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ACL2 is a theorem prover over a total, first-order, mostly quantifier-free logic, supporting
defined and constrained functions, equality and congruence rewriting, induction, and other
reasoning techniques. With its powerful induction engine and direct support for the rational
and complex-rational numbers, ACL2 can be used to verify recursive rational algorithms.
However, ACL2 can not be used to reason about real-valued algorithms that involve the
irrational numbers. For example, there are elegant proofs of the correctness of the Fast
Fourier Transform (FFT) which could be formulated in ACL2, but since ACL2’s sparse
number system permits the proof that the square root of two, and hence the eighth principal
root of one, does not exist, it is impossible to reason directly about the FFT in ACL2.

This research extends ACL2 to allow reasoning about the real and complex irra-
tional numbers. The modifications are based on non-standard analysis, since infinitesimals
are more natural than limits in a quantifier-free context. It is also shown how the trigono-
metric functions can be defined in the modified ACL2. These definitions are then used to

prove that the FFT correctly implements the Fourier Transform.
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Chapter 1

Introduction

ACL2 is a total, first-order, mostly quantifier-free logic based on the programming language
Common LISP. ACL2 is also an automated theorem prover for this logic. The theorem
prover excels in using induction to prove theorems about recursive functions. At its heart
is a rewriter, which uses a database of previously proved theorems to transform a term
while maintaining an appropriate equivalence relation, e.g., equality or if-and-only-if. In
addition, it supports many other inference mechanisms. For instance, numeric inequalities
are automatically verified using a linear arithmetic decision procedure, and propositional
tautologies can be proved using a decision procedure based on binary decision diagrams
(BDDs). Moreover, ACL2 supports the introduction of constrained functions, allowing a
limited amount of higher-order reasoning. ACL2 is a direct descendant of Ngthm, also
known as the Boyer-Moore theorem prover. It is fair to say that ACL2 grew out of a desire
to “do Ngthm, only better”{0, 17].

Among the enhancements of ACL2 over Ngthm is a richer number system. Ngthm
had some native support for the integers, and it was primarily designed for working with the
naturals. ACL2, on the other hand, introduced the rational and the complex-rational num-
bers. However, the irrationals were deliberately excluded from the ACL2 number system.

This exclusion stems from the desire to keep ACL2 as close to Common LISP as possible,



and Common LISP does not include the irrationals. Since the primary goal of ACL2 is to
prove properties about Common LISP functions, it makes sense to exclude objects that do
not exist in the Common LISP universe.

However, the omission of the reals places an artificial limit on the theories that
ACL2 can verify. For example, an important application of ACL2 is the proof of correctness
of various micro-processor algorithms, such as floating-point arithmetic operations, roots,
and other transcendental functions. ¥} Russinoff uses ACL2 to prove the correctness
of the square root floating-point microcode in the AMD K5 processor. However, since the
number,/z is possibly irrational for a given rational his theory “meticulously avoids any

reference” to,/x. In particular, the correctness theorem has the (simplified) form
1> <z <h?= rnd(l) < sqrt(z) < rnd(h)

wherernd rounds a number to its nearest floating-point representationgtds the AMD
K5 microcode algorithm for finding floating-point square roots. This theorem is equivalent

to the desired statement of correctness:

sqrt(x) = rnd(\/)

However, this equivalence can not be stated in ACL2.

The difference between these two theorems is more than a matter of aesthetics.

Consider the norm given by|| = \/Re2(z) + Im?2(z), whereRe(z) andIm(x) are the
real and imaginary parts af, respectively. An algorithm may require the valle - y/|,
but it may compute it usingz|| - ||y|| because those values are already known. The results
are mathematically equivalent, even if it is false when the approximatiet{x) is used
instead of the functior/x.

This is a general phenomenon. The correctness of many algorithms depend on prop-
erties that are true of real-valued functions, even though the algorithms are implemented
entirely in terms of rational or floating-point values. That is, an algorithm may compute

the value of the functiorf at a pointx not directly by approximating the equation defining
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f(x), but indirectly by approximating the equation defining@:), where it can be proved

that the functionsf and g are equal. In the example above, the equaién, y) would
suggest multiplyinge andy and taking the norm of the product, whifézx, y) multiplies

the normse andy. The key fact is that in order to prove the correctness of the algorithm
following the defining equatiop(z), it may be necessary to prove thétr) = g(x) and

such arguments are often impossible without using the language of irrational numbers and
irrational functions.

Note, itis quite possible that the defining equationdar) is more amenable for ap-
proximation using floating-point arithmetic thgiiz). This happens when the computation
of f(x) accumulates errors, whereas the errors tend to cancel out during the computation
of g(x). In the language of numerical analysj$z) is called stable and(z) unstable. For
example, stability is the reason pivoting is important when finding the inverse of a matrix,
even though the algorithms with and without pivoting are mathematically equivalgnt |
When the equation fof (z) is unstable and that gf(x) stable, the floating-point imple-
mentation off (x) may be very different than that gfx); ironically, the approximation to
g(z) may be closer to the true, possibly irrational, vajye).

This thesis describes an extension to ACL2 so that it can reason about the irrational
real and complex numbers. The extension rests on the theory of non-standard analysis,
first proposed by Robinsorb?] and later advanced by Nelso#9 among others. Non-
standard analysis provides a natural mechanism to reason about the irrationals in ACL2
for two reasons. First, many of the arguments in traditional analysis are simplified in non-
standard analysis by the replacement of functions with numbers. For example, to prove that
a functionf is continuous in standard analysis, it is necessary to find a function mapping a
positivee to a positivey with certain properties. However, in non-standard analysis it is only
necessary to show thftz) — f(z — ) — anumber— is “sufficiently small.” In ACL2, the
proof using non-standard analysis will generally be much easier. The second reason why

non-standard analysis fits well with ACL2 is that many arguments in non-standard analysis



are proved using induction. For example, using standard analysis, the intermediate value
theorem is proved by looking at least upper bounds of sets. In contrast, the non-standard
analysis proof proceeds by using induction on a step-function approximating the continuous
function in question. This plays to the strength of ACL2 and avoids ACL2's weaknesses
with quantification, leading to the natural proof of the result, as presented in sécti@n

Using the techniques of non-standard analysis, it will also be shown how some
transcendental functions can be defined in ACL2, such as the square root, exponential, and
trigonometric functions. Many of the classical results about these functions will also be
verified in ACL2, including Euler’s beautiful equatief = —1.

To demonstrate how these results about abstract mathematical functions are relevant
to the mechanical verification of real-valued algorithms, this thesis will also present a proof
in ACL2 of the correctness of the Fast Fourier Transform (FFT). This proof also illustrates
an important point about ACL2. The proof is based on the notation of powerlists, introduced
by Misra in [46] to express and reason about data-parallel, recursive algorithms. ACL2
is sufficiently powerful that it can embed the theory of powerlists and reason effectively
about them. Such an embedding is presented in ch@ptenere many difficult theorems
from [46] are mechanically verified.

There is a synergy between non-standard analysis and ACL2. That is why ACL2
is an ideal medium for mechanically verifying real-valued algorithms. ACL2 is expressive
enough to describe complex algorithms, and it boasts a theorem prover powerful enough
to prove difficult theorems about such algorithms. Witness, for example, the theorems
about floating-point algorithms proved '], 54, 55]. The addition of the irrationals and
the principles of non-standard analysis makes it powerful enough to define the common
transcendental functions and to prove their fundamental properties. It opens a new domain
to ACL2, the verification of real-valued algorithms. It is because of the traditional strengths
of ACL2 — term rewriting, linear arithmetic, induction, etc. — that it succeeds in this new

domain.



1.1 Related Work

There is a long history of real analysis in automated theorem proving, some projects us-
ing analysis as a test-bed for theorem provers, others pursuing analysis for more pragmatic
reasons, for example, because the correctness of an algorithm hinges on a property of con-
tinuous functions.

In his wonderful dissertatiorn?f], Harrison showed how the real numbers can be
formalized in the theorem prover HOL2{]. Harrison’s approach was to construct the
real numbers, rather than to introduce them axiomatically. Real numbers are defined as
equivalence classes of Cauchy, rational sequences. All their properties are then developed
from first principles.

His approach differs dramatically from the one presented in this thesis. HOL is a
higher-order theorem prover, allowing a natural vehicle for reasoning about the equivalence
classes of functions. In contrast, ACL2 does not provide sufficiently strong set-theoretic
axioms for this task. Moreover, Harrison’s primary interest was in developing a mechanized
theory of analysis, whereas this thesis is interested in developing the pragmatic subset that
is needed for the verification of real-valued algorithms.

The theorem prover PVS offers built-in support for the real numkigijs [n PVS,
the reals are axiomatized using the usual field and ordering axioms, as well as a version
of the completeness axiom. PVS makes similar tradeoffs as ACL2, emphasizing issues of
pragmatics and usability. As with ACL2, a large portion of the reasoning engine is encoded
not in axioms, but in decision procedures built into the theorem prover. This includes deci-
sion procedures for theories about the reals, such as linear rewriting1]|rDutertre de-
scribes a theory of simple mathematical analysis developed using PVS. This theory presents
basic notions of analysis, such as sequences, convergence, continuity, and differentiability.
Dutertre’s motivation in developing his theory of the reals echoes the current motivation in
extending ACL2 to include the reals. Rather than focusing on analysis per se, the goal is to

prove enough results from analysis to reason about certain algorithms or computer systems.



IMPs offers axiomatic support for the realsd]. IMPs has a partial and higher-order
logic, which supports a proof style close to the one used by working mathematicians. More-
over, IMPS allows separate pieces of the theory to be developed in isolation, the so-called
“little-theory approach.” Separate theories can be related through theory interpretations,
which allow the reuse of theorems in different settings. Real and abstract analysis have
been a focus throughout the developmentnps. Among the many theorems proved
are the Bolzano-Weierstrass theorem, some fixpoint theorems similar to Banach’s, and the
mean value theorem for integration. ProofamMps are developed by a sequence of goal
transformations. The user is directly responsible for guidimgs through the “high-level”
inferences, whilemps takes care of the “low-level” computational details.

MizAR also contains axiomatic support for the reais,[57]. The emphasis in
MIzAR is on the development of a syntax suitable for the formalization of large portions
of mathematics. The MAR system, available on PCs, encourages the development of
large theories which depend on previously proved theorems. It allows the user to define
new syntax and parsing rules, to accommodate new notions. On the other ham® M
provides a relatively weak reasoning engine, relying on the user to provide explicit proofs,
including references to previous theorems.

Bledsoe developed several theorem provers that were able to prove many results
from elementary analysis, such as the intermediate value theéréiin Hines and Bledsoe
also pursued inference mechanisms that would be useful in an analysis theorem prover,
such as the inequality prover STRIVE(]. Ballantyne and Bledsoe describe a version
of Bledsoe’s theorem prover IMPLY which proves theorems in the theory of non-standard
analysis B, 2]. Using this system, they were able to prove several theorems of elementary
analysis, including the equivalence of the “standard” and “non-standard” definitions of the
basic analysis concepts. For example, they present a mechanical proof that the traditional
definition of sequence convergence is equivalent to the non-standard version. These results

are impressive.



More recently, Fleuriot and Paulson used non-standard analysis to formalize an in-
finitesimal geometry based on Newton'’s Princigia][ Using the Isabelle theorem prover,
they were able to prove many of the theorems in the Principia using Newton’s original
arguments.

A different approach to theorem proving over the reals is to use a computer algebra
system, such as Macsyma or Mathematica. Such an approach is suggested by Clarke and
Zhao, whose theorem prover Analytica is coded in Mathemalti¢h [Analytica uses the
Mathematica rewriting engine, which makes minor concesions to soundness in favor of
utility. Analytica compensates for this potential unsoundness by checking certain steps in
Mathematica’s computation and avoiding the more common errors, such as division by an
expression which can be equal to zero. The approach seems promising, in that Analytica
is able to prove an impressive array of theorems, including key steps in the construction
of a continuous, but differentiable nowhere function. Future work on Analytica may entalil
a closer coupling between the theorem prover and computer algebra system, so that each
simplification performed by the computer algebra system can be rigorously justified.

Another approach based on computer algebra is given by Beeson, whose MATH-
PERT system is designed for pedagogical lige MATHPERT is capable of solving el-
ementary algebra, trigonometry, and calculus problems. The problems are solved by ap-
plying a sequence of operators, elsewhere referred to as rewrite rules. Since the primary
interest of MATHPERT is in pedagogy, extreme care has been spent in choosing the appro-
priate operators, so that they correspond, roughly, to “nuggets” of knowledge that a student
should acquire. Moreover, the way in which these operators are applied is also given great
consideration, so that the results mimic the way students would tackle the problem. The end
resultis that MATHPERT provides more than just a solution to a given problem. It provides
an intelligible solution from which students can learn and profit. Of particular interest is
that MATHPERT uses non-standard analysis internally to formally justify that the answer

returned is correct. While these details are kept from the student, non-standard analysis is



used, for example, to verify that terms inside a limit are well-defirigd [

Cowles has proved the irrationality of the square root of two in ACL2. In fact,
he has formalized several versions of this proof. He has also proved some properties of
McCarthy’s “91 function.” These proofs were originally done in Ngthm in the context
of integers and Archimedean ordered fields. They have also been proved in ACL2 in the
context of Archimedean ordered fields, but this foregoes ACL2’s special treatment of the
numbers, such as linear rewriting. The modifications to ACL2 described in this thesis will
probably benefit his researcihi, 16, 19].

Others have tried using a rewrite-based theorem prover with support for induction
to reason mechanically about powerlists. Kapur and Subramaniam have used the theorem
prover RRL to verify some of the powerlist theorems proved by Misfa B2, 35. In

addition, they have used this foundation to prove the correctness of arithmetic cieeilits [

1.2 Outline

There are two main products of this thesis. The first is a modified version of ACL2 that
can reason about non-standard analysis. The second is a set of theories verified with the
modified ACL2. These theories can be used by others who want to reason mechanically
about real-valued algorithms. The complete source tree of the modified version of ACL2
as well as the source files describing the theories described in this thesis can be found in
the accompanying CD-ROM. The latest versions of these can also be found on the web at
http://www.lim.com/"ruben/research/thesis

These two products are described in this thesis as follows. In chiaptes shown
that the trascendental functions can not be introduced into ACL2. This is demonstrated by
proving that the fundamental property ¢ft —i.e.,x > 0 = /z - /2 = = — can be dis-
proved by ACL2. However, it is also shown that ACL2 can define rational approximations
that are arbitrarily close to the square root function.

In chaptel3, the basic principles of non-standard analysis are introduced. Moreover,


http://www.lim.com/~ruben/research/thesis

the modifications to ACL2 necessary to include non-standard analysis are described. This
chapter also offers a proof that the modifications are sound. Particularly interesting is how
induction needs to be modified to support non-standard analysis. The chapter presents a
soundness proof for the modified induction principle.

Chapter4 uses the rational approximation scheme.far described in chapterto
define the,/z function in ACL2, using the non-standard modifications to ACL2 described
in chapter3. The basic properties qfz are also verified in ACL2.

The exponential function is introduced in chapfer This is defined in terms of
the Taylor expansion fa#®, and it requires the development of a significant theory of con-
verging series in the complex plane, including geometric series and the comparison test of
absolutely convergent series. Comparisons on the complex numbers are based on a norm
defined using the square root function introduced in chaptétis chapter also proves a
fundamental property of the exponential function, namely ¢fia¥ = e - e¥. This difficult
proof depends on many facts about the binomial function and the theory of nested sums.
The property plays a key role in showing that the exponential function is continuous.

In chapter6, the trigopnometric functions are defined in terms of the exponential
function. Particularly interesting is the definition of the constanas it depends on the
continuity of the cosine function, the theory of alternating series, and the intermediate value
theorem. This chapter also develops a comprehensive theory of trigonometry, finding ex-
plicit values of the trigonometric functions at the common angles, as well as the sign of the
trigonometric functions in the four quadrants. Moreover, it verifies many of the familiar
identities from trigonometry.

Chapter7 develops the theory of powerlists in ACL2. It also proves generalizations
of many of the theorems presented by Misradf][ The proof of the correctness of Batcher
sorting deserves notice. Also proved in this chapter are the correctness of some parallel
prefix sum algorithms, as well as a carry-lookahead adder.

Chapter8 uses the trigonometric functions defined in chagitend the theorems



about powerlists proved in chaptérto prove the correctness of the Fast Fourier Trans-
form. This illustrates how the traditional strengths of ACL2, represented by the reasoning
about powerlists, combine with the enhancements based on non-standard analysis to prove
theorems about real-valued algorithms.

The syntax of ACL2 will be used throughout this dissertation. This syntax is es-
sentially that of Common LISP, with a few primitives defined to support theorem proving,
such as the functiodefthm which introduces a new theorem. This choice of syntax may
frustrate some readers who are unfamiliar with ACL2 or any LISP dialect. Those readers
who feel uncomfortable with the notation may wish to read appeAdiwhich presents a
gentle introduction to ACL2 and its syntax.

In the following chapters, only the main theorems and lemmas are included. The
remaining lemmas, which are required to guide ACL2 towards the eventual proof, are
omitted for the sake of brevity and clarity. For the same reason, the ACL2 statements
shown have been stripped of the ACL2-specific annotations, such as hints, guards, and rule-
classes. The complete ACL2 input can be found elsewhere on the CD-ROM, as well as

from http://www.lim.com/ruben/research/thesis
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Chapter 2

Learning from the Square Root

Function

This chapter illustrates how the lack of irrational numbers in ACL2 can lead to surprising
results. In particular, it is shown that ACL2 can prove thatx is not equal t@ for any

value ofz. This result is more limiting than it appears. It demonstrates that the introduction
of the square root function into ACL2 — through the addition of an axiom — would result
in a contradictory theory. In¢] Russinoff uses ACL2 to prove the correctness of the AMD

K5 square root implementation. However, he observes the lack of the square root function
in ACL2 prevented him from mechanically proving the square root microcode against the
precise IEEE specification.

The results in this chapter have been verified in ACL2 versions 1.8 through 2.1.
Chapter3 will introduce ACL2 v2.1(r), which supports the irrationals and therefore fails to
prove some of the theorems presented in this chapter. Although the explicit version number
will not be used, it should be clear that “ACL2" refers to ACL2 v2.1 and not to ACL2 v2.1(r)

for the remainder of this chapter.
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2.1 The Non-Existence of the Square Root of Two

To prove that
(not (equal (* x X) 2))

is a theorem in ACL2, it is sufficient to rule out suitable candidatesfoFhe first step is

the most interesting from a mathematical viewpoint — no rational number satisfies 2:

(implies (rationalp Xx)

(not (equal (* x X) 2)))

The proof follows the classic argument of the irrationality\d2. After ruling out the
rationals, the proof is nearly complete. The complex rationals can be ruled out, since all
their squares are either complex or negative. Since all other objects (i.e., non-numbers) in
ACL2 have zero squares, that will complete the proof.

Begin by considering the rationals and showing that none of them can be equal to
V2. Suppose for now thay2 is rational. Then, for some relatively prime integprandg,
(’a’)2 = 2. This implies thap? = 2¢?, sop? is even. But since is an integer, this implies
thatp must be even as well. That is, there is some intggaith p = 2p’. Then it follows
that4p? = 2¢2, and henceg? is even. Again, this implies thatis even. But theny andq
are not relatively prime as claimed, and therefgf2can not be rational.

The first step in formalizing this argument is to prove the following lemmas:

(defthm even-square-implies-even
(implies (and (integerp p)
(divisible (* p p) 2)
(divisible p 2)))

(defthm even-implies-square-multiple-of-4

(implies (and (integerp p)

12



(divisible p 2))
(divisible (* p p) 4)))

Given the equatiop? = 242, the lemmaeven-square-implies-even establishes
that p is even, andeven-implies-square-multiple-of-4 that¢? is even. Ap-
plying even-square-implies-even again, it follows thay is even. That is, ACL2

can prove the following lemmas:

(defthm sqrt-lemma-1.1
(implies (and (integerp p)
(integerp Q)
(equal * pp) (*2 (* q )
(divisible g 2)))

(defthm sqrt-lemma-1.2
(implies (and (integerp p)
(integerp Q)
(equal * pp) (*2 (* q )
(divisible p 2)))

To complete the argument, only the key property ghahdq are relatively prime is needed.
Equivalently,g must be expressed in lowest terms. The ACL2 functimnserator and
denominator can be used to express an arbitrary rational number in lowest terms. Using

these functions converts the lemmas above into the following:

(defthm sgrt-lemma-1.3
(implies (and (rationalp x)
(equal (* x x) 2))
(equal (* (numerator x) (numerator X))

(* 2 (* (denominator Xx)

13



(denominator x))))))

Combining all the results above yields the basic fact contradicting the rationaktg:of

(defthm sqgrt-lemma-1.4
(implies (and (rationalp x)
(equal (* x x) 2))
(and (divisible (numerator x) 2)

(divisible (denominator x) 2))))

(defthm sqgrt-lemma-1.5
(implies (and (divisible (numerator x) 2)
(divisible (denominator x) 2))

(not (rationalp x))))

(defthm sqrt-2-is-not-rationalp
(implies (rationalp x)

(not (equal (* x X) 2))))

Having ruled out the rationals from the list of candidates\f@ it is only necessary

to eliminate the remaining ACL2 objects, namely the complex rationals and non-numeric

objects. This is much easier. A complex rational has the formbi, whereb # 0 anda

andb are rationals. None of these objects can be the square root of 2, because their squares

all have the formu? — b2 + 2abi, and for that to be equal 2, « must be zero. But then,

the square obi is equal to—b?, which is negative sinckis rational. This argument can be

easily verified in ACL2:

(defthm complex-squares-rational-iff-imaginary
(implies (and (complex-rationalp X)

(rationalp (* x x)))

14



(equal (realpart x) 0)))

(defthm imaginary-squares-are-negative
(implies (and (complex-rationalp Xx)
(equal (realpart x) 0))
(< (* xx) 0))

From these theorems, it is easy to rule out the complex rational numbers from the list of

candidates:

(defthm sqgrt-2-is-not-complex-rationalp
(implies (complex-rationalp x)

(not (equal (* x x) 2))))

Since the ACL2 number system includes only the rational and complex rational
numbers, this establishes that no number can be equa{ﬁt'm the ACL2 universe. But
by simple type analysis, ACL2 can verify that only numbers can have non-zero squares.

Therefore, all ACL2 objects are ruled out. This establishes the following theorem:

(defthm there-is-no-sqrt-2
(not (equal (* x x) 2)))

As mentioned earlier, this theorem does more than simply rule out the possibility that some
ACL2 object is equal ta/2. It also explicitly rules out the possibility of introducing — by
definition or otherwise — a function with the properties of the square root function. Similar
arguments would rule out other irrational functions. This is especially sad when the power
of ACL2 is considered. This power will become evident in the next section, where ACL2
demonstrates the existence of rational functions arbitrarily close to the square root function.
That is, it is possible to define arbitrarily good approximations to the square root function

and other irrational functions in ACL2.
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2.2 Approximating the Square Root Function

The previous section showed that the fundamental theorem of square raotz>-6 =

VT - v/ = x — is inconsistent with the axioms of ACL2. However, it is possible to prove
weaker versions of this theorem. One such approach is to require that it only hold when
both z and/z are rational; at other points, no claims are made about the function, so it
is free to take on any value, say zero. That such a function exists in the ACL2 logic is
clear, since for rational/q in least termsm is given by, /p/,/q and since andgq are
relatively prime, this is rational if and only if/p and,/q are integers. Unfortunately, the
likelihood that an arbitrary integer has an integer square root is small, so this would only
cover a small fraction of the rationals, and the modified theorem would be too weak.

A better alternative is to substitute closeness for strict equality. For example, require
that|\/z - \/z — x| < e for some fixede > 0. There are many different approximation
schemes that can be used to come close to the square root function. Although other schemes
offer better performance, the simplicity of the bisection algorithm makes it a promising
approximation scheme in ACL2.

The convergence criterion is interesting, since the regulto which the approx-
imation converges is not necessarily in the ACL2 universe, so it is not able to guarantee
something similar td¢ — \/z| < e (cf. [54]). For this reasoni? — z| < e will serve as the
test of convergence.

An iterative approximation to the square root function can be defined as follows:

(defun iterate-sqrt-range (low high x nume-iters)
(if (<= (nfix num-iters) 0)
(cons (rfix low) (rfix high))
(let ((mid (/ (+ low high) 2)))
(if (<= (* mid mid) x)
(iterate-sgrt-range mid high x (1- nume-iters))

(iterate-sgrt-range low mid X
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(1- num-iters))))))

Because the convergenceitgrate-sqrt-range is not obvious to ACL2 and ACL2
only accepts definitions when it can prove their termination on all inputs, it is convenient
to divorce the convergence result from the terminating condition of the iterative function.
In particular,iterate-sqrt-range accepts a non-empty range of real numbers spec-
ified by low andhigh , and it divides the range in hatum-iters  times. It returns the
resultinglow-high  range, and subsequently the returieg will be used as the approx-
imation to/z. At each split of the range, the parameteis used to decide which half
to keep and which to discard. For examliegrate-sqrt-range 0 2 2 1) will
return(1 . 2) , since after the first iteratiog'2 can be contained in this range. Letting
the function iterate 5 times as (iterate-sqrt-range 0 2 2 5) yields (11/8

23/16) . Notice the original range of width 2 has been reduced to one with width of
1/16, or2° times smaller.

The proof of convergence can be split into two parts. Firstuih-iters s large
enough, the difference between the filggh andlow can be made arbitrarily small.
Second, if thenigh andlow are very close to each other, the squartouf is very close
to x.

Before proceeding, some basic propertiegarate-sqrt-range need to be
established. For example, if the origiagh-low range is not vacuous, then neither is

the finalhigh-low range after iterating any number of times:

(defthm iterate-sqgrt-range-reduces-range
(implies (and (rationalp low)
(rationalp high)
(< low high))
(< (car (iterate-sqrt-range low high x
num-iters))

(cdr (iterate-sgrt-range low high x
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nume-iters)))))

A patrticularly crucial lemma is that the finhigh estimate is not larger than the initial

one. That is, no iteration can increase the current upper estimate.

(defthm iterate-sqgrt-range-non-increasing-upper-range
(implies (and (rationalp low)
(rationalp high)
(< low high))
(<= (cdr (iterate-sqgrt-range low high x
nume-iters))

highy))

Nonetheless, the finhigh estimate is large enough that it does not cross below the square

root ofx, so long as the initidhigh estimate is not below the square rootof

(defthm iterate-sgrt-range-upper-sqrt-x
(implies (and (rationalp low)

(rationalp high)

(rationalp x)

(<= x (* high high)))

(<= x

(* (cdr (iterate-sgrt-range low high x

nume-iters))
(cdr (iterate-sqgrt-range low high x

nume-iters))

N)

This provides a tight bound on how far the valuesigh can range. Similarly, the analo-

gous theorems for thew bound of the range can be established.
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With these lemmas, the continuity of is sufficient to show that if thaigh-low
range is small enough, then the range of their squares is arbitrarily small. Specifically, for
anye > 0 anda > 0, it is possible to find & such that for any with 0 < b —a < 6,
it follows thatb? — a? < e. In fact, algebraic manipulation will show that this is true for
anys < ¢/(a + b). Moreover, for rangef, b] such thatw < \/z < b, the termb? can be
replaced by the smaller to conclude that: — a?> < e. The continuity condition can be

stated as follows:

(defthm sqrt-epsilon-delta-aux-4
(implies (and (rationalp a)
(rationalp b)
(rationalp x)

(rationalp epsilon)

(<= 0 a)
(< ab
(<= x (* b b))

(< (- b a) delta)
(<= delta (/ epsilon (+ b a))))
(< (- x (* a a)) epsilon)))

Unfortunately, this result is stated in terms(ef b a) , which will correspond to
thefinal high-low estimates of the approximation. It would be more convenient to define
d in terms of the original estimates or guesses. Sincéitjfie estimates are monotonically
decreasing and tHew estimates are monotonically increasing, it is not possible to readily
conclude anything about the sum of the fihnddh andlow . However, observe that the
claim remains true foé < ¢/20b, since for0 < a < b, ¢/2b < ¢/(a + b). Now, § will only
depend on the findligh estimate, and since we kndvigh is monotically decreasing we
can replace the finddigh estimate with the initial guess. This is important, because it al-

lows the number of iterations required to be computed before the square root approximation
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is begun. Combining these observations results in the first half of the convergence result:

(defthm iter-sqgrt-epsilon-delta
(implies (and (rationalp low)
(rationalp high)
(rationalp epsilon)
(rationalp delta)
(rationalp x)
(< O epsilon)
(<= 0 low)
(< low high)
(<= x (* high high))
(<= delta (/ epsilon (+ high high))))
(let ((range (iterate-sqrt-range low high x
num-iters)))
(implies (< (- (cdr range) (car range))
delta)
(< ¢ x
(* (car range) (car range)))

epsilon)))))

It remains only to be shown that the fitdh-low estimate will be sufficiently
close together so that the theorem above can apply, as long as enough iterations are per-
formed. It is possible to define a functigness-num-iters that computes the required
number of iterations for a specificande. Since the iteration scheme halves the estimate
range at each step, only the size of the initial estimate is needed. The function, which

essentially computes the base-2 logarithm of the initial range, is given below:

(defun guess-num-iters-aux (range num-iters)

(if (and (integerp range)
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(integerp num-iters)
(> num-iters 0)
(> range (2-to-the-n num-iters)))
(guess-num-iters-aux range (1+ num-iters))
(1+ (nfix num-iters))))
(defmacro guess-nume-iters (range delta)

‘(guess-num-iters-aux (ceiling ,range ,delta) 1))

The function2-to-the-n returns2™ for non-negative integer; its definition is omitted
in favor of brevity. Before proving thagjuess-num-iters returns a sufficiently large
value for any choice afange andepsilon , itis important to consider hovterate-
sgrt-range  reduces thdiigh-low  range after a number of iterations. The following

theorem proves that the range is halved at each step:

(defthm iterate-sqrt-reduces-range-size

(implies (and (<= (* low low) x)

(<= x (* high high))
(rationalp low)
(rationalp high)

(integerp num-iters))

(let ((range (iterate-sqrt-range low high x
num-iters)))
(equal (- (cdr range) (car range))
(/ (- high low)
(2-to-the-n num-iters))))))

With this result and some algebraic rewriting, the second half of the convergence theorem
can be proved. Specifically, it can be shown that by iteragimgss-num-iters times

the finalhigh-low range is sufficiently small for the first convergence theorem to apply:
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(defthm iterate-sqrt-range-reduces-range-size-to-delta
(implies (and (rationalp high)

(rationalp low)

(rationalp delta)

(< 0 delta)

(< low high)

(<= (* low low) Xx)

(<= x (* high high)))

(let ((range (iterate-sgrt-range
low
high
X
(guess-num-iters (- high low)
delta))))
(< (- (cdr range) (car range)) delta))))

The only remaining task is choosing appropriate starting valudsigbr andlow . Given
anz > 0, an initial range containing/z can be[0, z] if z > 1, and|0, 1] otherwise. Itis
clear that this range includegz, is not empty, and includes only non-negative numbers.
Hence it can be used to begin the iteration.

The resulting ACL2 function to approximate square root can be defined as follows:

(defun iter-sgrt (x epsilon)
(if (and (rationalp x)
(<= 0 x)
(let ((low 0)
(high (if (> x 1) x 1)))
(let ((range (iterate-sqrt-range

low high x
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(guess-num-iters (- high low)
(/ epsilon
(+ high
high))))))
(car range)))
nil))

For example, an estimate {62 with precisiond-1,/1000 can be found witk{iter-sqrt

2 1/32) ;the value returned is 11585/8192, roughly 1.41418 which is indeed clagg.to
With little more than propositional reasoning, ACL2 can now prove the main convergenge

result:

(defthm convergence-of-iter-sqrt
(implies (and (rationalp Xx)
(rationalp epsilon)
(< 0 epsilon)
(<= 0 X))
(and (<= (* (iter-sqrt x epsilon)
(iter-sqrt x epsilon))
X)
(< (- x (* (iter-sgrt x epsilon)
(iter-sgrt x epsilon)))

epsilon))))

In section2.], it is established that the square root function can not be defined in
ACL2. Nevertheless, as seen above it is possible to define approximation schemes that are
as close to the square root function as desired. The next chapter will show how ACL2 can be
modified to reason about irrational as well as rational numbers. Subsequently, the results of
this chapter will be used to actually define the square root function in the modified version

of ACL2.
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Chapter 3

Non-Standard Analysis in ACL2

This chapter describes the non-standard analysis modifications to ACL2. It begins by in-
troducing an axiomatic treatment of non-standard analysis. This serves as the foundation
for non-standard analysis in ACL2, which is described next. The chapter concludes by

describing an ACL2 library consisting of non-standard analysis axioms and theorems.

3.1 An Introduction to Non-Standard Analysis

The formalism of non-standard analysis in ACL2 follows the axiomatic approach pioneered
by Nelson in Internal Set Theory (IST}§]. This section presents a simple introduction to
Internal Set Theory, so that the following material is self-contained. However, this section
is not intended to be a comprehensive introduction to non-standard analysis. Several good
introductions to non-standard analysis are readily available, inclugdingd p, 4€].

Internal Set Theory (IST) is a conservative extension to Zermelo-Fraenkel set theory
(ZF)'. It introduces the unary predicagtandardwhich is left undefined, just as the
predicate is undefined. Note, it is possible to ask whether any stdnslardor not. In

particular, this means that all mathematical objects built using set theory — sets, numbers,

1The specific set theory that is extended is largely irrelevant. ZF is used for concreteness.
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functions, graphs — may kstandardor not.
The axioms of naive set theory describe how sets may be constructed. They include

the following [27, 56]:
e Extension: Two sets are equal if and only if they contain the same elements.

e Specification: Given a setA and a conditionP(x), there exists a seB whose
elements are those elementsf A for which P(a) is true. This is written as

B={aec A|P(a)}.

¢ Replacement:Given a setd and a unary functiorf, there exists a set that contains

f(a) for each elemeni of A.

The remaining axioms are used to define valid ways of constructing sets from other sets.
The specification axiom provides the only mechanism to construct a set from a predicate. In
Internal Set Theory, this axiom is restricted so that the prediate in {z € S | P(x)}
can be neithestandardnor any predicate defined frostandard Notice, this does not
disallow the construction of any set that was possible in ZF, since the only terms that are
affected are terms in the language of IST that are not already in the language of ZF.

To simplify future discussions, define a formula todb@ssicalif it does not contain
the predicatstandardnor any functions or predicates defined using the preditatedard
This is a purely syntactic notion on the formulas of the language of Internal Set Theory,
and it should be differentiated from the notistandard which is a formal property of
the objects, i.e., sets, of Internal Set Theory. It will be shown later that all classically
constructed objects amtandard However, the converse is not true. For example, a non-
classical formula may be used to construct a classical function, as the non-classical formula
standardx) v —standardz) defining the classical function “true” illustrates.

In addition to the axioms from set theory, Internal Set Theory introduces three new
axioms to deal explicitly with the predicastandard The first axiom is the idealization

axiom.
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¢ |dealization: For any classical binary relatiaR(z, y), the following are equivalent:

— For everystandard finite setF there is ay so thatR(z, y) is true for allz in F.

— There is ay so thatR(z, y) holds for allstandardz.

This axiom guarantees the existence of at least onestemdardelement. As an example,

let R be the< relation. It is certainly the case that there is an upper bound for every finite
set of reals. The idealization axiom asserts the existence of a, necessarily non-standard, real
y that is greater than adtandardreals.

The second axiom is the standardization axiom.

e Standardization: Given astandardsetA and a conditiorP(x), there exists a unique
standardsubsetB C A whosestandardelements are precisely tieandardelements

a of A for which P(a) is true. This is written a® = °{a € A | P(a)}.

Note that this axiom is strictly weaker than the specification axiom whr) is a classical
property. For non-classical properti€$x), it serves as a replacement to the specification
axiom. However, the axiom does not guarantee anything about thetandardelements
of B. In particular,B may contain a nostandardelement: for which P(z) is false, or it
may fail to contain a nostandardelementz € A for which P(z) is true. For example, let
P(z) be the propertgtandardx), and consider the set’ = {z € R | standardz)}. Since
standardis a non-classical predicatd, is not an admissible set. However, the standard-
ization principle guarantees the existence of a ungfaedardset B so that, forstandard
z,xz € Rifand only if z € R andstandardx). That is,B is astandardsubset of the reals
containing all thestandardreals. SinceR is itself astandardsubset ofR containing all
standardreals, it follows thatB = R, since the axiom guarantees the suli$és unique.

The standardization axiom permits a very useful construction, knovahadow
sets. Itis defined &S = {x € U | = € S}, whereU is an arbitrarystandardsuperset of
S. The notatior? S is read as “the shadow &f” °S is the uniquestandardset that agrees

with S on all standardelements. Note, it is standard then®S is necessarily equal t§.
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The notatiorf{z € S | P(x)} whereP(z) is not a classical formula will be used to refer to
the unique set guaranteed by the standardization axiom for the fofftula The notation
offers the intuitive appeal of taking the shadow of the “set” of elements satis#{ag,

even though this “set” can not be formally constructed. Such “sets” are commonly referred
to as “external sets” in contrast to “internal sets,” which are the ordinary sets of set theory.
The name “Internal Set Theory” reflects this convention.

The third and final axiom introduced in Internal Set Theory is the transfer axiom.

e Transfer: Let P(z) be a classical formula referencing ofandardparameters. If

P(z) is true for allstandardvalues ofz, it is also true for all possible values of

A useful corollary of this axiom is that any classical predic&te) with only standardpa-
rameters that is satisfied by soRér() must also be satisfied bystandardz; . Otherwise,
—P(z) would be a classical formula witstandardparameters that is true of atandard
values ofz, so by the transfer axiom it would be true of all valuestpincludingzg. In
particular, this means that if the propertyx) is satisfied by ainiqueelementz, then this
element must betandard Examples of such elements includlel, =, R, etc.

Another useful corollary of the transfer axiom is a modified version of the extension
axiom. TwostandardsetsA and B are equal if and only if they contain the sastandard
elements. This follows from the transfer axiom, since the formwa A < = € B is true
of all z if it is true of all standardx, as itis a classical formula mentioning only ttandard
parametersi and B.

The restriction imposed on the axioms of specification and transfer that limit their
use to only classical properties is crucial. Consider, for example, the following flawed
“proof” that all natural numbers arstandard 0 is a standardnatural number. If: is a
natural number and is standard so isn + 1. (This follows from the axiom of transfer,
sincen + 1 is uniquely determined ana and1 arestandard) Appealing to the principle
of induction, therefore, it can be concluded that all the natural numbestardard This

is false. To understand the error, recall that the induction principle is based on the well-
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foundedness of the naturals: every non-empty set of naturals has a least element. Induction
is sound, because the induction hypothesis guarantees the set of counter-examples to the
theorem can not have a least element, hence it must be empty. However, in this case the set
of counterexamples iS = {n € N | —standardn)}, and sincestandardis not a classical
property, this set is not well-formed. What this means is that the principle of induction can
not be used to prove non-classical properties. As was the case with the specification axiom,
notice that this restriction does not invalidate any inductive proof that was possible before
the introduction of thestandardpredicate.

Using the concept of a shadow set, it is possible to derive a weaker induction princi-
ple that is applicable to any predicate. ln) be a classical or non-classical property de-
fined over the natural numbersc N, and further assume th&(0) andP(n) = P(n+1)
have been established. L&t= °{n € N | P(n)}. Thatis,S is theshadowof the “set” of
natural numbers satisfyingP(n). ObserveS is the set of all naturals, sin¢gis aclassical
set, and therefore membershipSrcan be established using the classical induction princi-
ple. But sinceS is a shadow set, it can only be concluded tRét) is true forstandardn.
Therefore, the non-standard induction principle can concttdedardn) = P(n) from
P(0) andP(n) = P(n + 1) for any propertyP(n).

The concept of shadows allows more powerful constructions. Consider a non-
classical functionf : R — R — that is, one whose definition uses the functgtandard
or some other non-classical function — so tlfié&t) is standardfor everystandardz. The
function f can be used to implicitly define @assicalfunction ® f that agrees witty on
standardarguments. The functionyf is classical in the sense that it hastandardgraph,
and it could be given an explicit definition in the language of set theory, without the use
of the predicatestandard The construction of f is as follows. The functiorf is a set of
tuples(z, f(z)), with the restriction that no two tuples have the same first element. Ob-
serve, the shadow of this sef is also a function. This follows because a tupte f(z))

is standardprecisely when botlx and f(z) are, which from the hypothesis is precisely
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whenz is standard Since® f is standard(as it is the result of a shadow construction) and
the set{x} x R is standardfor standardz, it follows thatX = °f n ({z} x R) is nec-
essarilystandard But (z, f(x)) can be the onlgtandardelement ofX with x as its first
coordinate, sincéx, f(z)) is standard and it is the only element of with x as its first
coordinate. Similarly(x, f(z)) must be inX. This means thak = {(x, f(x))}, as both
X and{(z, f(z))} arestandardsets containing the sanséandardelements. It follows that
for standardz, there is only ong such thatz, y) € °f. Equivalently, forstandardz, the
cardinality of°f N ({z} x R) must be equal ta. From the transfer principle again, the
cardinality of°f N ({z} x R) is equal tol for all z, and so°f is a function. What this
shows is that given any functiofi so thatf(z) is standardwheneverz is, it is possible
to implicitly define astandardfunction g so thatg(xz) = f(z) for all standardz. As in
the case with all shadow constructions, it is not possible to say what the vajus fdr a
nonstandardz, except by indirect means. For exampleg(f:) = =2 for all standardz,
then using the transfer principle it follows thatr) = 22 for all z, even thoughy (z) may
not bez? for a nonstandardz.

Thestandardpredicate and the idealization, standardization, and transfer principles
are surprisingly powerful. The real benefit of Internal Set Theory to analysis, however,
is that it is possible to define (non-classical) predicates which correspond to many of the
intuitive notions from analysis, such as “infinitely small” and “infinitely close.” Analysis in
the language of Internal Set Theory is commonly referred to as “non-standard analysis.”

A number is-smallif it is smaller in magnitude than all positigandardnumbers.

That is,e is i-smallif |¢| < x is true for allstandardz > 0. ClearlyO0 is i-small, but it
is not the onlyi-small number. Recall, thé&dealization axiom demonstrates the existence

of a numbery. which is greater than afitandardreals. Consequently,/y- is smaller in

>The phrase shows the historical development of Internal Set Theory, which followed from the study of
“non-standard” models of arithmetic. In this view of real analysis, the predstatelardis used to recognize
the numbers in the real number line. Quantifiers, however, range not over the real numbers, but over the

“hyperreals,” which include the reals as well as “infinitesimals” and their arithmetic closure.
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magnitude than all non-zestandardreals, and so it issmall. The formal notion of-small
captures the informal notion of “infinitesimal.” Similarly, a numbeis calledi-large if it

is larger in magnitude than atandardnumbers. The numbefr. serves as an example. It
is clear thaty is i-large if and only if it is non-zero and /y is i-small, and thaty is i-small

if and only if 1 /y isi-large ory = 0. A number that is noitlarge is calledi-limited. It is
clear that allstandardnumbers must belimited. Two numbersr andy arei-closewhen

x — yisi-small. Since0 is the onlystandard i-smalhumber, it follows that twastandard
numbers arécloseif and only if they are equal.

In addition, it can be shown that there is a functgtandard-partwhich assigns a
standardnumberi-closeto eachi-limited real. That is, foi-limited x, standard-partx) is
standardandi-closeto x. The numbestandard-partz) can be defined as the supremum
of °{y € R | y < z}. This set is bounded above, sineés i-limited, and so there must
be astandardnumberM with |x| < M. From the transfer principlestandard-partz) is
standard since it is the supremum ofstandardset. Thatstandard-partx) is i-closeto x
follows from the fact that for angtandardc > 0, x — standard-parfx) > ¢ implies that
x > standard-partx) + ¢ and sostandard-partx) + cisin °{y € R | y < z}, since
it is standardand at mostz, but thenstandard-partz) would not be a supremum of this
set. Similarly, ifstandard-partz) — = > ¢, it must be thastandard-partz) — ¢ > =
so°{y € R | y < z} would be bounded bgtandard-partz) — ¢, again contradicting
standard-partx) as the supremum of the set. Therefatendard-partx) andx arei-close
Sincestandard-partz) is standard it follows that it is the uniquetandardnumberi-close
tox.

These new functions +small, i-large, i-limited, i-closeandstandard-part— obey
simple algebraic properties. For example, it is obvious thaty is i-small (i-limited) if
both z andy arei-small (i-limited). If x is i-limited ande is i-small, € - x is i-small and
x/eis i-large for ¢ # 0. If z isi-closeto y andy is i-closeto z, thenz is i-closeto z.

Less obvious is the fact that fetimited « andy, the standard-partof = + y is the sum of
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standard-partz) andstandard-party).

The convenience of non-standard analysis becomes evident when traditional notions
from analysis are written using the new language of non-standard analysis. For example,
a standardsequencda,, } converges to thetandardpoint A if A is i-closeto a for all
i-large integersN. A standardfunction f is continuous at atandardpoint z if f(y) is
i-closeto f(x) for all y i-closeto =. These definitions are easier to use than the traditional
definitions from analysis. Consider the functigtw) = sin(1/z). Itis a classical result
from analysis that this function can not be extended continuousty=at). The traditional
proof is to find two sequencds.,, } and{b,,} converging td, so that{ f(a,)} and{f(b,)}
converge to different values. In non-standard analysis, the argument is considerably more

direct. Considery = 5+ andz; = wheren is ani-large integer. Thenry and

x1 arei-close(both beingi-small), but f(z¢) = 0 is noti-closeto f(z1) = 1. Therefore,
no value of f(0) can bei-closeto f(y) for all y i-closeto 0, and hencef can not be
continuously extended at= 0.

With all the new predicates of non-standard analysis, it is important to re-create the
traditional mental picture of the real number line. The integers are divided into two groups.
Thestandardintegers includ®, +1, +2, .... There is at least one natandardinteger/V.
Necessarily;t N, +(N + 1), (N £ 2), ... are also nostandard Notice in particular that
there is no least nogtandardinteger. Also notice that the propertismndardandi-limited
coincide for the integers.

The corresponding picture for the reals is a little more complex. Certainly, there are
i-large numbers, such as tharge integerN, as well asV/2, V/N, etc. As is the case with
the integers, all reals larger in magnitude thérare alsa-large, as is any numbeN — x
for i-limited z. Moreover, there aresmall reals, all of which arécloseto 0. All i-limited
reals ar@-closeto astandardreal. That is, ifx isi-limited, it can be written ag = z* + e,

wherex* is standardande is i-small. The number:* is equal tostandard-partz).
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3.2 Non-Standard Analysis Primitives in ACL2

As chapter2 showed, the numeric system of ACL2 v2.1 is too restrictive to permit the real
numbers. Hence the first step towards analysis in ACL2 is the extension of the numeric
system to include the irrationals.

In addition to the type recognizerationalp andcomplex-rationalp of
ACL2 v2.1, ACL2 v2.1(r) includes the new type recognizeralp andcomplexp and
modifies the typeacl2-numberp  to include them both. Moreover, the arithmetic ax-
ioms of ACL2 v2.1(r) have been modified to reflect the new elements in the ACL2 universe.
For many axioms, the required modifications are straight-forward. For exampRoghie
itive  axiom, stating that ift andy are positive rationalsy - y is a positive rational, is
extended to the reals simply by replaciragionalp with realp everywhere. Some
axioms, however, are too useful in their own right to simply replace rational with real ev-
erywhere. For example, an axiom built into the ACL2 type system states that the product
of two rationals is rational. Rather than weakening this axiom by replacing it with the cor-
responding axiom for the reals, ACL2 v2.1(r) adds the axiom asserting that the product of
two reals is real. Of the arithmetic axioms in ACL2 v2.1, only those explicitly dealing with
numerator and denominator can not be extended to the reals.

The initial ACL2 theory contains more than the basic arithmetic axioms. It also
contains many useful arithmetic functions, suchahs, floor , andtrunc . All of
these functions need to be extended to accept irrational arguments. This is trivial in the
case of functions likabs . However, the functionflioor andtrunc are defined using
integer-quotient , Which performs division by repeated subtraction. For example,
the floor of17/2 is found by dividing2 into 17 using repeated subtraction, giving a value
of 8. Clearly, a similar trick will not work for the reals. A simple solution to this problem is
to introduce a new undefined functifiborl  which is axiomatized to return the correct
value of | =] for an arbitrary numbet. Of course, it would be easier to axiomatfeor

directly, but that would make the executable version of the fundtamr undefined for
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all arguments. By introducinfjoorl , itis possible to allow ACL2 to have an executable
version offloor , at least for rational constants. With the executable version, ACL2 can
evaluate a constant expression that appears in the middle of a proof, ticbras3/2

1).

With these modifications, ACL2 is able to reason about the irrational numbers, but
it can not construct irrational numbers. In particular, there are no irrational constants, and
there is no mechanism to allow an ACL2 function to return an irrational result given rational
arguments. Nevertheless, it can reason effectively about the real and complex numbers. For
example, it shown in chaptérthatz - © # 2 is a theorem of ACL2 v2.1. However, this
result can not be proved after the introductiomedlp . Instead, itis possible to show that
if z-x = 2 thenx must be real but not rational. However, as described so far, ACL2 v2.1(r)
can not prove that there must be someith x - z = 2, nor can it define the functiosgrt
with the required property. To do that requires the knowledge that the real number line is
complete. This proof is accomplished in ACL2 v2.1(r) using non-standard analysis.

The primitive non-standard functions in ACL2 v2.1(r) atandard-numberp
standard-part , andi-large-integer . Standard-numberp is afunction that
tests whether a number sgandardor not. Note, this is a strict numeric type, so ACL2
treats all non-numeric objects as nstandard The functionstandard-part returns
the standard part of a real or complex number, provided such a number exists, i.e., provided
the number ig-limited. Fori-large numbers standard-part is not defined, but it is
convenient to think of it as the identity function. As its name suggests, the costant
large-integer is an integer axiomatized to idarge; it is also assumed to be positive.
The functiong-small ,i-large , i-limited , andi-close  are given explicit defi-
nitions in terms oktandard-part . Anumberisi-small if its standard-part
is zero; itisi-large  ifits inverse isi-small ~ and non-zero; and it islimited if it
is noti-large . Two numbers areclose if their difference is-small

All of these functions are special in two ways. First, none of the primitive non-
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standard functions is given an explicit definition. Instead, they are all treated as constrained
functions, as if they had been introduced usamgapsulate  or defstub ; ACL2 can

not evaluate the value of any term that depends non-trivially on one of these functions.
Secondly, ACL2 introduces the notion of classical and non-classical functions. These new
functions are considered to be non-classical, as are any functions defined in terms of non-
classical functions. Note, any ACL2 v2.1(r) functions (formulas) that are also ACL2 v2.1
functions (formulas) are necessarily classical.

ACL2 v2.1(r) restricts the use of non-classical functions to prevent inadvertent uses
of the specification axiom on non-classical properties. A non-classical function can not
be defined recursively. In effect, non-classical functions in ACL2 are similar to macros,
since any term involving a non-classical function can always be “flattened” into a term
involving only the primitive non-classical functions. Moreover, non-classical constrained
functions are not permitted in ACL2 v2.1(r). When a function symbol is introduced using
encapsulate , ACL2 v2.1(r) considers the function to be classical, and it ensures that the
local witness function used to justify the introduction is also classical.

Moreover, the use of induction on non-classical formulas is restricted. Recall that
in Internal Set Theory induction can only be used overdtamdardintegers. Similarly,
the induction principle in ACL2 can be used to establish the truth of non-classical formulas
only for standardinstances of their variables. The remaining cases are treated separately,
similar to the “base” cases. That is, for each variable appearing in the formula, the non-
standardinduction principle of ACL2 adds the proof obligation that the formula is true for
non-standardinstances of the variable.

Consider the functiofactorial defined as follows:

(defun factorial (n)
(if (and (integerp n) (< 0 n))
(* n (factorial (- n 1)))
1))
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Suppose an attempt is made to prove fhatorial always returns atandardvalue:

(defthm standard-numberp-factorial-false

(standard-numberp (factorial n)))

The classical induction principle of ACL2 would reduce this theorem to the following two

goals:

(implies (not (and (integerp n) (< 0 n)))

(standard-numberp (factorial n)))

(implies (and (and (integerp n) (< 0 n)))
(standard-numberp (factorial (+ -1 n))))

(standard-numberp (factorial n)))

In addition, since the theorem uses the non-classical funstammdard-numberp | the

following goal is added by ACL2 v2.1(r):

(implies (not (standard-numberp n))

(standard-numberp (factorial n)))

Intuitively, the first two goals prove the theorem for astgndardvalue ofrn, and the last
goal proves it for any nostandardn. In this case, the last goal can not be established, and
so ACL2 v2.1(r) does not prove that all integers hawtamdardfactorial. As can be seen,
this modification to the induction principle is crucial in preserving soundness.

The theorenstandard-numberp-factorial-false is false, because the
factorial of a nonstandardinteger is also nostandard However, the theorem is true if

only standardintegers are considered, as ACL2 v2.1(r) can prove:

(defthm standard-numberp-factorial
(implies (standard-numberp n)

(standard-numberp (factorial n))))
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In this case, the basis and induction steps are as follows:

(implies (and (not (and (integerp n) (< 0 n)))
(standard-numberp n))

(standard-numberp (factorial n)))

(implies (and (and (integerp n) (< 0 n))
(standard-numberp n)
(implies (standard-numberp (+ -1 n))

(standard-numberp (factorial

(+ -1 m)))

(standard-numberp (factorial n)))

ACL2 can quickly prove both of these goals. In addition, ACL2 v2.1(r) adds the following

goal, since the theorem is non-classical:

(implies (and (not (standard-numberp n))
(standard-numberp n))

(standard-numberp (factorial n)))

This time, ACL2 is able to prove this goal, since the hypotheses are quickly found to be con-
tradictory, completing the proof of the original conjecture. In general, the only non-classical
theorems that can be proved by induction are those that specifically apgignidardval-

ues, for example by havingtandard-numberp  as a hypothesis, as Btandard-
numberp-factorial

Formally, the ACL2 non-standard induction principle is as follows:
Suppose:

e pisaterm;

e 7 is a function symbol that denotes a classical well-founded relation;
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m is a classical function symbol of arguments;

e 11,...,x, are distinct variables;
e ¢1,...,q, are terms;
e hy,...,h; are positive integers;

e for1 <i¢ < kandl <j < hy s;;is aclassical substitution, and it is a

theorem that

(IMPLIES ¢;

(r (m z1...2,) 555 (M z1...2,)))
and

e y1,...,y, are the variables occurring inthat are one of the; or are

changed by the; ;.

Thenp is a theorem if

(IMPLIES (AND (NOT ¢1) ...(NOT @)

)

is a theorem, for each< 7 < u,

(IMPLIES (NOT (STANDARD-NUMBERPy;))

D)

is a theorem, and for eadh< 7 < &,

(IMPLIES (AND ¢ pl si1 ... pl sip,)

p)

is a theorem.
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Compare this to the formal definition of the induction principle of Ngthm or ACL2, found
in[10, 3€].

To understand why the non-standard induction principle is sound, consider a spe-

cific choicep, r, m, x;, ¢;, hi, s;;, andhy such that the conditions above as well as the
basis and induction steps can be established. Then the following proof in internal set theory
establishes the validity of.
PrROOF. Without loss of generality, assume that theare X, X5, ..., X,,; thatr is R; that
mis M; thatX, 1, X,,+o, ..., X, are all of the variables other thaty, Xo, ..., X, inp,
the ¢; and either component of any pair in agy;; thatp is (P X ...X.), thatg; is (Q;
X1 ...X,); thats; ; replacesX,, with some termi; ; ,,; and that th&; are given byX, Xo,
..., Xy, for somen < u < z. Note thatd; ;,, is equal toX, foru < v < z.

Let RM be the function on-tuples defined by
(RM (Uy...Uy) (Vi ... V) =(R(MUy...Uy) (MVy...Vy,)).

Note thatRM is classical and well-founded.
Let the tupleC = (Cyy1 Cut2...C.) be a binding for the tuple of variables
(Xut+1 Xut2...X,). Define the seGC as the shadow set of all-tuplesU for which

(pU C)isfalse. Thatis, it is defined as follows:
GC=°"{(Uy...Uy) | (PU;y...Uy Cys1 Cysza...C,) is false}

SinceGC is a standard set, membership#d’ can be decided using the classical principle
of induction. In particular, ilzC' is non-empty, it must have aRA/-minimal tuple. More-
over,GC is a standard set, so by the transfer principle, if it is non-empty, it must have a
standardR M -minimal tuple. Let(X; X5 ... X,) be such a tuple. There are two cases to
consider.

Case 1: Suppose none of thg is true. By the base caseP X;...X, Cyy1...C,) s

true, and sqX; ... X,,) should not be ilGC, yielding a contradiction.
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Case 2:Suppose at least one of theis true. Without loss of generality, assume that the
term(Q1 X1 ... Xy Cyya ... C)istrue. From the conditions onm, ¢, ands; ;, it follows
that

(R (M dl’Ll oo dLl’n) (M Xl [N Xn)>

(R(Mdig...dion) (MXi...X,))

(R(Mdypya---dipyn) (MXy...Xp))
are all true. By the definition aRM,

(RM <d171,1 e d1’17u> <X1 A Xu>)

(RM <d17271 e d1727u> <X1 R Xu>)

(RM (dipy1---dipyu) (X1 Xu))

are all true as well. Observe, the termis ; are all standard, since th¢; are standard, and
the substitutions; ; are assumed classical, hence they return standard values for standard
arguments. SincéX; ... X,) is an RM-minimal u-tuple such thatp U C) is false and

thed, ; ; are all standard, it follows that

(P dl,l,l . dl,l,u Cu+1 - Cz)

(P d1,2,1 . d1727u Cu+1 e Cz)

(P d17h1,1 A dl,hl,u Cu—‘,—l o .. CZ)

are all true. Hencg,P X; ... X,, Cy+1 - .. C.) follows from the first induction hypothesis,
contradicting the assumption th@’; ... X,,) isin GC.
Therefore, it can be concluded tH@€ is empty, since it is atandardset containing

no standardelements. From the definition @fC, it follows that for any standard tuple
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(X1...Xu), (P X1...X, Cyq1...C,) must be true. Moreover, from the assumptions, if
(X1 ...X,) isanon-standard tuple, it also follows th#@ X; ... X, Cyy1...C,) is true.
This is because ifX; ... X,,) is non-standard, one of th€; must be non-standard, and

then the theorem follows from the hypothesis

(IMPLIES (NOT (STANDARD-NUMBERP X))

D)

This establishes thaP X; ... X, Cy41...C.) is true for all tupleg X; ... X,,).

Since this argument can be carried out for any valuegQf.; ... C.), it follows
that(P X1 ... X, Xyuy1...X,)istrue for all values of theX;. This establishes the validity
of p. Q.E.D.

ACL2 v2.1(r) introduces two new events that deal exclusively with non-classical
formulas. The eventefun-std is used to define atandardfunction using a non-
classical body. The newly introduced function is considered to be a classical function.
This is justified by the Internal Set Theory concept of shadow functions only when the
function body returns atandardvalue forstandardarguments. In these cases, the function
is explicitly defined only for thestandardarguments; that is, the function is defined by its
body only forstandardarguments. For the remaining arguments, the function is implic-
itly defined, as being the (uniqusejandardfunction that agrees with the body fstandard
arguments.

Consider, for example, the function introduced as follows:

(defun-std std-pt (x)
(standard-part x))

This function is accepted, because $tandardzx, (standard-part x) is standard It
is important to realize thatd-pt  is notthe same as the functistandard-part . The
standardfunction std-pt  is guaranteed equal ®tandard-part only for standard

values forx. Sincestandard-part returnsx for these values, it follows thatd-pt
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is the identity function fostandardx. But, sincestd-pt is considered classical, it must
also be the identity function for all values »f since by the transfer axiom, two classical
functions that have equal values f&iandardarguments must be equal to each other.

The other event introduced by ACL2 2.1(r)defthm-std , which serves as an
explicit invocation of the transfer axiom. Usirdgfthm-std , it is possible to prove a
theorem by proving it only fostandardarguments; however, as is the case with the transfer
axiom,defthm-std  can only be used to prove classical formulas. For example, consider

the following theorem:

(defthm-std std-pt-is-identity
(implies (acl2-numberp Xx)

(equal (std-pt x) Xx)))

Sincestd-pt  istreated as a classical function, this theorem can be proveddssitingm-
std . ACL2 v2.1(r) will prove this theorem by considering ordiandardvalues ofx. That

is, it attempts to prove the following formula instead:

(implies (and (standard-numberp x)
(acl2-numberp X))

(equal (std-pt x) x))

Sincex is known to bestandard the term(std-pt x) can be expanded using the body
of std-pt , and the proof becomes trivial. Note, the theorem could not have been proved
usingdefthm instead ofdefthm-std , because the terifstd-pt x) can not be ex-
panded without the hypothegstandard-numberp x) , Ssince the body o$td-pt
can only be expanded fetandardarguments, astd-pt  was introduced usindefun-
std . Moreover, a similar theorem abosteindard-part instead ofstd-pt  could not
have been proved usirtgfthm-std , since the resulting formula is not classical.
The combination oflefun-std  anddefthm-std  is particularly powerful. Us-

ing defun-std , it is possible to introduce functions mapping rationals to irrationals. A

41



useful technique is to construct a rational approximafign(z)} to a particular function
f(z). The limit of the sequencéf, (x)}, namely f(z), can be expressed in ACL2 us-

ing defun-std  asstandard-partfy(z)) for anyi-large natural N, such as-large-

integer . Properties off () can be established usidgfthm-std . Itis only necessary

to prove the given property fatandardvalues ofz, for which cases the definition ¢f(x)

can be opened up &tandard-partfy (z)). This approach is illustrated in chaptemwhere

the square root function is defined in ACL2 and its relevant properties are proved. This

same approach will later be used to define the exponential function.

3.3 The Non-Standard Analysis ACL2 Library

The previous section described the non-standard analysis theory that ACL2 v2.1(r) recog-
nizes on startup. This theory by itself is not strong enough to do useful analysis in ACL2.
The theory is extended by a set of axicnasid lemmas collected in the ACL2 “books” or
librariesnsa.lisp  andnsa-complex.lisp . This section describes those libraries.

Itis in nsa.lisp  that the existence of a non-standard number is assumed; the
axiomi-large-integer-is-large asserts thatlarge-integer is ani-large
number.

Another group of axioms relates how the arithmetic operators combine numbers
that arestandard For example, the following axiom asserts that the sum ofstamdard

numbers istandard

(defaxiom standard-numberp-plus
(implies (and (standard-numberp x)

(standard-numberp y))

3Adding the necessary axioms to the figioms.lisp would build them into the theorem prover, so
they would be available to users on start-up. This will be the likely approach when ACL2(r) is released to the
general public; however, the current approach proved more friendly in the development of the theory, because

axioms could be tried out without requiring ACL2 to be recompiled.
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(standard-numberp (+ x Y))))

Similar theorems treat unary minus, multiplication, and inversion. Itis also assumed that a
complex number istandardif its real and imaginary parts astandard

An important axiom states that the numbeis standardin ACL2. Using this fact
as well as the arithmetic axioms above, it is possible to prove that all rational numbers with
an arbitrary but fixed bound on their numerator and denominator must be standard. The
following two theorems are very useful in ACL2 v2.1(r) to prove that a particular number

is standard

(defthm standard-numberp-integers-to-10000
(implies (and (integerp x) (<= -10000 x) (<= x 10000))

(standard-numberp x)))

(defthm standard-numberp-rationals-num-demom-10000
(implies (and (rationalp Xx)
(<= -10000 (numerator X))
(<= (numerator x) 10000)
(<= (denominator x) 10000))

(standard-numberp x)))

Note, the second theorem subsumes the first, but the rewrite engine of ACL2 favors the first
theorem when only integer values are present.

The properties ostandard-part are also axiomatized. The two fundamental
properties are that thetandard-part of ani-limited number isstandardand that the
standard-part of astandardnumber is the number itself. This results in the following

axioms:

(defaxiom standard-part-of-standard-numberp

(implies (standard-numberp x)
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(equal (standard-part x) x)))

(defaxiom standardp-standard-part
(implies (i-limited x)

(standard-numberp (standard-part x))))

Itis also assumed that tistandard-part of a complex number is formed by taking the
standard-part of its real and imaginary parts.

This leads up to thestandard-part of arithmetic expressions. In formulat-
ing these axioms, it is important that the functistandard-part be applied only to
i-limited numbers. So for example, tisgandard-parof the sum of two numbers is the sum

of their standard-part but only if both numbers arielimited:

(defaxiom standard-part-of-plus
(implies (and (i-limited x)
(i-limited y))
(equal (standard-part (+ x y))
(+ (standard-part x)

(standard-part y)))))

Similar axioms are introduced for multiplication and inverses. However, in the case of
unary minus, the axiom introduced is a little stronger. In particular, it is expected that the

standard-part of a negation is the negation of teandard-part

(defaxiom standard-part-of-uminus
(equal (standard-part (- X))
(- (standard-part x))))

This axiom is justified because functistandard-part can be extended to return the

standard-partof x for i-limited x and simplyx whenz is noti-limited.
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An important axiom states thatandard-part is a monotonic function on the

reals. In particular, ift <y, thenstandard-partz) < standard-party).

(defaxiom standard-part-<=
(implies (and (realp x) (realp y) (<= X Vy))
(<= (standard-part x) (standard-part y))))

Using this axiom, it is possible to prove a “squeeze” theorenstandard-part . In
particular, ify is betweenr andz, and thestandard-pariof « is the same as that ef then

thestandard-pariof y must also be equal to that value.

(defthm standard-part-squeeze
(implies (and (realp x) (realp y) (realp 2)
(<=xy) (<=y 2
(= (standard-part x) (standard-part z)))
(equal (standard-part y) (standard-part x))))

The remaining axioms and theorems define the theory of the predieated]

i-limited , andi-large . The first axiom asserts thasmall numbers are also
i-limited . Similarly, it is assumed thatandard-numberp ~ numbers are alsi
limited . The converse of this axiom is not true in general, but it is assumed-that

limited integers are alsstandard-numberp

With the axioms introduced up to this point, ACL2 v2.1(r) can prove that the sum
oftwoi-small  numbersid-small , asis the product of ahsmall  number and an
i-limited number. It can also be proved thatidimited number is-close  to
its standard-part

To prove that the sum of twelimited numbers is alsé-limited , itis
necessary to add an axiom asserting that the sumstdredard-numberp  and ani-
small number ig-limited . In particular, ifz isi-limited, it can be written adz + ¢,

where*z is standardande, is i-small. Similarly, ani-limited y can be written asy + ¢,.
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Hencex+y is equal td'z + €, +*y+¢,, which is equal tq*z +*y) + (e, +¢, ), the sum of a
standardand ani-smallnumber which is-limited by the above axiom. A similar argument
allows ACL2 v2.1(r) to prove that the negative of alimited number, the inverse of
ani-limited and noti-small  number, and the product of twdimited numbers
are alli-limited

No further axioms are required for non-standard analysis in ACL2 v2.1(r). The

libraries contain an additional number of useful theorems. In particular, it is proved that

the sum of an-limited and ani-large  number must bélarge . Also, itis
shown that the product of adarge  and ani-limited number that is natsmall
must bei-large . Moreover, it is shown that a number thatiislose to ani-

small (i-limited ori-large  )numberisalsdsmall  (i-limited ori-large
respectively). The predicatelose  is proved to define an equivalence relation.

The predicatessmall , i-limited ,andi-large  split the real numbers into
broad orders of magnitude. ACL2 v2.1(r) is able to prove that if a number is smaller
in magnitude than aismall  (i-limited ) number, it must also besmall  (i-

limited ). Similarly, a number larger in magnitude than idarge number must

bei-large . Itis also shown that ansmall  number is smaller in magnitude than an
i-limited number, which in turn is smaler in magnitude thari-taxge  number.
Whether a complex number is &small , i-limited , ori-large number

can be decided by inspecting its real and imaginary parts. It can be shown that a complex
number isi-small  if and only if both its real and imaginary parts aremall . Simi-
larly, it is i-limited precisely when both its real and imaginary partsidimited
Itisi-large  when either of its real and imaginary parts-large

This develops a non-standard analysis theory sufficiently powerful to prove many
useful theorems. The next chapters will illustrate this development, touching on the inter-
mediate value theorem, an order-of-magnitude preserving norm on the complex plane, and

the exponential and trigonometric functions.
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Chapter 4

The Square Root Function Revisited

This chapter combines the results of the previous two chapters to define the square root
function in ACL2 v2.1(r). Recall, chaptei demonstrated that the square root function
could not be soundly introduced into ACL2 v2.1, even though an arbitrarily good approx-
imation to the square root could be defined. In this chapter, the non-standard analysis
techniques introduced in chaptewill be used to derive the square root function from the

approximation defined in chapter

4.1 Defining the Square Root Function in ACL2

In chapter2, the following ACL2 v2.1 theorem was proved:

(defthm there-is-no-sqrt-2
(not (equal (* x x) 2)))

Recall, the proof of this theorem proceeded by eliminating all the possible candidates for
such anx. That the square of no rational number is equal to 2 followed from the classi-
cal observation tha{/2 is irrational. The complex numbers were eliminated using simple

algebraic means — the square of a non-real complex number is either a non-real complex
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number or a negative real. ACL2 objects other than numbers have zero squares. Thus were
all possibilities eliminated.

However, ACL2 v2.1(r) contains more objects in its universe than ACL2 v2.1. In
particular, it adds the numeric typesalp andcomplexp . Therefore, the process of
elimination described above fails in ACL2 v2.1(r). Objects of tgpenplexp can still be
eliminated with the same algebraic argument by which the complex rationals were elimi-
nated earlier. However, the possibility remains that the square of some irrational is equal to
2. The ACL2 v2.1 theorenthere-is-no-sqrt-2 is not a theorem of ACL2 v2.1(r).

In its stead, a weaker statement can be proved:

(defthm irrational-sqrt-2
(implies (equal (* x x) 2)
(and (realp x)
(not (rationalp x)))))

Given the above, it appears possible to axiomatize a function in ACL2 v2.1(r) cor-
responding to the square root function. In fact, such a function can be defined. In ¢hapter
the functioniter-sqrt was introduced, and it was shown that this function is a good ap-
proximation to the square root function. Recall in particular the following theorem, updated

to the real numbers:

(defthm convergence-of-iter-sqrt
(implies (and (realp x)
(realp epsilon)
(< 0 epsilon)
(<= 0 X)
(and (<= (* (iter-sqrt x epsilon)
(iter-sqrt x epsilon))
X)

(< (- x (* (iter-sqrt x epsilon)
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(iter-sqrt x epsilon)))

epsilon))))

The numbe(iter-sqrt x epsilon) can be bounded by a tight range. In particular,
it is non-negative, and it can be no larger than the maximum ahd 1. This shows that
whenx is ani-limited number, so igiter-sqrt x epsilon) . In ACL2, we can

establish the following theorems, which verify the claimed bounds for the expression:

(defthm iter-sqrt-type-prescription
(and (realp (iter-sgrt x epsilon))

(<= 0 (iter-sqrt x epsilon))))

(defthm iter-sqgrt-upper-bound-1
(implies (and (realp Xx)
(<= 1 x)

(<= (iter-sqrt x epsilon) x)))

(defthm iter-sqrt-upper-bound-2
(implies (and (realp x)
(< x 1)
(<= (iter-sgrt x epsilon) 1))

From these lemmas, itis easy to show in ACL2 v2.1(r) ttemtsqrt returns arn-limited

value when its argument idimited, as claimed above:

(defthm limited-iter-sqrt
(implies (and (i-limited x)
(realp x)
(<= 0 X))
(i-limited (iter-sqrt x epsilon))))
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This allows the functioracl2-sgrt  to be introduced as the limit affer-sqrt . This

is accomplished using the ACL2 v2.1(r) evelatfun-std

(defun-std acl2-sgrt (x)
(standard-part (iter-sqrt x (/ (i-large-integer)))))

This is the first example of a construction that will be used repeatedly in future chapters, so

itis useful to pause and reflect on what has happened. Rdehlh-std  permits the defi-

nition of classicalfunctions from non-classical bodies. The bodwoR2-sqrt  is clearly

non-classical, as it refers to the primitive non-standard analysis functiamsiard-

part andi-large-integer . However, the definition is only accepted when the body

returns astandardvalue forstandardarguments. The body efcl2-sqrt does just that,

because thier-sqrt term will return ani-limited result — since thestandardvalue of

x is alsoi-limited — and thestandard-parif ani-limited number is known to bstandard

Hence, the definition is accepted by ACL2 v2.1(r). The body defines the valae2f

sqrt only for standardarguments. In these cases, the number returnedtésrsqrt

is i-closeto the square root of — this is true, since its square is withih (i-large-

integer)) of the square ox hence they arecloseto each other, and the squares of two

non-negativa-limited numbers areé-closeto each other only when the two numbers are

i-closeto each other. Therefore, tistandard-pariof theiter-sqgrt term must be equal

to \/z, since\/x is standardwhenx is standardand no two differenstandardnumbers are

i-closeto each other. Henacl2-sgrt is equal to the mathematical square root function.
Thus far, it has only been mechanically verified that the function exists. Its proper-

ties follow from a formalization of the argument above. The first step is a restatement of the

convergence result fater-sqrt . The restatement uses the language of non-standard

analysis:

(defthm convergence-of-iter-sqrt-strong
(implies (and (realp x)

(realp epsilon)
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(< 0 epsilon)
(i-small epsilon)
(<= 0 x)
(i-close (* (iter-sgrt x epsilon)
(iter-sgrt x epsilon))

X))

The remainder of the argument can be formalized easily in ACI2 v2.1(r). The result is the

fundamental theorem of the square root function:

(defthm-std sqrt-sqrt
(implies (and (realp Xx)
(<= 0 x))
(equal (* (acl2-sgrt x) (acl2-sqrt x)) x)))

The use ofdefthm-std  instead ofdefthm to introduce the theorersgrt-sqrt is
important. It allows ACL2 v2.1(r) to restrict considerationdtandardvalues ofx. Only
for those values ok can the definition ofcl2-sqrt be opened. When it is, the result

follows from the lemmaonvergence-of-iter-sqrt-strong

4.2 Properties of the Square Root Function

ACL2 v2.1(r) can prove more properties of the square root function. Particularly useful
are theorems describing how to decide whether a number is less than or greater than the
square root of another. A familiar trick from algebra is to conclude {hat< y by veri-

fying thatz < y?> — and a familiar error in algebra is to forget to verify thaandy are
non-negative before squaring both sides. This trick can be used in ACL2 by proving the

following theorem:

(defthm sqrt-<-y
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(implies (and (realp Xx)

(<= 0 x)
(realp )
(<=0y)

(equal (< (acl2-sqrt x) vy)
< xyy)

Similar theorems can be proved to reason algout /x, as well as the cases involving
instead of<.
In many cases, these theorems can be used to evaluate the valize d¥hat is

necessary is to find a candidate vajuso thaty? = x. It then follows thaty = /z:

(defthm y*y=x->y=sqrt-x

(implies (and (realp Xx)

(<= 0 x)
(realp y)
(<=0y)

(equal (* y y) x))
(equal (acl2-sgrt x) vy)))

This theorem will serve as the only way to reduce constant expressions invaklizyg
sqgrt . It is immediate, for example, théhcl2-sqrt 0) is equal to 0 andacl2-
sgrt 1) isequalto1l. The case of equalities involving non-constat-sqrt ~ terms
can also be solved by squaring both sides of the equality.
The theoreny*y=x->y=sqrt-x is extremely useful. Fromty=x->y=sqrt-
X, it is easy to verify that the square root of a product is the product of the square roots.
Similarly, the inverse of a square root is the square root of the inverse. Moreover, it can also
be shown that/z2 = |z|. A surprising theorem that follows froyry=x->y=sqrt-x
is that fori-limited numbers, thetandard-partof the square root is the same as the square

root of thestandard-part
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In order to introduce the functicecl2-sqrt it was required to show théer-
sqrt  returnedi-limited values fori-limited arguments. ACL2 v2.1(r) can also prove that
acl2-sqrt returnsi-limited results fori-limited arguments. The proof follows from the

following two lemmas:

(defthm-std acl2-sqgrt-x-<-1
(implies (and (realp x)
(<= 0 %)
(< x 1)
(<= (acl2-sgrt x) 1)))

(defthm-std acl2-sgrt-x-<-x
(implies (and (realp Xx)
(<= 0 %)
(<= 1 X))
(<= (acl2-sgrt x) x)))
Notice the use oflefthm-std . It permits the body of the functioacl2-sqrt to be
opened up, since it restricisto standardvalues. After opening up the body atl2-
sgrt , the theorems follows from the analogous resultsitier-sqrt and the mono-
tonicity of standard-part From these two lemmas, it becomes clear #@2-sqrt is
i-limited:
(defthm limited-sqrt
(implies (and (realp x)
(<= 0 %)
(i-limited  x))
(i-limited (acl2-sqgrt x))))
This illustrates an approach that will be repeated in the next chapters. First an

approximation function —ter-sqrt — is defined. It is shown that this function returns

53



i-limited values fori-limited arguments. Then, the desired function ael2-sqrt —

is defined usinglefun-std by taking thestandard-partof the approximation function.
The definition is accepted, since the approximation function retulingted values for
standardarguments, so itstandard-partis standard When a family of approximation
functions exists, the specific approximation chosen is one that give values thatiese

to the desired values fastandardarguments. In the case dér-sqrt , the quality
of the approximation was specified with tie@silon  argument, so the way to ensure
the approximated result wasloseto the true value was to choose asmall value of
epsilon . Later, examples using sequences will be shown, and in these casedabe
value is selected by choosing an element of the sequencei-githe index. Once the
function is defined, its properties are proved ugiefun-std . The properties need only
be proved fostandardvalues, and the result will follow for all values because of the transfer

axiom.
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Chapter 5

The Exponential Function

This chapter shows how the exponential function can be introduced into ACL2. The pro-
cedure follows the paradigm presented in chagtfar the square root function. First, an
approximation to the exponential function is defined. This is based on the Taylor series to
e®. Then, it is shown that the approximation converges, hence using the principles of non-
standard analysis it is possible to define the functibras thestandard-partof the partial

sum of the Taylor series up to an arbitraf\arge integer N. Important properties of the
exponential function are also established. In secfidghit is shown that*¥ = e - e¥.

The proof proceeds by examining the partial sums of the Taylor series approximation of
e* 1Y as well as the product of the partial sums of the approximations*fande?. Using

this result, it is proved in sectioh 3 that the functiore” is continuous.

5.1 Defining the Exponential Function in ACL2

The functione” can be defined in ACL2 by considering approximationstoThe Taylor
series approximation te” is given by
2 x3

T
.T_ —_— —_— DY
8—1+l’+2!+3!+ .
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Let 7, (x) be the partial sum of this Taylor series through ﬁ%eterm. That s, lefl},(z) be
defined as follows:

ex%Tn(x):1+ﬂz+:;—T+§—?+-"+i—T.
Since the Taylor series far* is convergentl,,(z) is i-limited for i-limited values ofz,
regardless of the value af In particular, ifx is i-limited, T (x) is i-limited for ani-large
naturalN. Thereforestandard-partT (z)) is astandardnumber wher is standard and
it is possible to define® = standard-partTy (x)).

The key step in this construction is the assertion #ate) is i-limited whenz is
i-limited. This can be proved by comparifig (x) to a geometric series. However, this is
complicated by the fact that the termsT7ip(z) are complex, not necessarily real numbers.
Since the numbers® /n! are potentially complex, itis not possible to compare them directly
with a termay - " from a geometric series. What is required is a nge| on the complex
numbers. It is then possible to show thiat* /n!|| < ||ag - 7"||. Section5.1.1develops the
theory of a suitable norm over the complex numbers. Seétidr?develops the theory of
geometric series, as well as some important lemmas, such as the comparison test. These

results are used in secti@nl.3to define the exponential function.

5.1.1 A Complex Norm

A norm||z|| is a real-valued function with the following properties:
e ||z|| is real and|z|| > 0 for all values ofz.
e ||0|| is equal ta0. Moreover, if||z|| = 0, thenz is necessarily equal (@
e ||z|| obeys the triangle inequality. That i + y|| < ||z|| + ||y]|.

In addition, ||z|| is calledmagnitude-preserving ||x|| is i-small (i-limited, or i-large) if

and only ifx is i-small (respectivelyj-limited, ori-large).
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Although any norm that satisfies the required properties will serve, this section will
focus on the norm defined By + bi|| = Va? 4 b2. In ACL2, this norm can be defined as

follows:

(defun norm (x)
(acl2-sqgrt (+ (* (realpart x) (realpart X))
(* (imagpart x) (imagpart x)))))

This definition uses the functicaci2-sqrt  , defined in chaptet.

It is immediate that|z|| is a non-negative real since the functianl2-sqrt
always returns a non-negative real result. It is also clear thgt= 0 if and only if z = 0.

It is a less obvious but a well-known fact thiat|| obeys the triangle inequality. To see
this, define the conjugate of a complex numbek bi as(a + bi)’ = a — bi. Observe that
conjugates obey simple algebraic properties, including y)' = =’ + ¢/, (zy)’ = 2'v/,

r + 2’ = Re(x) whereRe(x) is the real part of X, and” = z. Since||z||?> = = -2/, it
follows that||z + y||? = (z +y)(x +y) = (z +y) (2" + V) = a2’ + 2y + 2"y +yy' =

zx' +ay' + (xy') +yy = 22’ +yy' + 2Re(xy’). Clearly,Re(zy') < [|zy/|| = [[z[| -[|y]|-
Therefore|lz-+y||? < za'+yy'+2[||-[lyl] = ||| > +|lyl[>+2l|[lyl] = (ll=[|+[lyI)>.

Since both sides of the inequality involved non-negative reals, it is possible to take square
roots of both sides, proving thit: + y|| < ||z|| + ||y|| as required.

To recognize that|z|| is a magnitude-preserving norm, first notice that is a
magnitude-preserving function. That igy is i-smallif and only if z is i-small, and simi-
larly for i-limited andi-large. Likewise,z? is a magnitude-preserving function. Since bi
is i-smallif and only if botha andb arei-small, it follows thata + bi is i-smallif and only
if a® + b% isi-small Hence,a + bi is i-small if and only if ||a + bil| is i-small. Similar
arguments work for-limited andi-large values ofa + bi.

Whenz is i-limited, thestandard-parof ||x|| is given by||standard-partx)||. This

follows from the fact that /standard-party) = standard-part, /7).
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Several other lemmas about the ndtmrj| will be needed in the following sections.
Norms are idempotent; that ig,||=|| || = ||z||. Moreover, wherz andy are non-negative
reals, the norm is monotonic;if < y, ||z|| < ||y||. A very important lemma is that norms
distribute over products. That iSzy|| = ||z|| - ||y||. Moreover, wher: andb are positive
reals,||ax + bz|| = ||al| - ||z|| + [|b]] - [|z|]. All of these results can be easily proved in

ACL2 using nothing more than simple algebra.

5.1.2 Geometric Series

Mathematically, a real (complex) sequence is a function from the positive integers into the
real (complex) numbers. A sequence is commonly written as the enumeration of its values,
e.g.,a1,as,as, . ... Using this notation, the sequence is specified@s. The sequence is

said to converge to a valué if the terma,, is i-closeto A for all i-large integersn.

Informally, a series is the sum of all the terms in a sequence. Formally, a series is
defined by the partial sums of a sequence. Given the seqyen¢ethe partial sums are
defined as the sequenaeg, a; + a2,a1 + a2 + as,.... If this sequence of partial sums
converges to some valug the serieqa, } is said to converge t§.

Itis natural to represent a sequence in ACL2 as a function mapping a positive integer

argument into theith

element of the sequenag, Itis more convenient, however, to write

the function to return the firgtelements of the sequence, not justThis allows properties

of sequences — more precisely, properties of finite prefixes of sequences — to be written as
first-order predicates. Instead of saying that the funcsien is a geometric sequence, for
example, it is possible to say that the sequence returneddpys geometric. Note the shift

from second-order to first-order logic: the expressigaometricp seq) , Which is
inadmissible in ACL2, is replaced Hgeometricp (seq n)) . Using this approach,
properties about sequences can be stated as properties about lists, an area where ACL2 is
particularly capable.

A sequence is geometric if the ratio of successive terms is constant. It can be written
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asai,ar - a1 -2, a1 - 3, . .., wherea; is the initial element of the sequence anis the

constant ratio. The following ACL2 function tests whether a sequence is geometric:

(defun geometric-sequence-p (seq ratio)
(if (consp seq)
(if (consp (cdr seq))
(and (acl2-numberp (car seq))
(equal (* (car seq) ratio)
(car (cdr seq)))
(geometric-sequence-p (cdr seq) ratio))

(acl2-numberp (car seq)))

nil))

The function expects two arguments, the sequence and the expected ratio. It is possible
to generate a geometric sequence from its first element and constant ratio. The following

function generates the firsterms elements of such a sequence:

(defun geometric-sequence-generator (nterms al ratio)
(if (zp nterms)
nil
(cons al
(geometric-sequence-generator (1- nterms)
(* al ratio)

ratio))))

For example, the sequence generatedgepmetric-sequence-generator 3 7
1/2) is(7 7/2 7/4) . Itis asimple matter to prove that any sequence generated by this

function is, in fact, geometric.

(defthm geometric-sequence-generator-is-geometric

(implies (and (not (zp nterms))
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(acl2-numberp x))
(geometric-sequence-p

(geometric-sequence-generator nterms x a)

a)))

Itis a well-known result that the sum of the firselements of a geometric sequence
is given by%, whereq; is the first element of the sequence arisithe constant ratio.
The result follows because the suhis given byS = a; +ay-r+ay -7 +---+ay-r" L
It follows thatrS = a; -7 +ay - 72 + - - - + a1 - ™. Subtracting-S from S and simplifying,
S(1—r)=a —a;-r", thereforeS = % This argument can be easily formalized

in ACL2, yielding the following theorem:

(defthm sumlist-geometric
(implies (and (geometric-sequence-p seq ratio)
(acl2-numberp ratio)
(not (equal ratio 1)))
(equal (sumlist seq)
(if (consp seq)
(/ (- (car seq)
(* ratio (last-elem seq)))
(- 1 ratio))
0))))

As their names suggest, the functsumlist adds up all the elements of a sequence, and
last-elem  returns the last element of a sequence. Since the last element of a geometric
sequence can be derived from the first element, the constant ratio, and the length of the
sequence, it is possible to find a simpler formula for the geometric sum. In particular, the
last element of an geometric sequence withlements is given by, - »"~!, as proved by

the following theorem:
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(defthm last-geometric
(implies (and (geometric-sequence-p seq ratio)
(consp seq))
(equal (last-elem seq)
(* (car seq)

(expt ratio (- (len seq) 1))))))

Combining these two theorems produces the classic result for the sum of a geometric se-

quence:

(defthm sumlist-geometric-useful
(implies (and (geometric-sequence-p seq ratio)
(acl2-numberp (car seq))
(acl2-numberp ratio)
(not (equal ratio 1)))
(equal (sumlist seq)
(* (car seq)
(/ (- 1 (expt ratio (len seq)))
(- 1 ratio))))))

While geometric series are important in their own right, their significance to the

exponential function is indirect. Consider the Taylor approximatio#fto

2
x
£g P— —_— DY
ef=1+z+ or +

In particular, consider the successive te%sand%. These differ by a factor of 7.
It is clear that the terms in the Taylor sequence aﬁeare no larger than the terms in the
geometric series with starting numbﬁﬁr and constant ratig*. It should be possible to
argue, therefore, that the Taylor series converges to some value less than the sum of the

geometric series.
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To formalize this argument, it is necessary to formalize the notion of “no larger”
used above. This can be done by using the complex norm introduced in sBctiGn
What is also needed is a version of the comparison testu,if| < ||b,|| for all indices
n, then)_, ||a,|| converges ify _ |b,|| converges. Wheh ||a,|| converges, the series
is called absolutely convergent. Absolute convergence is a stronger property than simple
convergence: a sequence is convergent whenever it is absolutely convergent.

The needed theory of absolute convergence can be readily developed in ACL2.
First, the notion of the sum of the norms of a sequence is required,; i.e., theyvallie, ||

for a given sequencgu,, }:

(defun sumlist-norm (x)
(if (consp Xx)
(+ (norm (car x))

(sumlist-norm (cdr x)))

0))

From the definition, it is apparent thatimlist-norm is a non-negative real. That the
sumlist-norm of a list is at least equal to the norm of the sum of the list is a simple

generalization of the triangle inequality for norms:

(defthm norm-sumlist-<=-sumlist-norm
(<= (norm (sumlist 1))

(sumlist-norm 1)))

As was the case with the sum of a geometric series, it is possible to find a closed
form solution for thesumlist-norm  of a geometric sequence, provided the constant ratio
is a real between 0 and 1. This restriction is necessary to ensure the terh is always

positive. The result is similar to the sum of a geometric series:

(defthm sumlist-norm-real-geometric

(implies (and (geometric-sequence-p seq ratio)
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(acl2-numberp (car seq))
(realp ratio)
(<= 0 ratio)
(< ratio 1))
(equal (sumlist-norm seq)
(* (norm (car seq))
(norm (/ (- 1 (expt ratio
(len seq)))
(- 1 ratio)))))))

This theorem has some important consequences. When the first element of a geometric
sequence iglimited, it follows that thesumlist-norm is alsoi-limited, provided the
constant ratio is natcloseto 1. This also holds when the first element of the sequence is
i-small, in which case thsumlist-norm is alsoi-small.

The only remaining detail is the comparison test. The following function can be

used to recognize when a sequence is bounded below another sequence:

(defun seg-norm-<= (x y)
(if (consp x)
(and (consp )
(<= (norm (car x)) (norm (car y)))
(seg-norm-<= (cdr x) (cdr y)))
B)

From the definition, it is simple to deduce that if a sequence is bounded by another, its

sumlist-norm is bounded by the other’s:

(defthm seg-norm-<=-sumlist-norm
(implies (seg-norm-<= x y)

(<= (sumlist-norm x)
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(sumlist-norm vy))))

An important consequence is that if teemlist-norm  of a sequence islimited, the
sumlist-norm of any sequence that is bounded by it must als@-lbmited. A similar
result holds when a sequence hasamallsumlist-norm . These two results combined

form the non-standard analysis equivalent of the comparison test for convergence.

5.1.3 The Definition of the Exponential Function

The stage is almost set for the introduction of the exponential function into ACL2. Itis a
simple matter to define the Taylor series approximaticsttim ACL2. Moreover, as argued
xi+1

in the previous section, the seriéjpwr o T (er—;, + --- is bounded by a geometric

|||

series with first elemenﬁ!—i and constant ratigH—l). However, this geometric series is not
guaranteed to converge absolutely unl¢ss is less thari+ 1. So the first|x|| + 1 terms of

the Taylor series approximation must be accounted for differently. The following argument
suffices. When is limited, so is||z|| + 1. Since each of th&; terms is limited when:

andn are limited, it follows that the firgtz|| + 1 terms of the Taylor approximation is the
sum of ani-limited number ofi-limited numbers, so it must bdimited.

The Taylor approximation can be defined as follows:

(defun taylor-exp-term (x counter)
(* (expt x counter)

(/ (factorial counter))))

(defun taylor-exp-list (nterms counter Xx)
(if (or (zp nterms)
(not (integerp counter))
(< counter 0))
nil

(cons (taylor-exp-term x counter)
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(taylor-exp-list (1- nterms)

(1+ counter)

X))
For example(taylor-exp-term 2 3) is equal to8/6 = 4/3 and(taylor-exp-
list 4 0 2) is'(1 2 2 4/3) . Since the termx™ is i-limited whenz andn are
i-limited and »n is non-negative, it follows thataylor-exp-term is i-limited under

these circumstances. In particular, the following theorem holds:

(defthm limited-taylor-exp-term
(implies (and (<= O counter)
(i-limited counter)
(i-limited x))

(i-limited (taylor-exp-term x counter))))

Since each term in the sum idimited, the sum of an-limited number of terms is also

i-limited. This shows that anlimited prefix of the Taylor expansion adds up toidimited

number:

(defthm taylor-exp-list-limited-up-to-limited-counter
(implies (and (i-limited nterms)
(integerp counter)
(i-limited counter)
(i-limited x))
(i-limited (sumlist
(taylor-exp-list nterms

counter

X))

All that remains is to show that the remaining terms in the Taylor approximation

really are bounded by a geometric sequence. The proof is simplified if a different definition
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of taylor-exp-list is used. In particular, consider the following function:

(defun taylor-exp-list-2 (nterms prev i X)
(if (or (zp nterms)
(not (integerp 1))
(<i0)
nil
(cons prev
(taylor-exp-list-2 (1- nterms)
(* prev (/ x (+ 1 1)
(+ 1)
X))

This definition makes it immediately apparent that the ratio of successive terms in the Tay-

lor approximation tae” is Simple induction verifies that this function is identical to

e
taylor-exp-list . Itis easy to show that this function is bounded above by a geometric

sequence:

(defthm taylor-exp-list-2-seq-<=geom-sequence-generator
(implies (and (<= (norm prev) (norm al))
(integerp i)
(<= 01)
(realp ratio)
(<= (norm (/ x (+ 1 1)) (norm ratio)))
(seg-norm-<= (taylor-exp-list-2 nterms
prev
[
X)
(geometric-sequence-generator

nterms
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al
ratio))))

The only restriction on the geometric sequence is that the norm of its first element be no
less than the norm of the first element of the Taylor series, and that the norm of its constant
ratio be no less than the norm gf;..

These theorems are sufficient to prove the Taylor sun¥ i i-limited for i-limited
values ofz. The important lemma tying all these results together is the division of the
terms in the Taylor sum into those with exponent less thah and the remainder; the
sum of both sublists is known to bdimited, so their combined sum is al$dimited. In
anticipation of the eventual definition ef in ACL2, it is convenient to phrase this split

using the designated constafdrge-integer

(defthm taylor-exp-list-split-for-limited
(implies (and (i-limited x)
(integerp counter)
(<= 0 counter))
(equal (taylor-exp-list (i-large-integer)
counter
X)
(append (taylor-exp-list
(next-integer
(next-integer (norm x)))
counter
X)
(taylor-exp-list
(- (i-large-integer)
(next-integer

(next-integer (norm x))))
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(+ counter
(next-integer
(next-integer (norm x))))

X))

Trivially, it is now possible to show that the Taylor approximatioredfs i-limited:

(defthm taylor-exp-list-limited
(implies (i-limited x)
(i-limited
(sumlist

(taylor-exp-list (i-large-integer) 0 x)))))
In fact, it is possible to derive a stronger result: the Taylor series converges absolutely.

(defthm taylor-exp-list-norm-limited
(implies (i-limited x)
(i-limited
(sumlist-norm

(taylor-exp-list (i-large-integer) 0 x)))))
The way is now paved for the definition ef in ACL2.

(defun-std acl2-exp (x)
(standard-part

(sumlist (taylor-exp-list (i-large-integer) 0 x))))

This definition uses ACL2's newlefun-std  primitive, which allows astandardfunc-
tion to be defined implicitly by specifying its values only fetandardarguments. In or-
der for the definition to be accepted, it must be shown thasfandardarguments, the

function yieldsstandardresults. This follows, since the function body is of the form
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standard-partS), where S is the Taylor approximation te”, known to bei-limited for
i-limited values ofz.

This definition is sufficient, but it leaves open the question of whether the function
defined depends on the valueidarge-integer . To see that this is not the case, it
is necessary to consider what would happen when some other poséige integer)M is
used instead dflarge-integer . Specifically, the difference between the two Taylor
approximations must biesmall.

This is simple to visualize. Suppo$€é and M are positivei-large integers such
that N < M, and suppose is ani-limited number. The tern?m is necessarily-small,
because it is less than the terrf - (k—H)ka for somei-limited k£ with £ > z (e.g.,

k = [z]). But this is the product of thelimited number,z*, and ani-small number,
<ki+1)N ‘ , hence itis-small. Therefore, the seri +1),+(NN++;).+ + = N, is bounded

by a geometric series with asmall starting element and constant ratio with norm less than
1, implying the sum of this seriesiismall.

This argument can be formalized in ACL2 in a manner similar to the proof of

taylor-exp-list-limited . The result yields the following convergence theorem:

(defthm exp-convergent
(implies (and (i-limited x)
(integerp M) (<= 0 M) (i-large M)
(integerp N) (<= 0 N) (i-large N))
(i-close (sumlist (taylor-exp-list M 0 X))

(sumlist (taylor-exp-list N 0 x)))))

An analogous result holds feumlist-norm  instead osumlist . This second form of
the theorem will prove important in the subsequent development of the theory.
It is now apparent that the use iefarge-integer in the definition ofe” was

inconsequential. In other word@&cl2-exp X) is preciselye®.
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5.2 The Exponent of a Sume™¥ = e - ¥

An important property of the exponential function is thét¥ = e* - ¢Y. This section
presents a proof of this theorem in ACL2. The proof proceeds by considering finite Taylor
approximations te**¥ ande” - ¢¥. Considery ;" % The term(x + y)* can be

expanded using the binomial theorem. The resulting terms can be simplified as follows:

i x+y _ E”:Zé 0(3) 'yl

2!

=0 =0
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(?)acz J .
= Z Z : il -y’
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This last term is very close 9’ (Z?:o f—,) - %, which is the product OEZ o5 " and
> i=0 y—, The difference between these two term$is_, ( n 1 %) : T' Notice

that all terms in this difference are of a high order; each term contains a large exponent on
eitherz or y.

It is best to visualize the situation in a 2-dimensional grid. The columns of the grid
correspond to th@i terms, and the rows to tﬁé terms, so the terrn 4 in position(z’ j) of
the grid corresponds to the prodlfet v The productof " ) & andZ] 0 Y. is the sum
of all the termg; ; in the grid. The surrEi:0 %,y) corresponds to the sum of the terms
“below” the triangular; i.e., those terms witht- j < n. Now, consider the sum of thg;
terms in the bottom “quadrant” of this grid; that is, those terms with ba@thd j less than

n/2. Itis clear thaty_;" @ lies between the sum of the terms in the bottom quadrant
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and those in the entire grid. But the sum of the terms in the bottom quadrant correspond to
the product ofz’;:/g % andzyﬁ] ’;—f If n isi-large so isn/2, so the sum of the bottom
guadrant and the entire grid areloseto each other, since the Taylor series is known to
converge. Sincg?z0 @ lies between these, it is also close to both of them. Hence,
taking thestandard-partof both expressions yield§ ™y = e . e¥.

The following sections build the ACL2 theory necessary to formalize this argument.
First, a proof of the binomial theorem is presented. Then some lemmas dealing with sum-
mations and nested summations are derived. With these pieces in place, the main theorem

can be summarily proved.

5.2.1 The Binomial Theorem

n

The binomial theorem states that + y)" = >_""  (7)z'y™ " for non-negative integer
values ofn. This section develops an ACL2 proof of this well-known result.

The binomial function},) = Wlk)' can be defined in ACL2 as follows:

(defun choose (k n)
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(/ (factorial n)
(* (factorial k) (factorial (- n k))))
0))

Intuitively, this function counts the number of differehtelement subsets that can be
formed from ann-element set — there ar&% ways of choosing thé elements, and
dividing this by k! eliminates the duplicate counting of permutations. However, without
this intuition, it is not immediately obvious th#f) is always an integer.

However, it is possible to provide an alternative and well-known definitio('@)f
that makes its properties more apparent. Consider the process of chodsielgraent
subsetS’ from a set ofn-elementsS. A reasonable approach is to pick an arbitrary element

xo € S and consider two possibilities. 4f, is chosen as a member 8f, then the remaining
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elements ofS’ can be chosen iff~}) different ways — i.e.k — 1 elements remain to be
chosen fromS — {z(}. Conversely, ifxy is not chosen as a member 6f, then all &
elements o5’ must be chosen from the— 1 elements inS — {z(}. Therefore, it appears
that (§) = (1) + (")
This key observation can be proved in ACL2 as follows:
(defthm choose-reduction
(implies (and (integerp k)

(integerp n)

(< 0 k)

(< k n)

(equal (choose k n)
(+ (choose (1- k) (1- n))
(choose k (1- n))))))

It now becomes a simple matter to observe tthaiose is an integer function:

(defthm choose-is-non-negative-integer
(and (integerp (choose k n))
(<= 0 (choose k n))))

The theorenthoose-reduction also holds the key for the binomial theorem.
Consider the inductive case in the proof of the theorem. From the induction hypothesis,
it follows that (z + y)"~! = Y77 ("7 )a’y" =", The binomial theorem can now be

proved by the following argument:

(+y)" = (@+y) (@+y)""

= z-(@+y)" ' +y (a+y"!

n—1 n 1 n—1 n 1
- . - i, n—1—1 . E - i, n—1—1

i=0 =0

72



Other tharchoose-reduction , the only facts needed a(§) = 0 forallnand() = 1

forn # 0.

It remains only to define the binomial expansion@f+ y)™ in ACL2. This can be

done with the following function:

(defun binomial-expansion (x y k n)
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(cons (* (choose k n) (expt x k) (expt y (- n k)))

(binomial-expansion x y (1+ k) n))

nil))
The functionbinomial-expansion actually computes the value 3, (7)z'y" .
For example, the value gbinomial-expansion 1 1 0 3) is’1 331 and
that of (binomial-expansion 1 2 0 3) is'(8 12 6 1) . In ACL2, the bino-

mial theorem can be expressed as follows:

(defthm binomial-theorem
(implies (and (integerp n) (<= 0 n))
(equal (expt (+ x y) n)
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(sumlist

(binomial-expansion x y 0 n)))))

An interesting corollary follows from this theorem. It is not immediately obvious that
Sy (Maty™ =31, (1) 2" "y". However, this is a trivial observation using the bino-

i 7

mial theorem, since it reducesto + y)" = (y + x)".

5.2.2 Nested Summations

As seen earlier, the proof ef ¥ = ¢* - ¢¥ depends heavily on properties of nested sums.
Particularly pertinent are lemmas that allow summations to be permute(Eil..ij a;j =
>_j >_i ai,j- Moreover, some of the summations to follow will be triangular, for example in
the sumd i > 25— aij = D50 D2izj Gij-

A generic sum can be captured in ACL2 using émeapsulate  operator. Take,

for example, the following definition that captures the vatugabove:

(encapsulate
((binop (i j) 1)

(local
(defun binop (i j)
(+ 1))

(defthm binop-type-prescription
(acl2-numberp (binop i j)))
)

The only constraint obinop is that it return a numeric value.
The sum of the terms ; can be computed in one of two ways, either by adding up
the rowst; . one at a time or by adding up the sum of each coldmn Capturing the sum

by adding up the totals in each row can be performed with the following pair of functions:
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(defun row-expansion-inner (i j n)
(if (and (integerp j) (integerp n) (<= 0 j) (<= ] n))
(cons (binop i j)
(row-expansion-inner i (1+ j) n))

nil))

(defun row-expansion-outer (i m n)
(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))
(cons (sumlist (row-expansion-inner i 0 n))

(row-expansion-outer (1+ i) m n))

nil))
Notice thatrow-expansion-inner collects all the valueginop i j) for
a fixedi . Hence, thesumlist  of therow-expansion-inner is the sum of the terms
in that row. Similarly,row-expansion-outer collects the sums of all the rows, hence

its sumlist ~ will be the sum of all the terms.

The two functionscol-expansion-inner and col-expansion-outer
are analogous to the functions defined above, but collecting the eletpeatsolumn at a
time, instead of a row at a time. It is straight-forward to prove twtexpansion-

outer computes the same sum rmv-expansion-outer

(defthm ok-to-swap-inner-outer-sums
(equal (sumlist (row-expansion-outer 0 m n))

(sumlist (col-expansion-outer 0 m n))))

The treatment of triangular summations is similar. The following function defines

a “lower-triangular” summation, expanding the elements a row at a time:

(defun row-expansion-outer-It (i m n)

(if (and (integerp i) (integerp m) (<= 0 i) (<= i m))
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(cons (sumlist (row-expansion-inner
i 0 (if (<in)in)
(row-expansion-outer-lt (1+ i) m n))

nil))

Notice howrow-expansion-outer-It uses the same function to add up the elements
in a given row; the only difference is in the number of columns assumed in the row, which
now changes from row to row. A similar function adds the values a column at a time.

To prove that these functions compute the same value, it is possible ¢iise
swap-inner-outer-sums , the previous result about arbitrary sums. The trick is to
find a suitable function to take the placelhop above. The following function does as

required:

(defun It-binop (i j)
(if (<i])
0
(binop i )))

This is a classic example of the power of ACL2iscapsulate  primitive in tandem with
functional instantiation hints.
The results above deal with arbitrary ranges for the rows and columns being added.
An important special case occurs when these ranges are equal dsj}_7_ a; ;. Itis
easy to derive special results for this case as instances of the more generic theorems.
Besides the main results above, there are a number of other useful lemmas about
summations. For example, scalars can be factored out of summations without altering the
value of the sum;i.e} . c-a; = c- ), a;. These lemmas are easy to prove in ACL2. Itis

convenient to prove them once in a generic setting — i.e., uEitgpsulate
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5.2.3 Provinge®™¥ = ¢e* - e¥

In this section, the informal argument given in the beginning of seétidrs formalized in

ACL2. The proof will follow the overall plan given there almost exactly.

The proof begins with the following definition of the sum;._, (‘“]j’)k'

(defun binomial-over-factorial-unswapped (x y k n)
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(cons (/ (sumlist (binomial-expansion x y 0 k))
(factorial k))
(binomial-over-factorial-unswapped
xy (1+ k) n))
nil))

For example (binomial-over-factorial-unswapped 1 0 0 3) is equal to
11 1/2 1/6) and (binomial-over-factorial-unswapped 1 1 0 3)
is equal to'(1 2 2 4/3) . Since the Taylor expansion ef is given as) " , % it

follows that the sum above is equal to the Taylor expansiat of:

(defthm exp-x+y-binomial-unswapped-expansion
(implies (and (integerp nterms)
(<= 0 nterms)
(integerp counter)
(<= 0 counter))

(equal (taylor-exp-list nterms

counter
(+ xy)
(binomial-over-factorial-unswapped
X
y
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counter

(1- (+ nterms counter))))))

In the sequel, it is convenient to expangd+ x)* instead of(z + y). This leads to the

following alternative definition oy, )

(defun binomial-over-factorial (x y k n)
(if (and (integerp k) (integerp n) (<= 0 k) (<= k n))
(cons (/ (sumlist (binomial-expansion y x 0 K))
(factorial k))

(binomial-over-factorial x y (1+ k) n))

nil))
From binomial-sum-commutes , it follows that binomial-over-factorial-
unswapped is the same abinomial-over-factorial . Therefore, the term con-
taining binomial-over-factorial-unswapped can be replaced with an equiv-
alent binomial-over-factorial term in exp-x+y-binomial-unswapped-
expansion
The functionbinomial-over-factorial follows the pattern of a nested sum;

it sums the values of various inner sums. Therefore, the theorems developed insecfion
apply, as long as the functidmnomial-over-factorial is defined to match the

constrained functions defined there. This can be done with the following pair of functions:

(defun binomial-over-factorial-inner-sum (x y j i)
(if (and (integerp i) (integerp j) (<= 0 ) (<= j 1))
(cons (/ (* (choose j i)
(expt x (- i ])) (expt y J))
(factorial 1))

(binomial-over-factorial-inner-sum

Xy (1+ ) D)

78



nil))

(defun binomial-over-factorial-outer-sum (x y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (sumlist
(binomial-over-factorial-inner-sum
Xy 01i)
(binomial-over-factorial-outer-sum
xy (I+ i) m)
nil))

The first function collects all the terms in the binomial expansioﬁéﬁ while the second
collects the sum of these expansions. Notice, the two functions follow the pattern of a trian-
gular nested sum, as discussed in sechi@n? It is easily noted thabinomial-over-
factorial-outer-sum is the same function dsnomial-over-factorial

The next step simplifies the terms limomial-over-factorial-inner-

(;)

sumusing the identity~ = m This yields the following function:

(defun inner-sum-1 (x y j i n)
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (/ (* (expt x (- i ) (expty }))
(* (factorial j) (factorial (- i }))))
(inner-sum-1 x y (1+ j) i n))

nil))

Note,inner-sum-1 is the same function dsnomial-over-factorial-inner-

sum. An outer sum equivalent tbinomial-over-factorial-outer-sum using
inner-sum-1  instead obinomial-over-factorial-inner-sum will compute
the same value asinomial-over-factorial-outer-sum . Such a function can

be defined as follows:
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(defun outer-sum-1 (x y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (sumlist (inner-sum-1 x y 0 i i)
(outer-sum-1 x y (1+ i) n))

nil))

The next step in the proof is crucial. The inner sumer-sum-1  collects the
terms of the binomial expansion éﬁ,—y) The following function collects all the terms
in these expansions containigg for a given;. Following the intuition developed in sec-
tion 5.2.2 this amounts to adding the values a column at a time instead of a row at a time.

The function can be defined as follows:

(defun inner-sum-2 (x y i j n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (/ (* (expt x (- i ) (expty }))
(* (factorial j) (factorial (- i j))))
(inner-sum-2 x y (1+ i) j n))

nil))
The functionouter-sum-2  collects the inner sums generatedibger-sum-2

(defun outer-sum-2 (x y j n)
(if (and (integerp j) (integerp n) (<= 0 j) (<= n))
(cons (sumlist (inner-sum-2 x y j j n))
(outer-sum-2 x y (1+ j) n))
nil))
Thatouter-sum-2  returns the same values aster-sum-1  follows from the lemma
ok-to-swap-inner-outer-expansions-It-m=n proved in sectiorb.2.2

The term% appearing innner-sum-2  does not depend on the valueipfvhich

is the index of the inner sum. Therefore, it can be factored out of the sum. This observation
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leads to the definition ahner-sum-3  and the correspondinguter-sum-3

(defun inner-sum-3 (X i j n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (/ (expt x (- i j)) (factorial (- i j)))
(inner-sum-3 x (1+ i) j n))

nil))

(defun outer-sum-3 (X y j n)
(if (and (integerp j) (integerp n) (<= 0 j) (<= j n))
(cons (/ (* (sumlist (inner-sum-3 x j j n))
(expt y j))
(factorial j))
(outer-sum-3 x y (1+ j) n))
nil))

Using the lemmafactor-constant-from-expansion , it follows that outer-
sum-3 computes the same function aster-sum-2
To complete the argument, it is only necessary to recognizer-sum-3  as a

specific portion of the Taylor expansion &f:

(defthm taylor-exp-list-is-inner-sum-3
(implies (and (integerp i)
(integerp j) (<= 0 j) (<= ] )
(integerp n))
(equal (inner-sum-3 x i j n)
(taylor-exp-list (1+ (- n i)

Cij
X))
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This leads to a final definition of the outer sum, directly invokiaglor-exp-list as

the inner sum:

(defun exp-x-y-k-n (x y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (* (sumlist
(taylor-exp-list (1+ (- n i)) 0 x))
(taylor-exp-term y i))
(exp-x-y-k-n x y (1+ i) n))
nil))

It is an obvious corollary ofaylor-exp-list-is-inner-sum-3 that this function
is the same asuter-sum-3 . Combining all the equalities results in the following main

theorem:

(defthm exp-k-n-sum-simplification
(implies (and (integerp nterms) (<= 0 nterms))
(equal (sumlist
(taylor-exp-list nterms 0 (+ x y)))
(sumlist

(exp-x-y-k-n x y 0 (1- nterms))))))

This theorem formalizes the argument thaf_, =t = s | (Z?;(f %) - 4% infor-
mally presented in the beginning of secti®n.

The product of the Taylor expansionsadfande? can be computed as follows:

(defun exp-x-*-exp-y-n (x y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (* (sumlist (taylor-exp-list (1+ n) 0 x))
(taylor-exp-term y i))
(exp-x-*-exp-y-n x y (1+ i) n))
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nil))
It is easy to verify that thesumlist  of this function does in fact retunéZ?:O f—,) .
(To):
(defthm exp-x-*-exp-y-n-=-exp-X-n-*-exp-y-n
(implies (and (integerp nterms)
(<= 0 nterms))
(equal (* (sumlist
(taylor-exp-list nterms 0 X))
(sumlist
(taylor-exp-list nterms 0 vy)))
(sumlist
(exp-x-*-exp-y-n x y 0
(1- nterms))))))

Clearly, the functiongxp-x-y-k-n andexp-x-*-exp-y-n are very similar.
If it is the case that their difference issmall for arbitraryi-large values ofn, then it will
follow that the Taylor approximation ef**¥ is i-closeto the product of the approximations

for e* ande? and therefore that®™v = e - e¥. This difference can be computed using the

following function:

(defun prod-sum-delta (x y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(cons (* (sumlist
(taylor-exp-list i (1+ (- n i) x))
(taylor-exp-term y i))
(prod-sum-delta x y (1+ i) n))
nil))
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This function can be simplified by pushing the te%into the inner sum. The result is the

following definition:

(defun prod-sum-delta-2 (x y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))
(append (mult-scalar
(taylor-exp-list i (1+ (- n i) x)
(taylor-exp-term y i))
(prod-sum-delta-2 x y (1+ i) n))
nil))

The functionmult-scalar simply multiplies all elements of a list by the given scalar
value. To simplify matters, it is convenient to pad the inner sums with zeros. The function
taylor-exp-list-3 returns the same values tg/lor-exp-list , but it adds a

zero in place of all thé;{ terms fori below a given value:

(defun taylor-exp-list-3 (nterms counter llimit x)
(if (or (zp nterms)
(not (integerp counter))
(< counter 0))
nil
(cons (if (< counter llimit)
0
(taylor-exp-term x counter))

(taylor-exp-list-3 (1- nterms)
(1+ counter)
[limit

X))
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The connection between the functidiaylor-exp-list andtaylor-exp-list-
3 is demonstrated by the following theorem; a partial surtagfor-exp-list can be

replaced by a full — that is, starting at index 0 — sum udigor-exp-list-3

(defthm taylor-exp-list-=-taylor-exp-list-3
(implies (and (integerp counter)
(integerp nterms)
(<= 0 counter)
(<= 0 nterms))
(equal (sumlist
(taylor-exp-list nterms counter X))
(sumlist
(taylor-exp-list-3 (+ nterms counter)
0

counter

X))

This leads to a redefinition @frod-sum-delta  , usingtaylor-exp-list-3 instead

of taylor-exp-list

(defun prod-sum-delta-3 (X y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<=1 n))
(append (mult-scalar

(taylor-exp-list-3 (1+ n)
0
A+ (- n
X)

(taylor-exp-term y i))

(prod-sum-delta-3 x y (1+ i) n))

nil))
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A similar process defines the functiexp-x-*-exp-y-n-2 which pushes the

the termg—; into the inner sum:

(defun exp-x-*-exp-y-n-2 (X y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<=1 n))
(append (mult-scalar (taylor-exp-list (1+ n) 0 Xx)
(taylor-exp-term y 1))
(exp-x-*-exp-y-n-2 x y (1+ i) n))
nil))

Clearly, this function is simply a different version @tp-x-*-exp-y-n

It remains to show thairod-sum-delta-3 is i-small. Intuitively, this is possi-
ble by showing thaprod-sum-delta-3 is bounded by aismall number. Recall, the
value ofprod-sum-delta-3 can be thought of as the sum of the terns= "f—, . 7;—3, in
ann x n matrix that lie above the diagonal; that is, the some of those terpfer which
i + j > n. Fori-large values ofn, the sum of all the; ; terms isi-closeto e” - €Y. But if
n is i-large, so isn/2, and hence the sum of all titg; terms isi-closeto the sum of just
thet; ; terms for whichi < n/2 andj < n/2. In other words, the sum of all the terms
ti; with ¢ > n/2 or j > n/2 must bei-small, and these terms include all the terms in
prod-sum-delta-3 . It is tempting, therefore, to conclude that the sprad-sum-
delta-3 is less than the sum of all the termg with ¢ > n/2 or j > n/2 and therefore
i-small. However, for this crucial step to be true, it is necessary to ensure that &jl;thee
non-negative reals. The way to do this is to add up nottheéerms themselves, but their
norm. What remains is to verify the argument outlined here with the sum of the norm of the
t; ; terms.

The termg; ; for whichi > n/2 or j > n/2 can be collected as follows:

(defun exp-x-*-exp-y-n-3 (X y i n)
(if (and (integerp i) (integerp n) (<= 0 i) (<= i n))

(append (mult-scalar
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(if (< i (next-integer (/ n 2))

(taylor-exp-list-3

1+ n)

0

(next-integer (/ n 2))

X)

(taylor-exp-list-3 (1+ n) 0 0 X))
(taylor-exp-term y i))
(exp-x-*-exp-y-n-3 x y (1+ i) n))
nil))

It is expected that forlarge values ofn, the sum of the terms iexp-x-*-exp-y-n-3

is i-small. To see this, consider treumlist-norm  of taylor-exp-list-3 . Recall
thattaylor-exp-list-3 returns a list generated by replacing a prefix of the analogous
taylor-exp-list with zeros. It follows, therefore, that the sum of the norm of the
terms intaylor-exp-list-3 is the difference of the sum of the norm of the terms in

the analogoutaylor-exp-list minus the norm of the prefix replaced.

(defthm sumlist-norm-taylor-exp-list
(implies (and (integerp m) (<= 0 m)
(integerp i) (<= 0 i)
(integerp n) (<= m n))
(equal (sumlist-norm
(taylor-exp-list-3 n i m x))
(- (sumlist-norm
(taylor-exp-list n i x))
(sumlist-norm
(taylor-exp-list (- m i)
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X))

From this lemma, it is easy to see that fugnlist-norm  of exp-x-*-exp-y-n-3 is

simply the difference of theumlist-norm  of theexp-x-*-exp-y-n-2
of n andn/2:

given values

(defthm sumlist-norm-exp-x-*-exp-y-n-3
(implies (and (integerp i) (integerp n)
(<= 0i) (<= 2 n)
(equal (sumlist-norm
(exp-x-*-exp-y-n-3 X y i n))
(- (sumlist-norm
(exp-x-*-exp-y-n-2 X y i n))
(sumlist-norm
(exp-x-*-exp-y-n-2
X
y
[
(2- (next-integer (/ n 2))))))))

The lemmaexp-x-*-exp-y-n-=-exp-X-n-*-exp-y-n shows that thsumlist

of a exp-x-*-exp-y-n-2 is the product of the separate Taylor seriesdbrande.
It is an important lemma that this claim holds wh&mmlist-norm

sumlist

is used instead of

(defthm sumlist-norm-exp-x-*-exp-y-n-2
(implies (and (integerp i) (integerp n)
(<= 0 ) (<= 0 n))
(equal (sumlist-norm

(exp-x-*-exp-y-n-2 X y i n))
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(* (sumlist-norm
(taylor-exp-list (1+ n) 0 x))
(sumlist-norm
(taylor-exp-list (- (1+ n) i)
i

)

It is now a simple matter to verify thaixp-x-*-exp-y-n-3 isi-small:

(defthm sumlist-norm-exp-x-*-exp-y-n-3-small
(implies (and (integerp n) (<= 2 n)
(i-limited x) (i-limited y) (i-large n))
(i-small (sumlist-norm

(exp-x-*-exp-y-n-3 x y 0 n))))

To show thatprod-sum-delta-3 is alsoi-small, it is only necessary to show that it is

bounded byexp-x-*-exp-y-n-3

(defthm prod-sum-delta-3-seq-<=-exp-x-*-exp-y-n-3
(implies (<= 2 n)
(seg-norm-<= (prod-sum-delta-3 x y i n)

(exp-x-*-exp-y-n-3 x y i n))))

At this time, it is trivial to conclude that theumlist-norm of prod-sum-delta is
i-small, and hence so is isumlist . What this means is that the difference between the
Taylor approximation oé**¥ and the product of the Taylor approximations:toande? is

i-small:

(defthm expt-x-*-expt-y-n---exp-x-y-k-n-small
(implies (and (integerp nterms) (<= 0 nterms)

(i-limited x) (i-limited )
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(i-large nterms))
(i-small (- (* (sumlist
(taylor-exp-list nterms 0 x))
(sumlist
(taylor-exp-list nterms 0
)
(sumlist
(taylor-exp-list nterms
0

+ xy)))

In turn, this means that the two sums aotoseto each other, and hence they have the same
standard-part To conclude the proof, it is only necessary to defhm-std  to transfer

the proof of tha-large Taylor sums to the actual exponential function:

(defthm-std exp-sum
(implies (and (acl2-numberp x)
(acl2-numberp y))
(equal (acl2-exp (+ X y))
(* (acl2-exp x) (acl2-exp ¥)))))

5.3 The Continuity of the Exponential Function

The continuity ofe” follows almost directly from the theoresxp-sum . A function f is
continuous if given any standard poinendi-smallnumbere, f(x + €) isi-closeto f(x).
Considere* "¢, This is equal t@® - e, so it isi-closeto e if e€ isi-closeto 1.

So it is sufficient to show that farsmall ¢, e€ is i-closeto 1. Consider the Taylor
approximation ok = 1+¢+ 62—2. +---. Itis clear that the sura+ 52—2. + - -- must bei-small.

The trick is to show that the term}s"_, & are bounded by""" , =<+ The latter sum can
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be computed, since it is the sum of a geometric sequence. In particular, this sum must be
less thare. Therefore, the Taylor expansionfis within 2¢ of 1; that is to say, it is-close
to 1.

The first step is to show that foissmalle, €™ < e:

(defthm lemma-1
(implies (and (< (norm x) 1)
(integerp n)
(<= 2 n)

(<= (norm (expt x n)) (norm x))))
Moreover, the factorial terms! are larger than”—!:

(defthm lemma-2
(implies (and (integerp n)
(<= 2 n)
(<= (norm (expt-2-n (+ -1 n)))

(norm (factorial n)))))

In this theorem, the functioexpt-2-n  computes the value &". Together, these theo-

rems show how the magnitude of the terﬁqsan be bounded by-~+:

(defthm lemma-4
(implies (and (< (norm x) 1)
(integerp n)
(<= 2 n)
(<= (norm (taylor-exp-term x n))
(* (norm x)

(/' (norm (expt-2-n (+ -1 n))))))

With these theorems, it is possible to give a precise bound for the norm of the Taylor ap-

proximation ofe*:
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(defthm lemma-6
(implies (and (< (norm x) 1)
(integerp n)
(<= 2 n)
(<= (sumlist-norm
(taylor-exp-list nterms n x))
(* (norm x)
(sumlist-norm

(expt-2-n-list nterms n))))))

Here, the functiorexpt-2-n-list returns the list of term%, and the functiorexpt-
2-n-list-norm returns the sum of the norm of these terms. Itis easy to see that the sum
of the terms irexpt-2-n-list can add up to no more than one:

(defthm sumlist-expt-2-n-list-norm-best
(implies (and (not (zp nterms))
(integerp n)
(<= 2 n)
(<= (sumlist (expt-2-n-list-norm nterms n))

1)

Combining this theorem wittemma-6 finds a bound for all the terms in the sequence
poray|Falk

(defthm lemma-15
(implies (and (< (norm x) 1)
(not (zp nterms))
(integerp n)
(<= 2 n)

(<= (sumlist-norm
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(taylor-exp-list nterms n x))

(norm x))))

It is therefore possible to establish that the difference between the Taylor approximation of

ef and1 can be no more than twice

(defthm lemma-28
(implies (and (standard-numberp Xx)
(< (norm x) 1))
(<= (norm
(standard-part (+ -1
(sumlist
(taylor-exp-list
(i-large-integer)
0
X))

(+ (norm x) (norm x)))))

From this, a simple application of the transfer principle showsdhat 1 is no more than

2e€:

(defthm-std lemma-30
(implies (and (acl2-numberp x)
(< (norm x) 1))
(<= (norm (+ -1 (acl2-exp x)))

(+ (norm x) (norm x)))))

There is a subtlety here, however. The transfer principle only applies to classical formulas;
that is, it applies only to formulas with classical predicates staddardparameters. What
this means is that it would be impossible to use the transfer principle to a formula that

referred directly toe, since this is a nostandardnumber. That is the reason that the
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hypothesis requires that:|| < 1 rather than that bei-small. The limitation of the transfer
principle to classical formulas forces the use of this type of subterfuge often.

Itis a simple matter to appliemma-30 to the case when isi-small:

(defthm lemma-35
(implies (and (acl2-numberp x)
(i-small x))

(i-small (+ -1 (acl2-exp Xx)))))

In these cases, it is possible to conclude that the norm-o¢” is i-small, and sol — e is
alsoi-small. Putting this result together with the theorexp-sum yields the continuity

of e*:

(defthm exp-continuous-2
(implies (and (standard-numberp x)
(i-close x y))

(i-close (acl2-exp x) (acl2-exp y))))

The functione® will play an important role in the sequel. It will be used to define
the trigonometric functions. Its properties, notably the theoggprsum , will be used to
prove the usual trigonometric identities, suchsag2x) = 2sin(z) cos(x). Moreover, the
continuity ofe” will play a crucial role in the definition of, which can be found as twice
the value of the first positive zero of cosine. That such a zero exists is guaranteed by the

intermediate value theorem, which applies only to continuous functions.
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Chapter 6

Trigonometric Functions

This chapter develops a small part of the theory of trigonometry. The trigonometric func-
tions themselves are defined using the exponential function. Notice that the resulting
trigonometric functions are general complex functions; however, for real arguments, their
values follow the familiar constraints. For example, it is possible to show that for real
x, sin(z) andcos(z) are both real andin?(z) + cos?(z) = 1. The definition ofr is
particularly interesting, since it derives from the continuity of the cosine function and the
intermediate value theorem. Moreover, the theory of alternating series comes into play in
showing thatos(0) = 1 andcos(2) < 0, and hence cosine has a zero betweand2 —

that zero is necessarily equal 1g2. A large part of trigonometry — the area concerned
with trigonometric identities — is particularly well-suited to mechanical verification using

a rewriting theorem prover. This chapter concludes with a demonstration of how ACL2 can

prove many such identities.
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6.1 Defining the Trigonometric Functions in ACL2

6.1.1 The Definition of Sine and Cosine

The definition of the trigonometric functions in ACL2 follows from the following theorems

in analysis:
. eiz _ 6—im
sin(r) =
(z) 27
eix e—im
cos(x) = %

This suggests the following definitions in ACL2:

(defun acl2-sine (x)
(! (- (acl2-exp (* #c(0 1) x))
(acl2-exp (* #c(0 -1) x)))
#c(0 2)))

(defun acl2-cosine (x)
(/ (+ (acl2-exp (* #c(0 1) x))
(acl2-exp (* #c(0 -1) x)))
2))

From sine and cosine, it is straightforward to define the remaining trigonometric functions:

(defmacro acl2-tangent (x)

'l (acl2-sine x) (acl2-cosine ,x)))

(defmacro acl2-cotangent (x)

(/' (acl2-cosine ,x) (acl2-sine ,x)))

(defmacro acl2-secant (x)
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‘(/ (acl2-cosine ,x)))

(defmacro acl2-cosecant (x)

‘(I (acl2-sine ,x)))

The sine and cosine functions can also be defined from their Taylor approximation,
as was the exponential function. In fact, it is possible to show that the two definitions are

equivalent. Consider first this approximation to the Taylor seriesifgr:):

(defun taylorish-sin-list (nterms counter sign Xx)
(if (or (zp nterms)
(not (integerp counter))
(< counter 0))
nil
(if (nat-even-p counter)
(cons O (taylorish-sin-list (1- nterms)
(1+ counter)
sign
X))
(cons (* sign
(expt x counter)
(/ (factorial counter)))
(taylorish-sin-list (1- nterms)
(1+ counter)
(- sign)
X))

The functionnat-even-p  tests whether its argument is a natural even number. This
sequence generates the complete Taylor seriesifi¢r) = 0+ z — 0 — ”g—? + - A

similar function produces the Taylor sequence do#(x). It is a simple matter to show
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that the functiortaylorish-sin-list generates the same results asabi2-sine

function:

(defthm taylorish-sin-valid
(implies (standard-numberp x)
(equal (acl2-sine x)

(standard-part

(sumlist
(taylorish-sin-list
(i-large-integer)
0
1

)

One advantage of the Taylor definition ©fi(x) is that it makes it immediately obvious
thatsin(x) is real for real values of. Thus, it is possible to prove the following important

theorems:

(defthm-std realp-sine
(implies (realp Xx)

(realp (acl2-sine x))))

(defthm-std realp-cosine
(implies (realp x)
(realp (acl2-cosine x))))

The Taylor series defined ltgtylorish-cos-list is of the form1 40 — ﬂg—? —
0+f1—‘;+- --. Ifthe zeros are eliminated, then this series is clearly alternating, so it is possible
to estimate values of the cosine function. To this purpose, consider the following function,
which simply removes the zeros fra@ylorish-sin-list andtaylorish-cos-

list
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(defun taylor-sincos-list (nterms counter sign Xx)
(if (or (zp nterms)
(not (integerp counter))
(< counter 0))
nil
(cons (* sign
(expt x counter)
(/ (factorial counter)))
(taylor-sincos-list (nfix (- nterms 2))
(+ counter 2)
(- sign)
X))

It is easy to show that this function computes the same valu¢syés-sin-list
when the initial value ofounter is odd andaylor-cos-list when the initial value
of counter is even.

A particularly relevant value igos(2). It is clear from the definition of cosine that
cos(0) is equal to 1. From an analysis of the alternating sequésder-sincos-
list , it will follow that cos(2) < 0. According to the intermediate-value theorem, this
implies the cosine function has a root betw®and?2, sayx,. This root is unique, since
it can be shown that fob < = < xg, cos(z) > 0 and forzg < x < 2 - xg, cos(z) < 0.
Therefore, the value afj is none other than /2, and it serves to define. But in order to
do this, the theory of alternating series needs to be developed, as well as the intermediate

value theorem.

6.1.2 Alternating Sequences
An alternating sequence is one whose terms meet two criteria:

e Successive terms alternate in sign.
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e Terms decrease in magnitude.

A strict interpretation of these rules would disqualify a sequence consisting of zeros as an
alternating sequence. It is convenient, however, to relax the restrictions so that tails of zero

terms are ignored.

These more liberal properties can be easily defined in ACL2. Consider the first

property:

(defun opposite-signs-p (X y)
(or (= x 0)
=y 0
(equal (sign x) (- (sign y)))))

(defun alternating-sequence-1-p (Ist)
(if (null Ist)
t
(if (null (cdr Ist))
t
(and (opposite-signs-p (car Ist) (cadr Ist))
(alternating-sequence-1-p (cdr Ist))))))

The second property can be verified using the following function:

(defun alternating-sequence-2-p (Ist)
(if (null Ist)
t
(if (null (cdr lIst))
t
(and (or (and (equal (car Ist) 0)
(equal (cadr Ist) 0))
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(< (abs (cadr Ist))
(abs (car lIst))))
(alternating-sequence-2-p (cdr Ist))))))

Again, notice the special treatment of zeros. Taken together, these functions define an

alternating sequence:

(defun alternating-sequence-p (Ist)
(and (alternating-sequence-1-p Ist)

(alternating-sequence-2-p Ist)))

This function is true of(1 -1/2 1/4) and false of both(1 1/2 1/4) and’(1
-11) .

The reason alternating sequences are important is that the first element of such a
sequence is an upper bound on the sum of all the elements. In particular, the following is

possible to prove:

(defthm sumlist-alternating-sequence
(implies (and (alternating-sequence-p x)
(real-listp x)
(not (null x)))
(not (< (abs (car x)) (abs (sumlist x))))))

Using this theorem, it is possible to approximate the sum of an alternating sequence with
as high degree of accuracy as required. It is only necessary to add the first elements of the

sequence up until a term that is smaller in magnitude than the degree of accuracy desired.

6.1.3 The Intermediate Value Theorem

The remaining piece of mathematics needed befooan be defined is the intermediate
value theorem. To prove this result in ACL2 requires developing a theory of continuous

functions.
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The concept of continuity can be captured in ACL2 usinggheapsulate fa-
cility. Continuity is a second-order notion, but usieigcapsulate it is possible to derive
the basic theorems and apply them later to arbitrary continuous functions.

The definition of continuity in non-standard analysis captures the intuitive notion
very well. A function f is continuous at a point if for all y i-closeto z, f(z) is i-close
to f(y). A function is continuous if it is continuous at atandardpoints. Moreover, if
it is continuous at all pointsstandardor not, it is uniformly continuous. The definition of

continuity can be specified as follows:

(encapsulate

((rcfn (x) 1))

(local (defun rcfn (x) X))

(defthm rcfn-standard
(implies (standard-numberp x)

(standard-numberp (rcfn x))))

(defthm rcfn-real
(implies (realp x)

(realp (rcfn x))))

(defthm rcfn-continuous
(implies (and (standard-numberp Xx)
(realp x)
(i-close x y)

(realp y))
(i-close (rcfn x) (rcfn y)))))
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Three constraints are placed on the functiofm . First, it must returrstandardvalues
for standardarguments, a condition is satisfied by all classical functions. Second, it must
return real values for real argumentsretn  stands for “Real Continuous Function.” And
third, it must satisfy the non-standard continuity constraint.

Recall from analysis that a continuous function is uniformly continuous on a closed
and bounded interval. Now consider an arbitraliynited numberz. Sincex is i-limited,
it follows thatx € [—M, M] for somestandardnumber)/. In other wordsy belongs to a
closed and bounded interval, wheoén is uniformly continuous. From the non-standard
definition of continuity, it follows thatcfn is continuous at;, regardless of whetheris

standardor not. This justifies the following theorem:

(defthm rcfn-uniformly-continuous
(implies (and (i-limited x)
(realp x)

(i-close x vy)

(realp y))
(i-close (rcfn x) (rcfn y))))

The proof of this theorem actually follows from considering stendard-partof . This
number isstandardsincez is i-limited. Moreover,y must bei-closeto standard-partz)
sincey is i-closeto z and alli-limited numbers aré-closeto theirstandard-part Applying

the continuity ofrcfn  at standard-partx) twice, it follows thatrcfn(standard-partx))
isi-closeto bothrcfn(x) andrefn(y), hencercfn(x) must be-closeto refn(y).

The derivation of the intermediate value theorem in non-standard analysis is very

direct. Given astandardintervala, b] so that-cfn(a) < z andrcfn(b) > z for astandard

real number, it is possible to find a value € [a, b] so thatrcfn(c) = z as follows. First,
partition the intervala, b] into {a,a + €,a + 2¢,...,a + Ne = b}, whereN is a positive
integer and: = ”‘T“ Then, observe there must bé a N so thatrcfn(a+ ke) < z while

refn(a+ (k+1)e) > z. Here continuity comes into play. IY isi-large, the number + ke
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is not necessarilgtandard however it must bé-limited since it belongs to thetandard
interval [a, b]. Therefore, lemmacfn-uniformly-continuous applies, and it is
possible to conclude that fn(a+ke), rcfn(a+(k+1)e), andrcfn(standard-parta+ke))
are alli-closeto each other. Since the choice bfensures thatcfn(a + ke) < z <
refn(a+(k+1)e), it follows thatz is alsoi-closeto all these three values. Heneesi-close
to rcfn(standard-parta + ke)); since both numbers astandard they must be equal to
each other. The only remaining detail is to observe #ahdard-parta + ke) € (a,b).
This follows because < a + ke and sou = standard-parta) < standard-parta + ke);
similarly, b > standard-parta + ke) — note thatstandard-parta + ke) is not equal to
eithera or b is guaranteed becausefn(standard-parta + ke)) = z, rcfn(a) < z, and
refn(b) > z.
The formalization of this argument in ACL2 begins with the definition of the fol-

lowing function, which finds the value @ above:

(defun find-zero-n (a z i n eps)

(if (and (realp a)
(integerp i)
(integerp n)
(<in
(realp eps)
(< 0 eps)
(< (rcin (+ a eps)) 2))

(find-zero-n (+ a eps) z (1+ i) n eps)

(realfix a)))

Notice thatfind-zero-n is a classical function, so it is possible to use unrestricted
induction to prove theorems about it.
The key properties ofind-zero-n are easy to prove by induction. The fol-

lowing theorems demonstrate ttatd-zero-n does in fact return a suitable value for
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(defthm rcfn-find-zero-n-<-z
(implies (and (realp a) (< (rcfn a) z2))

(< (rcfn (find-zero-n a z i n eps)) z)))

(defthm rcfn-find-zero-n+eps->=-z
(implies (and (realp a)
(integerp i)
(integerp n)
(<in
(realp eps)
(< 0 eps)
(< (rcfn a) 2)
(< z (rcfn (+ @ (* (- n i) eps)))
(<= z (rcfn (+ (find-zero-n a z i n eps)

eps)))))

Moreover, it is easy to prove that the value returnedibyg-zero-n
[a,b):

(defthm find-zero-n-lower-bound
(implies (and (realp a) (realp eps) (< 0 eps))

(<= a (find-zero-n a z i n eps)))))

(defthm find-zero-n-upper-bound
(implies (and (realp a)
(integerp i)
(integerp n)
(<= 0 1)
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(<= i n)
(realp eps)
(< 0 eps))
(<= (find-zero-n a z i n eps)

(+a (* (-ni) eps)))

Itis important thafind-zero-n is a classical function, because the non-standard
principle of induction in ACL2 is not powerful enough to prove these theorems. Take the
theorenrcfn-find-zero-n-<-z , for example. The induction scheme is based on the
variablen, so the non-standard principle of induction requires that the following formula

be established:

(implies (and (not (standard-numberp n))
(< (rcfn 2) 2))

(< (rcfn (find-zero-n a z i n eps)) z))

However, the extra hypothesis does not directly contribute to a proof, so the proof attempt
will fail.

Sincefind-zero-n returns a value in the range, b), if a andb arestandardit
follows thatfind-zero-n returns an-limited value. This justifies the following defini-

tion:

(defun-std find-zero (a b z)
(if (and (realp a)
(realp b)
(realp 2z)
(< a b))
(standard-part

(find-zero-n a
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0

(i-large-integer)

(/ (- b a) (i-large-integer))))
0))

Note that since the definition is usirdgfun-std , it is accepted only if the body is
standardfor standardarguments, and this follows since the body takessti@dard-part
of thei-limited instance offind-zero-n . The functionfind-zero fills the parame-
ters offind-zero-n to conform to the argument described above; in particular, it is in
find-zero  that it is guaranteed that tleps used infind-zero-n is i-small.

Given the properties of the classical functiord-zero-n , it is easy to establish
similar facts about the non-classical functimd-zero by using the transfer principe.

In particular, the following theorems are easy to prove:

(defthm-std rcfn-find-zero-<=-z
(implies (and (realp a)
(realp b)
(< ab)
(realp z)
(< (rcfn a) z2))
(<= (rcfn (find-zero a b z)) z2)))

(defthm-std rcfn-find-zero->=-z
(implies (and (realp a)
(realp b)
(<ab)
(realp z)
(< (rcfn a) 2)

(< z (rcefn b))
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(<= z (rcfn (find-zero a b z)))))

(defthm-std find-zero-lower-bound
(implies (and (realp a) (realp b) (realp z)
(< ab)
(<= a (find-zero a b z))))

(defthm-std find-zero-upper-bound
(implies (and (realp a) (realp b) (realp z)
(< ab))
(<= (find-zero a b z) b))

To provercfn-find-zero->=-z it is sufficient to observe thdfind-zero a b
z) and(+ (find-zero a b z) (/ (- b a) (i-large-integer))) must
bei-closesince(/ (- b a) (i-large-integer)) is i-small. The result then fol-

lows from the continuity ofrcfn  and the lemmacfn-find-zero-n+eps->=-z

These four theorems taken together result in the intermediate value theorem:

(defthm intermediate-value-theorem
(implies (and (realp a)
(realp b)
(realp z)
(<ab)
(< (rcfn a) 2)
(< z (rcfn b))
(and (realp (find-zero a b z))
(< a (find-zero a b 2))
(< (find-zero a b z) b)

(equal (rcfn (find-zero a b z))
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2))))

The theorem above assumes the functicin takes on a higher value athan at
a. If the opposite is true, the theorem can not be used directly to establisitfinatmust
have an intermediate value. However, since the funatifm is a constrained function, it
is possible to prove a version of the intermediate value theorem for functions with a higher

value ata thanb. The first step is to define a new function for finding the vatue

(defun find-zero-n-2 (a z i n eps)

(if (and (realp a)
(integerp i)
(integerp n)
(<in
(realp eps)
(< 0 eps)
(< z (rcfn (+ a eps)))

(find-zero-n-2 (+ a eps) z (1+ i) n eps)

(realfix a)))

(defun-std find-zero-2 (a b 2)
(if (and (realp a)
(realp b)
(realp z)
(< a b))
(standard-part
(find-zero-n-2 a
z
0

(i-large-integer)
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(/ (- b a) (i-large-integer))))
0))

To accept the functiofind-zero-2 itis necessary to prove that its body retustendard
values forstandardarguments. This can be done by functionally instantiating the analogous
lemma forfind-zero-n

The second version of the intermediate value theorem can be proved as follows:

(defthm intermediate-value-theorem-2
(implies (and (realp a)

(realp b)

(realp z)

(<ab)

(< z (rcfn a))

(< (rcfn b) 2))

(and (realp (find-zero-2 a b z))

(< a (find-zero-2 a b 2))

(< (find-zero-2 a b z) b)

(equal (rcfn (find-zero-2 a b z))

7))
‘hints (("Goal"
:use ((cinstance
(:functional-instance
intermediate-value-theorem
(rcfn (lambda (x) (- (rcfn x))))
(find-zero (lambda (a b 2z)
(find-zero-2 a b
- 2)))

(find-zero-n (lambda (a z i n
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eps)
(find-zero-n-2
a (- 2) i n eps)))
z (- 2)
)
sin-theory

(disable intermediate-value-theorem))))

Notice how the proof of the theorem instantiatetermediate-value-theorem

with the negatives ofcfn andz.

6.1.4 7 for Dessert

Recall the functiortaylor-sincos-list is defined as follows:

(defun taylor-sincos-list (nterms counter sign Xx)
(if (or (zp nterms)
(not (integerp counter))
(< counter 0))
nil
(cons (* sign
(expt x counter)
(/ (factorial counter)))
(taylor-sincos-list (nfix (- nterms 2))
(+ counter 2)
(- sign)
X))

It is easy to see thaaylor-sincos-list satisfies the first alternating sequence prop-

erty — that is, successive elements of the list alternate in sign.
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(defthm alternating-sequence-1-p-taylor-sincos
(implies (and (realp sign)
(realp x))
(alternating-sequence-1-p
(taylor-sincos-list nterms
counter
sign

X))

If it can be shown that it also satisfies the second criteria for alternating sequences, namely
that successive terms decrease in magnitude, it will be possible to estimate values for sine
and cosine.

However, showing thataylor-sincos-list satisfies the second alternating
sequence property is more difficult. The problem is similar to the one found in ctapter
where it was desired to show that the Taylor approximatia¥ twas bounded by a geomet-
ric sequence. The problem is that the condition is true, but only after eliminating a suitable
prefix of the series.

Since only the value afos(2) is needed for the definition of, a weaker theorem
will be sufficient. All that must be shown is thtdylor-sincos-list satisfies the
second alternating sequence property whes equal to2. That sequence begins with
—i—T = -2, 26—? = %. ... It is easy to see that the property holds after the initiéd

removed:

(defthm alternating-sequence-2-p-taylor-sincos-2
(implies (and (realp sign)
(not (equal sign 0))
(integerp counter)
(integerp nterms)

(<= 0 nterms)
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(<= 2 counter)
(realp x)
(< 0x
(<= x 2))
(alternating-sequence-2-p
(taylor-sincos-list nterms
counter
sign

x)))

In particular, this implies that for = 2 taylor-sincos-list is an alternating se-

guence, after the initial term is removed.

(defthm alternating-sequence-p-taylor-sincos-2
(implies (and (integerp nterms)
(<= 0 nterms))
(alternating-sequence-p

(taylor-sincos-list nterms 4 1 2))))

The important point is that the sum of the elements after the first two terms in the ex-
pansion ofcos(2) can be no more tha®/3. This is a straightforward application of the
lemmasumlist-alternating-sequence and the simple expansion of the first few

elements ofaylor-sincos-list forx = 2.

(defthm remainder-taylor-cos-2
(implies (and (integerp nterms)
(< 0 nterms))
(<= (abs (sumlist
(taylor-sincos-list nterms 4 1 2)))
2/3)))
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It is thus possible to conclude that the Taylor expansionosf2) must be smaller than

1 _ 2.
—lo1-242

(defthm sumlist-taylor-cos-2-negative
(implies (and (integerp nterms)
(<= 4 nterms))
(<= (sumlist
(taylor-sincos-list nterms 0 1 2))
-1/3)))

Takingstandard-paribon both sides of the inequality establishes that2) < —1:

(defthm acl2-cos-2-negative-lemma

(<= (acl2-cosine 2) -1/3))

The stage is now set for the definitionafbothcos(0) = 1 > 0 andcos(2) < —% < O are
established. It remains only to define the functimm-zero-cos-2 that can be used

to invoke the second version of the intermediate value theorem:

(defun find-zero-cos-n-2 (a z i n eps)

(if (and (realp a)
(integerp i)
(integerp n)
(<in
(realp eps)
(< 0 eps)
(< z (acl2-cosine (+ a eps))))

(find-zero-cos-n-2 (+ a eps) z (1+ i) n eps)

(realfix a)))

(defun-std find-zero-cos-2 (a b 2)
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(if (and (realp a)
(realp b)
(realp z)
(< a b))
(standard-part
(find-zero-cos-n-2 a
z
0
(i-large-integer)
(/ (- ba
(i-large-integer))))
0))

Note that the definition dfind-zero-cos-2 is not accepted until its body is shown to
returnstandardvalues forstandardarguments. This lemma can be proved by functionally
instantiating the analogous theorem fimid-zero-2

The continuity ofacl2-cosine  can be easily deduced from the continuityedf

proved in chapteb.

(defthm cosine-continuous
(implies (and (standard-numberp Xx)
(i-close x y))
(i-close (acl2-cosine x)

(acl2-cosine y))))

The intermediate value theorem can now be applied to the funati@icosine |, yield-

ing the following theorem:

(defthm find-zero-cosine

(and (realp (find-zero-cos-2 0 2 0))
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(< 0 (find-zero-cos-2 0 2 0))
(< (find-zero-cos-2 0 2 0) 2)
(equal (acl2-cosine (find-zero-cos-2 0 2 0)) 0)))

The only remaining detail is the actual definitionmof

(defun acl2-pi ()
(* 2 (find-zero-cos-2 0 2 0)))

It is immediate from the definition thatcl2-pi  is a real number betwedéhand4.

The possibility remains that the valueoftefined is not the usual one. This would
happen iffind-zero-cos-2 returned a zero of cosine that was mg®. In reality this
can not be; it is a basic fact of trigonometry that the cosine function has no other roots
betweerD and2. However, this fact has yet to be established in ACL2. Subsequent sections
will show ACL2 proofs that explore the sign of the sine and cosine functions in the different
guadrants, as sectioned off Ggl2-pi . This will establish thaacl2-pi  can be no other
than the usual value of. Moreover, a much smaller interval containingequivalently a

better approximation ta, will be presented in sectioh 3.1

6.2 Basic Trigonometric Identities

Many basic trigonometric identities are easy to prove in ACL2. The formulasifar + )
andcos(z + y) are particularly useful. They can be proved directly from the definition of
sine and cosine in terms of thké function. Here, the important lemmad§™¥ = e® - ¢¥,

which was proved in chaptér

(defthm sine-of-sums
(equal (acl2-sine (+ x y))
(+ (* (acl2-sine x) (acl2-cosine Y))

(* (acl2-cosine x) (acl2-sine y)))))
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(defthm cosine-of-sums
(equal (acl2-cosine (+ X y))
(- (* (acl2-cosine x) (acl2-cosine Y))

(* (acl2-sine x) (acl2-sine y)))))

Similarly, the familiar identitysin?(z) + cos?(x) = 1 follows from the definitions

of sine and cosine and a little algebra:

(defthm sin**2+cos**2
(equal (+ (* (acl2-sine x) (acl2-sine X))
(* (acl2-cosine x) (acl2-cosine x)))

1)
Other simple theorems includéy(—z) = — sin(x) andcos(—z) = cos(x):

(defthm sin-uminus
(equal (acl2-sine (- X))

(- (acl2-sine (fix x)))))

(defthm cos-uminus
(equal (acl2-cosine (- x))

(acl2-cosine (fix x))))

Section6.1.4showed how the Taylor approximationdos(2) is an alternating se-
guence. In factalternating-sequence-p-taylor-sincos-2 can be strength-
ened to include all values af € [0, 2]. An analysis of the first few elements of the Taylor
approximation tasin(x) for theser shows that the sum must be larger thar ”g—? > 0.

Therefore, forr € [0, 2], sin(z) > 0:

(defthm-std acl2-sin-x-positive
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(implies (and (realp X)
(< 0 x)
(<= x 2))
(<= 0 (acl2-sine x))))

In particular,sin(7/2) > 0. Sincecos(w/2) = 0 by definition,sin**2+cos**2 implies

thatsin(7/2) = 1:

(defthm sine-pi/2
(equal (acl2-sine (* (acl2-pi) 1/2)) 1))

The theoremsine-of-sums  andcosine-of-sums can now be used to find
the value of sine and cosine at the cardinal points. In particular, the following theorems are

all easy consequences of the above:

(defthm sine-0

(equal (acl2-sine 0) 0))
(defthm cosine-0

(equal (acl2-cosine 0) 1))
(defthm sine-pi

(equal (acl2-sine (acl2-pi)) 0))
(defthm cosine-pi

(equal (acl2-cosine (acl2-pi)) -1))
(defthm sine-3pi/2

(equal (acl2-sine (* (acl2-pi) 3/2)) -1))
(defthm cosine-3pi/2

(equal (acl2-cosine (* (acl2-pi) 3/2)) 0))
(defthm sine-2pi

(equal (acl2-sine (* (acl2-pi) 2)) 0))

(defthm cosine-2pi
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(equal (acl2-cosine (* (acl2-pi) 2)) 1))

Together withsine-of-sums ~ andcosine-of-sums , these theorems prove a
number of famous identities, suchsas(z +7/2) = sin(x) cos(7/2) 4 cos(z) sin(w/2) =

cos(z):

(defthm  sin-pi/2+x
(equal (acl2-sine (+ (* (acl2-pi) 1/2) x))

(acl2-cosine x)))

Similar theorems can be found for the other multiples (2.
For arbitrary angles betwe@rand2r, it is not possible to find exact values of sine
and cosing, but it is possible to find their sign.

The following theorem is simply a weaker versionaai2-sin-x-positive

(defthm sine-positive-in-0-pi/2
(implies (and (realp x)
(<0x
(< x (* (acl2-pi) 1/2)))
(< 0 (acl2-sine x))))

It demonstrates thafin(x) is positive in the first quadrant. To show thats(x) is also
positive in this quadrant follows from the fact thais(z) = sin(7/2 — ). So in the first

qguadrant, sine and cosine have the same sign:

(defthm cosine-positive-in-0-pi/2
(implies (and (realp Xx)
(< 0x
(< x (* (acl2-pi) 1/2)))

(< 0 (acl2-cosine x))))

'However, it is possible to find arbitrarily close approximations to the sine and cosine functions, as sec-

tion 6.3.2demonstrates.
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Note, this theorems ensures that2 is the first positive root of the cosine function. This
provides a justification in ACL2 that the value &fl2-pi s in fact equal tar.

In the second quadrantin(z) > 0 while cos(z) < 0. This follows from the
formulas forsin(z + 7/2) andcos(x + 7/2) and the corresponding theorems for sine and

cosine in the first quadrant.

(defthm sine-positive-in-pi/2-pi
(implies (and (realp x)
(< (* (acl2-pi) 1/2) x)
(< x (acl2-pi)))
(< 0 (acl2-sine x))))

(defthm cosine-negative-in-pi/2-pi
(implies (and (realp x)
(< (* (acl2-pi) 1/2) x)
(< x (acl2-pi)))
(< (acl2-cosine x) 0)))

Similar theorems are readily achieved for angles in the other quadrants.

For angles not in the rangé, 27, the theorems above can still be applied. It is
only necessary to normalize the angle into the rgfiger|. This can be justified using the
following theorem:

(defthm sin-2npi
(implies (integerp n)
(equal (acl2-sine (* (acl2-pi) 2 n))
0)))
It is easy to derive the equivalent theorem about cosine.

The double-angle rules are easy to derive from the theosémasof-sums  and

cosine-of-sums . In particular, the following are easy to prove:
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(defthm sine-2x
(implies (syntaxp (not (equal x '0)))
(equal (acl2-sine (* 2 x))

(* 2 (acl2-sine x) (acl2-cosine x)))))

(defthm cosine-2x
(implies (syntaxp (not (equal x ’'0)))
(equal (acl2-cosine (* 2 X))
(+ (* (acl2-cosine x) (acl2-cosine x))
(- (* (acl2-sine x)

(acl2-sine x))))))
These theorems can be used to find the half-angle formulas:

(defthm sine**2-half-angle
(equal (* (acl2-sine (* 1/2 X))
(acl2-sine (* 1/2 Xx)))
(/ (- 1 (acl2-cosine x)) 2)))

(defthm cosine**2-half-angle
(equal (* (acl2-cosine (* 1/2 X))
(acl2-cosine (* 1/2 x)))
(/ (+ 1 (acl2-cosine x)) 2)))

Note, square roots are not taken on both sides because there is no guarantee the sign of
the left-hand sides is positive. A wonderful consequence of these formulas is that it makes
it possible to find the sine and cosine of more angles, suety4sIn fact, the following

theorems are trivial corollaries of the above:
(defthm sine-pi/4
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(equal (acl2-sine (* (acl2-pi) 1/4))
(acl2-sqrt 1/2)))

(defthm cosine-pi/4
(equal (acl2-cosine (* (acl2-pi) 1/4))
(acl2-sqrt 1/2)))

The remaining well-loved angles ag3 and /6. It is possible to find their sine

and cosine using a similar trick, only a triple-angle formula is needed. This can be derived

with some algebra:

(defthm sine-3x
(implies (syntaxp (not (equal x '0)))
(equal (acl2-sine (* 3 X))
(- * 3 (acl2-sine x))
(* 4
(acl2-sine x)
(acl2-sine x)

(acl2-sine X))

From this formula it follows thatin(7/3) = /3/2. The remaining values of sine and

cosine ofr/3 andx /6 are almost immediate.

(defthm sine-pi/3
(equal (acl2-sine (* (acl2-pi) 1/3))
(/ (acl2-sqgrt 3) 2))

(defthm cosine-pi/3
(equal (acl2-cosine (* (acl2-pi) 1/3)) 1/2))
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(defthm sine-pi/6
(equal (acl2-sine (* (acl2-pi) 1/6)) 1/2))

(defthm cosine-pi/6
(equal (acl2-cosine (* (acl2-pi) 1/6))
(/ (acl2-sqgrt 3) 2))

The study of trigonometry involves the proof of many amusing identities, some of
them of dubious value. The proofs proceed more or less in the same manner: one term is re-
peatedly simplified until it looks identical to another. This style of proof seems particularly
well-suited to ACL2 and its rewriting engine.

To illustrate the point, consider some identities from][ a standard trigonometry
textbook. A good place to start is with the identityos? () + 6sin?(z) = 3 + 3sin*(z).

This fact can be easily verified in ACL2:

(defthm identity-1
(equal (+ (* 3 (expt (acl2-cosine x) 4))
(* 6 (expt (acl2-sine x) 2)))
(+ 3
(* 3 (expt (acl2-sine x) 4)))))

To do so requires a few illustrative rewrite lemmas. First, notice the theorem has several
exponents of sine and cosine. All the trigopnometric theorems defined above are in terms of
products of sine and cosine, so it is best to do away with the exponents. A few rules such

as the following to do the trick:

(defthm expt-2
(equal (expt x 2) (* x x)))

The key lemma convert3cos?(x) into 3(1 — sin?(z))2. This step can be suggested to

ACL2 by introducing the following lemma:
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(defthm lemma-1
(equal (* 3
(acl2-cosine x) (acl2-cosine x)
(acl2-cosine x) (acl2-cosine x))
* 3
(- 1 (* (acl2-sine x) (acl2-sine x)))

(- 1 (* (acl2-sine x) (acl2-sine x))))))

The remainder of the proof is automatically handled by ACL2.

Another identity along this vein is the following:

(defthm identity-2
(equal (+ (expt (acl2-secant x) 2)
(expt (acl2-tangent x) 2))
(- (expt (acl2-secant x) 4)
(expt (acl2-tangent x) 4))))

The only needed lemmas are the rewrite rule favofirg+ y?)(z% — y?) overz* — y* and
a technical algebraic lemma.

No extra lemmas are needed to prove the following identity:

(defthm identity-3
(implies (not (equal (acl2-cosine x) 0))
(equal (/ (+ (acl2-sine x)
(acl2-cotangent x))
(acl2-cosine x))
(+ (acl2-tangent x)

(acl2-cosecant x)))))

It is worth noting that trigonometry texts routinely omit the hypothesis above. It is simply

understood that the equalities are required to hold only when both terms are defined.
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A fourth identity states thaltffo(:()x) + 1;;‘@()“) = 2csc(z). To establish this result,
it is necessary to show that+ cos(x) is not equal to 0 when is real andsin(z) # 0.
It is also necessary to prove a simple algebraic lemma, and then it is possible to prove the

identity:

(defthm identity-4
(implies (realp x)
(equal (+ (/ (acl2-sine x)
(+ 1 (acl2-cosine x)))
(/ (+ 1 (acl2-cosine x))
(acl2-sine x)))

(* 2 (acl2-cosecant x)))))
A final example is possible to prove after some basic algebraic lemmas are proved:

(defthm identity-5
(implies (realp x)
(equal (/ (acl2-cotangent Xx)
(- (acl2-cosecant x) 1))
(/ (+ (acl2-cosecant x) 1)

(acl2-cotangent x)))))

6.3 Computations with the Trigonometric Functions

One of the virtues of Ngthm and ACL2 is that they ax@mputationallogics. That is,
functions defined in them can be directly executed. However, functions defined using the
non-standard primitives of ACL2(r) lose this important property. For example, the value of
(i-large-integer) is not known. But it is still possible to perform useful computa-

tions in ACL2(r). This section illustrates two approaches. First, ACL2 is used to verify the
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value ofr to 20 decimal places. The computational aspect of ACL2 is evident here, espe-
cially when the size of the intermediate terms is taken into account. Second, it is shown
how ACL2 can be used to define arbitrarily close approximations to the sine and cosine

functions, similar to théter-sqrt approximation to square root presented in chapter

6.3.1 Estimatingm

This section will illustrate how ACL2 can carry out trigonometric computations by using
ACL2 to verify an approximation ter. Recall thatr was defined by finding the value
of z € [0, 2] for which cos(z) = 0. It followed immediately thatr was a real number
betweer) and4. Sincesin(7) = 0 and it can be shown thain(xz) > 0 for z € (0,2), it
is possible to prove that < w < 4. The challenge is to find a better estimate forand
that will require that several trigonometric computations be carried out with a high degree
of accuracy.

The math.h header file that ships with HPUX 10.20 declares the following ap-

proximation forr:
# define M_PI 3.14159265358979323846

ACL2 does not support the decimal notation, so the valuM&fil must be defined as

follows:

(defun m-pi ()
314159265358979323846/100000000000000000000)

The following theorems will verify that this is, in fact, a good approximation.

The first question is whethen-pi is too small or too large. This question can be
decided by ACL2. Consider the Taylor seriesdog(z) = 1— g—? + ﬁ—? —.... Since thisis an
alternating sequence, the signcof(z) can be determined by finding an indeso that, for

+2

example] — g—? +..+ "’j—, is negative and so IS% It is particularly easy to determine
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if a specific index satisfies this requirement. In ACL2, this test can be performed using the

following function:

(defun cosine-clearly-negative (X nterms)
(and (< (sumlist (taylor-sincos-list nterms 0 1 x)) 0)
(< (car (taylor-sincos-list 2

nterms

(if (evenp
(/ nterms 2))
1

-1)
X))
0)))

A similar function checks whether the series is clearly positive, by inspecting the suggested
index.
These two functions can be used to determine whether the cosiepofis pos-
itive or negative. What is needed is simply to check if the intlesettles the question or
not. If not, then it is necessary to check whether the issue is resolved byJdnded so on.

This process can be mechanized in ACL2, using the following function:

(defun cosine-clear-sign (x nterms)
(declare (xargs :mode :program))
(if (cosine-clearly-negative x nterms)
(cons ’'negative nterms)
(if (cosine-clearly-positive x nterms)
(cons ’positive nterms)

(cosine-clear-sign x (+ nterms 2)))))

There is an interesting problem with this function: its termination is not immediately ob-

vious. For example, consider what happens when the valueisfequal tor/2. The
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function would continue expanding the Taylor series, trying to find an initial sequence that
determinesos(7/2) as definitely positive or definitely negative. There is no such sequence
since the value ofos(7/2) is zero, and so the function will recurse forever. Recall, ACL2
does not accept the definition of a function, unless it can prove that the function terminates
on all inputs, so it should not accept the definitiorcokine-clear-sign . However,
ACL2 allows the introduction of arbitrary functions, as long as they are declaredan
gram mode, which means ACL2 does not introduce any axioms about the function, so it
can not prove any theorems about it. This is a perfect use of this feature, since the interest is
not in reasoning abowosine-clear-sign , but rather in executing it to find the value
of certain constants, namely an index large enough to decide whether the cosine of half of
m-pi is positive or negative. Runnirgpsine-clear-sign on(/ m-pi 2) withan
initial index of O returns(POSITIVE . 28) . It follows thatm-pi is a lower bound on
.

If the math.h header file is to be believed, then changing the last digihgdi
from a 6 to a 7 should result in an upper boundsfoitn particular, ACL2 should be able to

verify that the following is larger than:

(defun m-pi+eps ()
314159265358979323847/100000000000000000000)

Runningcosine-clear-sign on this number returngNEGATIVE . 26) , which
confirms that its cosine is negative and that the sum of all terms in the Taylor series up to
the 3—2? is required to prove this fact.

It is easy to overlook an important fact. The te%ﬁ wherex ~ 7/2 is very
close to zero. The only reason why these computations can be carried out with confidence
is that ACL2 uses infinite precision arithmetic on the rationals. In particular, it does not
assume the numerator of a rational is less tinor some other arbitrary limit. That the
functioncosine-clear-sign can be written is a testament to the computational power
of ACL2.
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To prove thatr lies betweerm-pi and m-pi+eps is relatively easy. The first
step is to prove that the cosine of halfrofpi is positive and that of halfn-pi+eps is
negative. This formalizes the intuition behiodsine-clear-sign . Next, observe that
half of m-pi must be in the first quadrant, since its cosine is positive and it must be between
0 and. Similarly, m-pi+eps must be in the second quadrant. But thef2 is between
half of m-pi and half ofm-pi+eps . Equivalently,r is betweerm-pi andm-pi+eps .
Formalizingcosine-clear-sign requires that the Taylor series fass(x) be
split into a prefix and a suffix so that the sum of each part has the same sign. According
to the results of runningosine-clear-sign , the split form-pi should be performed

after theg—zj term. This split can be justified according to the following ACL2 theorem:

(defthm taylor-sincos-list-split-for-m-pi
(equal (taylor-sincos-list (i-large-integer)
0
1
(* (m-pi) 1/2))
(append (taylor-sincos-list 28 0 1
(* (m-pi) 1/2))
(taylor-sincos-list (-
(i-large-integer)
28)
28
1

(* (m-pi) 1/2)))))

A similar theorem finds the appropriate split forpi+eps .
The important thing about this split is that the sum of each term is positiva-foir
and negative fom-pi+eps . The sum of the first part can be directly computed by ACL2,

so it can easily prove that it is positive in the casempi :
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(defthm taylor-sincos-list-prefix-m-pi->-0
(> (sumlist (taylor-sincos-list 28 0 1

(* (m-pi) 1/2))) 0))

Similarly, the sum of the first part fon-pi+eps must be negative.

The sum of the second part can not be computed directly, since the vaiue of
large-integer is unspecified. However, sin¢aylor-sincos-list is an alter-
nating sequence, the sum can be bounded by the first element in the sequence. The value of
this first element can be computed directly in ACL2. Therefore, it can prove that the sum

of the second part is positive fan-pi :

(defthm taylor-sincos-list-postfix-m-pi->-0
(> (sumlist (taylor-sincos-list (- (i-large-integer)
28)
28
1
(* (m-pi) 1/2)))
0))

A similar theorem applies tm-pi+eps .

This demonstrates that the sum of the firrge-integers of the Taylor
series for cosine ai-pi is positive. The value of cosine afi-pi is thestandard-partof
this Taylor sum. However, just because the sum is positive does not metemitard-part
is positive. To conclude that, it is necessary to observe thastdredard-partof the sum
is equal to the sum of thetandard-partof each of the two parts. This follows since the
two parts are-limited. Moreover, since the first part of the sum is only adding-&mited
number ofstandardterms, it must betandardso it is its ownstandard-part In other words,
the standard-partof the first is positive. Since th&andard-partof the second sum can not
be negative, it follows that the entire sum is positive. A similar argument establishes that

the cosine om-pi+eps is negative.
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The first necessary lemma is that the sum of the first patiisdard This follows
from the fact that the sum of amlimited prefix of the Taylor series istandard since it is

adding ari-limited number ofstandardvalues:

(defthm taylor-sincos-list-standard
(implies (and (standard-numberp sign)
(integerp counter)
(<= 0 counter)
(standard-numberp counter)
(integerp nterms)
(<= 0 nterms)
(standard-numberp nterms)
(standard-numberp x))
(standard-numberp
(sumlist (taylor-sincos-list nterms
counter
sign

),

Also necessary is the fact that the sum of the second piditiged. Since the Taylor series

is alternating, this follows directly.

(defthm taylor-sincos-list-postfix-limited
(i-limited
(sumlist (taylor-sincos-list (+ (i-large-integer)
-28)
28
1

(* (m-pi) 1/2)))))
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It is an immediate corollary of the theorems above that the cosine of haifmif

must be positive.

(defthm cosine-m-pi/2->-0
(> (acl2-cosine (* (m-pi) 1/2)) 0))

In turn, this forces half ofn-pi to lie in the first quadrant, or equivalentty-pi to be less
thanz. An analogous theorem proves tmatpi+eps is larger thanr. This results in the

following tight estimate fotr:

(defthm pi-tight-bound
(and (< (m-pi) (acl2-pi))
(< (acl2-pi) (m-pit+eps))
(<= (abs (- (m-pi) (m-pi+eps)))
1/100000000000000000000)))

As the theorem states, the estimatefois correct up to 20 significant digits. Moreover,
the computation described in this section can obviously be modified to yield an arbitrary
degree of precision.

Kaufmann used a similar technique to compute the valuendt /2) with an accu-
racy of +1/645120 [36]. That proof, limited by the numeric system of the contemporary
ACL2, served to motivate and guide the introduction of non-standard analysis into ACL2

as described in this thesis.

6.3.2 Approximating sine and cosine

This section presents an epsilon approximation scheme for the sine and cosine functions.
The basic idea is simple. Recall that sine and cosine are defined in terms of the exponential
function. Moreover, these functions have been proved equal to their usual Taylor series

expansion:
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(defthm taylor-sin-valid
(implies (standard-numberp x)
(equal (acl2-sine x)
(standard-part
(sumlist (taylor-sincos-list
(1- (i-large-integer))
1
1

X))

(defthm taylor-cos-valid
(implies (standard-numberp x)
(equal (acl2-cosine Xx)

(standard-part

(sumlist (taylor-sincos-list
(i-large-integer)
0
1

X))

Since the Taylor series is an alternating series, it is possible to approximate its sum

by adding a prefix of it. Moreover, the error of the approximation is bounded by the first
element of the suffix not included in the approximate sum. To find the vakie @f) within

an error bound ofte, it is only necessary to find a term¥ /n! of the Taylor approximation

to sin(z) such thafz™ /n!| < e.

guence. Recall from sectidghl.4thattaylor-sincos-list

The first step is to show thaaylor-sincos-list returns an alternating se-

the ranger € (0, 2]. To generalize this theorem to all values:gfit is necessary to divide
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taylor-sincos-list into ani-limited prefix and an alternating suffix. A possible split
places the firsfx| elements in the prefix and the remaining terms in the suffix. A similar
approach was taken in chaptewhen the functiore® was introduced.

That the sum of the prefix islimited can be proved with the following theorem:

(defthm limited-taylor-sincos-list
(implies (and (i-limited nterms)
(i-limited counter)
(standard-numberp sign)
(i-limited X))
(i-limited (sumlist
(taylor-sincos-list nterms
counter
sign
)
This theorem is true because the sum bfimited number ofi-limited numbers is-limited.
To prove that the suffix is alternating, it is almost sufficient to show #ffdth! <

2"*2/(n + 2)! when|z| < n. Care must be taken to account for the cases whisrzero.

(defthm alternating-sequence-2-p-taylor-sincos
(implies (and (realp Xx)
(realp sign)
(integerp counter)
(< (abs x) counter))
(alternating-sequence-2-p
(taylor-sincos-list nterms
counter
sign

x))))
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Using the properties of alternating series, it is now possible to find an upper bound for the

sum of the suffix:

(defthm sumlist-taylor-sincos-list-bound
(implies (and (realp x)
(realp sign)
(integerp counter)
(< (abs x) counter))

(<= (abs (sumlist (taylor-sincos-list nterms

counter
sign
X))
(abs (taylor-sin-term sign counter Xx))))
The functiontaylor-sin-term simply returns an element of the Taylor expansion for

sine or cosine:

(defun taylor-sin-term (sign counter x)
(* sign
(expt x counter)

(/ (factorial counter))))

What remains is to find a large enougtso that|«|" /n! < € for an arbitrary choice
of z ande > 0. To find such am, first observe that for an integet less tham, |z|" /n! can
be written ag [, 2. TT7,,. ., 2l and soz[" /n! < M - ('Tf;—'n_m> whereM = [T, 12,
If m is chosen so thdt:|/m < 1/2, it follows that|z|"/n! < e if %n—m < 1/2mm <
e/M. So the problem is simply to find anlarge enough so that/2"—™ < ¢/M for some
e/M > 0. The functionguess-num-iters introduced in chapte? can be used to find
such am.

The approximations to sine and cosine can be defined as follows:
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(defun sine-approx (x eps)
(sumlist
(taylor-sincos-list (n-for-sincos x eps)
1
1

X))

(defun cosine-approx (x eps)
(sumlist
(taylor-sincos-list (n-for-sincos x eps)
0
1

X))

The functionn-for-sincos simply finds a suitable givenz andeps. It finds this value
as suggested by the argument above.

The remainder of the proof is simple. Fsiandardvalues ofx andeps, (n-for-

sincos x eps) s i-limited and therefore less thaitlarge-integer) . So the
Taylor series for sine or cosine can be split afteffor-sincos x eps) terms as
follows:

(defthm standard-part-sumlist-taylor-sincos-list-split-2
(implies (and (integerp nterms)
(<= 0 nterms)
(i-large nterms)
(realp x) (standard-numberp x)
(realp eps) (< 0 eps) (< eps 1)
(standard-numberp eps)

(equal n (n-for-taylor-sin-term x eps)))
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(equal (standard-part

(sumlist (taylor-sincos-list nterms

X))

(+ (sumlist
(taylor-sincos-list n 0 1 X))
(standard-part
(sumlist
(taylor-sincos-list (- nterms n)
(1+ n)
(if (evenp
(/ n 2)
1
-1)
X))

The functionn-for-taylor-sin-term , used byn-for-sincos , returns a suitably
large value of: but only fore < 1. The functionn-for-sincos adjusts the value afif
necessary before passing itrtefor-taylor-sin-term . The first term of this sum is
equal to(sine-approx X eps) . The second sum can be bounded by its first element,
and the value of is chosen so that this element is less thaihis proves the correctness

of the approximation functiosine-approx

(defthm-std sine-approx-valid
(implies (and (realp x)
(realp eps) (< 0 eps))
(< (abs (- (acl2-sine x)

(sine-approx x eps)))
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eps)))

A similar argument showsosine-approx is an epsilon approximation scheme for co-
sine.

It should be emphasized that thiee-approx  andcosine-approx  functions
are executable. For example, in sectiom.4it was shown that the cosine of 2 is negative,
but its value was left undetermined. Usingsine-approx , it is possible to find esti-
mates tocos(2) with as much accuracy as desired. ACL2 evalugtesine-approx
2 1/1000) t0-265715113/638512875 o0r-0.4161 . This number is guaranteed to
be within1/1000 of the actual value ofos(2), as can be verified with a calculator.

This chapter began by introducing the sine and cosine functions into ACL2. How-
ever, the previous results show that significantly more has been accomplished. ACL2 has a
fair amount of trigopnometric knowledge, and with some help and guidance itis able to prove

quite interesting trigopnometric facts and approximate complex trigopnometric expressions.
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Chapter 7

Powerlists in ACL2

This chapter makes a sharp departure from the earlier ones. It is time for the spotlight to
move away from the real numbers and non-standard analysis and into the world of data
structures.

In[46], Misra introduced the powerlist data structure, which is well suited to express
recursive, data-parallel algorithms. Misra and others have shown how powerlists can be
used to prove the correctness of several algorithms. Naturally, this success has encouraged
some researchers to pursue automated proofs of theorems about powerlisisi4]. This

chapter shows how such theorems can be proved in ACL2.

7.1 Regular Powerlists

Misra defines powerlists as follows. For any scalahe objectz) is a singleton powerlist.

If z andy are “similar” powerlists — that is, they have the same number of elements, and
corresponding elements are similar — the new powerlistsy andx X y, called the tie

and zip ofz andy, respectively, can be constructed. The powertist y consists of all
elements ofr followed by the elements gf. In contrast,z X y contains the elements

of x interleaved with the elements gf Since tie and zip are defined only for similar
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powerlists, all powerlists are of leng®t for some integern, and moreover all elements of
a powerlist are similar to each other. In the sequel, a more general notion of powerlist will
be introduced. To avoid confusion, powerlists adhering to Misra’s original criteria will be
referred to as “regular” powerlists.

For example(1), (1,2), (3,4), (1,2,3,4) and(1, 3, 2, 4) are all powerlists. More-
over,(1,2) | (3,4) = (1,2,3,4) and(1,2) X (3,4) = (1, 3,2,4).

The theory of powerlists is given by the following axioms (laws4id]):

LO. For singleton powerlistér) and(y), (x) | (y) = (z) X (y).

Lla For any non-singleton powerlisf, there are similar powerlists, R so thatX = L |

R.

L1b. For any non-singleton powerlist, there are similar powerlist®, E so thatX =

OXE.
L2a For singleton powerlistér) and(y), (z) = (y) iff z = y.
L2b. For powerlistsX; | X2 andY; | Y2, X | Xo = Y1 | Y2 iff X1 =Y; and X, =Y.
L2c. For powerlistsX; X X, andY; X Ys, X7 X Xo = Y7 X Y5 iff X; = Y7 and
Xo =Ys.
L3. For powerlistsX;, Xo, Y1, andYs, (X7 | X2) X (Y1 | Y2) = (X1 X Y7) | (X2 X
Y3).

Itis possible to find a smaller set of axioms to characterize powerlists. For example3 law

can be used to define zip in terms of tie, so that only tie remains as an undefined term.
What makes powerlists so special is that they provide a notation in which data-

parallel, recursive algorithms can be expressed naturally. Consider the fusgtipthat

adds up all the elements in the powerlistit can be defined as follows:

s((@) = w

s(z|y) = s(x)+s(y)
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Notice that the recursive computation is recursing twice, once on each half 9f The
result is that the partial sumgz) ands(y) can be computed in parallel, resulting in the
classic addition binary tree implementation. This stands in sharp contrast to the function

t(x) which adds the elements of thst (not powerlist)z:

t(a.x) = a+t(x)

This time, notice how the computation is recursing only once, on a list that is almost as
long as the original list. The resulting computation tree is actually a linear tree as deep as
the input list is long. Clearly, the implied computation is inherently serial; it does not lend
itself to a parallel implementation.

Another benefit of powerlists is that the properties of powerlist functions can be
verified algebraically, proceeding from the powerlist axiobn@sthroughL3. Consider a

different function that also computes the sum of the elements in a powerlist:
u((z)) = =
ulzXy) = u(z)+u(y)

It is possible to prove using a simple induction scheme dfiaj is identical tos(x). Such

proofs will be presented in the following sections.

7.2 Defining Powerlists in ACL2

A Naive Representation of Powerlists

Choosing the right representation of powerlists in ACL2 is not trivial. One immediate
stumbling block is that ACL2 does not support partial functions, so the definitioharaf
X must dosomethingor non-similar powerlists, and in fact for non-powerlist operands.

A first approach might represent powerlists in ACL2 as lists of lerjth The function
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tie would take two powerlists and, if they are of equal length, return their concatenation,
otherwise a special error powerlist (e.gil, ). A similar definition would work forzip .
Such an approach is taken inj], where partial constructors play a central role.

There are a few problems with taking this approach in ACL2. First of all, each
time atie or zip operation is made, it must be proved that the arguments are of equal
length. These proof obligations can become expensive at best, and disastrous if they prevent
term simplification. Moreover, the proof obligations propagate into all theorems concerning
tie andzip ;these obligations can place a large burden on the ACL2 rewriter. The second
problem is that since ACL2 does not support function definitions over terms, powerlist

functions such as
rev({x)) = =
rev(z |y) = rev(y)|rev(z)
need to be turned into the form

X if X is a singleton

rev(right(X)) | rev(left(X)) otherwise

rev(X) =

where the functionge ft andright are defined so thdeft(X) | right(X) = X. But
defining these functions in ACL2 — more germanely, reasoning about them — is not sim-
ple. Intuitively, the problem is that to computeft(X), it is necessary to count the elements
of X, divide by two, then walk back through the elementsXofand return half of them.
Reasoning about all these steps is necessary in every function invocation, so the overhead
quickly overwhelms the prover.

Another problem with this approach is that an explicit definitiorzipf andtie
leaves open the possibility that the theory developed depends on the particular definitions of
Zip andtie used, not just on the powerlist laws as defined by Misra. Simply showing that
the ACL2 functionzip andtie satisfy the axioms is not sufficient, since other properties

of the specific functiongip andtie may be used in the proof of some theorem.
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A Better Representation of Powerlists

The observations above suggest an alternative approach. Instead of representing powerlists
as lists, represent them as binary trees, eans trees. Moreover, remove the restriction
thattie andzip only apply to similar powerlists. The operatitie is now replaced

by a simplecons andleft andright can be defined in terms @far andcdr . The
definition ofzip requires a recursive function, very similar to the one used when represent-
ing powerlists as lists. The result of this representation is that reasoning about powerlists
requires much less overhead than before; however, the representation allows objects that
were previously not recognized as powerlists, for exaniple.3)), where dotted notation

is used to emphasize the structural nature of the representation. In the sequel, the term
“powerlists” will be used to refer to arbitrary “dotted-pair” powerlists as above. The term
“regular powerlists” is reserved to powerlists satisfying Misra’s original constraints.

The generalized notion of powerlists allows the expression of some algorithms
which can not be stated in traditional powerlist theory, for example insertion sort. On the
other hand, it presents some new problems. First, it does not retain a 1-to-1 correspondence
between linear lists and powerlists. For example, the(lis?, 3,4) can be viewed as ei-
ther of the powerlistg1.(2.(3.4))) or ((1.2).(3.4)). This is not too troubling, because the
theorems presented here will be true of either powerlist representation. Naturally, in par-
allel processing applications, it is best to choose the powerlist with the smallest maximal
branch height. The choice, however, is made in the translation from lists to powerlists, not
in the powerlist theory. A second problem is that the operational semantics of certain func-
tions may not carry over to generalized powerlists. For example, the operational semantics
of zip is that it interleaves the elements from its two powerlist arguments. This is clearly
not possible if the arguments have different lengths. The functions defined here match
the operational semantics only for regular powerlists, but they retain the relevant algebraic
properties for all powerlists. For example, thip operator interleaves the elements from

its two arguments when these are regular and similar to each other. Furthermore, for all
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powerlists,zip obeys the algebraic properties stated in ladi, L2c, andL3.

The choice to use generalized powerlists was made taking these tradeoffs into ac-
count. Similar tradeoffs can be found in other approaches to generalized powerlists, such
as Kornerup’s parlistsif].

It is important that the resulting theory is nevertheless faithful to the original theory.
That is, the original axioms dfip andtie hold in the new theory. At the very least, it is
important to ensure that the theorems about regular powerlists are precisely those of Misra’s
theory. To do so requires examining each of Misra’s powerlist axioms in turn.

Observe, since the scalar powerlis is simply represented asin this scheme,
law L2ais trivially true. A drawback of this approach is that nested powerlists are not
implicitly allowed, e.qg.,((1,2), (3,4)) is indistinguishable fron{1, 2, 3,4) in this repre-
sentation. Where nested powerlists are needed, e.g., for matrices, an expligperator

must be used, as imest((1,2)), nest((3,4))).

The Tie Constructor

The actual implementation begins with the definition of the data type powerlists. Recall the
intent of clearly separating the logical properties of powerlists from any special properties
deriving from the specific definitions dfe andzip . This separation can be cleanly
enforced by using the ACL&ncapsulate  primitive to introducetie as a constrained

function. Consider the following partial encapsulate:

(encapsulate

((powerlist (car cdr) t)
(powerlist-p (powerlist) t)
(powerlist-car (powerlist) t)

(powerlist-cdr (powerlist) t))

(local
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(defun powerlist (car cdr)

(cons ’powerlist (cons car (cons cdr nil)))))

(local
(defun powerlist-p (powerlist)
(and (consp powerlist) (consp (cdr powerlist))
(consp (cdr (cdr powerlist)))
(null' (cdr (cdr (cdr powerlist))))

(eq (car powerlist) 'powerlist))))

(local
(defun powerlist-car (powerlist)

(car (cdr powerlist))))

(local
(defun powerlist-cdr (powerlist)

(car (cdr (cdr powerlist)))))

)

This exports the signatures of the powerlist construptmwerlist , the powerlist rec-
ognizerpowerlist-p  , and the destructongowerlist-car andpowerlist-cdr :

while completely hiding the details of the implementation. Note, the fungiawerlist

is intended to correspond to the tie operation. To emphasize this fact, it is convenient to

explicitly definep-tie  as a macro:

(defmacro p-tie (x y)
‘(powerlist ,x ,y))
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Similarly, the macrog-untie-I and p-untie-| can stand fompowerlist-car
andpowerlist-cdr , respectively. These destructors will be referred to as the “left” and
“right half” of a powerlist.

What remains is to present sufficient constraints on these functions so that they sat-
isfy Misra’s powerlist laws. For examplppwerlist-p should be true of an object con-
structed withpowerlist . Moreover,powerlist-car andpowerlist-cdr should

behave as inverses pmwerlist

(encapsulate

(defthm defs-powerlist-p-powerlist

(equal (powerlist-p (powerlist car cdr)) t))

(defthm defs-read-powerlist
(and (equal (powerlist-car (powerlist car cdr))
car)

(equal (powerlist-cdr (powerlist car cdr))

cdr)))

(defthm defs-eliminate-powerlist
(implies (powerlist-p powerlist)
(equal (powerlist (powerlist-car powerlist)
(powerlist-cdr powerlist))

powerlist)))

Because powerlists are recursive data structures, it is no surprise that functions will be

defined recursing opowerlist-car and powerlist-cdr . So it is also necessary
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to prove that such recursions are justified; i.e., that there is a well-founded measure that is

reduced by invocations feowerlist-car andpowerlist-cdr

(encapsulate

(defthm untie-reduces-count
(implies (powerlist-p x)
(and (< (acl2-count (powerlist-car x))
(acl2-count x))
(< (acl2-count (powerlist-cdr X))

(acl2-count x)))))
)

Becausaintie-reduces-count is used so often in inductive definitions, it is worth-
while to make it abuiltin rule in ACL2. This requires only that the theorem is stated in
precisely the same way that ACL2'’s definition procedure phrases the recursive termination
proof obligation. The easiest way to do so is simply to cut and paste the appropriate goal
from a run of ACL2. Finally, it is necessary to show some objects that are guaranteed not

to be powerlists, for example numbers and booleans:

(encapsulate

(defthm nesting-powerlists

(equal (powerlist-p (list 'nest x)) nil))

(defthm powerlist-non-boolean
(implies (powerlist-p x)

(not (booleanp x))))
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(defthm boolean-non-powerlist
(implies (booleanp x)

(not (powerlist-p x))))

(defthm powerlist-non-numeric
(implies (powerlist-p X)

(not (acl2-numberp x))))

(defthm numeric-non-powerlist
(implies (acl2-numberp x)
(not (powerlist-p x))))
)

Notice the theoremmesting-powerlists . Recall that in this representation it is im-
possible to represent nested powerlists without an explicit nesting operator. The theorem
nesting-powerlists guarantees that objects of the foifmest ~ X) can not possi-

bly be powerlists, hence a powerlistcan be nested inside another powerlist by placing it

in the term'(nest  x) .

The Zip “Constructor”

It is now possible to define the functignzip  which implements the zip “constructor”:

(defun p-zip (x y)
(if (and (powerlist-p x) (powerlist-p y))
(p-tie (p-zip (p-untie-l x) (p-untie-l y))
(p-zip (p-untie-r x) (p-untie-r y)))
(p-tie x y)))
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Note how the definition op-zip mirrors LO andL3, hence these axioms are satisfied by
these definition op-tie  andp-zip . In order to accept definitions basedpizip , the
functionsp-unzip-| andp-unzip-r , analogous t@-untie-I andp-untie-r

need to be defined. This can be done as follows:

(defun p-unzip-l (x)
(if (powerlist-p Xx)
(if (powerlist-p (p-untie-l x))
(if (powerlist-p (p-untie-r X))
(p-tie (p-unzip-l (p-untie-l x))
(p-unzip-l (p-untie-r x)))
(p-untie-l x))
(p-untie-l x))
X))

(defun p-unzip-r (Xx)
(if (powerlist-p x)
(if (powerlist-p (p-untie-l X))
(if (powerlist-p (p-untie-r X))
(p-tie (p-unzip-r (p-untie-l x))
(p-unzip-r (p-untie-r x)))
(p-untie-r x))
(p-untie-r x))
nil))

Note, these functions provide the equivalent to Misra’s lalb. It is possible to prove
the validity of recursion based qgnzip , using a theorem similar tontie-reduces-

count .
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Notice thatp-unzip-I andp-unzip-r  return every other element of a regular
powerlistx. If the elements ok are indexed from 1(p-unzip-l x) returns the odd-
indexed elements,an(@-unzip-r x) the even-indexed ones. Hence, in the seguel
unzip-l andp-unzip-r  will be referred to as the odd- and even-indexed elements of
X, respectively. They will also be referred to as the “left unzip” and “right unzipk .of

The definitions ofp-unzip-I andp-unzip-r  were carefully constructed so

that the following theorems are all true:

(defthm zip-unzip
(implies (powerlist-p Xx)
(equal (p-zip (p-unzip-l x)
(p-unzip-r x))
X))

(defthm unzip-I-zip
(equal (p-unzip-l (p-zip x ¥y)) X))

(defthm unzip-r-zip
(equal (p-unzip-r (p-zip x y)) Y))
These three theorems prove the equivalent of l&e for the ACL2 powerlists. On an
implementation notezip-unzip  should be anelim rule so that ACL2 can use it to

eliminate the destructos-unzip-| andp-unzip-r  in favor of p-zip , in the same

way it removegar andcdr and replaces them usigns .

7.2.1 Similar Powerlists

At this point, the definitions op-tie andp-zip are known to satisfy all of Misra’s
powerlist axioms, except for the notion of similarity. Lalwa andL1b claim that thep-

untie-| andp-untie-r of a powerlist are similar, i.e. of the same length, as are its
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p-unzip-I andp-unzip-r . This is certainly not the case with ACL2 powerlists, since

powerlists are not required to be of length. However, it is possible to add conditions,

namely that the given powerlists be regular, that make these theorems true. Later, these

regularity conditions will surface as hypotheses in some of the example theorems proved.
As in [46], two powerlists are defined as similar if they have the saéime-tree

structure:

(defun p-similar-p (x y)
(if (powerlist-p Xx)
(and (powerlist-p y)
(p-similar-p (p-untie-l x) (p-untie-l y))
(p-similar-p (p-untie-r x) (p-untie-r y)))
(not (powerlist-p y))))

It follows immediately thafp-similar-p is an equivalence relation. This proves use-
ful, because ACL2 can use this fact in its generic “equivalence” reasoning, hence making
theorems aboyi-similar-p easier to prove.

The next task is to show howp-similar-p powerlists behave in conjunction
with the constructors and destructors basegdie  andp-zip . These theorems are
trivial for regular powerlists, since powerlists are similar if and only if they have the same
length. Moreover, both zip and tie double the length of a powerlist, and unzip and untie
halve it.

Things are a little murkier in the case of general powerlists; this lost simplicity is
the price paid for not using a regular data structure as suggested by Misra. For starters, it is

easy to prove theorems about the destructors, such as the following:

(defthm unzip-I-similar
(implies (p-similar-p x y)

(p-similar-p (p-unzip-l x) (p-unzip-l y))))

151



The analogous theorems fprunzip-r  as well as fop-untie  are also trivial. These

theorems will be used most often in proving the antecedent of an inductive hypothesis. For

example, with the goal

(implies (p-similar-p x y)
(P xy)

where propert\ is defined in terms gb-zip , the following subgoal is likely to be gener-

ated by induction:

(implies (and (powerlist-p x)
(p-similar-p x y)
(implies (p-similar-p (p-unzip-l x)
(p-unzip-l y))
(P (p-unzip-l x) (p-unzip-l y)))
(implies (p-similar-p (p-unzip-r x)
(p-unzip-r y))
(P (p-unzip-r x) (p-unzip-r y))))
(P xy)
At this point, unzip-Il-similar can be used to establish tH& (p-unzip-l x)
(p-unzip-1 y)) is true and the proof can proceed. Since this is the intended use, these
theorems can be turned inttorward-chaining rules, which are triggered before
ACL2’'s general rewriting engine (and hence provide a modest performance improvement).
Remaining are the constructgrdie andp-zip . It should be possible to prove
that when a powerlist is zipped (tied) to one of two similar powerlists, the result is similar to
when itis zipped (tied) to the other. ACL2 provides a general way to reason about this type
of theorem, namely congruence rewriting. With congruence rewriting, ACL2 will deduce
(p-zip X1 vy) is similar to(p-zip X2 vy) whenx1 is similar tox2, and similarly

that(p-zip x yl) and(p-zip x y2) are similar wheryl andy2 are. Congruence

rules can be defined in ACL2 as follows:
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(defcong p-similar-p p-similar-p (p-zip X y) 1)
(defcong p-similar-p p-similar-p (p-zip X y) 2)

Thedefcong event is simply syntactic sugar for the following rules:

(defthm p-similar-p-implies-p-similar-p-p-zip-1
(implies (p-similar-p x x-equiv)
(p-similar-p (p-zip X V)
(p-zip x-equiv y)))
‘rule-classes (:congruence))

(defthm p-similar-p-implies-p-similar-p-p-zip-2
(implies (p-similar-p y y-equiv)
(p-similar-p (p-zip X V)
(p-zip x y-equiv)))
:rule-classes (:congruence))

7.2.2 Regular Powerlists

Another useful property of powerlists sregular-p which is true of a perfectly bal-
anced powerlist, that is, one which corresponds to the theorifinThis condition is more
expensive to verify thap-similar-p , because it requires passing information from one
half of the powerlist to the other, i.e., not only must the left and right halves of the powerlist
be regular, their depth must be the same. Rather than explicitly reasoning about depth, it
is convenient to use-similar-p , since several theorems about it have already been

established. The result is the following definition:

(defun p-regular-p (x)
(if (powerlist-p x)

(and (p-similar-p (p-untie-l x) (p-untie-r X))
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(p-regular-p (p-untie-l x))
(p-regular-p (p-untie-r x)))
1)

Note that both the similarity and regularity conditions of the definition are required to re-
strict powerlists to be of length. For example, if the similarity condition were left out,
(1.((2.3).(4.5))) would be considered regular. Likewise, if the regularity conditions were
left out, the powerlist(1.(2.3)).(4.(5.6)) would be considered regular. It will be seen later
that both regularity conditions are not needed in the definition.

As was the case witp-similar-p , itis necessary to show haguvregular-p
interacts with the constructors and destructorp-t  andp-zip . This results in the

following type of theorem:

(defthm unzip-regular
(implies (p-regular-p x)
(and (p-regular-p (p-unzip-l X))
(p-regular-p (p-unzip-r x)))))

The converse theorem, about the constructor functions requires an extra hypothesis, namely
that the powerlists to be tied or zipped be similar. This is the formal equivalent of the
restriction that and only apply to powerlists of the same length. The theorem can be

stated as follows:

(defthm zip-regular
(implies (and (p-regular-p x)
(p-similar-p x y))
(p-regular-p (p-zip x ))))

Another group of theorems explores the interaction betweeggular-p and
p-similar-p powerlists. For example, the unzips and unties of regular powerlists are

similar:
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(defthm regular-similar-unzip-untie
(implies (and (powerlist-p Xx)
(p-regular-p x))
(and (p-similar-p (p-unzip-l x)
(p-unzip-r X))
(p-similar-p (p-unzip-I x)
(p-untie-l x))
(p-similar-p (p-unzip-r Xx)

(p-untie-r x)))))

This particular theorem provides the missing similarity assertion of labesandL1b.

Similar theorems, such as a powerlist similar to a regular powerlist is also regular,
can be easily proved. This particular theorem justifies the removal of one of the recur-
sive p-regular-p instances in the definition qf-regular-p . It is probably best to
leave the definition as is, because of symmetry and also because having the extra condition
immediately available may be useful whpsregular-p is found as a hypothesis in a
theorem.

The notionp-similar-p appears much more useful thaategular-p  , since
similarity ensures that a function taking more than one argument can recurse on one of
the arguments and still visit all the nodes of the other argument, e.g., for pairwise addition
of powerlists. In fact, the main use pfregular-p is to show that two powerlists are
similar. This occurs when a single powerlist is split and a function applied to the two
halves. It also occurs when two powerlists are traversed in a non-standard ordering, e.g., by
splitting them into left and right halves and then combining the left half of one with the right
half of the other or by splitting with unzip and combining with tie. In these caseq-the
regular-p  condition ensures that all of the pieces that can be splipagieilar-p

to each other, making it possible to use whatever function of two lists should process them.
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7.2.3 Functions on Powerlists

When working with powerlists, many similar functions, usually small and incidental to the
main theorem, are encountered. For example, it may be necessary to add all the elements of
a powerlist, or find their minimum or maximum, etc. It may also be necessary to take two
powerlists and return their pairwise sum, product, etc. Moreover, often similar theorems
about these functions need to be proved, such as the sum (maximum, minimum) of the sum
(maximum, minimum) of two powerlists is the same as the sum (maximum, minimum)

of their zip. This is a perfect opportunity to use ACL2’s encapsulation primitive to prove
the appropriate theorem schemas, which can later be instantiated with specific functions in
mind.

To illustrate the approach, consider the following encapsulation:

(encapsulate

((fnl x) b
(fn2-accum (x y) t)

(equiv (xy) 1)

(local (defun fnl (x)  (fix x)))
(local (defun fn2-accum (x y) (+ (fix x) (fix y))))
(local (defun equiv (x y) (equal x y))

(defthm fnl-scalar
(implies (not (powerlist-p X))

(not (powerlist-p (fnl x)))))

(defthm fn2-accum-commutative

(equiv (fn2-accum x y) (fn2-accum y x)))
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(defthm fn2-accum-associative
(equiv (fn2-accum (fn2-accum Xx y) z)

(fn2-accum x (fn2-accum vy z))))

(defcong equiv equiv (fn2-accum x y) 1)

(defcong equiv equiv (fn2-accum x y) 2)

(defequiv equiv))

This definednl as a scalar functiorin2-accum as an associative-commutative binary
function, andequiv as an equivalence relation. Outside of the encapsulation, nothing is
known about the functions other than the constraints proved in the encapsulate. Hence, any
theorems that can be proved about these functions could also be proved about any functions
that satisfy the constraints. In effect, theorems alfiolit, fn2-accum , andequiv are
theorem schemas, which can be instantiated for any suitable function. This allows the basic
proof pattern to be derived once and to be used in multiple instances thereatfter.

As a motivating example, consider applyifmd. to all the elements of a powerlist,
e.g., squaring all values in a powerlist. Another example frs2sccum to accumulate
all the values in the powerlist into an aggregate. Both of these functions can be defined in
two obvious ways, namely recursing in terms of eithdie  or p-zip . Naturally, the
result is expected to be the same, regardless of which way the function is defined. So for

example, the following theorem should be established:

(defun a-zip-fn2-accum-fnl (x)
(if (powerlist-p x)
(fn2-accum (a-zip-fn2-accum-fnl (p-unzip-1 x))
(a-zip-fn2-accum-fnl (p-unzip-r Xx)))

(fnl x)))
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(defun b-tie-fn2-accum-fnl (x)
(if (powerlist-p x)
(fn2-accum (b-tie-fn2-accum-fnl (p-untie-l X))
(b-tie-fn2-accum-fnl (p-untie-r x)))

(fnl x)))

(defthm a-zip-fn2-accum-fnl-same-as-b-tie-fn2-accum-fnl
(equiv (b-tie-fn2-accum-fnl x)

(a-zip-fn2-accum-fnl x)))

At this point, it is not clear that anything important has been accomplished. After all, the
abstract theorem proved seems a bit contrived. How often does one define a function first in
terms ofp-zip , theninterms op-tie ? If such duplicate definitions are avoided, say by
arbitrarily choosing to define them in termsmwtie  always, the above is wasted effort.

The following intuition will suffice to explain why this effort is important. While
simple functions, such as the above, are just as easily defined in tenmBeof asp-
zip , this is not the case for more complex functions. For example, consider the function
p-ascending-p which is true for an ascending powerlist. This is much more easily
expressed in terms @ktie |, since it is simpler to decide when thetie  of two ascend-
ing powerlists is ascending than to decide when tpezip is ascending. On the other
hand the functiomp-batcher-merge discussed later is naturally expressed in terms of
p-zip , since it works by successively merging the odd- and even-indexed elements of
a powerlist. Naturally, when proving theorems abptascending-p , auxiliary func-
tions should be defined in terms pftie , so that all the recursions open up in the same
way. Such a function may find the minimum of a powerlist. But when reasoning about
p-batcher-merge , the same functions are needed, only this time it is preferable to re-
curse in terms op-zip , so that it “opens up” the same way in an inductive proof. What is

left then is the glue to tie the two definitions of each auxiliary function together. This is an
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explicit instance of the theorem schema above.

In fact, it should be pointed out that the creation of these theorem schemas came as
a direct result of having proved a seemingly endless stream of similar small theorems. It is
these theorems that formed the basis of the theorem schema above; i.e., all these abstract
theorems were constructed by “unifying” needed lemmas in one specific proof of another.
To reinforce this, consider the accumulators above. The scalar furinfioseems unnec-
essary, as does the equivalence relaéiquiv . It would be simpler to state the theorems
purely in terms offn2-accum  which is the binary operator that is being abstracted and
equal . However, the forms above were suggested by the specific instances appearing in
the examples. One such instancenimimum where the accumulator is timin function
andequiv andfnl are the equality and identity functions, respectively. Another instance
is list-of-type where the accumulator is tlaad function,equiv theiff function,
andfnl a scalatype-p function.

Accepting for now that this effort is not wasted, consider the following useful theo-
rems. As expected by now, a key series of lemmas show how the funetipipsfn2-
accum-fnl andb-tie-fn2-accum-fnl behave with respect to the constructors and
destructors op-tie andp-zip ; for example, the following theorems reldbetie-

fn2-accum-fnl  top-zip

(defthm zip-b-tie-fn2-accum-fnl
(equiv (b-tie-fn2-accum-fnl (p-zip X y))
(fn2-accum (b-tie-fn2-accum-fnl x)
(b-tie-fn2-accum-fnl y))))
(defthm unzip-b-tie-fn2-accum-fnl
(implies (powerlist-p x)
(equiv (fn2-accum
(b-tie-fn2-accum-fnl (p-unzip-l x))

(b-tie-fn2-accum-fnl (p-unzip-r Xx)))
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(b-tie-fn2-accum-fnl x))))

Both of these theorems are useful in establishing the antecedent of induction hypotheses.
ACL2 provides a special type of rule which seems tailor made for this purpose. The
:definition rule type allows alternative definitions to be specified for a given function;
e.g., it allows the functiofin2-accum-fnl  to be given a definition in terms qf-tie
and one in terms gb-zip , provided their equivalence can be proved. The ACL2 rewriter
decides which definition to use when expandimgraccum-fnl  depending on the other
terms in the theorem to be proved. So for example, if a theorem contains many instances
of p-zip , thep-zip definition offn2-accum-fnl  would be chosen. While this ap-
proach seems promising, it resulted in a significant performance degradation, because the
rewriter spent too much time deciding which definition to use. As a result, the approach
outlined here appears best, at least to those who prefer guiding the theorem prover towards
a particular proof rather than waiting for the prover to possibly discover deep proofs on its

own.

7.3 Simple Examples

In this section, various examples frort] are formalized in ACL2. This illustrates how the
primitives defined in section.2are sufficient for ACL2 to prove theorems about powerlists.
Start with thep-reverse  function, which reverses a powerlist; e g-teverse

of ((1.2).(3.4)) is ((4.3).(2.1)). The definition, a straight transliteration fromd], is as

follows:

(defun p-reverse (p)
(if (powerlist-p p)
(p-tie (p-reverse (p-untie-r p))
(p-reverse (p-untie-l p)))
p))
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Similarly, p-reverse-zip can be defined, reversing in termsmkip instead ofp-
tie . ACL2 canimmediately verify thgi-reverse isits own inverse. That s, it trivially

accepts the following theorem:

(defthm reverse-reverse

(equal (p-reverse (p-reverse X)) X))

Before proving thap-reverse  andp-reverse-zip are equal, however, the following

lemma is needed:

(defthm reverse-zip

(equal (p-zip (p-reverse x) (p-reverse Y))

(p-reverse (p-zip y X))))

This lemma, typical of both Ngthm and ACL2 lemmas, tells ACL2 how to “pysizip

into ap-reverse . Given this lemma, ACL2 can now easily verify the following:

(defthm reverse-reverse-zip

(equal (p-reverse-zip X) (p-reverse X)))

It is interesting to note that the theorem above does not depend on the structure of the
powerlistx. Specifically, there is no requirement thxats regular.

The functiong-rotate-right andp-rotate-left which return a rotation
of their arguments are easily defined in termpdfip ; indeed their simplicity is a tribute

to thep-zip constructor:

(defun p-rotate-right (x)
(if (powerlist-p x)
(p-zip (p-rotate-right (p-unzip-r X))
(p-unzip-l x))
X))
(defun p-rotate-left (x)
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(if (powerlist-p Xx)
(p-zip (p-unzip-r x)
(p-rotate-left (p-unzip-I x)))
X))

Again, ACL2 can prove a number of theorems unassisted. For example, it can show that

p-rotate-right andp-rotate-left are inverses with the following theorem:

(defthm rotate-left-right
(equal (p-rotate-left (p-rotate-right x)) X))

Notice again that the theorem remains true even for arbitrary powerlists, not just regular
powerlists. ACL2 can also prove the analogous theorem where the powerlist is rotated to
the left first.

In addition, ACL2 proves that zip and rotate “almost” commute. The operations are

not strictly commutative, because the direction of the rotation needs to be reversed:

(defthm reverse-rotate
(equal (p-reverse-zip (p-rotate-right X))

(p-rotate-left (p-reverse-zip Xx))))
This theorem can be used to prove the following “amusing identity” due to Misra:

(defthm reverse-rotate-reverse-rotate
(equal (p-reverse-zip
(p-rotate-right
(p-reverse-zip

(p-rotate-right x))))
X))

Next, consider repeated shifts. The functipmotate-right-k loops over

p-rotate-right k times:
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(defun p-rotate-right-k (x k)
(if (zp K
X

(p-rotate-right (p-rotate-right-k x (1- k)))))

A subtler definition shifts the odd-indexed and even-indexed elements by about kalf of

then joins the result. This is given below:

(defun p-rotate-right-k-fast (x k)
(if (powerlist-p x)
(if (integerp (/ k 2))
(p-zip (p-rotate-right-k-fast (p-unzip-l x)
(/ k 2)
(p-rotate-right-k-fast (p-unzip-r X)
(/ k 2))
(p-zip (p-rotate-right-k-fast (p-unzip-r x)
1+ (¢ (1- k) 2))
(p-rotate-right-k-fast (p-unzip-I x)
(@ k) 2)))
X))

ACL2 can prove the equality of these two functions, but only with a certain amount of help,
partly because ACL2 has a hard time reasoning about the vallxeahove.

Another function suggested by Misra is the shuffle function, which rotates not the
elements of a powerlist, but their indices, based on zero-indexing. For example, the low-
order bit of the index becomes the high-order bit, and hence the even-indexed elements will

appear at the front of the result. This function can be defined as follows:

(defun p-right-shuffle (x)
(if (powerlist-p x)
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(p-tie (p-unzip-l x) (p-unzip-r X))
X))
Particularly noteworthy is that-right-shuffle mixes thep-zip  destructors with the
p-tie  constructor. Once more, ACL2 is able to prove without assistancephedt-

shuffle  andp-right-shuffle are inverses:

(defthm left-right-shuffle
(equal (p-left-shuffle (p-right-shuffle x)) x))

Notice again that the theorem is true regardless of whether the powedistgular. This is
somewhat surprising given that the functions were defined precisely with a regular powerlist
in mind.

Another interesting permutation functiongsanvert  which reverses the bit vec-
tor of the index of a powerlist. This function is used, for example, in the Fast Fourier

Transform algorithm. It can be defined as follows:

(defun p-invert (x)
(if (powerlist-p X)
(p-zip (p-invert (p-untie-I x))
(p-invert (p-untie-r x)))
X))

Following [4€], the following lemma can be proved:

(defthm invert-zip
(equal (p-invert (p-zip x Y))
(p-tie (p-invert x) (p-invert y))))
It is interesting that this lemma, although typical of ACL2 lemmas, was actually needed
in Misra’s original hand proof. As inf6], ACL2 can now prove, without user interven-
tion, thatp-invert  is its own inverse. Moreover, it can prove thatnvert  andp-

reverse commute:

164



(defthm invert-invert

(equal (p-invert (p-invert x)) x))

(defthm invert-reverse
(equal (p-invert (p-reverse Xx))

(p-reverse (p-invert x))))

Finally, given an arbitrary binary functiom2 (defined in arencapsulate  similar to
the one in sectioi.2.3 applied pairwise to the elements of two lists, it can be shown that

p-invert  andfn2 commute:

(defthm invert-zip-fn2
(implies (p-similar-p x y)
(equal (p-invert (a-zip-fn2 x y))
(a-zip-fn2 (p-invert Xx)
(p-invert y)))))

7.4 Sorting Powerlists

Consider the problem of sorting a powerlist. The specification of being sorted is as follows:

(defun p-sorted-p (x)
(if (powerlist-p Xx)
(and (p-sorted-p (p-untie-l x))
(p-sorted-p (p-untie-r x))
(<= (p-max-elem (p-untie-l x))
(p-min-elem (p-untie-r Xx))))

B)

where the functionp-min-elem andp-max-elem return the minimum and maximum

elements of a powerlist respectively. The definitiopehin-elem s as follows:
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(defun p-min-elem (x)
(if (powerlist-p x)
(if (<= (p-min-elem (p-untie-l X))
(p-min-elem (p-untie-r x)))
(p-min-elem (p-untie-l X))
(p-min-elem (p-untie-r x)))

(realfix x)))

For example, the-min-elem  of (3,2,4,6) is 2. Notice howp-sorted-p is most
naturally expressed in termspitie ; in fact, it is not immediately obvious how an equiv-
alent definition can be written in terms pfzip . For this reasonp-min-elem in also
defined in terms op-tie , though it could just as easily have been defined in ternps of
zip . However, since it is likely that reasoning ab@dzip  will be needed in the future,

theorems such as the following should prove useful:

(defthm min-elem-zip
(equal (p-min-elem (p-zip X Y))
(if (<= (p-min-elem x) (p-min-elem vy))
(p-min-elem x)

(p-min-elem y))))

(defthm min-elem-unzip
(implies (powerlist-p Xx)
(and (>= (p-min-elem (p-unzip-l X))
(p-min-elem x))
(>= (p-min-elem (p-unzip-r x))

(p-min-elem x)))))

Both of these theorems are instances of generic theorems proved in segti®so ACL2

does not need to perform added work in proving them (given an appropriate hint to instanti-
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ate the generic theorems). Moreover, since different sorting algorithms are likely to require
similar theorems aboyt-min-elem , p-sorted-p , and so on, it pays to prove these up
front. For example, it can be established once and for all that the minimum of a powerlist is
no larger than its maximum. It can also be proved Ipegorted  behaves in the presence
of p-zip , etc.

Another requirement of a sorting algorithm is that it return a permutation of its
argument. To ensure this, the following function can be used, returning the number of times

a given argument appears in a powerlist:

(defun p-member-count (x m)
(if (powerlist-p Xx)
(+ (p-member-count (p-untie-l x) m)
(p-member-count (p-untie-r x) m))

(if (equal x m) 1 0Q)))

Again, it is useful to prove basic theorems abpunember-count , such as how it be-
haves withp-zip , since these lemmas will likely prove useful to any sorting algorithm.
In summary, a proposed sorting algorittprsort  should satisfy the following

theorems:
e (p-sorted-p (p-sort X))

e (equal (p-member-count (p-sort x) m)

(p-member-count x m))
Of course, specific sorting routines may impose restrictions on the original powesist.,
a routine may only work with numeric lists.
7.4.1 Merge Sorting

Merge sort is a very natural parallel sorting algorithm. An abstract merge sort over pow-

erlists can be defined as follows:
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(defun my-merge-sort (x)
(if (powerlist-p x)
(p-merge (my-merge-sort (p-split-1 x))
(my-merge-sort (p-split-2 x)))
X))

The functionsp-merge , andp-split-1 and p-split-2 instantiate specific merge

sort algorithms. Classicallyp-merge will be a complicated function and the split func-

tions will be trivial. These functions and their relevant theorems can be encapsulated, and
the correctness of this generic merge sort should be provable from the constraints on these

functions. In particular, the following theorems should be established:

(defthm merge-sort-is-permutation
(implies (p-sortable-p x)
(equal (p-member-count (p-merge-sort x) m)

(p-member-count x m))))

(defthm merge-sort-sorts-input
(implies (p-sortable-p x)

(p-sorted-p (p-merge-sort x))))

Thep-sortable-p goal permits merge algorithms that only work for a subclass of pow-
erlists; the forthcoming Batcher merge, which only works for regular powerlists, is an ex-
ample of such an algorithm.

In order to prove the theorems above, the following assumptions about the generic

merge functions are needed:

(encapsulate
((p-sortable-p (x) t)
(p-mergeable-p (x y) t)
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(p-split-1 (x) t)
(p-split-2 (x) t)
(p-merge (x y) 1)
(p-merge-sort (x) X))

(defthm *obligation*-split-reduces-count
(implies (powerlist-p X)
(and (e0-ord-< (acl2-count (p-split-1 X))
(acl2-count x))
(e0-ord-< (acl2-count (p-split-2 x))
(acl2-count x)))))

(defthm *obligation*-member-count-of-splits
(implies (powerlist-p X)
(equal (+ (p-member-count (p-split-1 x) m)
(p-member-count (p-split-2 x) m))

(p-member-count x m))))

(defthm *obligation*-member-count-of-merge
(implies (p-mergeable-p x y)
(equal (p-member-count (p-merge X y) m)
(+ (p-member-count x m)

(p-member-count y m)))))
(defthm *obligation*-sorted-merge

(implies (and (p-mergeable-p x )
(p-sorted-p Xx)
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(p-sorted-p y))
(p-sorted-p (p-merge x ¥))))

(defthm *obligation*-merge-sort
(equal (p-merge-sort Xx)
(if (powerlist-p x)
(p-merge (p-merge-sort (p-split-1 x))
(p-merge-sort (p-split-2 x)))
X))

(defthm *obligation*-sortable-split
(implies (and (powerlist-p Xx)
(p-sortable-p x))
(and (p-sortable-p (p-split-1 x))
(p-sortable-p (p-split-2 x)))))

(defthm *obligation*-sortable-mergeable
(implies (and (powerlist-p Xx)
(p-sortable-p x))
(p-mergeable-p (p-merge-sort
(p-split-1 x))
(p-merge-sort
(p-split-2° x))))))

Recall, however, that before ACL2 accepts sucleacapsulate  event, it must be given
a witness function; that is, an implementation of such a merging scheme. The easiest route

is to use a vacuous mergetr, i.e., by locally defirpagprtable-p to benil
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7.4.2 Batcher Sorting
One of Batcher’s sorting algorithms can be defined as follails [

(defun p-batcher-sort (x)
(if (powerlist-p x)
(p-batcher-merge (p-batcher-sort (p-untie-l X))

(p-batcher-sort (p-untie-r x)))
X))

The definition follows the pattern of the generic merging algorithm introduced in the previ-
ous section, using-batcher-merge as the merge operation. Therefore, the correctness

of this function can be verified simply by verifying thatbatcher-merge correctly

merges two sorted lists.

The Batcher merge is given by the following:

(defun p-batcher-merge (x y)
(if (powerlist-p Xx)
(p-zip (p-min (p-batcher-merge (p-unzip-l x)

(p-unzip-r y))

(p-batcher-merge (p-unzip-r Xx)
(p-unzip-l y)))

(p-max (p-batcher-merge (p-unzip-l x)
(p-unzip-r y))

(p-batcher-merge (p-unzip-r Xx)
(p-unzip-1 y))))

(p-zip (p-min x y) (p-max X Yy))))

The functiongp-min andp-max return respectively the pairwise minimum and maximum
of two powerlists. Sincg-zip features prominently in the definition pfbatcher-

merge, it is not surprising to fingb-min andp-max similarly defined.
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At first glance, the definition gb-batcher-merge looks straight-forward. Cer-
tainly, it seems that a straight-forward structural induction should be sufficient to prove
all the properties about it one would wish. Howerver, there are two imposing challenges
ahead. The first is that-batcher-merge is defined in terms op-zip , whereas the
target predicat@-sorted-p  is defined in terms op-tie . This is especially trouble-
some becauge-batcher-merge does not recurse evenly through its arguments. Notice
in particular how the thé&eft unzip ofx is merged with theight unzip ofy, and vice versa.

Consider first the proof of the following goal:

(equal (p-member-count (p-batcher-merge x y) m)
(+ (p-member-count x m)

(p-member-count y m)))

Sincep-min andp-max operate on the pairwise points xfandy, it is reasonable to
require thatx andy be similar. Moreover, sincp-batcher-merge is recursing on
opposite halves ot andy, it is reasonable to expect the powerlists must also be regular.
Moreover, it will be necessary to constrain the powerlist to contain only real numbers. This
is because the ordering imposedgynax is only well-defined over the reals. Of course,

it will be necessary to prove the theorems that all intermediate results satisfy the structural
requirements of the hypothesis; i.e., for simikaandy their p-min andp-max are also
similar, etc.

The goal becomes the following:

(defthm member-count-of-merge
(implies (and (p-regular-p x)
(p-similar-p x )
(p-number-list x)
(p-number-list y))
(equal (p-member-count

(p-batcher-merge x y) m)
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(+ (p-member-count x m)

(p-member-count y m)))))

To prove the above claim, it must be established that all the valuesnély can be found
somewhere in theip-min andp-max . This can be proved generically; that is, it can be

shown that the sum of any scalar function oxemdy is unaffected byp-min andp-max :

(defthm a-zip-plus-fn1-of-min-max
(implies (and (p-similar-p X y)
(p-number-list x)
(p-number-list y))
(equal (+ (a-zip-plus-fnl (p-max X y))
(a-zip-plus-fnl (p-min X y)))
(+ (a-zip-plus-fnl x)
(a-zip-plus-fnl y)))))

Notice that this is an extension of the generic theorems defined in sécfidto include

specific functions, such gsmin andp-max. The functiona-zip-plus-fnl is an
instance of-zip-fn2-accum-fnl ; it finds the sum of all the elements in a powerlist.
From the generic lemmas proved in sectio@.3 it follows thata-zip-plus-fnl is
equivalent td-tie-plus-fnl , which is analogous tb-tie-fn2-accum-fnl . Us-

ing this lemma, the similar result f@-batcher-merge follows easily:

(defthm a-zip-plus-fnl-of-merge
(implies (and (p-regular-p x)
(p-similar-p x )
(p-number-list x)
(p-number-list y))
(equal (a-zip-plus-fnl (p-batcher-merge x vy))
(+ (a-zip-plus-fnl x)
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(a-zip-plus-fnl y)))))

By instantiatingnl with the pseudo-functioflambda (x) (if (= x m) 1 0))
and using the equivalence afzip-plus-fnl andb-tie-plus-fnl , the theorem
member-count-of-merge follows trivially.

Notice above how all the reasoning was done with respegtdip , and only the
last step appealed to the equivalence-ohember-count  as defined in terms gf-zip
andp-tie  to complete the proof.

It is time to tackle the question of whgmbatcher-merge returns a sorted

powerlist. The recursive step returns a powerlist of the form

(p-zip (p-min (p-batcher-merge X1 Y2)
(p-batcher-merge X2 Y1))
(p-max (p-batcher-merge X1 Y2)
(p-batcher-merge X2 Y1)))

From the inductive hypothesis it will follow that bo{jp-batcher-merge X1 Y2)
and (p-batcher-merge X2 Y1) are sorted. It is natural to ask, therefore, whether
(p-zip (p-min X Y) (p-max X Y)) is sorted, given sorteXX and Y. Unfortu-
nately, this is not the case, as the powerligt2) and (3,4) demonstrate. The problem
is that thep-min of 2 and4 is 2, which is smaller than thp-max of 1 and3. What is
needed is an assurance that the elements of the lists are not only sorted independently, but
that one lists does not “grow” too much faster than the other.
ConsiderX = (z1,x2,x3,24) andY = (y1, y2, y3,y4). The condition amounts to
the following:

max(z;,y;) < min(z;, y;)

for all indicesi < j. This condition automatically implies th& andY are sorted. In

ACL2, the required property can be defined as follows:
(defun p-interleaved-p (x V)
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(if (powerlist-p Xx)
(and (powerlist-p y)
(p-interleaved-p (p-untie-l x) (p-untie-l y))
(p-interleaved-p (p-untie-r x) (p-untie-r y))
(<= (p-max-elem (p-untie-l x))
(p-min-elem (p-untie-r x)))
(<= (p-max-elem (p-untie-l X))
(p-min-elem (p-untie-r y)))
(<= (p-max-elem (p-untie-l y))
(p-min-elem (p-untie-r Xx)))
(<= (p-max-elem (p-untie-l y))
(p-min-elem (p-untie-r y))))
(not (powerlist-p y))))

For example, the powerlistd, 2) and (3, 4) do not satisfyp-interleaved-p , but the
powerlists(1,4) and(2, 3) do.

If (p-interleaved-p x y) is true, (p-zip (p-min X y) (p-max X
y)) issorted. Intuitively, this is a simple result. In the example above, the first two elements
of Z will be 1 andy, in ascending order. Moreover, the hypothesis assures us these two
numbers are the smallest of thg andy; for j > 2. A similar argument will work forz;
andys, and so on.

To prove the claim in ACL2, it is necessary to reason about the interactipn of
min and p-min-elem , as well as theimax counterparts. Sincp-min is defined in
terms ofp-zip andp-min-elem interms ofp-tie , itis easier to prove this theorem in
terms of a single recursive scheme, palje  and then use the bridging lemmas to prove

the result;

(defthm zip-min-max-sorted-if-interleaved

(implies (and (p-interleaved-p x y)
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(p-similar-p x y)
(p-number-list x)
(p-number-list y))
(p-sorted-p (p-zip (p-min x vy)
(p-max X y)))))

Again, it is easier to prove this theorem first for versiongohin andp-max defined in
terms ofp-tie  instead ofp-zip , sincep-sorted-p  is defined in terms gb-tie
It only remains to be shown that the recursive callptmatcher-merge return

p-interleaved-p lists. That is, given sorted andY,

L1
L2

(p-batcher-merge (p-unzip-l X) (p-unzip-r Y))

(p-batcher-merge (p-unzip-r X) (p-unzip-l Y))

are p-interleaved-p . Intuitively, it is clear why this must be the case. It can be

assumed that bothl andL2 are sorted, since this fact will follow from the induction

hypothesis. Any prefix oE1 will have some values frolX and some fronY, say: andj

values respectively. Moreover, sincé has only odd-indexed elementsXfandL2 only

the even-indexed elements Xf no prefix ofL1 can have more elements froithan the

corresponding prefix of2, and similarly for the elements froi. For example, suppose

thatL1 starts withz; andxs, but the corresponding prefix &2 does not contains. In

this casel.2 must start withy; andys, which means thajs < z9, sincelL2 is sorted and

its prefix does not contain,. But, it follows fromL1 thatzs < ys, sincel.1 is also sorted.

Thereforexs < 1o < y3 < x5 andxz < xo. But this is a contradiction, sinc¥ is sorted.
Formalizing the argument given above places a severe challenge on the powerlist

paradigm, since the reasoning involves indices so explicitly, whereas powerlists do away

with the index concept. In fact, the whole concept of “prefix” is strange, since these prefixes

will by definition be irregular, and it has already been observed proatcher-merge

requires regular arguments. This calls for a little subtlety. The “prefix” concept can be

replaced with the following:
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(defun p-member-count-<= (x m)
(if (powerlist-p x)
(+ (p-member-count-<= (p-untie-l x) m)
(p-member-count-<= (p-untie-r x) m))

(if (<= (realfix x) m) 1 0)))

This returns the number of elementsxrwhich are less than or equal g that is, for an
elementmin x, it returns its (largest) index in. With this notion, the argument involving
the “prefix” of a powerlist can be formalized.

Consider expressions of the form

M1 = (p-member-count-<= (p-batcher-merge (p-unzip-l x)
(p-unzip-r y))
m)
M2 = (p-member-count-<= (p-batcher-merge (p-unzip-r x)

(p-unzip-l y))
m)

The following theorem shows how these terms can be simplified:

(defthm member-count-<=-of-merge
(implies (and (p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y))

(equal (p-member-count-<=

(p-batcher-merge x )
m)
(+ (p-member-count-<= x m)

(p-member-count-<= y m)))))
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This theorem justifies the removal ptbatcher-merge from the computation op-

member-count-<= . The following terms remain:

M1

(+ (p-member-count-<= (p-unzip-l x) m)

(p-member-count-<= (p-unzip-r y) m))

M2 = (+ (p-member-count-<= (p-unzip-r X) m)
(p-member-count-<= (p-unzip-l y) m))
So the next step is to compare thenember-count-<=  of the p-unzip-| andp-

unzip-r  of a powerlist, specifically aortedpowerlist. Intuitively, these are expected to
differ by no more than 1; moreover, since fhe&nzip-r  starts counting from the second
position, itsp-member-count-<=  should be smaller than that of tpeunzip-l . This

intuition suggests the following theorems:

(defthm member-count-<=-of-sorted-unzips-1
(implies (and (powerlist-p Xx)
(p-regular-p x)
(p-sorted-p X))
(<= (p-member-count-<= (p-unzip-r x) m)

(p-member-count-<= (p-unzip-l x) m))))

(defthm member-count-<=-of-sorted-unzips-2
(implies (and (powerlist-p X)
(p-regular-p x)
(p-sorted-p Xx))
(<= (p-member-count-<= (p-unzip-l x) m)
(1+ (p-member-count-<= (p-unzip-r x)

m)))))

All these results can be combined into a single theorem statingvthabhdM2differ by no

more than 1:
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(defthm member-count-<=-of-merge-unzips
(implies (and (powerlist-p Xx)

(p-regular-p x)

(p-similar-p x y)

(p-number-list x)

(p-number-list y)

(p-sorted-p x)

(p-sorted-p y))

(let (M1 (p-member-count-<= (p-batcher-merge

(p-unzip-l x)
(p-unzip-r y))
m))

(M2 (p-member-count-<= (p-batcher-merge

(p-unzip-r x)
(p-unzip-1 y))
m)))
(or (equal M1 M2)
(equal (1+ M1) M2)
(equal (1+ M2) M1)))))
The next step is to show that for nprinterleaved-p lists, there is sommso that the

respectivgp-member-count-<=  differ by more than 1. Thisncan be found by making
a “cut” through the two lists at the precise spot where they failptieterleaved-p

test. The following function performs such a “cut™

(defun interleaved-p-cutoff (x y)
(if (and (powerlist-p x) (powerlist-p y))
(cond ((< (p-min-elem (p-untie-r x))

(p-max-elem (p-untie-l x)))
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(p-min-elem (p-untie-r x)))
((< (p-min-elem (p-untie-r x))
(p-max-elem (p-untie-l y)))
(p-min-elem (p-untie-r x)))
((interleaved-p-cutoff (p-untie-l Xx)
(p-untie-l y))
(interleaved-p-cutoff (p-untie-l x)
(p-untie-l y)))
((interleaved-p-cutoff (p-untie-r Xx)
(p-untie-r y))
(interleaved-p-cutoff (p-untie-r x)

(p-untie-r y))))

nil))
Whenx andy arep-interleaved-p , the functioninterleaved-p-cutoff will
returnnil . In all other cases, it returns a valid choice rafas a counterexample in
member-count-<=-of-merge-unzips . Thus, theinterleaved-p-cutoff of

(1,4) and(2, 3) isnil , but that of(1,2) and(3,4) is 2.

The first observation can be verified with the following theorem:

(defthm interleaved-p-if-nil-cutoff
(implies (and (p-similar-p x y)
(p-number-list x)
(p-number-list y)
(not (numericp
(interleaved-p-cutoff x y)))
(not (numericp
(interleaved-p-cutoff y x))))
(p-interleaved-p x Y)))
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In order to establish thamterleaved-p-cutoff finds a valid counterexample when
X andy are notp-interleaved-p , hotice thatinterleaved-p-cutoff always
returns an element of, and furthermore for sortedthis valuemis such that its “index” in

X is at least one more than its “index” yn since it must satisfy

(< (p-min-elem (p-untie-r x))

(p-max-elem (p-untie-1 y)))

for some corresponding subtreexofindy. In ACL2, this establishes the following theo-

rem:

(defthm member-count-diff-2-if-interleaved-cutoff-sorted
(implies (and (p-similar-p x y)
(p-number-list x)
(p-number-list y)
(p-sorted-p Xx)
(p-sorted-p y)
(interleaved-p-cutoff x y))
(< (1+ (p-member-count-<=
y
(interleaved-p-cutoff x y)))
(p-member-count-<=
X

(interleaved-p-cutoff x y)))))

The counterexample needed by the lemmasnber-count-<=-of-merge-unzips
andinterleaved-p-if-nil-cutoff can be found using this theorem. The preced-

ing results can be summarized as follows:

(defthm inner-batcher-merge-call-is-interleaved-p

(implies (and (powerlist-p X)
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(p-regular-p x)
(p-similar-p x )
(p-number-list x)
(p-number-list y)
(p-sorted-p x)
(p-sorted-p )
(p-sorted-p
(p-batcher-merge (p-unzip-l x)
(p-unzip-r y)))
(p-sorted-p
(p-batcher-merge (p-unzip-r x)
(p-unzip-I y))))
(p-interleaved-p
(p-batcher-merge (p-unzip-l x)
(p-unzip-r y))
(p-batcher-merge (p-unzip-r Xx)

(p-unzip-I y)))))

From this point, the remainder of the proof is almost propositional. The inductive case of the
correctness obatcher-merge  follows directly from the lemmanner-batcher-
merge-call-is-interleaved-p . Notice that the inductive hypothesis shares the

antecedent ahner-batcher-merge-call-is-interleaved-p

(defthm recursive-batcher-merge-is-sorted
(implies (and (powerlist-p Xx)
(p-regular-p x)
(p-similar-p x y)
(p-number-list x)

(p-number-list y)
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(p-sorted-p x)

(p-sorted-p )

(p-sorted-p

(p-batcher-merge (p-unzip-I x)
(p-unzip-r y)))

(p-sorted-p

(p-batcher-merge (p-unzip-r x)
(p-unzip-I y))))

(p-sorted-p (p-batcher-merge x y))))

The main result, establishing the correctness of Batcher merging, is an almost immediate

corollary of the above:

(defthm sorted-merge
(implies (and (p-regular-p x)
(p-similar-p x )
(p-number-list x)
(p-number-list y)
(p-sorted-p X)
(p-sorted-p y))
(p-sorted-p (p-batcher-merge x v))))

With the theorem above and the meta-theorems about merge sorts proved in sec-

tion 7.4.1, the correctness of Batcher sorting can be easily established:

(defthm batcher-sort-is-permutation
(implies (and (p-regular-p x)
(p-number-list x))
(equal (p-member-count (p-batcher-sort x) m)

(p-member-count x m))))
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(defthm batcher-sort-sorts-inputs
(implies (and (p-regular-p x)
(p-number-list x))

(p-sorted-p (p-batcher-sort x))))

These theorems are instances of the generic merge sorting theorems proved irvsédtion

7.4.3 A Comparison with the Hand-Proof

It is instructive to compare the machine-verified proof of sectigh2with the hand-proof
provided in [46] and verified in B3].

The proof starts by defining the functiaras follows:

z((z)) = 1if 2 =0,0 otherwise

z(pMq) = z(p)+z(q)

That is,z(z) counts the number of zeros.in Assuming that all powerlists range only over

0’s and 1’s, this yields the following characterization of sorted powerlists:

sorted({x))

sorted(p M q) = sorted(p) A sorted(q) N0 < z(p) — z(q) <1

The 0-1 assumption completely characterizes the pairwise minimum and maximum of two

sorted lists as follows:

min(z,y) = =, If sorted(z), sorted(y), andz(x) > z(y)

max(z,y) = y,Iif sorted(z), sorted(y), andz(x) < z(y)
Moreover, the following key lemma can be established:

sorted(min(x,y) X max(z,y)) If sorted(x), sorted(y), and|z(z) — z(y)| < 1
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With some algebraic reasoning, this yields the main correctness result:
sorted(pbm(x,y)) If sorted(x) andsorted(y)

wherepbm is the Batcher merge function on powerlists.

This proof is much simpler than that given in sectibd.2 and that may be taken
as an indication that ACL2 is ineffective in reasoning about powerlists. However, such a
conclusion is premature. In fact, ACL2 can verify the reasoning given above without too
much difficulty. But the end result would not be as satisfying as the main theorems proven
in 7.4.2for a number of reasons. First, the hand proof relies on the 0/1 principle, which
states that any sorting algorithm based on comparing pairs of elements from a list will
correctly sort an arbitrary list if it correctly sorts all lists consisting exclusively of zeros and
ones. The formal proof in the powerlist logic proves the correctness only for lists of zeros
and ones, and then it uses the 0/1 principle to “lift” this proof to the arbitrary case. But the
0/1 principle is certainly not obvious; if anything, it is more surprising than the proof of
Batcher merge itself. For instance, proving the 0/1 principle in ACL2 would be extremely
difficult, if not impossible, because the principle references all possible sorting functions
based on comparing input pairs, and there is no apparent way to express this notion in the
logic of ACL2.

Another problem with the hand proof is that the definitionsofted used is not the
same as the “standard” definition of a sorted list. ibgy true for lists of O’'s and 1's, and
it is not immediately clear how this property compares to the usual notion of sorted lists.
The definition supplied, however, is extremely useful since it is basedponinstead of
tie , so it works more naturally with the definition of Batcher merge. However, the proof
of the equivalence of the two definitions is missing. This is especially important if Batcher
sorting were being used as part of a more complex function, e.g. a search routine, since the
key property required in the complex function — that Batcher sort correctly sorts its input
— has not been established yet.

In fact, it is fair to say that the hand proof presents a mixture of formal reasoning

185



and informal arguments. Such a mixture is extremely convenient when generating the proof
by hand, but it can also be the source of subtle errors, such as the failure to identify needed

hypotheses.

7.5 Prefix Sums of Powerlists

Prefix sums appear in many applications, e.g., arithmetic circuit design. For a powerlist
X = (x1,29,...,2,), its prefix sum is given bys(X) = (z1,21 ® x2,..., 71 ® x2 P
.-+ @ xy,). The operator is an arbitrary binary operator; for the purposes of this section,
it can be assumed to be associative and to have a left-id@ntity
The functionsin-op andleft-zero encapsulate the binary operatpiand its
left identity, respectively. By using ACL2'sncapsulate , the following theorems are
all really theorem schemas which can be instantiated with any suitable operatphis.g,

and, min, etc. The required axioms are as follows:

(encapsulate
((domain-p (x) t)
(bin-op (x y) t)
(left-zero () t))

(defthm booleanp-domain-p

(booleanp (domain-p Xx)))

(defthm scalar-left-zero

(domain-p (left-zero)))

(defthm domain-powerlist
(implies (domain-p x)

(not (powerlist-p x))))
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(defthm left-zero-identity
(implies (domain-p x)

(equal (bin-op (left-zero) x) x)))

(defthm bin-op-assoc
(equal (bin-op (bin-op x y) 2)
(bin-op x (bin-op y 2))))

(defthm scalar-bin-op

(domain-p (bin-op X Y)))

The functiondomain-p recognizes the intended domain which is required to be scalar, i.e.
non-powerlist. The functiop-domain-list-p extendsdomain-p over powerlists;
i.e., it recognizes powerlists afomain-p elements. Note that the second argument to
bin-op is required to belomain-p in left-zero-identity , but thatdomain-p
is not a requirement dfin-op-assoc  , and furthermore thatomain-p is always true
of the result obin-op . This turns out to be important, in that ACL2 defines many binary
operators that meet these requirements precisely. Moreover, at least one of these theorems
needs to havdomain-p as a hypothesis. For example, if the hypothesis is removed from
left-zero-identity , then for an arbitrary powerliat, it would follow that0 ¢z = =
and sod would not always return a scalar.

There is a natural definition of prefix sums in terms of indices. That is, eptry
in the prefix sum ofX is equal to the sum of all the; up toz;. However, this definition
does not extend nicely to powerlists, since the two halves of a prefix sum are not themselves
prefix sums. The trick is to generalize prefix sums to allow an arbitrary value to be added

to the first element, in a manner analogous to a carry-in bit. This leads to the following
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definitions:

(defun p-prefix-sum-aux (prefix Xx)
(if (powerlist-p x)
(p-tie (p-prefix-sum-aux prefix (p-untie-l X))
(p-prefix-sum-aux (p-last (p-prefix-sum-aux
prefix
(p-untie-I x)))
(p-untie-r x)))
(bin-op prefix x)))
(defmacro p-prefix-sum (x)

‘(p-prefix-sum-aux (left-zero) ,x))

wherep-last  returns the last element of a powerlist. Most of the following theorems
will be aboutp-prefix-sum-aux , though a few will have to be proved exclusively for

p-prefix-sum . Note,p-prefix-sum-aux could have been defined to pass the sum
of the left half ofx instead of the last element of the left prefix sum. The current definition

was preferred, simply because it is closer to the usual way the author computes prefix sums.

7.5.1 Simple Prefix Sums

The definition ofp-prefix-sum is inherently sequential. In this section, it is shown that

the following definition, more amenable to a parallel implementation, is equivalent:

(defun p-simple-prefix-sum (x)
(if (powerlist-p x)
(let ((y (p-add (p-star x) x)))
(p-zip (p-simple-prefix-sum (p-unzip-l y))
(p-simple-prefix-sum (p-unzip-r y))))
X))
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The functionp-add returns the pairwise sum of two powerlists, gmdtar  shifts a

powerlist to the right, prefixing the result witeft-zero

(defun p-star (x)
(if (powerlist-p x)
(p-zip (p-star (p-unzip-r x)) (p-unzip-l X))
(left-zero)))
(defun p-add (x y)
(if (powerlist-p Xx)
(p-zip (p-add (p-unzip-l x) (p-unzip-1 y))
(p-add (p-unzip-r x) (p-unzip-r y)))
(bin-op x )))

An immediate problem is that ACL2 does not accept the definition given above for
p-simple-prefix-sum . The difficulty is that the definition recurses withchang-
ing to (p-unzip-l (p-add (p-star x) X)) and the latter term is not obviously
“smaller” thanx. Therefore, ACL2 can not prove that the recursive definition is well-
founded. To circumvent this, a new “measure” on powerlists is needed, one that is reduced

when(p-unzip-l (p-add (p-star Xx) X)) is substituted fox:

(defun p-measure (X)
(if (powerlist-p x)
(+ (p-measure (p-unzip-l x))

(p-measure (p-unzip-r x)))

1)

The measure, in effect, counts the number of elements in a powerlist. Intuitprely,
star andp-add should not affect the measure of a powerlist, wigiteinzip-I and
p-unzip-r  should halve it. The first observation can be verified with the following pair

of theorems:
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(defthm measure-star

(equal (p-measure (p-star x)) (p-measure Xx)))

(defthm measure-add

(<= (p-measure (p-add x y)) (p-measure Xx)))

The second observation does not need an explicit lemma, because ACL2 can tell from
the definition ofp-measure that bothp-unzip-| and p-unzip-r reduce thep-
measure by at least 1. This means that whessimple-prefix-sum is introduced,
ACL2 needs a hint to usp-measure to prove that the definition is well-founded, and
then it is able to accept the definition.

Now consider the correctnessmkimple-prefix-sum . The definition of this
function suggests two possible approaches: explore the powerlist givgndnd (p-
star x) xX) , or consider thainzip of the prefix sum ofk. The first approach seems
more promising. Recall thagi-star  shifts its argument to the right, and thatadd

returns a pairwise sum. Thus, forgiven by
X = (x1,29,23,...,%p)
(p-add (p-star x) Xx) is
Y =X"oX= (11,11 D2, 22D X3, -+, Tp—1 D Tp)
Taking thep-unzip of this powerlist, gives the following:
Yi = (x1,20®@x3,...,Zn—2D Tp_1)
Yo = (21022, 23D x4y...,Tpn—1D Tp)

whereY = Y; X Y. Itis clear now that indeed the prefix sumf yields precisely the
odd-indexed elements of the prefix sumXfand, similarly, the prefix sum af; yields the
even-indexed elements. Intuitively, this verifies the correctnepssimple-prefix-

sum. To formalize the argument, it will be convenient to think¥igfandY, not as compo-

nents ofY’, but as two separate lists in their own right. This removes the awkward reference
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to p-unzip and allows the derivation df; andY> in a way more amenable to reasoning

aboutp-prefix-sum . Consider this new characterizationof

(defun p-add-right-pairs (X)
(if (powerlist-p Xx)
(if (powerlist-p (p-untie-l x))
(p-tie (p-add-right-pairs (p-untie-l x))
(p-add-right-pairs (p-untie-r x)))
(bin-op (p-untie-l x) (p-untie-r x)))
X))

This redefinition ofY; is especially useful because itis in termpeie , notp-zip ,soit

will be easier to reason about fisprefix-sum . To begin with, itis trivial to characterize

the prefix sum of thep-add-right-pairs of a two-element powerlist — note that a
two-element powerlist is the natural base case for an induction, ghaok-right-

pairs is only reasonable over non-singleton arguments. In particular, it can be proved
that for a powerlistX = (x1, xz2), both the prefix sum of itp-add-right-pairs and

the right unzip of its prefix sum are equalt@ & x-:

(defthm prefix-sum-p-add-right-pairs-base
(implies (and (domain-p val)
(powerlist-p x)
(not (powerlist-p (p-untie-I x)))
(p-regular-p Xx)
(p-domain-list-p x))
(and (equal (p-prefix-sum-aux
val
(p-add-right-pairs Xx))
(bin-op val

(bin-op (p-untie-l x)
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(p-untie-r x))))
(equal (p-unzip-r
(p-prefix-sum-aux val x))
(bin-op val
(bin-op (p-untie-l x)
(p-untie-r x))))
)

The definition ofp-prefix-sum uses the last element of the left prefix sum to compute

the right prefix sum. This suggests the following important lemma:

(defthm p-last-p-prefix-sum-p-add-right-pairs
(implies (and (domain-p val)
(p-regular-p Xx)
(p-domain-list-p x))
(equal (p-last (p-prefix-sum-aux
val
(p-add-right-pairs x)))

(p-last (p-prefix-sum-aux val x)))))

This provides an important bridge in any induction involvipgprefix-sum-aux of
p-add-right-pairs . Such an induction can establish that the prefix sump-atid-

right-pairs computes the right unzip of the prefix sum of a powerlist:

(defthm prefix-sum-p-add-right-pairs
(implies (and (domain-p val)
(powerlist-p x)
(p-regular-p Xx)
(p-domain-list-p X))

(equal (p-prefix-sum-aux
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val
(p-add-right-pairs x))
(p-unzip-r

(p-prefix-sum-aux val x)))))

The second half of the proof is similar. Consigeadd-left-pairs , which is

a new characterization &f, = (z1,29 @ x3,...,Tp—2 D Tp_1):

(defun p-add-left-pairs (val Xx)
(if (powerlist-p x)
(if (powerlist-p (p-untie-l X))
(p-tie (p-add-left-pairs val (p-untie-l x))
(p-add-left-pairs (p-last
(p-untie-l x))
(p-untie-r x)))
(bin-op val (p-untie-l x)))
(bin-op val x)))

Unfortunately, the functiop-add-left-pairs is considerably more complicated than
p-add-right-pairs . The reason is that ip-add-right-pairs there was no need

for the left half of the computation to pass any information over to the right half; i.e., the
two recursive calls were completely independent of each other. The net effect is that rea-
soning aboup-add-left-pairs is much more difficult than reasoning abgyadd-
right-pairs . However, there is a simple way around this. Consider the poweflist
(x1,m2,23,...,2,) again. Shifting this powerlist yieldX’ = (0, 21, x2, 3, ..., Tpn_1),

and thep-add-right-pairs of this shifted powerlistigz,, zo@xs, . .., Tp—2BTp_1),

which is precisely the same as theadd-left-pairs of X. Moreover, it is clear that

the prefix sum ofX and the prefix sum o’ are related; specifically, the prefix sum of

the shift is the shifted prefix sum. If this intuition can be formalized, the theorem about
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add-right-pairs can be used to prove the analogous theorem ghaukd-left-
pairs , without having to reason aboptadd-left-pairs at all.

Since bothp-add-left-pairs and p-add-right-pairs are defined in
terms ofp-tie , it is convenient to redefinp-shift in terms ofp-tie , rather than

using the equivalent functioprstar

(defun p-shift (val x)
(if (powerlist-p x)
(p-tie (p-shift val (p-untie-l X))
(p-shift (p-last (p-untie-l x))
(p-untie-r x)))
val))

Consider the claim that the prefix sum and shift operators commute. This can be verified

by the following theorem:

(defthm p-prefix-sum-p-shift
(implies (and (domain-p cl)
(domain-p c2)
(p-domain-list-p x))
(equal (p-prefix-sum-aux cl (p-shift c2 x))
(p-shift (bin-op cl1 c2)

(p-prefix-sum-aux
(bin-op cl c2)
X))

The proof of this theorem requires a subtle induction scheme. In particular, to conclude the

theorem, the following two partial prefix sums need to be considered:

PS1
PS2

(p-prefix-sum-aux cl1 (p-shift c2 (p-untie-l x)))

(p-prefix-sum-aux (p-last PS1)
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(p-shift (p-last (p-untie-l x))
(p-untie-r x)))

In the second instance, the tethin-op cl c2) in the theorem becomes

(bin-op (p-last (p-prefix-sum-aux
cl
(p-shift c2 (p-untie-l x))))
(p-last (p-untie-l x)))

which using the inductive hypothesis is equal to the following:

(bin-op (p-last (p-shift (bin-op c1 c2)
(p-prefix-sum-aux
(bin-op cl c2)
(p-untie-l x))))
(p-last (p-untie-I x)))

This term can be simplified into
(p-last (p-prefix-sum-aux (bin-op c1 c2) (p-untie-l x)))
using the following technical lemma:
(defthm binop-last-shift-prefix-sum
(implies (domain-p c)
(equal (bin-op (p-last
(p-shift
c (p-prefix-sum-aux c x)))

(p-last x))
(p-last (p-prefix-sum-aux ¢ x)))))
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This simplification is the key step in the proof.
Having established that prefix sum and shift commute, it is now possible to return
to p-add-left-pairs . In particular, an instance gqi-add-left-pairs can be

converted into the@-add-right-pairs of a shifted powerlists as follows:

(defthm p-add-left-pairs->p-add-right-pairs-p-shift
(implies (and (domain-p val)
(powerlist-p x)
(p-regular-p Xx)
(p-domain-list-p x))
(equal (p-add-left-pairs val x)
(p-add-right-pairs (p-shift val x)))))

It is now trivial to establish that
(p-prefix-sum-aux val (p-add-left-pairs val2 x))
is equal to

(p-prefix-sum-aux val

(p-add-right-pairs (p-shift val2 x)))
and hence to
(p-unzip-r (p-prefix-sum val (p-shift val2 x)))
and

(p-unzip-r (p-shift (bin-op val val2)

(p-prefix-sum (bin-op val val2) x)))

To complete the proof, the following technical lemma is required to convert the right unzip

of a shift to the left unzip of the powerlist:
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(defthm p-unzip-r-p-shift
(implies (and (powerlist-p Xx)
(p-regular-p x)
(not (powerlist-p val)))
(equal (p-unzip-r (p-shift val x))
(p-unzip-I x))))

Putting it all together gives the needed characterization of the prefix sum pfake-

left-pairs of a powerlist:

(defthm prefix-sum-p-add-left-pairs
(implies (and (p-regular-p x)
(p-domain-list-p x)
(powerlist-p x)
(domain-p vall)
(domain-p val2))
(equal (p-prefix-sum-aux vall

(p-add-left-pairs

val2 x))
(p-unzip-I
(p-prefix-sum-aux (bin-op vall val2)
)
This is an important moment, becaysefix-sum-p-add-left-pairs and
prefix-sum-p-add-right-pairs together give a characterization of thezipsof
p-prefix-sum . Thus, the original definition gf-prefix-sum , which was inherently

sequential, has been replaced with an independent characterization of its unzips; this will
make it much easier to prove the correctnegs-simple-prefix-sum
However,p-simple-prefix-sum is defined in terms gb-star andp-add

and the new characterization ugesdd-left-pairs and p-add-right-pairs
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The next step is to show how these are related. To start with, consider alternative definitions
of p-star andp-add usingtie instead ofzip ; this will make it easier to reason about
them andp-add-left-pairs /p-add-right-pairs together. Recall thgi-star

performs a shift operation argtadd a pairwise addition. The functiop-shift has

already been defined. Pairwise addition can be defined as follows:

(defun p-add-tie (X y)
(if (powerlist-p x)
(p-tie (p-add-tie (p-untie-l x) (p-untie-l y))
(p-add-tie (p-untie-r x) (p-untie-r y)))
(bin-op x y)))

ACL2 can quickly prove the equivalence of these definitions with the original ones. The

following theorem is particularly useful in the current context:

(defthm add-star-add-tie-shift
(implies (and (p-regular-p x)
(p-similar-p x y))
(equal (p-add (p-star x) y)
(p-add-tie (p-shift (left-zero) x)
2)))

Usingp-shift ~ andp-add-tie , it can now be proved how-add-left-pairs and

p-add-right-pairs are constructed in the definition pfsimple-prefix-sum

(defthm zip-add-left-pairs-add-right-pairs
(implies (and (powerlist-p Xx)
(p-regular-p Xx)
(p-domain-list-p x))
(equal (p-zip (p-add-left-pairs (left-zero)
X)
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(p-add-right-pairs x))
(p-add (p-star x) Xx))))

At this point, the proof is almost complete. The term
(p-add (p-star x) x)

can be rewritten as
(p-add-tie (p-shift (left-zero) x) Xx)

Moreover, this term can be unzipped into the two terms

(p-add-left-pairs (left-zero) x)
(p-add-right-pairs x)

Finally, the prefix sum of these terms can be zipped back together to get the prefix sum of

X. Taken together, this establishes the correctnepssihple-prefix-sum

(defthm simple-prefix-sum-prefix-sum
(implies (and (p-regular-p x)
(p-domain-list-p x))
(equal (p-simple-prefix-sum x)

(p-prefix-sum x))))

7.5.2 Ladner-Fischer Prefix Sums

[46] verifies another algorithm for computing prefix sums, this one due to Ladner and Fis-
cher 5.

(defun p-If-prefix-sum (x)
(if (powerlist-p Xx)
(let ((y (p-If-prefix-sum
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(p-add (p-unzip-l x) (p-unzip-r x)))))
(p-zip (p-add (p-star y) (p-unzip-l x)) y))
X))

The complexity of this algorithm is what justifies the previous usage of the rame
simple-prefix-sum !
As was the case with-simple-prefix-sum , it is worthwhile to consider the

correctness of the left and right unzips separately. The right unzip is immediate:

(defthm unzip-r-If-prefix-sum
(implies (and (powerlist-p X)
(p-regular-p x)
(p-domain-list-p x)
(equal
(p-If-prefix-sum (p-add (p-unzip-l x)
(p-unzip-r x)))
(p-prefix-sum (p-add (p-unzip-l X)
(p-unzip-r x)))))
(equal
(p-If-prefix-sum (p-add (p-unzip-l x)
(p-unzip-r x)))
(p-unzip-r (p-prefix-sum x)))))

It is only necessary to recognize that
(p-add (p-unzip-l x) (p-unzip-r x))

is the same ag-add-right-pairs x) . The rest follows from the lemmas proved in
the previous section.

The left unzip is a little more subtle. It is equal to
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(p-add (p-star (p-prefix-sum (p-add (p-unzip-l x)
(p-unzip-r x))))
(p-unzip-1 x))
which can be reduced to
(p-add (p-star (p-unzip-r (p-prefix-sum x)))
(p-unzip-l x))
This can be simplified further using the following trivial lemma:
(defthm unzip-I-star
(equal (p-unzip-l (p-star x)) (p-star (p-unzip-r Xx))))
The simplified term is
(p-add (p-unzip-l (p-star (p-prefix-sum x)))
(p-unzip-l x))
which should further simplify to
(p-unzip-l (p-prefix-sum x))
The ubiquity ofp-unzip-| in the terms above suggest a natural generalization, which is
provable by ACL2:
(defthm add-star-prefix-sum
(implies (and (p-regular-p x)
(p-domain-list-p x))
(equal (p-add (p-star (p-prefix-sum X)) X)
(p-prefix-sum x))))
This theorem, called the “Defining Equation” ind], plays a key role in the hand proof. It
will be revisited in sectiofr.5.3

With the results above, it is now easy to establish fhHitprefix-sum equals

p-prefix-sum , thus demonstrating its correctness:
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(defthm If-prefix-sum-prefix-sum
(implies (and (p-regular-p x)
(p-domain-list-p x))
(equal (p-If-prefix-sum x)

(p-prefix-sum x))))

7.5.3 Comparing with the Hand-Proof Again

As was the case with Batcher sorting, the hand proof givesiGhig much simpler than the
machine-verified proof given above for the correctness of the prefix sum algorithms. Part
of the reason is that irif] the proof begins in media res, as it were. Instead of providing

a constructive definition, the prefix suma(x) of a powerlistz is defined as the solution to

the following “defining equation”:

z=2"®x

This equation is verified by the theoreadd-star-prefix-sum

The hand proof proceeds by applying the defining equation to derive formulas for
the left and right unzip of a prefix sum. Specifically, the derivation yields the Ladner-Fischer
scheme. From there, it is shown how this scheme can be algebraically simplified to yield
the simple prefix sum algorithm.

However, as section.5.2testifies, establishing the correctness of the defining equa-
tion requires a fair amount of effort, and once it is established the remainder of the Ladner-
Fischer proof is relatively simple.

The extra difficulty observed in the previous sections is a direct result of insisting
that the specifications, i.e., defining axioms, be constructive and readily accepted. This
insistence is necessary in the context of machine verification, where faith in a mechanically
verified proof should not be undermined by the necessity for a large unstated theory which

has only been verified by human hands.
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Moreover, requiring that correctness be established with respect to generally ac-
cepted specifications is a necessity if the proof is to be used in part of a larger project. For
example, prefix sums appear in many applications, so it is not surprising to find a prefix sum
computation in the middle of a complex algorithm. However, in establishing the correct-
ness of the embedding algorithm, the important property of prefix sums is that prefix sum of
X = (x1,29,...,xp)isinfactps(X) = (x1,21 Dxo,..., 21 Dxo®--- D xy). An equiv-
alent correctness result, such as the defining equation above, will not help immediately. In

the next section, an example of an embedded prefix sum is presented.

7.5.4 Lagniappe: A Carry-Lookahead Adder

Powerlists have been used to represehit registers and to reason about arithmetic oper-
ations on theml, 34]. This section outlines a proof of correctness for a carry-lookahead
adder, using the correctness of a parallel prefix sum algorithm, i.e., the Ladner-Fischer
scheme.

The “ripple-carry” or “schoolbook” algorithm for adding twe-bit registers is in-
herently sequential. Beginning with the least-significant bit, the algorithm progresses by
adding corresponding bits. In so doing, it generates the carry bit for the next significant bit,

and so on. This algorithm serves as a specificatiom{bit register addition.

(defun adder-fa (x y cin)
(if (zp cin)
(cons (if (equal (zp x) (zp y)) 0 1)
(if (or (zp x) (zp y)) 0 1))
(cons (if (equal (zp x) (zp y)) 1 0)
(if (and  (zp x) (zp y)) 0 1))

(defun adder-rc (x y cin)

(if (powerlist-p Xx)

203



(let ((left (adder-rc (p-untie-l x)
(p-untie-l y)
cin)))
(let ((right (adder-rc (p-untie-r x)
(p-untie-r y)
(cdr left))))
(cons (p-tie (car left)
(car right))

(cdr right))))
(adder-fa x y cin)))

The functionadder-fa models a full-adder or 1-bit adder. It returns two values, the
sum of the input bits and the generated carry bit. Similatgder-rc adds a pair of
powerlists with a given input carry bit. It returns two values, the sum of the powerlists and
the generated carry-out bit.

The carry-lookahead adder uses the following observation. If it were only possible
to compute all the carry bits a priori, the result of adding twébit registers could be
computed in a single parallel step (usindl-bit adders). Moreover, given inpufs =
TpZp_1...21andY = ypyn_1...y1, the carry vecto€ = ¢,,c¢,_1 ... c1; can be computed
as follows. Considet;. If 2; andy; are both), thenc; must also b®. Moreover, ifz; and
y; are bothl, thenc; is equal tol. In the remaining cases; is equal toc; 1, wherecy is
the original carry bit.

The essential remaining point is that this computation is actually a prefix sum over
an associative operator with left-identity. The prefix sum runs over the doffainp}
with intuitive meaning ofho-carry, carry, andpropagate carryrespectively. In constant
time, the carry bit for; can be estimated as eith&rl, or p, depending on whethar; and
y; are both0, both1, or otherwise. The prefix sum over this vector of the operatovith

r©0=0,z®1=1andz ®p = x will generate the required carry bits. It is easily seen
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that the operatop is associative, with left-identity. This informal argument, as described
for example in [L5], can be made precise in ACL2.
Local-carry-vector computes the first pass of the carry-lookahead compu-

tation, generating values of eith@y 1, ornil for the carry bit:

(defun local-carry (x y)
(it (equal (zp x) (zp Y))
(if (zp x) 0 1)
nil))

(defun local-carry-vector (x Yy)
(if (powerlist-p x)
(p-tie (local-carry-vector (p-untie-l x)
(p-untie-l y))
(local-carry-vector (p-untie-r Xx)
(p-untie-r y)))
(local-carry x vy)))

The carry-lookaheads can be computed by taking the prefix sum of this powerlist:

(defun prop-carry (cin local-carry)
(if (null cin)
(if (null local-carry)
local-carry
(if (zp local-carry) 0 1))
(if local-carry
(if (zp local-carry) 0 1)
(if (zp cin) 0 1))

(defun prop-carry-vector (cin Icv)
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(if (powerlist-p lcv)
(p-tie (prop-carry-vector cin (p-untie-l Icv))
(prop-carry-vector
(p-last (prop-carry-vector
cin
(p-untie-1 lcv)))
(p-untie-r lcv)))

(prop-carry cin lcv)))

To define the carry-lookahead adder, one more auxiliary function is needed. The function

pairwise-adder computes the pointwise sum thireepowerlists, two input powerlists

and a powerlist of carry bits:

(defun pairwise-adder (x y c¢)
(if (powerlist-p Xx)
(p-tie (pairwise-adder (p-untie-l Xx)
(p-untie-l y)
(p-untie-l ¢))
(pairwise-adder (p-untie-r x)
(p-untie-r y)

(p-untie-r c)))
(car (adder-fa x y c))))

The carry-lookahead function can now be defined as follows:

(defun adder-cla-slow (x y cin)
(let ((carry-vector
(prop-carry-vector nil
(p-shift cin

(local-carry-vector x
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y))

(cons (pairwise-adder x y carry-vector)
(prop-carry cin
(prop-carry (p-last carry-vector)
(p-last

(local-carry-vector

X Y)))

This function is “slow,” because it uses a linear computation for the prefix sum. This is
deliberate. The immediate goal is to establish that this function performs the same com-
putation as the ripple-carry adder, and that is more easily accomplished with the sequential
version of prefix sum. Replacing the prefix sum computation by a parallel implementa-
tion can later be justified using the theorems about the correctness of prefix sum proved in
sectionsr.5.1and 7.5.2

Verifying adder-cla-slow is surprisingly easy. It is convenient to redefine

adder-cla-slow in a way that makes it look more similar to the ripple-carry adder:

(defun adder-cla-slow-good (x y cin)
(let ((carry-vector
(prop-carry-vector cin
(local-carry-vector x y))))
(cons (pairwise-adder x vy
(p-shift cin carry-vector))

(p-last carry-vector))))

These functions can be easily shown to be equivalent. Moreover, an instaaddeut
cla-slow-good can be transformed into an instanceaofder-rc ; therefore, the fol-

lowing theorem can be established:

(defthm adder-cla-slow-adder-rc
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(implies (and (p-similar-p x y)
(bit-p cin)
(bit-nil-p x)
(bit-nil-p y))
(equal (adder-cla-slow x y cin)

(adder-rc x y cin))))

The functionsbit-p  and bit-nil-p test that a powerlist is composed exclusively of
zeros and ones or exclusively of zeros, ones, and nils, respectively.

Now consider a “fast” version of carry-lookahead. The only sequential step in
adder-cla-slow is the prefix-sum computation prop-carry-vector . This can

be replaced with a Ladner-Fischer scheme as follows:

(defun cla-star (x)
(if (powerlist-p Xx)
(p-zip (cla-star (p-unzip-r x)) (p-unzip-l x))
nil))

(defun cla-add (x y)
(if (powerlist-p X)
(p-zip (cla-add (p-unzip-l x) (p-unzip-l y))
(cla-add (p-unzip-r x) (p-unzip-r y)))
(prop-carry x y)))

(defun carry-look-ahead (x)
(if (powerlist-p x)
(let ((y (carry-look-ahead
(cla-add (p-unzip-l x) (p-unzip-r x)))))
(p-zip (cla-add (cla-star y) (p-unzip-l x)) y))
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X))

(defun adder-cla (x y cin)
(let ((carry-vector (carry-look-ahead
(p-shift cin
(local-carry-vector
X y))))
(cons (pairwise-adder x y carry-vector)
(prop-carry cin (prop-carry
(p-last carry-vector)
(p-last

(local-carry-vector

X Y)))

The key observation is thatarry-look-ahead is a faithful redefinition ofprop-
carry-vector . Thus, the following theorem can be proved simply by instantiating the

generic theorems about prefix sums proved in sedtibr

(defthm carry-look-ahead-prop-carry-vector
(implies (and (p-regular-p x)
(bit-nil-list-p x))
(equal (carry-look-ahead x)

(prop-carry-vector nil x))))

Notice the requirement thatis ap-regular-p powerlist. This hypothesis is needed in
the correctness proof of the Ladner-Fischer scheme. With this lemma, it is easy to establish

thatadder-cla  computes the same valueadder-cla-slow

(defthm adder-cla-adder-cla-slow

(implies (and (p-regular-p x)
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(p-similar-p x y)
(bit-nil-p cin))
(equal (adder-cla x y cin)

(adder-cla-slow x y cin))))
In turn, this justifies the correctness of the carry-lookahead algorithm:

(defthm adder-cla-adder-rc
(implies (and (p-regular-p x)
(p-similar-p x )
(bit-p cin)
(bit-nil-p x)
(bit-nil-p y))
(equal (adder-cla x y cin)

(adder-rc x y cin))))

This formal proof follows the informal argument rather closely. That is, the hardest
step in the proof is the establishment that the prefix sum computation — based on a linear
algorithm similar top-prefix-sum-aux — actually computes the correct carry vector.
Both formal and informal proofs are made simpler by the fact that the linear prefix sum
algorithm is very similar to the ripple-carry adder algorithm. This would not be the case,
of course, with a more complex version of prefix sum, e.g., one based on the Ladner-
Fischer scheme, or with an abstract definition of prefix sum, such as the “defining equation”
described in sectioii.5.2 However, once the basic correctness results are established, it is
trivial to extend this result to a carry-lookahead algorithm based on a fast prefix sum: the
“hard” part of the proof is a simple instance of the generic theorems proved in sédiion

It is encouraging that the formal proof for carry-lookahead was so easy to establish
— it took no more than a single session with ACL2. This illustrates the power of the

powerlist formalism in general, the specific powerlist formalization presented in séction
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and the usefulness of mechanically establishing correctness results with respect to “natural”

specifications, as emphasized in sectiérsand7.5.
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Chapter 8

The Fast Fourier Transform

In chapters3 through6 notions from non-standard analysis were introduced into ACL2.
This culminated in the development of a basic theory of trigonometry in ACL2. Cha@pter
departed from the world of real numbers into the world of data structures. Specifically, it de-
veloped the theory of powerlists, an aggregate data structure ideally suited to the expression
of recursive, data-parallel algorithms.

These two themes are merged in this chapter, where powerlists are used to define
and verify the correctness of the Fast Fourier Transform (FFT) algorithm. The algorithm is
defined in terms of the trigonometric functions, and their properties play an important role

in the correctness of the FFT.

8.1 The Fast Fourier Transform

The Fourier transform of a real or complex vecfor= (p1, p2,ps,...,p,) is defined as
FT(P) = (P(wy), P(w?), P(w?), ..., P(w")), wherew, is thenth principal root of1,
andP is the polynomial constructed frof by P(z) = "1 | p; - 2~ L.

Naively, the Fourier Transform aP can be computed in? sequential steps, by

evaluatingP(x) at each of the: powers ofw,,. This naive implementation can serve as a
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formal specification.
The Fourier Transform can be succintly defined in the notation of powerlists. Fol-
lowing [4€], consider the functiolap which evaluates a polynomi& pointwise at a vector

V.

(x)epv = (x) (8.1)
(pMq)epv = pepv® +v-(qepv?) (8.2)
pep(ulv) = (pepu)|(pepv) (8.3)

Note that in the casér) ep (u | v) the computation can proceed using either @i@or

rule 8.1 Unfortunately, this will result in different answers. Thus, it is tacitly assumed
for now that rule8.1 is disabled while rule8.3 is applicable. Observe, this is the only
inconsistency as long as the arithmetic operators used in8tdlare assumed to apply
pointwise to vectors. This inconsistency will be resolved in the next section, when the
definitions are formally specified in ACL2. The Fourier Transform can now be defined

simply as
FT(p) = pepWy (8.4)

wheren is the length op andW,, = (wy,, w2, ..., w?).

The Fast Fourier Transform (FFT) is an algorithm which evaluates the Fourier trans-
form in O(nlogn) sequential steps by using the special properties of the vector of powers
of w,. In particular, letW,, = (w,,w?, ..., w"), for n a power of two greater than one.

Then,W,, can be written as follows:

W, = ul|-—-u

Wn/2 =

The first property is true becausg is thenth principal root ofl, sow;’ = 1 and therefore

wZ/Q = —1 (sincew, is thenth principal root andn /2 is an integer less tham — recall
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thatn > 1 is a power of two —/? #£1). Foranyn/2 < k < n, wk = w2 =

—w,’i‘”/ 2. The second property is true because the fiy& values oflV,, are the first./2

powers of theth

principal root ofl. These are precisely the (principal) square roots of the
n/2 powers of the(n/2)th principal root of1, that is,W,, /5.

Since only lists with length equal to a power of 2 are relevant in this context, it is
convenient to defin® y = Wy~ . Using this notation, the properties above can be rewritten

as follows:

W, = ul|—-u
Wn—l = u2
These new characterizations are more amenable to induction.

The Fast Fourier Transform can be derived as follows. For singleton powerlists, it

is clear that

FT((2) = (2)epWo (8.5)

- (@) (8.6)

SincelV is a singleton (equal to 1), ruke1 of the definition ofep can be used to evaluate

the term. For a powerlist of leng@ > 1, it follows that

FI(pXq) = (pXq)epWn (8.7)
= (pXq)ep(u]—u) (8.8)
= ((pXqg)epu) | (pXq)ep —u) (8.9)
= (pepu’+u-(gepu?)) | (pepu? —u-(qgepu?))  (8.10)

= (pepWna+u-(gepWn_1)) |
(pepWn-1—u-(qep Wn-1)) (8.11)
= (FT(p)+u-FT(q) | (FT(p) —u-FT(q)) (8.12)
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Using these results, we can derive the Fast Fourier Transform as follows:

FFT((z)) = () (8.13)

FFT(pXq) = (FFT(p)+u-FFT(q)) | (FFT(p)—u-FFT(q)) (8.14)

where the vector contains the firse" /2 elements of¥ i, and2” is the length of X q.

It is clear thatF’ FT'(p M q) can be computed i®(2"V) time givenF FT (p) andFFT(q).
Thus, it can be computed i(N2V) (sequential) time, which i©(n logn) time, where

n = 2V is the length op X ¢. By unraveling the recursive calls, it is possible to synthesize
a parallel circuit to implement the FFT. This requi@$n logn) computation nodes and

O(logn) depth[L5].

8.2 \Verifying the Fast Fourier Transform in ACL2

In this section, Misra’s hand proof of the correctness of the FFT, presented in s&dtitn
translated into ACL2. Begin by translating the functigrinto ACL2. Recall, the definition
of P ep V was non-deterministic: it was possible to recurse based on the polynémial
or the vectorV/. The ambiguity is resolved in favor of recursing on the vedtor The
development is simplified ip is split into the functiongval-poly  andeval-poly-

at-point . Their definitions are straightforward:

(defun eval-poly-at-point (p X)
(if (powerlist-p p)
(+ (eval-poly-at-point (p-unzip-l p) (* x X))
(* x (eval-poly-at-point (p-unzip-r p)
* x X))
(fix p))

(defun eval-poly (p x)
(if (powerlist-p X)
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(p-tie (eval-poly p (p-untie-l x))

(eval-poly p (p-untie-r x)))
(eval-poly-at-point p x)))

The term(fix p) is used in the definition aéval-poly-at-point instead the sim-
pler p so that the value returned lgyal-poly-at-point is numeric even whep is
not. This preserves the ACL2 tradition that treats all non-numeric arguments to a numeric
function as zero and forces numeric functi@awaysto return a numeric value.
The correctness proof uses the definitiorepot only over points, but also over

vectors. In particular, the step

(pXq)epu) | (pXq)ep —u) (8.9)
= (pepu’+u-(gepu®)) | (pepu® —u-(qepu?)) (8.10)

uses polynomial versions of the arithmetic operators. ACL2 reserves the arithmetic op-
erators for numbers only; in fact; - 1 is equal to zero for all non-numeric arguments

x, including vectors represented as powerlists. It is therefore necessary to define a set of
“arithmetic” operators over powerlistp=+ , p-- , andp-* for pairwise addition, subtrac-

tion and multiplication, respectively. Using these operators it is possible to rewrite the

polynomial evaluation over vectors with the following lemma:

(defthm eval-poly-lemma
(implies (powerlist-p p)
(equal (eval-poly p x)
(p-+ (eval-poly (p-unzip-l p)
(p-* x X))
(p-* x (eval-poly (p-unzip-r p)
(p-* x X))

The theoreneval-poly-lemma is almost sufficient to prove8(10. However, 8.10

also uses properties ofu, such as(—u)?2 = u?. To prove these facts in ACL2, it is
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necessary to introduce unary minus on powerlists and prove some basic lemmas about its

interaction with the other arithmetic operators:

(defthm p-*-p-unary--
(equal (p-* (p-unary-- x) )
(p-unary-- (p-* X y))))

(defthm p-*-p-unary--x-p-unary--y
(implies (p-similar-p x y)
(equal (p-* (p-unary-- x) (p-unary--y))
(p-* x ¥))))

The first theorem is simple enough, stating how a unary minus in the first argument
of a product can be factored out of the product. The second theorem seems odd, because of
thep-similar-p requirement. It is needed because the fungbign is defined in terms
of the structure of the first argument, so it is possible yhatll “run out” of terms before
x does, in which casp-* will recurse using th@-untie-I andp-untie-r of a non-
powerlist object. Neithep-untie-| nor p-untie-r guarantee a particular value when
applied to a non-powerlist; in fact, it is possible to find implementations of the powerlist
constraints that would invalidate the theorem withoutgksmilar-p hypothesis.

The heuristics of ACL2 exploit rewrite rules without any hypotheses, so-called sim-
plification rules. The theorem-*-p-unary--x-p-unary--y has an important spe-
cialization that can be written in this fashion, namely wheis equal toy. Since all

powerlists are similar to themselves, the hypothesis can be removed in this special case:
(defthm p-*-p-unary--x-p-unary--x
(equal (p-* (p-unary-- x) (p-unary-- X))
(P-* X X))

Note, a given term may rewrite using any one of the above rules. Certainly, if the

last rewrite rule applies, so will the two earlier ones. It is important, therefore, that the rules
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be given to ACL2n this order That is, the most specific rules should be given last, since
the more recent rules are tried first.

The only remaining rule deals with unary minus and addition:

(defthm p-+-p-unary--
(implies (p-similar-p x y)
(equal (p-+ x (p-unary-- y))
(P-- x )
As before, the similarity requirement can not be relaxed.
It is time to attempt proving the following theorem, justifying st&8and8.10of
the proof:

(defthm eval-poly-u-unary---u
(implies (powerlist-p Xx)
(equal (eval-poly x (p-tie u (p-unary-- u)))
(p-tie (p-+ (eval-poly (p-unzip-l x)
(p-* u )
(p-* u
(eval-poly
(p-unzip-r x)
(p-* u )
(p-- (eval-poly (p-unzip-l x)
(p-* u )
(p-* u
(eval-poly
(p-unzip-r x)

(p-* u u))))

Unfortunately, this proof attempt fails, because the ACL2 rewriter will not use the rewrite

rules about unary minus, as it can not relieve the similarity hypothesis. For example, part
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of the proof requiregeval-poly x (p-* u u)) to be similar to(p-* u (eval-
poly y (p-* u u))) wherex andy are similar to each other. While true, this fact
is not obvious to the ACL2 rewriter, and hence the rewrite rule takingp u?) + (—(u -
y ep u?)) to the simplen(z ep u?) — (u - y ep u?) is not applied.

There are two solutions to this problem. The first is to add a number of rules to help
ACL2 determine when two objects are similar. This approach is successful, butit resultsin a
large number of tedious lemmas. ACL2 provides a more immediate approach — “forcing.”
Essentially, ACL2 allows a hypothesis to be marked as “forceable,” which means that it
is assumed true by the rewriter, allowing the proof to proceed. At the end of the proof,
the forced hypotheses are tackled using the full power of the theorem prover, not just the
rewriter. To take advantage of this, the similarity conditions are marked as forceable in
the theorem-*-p-unary--x-p-unary--y andp-+-p-unary-- . At this point,
ACL2 proveseval-poly-u-unary---u without a problem.

Why not simply force all the hypotheses, allowing the theorem prover to proceed
at blinding speed, only to discard those pesky hypotheses at a later time? Because, if a
rewrite rule with a false forced hypothesis is used, the proof attempt will subsequently fail
— even if somedtherrewrite rule could have been applied at that time. This means that one
should never force a hypothesis that is not expected to be “always” true, where by “always”
is meant in the terms that the theorem prover will encounter. In the current context, only
similar powerlists are encountered, so gsimilar-p hypothesis is a good candidate
for forcing. There is a second caveat, however. In the forcing round, ACL2 does not restore
all the facts that were available when the forced rewrite rule was used. In particular, it is
possible for ACL2 to “drop” a hypothesis that will be needed when ACL2 attempts to prove
the forced hypothesis.

Consider now the list§V,,. The only properties of this function that are actually

needed are the following:

Wn = ul-—u
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Wn—l = U2

Since the functionV/,, is quite complicated, involving powers of the principa’ll)th power
of 1, it is advantageous to pursue the proof at an abstract level, where the only known
properties are the ones stated above. As was the case in similar cases earlier, the ACL2

encapsulate  primitive serves this purpose:

(encapsulate
((p-omega (n) 1)
(p-omega-sqrt (n) t))

(local
(defun p-omega (n)
(it (zp n)
0
(p-tie (p-omega (1- n)) (p-omega (1- n)))))

(local
(defun p-omega-sqrt (n)

(p-omega n)))

(local
(defthm p-unary---omega
(equal (p-unary-- (p-omega n))

(p-omega n))))

(defthm numberp-omega-0

(acl2-numberp (p-omega 0)))
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(defthm p-omega->tie-minus
(implies (not (zp n))
(equal (p-omega n)
(p-tie (p-omega-sqgrt (1- n))
(p-unary--
(p-omega-sqrt (1- n))))))

(defthm p-omega-sqrt**2
(equal (p-* (p-omega-sqrt n)
(p-omega-sqrt n))
(p-omega n)))
)

The local theorem-unary---omega  is used to help ACL2 prove that the specified con-
straints are satisfiable. It is only true for the local definitiopafmega used, specifically
the zero vector. Note also, it was necessary to define a specific functiondimice there is
adifferentu for each value ofi. This function is calleg-omega-sqgrt , as suggested by
the last constraint.

The following theorem, justifying Misra’s proof through steé[d.0, can now be ver-
ified:

(defthm eval-poly-omega-n
(implies (and (powerlist-p Xx)
(not (zp n)))
(let ((n1 (1- n)
(equal (eval-poly x (p-omega n))
(p-tie (p-+ (eval-poly (p-unzip-l Xx)
(p-omega nl))
(p-* (p-omega-sqgrt nl)
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(eval-poly
(p-unzip-r Xx)
(p-omega nl))))

(p-- (eval-poly (p-unzip-l x)

(p-omega nl))
(p-* (p-omega-sqrt nl)
(eval-poly
(p-unzip-r x)
(p-omega n1)))))))
)

Proving this theorem requires a hint to encourage ACL2 to use the rule convi@ating
omega n) into itsu | —u equivalent, so thatval-poly-u-unary---u can apply.
Also needed are hints to keep ACL2 from considering lemmas relating to several functions.
This is because the intermediate terms are so large they contain many function applications
which ACL2 would normally consider further — unfortunately, once ACL2 starts going
down that path, it loses the special structure of the theorem that allows a simple proof. Itis
rare that one needs to override the ACL2 heuristics quite so much, but it is vital that such
overriding is possible.

At this point, it is almost possible to prove the main result. However, at this stage,
the reasoning is overly general since it deals waitly sequence of powers of roots of 1. It
is not restricted to the specific sequence with as many elements as required by the Fourier
Transform. To do so, it is necessary to reason about the length of a list, or better yet, about

the logarithm of its length, i.e., its depth as a binary tree. This yields the following lemma:

(defun p-depth (x)
(if (powerlist-p Xx)
(1+ (p-depth (p-untie-l x)))
0))
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(defthm eval-poly-omega-depth
(let* ((n (p-depth x))
(n1 (1- )
(implies (powerlist-p x)
(equal (eval-poly x (p-omega n))
(p-tie (p-+ (eval-poly (p-unzip-l x)
(p-omega nl))
(p-* (p-omega-sqgrt nl)
(eval-poly
(p-unzip-r x)
(p-omega nl))))
(p-- (eval-poly (p-unzip-l x)
(p-omega nl))
(p-* (p-omega-sqgrt nl)
(eval-poly
(p-unzip-r x)
(p-omega n1)))))))
)

To complete the proof, it is necessary to define the Fourier Transform in ACL2:

(defun p-ft-omega (x)
(eval-poly x (p-omega (p-depth x))))

The main correctness result of the FFT simply extesdd-poly-omega-depth into
p-ft-omega . However, this requires reasoning about fhdepth of p, given thep-

depth of p X ¢. The following technical lemma can be used to simplify those terms:

(defthm p-depth-unzip
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(implies (and (powerlist-p X)
(p-regular-p x))
(and (equal (p-depth (p-unzip-l x))
(1- (p-depth X))
(equal (p-depth (p-unzip-r X))
(1- (p-depth Xx))))))

It may be surprising that this is the only theorem that requires the powetiisbe regular.

Finally, it is possible to prove the main result given in the hand-proof of se8tibn

(defthm ft-omega-lemma
(implies (and (powerlist-p Xx)
(p-regular-p x))
(equal (p-ft-omega Xx)
(p-tie (p-+ (p-ft-omega (p-unzip-l X))
(p-* (p-omega-sqrt
(1- (p-depth x)))
(p-ft-omega
(p-unzip-r x))))
(p-- (p-ft-omega (p-unzip-l X))
(p-* (p-omega-sqrt
(1- (p-depth X))
(p-ft-omega
(p-unzip-r x))))))))

To complete the proof, it is only necessary to introduce the ACL2 version of the Fast Fourier

Transform:

(defun p-fft-omega (x)
(if (powerlist-p  x)
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(p-tie (p-+ (p-fft-omega (p-unzip-l x))
(p-* (p-omega-sqrt (1- (p-depth X)))
(p-fit-omega (p-unzip-r x))))
(p-- (p-fft-omega (p-unzip-l x))
(p-* (p-omega-sqrt (1- (p-depth Xx)))
(p-fit-omega (p-unzip-r x)))))
(fix x)))
Note, again, the use fik to ensurg-fft-omega  always returns a numeric result. This
is requiredhere because of it is the wayal-poly  was defined.
The main theorem of this section equates the Fast Fourier Transform with the

Fourier Transform:

(defthm fft-omega->ft-omega
(implies (p-regular-p x)
(equal (p-fft-omega Xx)
(p-ft-omega x))))

It is a direct corollary oft-omega-lemma

This proof is more general than necessary. It proves the correctness of an FFT-like
algorithm for any polynomial evaluation at vectors satisfying the constraintd’gn In
the next section, this proof is refined by defining instances-ofnega andp-omega-
sgrt in terms of complex exponentiation. These instances correspond to the traditional
definition of the Fourier Transform, and the correctness result can be established directly

by functional instantiation.

8.3 Specializing the ACL2 Proof

The previous section showed how the function

FT(x)=xepW,



wheren is the depth of: can be quickly computed for any family of vectd#s, such that

W, = ul|—-u

Wn—l = u2

for somewu, possibly depending on. The actual Fourier Transform uses powers of the
(2”)th principal root of1 in place ofW,,. In this section, it is shown that this particular
vector satisfies the needed properties.

The nth principal root of1 is given by the complex numbef™/”. Using the

standard definition of complex exponentiation, this gives

W, eQm’/n
= cos(2m/n) + isin(27/n)
The properties of the vectdV,, = (wan,w3.,...,w3,) can be derived from the basic

properties of sine, cosine, and as established in chaptér Specifically needed are the
formulas forsin(x + y) andcos(z + y). Moreover, in order to establish thiét, = u | —u,
the facts thatinw = 0 andcosm™ = —1 will also be required. Recall, all of these results
are proved in chapte.

Consider the definition ofV’,, from won = €2™/2". This is one place where it
would be simpler programmatically to process the elemenk® gierially than in parallel,
i.e., where it would be easier to use linear lists than powerlists. The reason is that it is not
simple to do a “for i from 1 to n” loop in powerlists, since their recursive structure is always
a split down the middle. The solution is to think of the defining properties as a recurrence

relation:

Wn \/Wn—l ’ _\/Wn—l
Wo = 1
This gives a recurrence relation for the exponents as follows:

E, = En,1/2 ‘ (En,1/2+77')
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Ey = 2w

where the arithmetic operators are defined over pointwise powerlists. Ngis,defined
as2r instead of the more naturdly, = 0, so thatE; is (w,27), not (0, 7). From this
definition,W,, can be derived asn.

The needed scalar operators are easy to define:

(defun p-halve (x)
(if (powerlist-p x)
(p-tie (p-halve (p-untie-l x))
(p-halve (p-untie-r x)))
(I x 2))

(defun p-offset (x p)
(if (powerlist-p p)
(p-tie (p-offset x (p-untie-l p))
(p-offset x (p-untie-r p)))
(+ x p))

(defun p-exponents (n)
(it (zp n)
(* 2 (acl2-pi)
(let ((sqgrt-expnts (p-halve (p-exponents
(1- m)))
(p-tie sgrt-expnts
(p-offset (acl2-pi) sgrt-expnts)))))

(defun complex-expt (X)

(complex (acl2-cosine x) (acl2-sine x)))
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(defun p-complex-expt (x)
(if (powerlist-p x)
(p-tie (p-complex-expt (p-untie-l x))
(p-complex-expt (p-untie-r Xx)))

(complex-expt x)))

It is now possible to define the functiopsexpt-omega andp-expt-omega-sqrt

which generatéV,, and+/W ,, respectively.

(defun p-expt-omega (n)

(p-complex-expt (p-exponents n)))

(defun p-expt-omega-sqrt (n)

(p-complex-expt (p-halve (p-exponents n))))

It must be shown that these functions satisfy all the constraints associateghantiega

andp-omega-sqrt . Begin with the simplest constraint, namely th&, is real:

(defthm numberp-expt-omega-0

(realp (p-expt-omega 0)))

The next constraint is that-expt-omega-sqrt is the pairwise square root of
p-expt-omega . To show this requires the fact thalt/2¢/2 = ¢*. This can be proved in

ACL2 with the following theorem:

(defthm complex-expt-/-2
(implies (realp x)
(equal (* (complex-expt (* 1/2 X))
(complex-expt (* 1/2 Xx)))

(complex-expt x))))
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ACL2 needs hints to generate good instances of the sine of sums and cosine of sums axioms.

The next step is to generalize the lemowenplex-expt-/-2 to all powerlists:

(defthm p-complex-expt-halve
(implies (p-acl2-realp-list x)
(equal (p-* (p-complex-expt (p-halve Xx))
(p-complex-expt (p-halve x)))
(p-complex-expt x))))

The functionp-acl2-realp-list verifies that a powerlist is composed exclusively of
real numbers. This hypothesis is heeded, becaos®lex-expt-/-2 requiresx to be
areal.

With this new rule, it is easy to prove the next constraint required, namely that

p-expt-omega-sqrt is the square root gi-expt-omega

(defthm p-expt-omega-sqrt**2
(equal (p-* (p-expt-omega-sqrt n)
(p-expt-omega-sqrt n))
(p-expt-omega n)))

The final constraint deals with unary minus. The following lemma is required:

(defthm complex-expt-offset-pi
(implies (p-acl2-realp-list expnts)
(equal (p-complex-expt (p-offset (acl2-pi)
expnts))
(p-unary-- (p-complex-expt expnts)))))

This follows from the facts that**¥ = e%e¥ ande’™ = —1 — Euler’s beautiful identity.
ACL2 can then immediately extend this result to powerlists, which is the third and last

constraint orp-omega andp-omega-sqrt
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(defthm p-expt-omega->tie-minus
(implies (not (zp n))
(equal (p-expt-omega n)
(p-tie (p-expt-omega-sqrt (1- n))
(p-unary--
(p-expt-omega-sqrt

(- M)

What this means is that the theorems proved in se&ipabout the Fast Fourier Transform
can now be instantiated with-expt-omega  and p-expt-omega-sqrt . First, the

new specific versions of the Fourier Transform and Fast Fourier Transform based on the

trigonometric version ofV,, need to be defined:

(defun p-ft-expt-omega (X)
(eval-poly x (p-expt-omega (p-depth x))))

(defun p-fft-expt-omega (X)
(if (powerlist-p Xx)
(p-tie (p-+ (p-fft-expt-omega (p-unzip-l x))

(p-* (p-expt-omega-sqrt
(1- (p-depth x)))

(p-fft-expt-omega

(p-unzip-r x))))

(p-- (p-fft-expt-omega (p-unzip-l x))

(p-* (p-expt-omega-sqrt

(1- (p-depth x)))

(p-fft-expt-omega

(p-unzip-r x)))))

(fix x)))
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ACL2 immediately verifies that the new definition of the FFT correctly computes

the Fourier Transform:

(defthm fft-expt-omega->ft-expt-omega
(implies (p-regular-p x)
(equal (p-fft-expt-omega Xx)
(p-ft-expt-omega x))))

As with all uses of meta-theorems, a hint is required to prove this theorem by instantiat-
ing fft-omega-correctness . Theoremfft-expt-omega->ft-expt-omega
justifies the use of the Fast Fourier Transform to compute the Fourier Transform. The
proof required various properties of the trigonometric functions. It is relevant to note that
the properties used need not necessarily have been true of approximations to the functions
sin(z), cos(x), andw. This emphasizes the usefulness of extending ACL2 to incorporate
the transcendental functions.

It is worth remarking on a subtle benefit derived by the userafapsulate
above. By usingncapsulate it was possible to split the proof of the correctness of
the FFT into two parts. The first part dealt exclusively with abstract properties that are
sufficient to prove the correctness of the FFT family of algorithms. The second part that
the FFT belonged to this family. The advantage of this split is that the focus of ACL2
is narrowed at each step. Because of this, the proof of each of the two halves is vastly
simplified, since it takes place over a different set of functions, i.e. vector arithmetic on the
first half and trigonometry on the second. This restricts ACL2’s search space in looking for
a proof, and this increases its chance of finding one. This usaggcapsulate is very

useful when building large theories.
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Chapter 9

Conclusion

The main goal of this thesis was the modification of ACL2 to reason about the irrational
numbers using non-standard analysis. A second goal was establishing that ACL2 provides
a powerful vehicle for reasoning about real-valued algorithms. The results presented in the
earlier chapters demonstrate that both of these goals have been achieved. Moreover, the
techniques described in this thesis should be valuable to other researchers. Some may wish
to use the modified ACL2 to prove more theorems involving the real numbers, possibly in
the correctness specification of a floating-point algorithm or circuit. In addition, those who
decide to include non-standard analysis in their own theorem provers may find the approach
presented here applicable.

A special consideration when presenting mechanized proofs is how much detail to
provide. Too much detail can obscure the overall direction of the proof because it inundates
the reader with a plethora of lemmas, some trivial, some deeply technical. Often, the need
for these lemmas is obvious only to someone with experience in automated theorem prov-
ing. On the other hand, too little detail can mislead the reader into thinking that most of
the reasoning was mechanized, giving a false impression of the state of the art in automated
theorem proving. The presentation in this document tried to strike a balance between these

two extremes, but it was biased towards simplifying the presentation, at the expense of ig-
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Category Definitions | Theorems
Non-Standard Analysis 19 270
The Square Root Function 11 145
The Exponential Function 62 356
The Trigonometric Functions 38 376
Powerlists 120 462
The Fast Fourier Transform 24 71
Miscellaneous Lemmas 12 85

Table 9.1: An Estimate of the Proof Effort

noring some needed lemmas. However, before embarking on a similar project, the reader is
encouraged to make a fair estimate of the actual effort involved. The best way to make that
estimate is to browse through the source code in the accompanying CD-ROM. A rougher
estimate of the effort can be gleaned from tehle

The research presented here can be continued in a number of possible directions.
Already under development by users of the revised ACL2 is a library of results from real
analysis. This will include such results as the mean value theorem, the chain rule, and the
fundamental theorem of calculus.

Recall, the introduction of non-standard functions in ACL2 was limited to non-
recursive functions. A useful area for future work will be relaxing this restriction. This will

present many challenges. For example, consider the following function:

(defun smallest-ns-natural (n accum)
(if (or (zp n) (standard-numberp n))
accum

(smallest-ns-natural (1- n) n)))

Were this definition accepte(bmallest-ns-natural N N) could be used to denote
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the first nonstandardnatural, given an arbitrariflarge integerN. This would lead to an

immediate contradiction. However, consider the following theorem:

(defun limited-list-p (1)
(if (null 1)
t
(and (i-limited (car 1))
(limited-list-p (cdr 1)))))

(defthm sum-of-limited-numbers
(implies (and (limited-list-p 1)
(i-limited (length 1)))
(i-limited (sumlist 1))))

This theorem can not be proved in the current ACL2, because the definitlionitefd-

list-p is not accepted since it uses recursion on a non-classical formula. However,
the theorem is clearly true, and it is of obvious utility. This motivates the admission of
limited-list-p while excludingsmallest-ns-natural . Can such a modifica-

tion be made? Possibly. One observation that may be of use is the following: the measure
in smallest-ns-natural is the paramaten, which takes a nostandardvalue in
(smallest-ns-natural N N) above. If the measure imited-list-p is the

length ofl , then the definition can be usefully restricted to listé-lirhited length.

The modifications to ACL2 described in this thesis introduced the notion of non-
standard numbers into ACL2. However, this did not affect the other ACL2 data types. It
may be possible to define the notion of a hon-standard ACL2 object, possibly including lists
and atoms.

The formalization of powerlists can also lead to some interesting new directions.
As was mentioned in chapt&r Kornerup generalized powerlists to include irregular pow-

erlists. However, his generalization is different than the one presented here. It may be
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interesting to reconcile the two of them. On a different note, many algorithms have been
formalized in the language of powerlists, and these formalizations can be verified using
ACL2. Particularly challenging will be algorithms involving nested powerlists.

A final direction should be mentioned. Russinoff has pointed the way to the ver-
ification of floating-point approximations to some irrational functions, 5]. The next
step should be a mechanical proof that a particular algorithm approximates a given trigono-
metric function. This will likely require the verification of a table of initial values for the
approximation, perhaps using the verified approximation functions given in sécich
Moreover, the results will likely depend on other properties of the sine and cosine functions,
such asin’(z) = cos(x). These results are within reach, yet they should prove handsomely

rewarding.
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Appendix A

A Simple Introduction to ACL2

The following is not a precise description of the ACL2 syntax or logic. Instead it is an
informal description that should give the reader enough information to read the rest of this
thesis. More complete descriptions can be found®ii 7].

A term in ACL2 can be a number, atom, string, or pair. The syntax of numbers
holds few surprises. Signed and unsigned integers are permitted, for exauapde9 . It
is worth noting that these integers can have arbitrary precision; that is, there is no require-
ment that the integers be less thih. ACL2 also allows rational constants, writtenras
merator/denominatorFor example;3/9 is an ACL2 constant equivalenttd/3 . Ratios
also have infinite precision. Notice in particular thb3 is not equal to the floating-point
number.333 . The last group of numeric constants recognized by ACL2 are the complex
rationals. The complex rational+ bi is written as#C(a b) . For example#C(0 1) is
the ACL2 constant fof.

The syntax for atoms is quite generous. Almost any non-numeric string of letters,
digits, and symbols can be an atom, although parentheses should be avoided. Example
atoms includdred , f91 , 1+, andf->g . Atoms stand for variables in ACL2. With the
exception of a few atoms which always evaluate to themselves (specificalyinil ),

atoms have a value. Itis an error to access an atom that has not been defined.
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A string is simply a quoted sequence of characters, sutbmsode one”

Dotted pairs play a major role in the language. They are used to build all other data
structures. Following the tradition of LISP, the symimill is very special. When it is
the second element of a dotted pair, the pair is considered to be a list of the first element.
For example, the pail . nil) is the list consisting of the single elemehntwhich is
written as(1) . Longer lists are formed by taking the dotted pair of the leading element
with a list containing the remaining elements. For example, théllis?) is really the pair
@ . (2 . ni) . Viewed this waynil is not just an atom, it is also the empty list.

Lists are central in ACL2. Functions are invoked by putting together the function
name and the arguments in a list. For example, pairs are constructed using the function
cons , so the examples above can be writterff@s 1 nil) and(cons 1 (cons
2 nil)) . Thefunctiongar andcdr select the first and second element of a pair respec-
tively. So(car (cons 1 (cons 2 nil))) is1 and(cdr (cons 1 (cons 2
nil))) is(cons 2 nil) or the list(2) .

This brings up a problem. The ter(oons 2 nil) refers to a function invo-
cation. Its value is whatever the functioons returns when given those two argument.
However, the list(2) is aconstantterm. How is ACL2 to know when a list should be
evaluated, as opposed to being treated as a constant? The answer is that constants must be
explicitly quoted with a leading single quote. So the list above would be writté2ps.

The leading quote notifies ACL2 that the term to follow should be treated as a constant.
This also works with atoms. Recall that atoms are treated as variables, so they are evaluated
in that context. The value of the atofred may be the list(2) . But if the atom is
quoted, it is not evaluated. Thueed s the ACL2 constant with valuied .

Lists can also be constructed by using the functish  which returns a list of
all its arguments. For exampl@ist 2 4 6) isequal to(2 4 6) . Another way of
constructing lists or other arbitrary objects is to use the backquote notation. The backquote

reverses the normal ACL2 quoting mechanism, so that all terms are considered constant,
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unless they are explicitly marked as evaluable. This device allows the structure of a term
to be defined, leaving slots to be filled in. For example, consider the tenfptate (inv

xz) (inv  g)) . This can be constructed using the following expression:
(list x y (list 'inv x) (list 'inv y))

However, this expression does not retain the intuitive appeal of the specified pattern. Using

the backquote notation this problem is solved:

‘(x Ly (inv x) (inv y)

After encountering the backquote, ACL2 processes the following term as those it were a
constant. Variables, subterms in general, are only evaluated if they are preceeded by a
comma, as inx . Thus, the subterninv ,x) is equal to’'(inv 3) if the current
value ofx is 3.

New functions can be defined in ACL2 using the functaefun . Consider the

following definition of the functior2™:

(defun 2**n (n)
(if (equal n 0)
1
* 2 (2*n (1- n)))

Notice the syntax of the definition. The functiolefun accepts three arguments. The
first argument is the name of the function being defined — this is one of the few places
where an atom occurs without being evaluated, so thaitYis that is being defined, not
whatever valu€**n has. The second argument is a list containing the formal arguments
for the new function. In this case, the only argument.ig he third argument is the body of

the function. It introduces a few new functions; suchfaswith “test,” “then,” and “else”
argumentsequal which tests its two arguments for equalitywhich returns the product

of all its arguments; andl- which returns one less than its argument.
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As written, the definition oR**n is not accepted by ACL2. When ACL2 examines
a new function, it tries to prove that the function terminates for all values of its arguments.
But the definition given above does not terminate for all arguments; consider the value of

(2**n -1) ,for example. A correct definition is the following:

(defun 2**n (n)
(if (not (and (integerp n) (< 0 n)))
1
(* 2 (2*n (1- n)))

This function correctly compute®® of all natural numbers, and it returngl for all other
arguments. This follows the ACL2 tradition of treating invalid argument8 & all nu-
meric functions. The new functiorend andnot have the expected semantics, as does
<. Theidiom(not (and (integerp n) (< 0 n))) is so common, that it is pre-

defined in ACL2 as the functiorp . Thus, the function above would be defined as follows:

(defun 2**n (n)
(it (zp n)
1
(* 2 (2*n (1- n)))

ACL2 also allows the introduction of theorems. The functdeithm is used to
specify a new theorem to the theorem prover. Consider the prooPthat is a positive

integer:

(defthm 2**n-positive-integer
(and (integerp (2**n n))
(< 0 (2"n )

The first argument tdefthm is a name for the theorem being introduced. Subsequently,

it is possible to give ACL2 hints, such as “use the theoB*tm-positive-integer
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here,” or “2**n-positive-integer is not useful here.” As you might expect, the
functionintegerp  tests whether its argument is an integer. Actually, the theorem above
is proved automatically when the functi@¥*n is introduced. ACL2 tries to guess the
type of all defined functions, and it usually does a remarkable job.

Another simple theorem abo@t*n is that it is even for all integer values efat

least equal td. In ACL2, this can be stated as follows:

(defthm 2**n-even
(implies (and (integerp n)
(<= 1 n))
(evenp (2**n ny))))

This introduces some new functions whose meaning should be obvious from the context.
The proof of this theorem requires the arithmetic library; it can be loaded with the following

command:
(include-book " ACL2-DIR /books/arithmetic/top™)

The directoryACL2-DIRshould be replaced with the location of the locally installed ACL2
tree.
A more difficult theorem is tha2**n is a 1-to-1 function. Consider the following

theorem:

(defthm 2**n-1-to-1
(implies (equal (2**n x) (2**n y))
(equal x )))
ACL2 is unable to prove this theorem, because it is false. Recall, the definitidttof
treated all “inappropriate” arguments as effectively equal to zero. For exaf@pla,

nil) is equal tol. Itis impossible to guarantee thaandy are equal, but it is possible to

prove that they are equivalent in the context of natural numbers.
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ACL2 defines a number of functions that are equivalent to the identity function in
a given context. For example, the functifix forces its argument to be numeric; if it is,
it simply returns the argument, and otherwise it returns zero. Similafily, forces its

argument to be a natural number. A theorem that can be established is the following:

(defthm 2**n-1-to-1
(implies (equal (2**n x) (2**n vy))
(equal (nfix x) (nfix y))))

However, the proof is not automatic. The theorem can be proved by an easy inductive
argument. ACL2 has a sophisticated set of heuristics that allows it to pick good induction
schemes in general, but those heuristics fail in this case, because ACL2 does not notice that
it must reducex andy simultaneously.

Fortunately, ACL2 allows the user to guide it by providing hints. In this case, a
hint is needed to let ACL2 know the correct induction scheme. This is done by defining
a function that recurses in the desired fashion and then telling ACL2 to use the induction

scheme “suggested” by that function. The function is as follows:

(defun induct-hint (x y)
(if (zp x)
y
(+ x (induct-hint (1- x) (1- y))))

Notice, the specific value computed by this function is irrelevant. The only important thing
is that each recursive call decrements bodndy. The base case suggested by this function
is based o, but this is not significant.

The theorem can now be proved as follows:

(defthm 2**n-1-to-1
(implies (equal (2**n x) (2**n vy))
(equal (nfix x) (nfix y)))
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:hints (("Goal"
sinduct (induct-hint x v))))

This time ACL2 is able to prove the theorem without any difficulties whatsoever.
Besidesinduct , ACL2 provides a wide variety ahints . The most common
is to suggest ACL2 use a particular instance of a previously proved theorem. Another useful
:hint  is to avoid using a particular theorem that is not relevant in the current proof. This
thesis deliberately avoided displayirfgnts , although they were needed in many of the
theorems that were proved. Ttent above gives some of the flavor of working with
ACL2.
ACL2 also allows the definition of macros. A macro is simply a template that is
evaluated as soon as the expression is encountered, and its value syntactically replaces the

macro in its context. For example, the following macro defines the successor function:

(defmacro succ (s)

‘(cons ,s ,9))

Notice the use of the backquote to specify the body of the macro. Since the value of the
macro is meant to be a piece of syntax that is substituted for the macro, it is common to
write it as a pattern using the backquote notation.

A powerful feature of ACL2 is itencapsulate  primitive. This allows a proof
schemato be developed and then applied to a number of different functions. In the language
of formal logic, it is used to justify the introduction of derived inference rules.

To understand whgncapsulate is useful, consider the following. The function
even-list-p can be defined to verify that all elements of a list are even. It should be
possible to prove that any subset of this list also satisfres-list-p , but the proof may
not be trivial. Furthermore, suppose the functamud-list-p has also been defined. It
would be nice if the analogous theorem about subsets could be proved automatically.

That is where encapsulate comes in. The functievsn-list-p and odd-

list-p are very similar; the only difference is that one is checkivgnp while the
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other checkoddp . If the functionsevenp andoddp can be replaced with an arbitrary
boolean functiorprop , it should be possible to prove the main theorem alpoop and
then instantiate this theorem fevenp andoddp as required. Abstract functions are
calledconstrainedunctions in ACL2.

The constrained functioprop can be introduced as follows:

(encapsulate

((prop (x) 1)

(local
(defun prop (x)
(if x t nil)))

(defthm booleanp-prop
(booleanp (prop x))))

The second line of thencapsulate  specifies thaprop is the constrained function
being introduced, that it expects a single argumenand that it returns a single value.

The next term in theencapsulate s the definition ofprop . Even thoughprop is

being introduced as a constrained function, ACL2 requires that a possible body be defined
for it. This establishes that there is at least one function that satisfies all the constrains
aboutprop and is important in preserving the soundness of ACL2 (Ségfpr details).
However, because the definition is placed insitlecal term, it is not exported outside of
theencapsulate . The third term in theencapsulate is a theorem aboyirop . This
theorem is a constraint that must be satisfied by any candidate function that is offered as an
instance ofprop . The specific constraint is thatop is a boolean function. Like most
dialects of Lisp, ACL2 considers the atomsandnil to represent the boolean objects
“true” and “false,” respectively. Unfortunately, this gives yet a third meaningilto —

it is the atom which evaluates tl , the empty list, and the boolean false. Notice how
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the body ofprop is constructed to always retutnor nil . You may also notice that the
functionif does not require that its first argument be a boolean; anynilonvalue is
considered equivalent toin a boolean context.

After the constrained definition girop is accepted, it is easy to define the function
which generalizeprop over lists; that is, it returns true if and only if all elements of the

argument list satisfyprop :

(defun prop-list-p (1)
(if (endp 1)
t
(and (prop (car 1))

(prop-list-p (cdr 1)))

The functionendp succeeds when its argument is not a non-empty list. The pattern above
is repeated by most functions which traverse over lists.

ACL2 is able to prove that this function is preserved by subsets:

(defthm subsetp-prop
(implies (and (prop-list-p 1)
(subsetp 12 1)
(prop-list-p 12)))

Readers who were discouraged by the proa2'sh-even may be encouraged to know
that ACL2 is able to proveubsetp-prop  without the use of any hints. ACL2 appears
more prepared to reason about lists than about algebra.

Next, consider the definition of the functi@ven-list-p

(defun even-list-p (1)
(if (endp 1)
t

(and (evenp (car I))
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(even-list-p (cdr 1)))))

This function would be true of the lis2 8 4) , but false of(2 7 4) . Clearly, this
definition follows the pattern set kyrop-list-p . Moreover,evenp is a boolean, so it
satisfies the constraints pfop . This makes it possible to use the theormibset-prop

to prove the equivalent theorem abewen-list-p

(defthm subsetp-even
(implies (and (even-list-p 1)
(subsetp 12 1))
(even-list-p 12))
‘hints (("Goal"
by (:functional-instance subsetp-prop
(prop evenp)
(prop-list-p even-list-p)))))

Notice howencapsulate  had the result of introducing a derived inference rule. Once
(booleanp (evenp X)) is establishedsubsetp-even  can be deduced.

A limitation of encapsulate is that ACL2 never considers using one of these
derived rules automatically. The user must explicitly instantiate them @& to the

prover.
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