , but as two separate lists in their own right. This removes the awkward reference
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to p-unzip and allows the derivation ofY1 andY2 in a way more amenable to reasoning

aboutp-prefix-sum . Consider this new characterization ofY2:

(defun p-add-right-pairs (x)

(if (powerlist-p x)

(if (powerlist-p (p-untie-l x))

(p-tie (p-add-right-pairs (p-untie-l x))

(p-add-right-pairs (p-untie-r x)))

(bin-op (p-untie-l x) (p-untie-r x)))

x))

This redefinition ofY2 is especially useful because it is in terms ofp-tie , notp-zip , so it

will be easier to reason about itsp-prefix-sum . To begin with, it is trivial to characterize

the prefix sum of thep-add-right-pairs of a two-element powerlist — note that a

two-element powerlist is the natural base case for an induction, sincep-add-right-

pairs is only reasonable over non-singleton arguments. In particular, it can be proved

that for a powerlistX = 〈x1, x2〉, both the prefix sum of itsp-add-right-pairs and

the right unzip of its prefix sum are equal tox1 ⊕ x2:

(defthm prefix-sum-p-add-right-pairs-base

(implies (and (domain-p val)

(powerlist-p x)

(not (powerlist-p (p-untie-l x)))

(p-regular-p x)

(p-domain-list-p x))

(and (equal (p-prefix-sum-aux

val

(p-add-right-pairs x))

(bin-op val

(bin-op (p-untie-l x)
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(p-untie-r x))))

(equal (p-unzip-r

(p-prefix-sum-aux val x))

(bin-op val

(bin-op (p-untie-l x)

(p-untie-r x))))

)))

The definition ofp-prefix-sum uses the last element of the left prefix sum to compute

the right prefix sum. This suggests the following important lemma:

(defthm p-last-p-prefix-sum-p-add-right-pairs

(implies (and (domain-p val)

(p-regular-p x)

(p-domain-list-p x))

(equal (p-last (p-prefix-sum-aux

val

(p-add-right-pairs x)))

(p-last (p-prefix-sum-aux val x)))))

This provides an important bridge in any induction involvingp-prefix-sum-aux of

p-add-right-pairs . Such an induction can establish that the prefix sum ofp-add-

right-pairs computes the right unzip of the prefix sum of a powerlist:

(defthm prefix-sum-p-add-right-pairs

(implies (and (domain-p val)

(powerlist-p x)

(p-regular-p x)

(p-domain-list-p x))

(equal (p-prefix-sum-aux
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val

(p-add-right-pairs x))

(p-unzip-r

(p-prefix-sum-aux val x)))))

The second half of the proof is similar. Considerp-add-left-pairs , which is

a new characterization ofY1 = 〈x1, x2 ⊕ x3, . . . , xn−2 ⊕ xn−1〉:

(defun p-add-left-pairs (val x)

(if (powerlist-p x)

(if (powerlist-p (p-untie-l x))

(p-tie (p-add-left-pairs val (p-untie-l x))

(p-add-left-pairs (p-last

(p-untie-l x))

(p-untie-r x)))

(bin-op val (p-untie-l x)))

(bin-op val x)))

Unfortunately, the functionp-add-left-pairs is considerably more complicated than

p-add-right-pairs . The reason is that inp-add-right-pairs there was no need

for the left half of the computation to pass any information over to the right half; i.e., the

two recursive calls were completely independent of each other. The net effect is that rea-

soning aboutp-add-left-pairs is much more difficult than reasoning aboutp-add-

right-pairs . However, there is a simple way around this. Consider the powerlistX =

〈x1, x2, x3, . . . , xn〉 again. Shifting this powerlist yieldsX ′ = 〈0, x1, x2, x3, . . . , xn−1〉,

and thep-add-right-pairs of this shifted powerlist is〈x1, x2⊕x3, . . . , xn−2⊕xn−1〉,

which is precisely the same as thep-add-left-pairs of X. Moreover, it is clear that

the prefix sum ofX and the prefix sum ofX ′ are related; specifically, the prefix sum of

the shift is the shifted prefix sum. If this intuition can be formalized, the theorem aboutp-
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add-right-pairs can be used to prove the analogous theorem aboutp-add-left-

pairs , without having to reason aboutp-add-left-pairs at all.

Since bothp-add-left-pairs and p-add-right-pairs are defined in

terms ofp-tie , it is convenient to redefinep-shift in terms ofp-tie , rather than

using the equivalent functionp-star :

(defun p-shift (val x)

(if (powerlist-p x)

(p-tie (p-shift val (p-untie-l x))

(p-shift (p-last (p-untie-l x))

(p-untie-r x)))

val))

Consider the claim that the prefix sum and shift operators commute. This can be verified

by the following theorem:

(defthm p-prefix-sum-p-shift

(implies (and (domain-p c1)

(domain-p c2)

(p-domain-list-p x))

(equal (p-prefix-sum-aux c1 (p-shift c2 x))

(p-shift (bin-op c1 c2)

(p-prefix-sum-aux

(bin-op c1 c2)

x)))))

The proof of this theorem requires a subtle induction scheme. In particular, to conclude the

theorem, the following two partial prefix sums need to be considered:

PS1 = (p-prefix-sum-aux c1 (p-shift c2 (p-untie-l x)))

PS2 = (p-prefix-sum-aux (p-last PS1)
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(p-shift (p-last (p-untie-l x))

(p-untie-r x)))

In the second instance, the term(bin-op c1 c2) in the theorem becomes

(bin-op (p-last (p-prefix-sum-aux

c1

(p-shift c2 (p-untie-l x))))

(p-last (p-untie-l x)))

which using the inductive hypothesis is equal to the following:

(bin-op (p-last (p-shift (bin-op c1 c2)

(p-prefix-sum-aux

(bin-op c1 c2)

(p-untie-l x))))

(p-last (p-untie-l x)))

This term can be simplified into

(p-last (p-prefix-sum-aux (bin-op c1 c2) (p-untie-l x)))

using the following technical lemma:

(defthm binop-last-shift-prefix-sum

(implies (domain-p c)

(equal (bin-op (p-last

(p-shift

c (p-prefix-sum-aux c x)))

(p-last x))

(p-last (p-prefix-sum-aux c x)))))
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This simplification is the key step in the proof.

Having established that prefix sum and shift commute, it is now possible to return

to p-add-left-pairs . In particular, an instance ofp-add-left-pairs can be

converted into thep-add-right-pairs of a shifted powerlists as follows:

(defthm p-add-left-pairs->p-add-right-pairs-p-shift

(implies (and (domain-p val)

(powerlist-p x)

(p-regular-p x)

(p-domain-list-p x))

(equal (p-add-left-pairs val x)

(p-add-right-pairs (p-shift val x)))))

It is now trivial to establish that

(p-prefix-sum-aux val (p-add-left-pairs val2 x))

is equal to

(p-prefix-sum-aux val

(p-add-right-pairs (p-shift val2 x)))

and hence to

(p-unzip-r (p-prefix-sum val (p-shift val2 x)))

and

(p-unzip-r (p-shift (bin-op val val2)

(p-prefix-sum (bin-op val val2) x)))

To complete the proof, the following technical lemma is required to convert the right unzip

of a shift to the left unzip of the powerlist:
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(defthm p-unzip-r-p-shift

(implies (and (powerlist-p x)

(p-regular-p x)

(not (powerlist-p val)))

(equal (p-unzip-r (p-shift val x))

(p-unzip-l x))))

Putting it all together gives the needed characterization of the prefix sum of thep-add-

left-pairs of a powerlist:

(defthm prefix-sum-p-add-left-pairs

(implies (and (p-regular-p x)

(p-domain-list-p x)

(powerlist-p x)

(domain-p val1)

(domain-p val2))

(equal (p-prefix-sum-aux val1

(p-add-left-pairs

val2 x))

(p-unzip-l

(p-prefix-sum-aux (bin-op val1 val2)

x)))))

This is an important moment, becauseprefix-sum-p-add-left-pairs and

prefix-sum-p-add-right-pairs together give a characterization of theunzipsof

p-prefix-sum . Thus, the original definition ofp-prefix-sum , which was inherently

sequential, has been replaced with an independent characterization of its unzips; this will

make it much easier to prove the correctness ofp-simple-prefix-sum .

However,p-simple-prefix-sum is defined in terms ofp-star andp-add ,

and the new characterization usesp-add-left-pairs andp-add-right-pairs .
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The next step is to show how these are related. To start with, consider alternative definitions

of p-star andp-add usingtie instead ofzip ; this will make it easier to reason about

them andp-add-left-pairs /p-add-right-pairs together. Recall thatp-star

performs a shift operation andp-add a pairwise addition. The functionp-shift has

already been defined. Pairwise addition can be defined as follows:

(defun p-add-tie (x y)

(if (powerlist-p x)

(p-tie (p-add-tie (p-untie-l x) (p-untie-l y))

(p-add-tie (p-untie-r x) (p-untie-r y)))

(bin-op x y)))

ACL2 can quickly prove the equivalence of these definitions with the original ones. The

following theorem is particularly useful in the current context:

(defthm add-star-add-tie-shift

(implies (and (p-regular-p x)

(p-similar-p x y))

(equal (p-add (p-star x) y)

(p-add-tie (p-shift (left-zero) x)

y))))

Usingp-shift andp-add-tie , it can now be proved howp-add-left-pairs and

p-add-right-pairs are constructed in the definition ofp-simple-prefix-sum :

(defthm zip-add-left-pairs-add-right-pairs

(implies (and (powerlist-p x)

(p-regular-p x)

(p-domain-list-p x))

(equal (p-zip (p-add-left-pairs (left-zero)

x)
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(p-add-right-pairs x))

(p-add (p-star x) x))))

At this point, the proof is almost complete. The term

(p-add (p-star x) x)

can be rewritten as

(p-add-tie (p-shift (left-zero) x) x)

Moreover, this term can be unzipped into the two terms

(p-add-left-pairs (left-zero) x)

(p-add-right-pairs x)

Finally, the prefix sum of these terms can be zipped back together to get the prefix sum of

x . Taken together, this establishes the correctness ofp-simple-prefix-sum :

(defthm simple-prefix-sum-prefix-sum

(implies (and (p-regular-p x)

(p-domain-list-p x))

(equal (p-simple-prefix-sum x)

(p-prefix-sum x))))

7.5.2 Ladner-Fischer Prefix Sums

[46] verifies another algorithm for computing prefix sums, this one due to Ladner and Fis-

cher [45]:

(defun p-lf-prefix-sum (x)

(if (powerlist-p x)

(let ((y (p-lf-prefix-sum
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(p-add (p-unzip-l x) (p-unzip-r x)))))

(p-zip (p-add (p-star y) (p-unzip-l x)) y))

x))

The complexity of this algorithm is what justifies the previous usage of the namep-

simple-prefix-sum !

As was the case withp-simple-prefix-sum , it is worthwhile to consider the

correctness of the left and right unzips separately. The right unzip is immediate:

(defthm unzip-r-lf-prefix-sum

(implies (and (powerlist-p x)

(p-regular-p x)

(p-domain-list-p x)

(equal

(p-lf-prefix-sum (p-add (p-unzip-l x)

(p-unzip-r x)))

(p-prefix-sum (p-add (p-unzip-l x)

(p-unzip-r x)))))

(equal

(p-lf-prefix-sum (p-add (p-unzip-l x)

(p-unzip-r x)))

(p-unzip-r (p-prefix-sum x)))))

It is only necessary to recognize that

(p-add (p-unzip-l x) (p-unzip-r x))

is the same as(p-add-right-pairs x) . The rest follows from the lemmas proved in

the previous section.

The left unzip is a little more subtle. It is equal to
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(p-add (p-star (p-prefix-sum (p-add (p-unzip-l x)

(p-unzip-r x))))

(p-unzip-l x))

which can be reduced to

(p-add (p-star (p-unzip-r (p-prefix-sum x)))

(p-unzip-l x))

This can be simplified further using the following trivial lemma:

(defthm unzip-l-star

(equal (p-unzip-l (p-star x)) (p-star (p-unzip-r x))))

The simplified term is

(p-add (p-unzip-l (p-star (p-prefix-sum x)))

(p-unzip-l x))

which should further simplify to

(p-unzip-l (p-prefix-sum x))

The ubiquity ofp-unzip-l in the terms above suggest a natural generalization, which is

provable by ACL2:

(defthm add-star-prefix-sum

(implies (and (p-regular-p x)

(p-domain-list-p x))

(equal (p-add (p-star (p-prefix-sum x)) x)

(p-prefix-sum x))))

This theorem, called the “Defining Equation” in [46], plays a key role in the hand proof. It

will be revisited in section7.5.3.

With the results above, it is now easy to establish thatp-lf-prefix-sum equals

p-prefix-sum , thus demonstrating its correctness:
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(defthm lf-prefix-sum-prefix-sum

(implies (and (p-regular-p x)

(p-domain-list-p x))

(equal (p-lf-prefix-sum x)

(p-prefix-sum x))))

7.5.3 Comparing with the Hand-Proof Again

As was the case with Batcher sorting, the hand proof given in [46] is much simpler than the

machine-verified proof given above for the correctness of the prefix sum algorithms. Part

of the reason is that in [46] the proof begins in media res, as it were. Instead of providing

a constructive definition, the prefix sumps(x) of a powerlistx is defined as the solution to

the following “defining equation”:

z = z∗ ⊕ x

This equation is verified by the theoremadd-star-prefix-sum .

The hand proof proceeds by applying the defining equation to derive formulas for

the left and right unzip of a prefix sum. Specifically, the derivation yields the Ladner-Fischer

scheme. From there, it is shown how this scheme can be algebraically simplified to yield

the simple prefix sum algorithm.

However, as section7.5.2testifies, establishing the correctness of the defining equa-

tion requires a fair amount of effort, and once it is established the remainder of the Ladner-

Fischer proof is relatively simple.

The extra difficulty observed in the previous sections is a direct result of insisting

that the specifications, i.e., defining axioms, be constructive and readily accepted. This

insistence is necessary in the context of machine verification, where faith in a mechanically

verified proof should not be undermined by the necessity for a large unstated theory which

has only been verified by human hands.
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Moreover, requiring that correctness be established with respect to generally ac-

cepted specifications is a necessity if the proof is to be used in part of a larger project. For

example, prefix sums appear in many applications, so it is not surprising to find a prefix sum

computation in the middle of a complex algorithm. However, in establishing the correct-

ness of the embedding algorithm, the important property of prefix sums is that prefix sum of

X = 〈x1, x2, . . . , xn〉 is in factps(X) = 〈x1, x1⊕x2, . . . , x1⊕x2⊕ · · ·⊕xn〉. An equiv-

alent correctness result, such as the defining equation above, will not help immediately. In

the next section, an example of an embedded prefix sum is presented.

7.5.4 L’agniappe: A Carry-Lookahead Adder

Powerlists have been used to representn-bit registers and to reason about arithmetic oper-

ations on them[1, 34]. This section outlines a proof of correctness for a carry-lookahead

adder, using the correctness of a parallel prefix sum algorithm, i.e., the Ladner-Fischer

scheme.

The “ripple-carry” or “schoolbook” algorithm for adding twon-bit registers is in-

herently sequential. Beginning with the least-significant bit, the algorithm progresses by

adding corresponding bits. In so doing, it generates the carry bit for the next significant bit,

and so on. This algorithm serves as a specification forn-bit register addition.

(defun adder-fa (x y cin)

(if (zp cin)

(cons (if (equal (zp x) (zp y)) 0 1)

(if (or (zp x) (zp y)) 0 1))

(cons (if (equal (zp x) (zp y)) 1 0)

(if (and (zp x) (zp y)) 0 1))))

(defun adder-rc (x y cin)

(if (powerlist-p x)
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(let ((left (adder-rc (p-untie-l x)

(p-untie-l y)

cin)))

(let ((right (adder-rc (p-untie-r x)

(p-untie-r y)

(cdr left))))

(cons (p-tie (car left)

(car right))

(cdr right))))

(adder-fa x y cin)))

The functionadder-fa models a full-adder or 1-bit adder. It returns two values, the

sum of the input bits and the generated carry bit. Similarly,adder-rc adds a pair of

powerlists with a given input carry bit. It returns two values, the sum of the powerlists and

the generated carry-out bit.

The carry-lookahead adder uses the following observation. If it were only possible

to compute all the carry bits a priori, the result of adding twon-bit registers could be

computed in a single parallel step (usingn 1-bit adders). Moreover, given inputsX =

xnxn−1 . . . x1 andY = ynyn−1 . . . y1, the carry vectorC = cncn−1 . . . c1 can be computed

as follows. Considercj . If xj andyj are both0, thencj must also be0. Moreover, ifxj and

yj are both1, thencj is equal to1. In the remaining cases,cj is equal tocj−1, wherec0 is

the original carry bit.

The essential remaining point is that this computation is actually a prefix sum over

an associative operator with left-identity. The prefix sum runs over the domain{0, 1, p}

with intuitive meaning ofno-carry, carry, andpropagate carryrespectively. In constant

time, the carry bit forci can be estimated as either0, 1, or p, depending on whetherxi and

yi are both0, both1, or otherwise. The prefix sum over this vector of the operator� with

x� 0 = 0, x� 1 = 1 andx� p = x will generate the required carry bits. It is easily seen
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that the operator� is associative, with left-identityp. This informal argument, as described

for example in [15], can be made precise in ACL2.

Local-carry-vector computes the first pass of the carry-lookahead compu-

tation, generating values of either0, 1, or nil for the carry bit:

(defun local-carry (x y)

(if (equal (zp x) (zp y))

(if (zp x) 0 1)

nil))

(defun local-carry-vector (x y)

(if (powerlist-p x)

(p-tie (local-carry-vector (p-untie-l x)

(p-untie-l y))

(local-carry-vector (p-untie-r x)

(p-untie-r y)))

(local-carry x y)))

The carry-lookaheads can be computed by taking the prefix sum of this powerlist:

(defun prop-carry (cin local-carry)

(if (null cin)

(if (null local-carry)

local-carry

(if (zp local-carry) 0 1))

(if local-carry

(if (zp local-carry) 0 1)

(if (zp cin) 0 1))))

(defun prop-carry-vector (cin lcv)
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(if (powerlist-p lcv)

(p-tie (prop-carry-vector cin (p-untie-l lcv))

(prop-carry-vector

(p-last (prop-carry-vector

cin

(p-untie-l lcv)))

(p-untie-r lcv)))

(prop-carry cin lcv)))

To define the carry-lookahead adder, one more auxiliary function is needed. The function

pairwise-adder computes the pointwise sum ofthreepowerlists, two input powerlists

and a powerlist of carry bits:

(defun pairwise-adder (x y c)

(if (powerlist-p x)

(p-tie (pairwise-adder (p-untie-l x)

(p-untie-l y)

(p-untie-l c))

(pairwise-adder (p-untie-r x)

(p-untie-r y)

(p-untie-r c)))

(car (adder-fa x y c))))

The carry-lookahead function can now be defined as follows:

(defun adder-cla-slow (x y cin)

(let ((carry-vector

(prop-carry-vector nil

(p-shift cin

(local-carry-vector x
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y)))))

(cons (pairwise-adder x y carry-vector)

(prop-carry cin

(prop-carry (p-last carry-vector)

(p-last

(local-carry-vector

x y)))))))

This function is “slow,” because it uses a linear computation for the prefix sum. This is

deliberate. The immediate goal is to establish that this function performs the same com-

putation as the ripple-carry adder, and that is more easily accomplished with the sequential

version of prefix sum. Replacing the prefix sum computation by a parallel implementa-

tion can later be justified using the theorems about the correctness of prefix sum proved in

sections7.5.1and 7.5.2.

Verifying adder-cla-slow is surprisingly easy. It is convenient to redefine

adder-cla-slow in a way that makes it look more similar to the ripple-carry adder:

(defun adder-cla-slow-good (x y cin)

(let ((carry-vector

(prop-carry-vector cin

(local-carry-vector x y))))

(cons (pairwise-adder x y

(p-shift cin carry-vector))

(p-last carry-vector))))

These functions can be easily shown to be equivalent. Moreover, an instance ofadder-

cla-slow-good can be transformed into an instance ofadder-rc ; therefore, the fol-

lowing theorem can be established:

(defthm adder-cla-slow-adder-rc
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(implies (and (p-similar-p x y)

(bit-p cin)

(bit-nil-p x)

(bit-nil-p y))

(equal (adder-cla-slow x y cin)

(adder-rc x y cin))))

The functionsbit-p andbit-nil-p test that a powerlist is composed exclusively of

zeros and ones or exclusively of zeros, ones, and nils, respectively.

Now consider a “fast” version of carry-lookahead. The only sequential step in

adder-cla-slow is the prefix-sum computation inprop-carry-vector . This can

be replaced with a Ladner-Fischer scheme as follows:

(defun cla-star (x)

(if (powerlist-p x)

(p-zip (cla-star (p-unzip-r x)) (p-unzip-l x))

nil))

(defun cla-add (x y)

(if (powerlist-p x)

(p-zip (cla-add (p-unzip-l x) (p-unzip-l y))

(cla-add (p-unzip-r x) (p-unzip-r y)))

(prop-carry x y)))

(defun carry-look-ahead (x)

(if (powerlist-p x)

(let ((y (carry-look-ahead

(cla-add (p-unzip-l x) (p-unzip-r x)))))

(p-zip (cla-add (cla-star y) (p-unzip-l x)) y))
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x))

(defun adder-cla (x y cin)

(let ((carry-vector (carry-look-ahead

(p-shift cin

(local-carry-vector

x y)))))

(cons (pairwise-adder x y carry-vector)

(prop-carry cin (prop-carry

(p-last carry-vector)

(p-last

(local-carry-vector

x y)))))))

The key observation is thatcarry-look-ahead is a faithful redefinition ofprop-

carry-vector . Thus, the following theorem can be proved simply by instantiating the

generic theorems about prefix sums proved in section7.5.2:

(defthm carry-look-ahead-prop-carry-vector

(implies (and (p-regular-p x)

(bit-nil-list-p x))

(equal (carry-look-ahead x)

(prop-carry-vector nil x))))

Notice the requirement thatx is ap-regular-p powerlist. This hypothesis is needed in

the correctness proof of the Ladner-Fischer scheme. With this lemma, it is easy to establish

thatadder-cla computes the same value asadder-cla-slow :

(defthm adder-cla-adder-cla-slow

(implies (and (p-regular-p x)
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(p-similar-p x y)

(bit-nil-p cin))

(equal (adder-cla x y cin)

(adder-cla-slow x y cin))))

In turn, this justifies the correctness of the carry-lookahead algorithm:

(defthm adder-cla-adder-rc

(implies (and (p-regular-p x)

(p-similar-p x y)

(bit-p cin)

(bit-nil-p x)

(bit-nil-p y))

(equal (adder-cla x y cin)

(adder-rc x y cin))))

This formal proof follows the informal argument rather closely. That is, the hardest

step in the proof is the establishment that the prefix sum computation — based on a linear

algorithm similar top-prefix-sum-aux — actually computes the correct carry vector.

Both formal and informal proofs are made simpler by the fact that the linear prefix sum

algorithm is very similar to the ripple-carry adder algorithm. This would not be the case,

of course, with a more complex version of prefix sum, e.g., one based on the Ladner-

Fischer scheme, or with an abstract definition of prefix sum, such as the “defining equation”

described in section7.5.3. However, once the basic correctness results are established, it is

trivial to extend this result to a carry-lookahead algorithm based on a fast prefix sum: the

“hard” part of the proof is a simple instance of the generic theorems proved in section7.5.

It is encouraging that the formal proof for carry-lookahead was so easy to establish

— it took no more than a single session with ACL2. This illustrates the power of the

powerlist formalism in general, the specific powerlist formalization presented in section7.2,
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and the usefulness of mechanically establishing correctness results with respect to “natural”

specifications, as emphasized in sections7.4and7.5.
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Chapter 8

The Fast Fourier Transform

In chapters3 through6 notions from non-standard analysis were introduced into ACL2.

This culminated in the development of a basic theory of trigonometry in ACL2. Chapter7

departed from the world of real numbers into the world of data structures. Specifically, it de-

veloped the theory of powerlists, an aggregate data structure ideally suited to the expression

of recursive, data-parallel algorithms.

These two themes are merged in this chapter, where powerlists are used to define

and verify the correctness of the Fast Fourier Transform (FFT) algorithm. The algorithm is

defined in terms of the trigonometric functions, and their properties play an important role

in the correctness of the FFT.

8.1 The Fast Fourier Transform

The Fourier transform of a real or complex vectorP = (p1, p2, p3, . . . , pn) is defined as

FT (P ) = (P (wn), P (w2
n), P (w3

n), . . . , P (wnn)), wherewn is thenth principal root of1,

andP is the polynomial constructed fromP by P (x) =
∑n

i=1 pi · xi−1.

Naively, the Fourier Transform ofP can be computed inn2 sequential steps, by

evaluatingP (x) at each of then powers ofwn. This naive implementation can serve as a
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formal specification.

The Fourier Transform can be succintly defined in the notation of powerlists. Fol-

lowing [46], consider the functionep which evaluates a polynomialP pointwise at a vector

V :

〈x〉 ep v = 〈x〉 (8.1)

(p 1 q) ep v = p ep v2 + v · (q ep v2) (8.2)

p ep (u | v) = (p ep u) | (p ep v) (8.3)

Note that in the case〈x〉 ep (u | v) the computation can proceed using either rule8.3 or

rule 8.1. Unfortunately, this will result in different answers. Thus, it is tacitly assumed

for now that rule8.1 is disabled while rule8.3 is applicable. Observe, this is the only

inconsistency as long as the arithmetic operators used in rule8.2 are assumed to apply

pointwise to vectors. This inconsistency will be resolved in the next section, when the

definitions are formally specified in ACL2. The Fourier Transform can now be defined

simply as

FT (p) = p ep Wn (8.4)

wheren is the length ofp andWn = (wn, w2
n, . . . , w

n
n).

The Fast Fourier Transform (FFT) is an algorithm which evaluates the Fourier trans-

form inO(n log n) sequential steps by using the special properties of the vector of powers

of wn. In particular, letWn = (wn, w2
n, . . . , w

n
n), for n a power of two greater than one.

Then,Wn can be written as follows:

Wn = u | −u

Wn/2 = u2

The first property is true becausewn is thenth principal root of1, sownn = 1 and therefore

w
n/2
n = −1 (sincewn is thenth principal root andn/2 is an integer less thann — recall
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thatn > 1 is a power of two —wn/2n 6= 1). For anyn/2 < k ≤ n, wkn = w
n/2
n · wk−n/2n =

−wk−n/2n . The second property is true because the firstn/2 values ofWn are the firstn/2

powers of thenth principal root of1. These are precisely the (principal) square roots of the

n/2 powers of the(n/2)th principal root of1, that is,Wn/2.

Since only lists with length equal to a power of 2 are relevant in this context, it is

convenient to defineWN = W2N . Using this notation, the properties above can be rewritten

as follows:

Wn = u | −u

Wn−1 = u2

These new characterizations are more amenable to induction.

The Fast Fourier Transform can be derived as follows. For singleton powerlists, it

is clear that

FT (〈x〉) = 〈x〉 ep W 0 (8.5)

= 〈x〉 (8.6)

SinceW 0 is a singleton (equal to 1), rule8.1of the definition ofep can be used to evaluate

the term. For a powerlist of length2N > 1, it follows that

FT (p 1 q) = (p 1 q) ep WN (8.7)

= (p 1 q) ep (u | −u) (8.8)

= ((p 1 q) ep u) | ((p 1 q) ep − u) (8.9)

= (p ep u2 + u · (q ep u2)) | (p ep u2 − u · (q ep u2)) (8.10)

= (p ep WN−1 + u · (q ep WN−1)) |

(p ep WN−1 − u · (q ep WN−1)) (8.11)

= (FT (p) + u · FT (q)) | (FT (p)− u · FT (q)) (8.12)
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Using these results, we can derive the Fast Fourier Transform as follows:

FFT (〈x〉) = 〈x〉 (8.13)

FFT (p 1 q) = (FFT (p) + u · FFT (q)) | (FFT (p)− u · FFT (q)) (8.14)

where the vectoru contains the first2N/2 elements ofWN , and2N is the length ofp 1 q.

It is clear thatFFT (p 1 q) can be computed inO(2N ) time givenFFT (p) andFFT (q).

Thus, it can be computed inO(N2N ) (sequential) time, which isO(n log n) time, where

n = 2N is the length ofp 1 q. By unraveling the recursive calls, it is possible to synthesize

a parallel circuit to implement the FFT. This requiresO(n log n) computation nodes and

O(logn) depth[15].

8.2 Verifying the Fast Fourier Transform in ACL2

In this section, Misra’s hand proof of the correctness of the FFT, presented in section8.1, is

translated into ACL2. Begin by translating the functionep into ACL2. Recall, the definition

of P ep V was non-deterministic: it was possible to recurse based on the polynomialP

or the vectorV . The ambiguity is resolved in favor of recursing on the vectorV . The

development is simplified ifep is split into the functionseval-poly andeval-poly-

at-point . Their definitions are straightforward:

(defun eval-poly-at-point (p x)

(if (powerlist-p p)

(+ (eval-poly-at-point (p-unzip-l p) (* x x))

(* x (eval-poly-at-point (p-unzip-r p)

(* x x))))

(fix p)))

(defun eval-poly (p x)

(if (powerlist-p x)
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(p-tie (eval-poly p (p-untie-l x))

(eval-poly p (p-untie-r x)))

(eval-poly-at-point p x)))

The term(fix p) is used in the definition ofeval-poly-at-point instead the sim-

pler p so that the value returned byeval-poly-at-point is numeric even whenp is

not. This preserves the ACL2 tradition that treats all non-numeric arguments to a numeric

function as zero and forces numeric functionsalwaysto return a numeric value.

The correctness proof uses the definition ofep not only over points, but also over

vectors. In particular, the step

((p 1 q) ep u) | ((p 1 q) ep − u) (8.9)

= (p ep u2 + u · (q ep u2)) | (p ep u2 − u · (q ep u2)) (8.10)

uses polynomial versions of the arithmetic operators. ACL2 reserves the arithmetic op-

erators for numbers only; in fact,x · 1 is equal to zero for all non-numeric arguments

x, including vectors represented as powerlists. It is therefore necessary to define a set of

“arithmetic” operators over powerlists:p-+ , p-- , andp-* for pairwise addition, subtrac-

tion and multiplication, respectively. Using these operators it is possible to rewrite the

polynomial evaluation over vectors with the following lemma:

(defthm eval-poly-lemma

(implies (powerlist-p p)

(equal (eval-poly p x)

(p-+ (eval-poly (p-unzip-l p)

(p-* x x))

(p-* x (eval-poly (p-unzip-r p)

(p-* x x)))))))

The theoremeval-poly-lemma is almost sufficient to prove (8.10). However, (8.10)

also uses properties of−u, such as(−u)2 = u2. To prove these facts in ACL2, it is
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necessary to introduce unary minus on powerlists and prove some basic lemmas about its

interaction with the other arithmetic operators:

(defthm p-*-p-unary--

(equal (p-* (p-unary-- x) y)

(p-unary-- (p-* x y))))

(defthm p-*-p-unary--x-p-unary--y

(implies (p-similar-p x y)

(equal (p-* (p-unary-- x) (p-unary-- y))

(p-* x y))))

The first theorem is simple enough, stating how a unary minus in the first argument

of a product can be factored out of the product. The second theorem seems odd, because of

thep-similar-p requirement. It is needed because the functionp-* is defined in terms

of the structure of the first argument, so it is possible thaty will “run out” of terms before

x does, in which casep-* will recurse using thep-untie-l andp-untie-r of a non-

powerlist object. Neitherp-untie-l norp-untie-r guarantee a particular value when

applied to a non-powerlist; in fact, it is possible to find implementations of the powerlist

constraints that would invalidate the theorem without thep-similar-p hypothesis.

The heuristics of ACL2 exploit rewrite rules without any hypotheses, so-called sim-

plification rules. The theoremp-*-p-unary--x-p-unary--y has an important spe-

cialization that can be written in this fashion, namely whenx is equal toy . Since all

powerlists are similar to themselves, the hypothesis can be removed in this special case:

(defthm p-*-p-unary--x-p-unary--x

(equal (p-* (p-unary-- x) (p-unary-- x))

(p-* x x)))

Note, a given term may rewrite using any one of the above rules. Certainly, if the

last rewrite rule applies, so will the two earlier ones. It is important, therefore, that the rules
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be given to ACL2in this order. That is, the most specific rules should be given last, since

the more recent rules are tried first.

The only remaining rule deals with unary minus and addition:

(defthm p-+-p-unary--

(implies (p-similar-p x y)

(equal (p-+ x (p-unary-- y))

(p-- x y))))

As before, the similarity requirement can not be relaxed.

It is time to attempt proving the following theorem, justifying steps8.9and8.10of

the proof:

(defthm eval-poly-u-unary---u

(implies (powerlist-p x)

(equal (eval-poly x (p-tie u (p-unary-- u)))

(p-tie (p-+ (eval-poly (p-unzip-l x)

(p-* u u))

(p-* u

(eval-poly

(p-unzip-r x)

(p-* u u))))

(p-- (eval-poly (p-unzip-l x)

(p-* u u))

(p-* u

(eval-poly

(p-unzip-r x)

(p-* u u))))))))

Unfortunately, this proof attempt fails, because the ACL2 rewriter will not use the rewrite

rules about unary minus, as it can not relieve the similarity hypothesis. For example, part
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of the proof requires(eval-poly x (p-* u u)) to be similar to(p-* u (eval-

poly y (p-* u u))) wherex andy are similar to each other. While true, this fact

is not obvious to the ACL2 rewriter, and hence the rewrite rule taking(x ep u2) + (−(u ·

y ep u2)) to the simpler(x ep u2)− (u · y ep u2) is not applied.

There are two solutions to this problem. The first is to add a number of rules to help

ACL2 determine when two objects are similar. This approach is successful, but it results in a

large number of tedious lemmas. ACL2 provides a more immediate approach — “forcing.”

Essentially, ACL2 allows a hypothesis to be marked as “forceable,” which means that it

is assumed true by the rewriter, allowing the proof to proceed. At the end of the proof,

the forced hypotheses are tackled using the full power of the theorem prover, not just the

rewriter. To take advantage of this, the similarity conditions are marked as forceable in

the theoremsp-*-p-unary--x-p-unary--y andp-+-p-unary-- . At this point,

ACL2 proveseval-poly-u-unary---u without a problem.

Why not simply force all the hypotheses, allowing the theorem prover to proceed

at blinding speed, only to discard those pesky hypotheses at a later time? Because, if a

rewrite rule with a false forced hypothesis is used, the proof attempt will subsequently fail

— even if someotherrewrite rule could have been applied at that time. This means that one

should never force a hypothesis that is not expected to be “always” true, where by “always”

is meant in the terms that the theorem prover will encounter. In the current context, only

similar powerlists are encountered, so thep-similar-p hypothesis is a good candidate

for forcing. There is a second caveat, however. In the forcing round, ACL2 does not restore

all the facts that were available when the forced rewrite rule was used. In particular, it is

possible for ACL2 to “drop” a hypothesis that will be needed when ACL2 attempts to prove

the forced hypothesis.

Consider now the listsWn. The only properties of this function that are actually

needed are the following:

Wn = u | −u
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Wn−1 = u2

Since the functionWn is quite complicated, involving powers of the principal(2n)th power

of 1, it is advantageous to pursue the proof at an abstract level, where the only known

properties are the ones stated above. As was the case in similar cases earlier, the ACL2

encapsulate primitive serves this purpose:

(encapsulate

((p-omega (n) t)

(p-omega-sqrt (n) t))

(local

(defun p-omega (n)

(if (zp n)

0

(p-tie (p-omega (1- n)) (p-omega (1- n))))))

(local

(defun p-omega-sqrt (n)

(p-omega n)))

(local

(defthm p-unary---omega

(equal (p-unary-- (p-omega n))

(p-omega n))))

(defthm numberp-omega-0

(acl2-numberp (p-omega 0)))
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(defthm p-omega->tie-minus

(implies (not (zp n))

(equal (p-omega n)

(p-tie (p-omega-sqrt (1- n))

(p-unary--

(p-omega-sqrt (1- n)))))))

(defthm p-omega-sqrt**2

(equal (p-* (p-omega-sqrt n)

(p-omega-sqrt n))

(p-omega n)))

)

The local theoremp-unary---omega is used to help ACL2 prove that the specified con-

straints are satisfiable. It is only true for the local definition ofp-omega used, specifically

the zero vector. Note also, it was necessary to define a specific function foru, since there is

adifferentu for each value ofn. This function is calledp-omega-sqrt , as suggested by

the last constraint.

The following theorem, justifying Misra’s proof through step8.10, can now be ver-

ified:

(defthm eval-poly-omega-n

(implies (and (powerlist-p x)

(not (zp n)))

(let ((n1 (1- n)))

(equal (eval-poly x (p-omega n))

(p-tie (p-+ (eval-poly (p-unzip-l x)

(p-omega n1))

(p-* (p-omega-sqrt n1)

221



(eval-poly

(p-unzip-r x)

(p-omega n1))))

(p-- (eval-poly (p-unzip-l x)

(p-omega n1))

(p-* (p-omega-sqrt n1)

(eval-poly

(p-unzip-r x)

(p-omega n1))))))))

)

Proving this theorem requires a hint to encourage ACL2 to use the rule converting(p-

omega n) into its u | −u equivalent, so thateval-poly-u-unary---u can apply.

Also needed are hints to keep ACL2 from considering lemmas relating to several functions.

This is because the intermediate terms are so large they contain many function applications

which ACL2 would normally consider further — unfortunately, once ACL2 starts going

down that path, it loses the special structure of the theorem that allows a simple proof. It is

rare that one needs to override the ACL2 heuristics quite so much, but it is vital that such

overriding is possible.

At this point, it is almost possible to prove the main result. However, at this stage,

the reasoning is overly general since it deals withanysequence of powers of roots of 1. It

is not restricted to the specific sequence with as many elements as required by the Fourier

Transform. To do so, it is necessary to reason about the length of a list, or better yet, about

the logarithm of its length, i.e., its depth as a binary tree. This yields the following lemma:

(defun p-depth (x)

(if (powerlist-p x)

(1+ (p-depth (p-untie-l x)))

0))
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(defthm eval-poly-omega-depth

(let* ((n (p-depth x))

(n1 (1- n)))

(implies (powerlist-p x)

(equal (eval-poly x (p-omega n))

(p-tie (p-+ (eval-poly (p-unzip-l x)

(p-omega n1))

(p-* (p-omega-sqrt n1)

(eval-poly

(p-unzip-r x)

(p-omega n1))))

(p-- (eval-poly (p-unzip-l x)

(p-omega n1))

(p-* (p-omega-sqrt n1)

(eval-poly

(p-unzip-r x)

(p-omega n1))))))))

)

To complete the proof, it is necessary to define the Fourier Transform in ACL2:

(defun p-ft-omega (x)

(eval-poly x (p-omega (p-depth x))))

The main correctness result of the FFT simply extendseval-poly-omega-depth into

p-ft-omega . However, this requires reasoning about thep-depth of p, given thep-

depth of p 1 q. The following technical lemma can be used to simplify those terms:

(defthm p-depth-unzip
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(implies (and (powerlist-p x)

(p-regular-p x))

(and (equal (p-depth (p-unzip-l x))

(1- (p-depth x)))

(equal (p-depth (p-unzip-r x))

(1- (p-depth x))))))

It may be surprising that this is the only theorem that requires the powerlistx to be regular.

Finally, it is possible to prove the main result given in the hand-proof of section8.1:

(defthm ft-omega-lemma

(implies (and (powerlist-p x)

(p-regular-p x))

(equal (p-ft-omega x)

(p-tie (p-+ (p-ft-omega (p-unzip-l x))

(p-* (p-omega-sqrt

(1- (p-depth x)))

(p-ft-omega

(p-unzip-r x))))

(p-- (p-ft-omega (p-unzip-l x))

(p-* (p-omega-sqrt

(1- (p-depth x)))

(p-ft-omega

(p-unzip-r x))))))))

To complete the proof, it is only necessary to introduce the ACL2 version of the Fast Fourier

Transform:

(defun p-fft-omega (x)

(if (powerlist-p x)
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(p-tie (p-+ (p-fft-omega (p-unzip-l x))

(p-* (p-omega-sqrt (1- (p-depth x)))

(p-fft-omega (p-unzip-r x))))

(p-- (p-fft-omega (p-unzip-l x))

(p-* (p-omega-sqrt (1- (p-depth x)))

(p-fft-omega (p-unzip-r x)))))

(fix x)))

Note, again, the use offix to ensurep-fft-omega always returns a numeric result. This

is requiredhere because of it is the wayeval-poly was defined.

The main theorem of this section equates the Fast Fourier Transform with the

Fourier Transform:

(defthm fft-omega->ft-omega

(implies (p-regular-p x)

(equal (p-fft-omega x)

(p-ft-omega x))))

It is a direct corollary offt-omega-lemma .

This proof is more general than necessary. It proves the correctness of an FFT-like

algorithm for any polynomial evaluation at vectors satisfying the constraints onWN . In

the next section, this proof is refined by defining instances ofp-omega andp-omega-

sqrt in terms of complex exponentiation. These instances correspond to the traditional

definition of the Fourier Transform, and the correctness result can be established directly

by functional instantiation.

8.3 Specializing the ACL2 Proof

The previous section showed how the function

FT (x) = x ep Wn
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wheren is the depth ofx can be quickly computed for any family of vectorsWn such that

Wn = u | −u

Wn−1 = u2

for someu, possibly depending onn. The actual Fourier Transform uses powers of the

(2n)th principal root of1 in place ofWn. In this section, it is shown that this particular

vector satisfies the needed properties.

The nth principal root of1 is given by the complex numbere2πi/n. Using the

standard definition of complex exponentiation, this gives

wn = e2πi/n

= cos(2π/n) + i sin(2π/n)

The properties of the vectorWn = (w2n , w
2
2n , . . . , w

2n
2n ) can be derived from the basic

properties of sine, cosine, andπ, as established in chapter6. Specifically needed are the

formulas forsin(x+ y) andcos(x+ y). Moreover, in order to establish thatWn = u | −u,

the facts thatsinπ = 0 andcosπ = −1 will also be required. Recall, all of these results

are proved in chapter6.

Consider the definition ofWn from w2n = e2πi/2n . This is one place where it

would be simpler programmatically to process the elements ofWn serially than in parallel,

i.e., where it would be easier to use linear lists than powerlists. The reason is that it is not

simple to do a “for i from 1 to n” loop in powerlists, since their recursive structure is always

a split down the middle. The solution is to think of the defining properties as a recurrence

relation:

Wn =
√
Wn−1

∣∣∣ −√Wn−1

W 0 = 1

This gives a recurrence relation for the exponents as follows:

En = En−1/2 | (En−1/2 + π)
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E0 = 2π

where the arithmetic operators are defined over pointwise powerlists. Note,E0 is defined

as2π instead of the more naturalE0 = 0, so thatE1 is (π, 2π), not (0, π). From this

definition,Wn can be derived aseiEn .

The needed scalar operators are easy to define:

(defun p-halve (x)

(if (powerlist-p x)

(p-tie (p-halve (p-untie-l x))

(p-halve (p-untie-r x)))

(/ x 2)))

(defun p-offset (x p)

(if (powerlist-p p)

(p-tie (p-offset x (p-untie-l p))

(p-offset x (p-untie-r p)))

(+ x p)))

(defun p-exponents (n)

(if (zp n)

(* 2 (acl2-pi))

(let ((sqrt-expnts (p-halve (p-exponents

(1- n)))))

(p-tie sqrt-expnts

(p-offset (acl2-pi) sqrt-expnts)))))

(defun complex-expt (x)

(complex (acl2-cosine x) (acl2-sine x)))
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(defun p-complex-expt (x)

(if (powerlist-p x)

(p-tie (p-complex-expt (p-untie-l x))

(p-complex-expt (p-untie-r x)))

(complex-expt x)))

It is now possible to define the functionsp-expt-omega andp-expt-omega-sqrt

which generateWn and
√
Wn, respectively.

(defun p-expt-omega (n)

(p-complex-expt (p-exponents n)))

(defun p-expt-omega-sqrt (n)

(p-complex-expt (p-halve (p-exponents n))))

It must be shown that these functions satisfy all the constraints associated withp-omega

andp-omega-sqrt . Begin with the simplest constraint, namely thatW 0 is real:

(defthm numberp-expt-omega-0

(realp (p-expt-omega 0)))

The next constraint is thatp-expt-omega-sqrt is the pairwise square root of

p-expt-omega . To show this requires the fact thatex/2ex/2 = ex. This can be proved in

ACL2 with the following theorem:

(defthm complex-expt-/-2

(implies (realp x)

(equal (* (complex-expt (* 1/2 x))

(complex-expt (* 1/2 x)))

(complex-expt x))))
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ACL2 needs hints to generate good instances of the sine of sums and cosine of sums axioms.

The next step is to generalize the lemmacomplex-expt-/-2 to all powerlists:

(defthm p-complex-expt-halve

(implies (p-acl2-realp-list x)

(equal (p-* (p-complex-expt (p-halve x))

(p-complex-expt (p-halve x)))

(p-complex-expt x))))

The functionp-acl2-realp-list verifies that a powerlist is composed exclusively of

real numbers. This hypothesis is needed, becausecomplex-expt-/-2 requiresx to be

a real.

With this new rule, it is easy to prove the next constraint required, namely that

p-expt-omega-sqrt is the square root ofp-expt-omega :

(defthm p-expt-omega-sqrt**2

(equal (p-* (p-expt-omega-sqrt n)

(p-expt-omega-sqrt n))

(p-expt-omega n)))

The final constraint deals with unary minus. The following lemma is required:

(defthm complex-expt-offset-pi

(implies (p-acl2-realp-list expnts)

(equal (p-complex-expt (p-offset (acl2-pi)

expnts))

(p-unary-- (p-complex-expt expnts)))))

This follows from the facts thatex+y = exey andeiπ = −1 — Euler’s beautiful identity.

ACL2 can then immediately extend this result to powerlists, which is the third and last

constraint onp-omega andp-omega-sqrt :
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(defthm p-expt-omega->tie-minus

(implies (not (zp n))

(equal (p-expt-omega n)

(p-tie (p-expt-omega-sqrt (1- n))

(p-unary--

(p-expt-omega-sqrt

(1- n)))))))

What this means is that the theorems proved in section8.2about the Fast Fourier Transform

can now be instantiated withp-expt-omega andp-expt-omega-sqrt . First, the

new specific versions of the Fourier Transform and Fast Fourier Transform based on the

trigonometric version ofWn need to be defined:

(defun p-ft-expt-omega (x)

(eval-poly x (p-expt-omega (p-depth x))))

(defun p-fft-expt-omega (x)

(if (powerlist-p x)

(p-tie (p-+ (p-fft-expt-omega (p-unzip-l x))

(p-* (p-expt-omega-sqrt

(1- (p-depth x)))

(p-fft-expt-omega

(p-unzip-r x))))

(p-- (p-fft-expt-omega (p-unzip-l x))

(p-* (p-expt-omega-sqrt

(1- (p-depth x)))

(p-fft-expt-omega

(p-unzip-r x)))))

(fix x)))
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ACL2 immediately verifies that the new definition of the FFT correctly computes

the Fourier Transform:

(defthm fft-expt-omega->ft-expt-omega

(implies (p-regular-p x)

(equal (p-fft-expt-omega x)

(p-ft-expt-omega x))))

As with all uses of meta-theorems, a hint is required to prove this theorem by instantiat-

ing fft-omega-correctness . Theoremfft-expt-omega->ft-expt-omega

justifies the use of the Fast Fourier Transform to compute the Fourier Transform. The

proof required various properties of the trigonometric functions. It is relevant to note that

the properties used need not necessarily have been true of approximations to the functions

sin(x), cos(x), andπ. This emphasizes the usefulness of extending ACL2 to incorporate

the transcendental functions.

It is worth remarking on a subtle benefit derived by the use ofencapsulate

above. By usingencapsulate it was possible to split the proof of the correctness of

the FFT into two parts. The first part dealt exclusively with abstract properties that are

sufficient to prove the correctness of the FFT family of algorithms. The second part that

the FFT belonged to this family. The advantage of this split is that the focus of ACL2

is narrowed at each step. Because of this, the proof of each of the two halves is vastly

simplified, since it takes place over a different set of functions, i.e. vector arithmetic on the

first half and trigonometry on the second. This restricts ACL2’s search space in looking for

a proof, and this increases its chance of finding one. This usage ofencapsulate is very

useful when building large theories.
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Chapter 9

Conclusion

The main goal of this thesis was the modification of ACL2 to reason about the irrational

numbers using non-standard analysis. A second goal was establishing that ACL2 provides

a powerful vehicle for reasoning about real-valued algorithms. The results presented in the

earlier chapters demonstrate that both of these goals have been achieved. Moreover, the

techniques described in this thesis should be valuable to other researchers. Some may wish

to use the modified ACL2 to prove more theorems involving the real numbers, possibly in

the correctness specification of a floating-point algorithm or circuit. In addition, those who

decide to include non-standard analysis in their own theorem provers may find the approach

presented here applicable.

A special consideration when presenting mechanized proofs is how much detail to

provide. Too much detail can obscure the overall direction of the proof because it inundates

the reader with a plethora of lemmas, some trivial, some deeply technical. Often, the need

for these lemmas is obvious only to someone with experience in automated theorem prov-

ing. On the other hand, too little detail can mislead the reader into thinking that most of

the reasoning was mechanized, giving a false impression of the state of the art in automated

theorem proving. The presentation in this document tried to strike a balance between these

two extremes, but it was biased towards simplifying the presentation, at the expense of ig-

232



Category Definitions Theorems

Non-Standard Analysis 19 270

The Square Root Function 11 145

The Exponential Function 62 356

The Trigonometric Functions 38 376

Powerlists 120 462

The Fast Fourier Transform 24 71

Miscellaneous Lemmas 12 85

Table 9.1: An Estimate of the Proof Effort

noring some needed lemmas. However, before embarking on a similar project, the reader is

encouraged to make a fair estimate of the actual effort involved. The best way to make that

estimate is to browse through the source code in the accompanying CD-ROM. A rougher

estimate of the effort can be gleaned from table9.1.

The research presented here can be continued in a number of possible directions.

Already under development by users of the revised ACL2 is a library of results from real

analysis. This will include such results as the mean value theorem, the chain rule, and the

fundamental theorem of calculus.

Recall, the introduction of non-standard functions in ACL2 was limited to non-

recursive functions. A useful area for future work will be relaxing this restriction. This will

present many challenges. For example, consider the following function:

(defun smallest-ns-natural (n accum)

(if (or (zp n) (standard-numberp n))

accum

(smallest-ns-natural (1- n) n)))

Were this definition accepted,(smallest-ns-natural N N) could be used to denote
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the first non-standardnatural, given an arbitraryi-large integerN. This would lead to an

immediate contradiction. However, consider the following theorem:

(defun limited-list-p (l)

(if (null l)

t

(and (i-limited (car l))

(limited-list-p (cdr l)))))

(defthm sum-of-limited-numbers

(implies (and (limited-list-p l)

(i-limited (length l)))

(i-limited (sumlist l))))

This theorem can not be proved in the current ACL2, because the definition oflimited-

list-p is not accepted since it uses recursion on a non-classical formula. However,

the theorem is clearly true, and it is of obvious utility. This motivates the admission of

limited-list-p while excludingsmallest-ns-natural . Can such a modifica-

tion be made? Possibly. One observation that may be of use is the following: the measure

in smallest-ns-natural is the paramatern, which takes a non-standardvalue in

(smallest-ns-natural N N) above. If the measure inlimited-list-p is the

length ofl , then the definition can be usefully restricted to lists ofi-limited length.

The modifications to ACL2 described in this thesis introduced the notion of non-

standard numbers into ACL2. However, this did not affect the other ACL2 data types. It

may be possible to define the notion of a non-standard ACL2 object, possibly including lists

and atoms.

The formalization of powerlists can also lead to some interesting new directions.

As was mentioned in chapter7, Kornerup generalized powerlists to include irregular pow-

erlists. However, his generalization is different than the one presented here. It may be
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interesting to reconcile the two of them. On a different note, many algorithms have been

formalized in the language of powerlists, and these formalizations can be verified using

ACL2. Particularly challenging will be algorithms involving nested powerlists.

A final direction should be mentioned. Russinoff has pointed the way to the ver-

ification of floating-point approximations to some irrational functions [54, 55]. The next

step should be a mechanical proof that a particular algorithm approximates a given trigono-

metric function. This will likely require the verification of a table of initial values for the

approximation, perhaps using the verified approximation functions given in section6.3.2.

Moreover, the results will likely depend on other properties of the sine and cosine functions,

such assin′(x) = cos(x). These results are within reach, yet they should prove handsomely

rewarding.
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Appendix A

A Simple Introduction to ACL2

The following is not a precise description of the ACL2 syntax or logic. Instead it is an

informal description that should give the reader enough information to read the rest of this

thesis. More complete descriptions can be found in [38, 37].

A term in ACL2 can be a number, atom, string, or pair. The syntax of numbers

holds few surprises. Signed and unsigned integers are permitted, for example3 and-9 . It

is worth noting that these integers can have arbitrary precision; that is, there is no require-

ment that the integers be less than231. ACL2 also allows rational constants, written asnu-

merator/denominator. For example,-3/9 is an ACL2 constant equivalent to-1/3 . Ratios

also have infinite precision. Notice in particular that-1/3 is not equal to the floating-point

number.333 . The last group of numeric constants recognized by ACL2 are the complex

rationals. The complex rationala + bi is written as#C( a b) . For example,#C(0 1) is

the ACL2 constant fori.

The syntax for atoms is quite generous. Almost any non-numeric string of letters,

digits, and symbols can be an atom, although parentheses should be avoided. Example

atoms includefred , f91 , 1+, andf->g . Atoms stand for variables in ACL2. With the

exception of a few atoms which always evaluate to themselves (specifically,t andnil ),

atoms have a value. It is an error to access an atom that has not been defined.
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A string is simply a quoted sequence of characters, such as"episode one" .

Dotted pairs play a major role in the language. They are used to build all other data

structures. Following the tradition of LISP, the symbolnil is very special. When it is

the second element of a dotted pair, the pair is considered to be a list of the first element.

For example, the pair(1 . nil) is the list consisting of the single element1, which is

written as(1) . Longer lists are formed by taking the dotted pair of the leading element

with a list containing the remaining elements. For example, the list(1 2) is really the pair

(1 . (2 . nil)) . Viewed this way,nil is not just an atom, it is also the empty list.

Lists are central in ACL2. Functions are invoked by putting together the function

name and the arguments in a list. For example, pairs are constructed using the function

cons , so the examples above can be written as(cons 1 nil) and(cons 1 (cons

2 nil)) . The functionscar andcdr select the first and second element of a pair respec-

tively. So(car (cons 1 (cons 2 nil))) is 1 and(cdr (cons 1 (cons 2

nil))) is (cons 2 nil) or the list(2) .

This brings up a problem. The term(cons 2 nil) refers to a function invo-

cation. Its value is whatever the functioncons returns when given those two argument.

However, the list(2) is a constantterm. How is ACL2 to know when a list should be

evaluated, as opposed to being treated as a constant? The answer is that constants must be

explicitly quoted with a leading single quote. So the list above would be written as’(2) .

The leading quote notifies ACL2 that the term to follow should be treated as a constant.

This also works with atoms. Recall that atoms are treated as variables, so they are evaluated

in that context. The value of the atomfred may be the list’(2) . But if the atom is

quoted, it is not evaluated. Thus,’fred is the ACL2 constant with valuefred .

Lists can also be constructed by using the functionlist which returns a list of

all its arguments. For example,(list 2 4 6) is equal to’(2 4 6) . Another way of

constructing lists or other arbitrary objects is to use the backquote notation. The backquote

reverses the normal ACL2 quoting mechanism, so that all terms are considered constant,
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unless they are explicitly marked as evaluable. This device allows the structure of a term

to be defined, leaving slots to be filled in. For example, consider the template( x y (inv

x) (inv y)) . This can be constructed using the following expression:

(list x y (list ’inv x) (list ’inv y))

However, this expression does not retain the intuitive appeal of the specified pattern. Using

the backquote notation this problem is solved:

‘(,x ,y (inv ,x) (inv ,y))

After encountering the backquote, ACL2 processes the following term as those it were a

constant. Variables, subterms in general, are only evaluated if they are preceeded by a

comma, as in,x . Thus, the subterm(inv ,x) is equal to’(inv 3) if the current

value ofx is 3.

New functions can be defined in ACL2 using the functiondefun . Consider the

following definition of the function2n:

(defun 2**n (n)

(if (equal n 0)

1

(* 2 (2**n (1- n)))))

Notice the syntax of the definition. The functiondefun accepts three arguments. The

first argument is the name of the function being defined — this is one of the few places

where an atom occurs without being evaluated, so that it is2**n that is being defined, not

whatever value2**n has. The second argument is a list containing the formal arguments

for the new function. In this case, the only argument isn. The third argument is the body of

the function. It introduces a few new functions; such asif with “test,” “then,” and “else”

arguments;equal which tests its two arguments for equality;* which returns the product

of all its arguments; and1- which returns one less than its argument.

238



As written, the definition of2**n is not accepted by ACL2. When ACL2 examines

a new function, it tries to prove that the function terminates for all values of its arguments.

But the definition given above does not terminate for all arguments; consider the value of

(2**n -1) , for example. A correct definition is the following:

(defun 2**n (n)

(if (not (and (integerp n) (< 0 n)))

1

(* 2 (2**n (1- n)))))

This function correctly computes2n of all natural numbersn, and it returns1 for all other

arguments. This follows the ACL2 tradition of treating invalid arguments as0 for all nu-

meric functions. The new functionsand andnot have the expected semantics, as does

<. The idiom(not (and (integerp n) (< 0 n))) is so common, that it is pre-

defined in ACL2 as the functionzp . Thus, the function above would be defined as follows:

(defun 2**n (n)

(if (zp n)

1

(* 2 (2**n (1- n)))))

ACL2 also allows the introduction of theorems. The functiondefthm is used to

specify a new theorem to the theorem prover. Consider the proof that2**n is a positive

integer:

(defthm 2**n-positive-integer

(and (integerp (2**n n))

(< 0 (2**n n))))

The first argument todefthm is a name for the theorem being introduced. Subsequently,

it is possible to give ACL2 hints, such as “use the theorem2**n-positive-integer
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here,” or “2**n-positive-integer is not useful here.” As you might expect, the

function integerp tests whether its argument is an integer. Actually, the theorem above

is proved automatically when the function2**n is introduced. ACL2 tries to guess the

type of all defined functions, and it usually does a remarkable job.

Another simple theorem about2**n is that it is even for all integer values ofn at

least equal to1. In ACL2, this can be stated as follows:

(defthm 2**n-even

(implies (and (integerp n)

(<= 1 n))

(evenp (2**n n))))

This introduces some new functions whose meaning should be obvious from the context.

The proof of this theorem requires the arithmetic library; it can be loaded with the following

command:

(include-book " ACL2-DIR /books/arithmetic/top")

The directoryACL2-DIRshould be replaced with the location of the locally installed ACL2

tree.

A more difficult theorem is that2**n is a 1-to-1 function. Consider the following

theorem:

(defthm 2**n-1-to-1

(implies (equal (2**n x) (2**n y))

(equal x y)))

ACL2 is unable to prove this theorem, because it is false. Recall, the definition of2**n

treated all “inappropriate” arguments as effectively equal to zero. For example,(2**n

nil) is equal to1. It is impossible to guarantee thatx andy are equal, but it is possible to

prove that they are equivalent in the context of natural numbers.
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ACL2 defines a number of functions that are equivalent to the identity function in

a given context. For example, the functionfix forces its argument to be numeric; if it is,

it simply returns the argument, and otherwise it returns zero. Similarly,nfix forces its

argument to be a natural number. A theorem that can be established is the following:

(defthm 2**n-1-to-1

(implies (equal (2**n x) (2**n y))

(equal (nfix x) (nfix y))))

However, the proof is not automatic. The theorem can be proved by an easy inductive

argument. ACL2 has a sophisticated set of heuristics that allows it to pick good induction

schemes in general, but those heuristics fail in this case, because ACL2 does not notice that

it must reducex andy simultaneously.

Fortunately, ACL2 allows the user to guide it by providing hints. In this case, a

hint is needed to let ACL2 know the correct induction scheme. This is done by defining

a function that recurses in the desired fashion and then telling ACL2 to use the induction

scheme “suggested” by that function. The function is as follows:

(defun induct-hint (x y)

(if (zp x)

y

(+ x (induct-hint (1- x) (1- y)))))

Notice, the specific value computed by this function is irrelevant. The only important thing

is that each recursive call decrements bothx andy . The base case suggested by this function

is based onx , but this is not significant.

The theorem can now be proved as follows:

(defthm 2**n-1-to-1

(implies (equal (2**n x) (2**n y))

(equal (nfix x) (nfix y)))
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:hints (("Goal"

:induct (induct-hint x y))))

This time ACL2 is able to prove the theorem without any difficulties whatsoever.

Besides:induct , ACL2 provides a wide variety of:hints . The most common

is to suggest ACL2 use a particular instance of a previously proved theorem. Another useful

:hint is to avoid using a particular theorem that is not relevant in the current proof. This

thesis deliberately avoided displaying:hints , although they were needed in many of the

theorems that were proved. The:hint above gives some of the flavor of working with

ACL2.

ACL2 also allows the definition of macros. A macro is simply a template that is

evaluated as soon as the expression is encountered, and its value syntactically replaces the

macro in its context. For example, the following macro defines the successor function:

(defmacro succ (s)

‘(cons ,s ,s))

Notice the use of the backquote to specify the body of the macro. Since the value of the

macro is meant to be a piece of syntax that is substituted for the macro, it is common to

write it as a pattern using the backquote notation.

A powerful feature of ACL2 is itsencapsulate primitive. This allows a proof

schema to be developed and then applied to a number of different functions. In the language

of formal logic, it is used to justify the introduction of derived inference rules.

To understand whyencapsulate is useful, consider the following. The function

even-list-p can be defined to verify that all elements of a list are even. It should be

possible to prove that any subset of this list also satisfieseven-list-p , but the proof may

not be trivial. Furthermore, suppose the functionodd-list-p has also been defined. It

would be nice if the analogous theorem about subsets could be proved automatically.

That is where encapsulate comes in. The functionseven-list-p and odd-

list-p are very similar; the only difference is that one is checkingevenp while the
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other checksoddp . If the functionsevenp andoddp can be replaced with an arbitrary

boolean functionprop , it should be possible to prove the main theorem aboutprop and

then instantiate this theorem forevenp and oddp as required. Abstract functions are

calledconstrainedfunctions in ACL2.

The constrained functionprop can be introduced as follows:

(encapsulate

((prop (x) t))

(local

(defun prop (x)

(if x t nil)))

(defthm booleanp-prop

(booleanp (prop x))))

The second line of theencapsulate specifies thatprop is the constrained function

being introduced, that it expects a single argumentx , and that it returns a single value.

The next term in theencapsulate is the definition ofprop . Even thoughprop is

being introduced as a constrained function, ACL2 requires that a possible body be defined

for it. This establishes that there is at least one function that satisfies all the constrains

aboutprop and is important in preserving the soundness of ACL2 (see [39] for details).

However, because the definition is placed inside alocal term, it is not exported outside of

theencapsulate . The third term in theencapsulate is a theorem aboutprop . This

theorem is a constraint that must be satisfied by any candidate function that is offered as an

instance ofprop . The specific constraint is thatprop is a boolean function. Like most

dialects of Lisp, ACL2 considers the atomst andnil to represent the boolean objects

“true” and “false,” respectively. Unfortunately, this gives yet a third meaning tonil —

it is the atom which evaluates tonil , the empty list, and the boolean false. Notice how
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the body ofprop is constructed to always returnt or nil . You may also notice that the

function if does not require that its first argument be a boolean; any non-nil value is

considered equivalent tot in a boolean context.

After the constrained definition ofprop is accepted, it is easy to define the function

which generalizesprop over lists; that is, it returns true if and only if all elements of the

argument list satisfyprop :

(defun prop-list-p (l)

(if (endp l)

t

(and (prop (car l))

(prop-list-p (cdr l)))))

The functionendp succeeds when its argument is not a non-empty list. The pattern above

is repeated by most functions which traverse over lists.

ACL2 is able to prove that this function is preserved by subsets:

(defthm subsetp-prop

(implies (and (prop-list-p l)

(subsetp l2 l))

(prop-list-p l2)))

Readers who were discouraged by the proof of2**n-even may be encouraged to know

that ACL2 is able to provesubsetp-prop without the use of any hints. ACL2 appears

more prepared to reason about lists than about algebra.

Next, consider the definition of the functioneven-list-p :

(defun even-list-p (l)

(if (endp l)

t

(and (evenp (car l))
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(even-list-p (cdr l)))))

This function would be true of the list’(2 8 4) , but false of’(2 7 4) . Clearly, this

definition follows the pattern set byprop-list-p . Moreover,evenp is a boolean, so it

satisfies the constraints ofprop . This makes it possible to use the theoremsubset-prop

to prove the equivalent theorem abouteven-list-p :

(defthm subsetp-even

(implies (and (even-list-p l)

(subsetp l2 l))

(even-list-p l2))

:hints (("Goal"

:by (:functional-instance subsetp-prop

(prop evenp)

(prop-list-p even-list-p)))))

Notice howencapsulate had the result of introducing a derived inference rule. Once

(booleanp (evenp x)) is established,subsetp-even can be deduced.

A limitation of encapsulate is that ACL2 never considers using one of these

derived rules automatically. The user must explicitly instantiate them via a:hint to the

prover.
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