[This Page Intentionally Left Partialy Blank.]

[Using FrontMatter Library of 24-Oct-85]

MECHANICALLY VERIFYING CONCURRENT PROGRAMS

APPROVED BY
DISSERTATION COMMITTEE:

Copyright
by
David Moshe Goldschlag
1992

To my parents

STIND INYD PANND DAIND TON DY
10 MY

MECHANICALLY VERIFYING CONCURRENT PROGRAMS

by

DAVID MOSHE GOLDSCHLAG, B.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texasat Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXASAT AUSTIN
May, 1992

ACKNOWLEDGEMENTS

| would like to thank my committee members, Bob Boyer, J Maoore, Ledie
Lamport, Jay Misra, and Al Mok, for their thoughtful help throughout my graduate work.
Special thanks are due to Matt Kaufmann who was a constant source of good and friendly
advice (and of Pc-Ngthm).

Thiswork was begun in collaboration with Jimi Crawford in 1986. The project
has greatly evolved since then, but the general scheme of defining an interpreter for
concurrent programs, and only using proved proof rules for program verification was

decided jointly at that early date. That year of collaboration was hard work and great fun.

The writing of this thesis was completed after | began working for the National
Security Agency. However, the vast mgjority of the research was supported by Don
Good' s group, first at the University of Texas at Austin's Institute for Computer Science
and Computer Applications, and later at Computational Logic, Inc. Don has succeeded in
building a talented and friendly research group supported by excellent administrative
personnel and equipment. | appreciate the friendship and help of Dianne King Akers,
Sandy Olmstead, Ron Olphie, and Laura Tice over these years. Mike Smith deserves
thanks for keeping Scribe's dissertation style format current, and for allocating me time

to do my research.

| would also like to thank my friends Bill Bevier, Eliezer Levy, Boaz Super,

Warren Hunt, and Bill Y oung.

This thesis is dedicated to my parents. They imbued in me the curiosity to
learn, gave me the opportunity to study, and taught me the value of hard work. Most of

all they gave metheir love.

And finally, IN YNRPINN | thank my wife Barbara for being my best

friend.

David Moshe Goldschlag

Washington, D.C.
May, 1992

\Y

MECHANICALLY VERIFYING CONCURRENT PROGRAMS

Publication No.

David Moshe Goldschlag, Ph.D.
The University of Texas at Austin, 1992

Supervisors. Robert S. Boyer, J Strother Moore

This thesis develops a sound, mechanically verified proof system suitable for
the mechanical verification of both the safety and liveness properties of concurrent
programs. Mechanical verification increases the trustworthiness of a proof. The
properties proved may be (non-existentially quantified) first order, and the programs may
be parameterized. The proof system provides a mechanized framework for reasoning
about concurrent programs under a variety of fairness assumptions. It is demonstrated by
the mechanically verified proofs of four concurrent programs. This thesis presents
several significant results, including the first extensive mechanized use of proof rules
which are theorems of an operational semantics. This research aso prompted the
development of both the functional variables[Boyer, Goldschlag, Kaufmann, & Moore
91] and Defn-Sk [Kaufmann 89] extensions to the Boyer-Moore logic. Thesis chapters

include:

» A formalization, in the Boyer-Moore Logic [Boyer & Moore 88a], of an
interpreter for concurrent programs with non-deterministic statements. This
operational semanticsis the foundation for the development of a sound proof
system similar to Unity [Chandy & Misra 88].

» The presentation of Unity’s major proof rules (except for superposition) as
theorems about this interpreter. This includes the infinite digunction and
substitution axioms. Unity’s theorems remain true for programs with non-
deterministic statements.

» The extension of the Unity logic to include the literature’ s notions of weak
and strong fairness[Manna & Pnueli 84], and deadlock freedom. The latter
two notions guarantee freedom from starvation and absence of deadlock,
respectively.

Vii

A new proof rule for reasoning about properties that are eventually invariant.
* A proof of an n-node mutual exclusion agorithm.

* A proof of a minimum tree value algorithm. This proof demonstrates
reasoning about programs with multiple instances of several statements and a
complicated data structure.

* A proof of an n-node dining philosopher’s program under the assumptions of
strong fairness and deadlock freedom.

* A proof of an n-node delay insensitive FIFO queue, where statements
correspond to Martin's production rules[Martin 87]. Both the safety and
liveness properties proved are hon-propositional theorems.

This thesis both contributes to the science of mechanized program verification

and lays the groundwork for future research.

viii

Chapter 1

Introduction

Since the semantics of a programming language can be precisely specified,
programs are mathematical objects whose correctness can be assured by formal proof.
Mechanical verification, which uses a computer program to validate a formal proof,
greatly increases one's confidence in the correctness of the proved theorem. This thesis
develops a mechanically verified proof system for concurrent programs, and
demonstrates the use of this proof system by the mechanically verified correctness proofs

of four parameterized multiprocess programs.

The proof system presented here differs from most other proof systems because
its proof rules are theorems. All the proof rules are either theorems of an operational
semantics of concurrency (and have been mechanically verified) or are a conservative
extension of that operational semantics. In the first case, the proof system is (relatively)
complete, since all properties may ultimately be derived directly from the operational
semantics. In the second case, compl eteness depends upon whether certain proof rulesin
the literature are sufficient. However, the proof system is sound, since the operational
semantics justifies the new proof rules. The methodology of justifying proof rules by an
operational semantics and the mechanized use of those proof rules (without appealing to
the operational semantics) in proofs are used extensively for the first time in this thesis.
Using these proof rules facilitates the development of mechanized proofs which closely
resemble the structure of hand proofs, but are necessarily longer since all concepts are
defined from first principles. The methodology of proving proof rules [Goldschlag 90a]
makes a clear distinction between the theorems in the proof system and the logical
inference rules and syntax which define the logic. Since the underlying logic is sound,
the proof system is sound, and since the underlying logic has been mechanized, the proof

system has been mechanized as well.

This proof system is based on the Unity logic [Chandy & Misra 88] and has
been encoded in the Boyer-Moore logic on the Boyer-Moore prover [Boyer & Moore
79, Boyer & Moore 88a]. These are described in the next sections. Unity’s major proof
rules (except for superposition) are theorems in this proof system and are presented in
this thesis. In addition, Unity is extended in several ways. Program statements may be
non-deterministic [Lamport 91]; Unity’s proof rules are still sound. Programs may be
reasoned about under the assumptions of weak and strong fairness, in addition to Unity’s
unconditional fairness [Francez 86]. Also, a predicate for specifying properties that are

eventually invariant is presented, along with several supporting proof rules.

This thesis is organized in the following way: This chapter presents the
necessary background material and related work. Chapter 2 presents an operational
semantics of concurrency which underlies the proof rules presented in chapter 3. Chapter
3 also discusses several fairness notions and describes how the proof rules are used in
practice. Chapter 4 presents the specification, algorithm, and correctness proof of a
solution to the mutual exclusion praoblem. Chapters 5, 6, and 7 do the same for a
concurrent solution to finding the minimum node value in a tree, for a solution to the
dining philosophers problem under the (unusual) assumptions of strong fairness and
absence of deadlock, and for an n-bit delay insensitive FIFO queue [Martin 87]. Chapter
8 discusses both the limitations and possibilities of this formalization and compares this

work to related mechanizations.

1.1 Unity
Unity, developed by Chandy and Misra and described in [Chandy & Misra 88],
defines both a notation for writing concurrent programs, and a logic for reasoning about

computations (executions) of those programs. Unity has two important characteristics:

» Unity provides predicates for specifications and proof rules to derive
specifications directly from the program text. This type of proof strategy is
often clearer and more succinct than an argument about a program’'s
operational behavior.

» Unity separates the concerns of algorithm and architecture. It defines a
general semantics for concurrent programs and encourages the refinement of
architecture independent programs to architecture specific ones.

The mechanization of Unity presented here focuses on the first characteristic.
The latter is a refinement methodology and the necessary proof rules have not been
formalized.

As an example of the Unity notation, consider the following program which

sortsan array of Nelements X[1], ..., X[N into non-decreasing order:

<01, J:0<1 <J<=N: XI], X[J] :=XJI], XI]
IF X[J]<X[1] >

This program contains N(N- 1) / 2 statements, each of which swaps an out-of-
order pair of array elements. The execution of this program is as follows: Some
statement is chosen. The condition following the | F is evaluated. If the condition is
false, the statement’s execution is equivalent to a SKI P statement. If the condition is
true, the statement is executed, and the out-of-order pair is swapped. Another statement
is then chosen, and the process is repeated. The only restriction on the scheduling of
statements is a fairness restriction, which requires that every statement be scheduled
infinitely often. Although execution never terminates, a fixed point may be reached

when al statements are equivalent to SKI P's.

To demonstrate the correctness of this program, we must first present the
specification. We will do this somewhat informally. The specification is broken down
into two parts. The first states that the final array is a permutation of the original array.
Thisis a consequence of the following property: the bag of values that fills the array X is
unchanged throughout the computation. This sort of property is an invariant:
I NVARI ANT BAG(X) = K. This means, roughly, that if the bag of valuesin array X is
equal to K before executing any statement in the program, then the bag of values in that
array is unchanged subseguent to executing any statement in the program. Since every

statement at most swaps array values, no values are ever lost, and thisinvariant istrue.

The second part of the specification states that the array will eventually become
sorted. This is a liveness (or a progress) property. In Unity, this is stated by TRUE

LEADS- TO SORTED(X). The value TRUE simply states that there are no preconditions
on this property. To prove this liveness property, we use the following measure: Imagine
a lexicographic less than relation on N elements. If the array is not sorted, then every
statement in the program either modifies the array to one with a smaller lexicographic
order, or does not change the array at al. Furthermore, if the array is not sorted, some
statement modifies the array. By fairness, the array’s lexicographic order will eventually
decrease. The fact that this lexicographic order decreases may be repeatedly applied by

induction, to conclude that eventually the array becomes sorted.

A small note: Unity would not recommend that a sorting program be
implemented in this way. This algorithm, however, is a starting point for other, more

efficient, sorting routines based on the swapping of out-of-order pairs.

The Unity logic differs from other temporal logic proof systems for reasoning
about concurrency because it is realy only a subset of tempora logic. Unity's
specification predicates provide a ssimple and powerful vocabulary to specify and reason
about the behavior of concurrent programs. They permit the specification of many
temporal properties without introducing all of temporal logic. However, the specification
predicates | NVARI ANT and LEADS- TO are operators that take predicates as arguments,
and are not quantifiers like 0, [J or temporal logic’'s ALWAYS or EVENTUALLY. This
means that these operators may not be nested, and that Unity is less expressive than full
first order tempora logic. Unity provides proof rules for taking large formal proof steps,
and is (relatively) complete, even though it contains fewer proof rules than other temporal
logics. This suggests that Unity is simpler and that proofs are more straightforward, since

one has fewer necessary toolsto work with.

The soundness and completeness of Unity is discussed in [Pachl 90, Knapp
90, Gerth & Pnueli 89, Jutla, Knapp, & Rao 88].

1.2 The Boyer-Moore Logic and Prover

In a mechanically verified proof, all proof steps are validated by a computer
program called a theorem prover. Hence, whether a mechanically verified proof is
correct is really a question of whether the theorem prover is sound. This question, which
may be difficult to answer, need be answered only once for al proofs validated by the
theorem prover. The theorem prover used in this work is an extension of the Boyer-
Moore prover [Boyer & Moore 79, Boyer & Moore 88a]. This prover has been carefully
coded and extensively tested. The Boyer-Moore logic, which is mechanized by the
Boyer-Moore prover, has been proved sound [Kaufmann 86, Boyer & Maoore 81]. All of
the definitions and theorems presented in this thesis have been validated by the extension

of the Boyer-Moore prover described here.

Understanding the rest of this thesis requires some familiarity with the Boyer-
Moore logic and its theorem prover. The following sections informally describe the logic

and the various enhancements to the logic and prover that are used in this work.

Interaction with the theorem prover is through a sequence of events, the most
important of which are definitions and lemmas. A definition defines a new function
symbol and is accepted if the prover can prove that the recursion (if any) terminates.
Adding a definition is one way of obtaining a conservative extension to the logic. A
lemma is accepted if the prover can prove it using the logic's inference rules, from
axioms, definitions and previously proved lemmas. By the judicious choice of lemmas
and the order of their presentation, a user may guide the theorem prover through the

verification of complicated theorems.

1.2.1 The Boyer-Moore Logic

This proof system is specified in an extension of the Ngthm version of the
Boyer-Moore logic [Boyer & Moore 88a, Boyer & Moore 88b]. Ngthm is a quantifier-
free first order logic with equality that permits recursive definitions. All variables are
implicitly universally quantified. Nqgthm also defines an interpreter function for the

quotation of terms in the logic. Nqgthm uses a prefix syntax similar to pure Lisp. This

notation is completely unambiguous, easy to parse, and easy to read after some practice.

Informal definitions of many of the functions used in this thesis follow:

* T is an abbreviation for (TRUE) which is not equal to F which is an
abbreviation for (FALSE) .

* (EQUAL A B) isTif A=B, F otherwise.

» Thevalue of theterm (AND X Y) isT if both X and Y are not F, F otherwise.
OR, | MPLI ES, NOT, and | FF are defined appropriately, also treating any non
F argument asT.

» Thevaueof theterm (1 F A B C) isCif A=F, B otherwise.

* (NUMBERP A) tests whether A isanatural number.

* (ZEROP A) isTif A=0 or (NOT (NUVBERP A)).

* (FI X 1) returns! if (NUMBERP 1) istrue, O otherwise.

* (ADD1 A) equalsthe successor of A (i.e., A+1). If (NUMBERP A) isF then

(ADDL A) is1.
e (SUB1 A) is the predecessor of A (i.e, A-1). If (ZERCP A) is T, then
(SUB1 A) isO.

* (PLUS A B) isA+B, andis defined recursively using ADDL.
* (LESSP A B) isA<B, and isdefined recursively using SUBL.

* Literals are quoted. For example, * ABCis aliteral. NI L is an abbreviation
for’ NI L.

* (CONS A B) represents a pair. (CAR (CONS A B)) is A and (CDR
(CONS A B)) isB. Compositions of car's and cdr’'s can be abbreviated:
(CADR A) isread as(CAR (CDR A)).

e (LISTP A) isTif Aisapair.

e (LIST A) is an abbreviation for (CONS A NI L). LIST can take an
arbitrary number of arguments: (LI ST A B C) isread as(CONS A (CONS
B (CONS C NIL))).

*’(A) is an abbreviation for (LIST 'A). Similaly, (A B O is an
abbreviationfor (LIST *A'B ') .1

e (LENGTH L) isthelength of thelist L, or 0 if the argument is not alist.
e (MEMBER X L) testswhether X isan element of thelist L.

* APPLY$ uses a straightforward mapping between quoted literals and
functions. (APPLY$ FUNC ARGS) is the result of applying the function

IActually, this quote mechanism is a facility of the Lisp reader [Steele 84].

named FUNC to the arguments ARGS.2 For example, (APPLY$ ' PLUS
(LIST 1 2)) is(PLUS 1 2) whichis3.

Recursive definitions are permitted, provided termination can be proved. For
example, the function APPEND, which appends two lists, is defined as:
Definition: Append
(APPEND X)

(1E (LISTP X)
(CONS (CAR X) (APPEND (CDR X) VY))
Y)

This function terminates because the measure (LENGTH X) decreases in each

recursive call.

Since the Boyer-Moore logic can be used like a functional programming
language, it is often natural to say that a term returns some value, instead of the

equivalent is equal to some value.

1.2.2 Eva$

EVALS$ is an interpreter for partial recursive functions in Ngthm.3 Informally,
the term (EVAL$ T TERM ALI ST) represents the value obtained by applying the
outermost function symbol in TERMto the EVAL$ of the argumentsin TERM |If TERMisa
literal atom, then (EVAL$ T TERM ALI ST) is the second component (the CDR) of the
first valuein ALI ST whose first component (the CAR) is TERM

For example, (EVAL$ T ' (PLUS X Y) (LIST (CONS 'X 5) (CONS 'Y
6))) is(PLUS 5 6) whichis11. (EVAL$ T (LIST ' QUOTE TERM ALIST) is
simply TERM since EVAL$ does not eval uate arguments to QUOTE. QUOTE can be used to
introduce what look like free variables into an expression. For instance, (EVALS T
(LIST "PLUS ' X (LIST 'QUOTE Y)) (LIST (CONS ' X 5))) is(PLUS 5 V).

2This simple definition is only true for total functions but is sufficient for this paper [Boyer & Moore 88b].

3And like APPLY$, EVALS$ is only used here to interpret total functions.

Unfortunately, (EVAL$ T (LIST 'PLUS ' X (LIST 'QUOTE Y)) (LIST (CONS
"X 5))) issomewhat difficult to read.

The Lisp backquote syntax [Steele 84] can be used to write an equivalent
expression.* Backquote (‘) is similar to quote (') except that under backquote, terms
preceded by a comma are not evaluated. Therefore, theterms‘ (PLUS X (QUOTE , Y))
and (LI ST 'PLUS * X (LIST 'QUOTE Y)) are identica to the Lisp reader. So,
(EVAL$ T (LIST 'PLUS ' X (LIST *QUOTE Y)) (LIST (CONS ' X 5))) canbe
rewrittenas (EVAL$ T * (PLUS X (QUOTE ,Y)) (LIST (CONS ' X 5))).

The meaning of backquote presented here is only one of several legitimate
interpretations of the definition of backquote presented in [Steele 84] and is called the
Nqgthm interpretation of backquote. Boyer and Moore’'s Common Lisp code defining this
interpretation is presented in Appendix A, page 136. Informally, that code interprets

backquoted expressions in the following way:

» Backquote of alist isthe list of the backquote of each of the elementsin the
list: “(A B C D) equas(LIST ‘A‘B ‘C ‘D).

» Backquote of aterm preceded by acommaisthat term: * , (ADDL 1) equals
(ADDL 1) and‘, AequasA.

» Backquote of aliteral atom isthe quote of that atom: ‘ Aequals’ A.

1.2.3 Functional Instantiation

Sometimes it is useful to describe classes of functions and prove theorems
about the whole class. One way to do thisis to define atypical function in the class and
prove the desired theorems without appealing to the extraneous properties of this
function. However, it might be difficult to demonstrate that only the representative
properties were used. In earlier versions of the Boyer-Moore logic, one would therefore

add axioms about an undefined function symbol. For example, if one wanted to prove

4Thanks to Matt Kaufmann for showing me how backquote would be useful in this context. Interestingly,
Matt objects to my use of backquote in publications because the resulting expressions are often difficult to
parse. | agree with this attitude for most syntactic sugar and Matt’'s objection is certainly valid. However,
un-backquoted versions of the quoted expressions used in this thesis are quite impossible to read, and,
perhaps more importantly, to typein correctly.

theorems about all numbers, a new, undefined function symbol would be introduced (say
the zero-ary function FOO), and the single axiom (NUMBERP (FOO)) would be added to
the prover’'s database. There is arisk, however, since adding random axioms introduces
potential inconsistencies. For this hypothetical function FOO, we are not terribly
concerned, since it is obvious that some zero-ary function satisfies the axiom (e.g., any
function equal to 0). However, for more complicated axiom sets, the risk becomes more

pronounced.

One solution is to follow a methodology where axioms are only added about
undefined function symbols if they have been proved as theorems about existing function
symbols. This alternative is adequate and was used effectively in[Crawford &
Goldschlag 87]. However, this methodology is inconvenient, and does not truly take
advantage of the possibilities of partially defined function symbols.

In response to this need, the Boyer-Moore logic was extended with the notion
of functional variables[Boyer, Goldschlag, Kaufmann, & Moore 91]. A class of
functions is represented by a partially constrained function: a function symbol possessing
only the class's shared properties, which are called constraints. Theorems about such a
function are theorems for a whole class of functions, and may be instantiated by any
function in the class. This extension both formalizes the methodology discussed above,
and permits the instantiation of function symbols, in a manner not unlike the instantiation
of variables in a first-order system. In contrast to the automatic instantiation of many
variables in rewrite rules in the Boyer-Moore logic, however, this functional instantiation

is not done automatically.

Partially constrained function symbols are defined by the constrain event which
introduces new function symbols and their constraints. To ensure the consistency of the
constraints, one must demonstrate that they are satisfiable. Therefore, the constrain event
also requires the presentation of one old function symbol as a model for each new
function symbol; the constraints, with each new symbol substituted by its model, must be

provable [Boyer, Goldschlag, Kaufmann, & Moore 91]. There is no logical connection

10

between the new symbols and their models, however; providing the models is simply a

soundness guarantee.

1.2.4 Definitions with Quantifiers

Although the Boyer-Moore logic does not define an existential quantifier, the
combination of recursion and the implicit universal quantification permits the
specification of many interesting formulas. One might argue that these restrictions do not
limit what may be reasoned about within computer science, since computer scientists are
usually reasoning about bounded domains. In fact, an early version of this project was
successfully completed without existential quantifiers[Crawford & Goldschlag 87], even
though the domain in question involves both executions that are infinitely long, and the
specification of properties that imply the existence of infinitely many solutions.
However, working within this restricted framework has two deficiencies: the appropriate
formulas are often odd looking; and, certain convenient and helpful theorems may not be
stated at all.

Therefore, in this work, a facility permitting fully quantified definitions in the
Boyer-Moore logic is used. A more primitive version of this extension was first
discussed in[Goldschlag 89]; the present facility was developed and tested by Matt
Kaufmann [Kaufmann 89] and is called the Defn-Sk definitional principle. The ability to
define functions with full quantification in the body of the function permits the statement

of any first order formula.

It is interesting to note, and important to point out, that a solution very similar
to the solution to the mutual exclusion problem presented and verified here in chapter 4
was also verified in [Crawford & Goldschlag 87] in a proof system without quantifiers.
The proof was almost identical, with a nearly one to one correspondence between
theorems in each proof script. Therefore, athough it is indisputable that quantifiers
permit the formalization of concepts that cannot be stated in an unquantified logic, it is
not clear that full quantifiers facilitate the proof of theorems that could have been stated
in an unquantified logic. This experience suggests that the proof effort will be very

similar.

11

To include quantifiers in the body of a definition in the Boyer-Moore logic, the
guantifiers are removed by a technique called Skolemization. If the definition is not
recursive, adding the Skolemized definition preserves the theory’'s

consistency [Kaufmann 89].

For example, suppose we wish to define:

Definition.
(P X, X5 oot X))
BODY
where P is a new function symbol of arity N, and BODY is a quantified term
mentioning only free variables in the set { X;, ..., X} and only old function symbols.

Furthermore, the outermost operator in BODY is FORALL, EXI STS, or some other logical
connective, and within BODY, FORALL and EXI STS are only arguments to FORALL,

EXI STS, or some other logical connective.

We may consider this definition to be the conjunction of two formulas:

(P X Xy oo XY
0

BODY)

0

(P X Xy oo X
O

BODY)

We then Skolemize (positive Skolemization—to preserve consistency) both
conjuncts by substituting for each existential a Skolem function. The resulting formulais
guantifier-free and can be added as an axiom. Consistency is preserved since such a
definition istruly an abbreviation (there is no explicit recursion and no interpreter axioms
are added). Finally, the meaning of the Skolemized formula is the same as the original
definition due to the correctness of Skolemization. One may have to use the function
symbols introduced by Skolemization in the proof (and statement) of theorems about the

newly defined function; this analysisis often tedious.

12

As a convenience, one may abbreviate nested FORALL's by putting al
consecutive universally quantified variablesin alist. Therefore, (FORALL X (FORALL
Y (EQUAL X Y))) may be abbreviated to (FORALL (X Y) (EQUAL X Y)). Nested
EXI STS'smay be shortened similarly.

1.2.5 The Kaufmann Proof Checker

The Boyer-Moore prover automatically proves a lemma by heuristically
applying sound inference rules to simplify it to a value other than F. Sometimes, it is
easier to direct the proof process at a lower level. The Kaufmann Proof
Checker [Kaufmann 87] is an interactive enhancement to the Boyer-Moore prover. It
alows the user to manipulate a formula (the original goal) using sound operations,
perhaps creating additional goals; once all goals have been proved, the origina formula
has been proved. The prover will then accept the new theorem, which will be used asiif it

were proved automatically.

All new function symbols extending the Boyer-Moore logic presented in this
thesis were added using either the definitional principle, the Defn-Sk principle, or the
constrain mechanism. Furthermore, the admissibility of these definitions and constraints
was mechanically checked using the extended Boyer-Moore prover. In asimilar way, all
theorems were validated by the extended Boyer-Moore prover. This guarantees that the
resulting logic is a conservative extension of the Boyer-Moore logic, and is therefore

sound (at least as sound as the prover).

The Boyer-Moore logic and prover have been used to specify and verify
numerous difficult problems including Goedel’s Incompleteness Theorem and the
Church-Rosser Theorem [Shankar 88, Shankar 87], a microprocessor [Hunt 89], an
assembler [Moore 89a], and a compiler [Young 89]. The latter three proofs have been

formally integrated into a stack of machines [Moore 89b, Bevier, Hunt, & Y oung 87].

13

1.3 Related Work

The research directly related to this thesis is focused on the mechanical
verification of concurrent programs. Although automatic verification of propositional
temporal specifications of finite state machines has been explored for some time [Dill
88, Clarke, Emerson, & Sistla 86, Browne, Clarke, & Dill 86, Clarke & Grumberg 87],
most other projects investigating the semi-automatic verification of non-propositional
specifications of concurrent systems are relatively recent and were started after this
research began [Camilleri 90, Russinoff 90, Andersen , Nagayama & Talcott 91]. The
Gypsy system [Good 79] formalized mechanized proof rules for verifying invariants of
message passing systems over ten years ago, however. These will be discussed in the

next sections.

This thesis is supported by the broader field of program verification,
specifically various logics and proof systems for verifying concurrent programs. Aside
from Unity, severa such logics are[Manna & Pnueli 84, Lamport 91, Hoare 85, Owicki
& Gries 76]. These are discussed first.

1.3.1 Communicating Sequential Processes

CSP[Hoare 85, Hoare 78], developed by C.A.R. Hoare in 1978, is a
programming language for describing synchronous processes. In this paradigm,
processes are described by their effect on input and output channels. Communication is
synchronous; if one process is ready before the other, the early process waits until
communication is possible. Asynchronous communication may be modeled by
introducing an unbounded buffer process between the communicating processes [Jifeng,
Josephs, & Hoare 90]; the buffer process is an abstraction of the delay associated with a
channel for message passing. CSP has been used to specify a wide variety of systems of
varying complexity, including a real communications protocol and delay insensitive
circuit components. The development of CSP was influenced by Milner’s Calculus of

Communicating Systems [Milner 80].

In CSP, processes are described by means of the traces they will accept. Two

14

processes are equivalent if the traces they accept are equal. Equivalence may be
generalized by stating that the traces are equal if they are restricted to the same a phabet.
CSP systems are specified by ssmpler CSP processes.

CSP also defines a set of operators for combining CSP processes, such as
parallel composition, non-deterministic choice, etc. These operators permit processes to
be combined easily and encourage the development of large systems from small building
block components. The operators are defined axiomaticaly by laws. for example,
paralel composition is both associative and commutative. These laws are the basis for
reasoning in CSP: when proving an equality, one would apply the appropriate laws to
each side of the eguals and unfold certain definitions to transform both sides to the same
goal. Some of the laws are basic axioms. Others may be proved just like any CSP
equality. This is an agebraic proof technique, so called because of the lack of

quantifiers.

CSP has been implemented by the language OCCAM [INMOS 84], a
programming language designed to run on INMOS's Transputer [INMOS 88]. The
Transputer was designed to implement CSP processes by easily reflecting the
synchronous communication. Each Transputer is a CSP process and communication

occurs over wires connecting the Transputer chips.

1.3.2 An Axiomatic Approach

An early technique for verifying concurrent programs was based on the types of
axioms and style that Hoare introduced in his axioms for verifying sequential
programs [Hoare 69a] and parallel programs[Hoare 72]. First introduced by Susan
Owicki in her thesis in 1975[Owicki 75], it was extended and used in many
ways[Owicki & Gries 76, Owicki & Lamport 82, Gries 77, Lamport 80, Lamport &
Schneider 84].

This approach assumes that statements at some level are atomic, and provides
proof rules for proving the correctness of annotated programs. Both safety (partial

correctness) and liveness (total correctness, termination) may be proved.

15

Owicki’'s original proof system requires the formal treatment of auxiliary
variables. Sometimes, is it necessary to add variables to a program to keep track of
events so a desired correctness property may be stated and/or proved. Such variables are
called auxiliary because they are not needed for the correct operation of the program,
only for the proof of the correctness property. This may be due to a weakness in the

logic’s proof rules or in the specification language (to use history variables, for example).

Owicki’swork also emphasized the importance of limiting shared variables and
resources in parallel programs, since such sharing introduces complexity and much

longer proofs.

It is interesting to note that [Owicki & Gries 76] mentions in conclusion that
"although formal proofs are generally too long to be reasonably done by hand, the
axiomatic method would be well suited for an interactive program verifier, in which the
programmer provides the resource invariants and some of the pre and post assertions, and
the program verifier checks that these satisfy the axioms." Unfortunately, fifteen years
later, with simpler and better logics and specification languages, such asimple division of

labor is still not possible.

1.3.3 Temporal Logic

Aside from CSP, the dominant specification and proof technique for verifying
concurrent programs is temporal logic. Introduced by Manna and Pnueli [Manna &
Pnueli 81, Manna & Pnueli 84], the important observation is that the correctness
properties of concurrent programs are easily specified by stating when and how often

certain predicates hold over possibly infinitely long program executions.

In the temporal logic approach, concurrent programs are sets of subprograms
each of which are sequences of atomic statements. The executions of these subprograms
are interleaved in some fair manner. There are many different forms of fairness [Francez

86]; Manna and Pnueli provide proof rules for reasoning about strong and weak fairness.

16

Typica properties proved are invariants, which are specified by the temporal
guantifier ALWAYS, meaning that the subsequent formula holds throughout the execution.
This is proved by demonstrating that the desired invariant, or some stronger invariant,
holds initially and is preserved by every statement in the program. Liveness properties
are proved by demonstrating that some well founded measure exists that is never
increased, and is decreased by some program statement. Whether or not that helper
statement must be continuously enabled, or smply enabled often enough, depends upon
the fairness notions assumed. Liveness properties are stated using the quantifiers
ALWAYS EVENTUALLY, meaning that the subsequent formula will hold infinitely often
throughout the execution. Other properties, such as UNTI L and PRECEDES, may also be
specified and proved.

Temporal logic maps a computational paradigm, the interleaved model of
concurrency, to a well understood and very expressive logical framework. Although
most properties are specified in a small subset of tempora logic, the soundness and
completeness of the logic can be analyzed independently of the sorts of programs being
verified.

1.3.4 Temporal Logic of Actions

A new system for verifying concurrent programs is Lamport’s Temporal Logic
of Actions (TLA) [Lamport 91]. TLA is a subset of tempora logic and permits the
specification of invariance and progress properties. In contrast to Unity, TLA does not
build a specific fairness notion into the logic. Instead, several progress proof rules are
available and the choice of one or the other indicates which fairness notion is used.
Furthermore, in TLA, program statements are logical formulas not unlike those
in [Hehner 84, Jones 80]. Statements are expressions relating the new value of variables
(indicated by a prime) to the old value of variables. Although this is often longer than
simple multiple assignments, these expressions permit non-deterministic and other
incompletely specified statements. Because program statements are logical formulas, no
trandation is necessary between a programming language and a logical notation.
Another advantage is that it is possible to prove that one program implements another via

refinement mappings [Abadi & Lamport 88].

17

TLA includes quantification over state variables and is sufficiently expressive
to support Lamport’s hierarchical method of designing concurrent programs [Lamport
89].

TLA is being mechanized in LP [Garland, Guttag, & Horning 90], the theorem
prover implementing the Larch shared specification language [Guttag, Horning, & Wing
85], and mechanical proofs of several programs are in progress. The mechanization of
TLA differs from the mechanization of Unity presented here for two reasons. The TLA
proof system, although sound, was not encoded onto the prover in a way which
guarantees its soundness. Also, proofs are not carried out to first principles. For
example, certain facts about integers are assumed. These differences reflect Lamport’s
priorities as a researcher, since fully verified proofs are costly to develop. However, the
reader should keep in mind that cost comparisons between mechanically verified proofs

should compare similar goals.

A subset of TLA has also been mechanized in HOL [Gordon 87] in [Wright
91]. This preliminary work focuses on specifying TLA actions and invariant properties,
and the proof of invariant properties. The project intends to prove properties about TLA
programs, but not prove properties about TLA itself. Work continues on formalizing
TLA’sliveness properties and refinement mappingsin HOL.

1.3.5 Gypsy

Gypsy is a programming and specification language [Good 79]. Hoare type
proof rules are defined for every construct in the language, so it is possible to
automatically generate the verification conditions necessary to prove that a program
satisfies its specification. The Gypsy Verification Environment (GVE) is a computer
program that, among other facilities, provides tools for creating these verification

conditions, mechanically checking proofs, and managing the proof tree.

Gypsy has been used in many contexts, from design verification, where

theorems are proved about a high level design, to code verification, where executable

18

Gypsy code is proved to satisfy a higher level specification. Gypsy was one of the first

systems to provide mechanized support for the verification of concurrent programs.

Gypsy uses message passing as its sole form of interprocess communication;
this limits the possible interactions of processes and simplifies proofs, as noted
in[Owicki & Gries 76]. However, channels may be shared by severa senders and
receivers. The concurrent operator is COBEG N which initiates a fork, where execution
subsequently is fair. Gypsy proof rules may be used to prove invariants of concurrent

programs.

The largest distributed system proved in Gypsy controlled an interface between
a host possessing sensitive data and a public network [Good 82]. The interface’s
requirements are that all data sent from the host should be encrypted and all data sent to
the host be decrypted. The interface is compatible with the Arpanet and has been
demonstrated there. This application contained 4211 lines of executable Gypsy code.
The aforementioned requirements were mechanically proved, although two lemmas were

assumed. Thisisasubstantial achievement, even by today’s standards.

1.3.6 Mechanized Temporal Logic

Russinoff has encoded on the Boyer-Moore prover a subset of Manna and
Pnueli’s temporal formalism for verifying concurrent programs [Russinoff 90]. This
system has been used to mechanically verify invariance (ALWAYS) and progress (ALWAYS
EVENTUALLY) properties of several non-parameterized concurrent algorithms, including a
program that computes binomial coefficients [Russinoff 90] and Ben-Ari’s incremental
garbage collection agorithm [Ben-Ari 84, Russinoff 91], the latter a well known and
complicated algorithm.

Russinoff’s approach to verification is similar to the one taken here. He defines
an arbitrary (weakly) fair execution of a concurrent program and proves theorems about
that trace which may be used instead of Manna and Pnueli’s proof rules, including the
well-founded liveness proof rule[Manna & Pnueli 81]. Also, an interpreter is defined

19

which executes Manna and Pnueli type subprograms, updating the subprogram’s program
counter within the global state and noting the other effects of the atomic execution. This
interpreter characterizes input values, which are constant, and program variables, which

may be changed.

Russinoff introduces a very clever single axiom which, although sound, is not
provably sound in this logic. This axiom introduces a function N which permits one to
prove progress properties without defining a clock function that computes when the
property will eventually hold in the arbitrary fair execution. Nisaxiomatized to represent
that point, if it exists.

This system aso defines a front end that permits an easily read specification
style. Although the formulas are still in prefix form (Lisp like), certain combinations of
tempora operators may be specified; these formulas are translated into a pure Boyer-
Moore logic formula before being proved. The front end also allows the user to specify
proof hints to the prover in a sensible fashion, including which proof rules ought to be
used, with what measures, etc. The drawback is that it is easy to forget both that the
printed formulais not what the theorem prover deals with, and what the actual translation
is. Thisis especialy important if a proof is not completed automatically, since one may
have to interact with the prover during a proof.

1.3.7CSPin HOL

Parts of CSP were encoded in HOL [Gordon 87] in[Camilleri 90]. HOL isa
theorem prover for Higher Order Logic, a fully quantified and typed logic that permits
guantification over functions. Thislogic is more expressive than the Boyer-Moore logic.
The HOL prover, however, has fewer built in heuristics for automatically attempting to
prove a theorem. Instead, users define tactics which define a generally useful reasoning
process. This approach produces proofs which look more like formal proofs; the
corresponding claim in the Boyer-Moore prover is that if the prover certifies a proof, then
aformal proof exists. HOL has been used to check numerous proofs, perhaps the most

significant is the verification of parts of the VIPER microprocessor [Cohn 89].

20

Camilleri’s approach to respecifying CSP takes advantage of CSP trace-based
semantics. Traces are sequences of elements from a finite alphabet. Therefore, it is
possible to define CSP's operators, like restriction and interleaving, as functions of
traces. Instead of using CSP's basic axioms as the definitions of the operators, these laws
are proved as theorems about the defined operators. This careful approach combines the
soundness obtained by relying upon a model, with the ease-of-use obtained from proof

rules.

This encoding aso successfully investigated a difficult problem, the
formalization of CSP's fixed point semantics. It provides a proof system for a subset of
CSP. Unfortunately, however, this mechanical support was not demonstrated on any
CSP programs.

1.3.8 Unity in HOL
Fleming Andersen has encoded most of Unity proofs rules in HOL in an
interesting manner [Andersen]. The methodological details are sketchy, however, since

the report is still being written.

In any case, this formalization in HOL is not supported by an execution-based
semantics. Rather, Unity’s LEADS- TOrelation was characterized directly in terms of the
three defining axioms in [Chandy & Misra 88]. Another model was used to demonstrate
soundness. Using these three axioms, Unity’s proof rules were proved again, using

structura induction.

The most difficult proof, apparently, was to demonstrate that the two versions
of Unity’s structural induction principle are equivalent. These versions differ in their

second axiom:

P LEADS-TO Q
Q LEADS-TO R

P LEADS-TO R

The dternativeis;

21

P ENSURES Q
Q LEADS-TO R

P LEADS-TO R

Since LEADS- TO is a consequence of ENSURES in both versions of Unity’s
structural induction principle, it is obvious that any proof using the alternative structural
induction may be trandated into a proof using the origina structural induction. The

opposite is more complicated but was also completed.

Andersen’s work focuses on the soundness and compl eteness of Unity but does

not provide afacility for verifying real Unity programs.

1.3.9 Mutual Exclusion on the Boyer-Moore Prover

Nagayama and Talcott [Nagayama & Talcott 91] have successfully verified the
invariance property of an algorithm that was posed by Amir Pnueli as a challenge for
mechanical verification [Manna & Pnueli 90]. The agorithm, when followed by each of
N indexed processes, prevents more than one process from being in its critical section at a
time. Theinvariant property proved, therefore, is that at most one processis critical at a
time. There are several notable facts about the correctness proof: This program is
parameterized because it specifies an agorithm for an arbitrary number of processes.
Two variants of the same algorithm were proved, each assuming a different level of
atomicity. In order to prove the desired correctness property, a stronger invariant was
proved first. Finaly, this proof was accomplished within the unextended Boyer-Moore
logic, as described in [Boyer & Moore 79].°

Since only an invariance property was being considered, no notion of execution
was defined. Rather, the authors demonstrated that the stronger invariant was preserved
by every possible transition in the program. The difficulty was mainly one of stating

each lemma accurately, and coaxing the proofs through the prover.

5Thiswork did not use the interpreter functions or the bounded quantification of Ngthm.

Chapter 2

An Operational Semantics

The operational semantics of concurrency used here is based on the transition
system model [Manna & Pnueli 84, Chandy & Misra88]. A transition systemis a set of
statements each of which effects transitions (changes) on the system state. A
computation is the sequence of states generated by the composition of an infinite
sequence of transitions on an initial state. Fairness notions are restrictions of the
scheduling of statements in the computation. For example, if every program statement is
a total function, then unconditional fairness requires that each statement be responsible
for an infinite number of transitions in the computation (every statement is scheduled
infinitely often). Other fairness notions introduce the concept of enabled transitions,
where a statement can only effect atransition if it is enabled (the statement can produce a
successor state). These notions will be formalized in section 3.3. Stronger fairness
notions restrict the set of computations that a program may generate; hence a program’s

behavior may be correct under one fairness notion and not under another.

The next sections present an operational characterization of an arbitrary

computation.

2.1 A Concurrent Program

A program is a list of statements. Each statement is a relation from previous
states to next states. We define the function N so theterm (N OLD NEW E) istrueif and
only if NEWis a possible successor state to OLD under the transition specified by statement
E. The actual definition of N is not important until one considers a particular program.

For compl eteness, however, the definition of Nis:

22

23

Definition:
(N OLD NEW E)
(APE’LY$ (CAR E) (APPEND (LIST OLD NEW (CDR E)))

N applies the CAR of the statement to the previous and next states, along with
any other arguments encoded into the CDR of the statement. A state can be any data
structure. Intuitively, a statement is alist with the first component being a function name,
and the remainder of the list being other arguments. These arguments may instantiate a
function representing a generic statement to a specific program statement. This encoding
provides a convenient way to specify programs containing many similar statements

which differ only by anindex or some other parameter.

A statement E is enabled in state OLD if there exists some state NEWsuch that
(N OLD NEW E) istrue. That is, a statement is enabled if it can produce a successor
state. We call such transitions effective. If a statement cannot effect any effective
transitions from state OLD then it is disabled for that state. The enabling condition for a
statement is the weakest precondition guaranteeing an effective transition. A statement’s

effective transition may be the identity transition, however (e.g., the SKI P statement).

2.2 A Computation

We now characterize a function, named S, representing an arbitrary, but fixed
computation. The execution of a concurrent program is an interleaving of statements in
the program. This characterization of S requires that every statement be scheduled
infinitely often. Disabled statements effect the identity transition. This formalization is
equivalent to weak fairness. Furthermore, if al program statements are total functions,

this reduces to unconditional fairness.

Introducing extra skip states can be considered stuttering and is legitimate since
repeated states do not interfere with either the safety or liveness properties discussed in
section 3.1. Fairness notions presented later will guarantee that a statement eventually

executes an effective transition.

24

The term (S PRG 1) represents the | 'th state in the execution of program
PRG. The function S is characterized by the following two constraints specifying the
relationship between successive states in a computation:

Constraint: S-Effective-Transition®

(I MPLI ES (AND (LI STP PRQ)
(O NEW (N (S PRG |) NEW (CHOOSE PRG 1))))
(N (S PRG 1)
(S PRG (ADDL 1))
(CHOOSE PRG 1)))

This constraint states that, given two assumptions, the state (S PRG (ADD1
1)) isasuccessor state to (S PRG 1) and the statement governing that transition is
chosen by the function CHOCSE in the term (CHOOSE PRG 1). CHOCSE is a fair
scheduler. Additional constraints about CHOOSE will be presented later.

The two assumptions are:
» The program must be non-empty. Thisis stated by the term (LI STP PRG) .
If the program has no statements, then no execution may be deduced.

» There is some successor state from (S PRG 1) under the statement
scheduled by (CHOOSE PRG 1) . (If the statement is disabled, no effective
transition is possible. The next constraint specifies that the null transition
occursin this case.)

The second constraint specifies the relationship between successive states when
the scheduled statement is disabled:

6This constraint is equivalent to the following unquantified formula, because the existential may be moved
outside the formula.

(I MPLIES (AND (LI STP PRG
(N (S PRG |) NEW (CHOCSE PRG 1)))
(N (S PRG 1)
(S PRG (ADDL 1))
(CHOCSE PRG 1)))

Indeed, the unquantified formula is used in the mechanization since it is easier to formalize in the Boyer-
Moorelogic. However, the quantified formulais simpler for exposition.

25

Constraint: S-Idle-Transition”

(I MPLIES (AND (LI STP PR
(NOT (O NEW (N (S PRG 1) NEW
(CHOOSE PRG 1)))))
(EQUAL (S PRG (ADDL 1))
(S PRG 1)))

This constraint states that if a disabled statement is scheduled, then no progress
ismade (i.e., a skip statement is executed instead).

2.3 The Scheduler
The function CHOCSE is a scheduler. It is characterized by the following
constraints:

Constraint: Choose-Chooses

(I MPLI ES (LI STP PRG)
(MEMBER (CHOOSE PRG 1) PRO))

This constraint states that CHOOSE schedules statements from the non-empty
program PRG.

We now guarantee that every statement is scheduled infinitely often. We do
this without regard for enabled or disabled statements; effective transitions will be
guaranteed by subsequent fairness nations.

Scheduling every statement infinitely often is equivalent to always scheduling
each statement again. This property is specified by the function NEXT and its relationship
to CHOOSE:

"This constraint is equivalent to the following unquantified formula, by introducing a Skolem function
(NEWK E OLD) which returns a successor state to OLD for statement E if possible. To prove that the null
transition is effected, one must prove that NEWX is not a successor state. Since one knows nothing about
NEWX, this is equivalent to demonstrating that no successor state exists. This formula is the one used in the
formalization:

(I MPLIES (AND (LI STP PRG)
(NOT (N (S PRG |)
(NEWK (CHOOSE PRG |)
(S PRG 1))
(CHOCSE PRG 1))))
(EQUAL (S PRG (ADDL 1))
(SPRG1)))

26

Constraint: Next-1s-At-Or-After
(I MPLI ES (MEMBER E PRQ
(NOT (LESSP (NEXT PRGE 1) 1)))
This constraint states that for statements in the program, NEXT returns a value
at or after | . Furthermore, (NEXT PRG E 1) returns afuture point in the schedule when
statement E is schedul ed:

Constraint: Choose-Next

(I MPLI ES (MEMBER E PRQ)
(EQUAL (CHOOSE PRG (NEXT PRG E 1))

E))
There are four constraints that coerce non-numeric index arguments to 0 and

identify NEXT' stype as numeric. These are presented as a conjunction:

Constraint: Index-ls-Numeric

(AND (I MPLI ES (MEMBER E PRG)
(NUMBERP (NEXT PRG E 1)))
(1 MPLI ES (AND (LI STP PRO)
(NOT (NUMBERP 1)))
(EQUAL (S PRG I)
(S PRG0)))
(1 MPLI ES (AND (LI STP PRO)
(NOT (NUVBERP 1)))
(EQUAL (CHOOSE PRG I)
(CHOOSE PRG 0)))
(1 MPLI ES (AND (MEMBER E PRG)
(NOT (NUMBERP 1)))
(EQUAL (NEXT PRG E I)
(NEXT PRG E 0))))

This set is somewhat redundant, since it is unnecessary to type NEXT as a
number if the index argument in each of S, CHOOSE, and NEXT are coerced to numbers.
However, the extra constraint does eliminate considering the non-number case, when

reasoning about NEXT.

This completes the definition of the operational semantics of concurrency.
Since S, CHOOSE, and NEXT are characterized only by the constraints listed above, S
defines an arbitrary computation of a concurrent program. S guarantees that every

statement will be scheduled infinitely often; transitions need not be effective. Statements

27

proved about S are true for any fair computation.® So theorems in which PRG is a free

variable arereally proof rules, and thisis the focus of the next chapter in section 3.2.

2.4 Soundness

The constraints presented in the previous section are axioms about the
undefined function symbols S, CHOOSE, and NEXT. Since these nine axioms were
introduced using the functional instantiation enhancement described earlier (section
1.2.3), they do not introduce any unsoundness into the theory. This is guaranteed by the
support of witness functions that satisfy the constraints. As stated earlier, these witness
functions do not have any logical connection to the functions they are modeling. It is

instructive, however, to describe the witness functions, for two reasons:

» The witnesses provide an execution model for the constrained symbols and
may provide additional intuition into the correctness of the constraints. This
execution model is not executable, however, since the statements are
relations.

e The construction of these witnesses and the statement of the constraints,
especially the encoding of the existential quantifier in the S-1dle-Transition
constraint by the Skolem function NEWK, were non-trivial and may be helpful
in other formalizations.

A good model for the fair scheduler characterized by CHOOSE and NEXT is a
round-robin type scheduler. We define the witness function MCHOOSE as a model for
CHOOSE. (MCHOOSE PRG 1) returns the statement in PRG scheduled at the | "th point in
the computation:

Definition:
(MCHOOSE PRG 1)
(NTQ PRG (REMAI NDER | (LENGTH PRG)))
where (NTH LI ST N) returnsthe N+1'th element in thelist LI ST. (REMAI NDER | J)
returns the remainder of | divided by J.
The complementary function MNEXT serves as a witness for NEXT. (MNEXT

8That is, S, CHOOSE, and NEXT are constrained function symbols, and theorems proved about them can be
instantiated with terms representing any computation also satisfying those constraints.

28

PRG E |) returns some position in the schedule at least as far along as | such that E is
scheduled at that point. (Of course, E must be a member of the program PRG.) MNEXT is
defined asfollows:

Definition:

(MNEXT PRG E I)

(PLUS |
(1 F (LESSP (PCSI TI ON PRG E)
(REMAI NDER | (LENGTH PRG)))

(PLUS (POSI TI ON PRG E)

(DI FFERENCE (LENGTH PRQ)

(REMAI NDER |

(LENGTH PRG))))
(Dl FFERENCE (POSI TI ON PRG E)
(REMAI NDER | (LENGTH PRG)))))

(POSITION LI ST E) returns the position of the first occurrence of E in the
list LI ST, where the position of the first element is 0. DI FFERENCE is the subtraction
operator for naturals. MNEXT works in the following way: Imagine that a schedule is the
repeated concatenation of the list PRG. Any E in PRG occurs in the schedule at least once
every (LENGTH PRG) eements (PRGis not necessarily a set). If index | is past the first
occurrence of E in this repetition, then MNEXT returns the index of the appropriate
occurrence in the next repetition. However, if index | precedes the first occurrence of E
in this repetition, MNEXT returns that index.

At this point, one may prove that the combination of MCHOOSE and MNEXT
satisfy the axioms mentioning only CHOOSE and NEXT. For example, the analog of
Choose-Next is:

Theorem: Mnext-Choice-2

(1 MPLI ES (MEMBER E PRG)
(EQUAL (MCHOOSE PRG (MNEXT PRG E 1)) E))

Analogs of the other axioms are stated in asimilar way.

The witness function for the computation S is MS. Ms would naturally be
defined in the following way: Starting from some initial state, apply the statement
scheduled by MCHOGSE at index 0, yielding the second state in the computation. Thisis
repeated indefinitely. The difficulty is that statements in this model are defined as

29

relations and not functions, and may not simply be applied to a state to determine the
successor state. At firgt, this appears to be an insurmountable problem. But, it is solved
in the following way: Remember that S only requires the generation of a successor state
if some successor state exists. (Otherwise, the predecessor is repeated.) Therefore, we
define the function Exists-Successor, where the term (EXI STS- SUCCESSOR OLD E) is
true if and only if statement E permits some successor to state OLD. Exists-Successor is
defined using the Defn-Sk extension (section 1.2.4) as follows:®

Definition:

(EXI STS- SUCCESSOR OLD E)

=S

(EXI STS NEW (N OLD NEWE))
Remember, that this definition is really encoded in the logic as two Skolemized

formulas. These are;

(AND (I MPLI ES (EXI STS- SUCCESSOR OLD E)
(N OLD (NEWK E OLD) E))
(I MPLIES (N OLD NEW E)
(EXI STS- SUCCESSOR OLD E)))

The Skolem function introduced is NEWK, which is the same function used in
constraint S-ldle-Transition (section 2.2). What does the term (NEWK E OLD) mean?
The first conjunct in the formulaimpliesthat (NEWK E OLD) represents a successor state
to OLD for statement E. But thisis only true if (EXI STS- SUCCESSOR OLD E) istrue.
That term is proved by appealing to the second conjunct: to satisfy the hypothesis there,
one must pick some instance of NEwsuch that (N OLD NEW E) istrue.

This arrangement produces the following situation, which is perfect for this
formalization: if one can demonstrate that a successor state exists, then (NEWK E OLD)
represents some successor state (not necessarily the same one used to demonstrate
existence). Therefore, the term (NEWK E OLD) can be used in two ways: to generate

some successor state, if one exists, and as a hypothesis in theorems depending upon the

9A prover directive (not show here) is included with this definition, indicating that the names of Skolem
functions introduced by this definition in place of existentially quantified variables, should be based upon
those variable names with the suffix X added. Hence, NEwis replaced by the Skolem function symbol NEWK.
NEWK' s formal parameters are the universally quantified variables upon which the existentially quantified NEW
depends. These parameters are ordered alphabetically.

30

existence of a successor state, since the latter would be proved by demonstrating
(EXI STS- SUCCESSOR QLD E) and consequently the existence of some NEWsatisfying
(N OLD NEW E). The second way was used in the constraint S-Idle-Transition. The
first way isused in the definition of MS, the model of S:

Definition:

(M5 PRG 1)

(I F (ZEROP 1)
NI L
(IF (N (MS PRG (SUBL 1))
(NEWK (MCHOOSE PRG (SUBL 1))
(M5 PRG (SUBL 1)))
(MCHOOSE PRG (SUBL 1)))
(NEWK (MCHOOSE PRG (SUBL I))
(M5 PRG (SUBL 1)))
(M5 PRG (SUBL 1))))

VS is defined recursively in the following way: (M5 PRG 0) returns NI L, an
arbitrarily fixed initial state. Subsequent states are generated from their predecessors. |If
the scheduled statement permits a successor state, that successor is generated. |If,
however, no successor state is defined, then the predecessor is repeated. MS satisfies the
axioms about S. Here are the analogs of S-Effective-Transition and S-1dle-Transition:

Theorem: Ms-Transition-Successful

(I MPLI ES (AND (LI STP PRQ)
(N (M5 PRG |) NEW (MCHOOSE PRG 1)))
(N (M5 PRG I)
(M5 PRG (ADDL 1))
(MCHOOSE PRG 1)))

Theorem: Ms-Transition-ldle

(1 MPLI ES (AND (LI STP PRO)
(NOT (N (MB PRG 1)
(NEWK (MCHOOSE PRG I)
(M5 PRG 1))
(MCHOOSE PRG 1))))
(EQUAL (M5 PRG (ADDL 1))
(M5 PRG 1)))

Once MS, MCHOGSE, and MNEXT are defined and these and other theorems
proved about them, the constrain event introducing al nine axioms presented earlier may
be submitted to the theorem prover. The axioms are presented in this text separately, for

ease of reference, but must, logically, be introduced simultaneously, since satisfying the

31

constraints may only be doneif all three undefined function symbols are replaced by their

witnesses.

Chapter 3

The Proof System

The previous chapter (chapter 2) characterized an arbitrary fair computation of
a concurrent program. That formalization is sufficient for reasoning about program
correctness. In fact, it is (relatively) complete, since the constraints provide all relevant
information about a fair computation. However, it is useful to abstract away from
sequences of states and deduce correctness properties directly from the program text
using a set of proof rules. These proof rules are theorems about the arbitrary fair
computation. In this methodology, there are two forms of reasoning: the deduction of
basic correctness properties as consequences of individual program statements; and the

combination of more basic properties into more complicated ones.

This chapter presents proof rules similar to those found in Unity for reasoning
about both safety and liveness properties. Additionally, it presents proof rules for
deducing basic liveness properties for the three fairness notions of unconditional, weak,

and strong fairness, and for the safety notion of deadlock freedom.

Before formalizing these proof rules, we must define predicates for specifying
correctness properties. Proof rules will be theorems permitting the proofs of correctness
properties.

3.1 Specification Predicates

The Unity logic permits reasoning about the safety and liveness (progress)
properties of concurrent programs. Safety properties are those that state that something
bad will never happen[Alpern, Demers, & Schneider 86]; examples are invariant

properties such as mutual exclusion and freedom from deadlock. Liveness properties

32

33

state that something good will eventually happen [Alpern & Schneider 85]; examples are
termination and freedom from starvation. We borrow Unity’s predicates for safety
(UNLESS) and liveness (LEADS- TO) and present the definitions of these predicates in the
context of this proof system.

3.11Evd

Specification predicates take other predicates as arguments and evaluate those
predicates on either computation states or arbitrary (not necessarily reachable) states.
Therefore, it is necessary to define a function that will evaluate a quoted term with
respect to some environment. We now define the function EVAL, using Ngthm’s built-in
interpreter function EVAL$, which was described earlier (section 1.2.2). (EVAL PRED
STATE) evaluates the formula PRED in the context of the state STATE and is defined as
follows:
Definition:
(EVAL PRED STATE)
(EVRL$ T PRED (LI ST (CONS ' STATE STATE)))

When EVAL is used, the formula must use ' STATE as the name of the
““variable’’ representing the state. Notice that EVAL has the expected property:

Theorem: Eval-Or

(EQUAL (EVAL (LIST 'OR P Q STATE)
(OR (EVAL P STATE)
(EVAL Q STATE)))

That is, EVAL distributes over OR. Similarly, EVAL distributes over the other

logical connectives and it interprets other total functions in the obvious way.19

10The definition of EVAL in terms of the interpreter function EVALS$ restricts correctness properties
provable here to partial recursive ones. In practice, this does not appear to be a problem, since quantification
is usually over some finite domain. It is often possible to quantify over an infinite domain, if the predicate
can be shown to be partial recursive anyway. Thisis demonstrated in the mutual exclusion program where
we rely on the fact that the counter has a value, even though that value may be any natural number. This
makes the quantified term is the counter equal to some i equa to true, even though the quantification is
unbounded (and true is certainly partial recursive). It would have been possible to constrain EVAL to depend
only upon the proper interpretation of the logical connectives (and not be restricted to partial recursive
functions), but although that approach would have better characterized Unity, it would have required the
instantiation of the entire proof system for a useful EVAL before proving any real program.

3.1.2 Unless
Unity’s predicate for specifying safety propertiesis UNLESS. The definition of
UNLESS hereis:
Definition:
(UNLESS P Q PRG)

(FORALL (OLD NEW E)
(I MPLI ES (AND (MEMBER E PRG)
(N OLD NEW E)
(EVAL (LIST 'AND P (LIST 'NOT Q)
aD))
(EVAL (LIST'ORP Q NEW))

(UNLESS P Q PRG dtates that every statement in the program PRG takes
states where P holds and Q does not hold to states where P or Q holds. Intuitively, this
means that once P holds in a computation, it continues to hold (it is stable), at least until Q
holds (this may occur immediately). A subtle point is that if the precondition P disables
some statement, then UNLESS holds vacuously for that statement. This is consistent with
the operational semantics presented earlier, since a disabled statement, if scheduled, will
effect the null transition. Hence, the successor state will be identical to the previous state

and the precondition P will be preserved.

Notice that if (UNLESS P ' (FALSE) PRG istrue for program PRG (that is P
is astable property) and P holds on theinitial state (e.g., (EVAL P (S PRG 0))), thenP
isan invariant of PRG (that is, P is true of every state in the computation). In Unity, this
implication is an equivalence: P UNLESS FALSE is true for every invariant. This is
because Unity’s UNLESS is defined with respect to the computation (reachable states).
This definition has its advantages, but it complicates the precise statement of the union
theorems (section 3.4.1). Instead, this UNLESS is not restricted to reachable states in the
computation, but another predicate | NVARI ANT (section 3.1.4) is defined independently
and is identical to Unity’s definition of | NVARI ANT which is defined in terms of Unity’s
UNLESS. In addition, the definition of an UNLESS type property which is unrelated to the
computation is key to the formalization of the safety notion of deadlock freedom.

35

3.1.3LeadsTo

LEADS- TOis the general progress predicate. It is defined as follows:11
Definition:
(LEADS-TO P Q PRG)

(FORALL | (IMPLIES (EVAL P (S PRG 1))
(EXI STS J
(AND (NOT (LESSP J 1))
(EVAL Q (S PRG J))))))

(LEADS-TO P Q PRG statesthat if P holds at some point in a computation of
program PRG, then Qholds at that point or at some later point in the computation.

Unity’s theorems about LEADS- TO are theorems in this proof system as well.
In the statement of severa of these theorems, it is necessary to use the Skolem functions
introduced by the definition of LEADS-TO. The two axioms resulting from the

Skolemization of LEADS- TOare;

(AND (I MPLIES (1 MPLIES (EVAL P (S PRG (I LEADS P PRG Q))
(AND (NOT (LESSP J (ILEADS P PRG

(EVAL Q (S PRG J))))
(LEADS-TO P Q PRG))
(I MPLI ES (AND (LEADS-TO P Q PRG)
(EVAL P (S PRG 1)))
(AND (NOT (LESSP (JLEADS | PRG Q 1))
(EVAL Q (S PRG (JLEADS | PRG Q)))))

The second conjunct states that if LEADS- TOIs true and P holds at some state,
then Q holds at some later state which may be identified using the function JLEADS.
Notice that the function JLEADS replaces the existential EXI STS J in the definition of
LEADS- TO. Thisconjunct is used to derive consequences of LEADS- TO.

The first conjunct states that LEADS- TOis true if, for an arbitrary starting point
in the computation at which P holds, one can find a later J at which Q holds. The
function | LEADS serves to fix the arbitrary point and it replaces the universal FORALL |

1IA prover directive (not shown here) isincluded with this definition, indicating that the names of Skolem
variables introduced by this definition should be derived from the existentially quantified variable they
replace, with the suffix LEADS added.

36

in the definition of LEADS- TO. This conjunct is used to prove LEADS- TO. It isimportant
to note, however, that understanding the Skolemization is only necessary to understand
the statement and proofs of severa of the proof rules. This same understanding is not
needed for the use of those proof rules.

Curiously, Unity’s LEADS- TO can be used to specify invariance properties.12
(LEADS-TO P ' (FALSE) PRG implies that the negation of P is invariant (section
3.2.2). Thisisdeduced by contradiction: if P does hold at some point in the computation,
then * (FALSE) would have to hold subsequently, which is impossible. Notice, that
(LEADS-TO P ' (FALSE) PRG is only concerned with reachable states in the
computation: it does not imply (UNLESS (LIST 'NOT P) ' (FALSE) PRG, even
though (LI ST ' NOT P) evaluatesto the negation of P. (Seesection 3.1.2.)

3.1.4 Invariance Properties

Invariants are properties that are preserved throughout the computation.
Invariants are specified using the term (1 NVARI ANT | NV PRG which is defined as
follows:

Definition:
(1 NVARI ANT | NV PRG)
(FO;ALL I (EVAL INV (S PRG 1)))

(I NVARI ANT | NV PRG is true only if I NV holds on every state in the
computation. Often, it is proved by assuming that | NV holds initially and proving
(UNLESS I NV ' (FALSE) PRG . Also, if I NV is a consequence of any other invariant,
then (I NVARI ANT | NV PRG is true as well. This is the key difference between
specifying (1 NVARI ANT | NV PRG) and (UNLESS | NV ' (FALSE) PRG).

Initial conditions are postulated using the predicate | NI TI AL- CONDI TI ON

which is defined as follows;

2Thisis obviousin temporal logic.

37

Definition:
(I NI'TI AL- CONDI TION |1 C PRG
(EVAL I C (S PRG 0))
Stating (1 NI TIAL- CONDI TION | C PRG in the hypothesis of a theorem
impliesthat | C holds on theinitial state.

3.1.5 Eventua Invariance

The next predicate specifies properties that are eventually invariant. Such
properties are important, as they represent generalizations of the notion of fixed pointsin
the computation. (Unity specifies such properties using UNLESS and LEADS- TO and
adding auxiliary variables to the program[Misra 904].) The predicate
EVENTUALLY- | NVARI ANT is defined as follows:
Definition:
(EVENTUALLY- | NVARI ANT R PRG)

(EXIQSTSI (FORALL J (I MPLIES (NOT (LESSP J 1))
(EVAL R (S PRG J)))))

(EVENTUALLY- | NVARI ANT R PRG states that there exists a point in the
computation, at and after which R holds continuously.

As in LEADS- TO, many theorems about EVENTUALLY- | NVARI ANT require the
Skolem functions introduced by the definition of EVENTUALLY- | NVARI ANT. The two

axioms resulting from the Skolemization of EVENTUALLY- | NVARI ANT are;

(AND (1 MPLIES (I MPLIES (NOT (LESSP (JES | PRGR) 1))
(EVAL R (S PRG (JES | PRGR))))
(EVENTUALLY- | NVARI ANT R PRG))
(1 MPLI ES (AND (EVENTUALLY- | NVARI ANT R PRG)
(NOT (LESSP J (1ES PRG R))))
(EVAL R (S PRG J))))

Many other predicates may be defined and their associated proof rules proved.
However, this set (along with ENSURES which is defined later) is sufficient for the types

of properties we are concerned with here.

38

3.2 Proof Rules

Proof rules facilitate the proof of program properties in much the same way that
lemmas aid a mathematical proof. In fact, the proof rules presented here are theorems
about computations. Some of the theorems are not stated in the most general way

possible because they are more easily used in their current form.

3.2.1 Liveness Theorems
LEADS- TOis transitive. This property is especialy important since it can be
applied repeatedly using the Boyer-Moore logic’ s induction principle.

Theorem: Leads-To-Transitive

(I MPLI ES (AND (LEADS-TO P Q PRG)
(LEADS- TO Q R PRG))
(LEADS-TO P R PRO))

The next two theorems demonstrate how the beginning and ending predicates
in LEADS- TO can be manipulated. Just like an implication, the beginning predicate can
be strengthened and the ending predicate can be weakened.

Theorem: LeadsTo-Strengthen-L eft

(I MPLIES (AND (I MPLIES (EVAL Q (S PRG
(I LEADS Q PRG R)))
(EVAL P (S PRG
(I LEADS Q PRG R))))
(LEADS-TO P R PRG))
(LEADS- TO Q R PRG))

This theorem states that if (LEADS-TO P R PRG holds, and Q is stronger
than P, then one can deduce (LEADS- TO Q R PRG . Since the obvious hypothesis, [
STATE (I MPLIES (EVAL Q STATE) (EVAL P STATE)), stating that Q is stronger
than P cannot be stated (easily) in the Boyer-Moore logic, we must use a term that is
implied by this hypothesis and still makes this statement a theorem. Such a term is
obtained by taking advantage of the arbitrary initial point in the computation, using the
function | LEADS (section 3.1.3, page 35). Notice that when using this theorem, one must
gtill prove that Q is stronger than P, and that one may assume any program invariants
about (S PRG (I LEADS Q PRG R)), sinceit isacomputation state. The next theorem
states that the ending predicate can be weakened, using the function JLEADS.

39

Theorem: LeadsTo-Weaken-Right

(I MPLIES (AND (I MPLIES (EVAL Q (S PRG
(JLEADS
(I LEADS P PRG R)
PRG Q))
(EVAL R (S PRG
(JLEADS
(I LEADS P PRG R)

(LEADS-TO P Q PRG)) PrREQ)))
(LEADS-TO P R PRG))

Leads-To-Strengthen-Left can also be used in place of Unity’s infinite
disunction proof rule for LEADS- TO. This is because one can take advantage of the
arbitrary point at which Q must be stronger than P and then pick the appropriate P. Asan
example, assume that P is a predicate indexed by |, and let Qbe O I P(1), the infinite
digunction of P over al I . The goa isto prove that Q leads to some R given that P(1)
leads to that same R for every |I. This is proved by applying the
L eads-To-Strengthen-L eft proof rule, instantiating | to the particular value that makes
the infinite digunction true at the arbitrary point in the computation (S PRG (| LEADS

Q PRG R)).13

The next theorem provides one method of proving a disunction of beginning
predicates. simply prove LEADS- TO for each one. The anaogous theorem for ending
predicates is a simple consequence of Leads-To-Weaken-Right; the complementary
statement (using AND) for ending predicatesis false.

Theorem: Digoin-Left

(1 MPLI ES (AND (LEADS-TO P R PRG
(LEADS- TO Q R PRG))
(LEADS-TO (LIST "OR P Q R PRO)

The cancellation theorem is a twist on transitivity. Leads-To-Weaken-Right
is often used prior to this theorem when it is necessary to commute the term (LI ST ' OR
QB) to(LIST'ORB Q.

130f course, the predicates being manipulated must be partial recursive ones, and the use of quantifiersin
this discussion is only for exposition.

40

Theorem: Cancellation-Leads-To

(I MPLI ES (AND (LEADS-TO P (LIST ' OR Q B) PRG)
(LEADS-TO B R PRO))
(LEADS-TO P (LIST 'OR Q R) PRO))

The next proof rule demonstrates that an invariant is preserved throughout a
computation. This proof ruleisincluded in this section of liveness proof rules, because it
is most often used to delete or add invariants in conjunction with the
L eads-To-Strengthen-L eft and L eads-To-Weaken-Right proof rules.

Theorem: Invariant-Implies

(I MPLI ES (I NVARI ANT | NV PRG)
(EVAL INV (S PRG 1)))

Using this proof rule and the LEADS- TO weakening and strengthening proof
rules presented earlier, it is possible to add or remove an invariant, or any consequence of
an invariant, to or from the beginning or ending predicate in a LEADS- TO. As an
example, assume that (LEADS- TO (LIST ' AND Q INV) R PRG) istrueand | NVisan
invariant of the program PRG. We wish to conclude that (LEADS- TO Q R PRG istrue
as well. The latter property is obviously true by the following argument: if we are a a
state satisfying Qand | NV is an invariant of the program, then that state satisfies (LI ST
"AND Q I NV). This makes the two LEADS- TO statements identical. Using the proof
rules, this conclusion is proved by applying the theorem Leads-To-Strengthen-Left in
the following way: let Q be Q and let P be (LI ST *AND Q INV). The hypothesis
requires that Qimply (LI ST * AND Q | NV) when each is evaluated in the context of the
state (S PRG (I LEADS Q PRG R)). Q holds trivialy; it remains necessary to show
that I NV holds at that point. Appealing to the theorem Invariant-Implies, we see that if
I NV is an invariant, it holds on any other state in the computation. This satisfies the
second proof obligation, so we may conclude that (LEADS- TO Q R PRG istrue. This
use of the two theorems Invariant-Implies and Leads-To-Strengthen-Left (or
Leads- To-Weaken-Right) replaces Unity’s substitution axiom. In this proof system,
Unity’s substitution axiom only applies to computation properties[Sanders 90, Misra
90b]; these are LEADS- TO, | NVARI ANT, and EVENTUALLY- | NVARI ANT.

The last theorem of this section, the PSP theorem, combines a progress and a

safety property to yield a progress property [Chandy & Misra 88].

41

Theorem: Psp

(I MPLI ES (AND (LEADS-TO P Q PRG)
(UNLESS R B PRO
(LI STP PRO))
(LEADS-TO (LIST 'AND P R)
(LIST "OR (LIST 'AND Q R) B)
PRG))

This theorem is proved by induction on the computation. Intuitively, if some
state satisfies both P and R, the UNLESS hypothesis states that R holds until B holds;
furthermore, Q holds eventually. The only question is which of Q or B is reached first.
This theorem also illustrates that whenever a computation property is deduced from a

program property (UNLESS and ENSURES), the program must be non-empty.

3.2.2 Safety Theorems

This section presents theorems useful for proving invariants about the
computation. Usually, invariants hold only if some initial condition is satisfied;
therefore, many of these theorems include an | NI TI AL- CONDI TI ON assumption as a
hypothesis. The first theorem proves an | NVARI ANT property from an UNLESS property:

Theorem: Unless-Proves-|nvariant

(I MPLIES (AND (I NI TI AL- CONDI TION | C PRQ)
(UNLESS P ' (FALSE) PRQ
(I MPLIES (EVAL I C (S PRG 0))
(EVAL P (S PRG 0)))
(LI STP PRO))
(I N\VARI ANT P PRG))

The intuition behind this theorem is that if (UNLESS P ' (FALSE) PRG is
true, then we know that P persists once it holds. (I NI TI AL- CONDI TION | C PRG
implies that | C holds initialy, and the third hypothesis implies that P holds initially as

well. Therefore, P holds throughout the computation and is an invariant of PRG.

Another useful theorem permits the weakening of an invariant. If P is an
invariant of program PRG, so is any consequence of P:

Theorem: |nvariant-Consequence

(I MPLI ES (AND (I NVARI ANT P PRQ)
(IMPLIES (EVAL P (S PRG (Il Q PRO))
(EVAL Q (S PRG (Il QPRG))))
(I N\VARI ANT Q PRO))

42

Il is the Skolem function replacing the existentially quantified variable | in
the definition of 1 NVARI ANT. One proves that P is stronger than Q at some (particular)
arbitrary point in the computation.

The next theorem notes that (LEADS- TO P ' (FALSE) PRG is another way
of stating that the negation of P is an invariant. This is formalized, in a more general
way, in the following theorem:

Theorem: Leads-To-False-Invariant

(I MPLI ES (AND (LEADS-TO P ' (FALSE) PRG
(I MPLI ES (EVAL (LI ST ' NOT P)
(S PRG (11 INV PRG)))
(EVAL | NV
(SPRG (Il INV PRG))))
(1 NVARI ANT | NV PRG))

The next theorems are concerned with proving and manipulating the predicate
EVENTUALLY- | NVARI ANT. The first theorem states that if a predicate is stable and is
reached, it is eventually invariant:

Theorem: Stable-Occurs-Proves-Eventually-Invariant

(1 MPLI ES (AND (LI STP PRO)
(UNLESS P ' (FALSE) PROG)
(LEADS-TO ' (TRUE) P PRQ))
(EVENTUALLY- | NVARI ANT P PRG))

The next theorem states that if a predicate is eventualy invariant, any
consequence of it is eventualy invariant aso. The theorem is similar to
Invariant-Consequence. The arbitrary computation point is computed by the
composition of the Skolem functions JES and |ES, from the definition of
EVENTUALLY- | NVARI ANT:

Theorem: Eventually-Invariant-Weaken

(1 MPLI ES (AND (EVENTUALLY- | NVARI ANT P PRQ)
(I MPLIES (EVAL P
(S PRG
(JES (I ES PRG P)
PRG R)))
(EVAL R
(S PRG
(JES (I ES PRG P)
PRGR)))))
(EVENTUALLY- | NVARI ANT R PRG))

43

The next theorem states that if both P and Q are eventually invariant, then any
consequence of their conjunction is also eventually invariant.

Theorem: Eventually-Invariant-Conjunction

(1 MPLI ES
(AND (EVENTUALLY- | NVARI ANT P PRG)
(EVENTUALLY- | NVARI ANT Q PRG)

(1 MPLI ES
(EVAL (LIST 'AND P Q
(S PRG
(JES (I F (LESSP
(1ES PRG P)
(1ES PRG Q)
(1ES PRG Q
(1ES PRG P))
PRG R)))

(EVAL R (S PRG
(JES (1 F (LESSP
(1 ES PRG P)
(1ES PRG Q)
(IES PRG Q
(1 ES PRG P))
PRGR)))))
(EVENTUALLY- | NVARI ANT R PRG))

As with Leads-To-Strengthen-Left and Leads-To-Weaken-Right, it is
necessary to appeal to the Skolemization of the definition of EVENTUALLY- | NVARI ANT
in order to obtain the arbitrary point in the computation at which the conjunction of P and
Qmust be stronger than R 14

LEADS- TO and EVENTUALLY- | NVARI ANT are basically negations of each
other. For example, if (LEADS-TO P Q PRG is not true, then eventually the negation
of Qisinvariant. Why? This LEADS- TO states that whenever P holds, Q holds sometime
later (perhaps right away). The negation is that there exists a point at which P holds and
subsequently Q never holds. Equivalently, the negation of Qis eventually invariant. This

isformalized in the next theorem:

14The following simple theorem, used together with Eventually-I nvariant-Weaken, may be used in place
of Eventually-Invariant-Conjunction. But the use of asingle theorem is often more convenient:
(I MPLI ES (AND (EVENTUALLY- 1 NVARI ANT P PRG

(EVENTUALLY- | N\VAR ANT Q PRG))
(EVENTUALLY- | N\VARI ANT (LIST *AND P Q PRO))

Theorem: Not-Leads-To-Proves-Eventually-Invariant

(1 MPLI ES
(AND (NOT (LEADS-TO P NOT-R PRG))
(I MPLI ES (NOT (EVAL NOT-R
(S PRG
(JES
(I LEADS P PRG NOT-R)
PRGR))))
(EVAL R
(S PRG
(JES
(I LEADS P PRG NOT-R)
PRG R)))))
(EVENTUALLY- | NVARI ANT R PRG))

Notice that Skolem functions from the definitions of both LEADS- TO and
EVENTUALLY- | NVARI ANT are composed. The contrapositive, where the first hypothesis
is negated and exchanged with the negation of the conclusion, is also a theorem,
obviously, and is named Not-Eventually-Invariant-Proves-L eads-To. These theorems

are used extensively in the proof of the dining philosophers agorithm (chapter 6).

3.3 Fairness and Deadlock Freedom

The next sections present proof rules for Unity’s fairness notion (unconditional
fairness), for weak and strong fairness, and for the safety assumption of deadlock
freedom. All four of these notions place restrictions on a scheduler (this scheduler is
already both unconditionally and weakly fair) and therefore yield computations satisfying
stronger properties. Furthermore, the fairness proof rules permit the proof of basic
liveness properties directly from the program text, which are then combined together

using the proof rules described in the previous section (section 3.2).

3.3.1 Unconditional Fairness
The weakest fairness notion, unconditional fairness, requires that program

statements be alway's enabled (statements are total functions).1®

BActually, this isn't a fairness property at all, since it does not satisfy the criterion of feasibility in [Apt,
Francez, & Katz 88], since demonstrating that statements are total functions is unrelated to building a
scheduler. In Unity, where statements are total by definition, weak fairness and unconditional fairness are the
same.

45

Consequently, no restrictions are placed on a scheduler, other than that every
statement be scheduled infinitely often (in any particular order). It is easy to imagine

scenarios where starvation or deadlock occur under unconditional fairness.

The first requirement of unconditional fairness, that all program statements be

total functions, is captured by defining the function TOTAL:

Definition:
(TOTAL PRG
(FORALL E (I MPLI ES (MEMBER E PRG)
(FORALL QLD
(EXI STS NEW

(N OLD NEWE)))))
(TOTAL PRG s true only if every statement in PRG specifies at least one
successor state for every previous state. The successor state may be unchanged (the

statement may be a skip statement).

The proof rule for deducing the liveness properties of programs executed under
unconditional fairness is supported by the following intuition. We wish to prove asimple
LEADS- TO property: (LEADS-TO P Q PRG . That is, every P state is eventualy
followed by some Q state. Suppose that every program statement takes P states to states
where P or Q holds. Then we know that P persists, at least until Q holds. (This is
formalized by (UNLESS P Q PRG.) Furthermore, if there exists some statement that
transforms al P states to Q states, then, by fairness, we know that statement will
eventually be executed. If Q has not yet held, since P persists, Qwill hold subsequent to
the first execution of that statement. The notion of some statement transforming al P
states to Q states is captured by the function ENSURES (borrowed from Unity):

46

Definition:
(ENSURES P Q PRG)

(EXI STS E (AND
(MEMBER E PRG
(FORALL (OLD NEW
(1 MPLI ES
(AND (N OLD NEW E)
(EVAL (LIST 'AND P
(LIST ' NOT Q)
OLD))
(EVAL Q NEW))))

Therefore, if a program is TOTAL, and P persists until Q and some statement
transforms all P states to Q states, unconditional fairness implies that (LEADS- TO P Q
PRG) holds aswell. Thisargument is formalized in the following theorem, which is the
proof rule for unconditional fairness:

Theorem: Unconditional-Fairness

(I MPLI ES (AND (UNLESS P Q PRG)
(ENSURES P Q PRG
(TOTAL PRQ))
(LEADS-TO P Q PRG))

Notice, that this theorem does not require any assumptions about the
computation (other than what is implied by the characterization of S). This is because
any arbitrary ordering of statements (provided every statement is scheduled infinitely

often) is sufficient for unconditional fairness.

Notice also, that ENSURES is inappropriate if a program is not TOTAL, because
if some statement is disabled by the precondition P, (ENSURES P Q PRG is vacuously

true.

3.3.2 Weak Fairness

Weak fairness is an extension of unconditional fairness for programs that are
not TOTAL. Weak fairness excludes from consideration computations in which a
statement is enabled continuously but is not scheduled effectively. That is, in order to
guarantee that a statement will effect an effective transition under weak fairness, one
must ensure that once it is enabled, it remains enabled (at least) until it is scheduled.

Notice, however, that this is a simple property of the computation S: since, by fairness,

47

every statement is scheduled again, if some statement is continuously enabled from some
point in the computation, it will execute effectively the next time it is scheduled. Hence,
the proof rule describing weak fairness is a theorem that requires some knowledge about
statements’ enabling conditions.

To specify this notion, we first introduce a predicate that identifies a
statement’ s enabling condition.
Definition:
(ENABLI NG- CONDI TI ON C E PRG)

(AND (MEMBER E PRG)
(FORALL (OLD NEW
(I MPLI ES (N OLD NEW E)
(EVAL C OLD)))
(FORALL OLD (I MPLIES (EVAL C OLD)
(EXI STS NEW (N OLD NEWE)))))

(ENABLI NG- CONDI TI ON C E PRG) dtatesthat Cisthe enabling condition for
statement E in program PRG. That is, for all possible transitions, C holds on the previous

state, and if C holds on the previous state, some successor state exists.

We now define a predicate similar to ENSURES that considers enabling
conditions:
Definition:
(E-ENSURES P Q C PRG
(EXI STS E
(AND (MEMBER E PRG)
(ENABLI NG CONDI TION C E PRG)
(FORALL (OLD NEW
(1 MPLI ES
(AND (N OLD NEW E)
(EVAL (LIST 'AND P
(LIST "' NOT Q)
QD))
(EVAL Q NEW))))

(E-ENSURES P Q C PRG saysthat some statement takes some P statesto Q
states (and is disabled for all the rest) and has enabling condition C.

48

The intuition behind the proof rule for weak fairnessis as follows. We wish to
prove (LEADS- TO P Q PRG) . Assumethat P persists at least until Qholds ((UNLESS P
Q PRG)). Also assume that some key statement transforms P states to Q states and has
enabling condition C. Then, if P implies C during the interval starting when P first holds
and ending when the key statement is scheduled (or when Q holds), we may deduce that Q
ultimately occurs, for if Q has not yet held, then the key statement will be scheduled
effectively and Q will hold subsequently. This argument is formalized in the following
theorem:

Theorem: Weak-Fairness

(1 MPLI ES
(AND (UNLESS P Q PRG)
(E-ENSURES P Q C PRG)
(1 MPLI ES
(EVAL (LIST *AND P (LIST ' NOT Q
(S PRG (WTNESS P Q C P
(EVAL C (S PRG (WTNESS P Q C
(LEADS-TO P Q PRG))

At first glance, this theorem seems not to follow the reasoning outlined above,
for it appears to only check whether the key statement’ s enabling condition C holds at the
single point (WTNESS P Q C PRG and not whether C holds continuously over the
appropriate interval. However, W TNESS is defined to inspect that interval and return the
first point where the key statement is disabled. (If the key statement is enabled
continuously, then W TNESS returns the first point when either Q holds or the key
statement is scheduled.) In this theorem, the hypothesis requires that the key statement
be enabled (or Qholds) even at that point. If that isthe case, then we may deduce that the
key statement is enabled continuously until the state before Q holds.

The advantage of defining W TNESS in this way is that it transforms an
inductive argument (inspecting an arbitrary interval) to anaysis at a single arbitrary

point; this simplifies reasoning. The definition of W TNESS is:

49

Definition:
(WTNESS P Q C PRG

(WEW (1 LEADS P PRG Q
(NEXT PRG (EEE C P PRG Q
(I LEADS P PRG Q)
P Q C PRO

EEE is the Skolem function representing the existentially quantified E in
function E- ENSURES. WFWis defined as:
Definition:
(WEW 1 J P Q C PRG

(IF_(LESSP 1 J)
(IF (EVAL Q (S PRG 1))
|

(IF (EVAL P (S PRG I))
(IF (EVAL C (S PRG 1))
(WFW (ADD1 1) J P Q C PRG
1)

1))

(FIX 1))
Notice, that weak fairness is more general than unconditional fairness since
programs need not be TOTAL, yet does not require special scheduling not aready
guaranteed by the computation S. However, both starvation and deadlock are still

possible under weak fairness.

3.3.3 Strong Fairness

Srong fairness precludes computations where a statement that is enabled
infinitely often is never scheduled effectively. Equivalently, strong fairness guarantees
that if astatement is enabled infinitely often, it is scheduled effectively infinitely often.

Strong fairness might be used, in special circumstances, to guarantee freedom
from starvation. Starvation can occur when a process needs a resource, which is
available infinitely often (but not necessarily continuously), yet only requests the

resource when it is unavailable.

The proof rule for deducing strong fairness properties is supported by the
following intuition. Suppose that we wish to prove (LEADS-TO P Q PRG and we

50

know that P persists at least until Q holds ((UNLESS P Q PRG)). Suppose further that
there exists some key statement with enabling condition C that transforms states where
both P and C hold to Q states. Under strong fairness, to guarantee that the key statement
is scheduled effectively, one must demonstrate that P and C occur together often enough
(e.g., could occur infinitely often). Therefore, to prove (LEADS-TO P Q PRG it is
sufficient to prove (LEADS-TO P (LIST 'OR Q C)), since, by hypothesis, P persists
until Q and if C holds before Q, then the key statement could be scheduled effectively. |If
it is not scheduled at that point, then we repeat the argument. By strong fairness,
eventually, the key statement will be scheduled effectively.

The proof rule formalizing this argument is:

Constraint: Strong-Fairness

(I MPLI ES (AND (UNLESS P Q PRG)
(E-ENSURES P Q C PRG)
(LEADS-TO P (LIST *OR Q C PRQG)
(STRONGLY- FAI R PRG))
(LEADS-TO P Q PRG))

The term (STRONGLY- FAIR PRG introduces a new (undefined) function
symbol that, essentially, tags uses of this proof rule. Since (STRONGLY- FAI R PRG
cannot be proved, it must be a hypothesis to any LEADS- TO property deduced using this
proof rule. Furthermore, since reasoning directly about the operational semantics S
yields nothing more than weak fairness, it is impossible to deduce stronger results about
S without appealing to this proof rule. This proof rule is consistent with the rest of this
theory because there exists a model for the function STRONGLY- FAI R satisfying this
constraint: any unary function which is always false. Completeness and appropriateness
is justified by the correctness of the supporting literature [Manna & Pnueli 84, Lamport
91]. Notice, that this proof rule is not a proved theorem, but a sound constraint. An

interpreter for strongly fair computations cannot be formalized in first order logic.

It may appear that this proof rule requires circular reasoning: it proves one
LEADS- TO property by appealing to another. A clever answer is found in [Manna &
Pnueli 84]: We can disregard the key statement when proving the LEADS- TO property in
the hypothesis, since if it is ultimately scheduled effectively, we can ignore the

51

LEADS- TO property in the hypothesis (since Q is then reached), and if it not scheduled
effectively, we can ignore it when deducing that hypothesis (since it is equivalent to a
skip statement). Other researchers emphasize this point by permitting the LEADS- TO
property in the hypothesis to be proved with respect to a smaller program: the original
less the key statement [Lamport 91]. In this proof system, the circularity may be broken
in the following way: at some point in a proof, one of the LEADS- TO properties is proved

by appealing to the weak fairness proof rule.

3.3.4 Deadlock Freedom

Deadlock freedom guarantees the absence of deadlock in the computation.
Deadlock occurs when a statement which ought to be able to execute remains disabled.
More precisely, a deadlocked condition is a stable condition that disables some program
statement.

The proof rule formalizing this notion is:

Constraint; Deadlock-Freedom

(I MPLI ES (AND (UNLESS I NV ' (FALSE) PRG
(ENABLI NG- CONDI TI ON C E PRG)
(I MPLI ES (EVAL | NV

(S PRG

(NEXT PRG E
(I LEADS | NV PRG
"(FALSE)))))
(NOT (EVAL C

(S PRG
(NEXT PRG E
(I LEADS
I NV PRG

"(FALSE)))))))
(DEADLOCK- FREE PRG))
(LEADS- TO I NV ’ (FALSE) PRO))

This proof rules states that if | NV is stable and C is statement E's enabling
condition, if I NV is a stronger predicate than the negation of Cthen | NV is false of every
state in the computation. That is, the negation of | NV is an invariant of the computation
(section 3.2.2). Stating that | NV is stronger than the negation of C with respect to
computation states is more powerful than stating it with respect to all states (since

computation states is a smaller set). As with strong fairness, the new function symbol

52

DEADLOCK- FREE is an undefined function symbol which serves as a tag for uses of this
proof rule. This proof rule is consistent with the rest of this theory because any unary
function whose value is aways false serves as a model for DEADLOCK- FREE in this

constraint.

One might argue that deadlock freedom is too strong a proof rule, for unlike
strong fairness, it is not, in general, implementable [Apt, Francez, & Katz 88]. But strong
fairnessis a useful abstraction: for example, a high level algorithm may be proved correct
assuming deadlock freedom, and then implemented following locking rules that do
prevent deadlock.16

In the next chapters, the proof rules for weak fairness, strong fairness, and
deadlock freedom are illustrated by the proof of four programs.

3.4 Proof Rules about UNLESS, ENSURES, and TOTAL
There are many theorems for manipulating the predicates UNLESS, ENSURES,
and TOTAL. These predicates consider program statements and all states, not just

reachable ones.

3.4.1 Program Composition

This section presents three theorems about program composition. Since
programs are simply a list of statements, the composition of two programs is the
concatenation of two lists (using the function APPEND). The predicates TOTAL, UNLESS,
and ENSURES all compose. Computation properties, like LEADS- TOand | NVARI ANT, do

not compose in a straightforward manner.

Both TOTAL and UNLESS are properties satisfied by every statement in the
program. Thefirst theorem states that TOTAL composes.

16Thanks to Jeannette Wing for suggesting this strategy.

53

Theorem: Total-Union

(I FF (TOTAL (APPEND PRG 1 PRG 2))
(AND (TOTAL PRG 1)
(TOTAL PRG 2)))

A similar fact holds for UNLESS.

Theorem: Unless-Union

(1 FF (UNLESS P Q (APPEND PRG 1 PRG 2))
(AND (UNLESS P Q PRG 1)
(UNLESS P Q PRG 2)))

ENSURES composes as well; however the key statement need be present in only
one of the component programs:1/

Theorem: Ensures-Union

(I FF (ENSURES P Q (APPEND PRG 1 PRG 2))
(OR (ENSURES P Q PRG 1)
(ENSURES P Q PRG 2)))

3.4.2 Strengthening and Weakening UNLESS, and ENSURES

Sometimes is it useful to be able to strengthen or weaken the arguments to
UNLESS and ENSURES. This section presents several useful theorems. First, we define a
predicate that relates predicates:
Definition:
(STRONGER-P P Q

(FORALL STATE (I MPLIES (EVAL P STATE)
(EVAL Q STATE)))

The term (STRONGER-P P Q) istrueif and only if P is a stronger predicate
than Q Using this predicate, we may state and prove several theorems about UNLESS and
ENSURES.

Theorem: Unless-Weaken-Right
(1 VPLI ES (AND (UNLESS P Q PRO
(STRONGER-P Q R))

(UNLESS P R PRG))

Theorem: Ensures-Weaken-Right

(I MPLI ES (AND (ENSURES P Q PRG)
(STRONGER-P Q R))
(ENSURES P R PRO))

17Unity’ s ENSURES, which implies UNLESS, requires that UNLESS hold in each component program.

Theorem: Ensures-Strengthen-L eft

(I MPLI ES (AND (ENSURES Q R PRG)
(STRONGER-P P Q)
(ENSURES P R PRO))

Several conjunction and disjunction theorems were proved as well.

3.5 Comparison With Unity Predicates
The major differences between the UNLESS and ENSURES defined here, and
Unity’s definitions, are that these predicates consider all states and not just reachable
ones, and that statements here may be non-deterministic and may be disabled. Aside
from this, however, the definition of ENSURES here differs dightly from Unity’s. In
Unity, using Hoare triples [Hoare 69b], the definition of ENSURES is:
P ENSURES Q

(P UNLESS Q0 TS : S INPRG :: {PhQ S {Q]

Our ENSURES does not imply UNLESS; to achieve the same effect, one states
that both hold (e.g., (AND (UNLESS P Q PRG) (ENSURES P Q PRQ))).18

Unity does not provide a definition for LEADS- TO. Rather, it presents three
proof rules and defines LEADS- TOto be the strongest predicate satisfying those rules. In
this way, Unity avoids formalizing an operational semantics that may be used to define
LEADS- TO. Furthermore, Unity’s method for defining LEADS- TO allows one to use
induction on the length of the proof (structural induction) to prove theorems about
LEADS- TO. The soundness and completeness of Unity’s LEADS- TO are discussed
in [Jutla, Knapp, & Rao 88].

However, if an operational semantics is formalized, and LEADS- TO s correctly
defined using those functions, then the definition is sound. Furthermore, it is easy to
infer the meaning of this LEADS- TO, and to see that it is the predicate that Unity’s axioms
mean to define. Also, LEADS- TO may be meaningfully negated; this negation implies

18\\/e find the statement of several theorems more convenient when ENSURES and UNLESS are separate.

55

eventual stability. All theorems (except for several new compositional theorems[Misra
90c, Singh 89]) about Unity’s LEADS- TO are theorems of the LEADS- TO presented here
and are proved by induction on the second argument to S (the index in the computation).
Such theorems alow the proof of progress properties without appealing to the operational

semantics and are equivalent to Unity’s proof rules.

3.6 Conclusion
This chapter is based on [Goldschlag 90b, Goldschlag 90c, Goldschlag 914].

All the theorems in this and the previous chapter were verified on the extended
Boyer-Moore prover with many extra lemmas, and together comprise the proof system
called Mechanized Unity. Taking the underlying naturals library for granted [Bevier 88],
this proof required 34 definitions and 156 lemmas filling 2052 pretty printed lines of text.

The entire event list for constructing this proof system is presented in Appendix

Chapter 4

Mutual Exclusion

This chapter presents a mechanically verified n-processor program satisfying
both mutual exclusion and absence of starvation. The purpose of this chapter is to
describe, by means of a simple example, how to mechanically verify a concurrent

program on the Boyer-Moore prover using the theorems presented earlier.

Mutual exclusion is aresource alocation problem. A solution must ensure that
only one process may have the resource at a time. Absence of starvation requires that
any process desiring the resource will eventually receive it. The first requirement is an

invariance property; the second is a liveness property.

Informally, the program described here defines a ring of identical processes,
each of which differs only by its location in the ring. A process can send a message to
the next process in the ring and receive a message from the previous process in the ring.
Each process has three states: non-critical, wait, and critical.1® A non-critical process
non-deterministically becomes waiting and remains waiting until a token becomes
available on its incoming channel. It then absorbs that token and becomes critical, and
remains critical for a finite number of steps after which it releases a token upon its
outgoing channel and becomes non-critical.2 A non-critical process that does not
become waiting will pass a token, if one is available, from its incoming to its outgoing

channel.

BActually, the critical stateis any of a set of states. See section 4.1 for the definition of CRI TI CAL.

20This sequence of steps could be hidden, and the token released immediately. However, this complication
isanice demonstration of Unity’sinfinite disjunction proof rule.

56

57

The following sections are written using a bottom-up approach, where most
functions are defined before they are used. Section 4.1 formalizes the transitions each
process is permitted. Section 4.2 defines the set of statements that make up the ring.
Section 4.3 specifies the correctness theorems for a solution to this mutual exclusion
problem. Finaly, sections 4.4 and 4.5 present the proofs of the correctness theorems.

These proofs have been validated on the extended Boyer-Moore prover.

4.1 The Processes
Each processis a single statement in the program. Before defining the process,

we must define several other functions.

The state of the system is alist of pairs (an association list or alist) which may
be accessed by the ASSCC function. (ASSOC KEY ALI ST) returns the first pair in
ALI ST such that the CAR of that pair isKEY. If no such pair exists, then ASSOC returns F.

We now define several functions which test which state a process is in, and
whether a channel has atoken on it. The function STATUS finds the state of a process.
The key for each process's status is the pair (CONS ' ME | NDEX) where | NDEX is the
process' sindex in the ring.

Definition:
(STATUS STATE | NDEX)
(CD& (ASSOC (CONS ' ME | NDEX) STATE))

A process is non-critical if its statusis’ NON- CRI TI CAL. Similarly, a process
iswaiting if its statusis’ WAI T.

Definition:
(NON- CRI TI CAL STATE | NDEX)
(EQ_JAL (STATUS STATE | NDEX) ' NON- CRI Tl CAL)
Definition:
(WAI T STATE | NDEX)
(EQ_JAL (STATUS STATE | NDEX) ' WAIT)
A processiscritical if its statusis neither * NON- CRI TI CAL nor ' WAI T.

58

Definition:
(CRI TI CAL STATE | NDEX)

(ANE) (NOT (NON- CRI TI CAL STATE | NDEX))
(NOT (WAI T STATE | NDEX)))

If a process is critical, then its status is a number representing the maximum
number of its own transitions for which the process may remain critical. This number is
identified using the function Tl CKS:

Definition:
(TI CKS STATE | NDEX)
(FI X (STATUS STATE | NDEX))

CHANNEL returns the contents of the | NDEX'th channel. The key for a channel
iS(CONS ' C I NDEX). The I NDEX'th process's incoming channel has key (CONS ' C
I NDEX) and its outgoing channel has key (CONS ' C (ADD1- MOD N | NDEX)) where
ADD1- MOD adds one modulo N, where N is the number of processesin thering.

Definition:
(CHANNEL STATE | NDEX)
(CD& (ASSOC (CONS ' C | NDEX) STATE))

Finally, TOKEN tests whether a channel has a token on it, by checking whether
the channel is non-empty. A token is simply a message on the channel; the message itself
iS unimportant.

Definition:
(TOKEN STATE | NDEX)
(LI STP (CHANNEL STATE | NDEX))

The function ME defines a generic process in thering. It takes four arguments:
I NDEX instantiates the function to be a specific process in the ring of size SI ZE; OLD and
NEWare old and new states. IMVE tests whether NEWis a possible successor state to OLD.

59

Definition:
(ME OLD NEW | NDEX SI ZE)

(1 F (NON-CRI TI CAL OLD | NDEX)
(1 F (NON-CRI TI CAL NEW | NDEX)
(1 F (TOKEN OLD | NDEX)
(1 F (EQUAL (ADDL-MOD S| ZE | NDEX) | NDEX)
(AND (EQUAL (LENGTH (CHANNEL NEW | NDEX))
(LENGTH (CHANNEL OLD | NDEX)))
(CHANGED OLD NEW
(LIST (CONS ' C I NDEX))))
(AND (EQUAL (CHANNEL NEW I NDEX)
(CDR (CHANNEL OLD | NDEX)))
(EQUAL (LENGTH (CHANNEL NEW
(ADD1- MOD S| ZE
| NDEX)))
(ADDL (LENGTH
(CHANNEL OLD
(ADD1- MOD
SI ZE I NDEX)))))
(CHANGED OLD NEW
(LI ST (CONS ’ C | NDEX)
(CONS ’ C (ADDL- MOD
SI ZE 1NDEX))))))
(CHANGED OLD NEW NI L))
(AND (WAI T NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ’ ME | NDEX)))))
(IF (WAl T OLD | NDEX)
(I F (TOKEN OLD | NDEX)
(AND (EQUAL (CHANNEL NEW I NDEX)
(CDR (CHANNEL OLD | NDEX)))
(CRI TI CAL NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ' ME | NDEX)
(CONS ’ C I NDEX))))
(CHANGED OLD NEW NI L))
(OR (AND (LESSP (TI CKS NEW I NDEX) (TICKS OLD | NDEX))
(CRI TI CAL NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ' ME | NDEX))))
(AND (NON- CRI TI CAL NEW | NDEX)
(EQUAL (LENGTH (CHANNEL NEW (ADD1- MOD Sl ZE
| NDEX)))
(ADDL (LENGTH (CHANNEL OLD
(ADD1- MOD
SI ZE I NDEX)))))
(CHANGED OLD NEW
(LI ST (CONS ' C (ADDL- MOD S| ZE | NDEX))
(CONS " ME INDEX)))))))

ME defines precisely what is alegal transition for each process. It must check

whether there is only one process in the ring; in that case the incoming channel and the

60

outgoing channel are realy the same. Furthermore, it must specify that although each
process changes certain parts of the state, each process preserves other parts. Thisisakin
to not disturbing the local variables of other processes. The term (CHANGED OLD NEW
EXCPT) tests whether OLD and NEWagree on every key except for keysin the list EXCPT.
(Only keysin EXCPT may change.) Specifically, (CHANGED OLD NEW NI L) means that
ASSCC cannot infer a difference between the two lists. (For the definition of CHANGED,

see section 4.4.)

There are three places in ME where non-determinacy in used. The first is when
the non-critical process may become waiting or remain non-critical. This choice is done
without considering whether there is a token on the incoming channel. The second is
when passing or releasing a token: ME specifies that the length of the outgoing channel is
increased by one, not that any particular message is sent. The third is when the critical
process decides whether to remain critical or become non-critical. ME guarantees only
that if the process remains critical, the counter on that process decreases, although it does
not specify by how much. Therefore, if the counter is zero (tested by ZEROP), the process
must become non-critical and release atoken. If the counter is non-zero, the process can

either decrease the counter or become non-critical and rel ease a token.

4.2 The Program

A program isalist of statements. Each statementisalist (CONS FUNC ARGS)
where FUNC is a function symbol. Recall (section 2.1) that the definition of the function
N, which interprets statements, is:
Definition:
(N OLD NEW E)
(APE’LY$ (CAR E) (APPEND (LIST OLD NEW (CDR E)))

In the case of the mutual exclusion program, each statement is of the form
(LIST 'ME I NDEX SIZE) where SI ZE is the number of processes (i.e., number of
statements) and | NDEX is some number lessthan SI ZE. Therefore, (N OLD NEW (LI ST
"ME I NDEX SIZE)) is(ME OLD NEW I NDEX SI ZE) which is a call to the function
that determines legal transitions for generic processes in the ring, instantiated to the index
| NDEX with size SI ZE.

61

The entire program is a list of such statements where | NDEX ranges from 0 to
(SUB1 SI ZE). Thisisaccomplished using the function PROGRAM
Definition:
(PROGRAM | NDEX SI ZE)

(IF_(ZEROD | NDEX)
NI L
(CONS (LIST ' ME (SUBL | NDEX) SIZE)
(PROGRAM (SUBL | NDEX) SI ZE)))

(PROGRAM SI ZE Sl ZE) isthelist of statements (LI ST (LI ST ' ME (SUB1

SIZE) SIZE) ... (LIST *ME O SIZE)). Thisis abbreviated with the function
ME- PRG, which defines the ring of processes.
Definition:

(ME- PRG SI ZE)

(PR(_JGRAM S| ZE SI ZE)

For example, a ring of four processes is the list of statements returned by
(ME-PRG 4) whichequals’ ((ME 3 4) (ME 2 4) (ME 1 4) (ME O 4)). This
may be represented by the following picture, where ME | isthe | 'th processin the ring,

and C | isthe channel from process| -1 MOD 4 to process| :

co C1l

C3 c2

62

4.3 The Correctness Specification

Before proving that the program (ME- PRG SI ZE) correctly implements both
mutual exclusion and absence of starvation on a ring of size Sl ZE, we must state the
program’s invariance and liveness properties. The invariance property must guarantee
that no two processes are critical simultaneously. Thisisimplied by the property that the
sum of the number of tokens in the system and the number of critical processesis always
one. Theterm (WEI GHT STATE Sl ZE) recursively adds up the number of tokens and
the number of critical processesin aring of size SI ZE under state STATE.
Definition:
(I GHT STATE Sl ZE)
(1 F_g ZEROP S| ZE)

(PLUS (I F (CRITICAL STATE (SUBL Sl ZE))
1 0)
(LENGTH (CHANNEL STATE (SUBL Sl ZE)))
(VEl GHT STATE (SUBL SI ZE))))

The mutual exclusion property is simply that the weight is adways one. Thisis
defined in the following function.
Definition:
(MUTUAL- EXCLUSI ONP STATE SI ZE)
(EQ_JAL (VEI GHT STATE SI ZE) 1)
The invariance of mutual exclusion is then the following theorem:

Theorem: Mutual-Exclusionp-ls-Invariant

(1 MPLI ES (AND (1 NI TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE , SI ZE))
(ME- PRG SI ZE))
(NOT (ZEROP SI ZE)))
(1 NVARI ANT * (MUTUAL- EXCLUSI ONP STATE

(QUOTE , SI ZE))
(ME- PRG SI ZE)))

This theorem is in the form of invariance statements, and assumes that
MUTUAL - EXCLUSI ONP holds on theinitial state. Since SI ZE isavariable (section 1.2.2),

mutual exclusionisan invariant of all ring sizes.

The liveness property specifies that any waiting process eventually becomes
critical. Thisisformalized in the following theorem:

63

Theorem: Wait-Leads-To-Critical

(1 MPLI ES (AND (NUVBERP | NDEX)

(LESSP | NDEX S| ZE)

(1 NI TI AL- CONDI TI ON

* (MUTUAL- EXCLUSI ONP STATE (QUOTE , SI ZE))

(ME- PRG SI ZE)))

(LEADS- TO ‘ (WAI T STATE (QUOTE , | NDEX))

* (CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG S| ZE)))

The conclusion is a LEADS- TO statement which specifies that for any process
which is waiting during the computation there exists a later state when that same process
is critical. The hypotheses state that the initial conditions satisfy mutual exclusion and
that the process's index must be a number less than SI ZE. (This also implies that the

program is non-empty.) Again, thistheorem holds for al non-empty ring sizes.

The proof of these theorems is discussed in the next sections.

4.4 The Proof of Mutua Exclusion

In this program, all statements are identical, except for an index that ranges
between zero and SI ZE- 1. Therefore, when proving certain properties, it is smpler to
prove that the property holds for an arbitrary process in the ring, rather than for each
process in the ring. Recall that the definitions of UNLESS (section 3.1.2) and TOTAL
(section 3.3.1) contain the term (MEMBER E PRG), where E is universally quantified.
For this program, a useful theorem is:

Theorem: Member-Me-Prg

(EQUAL (MEMBER STATEMENT (ME- PRG Sl ZE))
(1 F (ZEROP SI ZE)

F

(AND (EQUAL (CAR STATEMENT) ' ME)
(NUVBERP (CADR STATEMENT))
(LESSP (CADR STATEMENT) Sl ZE)
(EQUAL (CADDR STATEMENT) Sl ZE)
(EQUAL (CDDDR STATEMENT) NIL))))

This theorem rewrites terms of the form (MEMBER STATEMENT (ME- PRG

Sl ZzE)) 2L to a conjunction that states that the name of the function is ME, the second

21prover detail: both the function ME- PRG and the executable * 1* ME- PRG function are disabled, to ensure
that such terms are rewritten away.

64

element in the statement is a number less than SI ZE and the last element in the statement
is Sl ZE. Hence, this theorem rewrites formulas whose proofs are inductive (due to
MEMBER) to formulas whose proofs proceed by case analysis on a single element of the
program.

Another useful theorem is about the function CHANGED. The definition of
CHANGED is:
Definition:
(CHANGED OLD NEW EXCPT)
(UC_NEW OLD (STRI P- CARS (APPEND OLD NEW) EXCPT)
STRI P- CARS collects the CAR's of every element in alist. The function UC is
defined as:
Definition:
(UC OLD NEW KEYS EXCPT)

(1 F (LI STP KEYS)
(1 F (MEMBER (CAR KEYS) EXCPT)
(UC OLD NEW (CDR KEYS) EXCPT)
(I F (EQUAL (ASSOC (CAR KEYS) OLD)
(ASSOC (CAR KEYS) NEW)
(UC OLD NEW (CDR KEYS) EXCPT)

F)
L)

(CHANGED OLD NEW KEY) checks whether every key not in EXCPT has the
same ASSCOC value in both OLD and NEW The useful theorems about CHANGED are best
stated with respect to UC. First, UCis commutative on itsfirst two arguments:

Theorem: Uc-Commutative

(EQUAL (UC OLD NEW KEYS EXCPT)
(UC NEW OLD KEYS EXCPT))

Second, the order of elementsin KEY is unimportant;

Theorem: Uc-Commutative-2

(EQUAL (UC OLD NEW (APPEND A B) EXCPT)
(UC OLD NEW (APPEND B A) EXCPT))

Finally, the important property of UC equates ASSOC's.

65

Theorem: About-Uc

(I MPLIES (AND (UC A B (APPEND (STRI P- CARS A)
(STRI P- CARS B))
EXCPT)
(NOT (MEMBER KEY EXCPT)))
(EQUAL (ASSOC KEY A)
(ASSOC KEY B)))

Thistheorem is arewrite rule which normalizes ASSOC s in aformulaif thereis
auc in the hypotheses.22 Typically, such formulas will state that values associated with
certain KEY's are changed and those keys will comprise EXCPT. The remaining values
are unchanged. This theorem rewrites the ASSOC's of the unchanged keys to use the
second argument of UC instead of the first. Remember that the previous two commutative
theorems will have aready normalized the UC term. This theorem is critical for
overcoming some of the complexity introduced by defining statements as relations
instead of as functions. Part of the difficulty still remains, because the theorem prover
does not simplify the hypothesis (NOT (MEMBER KEY EXCPT)) while backchaining?3
aswell as it would afirst class term. (Another useful theorem is Uc-Of-Update-Assoc.
See Appendix B, page 171).

Now, we must prove that the program (ME- PRG Sl ZE) is total. This fact
allows us to use unconditional fairness in the liveness proof. Totality is proved in the
following theorem:

Theorem: Total-Prg
(TOTAL (ME- PRG SI ZE))

The key lemma used to prove this theoremis:

220ne might ask why (APPEND (STRI P- CARS A) (STRI P- CARS B)) was used here, while the shorter
but equivalent form (STRI P- CARS (APPEND OLD NEW) was used in the definition of CHANGED. In
generd, it is preferable to pre-simplify, if possible, the hypotheses of a rewrite rule. The definition will
expand and simplify to the longer form.

23Backchaining is used to satisfy the hypotheses of arewrite rule. Before the conclusion of a rewrite rule
may be used, its hypotheses must be proved.

66

Theorem: Total-Me

(1 MPLI ES (AND (NUVBERP | NDEX)
(LESSP | NDEX Sl ZE))
(ME OLD (ME- FUNCTI ON | NDEX S| ZE OLD)
| NDEX SI ZE))

Recall that the definition of TOTAL (section 3.3.1) requires that there be a
successor state for every previous state. The function ME- FUNCTI ON is a witness for
these successor states (i.e., it computes a valid NEWstate). The function is defined as

follows:

67

Definition:
(ME- FUNCTI ON | NDEX S| ZE STATE)

(1 F (NON-CRI TI CAL STATE | NDEX)
(1 F (TOKEN STATE | NDEX)
(UPDATE- ASSOC
(CONS ' C (ADDL- MOD S| ZE | NDEX))
(CONS * TOKEN
(CHANNEL
(UPDATE- ASSOC
(CONS ’ C | NDEX)
(CDR (CHANNEL STATE | NDEX))
STATE)
(ADD1- MOD S| ZE | NDEX)))
(UPDATE- ASSOC
(CONS ’ C | NDEX)
(CDR (CHANNEL STATE | NDEX))
STATE))
STATE)
(I F (WAl T STATE | NDEX)
(1 F (TOKEN STATE | NDEX)
(UPDATE- ASSOC
(CONS ’ C | NDEX)
(CDR (CHANNEL STATE | NDEX))
(UPDATE- ASSOC (CONS ' ME | NDEX)
0
STATE))
STATE)
(1 F (ZEROP (TI CKS STATE | NDEX))
(UPDATE- ASSOC
(CONS ' C (ADDL- MOD S| ZE | NDEX))
(CONS * TOKEN (CHANNEL
STATE
(ADD1- MOD SI ZE | NDEX)))
(UPDATE- ASSOC
(CONS ' ME | NDEX)
* NON- CRI Tl CAL
STATE))
(UPDATE- ASSOC
(CONS * ME | NDEX)
(SUBL (Tl CKS STATE | NDEX))
STATE))))

The term (UPDATE- ASSOC KEY VALUE ALI ST) returns a new association
list where key KEY is paired with VALUE. UPDATE- ASSCC is best characterized by the

following theorem:

68

Theorem: Simplify-Assoc

(EQUAL (ASSOC KEY-1 (UPDATE- ASSOC KEY-2 VALUE ALI ST))
(I F (EQUAL KEY-1 KEY-2)
(CONS KEY-1 VALUE)
(ASSOC KEY-1 ALIST)))

The necessity of defining executable versions of statements (in this approach)
is adirect and tedious consequence of using relations to describe statements when using
unconditional fairness, which requires the statements to be total functions. However,

relations do permit the easy specification of non-determinacy and disabled transitions.

The proof of mutual exclusion is done in three steps. First, one proves that for
the execution of any process the sum of the weights of its left channel, status, and right
channel is preserved (we call these three components a triple). Then one proves that the
weight of every other part of the state is unchanged. Finally, one notes that the weight of
the entire state is the sum of the weights of the triple and the rest. (This proof schemeis
not valid for rings of size one, but that exception is simple case analysis) Here, we
present the key events showing that the weight of the triple is constant.

Definition:
(VEEl GHT- OF- TRI PLE STATE | NDEX SI ZE)

(PLUS (I F (CRITI CAL STATE | NDEX)
1 0)
(LENGTH (CHANNEL STATE | NDEX))
(LENGTH (CHANNEL STATE (ADDL- MOD SI ZE | NDEX))))

Theorem: Weight-Of-Triple-Preserved

(I MPLI ES (AND (NUVBERP | NDEX)
(LESSP 1 SI ZE)
(LESSP | NDEX S| ZE)
(ME OLD NEW | NDEX S| ZE))
(EQUAL (\AEI GHT- OF- TRI PLE NEW | NDEX SI ZE)
(WEI GHT- OF- TRI PLE OLD | NDEX Sl ZE)))

These theorems imply the invariance property:

Theorem: Mutual-Exclusionp-Is-Invariant

(1 MPLI ES (AND (I NI TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE , SI ZE))
(ME- PRG S| ZE))
(NOT (ZEROP SI ZE)))
(1 NVARI ANT * (MUTUAL- EXCLUSI ONP STATE (QUOTE , SI ZE))
(ME- PRG SI ZE)))

69

4.5 The Proof of Absence of Starvation

The proof of liveness requires three ENSURES properties which demonstrate
how a token moves around the ring. These ENSURES properties are also LEADS- TO
properties. The first ENSURES property states that if a process is non-critical and has a
token on its incoming channel, then it either passes the token to its outgoing channel, or
becomes waiting and |eaves the token on itsincoming channel.

Theorem: Non-Critical-L eft-Ensures-Wait-L eft-Or -Right

(1 MPLI ES
(AND (NUVBERP | NDEX)
(LESSP | NDEX Sl ZE))

(ENSURES ‘ (AND (NON- CRI TI CAL STATE (QUOTE , | NDEX))

(TOKEN STATE (QUOTE , | NDEX)))
‘(OR (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))

(TOKEN STATE (QUOTE , (ADD1- MOD S| ZE

| NDEX))))
(ME- PRG SI ZE)))

In order to deduce that this is also a LEADS- TO property, one must also prove
that this is an UNLESS property as well (that is, other statements in the program do not
disturb the precondition):

Theorem: Non-Critical-L eft-Unless-Wait-L eft-Or -Right

(I MPLI ES
(AND (NUVBERP | NDEX)
(LESSP | NDEX Sl ZE))

(UNLESS ‘ (AND (NON- CRI TI CAL STATE (QUOTE , | NDEX))

(TOKEN STATE (QUOTE , | NDEX)))
‘(OR (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))

(TOKEN STATE (QUOTE , (ADD1- MOD S| ZE

(ME- PRG SI ZE))) NE9)))
The second ENSURES property states that if a process is waiting and has a token
on its left channel, then the process becomes critical. There is also a corresponding
UNLESS property.

Theorem: Wait-And-L eft-Channel-Ensures-Critical

(I MPLI ES (AND (NUVBERP | NDEX)
(LESSP | NDEX Sl ZE))
(ENSURES ‘ (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
* (CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG SI ZE)))

70

The third ENSURES property says that if a process is critical, then it either
remains critical and decreases its counter, or it releases a token on its outgoing channel.
This ENSURES is an UNLESS property also.

Theorem: Critical-Ensures-L ess-Critical-Or-Right

(1 MPLI ES
(AND (NUVBERP | NDEX)
(LESSP | NDEX Sl ZE))
(ENSURES ‘ (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE
(QUOTE , | NDEX))
(QUOTE , (ADDL TI CKS))))

‘(OR (AND
(CRI TI CAL STATE
(QUOTE , | NDEX))
(LESSP (Tl CKS STATE
(QUOTE , | NDEX))

(QUOTE , TI CKS)))
(TOKEN STATE
(QUOTE , (ADDL- MOD
SI ZE I NDEX))))
(ME- PRG SI ZE)))

The corresponding LEADS- TO theorems are proved by appea to the
Unconditional-Fairness proof rule (section 3.3.1, page 46). This last ENSURES theorem
is especialy interesting because we can use induction to show that every critical process
eventually releases a token on its outgoing channel. This is done by induction on the
counter TI CKS, and appealing to the proof rules Leads-To-Weaken-Right and
Cancellation-Leads-To. Thetheoremis:

Theorem: Critical-Ticks-Leads-To-Right

(1 MPLI ES
(AND (NUVBERP | NDEX)
(LESSP | NDEX Sl ZE))
(LEADS- TO * (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , (ADDL TI CKS))))
* (TOKEN STATE (QUOTE , (ADD1- MOD S| ZE
| NDEX)))
(ME- PRG SI ZE)))

Notice that the initial condition here is not specified since it is irrelevant.
Using the theorem, L eads-To-Strengthen-L eft, we can simplify this result to a process
simply being critical, not critical with some value on its counter. This is possible,

because every critical process certainly has some value on its counter.

71

Theorem: Critical-Leads-To-Right

(1 MPLI ES (AND (NUVBERP | NDEX)
(LESSP | NDEX Sl ZE))
(LEADS- TO * (CRI TI CAL STATE (QUOTE , | NDEX))
‘ (TOKEN STATE
(QUOTE
, (ADD1- MOD Sl ZE | NDEX)))
(ME- PRG S| ZE)))

The application of Leads-To-Strengthen-Left in the proof of this theorem
demonstrates how the proper instantiation of P in that proof rule lets one use that proof
rule to accomplish infinite digunction, which is another proof rule in Unity (section

3.2.1, page 39). Theinstantiation of P used hereis:

* (AND
(CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE
, (ADDL (TICKS (S (ME-PRG Sl ZE)
(1 LEADS * (CRI TI CAL
STATE
(QUOTE , | NDEX))
(ME- PRG SI ZE)
* (TOKEN STATE
(QUOTE
, (ADD1- MOD
Sl ZE
I NDEX)))))
I NDEX)))))

This predicate calculates the ticks remaining on the critica counter by
inspecting the state at the arbitrary point at which Q must be stronger than P in the
theorem L eads-To-Strengthen-L eft.

The next significant lemma uses induction to prove that the token moves
around the ring. The hypothesis of mutual exclusion simplifies the proof because it

guarantees that if achannel has atoken on it, the neighboring processis not critical.

72

Theorem: Any-Leads-To-Right

(1 MPLI ES (AND (NUVBERP | NDEX)
(LESSP | NDEX S| ZE)
(1 NI TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
(ME- PRG S| ZE)))
(LEADS- TO ' (TRUE)
* (TOKEN STATE (QUOTE , | NDEX))
(ME- PRG S| ZE)))

We now wish to use the PSP theorem to say that a waiting process remains
waiting while the token moves around the ring, or it becomes critical. This requires
proving the following UNLESS property:

Theorem: Wait-Unless-Critical

(1 MPLI ES (AND (NUVBERP | NDEX)
(LESSP | NDEX S| ZE)
(NOT (ZEROP SI ZE)))
(UNLESS * (WAI T STATE (QUOTE , | NDEX))
* (CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG SI ZE)))

This lemma and and Any-leadsto-Right are preconditions for the PSP
theorem. The resulting LEADS- TOIs:

Theorem: Wait-L eads-To-L eft-Wait-Or-Critical
(1 MPLI ES
(AND (NUMBERP | NDEX)
(LESSP | NDEX S| ZE)
(1 NI'TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE , SI ZE))
(ME- PRG SI ZE)))
(LEADS- TO * (AND (TRUE)
(WAI T STATE (QUOTE , | NDEX)))
“(OR (AND (TOKEN STATE (QUOTE , | NDEX))
(WAI T STATE (QUOTE , | NDEX)))
(CRI TI CAL STATE (QUOTE , I NDEX)))
(ME- PRG SI ZE)))

It is simpler to include the unnecessary (TRUE) in (AND (TRUE) ...)
because of the structure of the proof. In any case, this simplifies, using
Cancellation-LeadssTo and the LEADS-TO theorem derived from
Wait-And-L eft-Channel-Ensures-Critical to:

73

Theorem: Wait-Leads-To-Critical

(1 MPLI ES (AND (NUVBERP | NDEX)

(LESSP | NDEX S| ZE)

(1 NI TI AL- CONDI TI ON

* (MUTUAL- EXCLUSI ONP STATE (QUOTE , SI ZE))

(ME- PRG SI ZE)))

(LEADS- TO ‘ (WAI T STATE (QUOTE , | NDEX))

* (CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG S| ZE)))

Thisisthe liveness result we need to prove correctness.

4.6 Conclusion

The completion of the mechanically verified correctness proof of this agorithm
marked the first time the proofs of both non-propositional safety and liveness properties
were mechanically checked for a non-finite state concurrent agorithm [Crawford &
Goldschlag 87]. This chapter is based on [Goldschlag 90b]. [Dill 88] has automatically

verified several asynchronous finite state machines implementing mutual exclusion.

All the theorems in this chapter were verified on the extended Boyer-Moore
prover, with many extra lemmas. Taking the underlying proof system and the naturals
library for granted, this proof required 19 definitions and 65 lemmas filling 1047 pretty
printed lines of text. Much of the case analysis, especially the possible transitions of each
statement, was done automatically by the prover. The entire event list is presented in

Appendix C.

Chapter 5

A Minimum Tree Value Algorithm

This chapter presents a mechanically verified distributed algorithm that
computes the minimum node value in a tree [Lamport 88]. Although the algorithm is
relatively ssimple, the proof was quite difficult. This is the most difficult algorithm
verified with this proof system. The proof here is based on a detailed hand proof
prepared by Lamport, but is extended, since his proof only proved partial correctness.
Furthermore, Lamport’'s proof did not analyze the inductive data structure, and was
therefore incomplete. Although one may argue that proving the invariant adequately

demonstrates correctness, the liveness proof was nearly as difficult.

The notable elements of this proof are twofold. First, this algorithm contains
multiple instances of multiple statements. This presented several new obstacles when
developing the proof. Second, this algorithm is based on a tree data structure and
involved inductions over the depth of the tree. The theorems developed here for dealing

with tree structures may form a basis for atree library.

Informally, this algorithm assumes a tree of nodes, each assigned some value.
The minimum value is computed in the following way: the root node requests minimum
node values from each of its children. The minimum of those values and the root’s own
value is the minimum value in the tree. Each node responds to a request for a minimum
value recursively; if it has children, it initiates the same scheme the root did to compute
the minimum value of its subtree. If the nodeis aleaf, then the minimum valueisits own
value. Once the node computes the minimum value for its subtree, it returns that value to

its parent.

74

75

The following sections are written using a bottom-up approach, where most
functions are defined before they are used. Section 5.1 formalizes the transitions that
each node is permitted. Section 5.2 defines the set of statements that comprises the
program. Section 5.3 specifies the correctness theorems for a solution to this problem.
Finally, section 5.4 presents the proof of the correctness theorems. The proofs have been

validated on the extended Boyer-Moore prover.

5.1 The Transitions

The actions of each node are governed by several statements. Recall that the
statement interpreter N (section 2.1, page 23), considers the CAR of the statement to be a
function name, and uses the remainder of the statement to instantiate that generic function
to a particular instance. We now present the names of these generic functions, from

which we can build the program statements:

» The START statement initiates the process; the root node sends a message to
each of its children requesting the minimum value of its subtree. We call
these requests find requests.

* The RECEI VE- FI ND statement is a START statement for non-root nodes.

» The RECE!I VE- REPORT statement collects the result of a find request to a
child node. If al children are accounted for, the minimum value computed
so far (considering the node’ s own value) is sent to the node’ s parent.

» The ROOT- RECEI VE- REPORT statement is a special RECEI VE- REPORT
statement for the root, since the root has no parent node.

Asin the mutual exclusion example, the state of the system isalist of pairs (an
association list or alist) which are accessed by the ASSOC function. (ASSOC KEY
ALI ST) returns the first pair in ALI ST such that the CAR of that pair is KEY. If no such
pair exists, then ASSOC returns F. Each of these pairs represents a binding of a variable
name to that variable’ s value.

Each node possesses several variables. These are:
* NCDE- VALUE isthe value of the node. It will be constant.

» STATUS indicates whether the node has begun searching its subtree for its
minimum value.

76

» QUTSTANDI NG is the number of children nodes that have not yet responded
to this node's find request. When the node starts, QUTSTANDI NG equals the
number of children of that node.

* FOUND- VALUE is the minimum value computed so far. Each time a node
receives a response to a find request, it assigns FOUND- VAL UE the minimum
of its current value and the response.

In addition, there is a channel from every node to each of its children, and a
channel from every node to its parent. Messages passed between nodes are buffered in

these channels.

A variable name is of the form (CONS VAR- NAME NODE- NAME) where
VAR- NAME is one of the variable names given above, and NODE- NAME is the name of the
node owning that variable (the pair serves as the key for that variable in the state). We
require that all node names be numbers, so there is no possible confusion between
variable names and channel names. A channel from node 1 to node 2 would have the
name (CONS 1 2). The channel in the opposite direction would have the name (CONS
2 1). (Aswith variable names, the pair serves as the key for that channel in the state.)

We now define severa functions which look up a node's variables and
manipulate channels. We define a utility function that abbreviates CDR of ASSOC:
Definition:

(VALUE KEY STATE)
(CDEz (ASSOC KEY STATE))

The function STATUS finds the status of anode. The key for each node' s status
variable isthe pair (CONS * STATUS NODE) where NODE isthe node’ s name.
Definition:

(STATUS NODE STATE)
(VA[UE (CONS ’ STATUS NODE) STATE)

The function NODE- VALUE returns the value of the node, which will be

constant.

77

Definition:
(NODE- VALUE NODE STATE)
(VA[UE (CONS ' NODE- VALUE NODE) STATE)

The function FOUND- VAL UE returns the value of the variable FOUND- VAL UE,
for aparticular node. Thisis the subtree’s minimum value computed so far.
Definition:

(FOUND- VALUE NODE STATE)
(VA[UE (CONS ' FOUND- VALUE NODE) STATE)

OUTSTANDI NG returns the value of the the variable QUTSTANDI NG, which
represents the number of children from which the node has still not received aresponse.
Definition:

(QUTSTANDI NG NODE STATE)
(VA[UE (CONS * QUTSTANDI NG NODE) STATE)

Channels are accessed using several functions. CHANNEL returns the contents
of achannel. The name of achannel isapair (CONS FROM TO) , where FROMand TOare
the names of the sending and receiving nodes, respectively.

Definition:
(CHANNEL NANE STATE)
(VA[UE NAVE STATE)

The function EMPTY tests whether a channel is empty:

Definition:
(EMPTY NAME STATE)
(hd (LI STP (CHANNEL NANVE STATE)))

The first message on a non-empty channel is identified using the function

HEAD:

Definition:

(HEAD NAME STATE)

(CAEQ (CHANNEL NAME STATE))

A message is sent upon a channel using the function SEND. SEND returns a
value that is equal to the old channel appended with the new message.

78

Definition:
(SEND CHANNEL NMESSAGE STATE)

(APPEND (CHANNEL CHANNEL STATE)
(LI ST MESSAGE))

A non-empty channel is shortened using the RECEI VE function:
Definition:
(RECEI VE CHANNEL STATE)
(CD% (CHANNEL CHANNEL STATE))

We additionally define several functions which identify a node’'s parent, a
node’ s children, the names of the nodes in the tree, and whether the treeistruly atree. A
tree is a data structure with the following form: (CONS ROOT (LI ST SUBTREE-1
SUBTREE- 2 ...)) where each subtree is another non-empty tree. The empty treeisany
value that isnot a Ll ST. For example a tree consisting of only aroot named 1 is’ (1),

while atree consisting of aroot named’ 1 with children’ 2 and’ 3is’ (1 (2) (3)).

The nodes in a tree are identified by the function NODES, which uses the
auxiliary function NCDES- REC:
Definition:

(NODES TREE)
(N(]_DES- REC ' TREE TREE)

NODES- REC is function that most naturally would have been written as two
mutually recursive functions, one which traverses trees and the other which traverses
forests. However, since the Boyer-Moore logic does not admit mutually recursive
definitions, we add a flag to NODES- REC's argument list. Depending on the value of the
flag, the function behaves as one or the other of the mutually recursive functions that we

wanted.

79

Definition:
(NODES- REC FLAG TREE)
(1 F (LI STP TREE)
(1 F (EQUAL FLAG ' TREE)
(CONS (CAR TREE)
(NODES- REC ' FOREST (CDR TREE)))
(APPEND (NODES- REC ' TREE (CAR TREE))

(NODES- REC ' FOREST (CDR TREE))))
NI L)

There are two criteria to determine whether an alleged tree istruly atree. One
is content: there must not be duplicate node names. The other is structural: does the tree
possess the structure described earlier. The function SETP checks whether its argument
possesses duplicate elements. All node names in a tree must be unique because each
name identifies a single node:

Definition:
(SETP LI ST)

(IF_(LI STP LI ST)
(I F (MEMBER (CAR LIST) (CDR LIST))
F
(SETP (CDR LIST)))
L))

The structural requirement is checked using the function PROPER- TREE. It is

also most naturally described as a mutually recursive function: the typical cal is

(PROPER- TREE ' TREE TREE):
Definition:
(PROPER- TREE FLAG TREE)
(I F (EQUAL FLAG ' TREE)
(1 F (LI STP TREE)
(PROPER- TREE ' FOREST (CDR TREE))
F)
(1 F (LI STP TREE)
(AND (PROPER- TREE ' TREE (CAR TREE))

(PROPER- TREE ' FOREST (CDR TREE)))
(EQUAL TREE NI'L)))

A fortunate consequence of the definition of PROPER- TREE is that a tree cannot
be empty (a forest may be empty, however). This is good, because our correctness
properties are false for empty trees. The sort of tree that we will deal with here is a
PROPER- TREE with no duplicate nodes, whose nodes are all numbers. This is tested for
by the function TREEP:

80

Definition:
(TREEP TREE)

(AND (SETP (NCDES TREE))
(ALL- NUVBERPS (NODES TREE))
(PROPER- TREE ' TREE TREE))

where ALL- NUMBERPS is defined in the obvious way.

The term (CHI LDREN NODE TREE) returns alist of the names of the children
of NCDE in tree TREE. It isalso defined by two functions:
Definition:
(CHI LDREN NODE TREE)

(CHI LDREN- REC ' TREE NODE TREE)
Definition:
(CHI LDREN- REC FLAG NODE TREE)

(I F (LI STP TREE)
(I F (EQUAL FLAG '’ TREE)
(I F (EQUAL (CAR TREE) NODE)
(APPEND (ROOTS (CDR TREE))

(CHI LDREN- REC ’* FOREST NODE

(CDR TREE)))
(CHI LDREN- REC ’* FOREST NODE (CDR TREE)))
(APPEND (CHI LDREN- REC ’ TREE NODE (CAR TREE))

(CHI LDREN- REC ’ FOREST NODE (CDR TREE))))
NI L)

The function ROOTS returns the roots of aforest:
Definition:
(ROOTS FOREST)

(I F (LI STP FOREST)
(CONS (CAAR FOREST)
(ROOTS (CDR FOREST)))
FOREST)

One might argue that the definition of CHI LDREN- REC may be simplified, by
observing that once children are found, the recursion may terminate. But there does not
appear to be any good way to do this in both the tree and forest aternatives of the

function, so this observation is best exploited in a theorem.

81

Similarly, (PARENT NODE TREE) returns the name of the parent of NODE in
tree TREE. |f NODE isthe root, then (PARENT NODE TREE) returns some arbitrary value
(we choose 0):

Definition:
(PARENT NODE TREE)

(CAR (PARENT- REC ' TREE NODE TREE))
Definition:
(PARENT- REC FLAG NODE TREE)

(I F (LI STP TREE)
(I F (EQUAL FLAG ' TREE)
(I F (MEMBER NODE (ROOTS (CDR TREE)))
(CONS (CAR TREE)
(PARENT- REC ’ FOREST NODE (CDR TREE)))
(PARENT- REC ' FOREST NODE (CDR TREE)))
(APPEND (PARENT- REC ' TREE NODE (CAR TREE))
(PARENT- REC ' FOREST NODE (CDR TREE))))
NI L)

We are now able to define the transitions of nodes in the tree. START
statements use the following function:
Definition:
(START OLD NEW ROOT TO- CHI LDREN)

(I F (EQUAL (STATUS ROOT OLD) ' NOT- STARTED)
(AND (EQUAL (STATUS ROOT NEW ' STARTED)
(EQUAL (FOUND- VALUE ROOT NEW
(NODE- VALUE ROOT OLD))
(EQUAL (OUTSTANDI NG ROOT NEW
(LENGTH TO- CHI LDREN))
(SEND- FI ND TO- CHI LDREN OLD NEW
(CHANGED OLD NEW
(APPEND
(LI ST (CONS ’ STATUS ROOT)
(CONS * FOUND- VALUE ROOT)
(CONS * QUTSTANDI NG ROOT))
TO CHI LDREN)))
(CHANGED OLD NEW NI L))

(SEND- FI ND will be defined later.) This function defines the permitted
transitions between old and new states under the START statement. (START OLD NEW
ROOT TO- CHI LDREN) states that for a start action to take place on state OLD, the status
of the node ROOT in OLD must be’ NOT- STARTED. In that case, a START action does the

following:

82

* The new status of node ROOT is’ STARTED.
* ROOT’ s variable FOUND- VAL UE is set to ROOT’ s NODE- VAL UE.
* QUTSTANDI NGis set to the number of ROOT’ s children.

* find messages are sent to each of ROOT’'s children, using the function
SEND- FI ND.

Furthermore, using the function CHANGED, all variables and channels, except

for the ones mentioned above, are unchanged (see section 4.4, page 64).

The function SEND- FI ND sends a find message upon each of the channels in
the list TO- CHI LDREN. TO- CHI LDREN must be a list of the names of channels between
the node ROOT and each of its children. The definition of SEND- FI NDis:

Definition:
(SEND- FI ND TO- CHI LDREN OLD NEW

(I F (LI STP TO CH LDREN)
(AND (EQUAL (CHANNEL (CAR TO CHI LDREN) NEW
(SEND (CAR TO CHI LDREN) ' FIND OLD))
(SEND- FI ND (CDR TO CHI LDREN) OLD NEW)
L))

The statement RECEI VE- FI ND is the START statement for non-root nodes and
is specified by the function RECEI VE- FI ND, which is defined as follows:

83

Definition:
(RECEI VE- FI ND OLD NEW NODE FROWM PARENT
TO- PARENT TO- CHI LDREN)

(I F (EQUAL (HEAD FROM PARENT OLD) ' FI ND)
(AND (EQUAL (CHANNEL FROM PARENT NEW
(RECEI VE FROM PARENT OLD))
(EQUAL (STATUS NODE NEW ' STARTED)
(EQUAL (FOUND- VALUE NODE NEW
(NODE- VALUE NODE OLD))
(EQUAL (OUTSTANDI NG NODE NEW
(LENGTH TO- CHI LDREN))
(SEND- FI ND TO- CHI LDREN OLD NEW
(EQUAL (CHANNEL TO PARENT NEW
(1 F (ZEROP (LENGTH TO- CHI LDREN))
(SEND TO- PARENT
(NODE- VALUE NODE OLD)
OLD)
(CHANNEL TO PARENT OLD)))
(CHANGED OLD NEW
(APPEND
(LI ST FROM PARENT TO- PARENT
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS ’ OUTSTANDI NG NODE))
TO CHI LDREN)))
(CHANGED OLD NEW NI L))

RECEI VE- FI ND states that if node NODE receives a find message along its
incoming channel (from its parent) then it should initiate a START action, with the
following twist: if it has no children, then it should immediately send its NODE- VAL UE to

its parent as the minimum value of its subtree.

The third statement is RECEI VE- REPORT. It is defined asfollows:

Definition:
(RECEI VE- REPORT OLD NEW NODE FROM CHI LD TO- PARENT)

(I F (EMPTY FROM CHI LD OLD)
(CHANGED OLD NEW NI L)
(AND (EQUAL (CHANNEL FROWM CHI LD NEW
(RECEI VE FROM: CHI LD OLD))
(EQUAL (FOUND- VALUE NODE NEW
(M N (FOUND- VALUE NODE OLD)
(HEAD FROM CHI LD OLD)))
(EQUAL (OUTSTANDI NG NODE NEW
(SUBL (OUTSTANDI NG NODE OLD)))
(EQUAL (CHANNEL TO- PARENT NEW
(I F (ZEROP (OUTSTANDI NG NODE NEW)
(SEND TO- PARENT
(FOUND- VALUE NODE NEW
OLD)
(CHANNEL TO PARENT OLD)))
(CHANGED OLD NEW
(LI ST FROM CHI LD TO- PARENT
(CONS * OUTSTANDI NG NODE)
(CONS * FOUND- VALUE NODE)))))

RECEI VE- REPORT handles the responses to a find request sent to a node's
child. RECEI VE- REPORT takes an OLD state where the FROM CHI LD channel holds a
message for NODE. This message is interpreted as the the minimum value of that child's
subtree. If thisvalueislessthan the value stored at FOUND- VALUE then FOUND- VALUE is
assigned the smaller value. The number of QUTSTANDI NG responses is decremented by
one; if the result is zero, then the new FOUND- VALUE is sent to the parent node as the
minimum value of the subtree.

M Nis defined in the following way:
Definition:
(MN X Y)
(I F_(LESSP X)

(FI X X)
(FIXY))

ROOT- RECEI VE- REPORT is the RECEI VE- REPORT statement for the root. Itis

defined as follows:

85

Definition:
(ROOT- RECEI VE- REPORT OLD NEW ROOT FROM CHI LD)

(1 F (EMPTY FROW CHI LD OLD)
(CHANGED OLD NEW NI L)
(AND (EQUAL (CHANNEL FROW CHI LD NEW
(RECEI VE FROM CHI LD OLD))
(EQUAL (FOUND- VALUE ROOT NEW
(M N (FOUND- VALUE ROOT OLD)
(HEAD FROM CHI LD OLD)))
(EQUAL (OUTSTANDI NG ROOT NEW
(SUB1 (QUTSTANDI NG ROOT OLD)))
(CHANGED OLD NEW
(LI ST FROM CHI LD
(CONS * QUTSTANDI NG ROOT)
(CONS * FOUND- VALUE ROOT)))))

The only difference between ROOT- RECEI VE- REPORT and RECEI VE- REPORT
is that ROOT- RECEI VE- REPORT does not send a message to its parent when no

outstanding responses remain.

These four statements specify the types of actions that the program may take.
However, they are generic statements, and need to be instantiated for each node in the

treein order to form the program.

5.2 The Program

Recall that a program is a list of statements. Each statement is a list (CONS
FUNC ARGS) where FUNC is the name of afunction symbol. In the case of this minimum
value program, each statement is a list whose first element is of one of the four symbols
START, RECEI VE- FI ND, RECEI VE- REPORT, and ROOT- RECEI VE- REPORT. The entire

program isalist of such statements.

We form the program by first collecting the groups of statements of each type.
We collect one RECEI VE- FI ND statement for each non-root node in the tree in the

following manner:

86

Definition:
(RECEI VE- FI ND- PRG NODES TREE)

(I F (LI STP NODES)
(CONS (LI ST ’ RECEI VE- FI ND

(CAR NODES)

(CONS (PARENT (CAR NODES) TREE)
(CAR NODES))

(CONS (CAR NODES)
(PARENT (CAR NODES) TREE))

(RFP (CAR NODES)
(CHI LDREN (CAR NODES) TREE)))

(RECEI VE- FI ND- PRG (CDR NODES)
TREE))
NI L)

Each RECEI VE- FI ND statement is of the form ’ (RECEI VE- FI ND NODE
FROW PARENT TO- PARENT TO- CHI LDREN) , where FROVF PARENT is the name of the
channel from the parent to the node, and TO- PARENT is the channel from the node to the
parent. TO- CHI LDRENisalist of the names of the channels from the node to its children;
thislist isformed by the function RFP, which is defined as follows:
Definition:
(RFP NODE CHI LDREN)

(IE (LI STP CH LDREN)
(CONS (CONS NODE (CAR CHI LDREN))
(RFP NODE (CDR CHI LDREN)))
NI L)

Using RFP, the single START statement may be formed as well, using the
function START- PRG.
Definition:
(START- PRG ROOT TREE)

(LI'ST (LIST * START ROOT
(RFP ROOT (CHI LDREN ROOT TREE))))

RECEI VE- REPORT statements are formed in two stages. The first collects all
the RECEI VE- REPORT statements for a node, from each of its children. The second stage

collects this group for each non-root node. The first stage is formed by the function RRP:

87

Definition:
(RRP NODE CHI LDREN PARENT)

(1 F (LI STP CHI LDREN)
(CONS (LI ST * RECEl VE- REPORT
NODE
(CONS (CAR CHI LDREN) NODE)
(CONS NODE PARENT))
(RRP NODE (CDR CHI LDREN) PARENT))
NI L)

Each RECEI VE- REPORT statement is of the form ' (RECEI VE- REPORT NODE
FROMI CHI LD TO- PARENT) , where FROM CHI LD is the name of the channel connecting
the child to the node and TO- PARENT is the name of the channel connecting the node to
its parent. RRP must be collected for each non-root node in the tree. Thisis done by the
function RECEI VE- REPORT- PRG.
Definition:
(RECEI VE- REPORT- PRG NODES TREE)

(I F (LI STP NODES)
(APPEND (RRP (CAR NODES)
(CHI LDREN (CAR NODES) TREE)
(PARENT (CAR NODES) TREE))
(RECE| VE- REPORT- PRG (CDR NODES) TREE))
NI L)

RECE| VE- REPORT- PRG collects al the RECEI VE- REPORT statements for the

program.

The set of ROOT- RECEI VE- REPORT statements is formed using a function
modeled after RRP:
Definition:
(RRRP ROOT CHI LDREN)
(I'F (LI STP CHI LDREN)
(CONS (LI ST * ROOT- RECEI VE- REPORT
ROOT
(CONS (CAR CHI LDREN) ROOT))

(RRRP ROOT (CDR CHI LDREN)))
NI L)

This function is captured more conveniently by
ROOT- RECEI VE- REPORT- PRG.

88

Definition:
(ROOT- RECEI VE- REPORT- PRG ROOT TREE)
(RRE{P ROOT (CHI LDREN ROOT TREE))
The entire program is the concatenation of all the program parts above. Thisis
accomplished by the function TREE- PRG
Definition:
(TREE- PRG TREE)

(APPEND

(START- PRG (CAR TREE) TREE)
(APPEND
(ROOT- RECEI VE- REPORT- PRG (CAR TREE)
TREE)
(APPEND
(RECEI VE- FI ND- PRG (CDR (NODES TREE))
TREE)
(RECEI VE- REPORT- PRG (CDR (NODES TREE))
TREE))))

The term (TREE- PRG TREE) collects all the instances of the four types of
statements required to specify the program.

For example, imagine the tree (1 (2 (3) (4)) (5 (6 (7)) (8))). This may be
represented by the following picture:

89

Sicjolo

The program for computing the minimum node of thistreeis (TREE- PRG ’ (1

(2 (3) (4) (5 (6 (7)) (8)))),whichequals:

"((START 1 ((1 . 2) (1. 5)))

(ROOT- RECEI VE- REPORT 1 (2 . 1))
(ROOT- RECEI VE- REPORT 1 (5 . 1))
(RECEIVE-FIND 2 (1 . 2) (2. 1) ((2. 3) (2. 4)))
(RECEI VE-FIND 3 (2 . 3) (3. 2) NL)
(RECEIVE-FIND 4 (2 . 4) (4 . 2) NL)
(RECEIVE-FIND 5 (1 . 5) (5. 1) ((5. 6) (5. 8)))
(RECEIVE-FIND 6 (5 . 6) (6. 5) ((6. 7)))
(RECEIVE-FIND 7 (6 . 7) (7 . 6) NL)
(RECEIVE-FIND 8 (5 . 8) (8 . 5) NL)

(
(RECEI VE-REPORT 2 (3 . 2) (2 . 1))
(RECEI VE-REPORT 2 (4 . 2) (2 . 1))
(RECEI VE-REPORT 5 (6 . 5) (5 . 1))
(RECEI VE-REPORT 5 (8 . 5) (5 . 1))
6 (7

(RECEI VE- REPORT . 6) (6. 5)))

90

where(1 . 2) isan abbreviation?4 for (CONS 1 2).

5.3 The Correctness Specification

To prove that the program (TREE- PRG TREE) correctly implements the
minimum value algorithm it is necessary to state the correctness condition. First we state
theinitial conditions. Initially, all the channels are empty, and the status of each node is
' NOT- STARTED. The function that tests whether every node has status’ NOT- STARTED
is:
Definition:
(NOT- STARTED NODES STATE)

(1 F (LI STP NODES)
(AND (EQUAL (STATUS (CAR NODES) STATE)
’ NOT- STARTED)
(NOT- STARTED (CDR NODES) STATE))
L)

The term that tests whether every channel is empty is (ALL- EMPTY (ALL-
CHANNELS TREE) STATE). ALL- CHANNELS returns alist containing the name of every
channel in the system. ALL- EMPTY checks whether all channels are empty and is defined
asfollows:

Definition:
(ALL- EMPTY CHANNELS STATE)

(I F (LI STP CHANNELS)
(AND (EMPTY (CAR CHANNELS) STATE)
(ALL- EMPTY (CDR CHANNELS) STATE))
L))

ALL- CHANNELS is defined as follows;
Definition:
(ALL- CHANNELS TREE)

(APE’END (UP- LI NKS (CDR (NODES TREE)) TREE)
(DOWK- LI NKS (NODES TREE) TREE))

where UP- LI NKS and DOWN- LI NKS are defined as follows:

24| isp dot notation [Steele 84].

91

Definition:
(UP- LI NKS NODES TREE)

(1 F_(LI STP NODES)
(CONS (CONS (CAR NODES) (PARENT (CAR NODES) TREE))
(UP- LI NKS (CDR NODES) TREE))
NI L)
Definition:
(DOAN- LI NKS NODES TREE)

(1F (LI STP NODES)
(APPEND (DOM- LI NKS-1 (CAR NODES)
(CHI LDREN (CAR NODES)
TREE))
(DOWN- LI NKS (CDR NODES) TREE))
NI L)
Definition:2°

(DOAN- LI NKS-1 PARENT CHI LDREN)

(IF_(LI STP CHI LDREN)
(CONS (CONS PARENT (CAR CHI LDREN))
(DOAR- LI NKS- 1 PARENT (CDR CHI LDREN)))
NI L)

The initial condition is the term (AND (NOT- STARTED (NODES TREE)
STATE) (ALL-EMPTY (ALL- CHANNELS TREE) STATE)). The correctness condition
istheterm (CORRECT TREE STATE) where CORRECT is defined as:
Definition:
(CORRECT TREE STATE)

(EQUAL (FOUND- VALUE (CAR TREE) STATE)
(M N- NODE- VALUE (CDR (NODES TREE)) STATE
(NODE- VALUE (CAR TREE) STATE)))

where M N- NCDE- VALUE is defined as:

25DOMR- LI NKS- 1 isindeed identical to RFP, but this, unfortunately, was noticed well into the proof. Since
different rewrite rules may have been proved about each function, it would have been non-trivia to replace
either function by the other.

92

Definition:
(M N- NODE- VALUE NCDES STATE M N)

(I F (LI STP NODES)
(M N (NODE- VALUE (CAR NODES) STATE)
(M N- NODE- VALUE (CDR NODES) STATE M N))
M N)

(CORRECT TREE STATE) checks whether the value of the root's
FOUND- VALUE variableis equal to the minimum of all the nodes’ NODE- VALUE variables.
Of coursg, it is necessary to prove that the NODE- VALUE variables are constants. That

will be an invariant.

The correctness condition is specified asaLEADS- TO. Itis:

Theorem: Correctness-Condition

(1 MPLI ES (AND (TREEP TREE)
(1 NI TI AL- CONDI TI ON
* (AND (ALL- EMPTY
(QUOTE , (ALL- CHANNELS TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))
(TREE- PRG TREE)))
(LEADS- TO ’ (TRUE)
* (CORRECT (QUOTE , TREE) STATE)
(TREE- PRG TREE)))

The conclusion implies that a state will eventually be reached where the
correctness condition (CORRECT TREE STATE) istrue. The hypotheses state that the
treeisreally atree (no duplicate nodes, all nodes are numbers, and the tree is proper), and
that the initial state satisfies the initial conditions (all statuses are NOT- STARTED and al
channels are empty). Since TREE is a variable (section 1.2.2, page 8), this LEADS- TO
statement holds for all the programs for all trees.

Theinvariant states that NODE- VALUE' s are constant:

93

Theorem: Node-Values-Constant-lnvariant

(I MPLI ES (AND (1 NI TI AL- CONDI Tl ON
‘* (AND (ALL- EMPTY
(QUOTE , (ALL- CHANNELS TREE))
STATE)
(AND (NOT- STARTED
(QUOTE , (NODES TREE))
STATE)
(EQUAL (NODE- VALUE
(QUOTE , NODE)
STATE)
(QUOTE , K))))
(TREE- PRG TREE))
(TREEP TREE)
(MEMBER NODE (NODES TREE)))
(1 NVARI ANT * (EQUAL (NODE- VALUE (QUOTE , NODE)
STATE)
(QUOTE , K))
(TREE- PRG TREE)))

This invariant states that if a NODE- VALUE variable has vaue K, then at any
point in the execution, that NODE- VALUE variable will still have value K. This implies
that NODE- VALUE variables are constant. This also implies that the minimum of all
NODE- VALUE variablesis constant, but this was not proved.

The proof of these theoremsis discussed in the next section.

5.4 The Proof of Correctness

In this program, there are four types of statements, which are instantiated in
various ways to account for every node in the tree. Therefore, when proving certain
properties, it is simpler to prove that the property holds for an arbitrary instance of each
of the statements, rather than for each statement that is truly in the program. As we did
with the theorem Member-Me-Prg (section 4.4, page 63), a useful theorem is one that
rewrites an inductive term like (MEMBER E (TREE-PRG TREE)) to properly
constrained instances of program statements. That is, assuming that E is a statement in
the program is identical to knowing another set of facts about E; those facts happen to be

easier to reason with. The appropriate theorem for this program is:

94

Theorem: Member-Tree-Prg26

(EQUAL (MEMBER STATEMENT (TREE- PRG TREE))
© (START ROOT TO- CHI LDREN)
(OR (AND (EQUAL (CAR STATEMENT) ' START)
(EQUAL (CADR STATEMENT) (CAR TREE))
(EQUAL (CADDR STATEMENT)
(RFP (CAR TREE)
(CHI LDREN (CAR TREE) TREE)))
(EQUAL (CDDDR STATEMENT) NI L))
© (ROOT- RECEI VE- REPORT ROOT FROM CHI LD)
(AND (EQUAL (CAR STATEMENT) ' ROOT- RECEI VE- REPORT)
(EQUAL (CADR STATEMENT) (CAR TREE))
(LI STP (CADDR STATEMENT))
(MEMBER (CAADDR STATEMENT)
(CHI LDREN (CAR TREE) TREE))
(EQUAL (CDADDR STATEMENT) (CAR TREE))
(EQUAL (CDDDR STATEMENT) NI L))
: (RECEI VE- FI ND NODE FROM PARENT TO PARENT TO- CHI LDREN)
(AND (EQUAL (CAR STATEMENT) ’ RECEI VE- FI ND)
(MEMBER (CADR STATEMENT) (CDR (NODES TREE)))
(LI STP (CADDR STATEMENT))
(EQUAL (CAADDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CDADDR STATEMENT) (CADR STATEMENT))
(LI STP (CADDDR STATEMENT))
(EQUAL (CAADDDR STATEMENT) (CADR STATEMENT))
(EQUAL (CDADDDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CADDDDR STATEMENT)
(RFP (CADR STATEMENT)
(CHI LDREN (CADR STATEMENT)
TREE)))
(EQUAL (CDDDDDR STATEMENT) NI L))
. (RECEI VE- REPORT NODE FROM CHI LD TO PARENT)
(AND (EQUAL (CAR STATEMENT) ’ RECEl VE- REPORT)
(MEMBER (CADR STATEMENT) (CDR (NODES TREE)))
(LI STP (CADDR STATEMENT))
(MEMBER (CAADDR STATEMENT)
(CHI LDREN (CADR STATEMENT) TREE))
(EQUAL (CDADDR STATEMENT) (CADR STATEMENT))
(LI STP (CADDDR STATEMENT))
(EQUAL (CAADDDR STATEMENT) (CADR STATEMENT))
(EQUAL (CDADDDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CDDDDR STATEMENT) NI L))))

26Actually, this theorem was always disabled and the function (TREE- PRG TREE) was allowed to expand
to its four components. Then, four rewrite rules, components of this one, were allowed to simplify the
components. But, this theorem gets the point across.

95

Although this theorem looks frightening, its construction is straightforward.
Assuming that E is a statement in the program means that (CAR E) has one of the
following values: START, ROOT- RECEI VE- REPORT, RECEI VE- FI ND, or
RECEI VE- REPORT. The syntax for each of these statements is highlighted in the
comment (indicated by a semicolon) preceding each AND block in the theorem.
Depending on which type of statement E represents, the remaining parameters in the list
are equally well defined. For example, in the START and ROOT- RECEI VE- REPORT
statements, the second element of the list is the name of the root node. In the
RECEI VE- FI ND and RECEI VE- REPORT statements, the second element of the list is the
name of some non-root node in the tree. The final CDR of every statement is NI L.
Careful analysis of the parameters in each statement yields the rest of the information.
The important part of this theorem is that it is an equality: knowing that E is a statement
in the program is equivalent to knowing that E has the specific syntax of one of the
statements in the program. The latter information is much more easily used by the

theorem prover, sinceit lendsitself to case analysis.

This theorem rewrites formulas whose proofs are inductive (because of
MEMBER) to formulas whaose proofs proceed by case analysis on statement types in the
program. Each type of statement will be analyzed, assuming the appropriate constraints

on its arguments.

We must prove that each of the statements in the program is TOTAL. Thisis
proved in the following theorem:

Theorem: Total-Tree-Prg

(I MPLI ES (TREEP TREE)
(TOTAL (TREE- PRG TREE)))

This theorem is proved by inventing witness functions that compute a valid
NEWstate for any OLD state such that the NEwstate satisfies each relation in the program

(each of the four types of program statements).

The proof of the invariant is trivial. One proves that each relation implies that

96

the value of NODE- VAL UE variables remain unchanged. Thisimpliesthat every statement

in the program keeps those variables constant.

We now concentrate on the proof of the LEADS- TO statement. We introduce a
new formula called the augmented correctness condition. The hypothesis of this formula
is a termination condition and the conclusion is the original correctness statement

(CORRECT TREE STATE). We then prove two theorems:

» The augmented correctness condition is a consequence of another invariant
of the program.

» The termination condition in the augmented correctness condition is
eventually reached in the computation.

These two facts imply that the correctness condition is reached as well. This
will complete the proof. We now present the termination condition, the augmented

correctness condition, and the other invariant.

The termination condition is a well-founded measure that decreases upon every
(non no-op) action in the program. The term (TOTAL- OQUTSTANDI NG (NODES TREE)
TREE STATE) sums the number of ' NOT- STARTED nodes and the number of responses
that have yet to occur. Since every (non no-op) action either starts a node or responds to
afind request, this measure eventually decreases to zero. At that point, the computation
reaches a fixed point, and the root node has the tree’'s minimum NODE- VALUE in its
FOUND- VALUE variable. The definition of TOTAL- OQUTSTANDI NGis:
Definition:
(TOTAL- OQUTSTANDI NG NODES TREE STATE)

(I F (LI STP NODES)
(PLUS (TOTAL- OUTSTANDI NG (CDR NODES) TREE STATE)
(I F (EQUAL (STATUS (CAR NODES) STATE)
’ STARTED)
(OUTSTANDI NG (CAR NODES) STATE)
(ADD1 (LENGTH (CHI LDREN (CAR NODES)
0 TREE)))))

The augmented correctness condition is:

97

(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SETP (NODES- REC ’ TREE TREE))
(EQUAL (TOTAL- QUTSTANDI NG (NODES TREE)
TREE STATE)
0))
(CORRECT TREE STATE))

Notice that the first two hypotheses in this formula are assumed in the
LEADS- TO correctness condition. If we prove that the termination condition is reached,
and that the augmented correctness condition is a consequence of an invariant that holds
on the initial state, then we know that the correctness condition (CORRECT TREE
STATE) isalso reached.

The new invariant is somewhat complicated and requires the introduction of
seven new functions:
Definition:
(DL DOWN- LI NKS STATE)

(I F (LI STP DOAR- LI NKS)
(AND (OR (AND (EMPTY (CAR DOWN- LI NKS) STATE)
(EQUAL (STATUS (CAAR DOMR- LI NKS)
STATE)
(STATUS (CDAR DOWN- LI NKS)
STATE)))
(AND (EQUAL (CHANNEL (CAR DOWK- LI NKS)
STATE)
(LI ST ’ FI ND))
(EQUAL (STATUS (CAAR DOMR- LI NKS)
STATE)
' STARTED)
(EQUAL (STATUS (CDAR DOMR- LI NKS)
STATE)
' NOT- STARTED)))
(DL (CDR DOM- LI NKS) STATE))
T

DL is the invariant between the contents of down-links (channels between

parents and children) and the statuses of the sending and receiving nodes.

98

Definition:
(UL UP- LI NKS STATE)

(I F (LI STP UP-LI NKS)
(AND (OR (EMPTY (CAR UP-LINKS) STATE)
(AND (EQUAL (CHANNEL (CAR UP-LINKS) STATE)
(LI ST (FOUND- VALUE

(CAAR UP- LI NKS)

STATE)))
(DONE (CAAR UP- LI NKS) STATE)))

(UL (CDR UP-LINKS) STATE))
L))

where DONE is;
Definition:
(DONE NODE STATE)

(AND (EQUAL (STATUS NODE STATE) ' STARTED)
(ZEROP (OUTSTANDI NG NODE STATE)))

UL isthe invariant between the contents of up-links (channels between children
and parents) and the FOUND- VALUE of the child (the sender); this invariant guarantees
that if avalue is passed up to the parent, the child is done and the correct value is passed

up.
Definition:
(NO NODES TREE STATE)

(1 F (LI STP NODES)
(AND (I F (EQUAL (STATUS (CAR NCDES) STATE)
' STARTED)
(AND (EQUAL (OUTSTANDI NG (CAR NODES)
STATE)
(NUVBER- NOT- REPORTED
(CHI LDREN (CAR NODES)
TREE)
(CAR NCDES) STATE))
(EQUAL (FOUND- VALUE (CAR NODES)
STATE)
(M N- OF- REPORTED
(CH LDREN (CAR NODES) TREE)
(CAR NODES) STATE
(NODE- VALUE (CAR NODES)
STATE))))
T
(NO (CDR NODES) TREE STATE))

where NUMBER- NOT- REPORTED and M N- OF- REPORTED are:

99

Definition:
(NUMBER- NOT- REPORTED CHI LDREN PARENT STATE)

(I F (LI STP CHI LDREN)
(I F (REPORTED (CAR CHI LDREN) PARENT STATE)
(NUVBER- NOT- REPORTED (CDR CHI LDREN)
PARENT STATE)
(ADD1 (NUMBER- NOT- REPORTED (CDR CHI LDREN)
PARENT STATE)))
0)

where REPORTED s
Definition:
(REPORTED NODE PARENT STATE)

(AND (DONE NCDE STATE)
(EMPTY (CONS NODE PARENT) STATE))

Definition:
(M N- OF- REPORTED CHI LDREN PARENT STATE M N)
(I'F (LI STP CHI LDREN)
(1 F (REPORTED (CAR CHI LDREN) PARENT STATE)
(M N (FOUND- VALUE (CAR CHI LDREN) STATE)
(M N- OF- REPORTED (CDR CHI LDREN) PARENT
STATE M N))

(M N- OF- REPORTED (CDR CHI LDREN) PARENT
STATE M N))
M N)

NO implies that nodes update their FOUND- VALUE variables in a manner
consistent with the values reported by its children.

Finally, we define the new invariant. The invariant is the term (1 NV TREE
STATE) wherel NV is.
Definition:
(I NV TREE STATE)

(AND (DL (DOW-LINKS (NODES TREE) TREE) STATE)
(UL (UP-LINKS (CDR (NODES TREE)) TREE) STATE)
(NO (NODES TREE) TREE STATE))

Now we state the theorem that showsthat (1 NV TREE STATE) isan invariant:

100

Theorem: Inv-lsInvariant

(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS

TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))

(TREE- PRG TREE))
(TREEP TREE))
(1 NVARI ANT “ (I NV (QUOTE , TREE) STATE)
(TREE- PRG TREE)))

This theorem is proved by demonstrating both that the invariant is a
conseguence of the initial conditions, and that it is preserved by every statement in the
program. Theinvariant isaconsequence of theinitial conditions:

Theorem: Initial-Conditions-I mply-Invariant

(I MPLI ES (AND (PROPER- TREE ’ TREE TREE)
(ALL- EMPTY (ALL- CHANNELS TREE) STATE)
(NOT- STARTED (NODES TREE) STATE))
(I NV TREE STATE))

The proof of thistheorem is simple since initially all nodes are’ NOT- STARTED

and all channels are empty.

The proof that the invariant is preserved by every statement is more
complicated. We decompose the proof in the following way: Each component of | NV is
a recursive function that collects al instances of its body. Therefore it is sufficient to
prove that if I NV holds before execution of a statement, then an arbitrary instance of each
of the three functions DL, UL, and NO hold. Then, by induction on the nodes in the tree
(actually on alist which is a subset of the nodes in the tree), we can demonstrate that | NV

holds subsequently.

Once | NV is demonstrated to be an invariant, it is necessary to show that it

implies the augmented correctness condition.

101

Theorem: Inv-ImpliessAugmented-Correctness-Condition

(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SETP (NODES- REC ’ TREE TREE))
(I NV TREE STATE)
(EQUAL (TOTAL- OUTSTANDI NG (NODES TREE)
TREE STATE)

0))
(CORRECT TREE STATE))

This theorem is proved by generalizing the tree to a forest of trees and is
proved by induction. The inductive measure is the maximum depth of trees in the forest.
The inductive step strips off the root of each tree, producing numerous forests for each
tree in the forest. These are collected together. The maximum depth of any tree in the
new forest is less than the maximum depth of any tree in the original forest. Hence, this
isavalid induction. Thisis also agood generalization, since the intended caseisasingle

tree, which can also be considered aforest of one tree.

Once the augmented correctness condition is proved, we prove the correctness
condition by demonstrating the the measure (TOTAL- OQUTSTANDI NG (NODES TREE)
TREE STATE) decreases to 0. This is proved by demonstrating that whenever
TOTAL- QUTSTANDI NG is non-zero, it will decrease. If TOTAL- OUTSTANDI NG is non-

zero, one of the following scenarios must be true:
* Root is NOT- STARTED.

* A down link isfull.
* Anup link to theroot isfull.

* An up link not to the root is full.

(If none of these are true, TOTAL- OUTSTANDI NG is 0.) Not coincidentally,
each of these cases corresponds to one of the statements in the program. Therefore, if
any of these cases exist, then TOTAL- QUTSTANDI NG will decrease. The disunction of
these four cases (when TOTAL- QUTSTANDI NG is non-zero) is equivalent to TRUE. So, we
may deduce:

Theorem: Total-Outstanding-Decreases-Leads-To

(I MPLI ES (AND (TREEP TREE)
(1 NI TI AL- CONDI TI ON
‘* (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS

TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))

(TREE- PRG TREE)))
(LEADS- TO * (EQUAL (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADDL COUNT)))
* (LESSP (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADDL COUNT)))
(TREE- PRG TREE)))

102

By applying the theorem Leads-To-Transitive inductively on COUNT, it is

possible to prove that COUNT decreases to zero. Furthermore, by application of the
theorem L eads-To-Strengthen-L eft (section 3.2.1, page 38), it is possible to substitute
(TRUE) for the beginning condition, since every state certainly has some (numeric)

TOTAL- QUTSTANDI NG measure. This is another example of the use of
Leads-To-Strengthen-Left in infinite digunction (section 3.2.1, page 39). The new

theoremis:

Theorem: Termination

(I MPLI ES (AND (TREEP TREE)
(1 NI TI AL- CONDI TI ON
‘* (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS

TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))

(TREE- PRG TREE)))
(LEADS- TO ' (TRUE)

* (EQUAL (TOTAL- QUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)

0)
(TREE- PRG TREE)))

Appedling to the theorems Leads-To-Weaken-Right,

and

103

I nv-Implies-Augmented-Correctness-Condition, we may now deduce the desired
correctness theorem:

Theorem: Correctness-Condition

(I MPLI ES (AND (TREEP TREE)
(1 NI TI AL- CONDI TI ON
“ (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))
(TREE- PRG TREE)))
(LEADS- TO ' (TRUE)
* (CORRECT (QUOTE , TREE) STATE)
(TREE- PRG TREE)))

5.5 Conclusion

This summarizes the correctness proof. The case analysis, in the proofs of both
the complicated invariant and the decreasing measure, was tedious, because each
different case had to be teased apart individually: the user had to point out to the prover,
for example, that the individual statement being analyzed was affecting a region of the
tree that was not being considered, so certainly the condition would be preserved.

This chapter is based on [Goldschlag 90c].

All the theorems in this chapter were verified on the extended Boyer-Moore
prover with many extra lemmas. Taking the underlying proof system and the naturals
library for granted, this proof required 72 definitions, 240 lemmas, and 6155 lines of
pretty printed type. Again, many of the lemmas were broken down manually using the
Kaufmann Proof Checker.

The entire proof script is presented in Appendix D.

Chapter 6

Dining Philosophers

In this chapter, we prove that the classically incorrect solution to the dining
philosopher’s problem is indeed correct under the assumptions of strong fairness and
deadlock freedom. The solution has N philosophers in aring, with a shared fork between
each philosopher; a hungry philosopher picks up a single free fork, becomes eating when
it has both forks, and subsequently simultaneously becomes thinking and releases both
forks. The important observation is that both strong fairness (a hungry philosopher will
eventually be able to pick up a fork that becomes free infinitely often) and deadlock
freedom (never do all philosophers own their left (right) forks simultaneously) are

necessary in the proof, so this example demonstrates both proof rules.

6.1 The Transitions

Wefirst present the statements for each philosopher:
Definition:
(THI NKI NG TO OLD NEW | NDEX)

(1 F (TH NKI NG OLD | NDEX)
(AND (OR (THI NKI NG NEW | NDEX)
(HUNGRY NEW | NDEX))
(CHANGED OLD NEW (LI ST (CONS 'S | NDEX))))
(CHANGED OLD NEW NI L))

This function represents the generic transition between thinking and hungry
states for a philosopher with index | NDEX. It states that a philosopher may take a
transition between a thinking state and either another thinking state, or a hungry state.
The function CHANGED states that only the variable (CONS * S | NDEX) representing the
state of philosopher | NDEX may change value during this transition. Notice that this
transition is always enabled: if it is executed when the philosopher is not thinking, then

no values change.

104

105

The next function specifies the transition where a philosopher picks up its free
left fork:
Definition:
(HUNGRY- LEFT OLD NEW | NDEX)

(AND (HUNGRY OLD | NDEX)
(FREE OLD | NDEX)
(OWNS- LEFT NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ’ F 1 NDEX))))

This statement states that if, in the old state, the philosopher is hungry and its
left fork is free, then in the new state it owns its left fork. [If the philosopher is neither
hungry nor isits left fork free, the statement is disabled. Again, all variables but the one
capturing the status of the interesting fork remain unchanged.

The analogous function for picking up freeright forksis:
Definition:
(HUNGRY- RI GHT OLD NEW | NDEX N)
(ANE) (HUNGRY QLD | NDEX)
(FREE OLD (ADD1- MOD N | NDEX))

(OMNS- RI GHT NEW I NDEX N)
(CHANGED OLD NEW (LI ST (CONS 'F (ADD1- MOD N | NDEX)))))

The important observation in this statement is that forks are indexed in the
following way: the N philosophers have indices[0, ... , N 1] and a philosopher’s
left fork sharesitsindex. A right fork, consequently, has the index of the philosopher’s
right neighbor: (ADD1- MOD N | NDEX) .

The next statement represents the transition from hungry and owning both
forks, to eating. It isaways enabled:
Definition:
(HUNGRY- BOTH OLD NEW | NDEX N)

(I F (AND (HUNGRY OLD | NDEX)
(OWNS- LEFT OLD | NDEX)
(OWNS- RI GHT OLD | NDEX N))
(AND (EATI NG NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ’ S | NDEX))))
(CHANGED OLD NEW NI L))

106

The final statement represents the transition between eating and thinking, with
the ssimultaneous release of both forks. This statement is also aways enabled:
Definition:
(EATI NG TO OLD NEW | NDEX N)

(I FE (EATI NG OLD | NDEX)
(AND (THI NKI NG NEW | NDEX)
(FREE NEW | NDEX)
(FREE NEW (ADD1- MOD N | NDEX))
(CHANGED OLD NEW (LI ST (CONS * S | NDEX)
(CONS * F | NDEX)
(CONS * F (ADD1- MOD

N I NDEX)))))
(CHANGED OLD NEW NI L))

Each philosopher in the ring is specified by five statements, captured by the
following function:
Definition:
(PHIL I NDEX N)

(LI ST (LIST * TH NKI NG TO | NDEX)
(LI ST * HUNGRY- LEFT | NDEX)
(LI ST * HUNGRY- Rl GHT | NDEX N)
(LI ST * HUNGRY- BOTH | NDEX N)
(LI ST * EATI NG TO | NDEX N))

The first component in each statement is a function name; the remaining
components are arguments to that function (supplementing the implicit arguments of the

old and new states).

The program for the entire ring of philosophers is the concatenation of
instances of (PHI L | NDEX N) for values of | NDEX from [0, ... , N1]. Thisis
represented by theterm (PHI L- PRG N) .

For example, the a ring of four philosopher may be represented by the

following picture, where P | isthel 'th philosopher, and F | is hisleft fork:

107

F1 FO

F2 F3

The four process dining philosophers programis (PHI L- PRG 4) whichis:

' ((TH NKI NG TO 3)
(HUNGRY- LEFT 3)
(HUNGRY- RI GHT 3 4)
(HUNGRY- BOTH 3 4)
(EATING TO 3 4)
(TH NKI NG TO 2)
(HUNGRY- LEFT 2)
(HUNGRY- RI GHT 2 4)
(HUNGRY- BOTH 2 4)
(EATING TO 2 4)
(THI NKI NG TO 1)
(HUNGRY- LEFT 1)
(HUNGRY- RI GHT 1 4)
(HUNGRY- BOTH 1 4)
(EATING TO 1 4)
(THI NKI NG- TO 0)
(HUNGRY- LEFT 0)
(HUNGRY- RI GHT 0 4)
(HUNGRY- BOTH 0 4)
(EATING TO 0 4))

6.2 The Correctness Specification
The correctness specification will be a liveness property stating that every

hungry philosopher eventually eats. Thisis captured by the following theorem:

108

Theorem: Correctness

(I MPLIES (AND (LESSP 1 N)
(NUVBERP | NDEX)
(LESSP | NDEX N)
(1 NI TI AL- CONDI TI ON
‘ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PHI L- PRG N))
(STRONGLY- FAI R (PHI L- PRG N))
(DEADLOCK- FREE (PHI L- PRG N)))
(LEADS- TO * (HUNGRY STATE (QUOTE |, | NDEX))
* (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))

The conclusion of this theorem is a LEADS- TO statement, where the beginning
predicate states that the | NDEX ed philosopher is hungry, and the ending predicate states
that that same philosopher is eating. The hypotheses indicate that we are assuming both
strong fairness and deadlock freedom. Also, there is more than one philosopher in the
ring, and | NDEX is some number less than the size of the ring. Finally, we assume two
conditions about the initial state: PROPER- PHI LS and PROPER- FORKS. These properties

are also invariants of the program.

Theterm (PROPER- FORKS STATE N) statesthat every fork is either free, or is
owned by a neighboring philosopher. The term (PROPER- PHI LS STATE N) states that
(PROPER- PHI L STATE PHI L RIGHT) holds for every PHI L in therange [0, ...,
N- 1], where RI GHT is (ADD1- MOD N PHI L), where PROPER- PHI L is defined as
follows:

Definition:
(PROPER- PHI L STATE PHI L RI GHT)
(AND (1 MPLI ES (THI NKI NG STATE PHI L)
(AND (NOT (EQUAL (FORK STATE PHIL) PHIL))
(NOT (EQUAL (FORK STATE RIGHT) PHIL))))
(1 MPLI ES (EATI NG STATE PHI L)
(AND (EQUAL (FORK STATE PHIL) PHIL)
(EQUAL (FORK STATE RIGHT) PHIL)))
(OR (TH NKI NG STATE PHI L)

(HUNGRY STATE PHI L)
(EATI NG STATE PHIL)))

This states that a philosopher is either thinking, hungry, or eating. Also,

thinking philosophers own no forks, and eating philosophers own both forks.

109

The two conditions (PROPER-PHI LS STATE N) and (PROPER- FORKS
STATE N) represent legal states and are invariants. This is stated in the following
theorem:

Theorem: Phil-Prg-Invariant-1

(1 MPLI ES
(AND (LESSP 1 N)
(1 NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PHI L- PRG N)))
(AND (1 NVARI ANT * (PROPER- PHI LS STATE (QUOTE , N))
(PH L- PRG N))
(1 NVARI ANT * (PROPER- FORKS STATE (QUOTE , N))
(PH L- PRG N))
(1 NVARI ANT * (AND (PROPER- PHI LS STATE

(QUOTE , N))
(PROPER- FORKS STATE

(QUOTE , N)))
(PH L-PRG N))))

(The final conjunct in the conclusion is redundant but convenient to have
around.) This theorem states that if the initial state is legal, then both PROPER- PHI LS
and PROPER- FORKS are invariant.

6.3 The Correctness Proof
The invariant properties are proved by demonstrating that every statement
preserves the invariant. The liveness property is amore interesting proof and is the focus

of this section. To prove that a hungry philosopher eventually eats, we must prove that:
* A hungry philosopher eventually picks up its left fork.

* A hungry philosopher eventually picks up itsright fork.
* A hungry philosopher which owns both forks eventually eats.

The last theorem is ssimple and is proved by appealing to the weak fairness
proof rule. (Hungry and owns both forks is stable until eating, and one statement

transforms hungry and owns both forksto eating.) Thetheoremis:

110

Theorem: Owns-Both-Leads-To-Eating

(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUVBERP | NDEX)
(1 NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N)))
(LEADS- TO ‘ (AND (OWNS- LEFT STATE (QUOTE , | NDEX))
(OAKNS- Rl GHT STATE (QUOTE , | NDEX)
(QUOTE , N)))
* (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))

The remaining theorems depend upon forks becoming free infinitely often. A
necessary intermediate theorem states that an eating process eventually frees both of its
forks. This theorem is also proved by appealing to the weak fairness proof rule, and is
stated in the following way:

Theorem: Eating-Leads-To-Free

(I MPLIES (AND (LESSP 1 N)

(LESSP | NDEX N)

(NUVBERP | NDEX)

(1 NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))

(PROPER- FORKS STATE (QUOTE , N)))
(PH L- PRG N)))
(LEADS- TO * (EATI NG STATE (QUOTE , | NDEX))
‘* (AND (FREE STATE (QUOTE , | NDEX))
(FREE STATE

(QUOTE , (ADDL- MOD N | NDEX))))
(PH L-PRG N)))

To prove that forks become free infinitely often, we show that if any fork does
not become free infinitely often then a deadlocked condition will eventualy exist. For
example, if some philosopher’s left fork does not become free infinitely often, then all
philosophers eventually own their right forks. Later, we take advantage of this result, by
the deadlock freedom proof rule: since the conclusion cannot occur, then the hypotheses

must be false, and the left fork must become free infinitely often. The theoremis:

111

Theorem: Eventually-Invariant-Right-Implies-All-Rights

(I MPLIES (AND (LESSP 1 N)
(LESSP J N)
(NUVBERP J)
(STRONGLY- FAI R (PHI L- PRG N))
(1 NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PHI L- PRG N))
(EVENTUALLY- | NVARI ANT “ (AND (HUNGRY STATE
(QUOTE , J))
(OWNS- RI GHT
STATE
(QUOTE , J)
(QUOTE , N)))
(PH L-PRG N)))

(EVENTUALLY- | NVARI ANT * (ALL- RI GHTS STATE

(QUOTE , N))
(PH L-PRG N)))

The negation of the EVENTUALLY- | NVARI ANT term in the hypotheses implies
that the philosopher’s right fork becomes free infinitely often, or is owned by the
philosopher’s right neighbor. More succinctly, this is equivalent to (substituting | NDEX

for J):

(LEADS- TO * (TRUE)
‘ (OR (FREE STATE (QUOTE , (ADD1- MOD N | NDEX)))
(OANS- LEFT STATE

(QUOTE , (ADDL- MOD N | NDEX))))
(PHI L- PRG N))

The fact that the index is (ADD1- MOD N | NDEX) is not important, since the
range of that term is equivalent to | NDEX's domain. Hence, this is equivalent to the
LEADS- TO property that is needed when appealing to the strong fairness proof rule, when
proving that a hungry philosopher will eventually own its left fork.

To prove that every hungry philosopher eventually owns its left fork, we use
the deadlock freedom proof rule to prove that a state in which every philosopher owns its

right fork cannot occur:

112

Theorem: Never-All-Rights

(I MPLI ES (AND (DEADLOCK- FREE (PHI L- PRG N))
(LESSP 1 N))
(I NVARI ANT * (NOT (ALL- Rl GHTS STATE (QUOTE , N)))
(PHI L- PRG N)))

This is proved by observing that an ALL- RI GHTS state is stable and disables
(forever) any HUNGRY- LEFT statement. Hence, ALL- RI GHTS satisfies the criterion of a
deadlocked state and is, by deadlock freedom, guaranteed never to occur.

These theorems imply the following, by appealing to the strong fairness proof
rule:

Theorem: Hungry-Leads-To-Owns-L eft

(I MPLIES (AND (LESSP 1 N)

(NUVBERP | NDEX)

(LESSP | NDEX N)

(1 NI TI AL- CONDI TI ON

* (AND (PROPER- PHI LS STATE (QUOTE , N))

(PROPER- FORKS STATE (QUOTE , N)))

(PHI L- PRG N))

(STRONGLY- FAI R (PHI L- PRG N))

(DEADLOCK- FREE (PHI L- PRG N)))

(LEADS- TO * (HUNGRY STATE (QUOTE , | NDEX))

‘ (OWNS- LEFT STATE (QUOTE , | NDEX))
(PH L-PRG N)))

A similar argument permits the proof that a hungry philosopher eventually
owns itsright fork. Combining these results with the facts that a hungry philosopher that
owns its left fork persists in that state until it eats and that a hungry philosopher remains
hungry until it eats, permits the proof of the correctness theorem:

Theorem: Correctness

(I MPLI ES (AND (LESSP 1 N)
(NUVBERP | NDEX)
(LESSP | NDEX N)
(1 NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L- PRG N))
(STRONGLY- FAI R (PHI L- PRG N))
(DEADLOCK- FREE (PHI L- PRG N)))
(LEADS- TO * (HUNGRY STATE (QUOTE |, |
* (EATI NG STATE (QUOTE |, |
(PHI L- PRG N)))

NDEX))
NDEX))

113

6.4 Conclusion
This chapter is based on [Goldschlag 914].

All the theorems in this chapter were verified on the extended Boyer-Moore
prover, with many extra lemmas. Taking the underlying proof system and the naturals
library for granted, the proof required 33 definitions and 78 theorems filling 2234 lines of
pretty printed type. To complete this proof, it was necessary to extend the underlying
proof system with the notion of eventual stability. The other three algorithms proved in

this thesis were verified without changing the proof system.

The entire proof script is presented in Appendix E.

Chapter 7

A Delay Insensitive FIFO Circuit

The chapter demonstrates that general purpose theorem provers may be used to
verify both safety and liveness properties of delay insensitive circuits. Although such
mechanized proofs are not automatic, correctness properties may be both non-
propositional and describe circuits of arbitrary size. This chapter describes the

verification of an n-nodefirst in first out (FIFO) queue.

Many researchers have used the interleaved model of concurrency as a basis for
modeling delay insensitive circuits[Martin 86, Staunstrup & Greenstreet 89, Chandy &
Misra 88]. By restricting the power of program statements and assuming a non-
deterministic yet weakly fair scheduling paradigm, interleaving adequately models circuit
behavior. Martin's production rules[Martin 86] are statements in a non-deterministic
program, and are obtained by correct refinements from higher level specifications.
Programs in the Synchronized Transitions[Staunstrup & Greenstreet 89, Staunstrup,
Garland, & Guttag 90] notation are similar to Unity programs and several have been
mechanically verified using LP[Garland, Guttag, & Horning 90]. However,

Synchronized Transitions provides only for the verification of invariance properties.

This chapter neither proposes criteria for determining whether a circuit is truly
delay insensitive nor argues why such circuits may be analyzed under the interleaved
model of concurrency. Rather, given a delay insensitive circuit, it describes how to
verify its correctness properties under the interleaved model of concurrency. The
example here formalizes an n-node FIFO queue and presents the verification of its safety

and the liveness properties. The basic element in thiscircuit is described in [Martin 87].

114

115

This chapter is organized in the following way: Section 7.1 defines the FIFO
circuit. Section 7.2 presents the correctness theorems, which are proved in section 7.3.

Section 7.4 discusses related work and offers concluding remarks.

7.1 The FIFO Circuit

This FIFO circuit is composed of a producer and a consumer which push values
upon and pop values from the internal nodes of the queue. The internal nodes are a
sequence of similar nodes, each differing from the other by an index. Each node contains
at most one bhit; it may be TRUE, FALSE, or empty. A node attains its predecessor’s value
once it determines that its value has been copied to its successor. A node does nhot
become empty simply because its value is copied to its successor. Therefore, in order for
this circuit to operate correctly, the producer must push an empty value upon the queue
between pushes of non-empty values. Furthermore, a popped value is considered non-
empty only if it is non-empty and the previous popped value was empty. Intuitively, a
value propagates along the queue leaving a trail of identical values. These copies are
cleaned up by the empty value that is pushed upon the queue to delimit the next non-

empty value.

An N node queue has N- 1 internal nodes, indexed N-1, ..., 1. Thel’th

internal node in the FIFO circuit has the following components:

(CT(ﬁiDlD) //’Z;‘\\
o/

(TEMP1)

()

(CT (SUB11))

<

.
(CF (SUB11))

(CF (ADD11)) _’//

.

(CF1I)

116

The labels on the wires are wire names; natice that each of the output wires

from the Muller C-elements [Miller 65] actually fork; one branch connects to the input of

the successor node's corresponding C-element; the other connects to the predecessor’s
NOR gate. We take these forks to be isochronic [Martin 86] (thereby assuming that the

signal propagates simultaneously to the gates at the end of each fork). C-elements are

state-holding components, and we treat the value of the output wire of a C-element as its

value.

Nodes are connected in the following way: Each node is a box, with four input

wires and two output wires. Each output wire forks to be an input to both the successor

and predecessor nodes. This picture represents the three consecutive nodes (ADDL 1),

|,and (SUBL I):

117

I
.

- - -
(CT (ADD1 |))_._> (CT1) _._, (CT (SUB11)) _'_,
-9 -9 -0~

<__

(CF (ADD11)) (CF1)

=1

NODE (ADD11) NODE | NODE (SUB11)

(CF (SUBL1))

Ay v A

Each node behaves in the following way: A bit is encoded by double-rail
coding. TRUE is represented by the C-element CT being TRUE, and the other C-element
CF being FALSE. FALSE is represented by the opposite configuration. If the node is
empty, both C-elements are FALSE; never will both C-elements be TRUE simultaneously.
This is because this circuit requires (and maintains) that if two adjacent nodes are non-

empty, they must also represent the same value.

A node copies a new value from its predecessor when its successor differs from
its predecessor. For example, assume that the successor is empty, and the predecessor is
non-empty. Therefore, the incoming TEMP becomes TRUE and permits the other C-

elements to become true, if their other inputs are TRUE.

This node is described by three statements corresponding to the two C-elements
and single NOR gate components. The NOR gate is represented by the following
function:

Definition:
(NOR- GATE OLD NEW A B Q)

(AND (I FF (VALUE NEW C)
(NOT (OR (VALUE OLD A)
(VALUE OLD B))))
(CHANGED OLD NEW (LI ST Q)))

118

The term (VALUE OLD A) looks up the value of the variable named A in state
OLD. (CHANGED OLD NEW (LIST C)) dates that only the variable C may change
between states OLD and NEW This function says that the value of Cin state NEWbecomes
the nor of the values of A and B in state OLD. OLD and NEWrepresent successive states in
the execution of the program. The statement for the NOR gate in the | 'th node of the

gueue must instantiate A, B, and C to be the appropriate wire names. The statement is:
(LI'ST " NOR-GATE (CT (SUBL I)) (CF (SUB1 1)) (TEWP 1))

A statement is a list; the first element is the name of the function representing
the VLS| component, remaining elements are the names of the input and output wires of
that component. Since wire names are indexed, the functions CT, CF and TEMP take

arguments.

Similarly, the C-element is described by the following function:
Definition:
(G ELEMENT OLD NEW A B Q)

(IF (I FF (VALUE OLD A)
(VALUE OLD B))
(AND (I FF (VALUE NEWC) (VALUE OLD A))
(CHANGED OLD NEW (LI ST Q)))
(CHANGED OLD NEW NI L))

This function states that C in state NEWbecomes equal to the inputs, if both
inputs A and B are equivalent in state OLD; otherwise, al variables remain unchanged
(NI'L is the empty list). This function is used in the following two statements, each

representing a single C-element:

(LI ST * C-ELEMENT (CT (ADDL 1)) (TEMP I) (CT I))
(LI ST * C-ELEMENT (CF (ADDL 1)) (TEMP I) (CF 1))

A single node of the FIFO circuit is a collection of the two statements
representing the two C-elements and the single statement representing the NOR gate. We
define the function FI FO- NODE to collect the three statementsin nodel :

119

Definition:
(FI FO- NODE |)
(LI ST (LI ST ' C-ELEMENT (CT (ADDL 1)) (TEMP I) (CT

1))
(LI ST * C-ELEMENT (CF (ADDL 1)) (TEMP 1) (CF 1))
(LI ST * NOR-GATE (CT (SUBL 1)) (CF (SUBL 1)) (TEMP 1)))

The fact that the TEMP wire is truly an isochronic fork is apparent in this
formula. That is, (TEMP 1) is the output of the NOR gate, and is an input to two
C-elements. Adding a function that copies TEMP to another wire would add complexity
to the verification without changing the overall behavior of the circuit. The output of

each C-element is also an isochronic fork.

The internal nodes in our n-node queue will have indices (N-1, ..., 1).
Nodes N and 0 will be, respectively, producer and consumer nodes. These nodes must
obey the four-phase signalling that this queue expects. These nodes also keep track of the
pushed and popped values, in the history variables | NPUT and OUTPUT, in order to permit
the statement of the correctness theorems. The producer node is defined as follows:
Definition:
(1 N-NODE OLD NEW 1)

(1F (I FF (VALUE OLD (TEMP 1))
(EMPTY- NODE OLD 1))
(I F (EMPTY- NCDE OLD 1)
(OR (CHANGED OLD NEW NI L)
(AND (OR (TRUE- NODE NEW I)
(FALSE- NODE NEW 1))
(EQUAL (VALUE NEW’ | NPUT)
(CONS (TRUE- NODE NEW)
(VALUE OLD ’ I NPUT)))
(CHANGED OLD NEW
(LIST (CT 1) (CF 1) "INPUT))))
(OR (CHANGED OLD NEW NI L)
(AND (EMPTY- NODE NEW)
(CHANGED OLD NEW (LI ST (CT 1) (CF 1))))))
(CHANGED OLD NEW NI L))

Theterm (EMPTY- NODE OLD 1) tests whether this | 'th node is empty in state
OLD. (Neither C-element in node | is TRUE) Terms (TRUE-NCDE NEW |) and
(FALSE- NODE NEW 1) test whether the | 'th node in state NEW contains a TRUE or

FALSE bit, respectively. In our example, the producer node will have index N. Its

120

behavior is as follows: If the value of the tail of the queue (node N) has aready been
copied into node N- 1 (as indicated by the value of wire (TEMP N)) and the tail of the
gueue is empty, then a new value may be placed upon the tail of the queue. If the new
value is TRUE or FALSE, then the variable | NPUT is updated (by inserting the new value
at its head) to reflect the newly pushed value. If thetail of the queue is not empty, yet has
aready been copied, then an empty value may be placed upon thetail of the queue. If the

tail of the queue has not yet been copied, no change occurs.

The producer node is nondeterministic in several ways: It may push one of
three values upon the queue, arbitrarily (aslong asit satisfies the protocol). The producer
node may aso halt, since it never need push any new value. Therefore, the environment
may stop.

The consumer node is defined as follows:
Definition:
(OUT- NODE OLD NEW
(ANE) (1 FF (VALUE NEW (CT 0))
(VALUE OLD (CT 1)))
(1 FF (VALUE NEW (CF 0))
(VALUE OLD (CF 1)))
(1 F (AND (EMPTY- NODE OLD 0)
(NOT (EMPTY- NODE NEW 0)))
(EQUAL (VALUE NEW ' QUTPUT)
(CONS (TRUE- NODE NEW 0)
(VALUE OLD ' QUTPUT)))

(EQUAL (VALUE NEW’ OUTPUT) (VALUE OLD ’ QUTPUT)))
(CHANGED OLD NEW (LI ST (CT 0) (CF 0) ' QUTPUT)))

The consumer node’sindex is0. Node 1 is copied into the head of the queue.
If the head of the queue is thereby changed from empty to non-empty, then the variable
OUTPUT representing popped values is updated appropriately (the newly popped value is
inserted into its head). Since the schedule of statements is unknown, the internal nodesin

the queue cannot depend upon the rate at which values are popped.

The entire queue, consisting of a consumer, the internal nodes, and a producer
(with the extra (TEMP N) wire), is represented using the following three functions. The

first collects the internal nodes:

121

Definition:
(| NTERNAL- NODES N)
(1 F_(ZERCP N)

NI L

(APPEND (FI FO- NCDE N)
(1 NTERNAL- NODES (SUB1 N))))

The next function collect the statements describing the external nodes:
Definition:
(EXTERNAL- NODES N)
(LI'ST (LIST "I N-NODE N)

(LI ST * OUT- NODE)
(LI ST * NOR-GATE (CT (SUBL N)) (CF (SUBL N)) (TEMP N)))

Finally, the entire circuit is captured by the term (FI FO- QUEUE N) :
Definition:
(FI FO- QUEUE N)

(APE’END (EXTERNAL- NODES N)
(I NTERNAL- NODES (SUBL N)))

For example, the FIFO queue with 2 internal nodes, is represented by the term

(FI FO- QUEUE 3) which equals:

' ((1 N NODE 3)
(OUT- NCDE)
(NOR-GATE (CT . 2) (CF . 2) (TEMP . 3))
(C-ELEMENT (CT . 3) (TEMP . 2) (CT . 2))
(C-ELEMENT (CF . 3) (TEMP . 2) (CF . 2))
(NOR-GATE (CT . 1) (CF . 1) (TEMP . 2))
(C-ELEMENT (CT . 2) (TEMP . 1) (CT . 1))
(C-ELEMENT (CF . 2) (TEMP . 1) (CF . 1))
(NOR-GATE (CT . 0) (CF . 0) (TEMP . 1)))

In the correctness specifications, we use the term (FI FO- QUEUE N) dencting a
FIFO queue of length N. As with all variables, N is universaly quantified, so the
theorems are true for queues of any length. (A hypothesisin these theorems requires that

N exceed 1, implying the existence of at least one internal node.)

122

7.2 The Correctness Specifications

The important correctness properties, that pushed values are not lost, and that
pushed values are eventually popped, both depend upon an invariant which characterizes
legal states. Recall that the correct operation of the circuit depends upon adjacent non-
empty nodes being equivalent. In addition, if a node differs from its successor, then its
incoming TEMP wire must be up-to-date. These requirements are formalized in the
following way:
Definition:
(PROPER- NODE STATE 1)

(AND (I MPLI ES (AND (NOT (EMPTY- NODE STATE 1))
(EMPTY- NODE STATE (SUBL 1)))
(VALUE STATE (TEMP 1)))
(1 MPLI ES (AND (EMPTY- NODE STATE)
(NOT (EMPTY- NODE STATE (SUBL 1))))
(NOT (VALUE STATE (TEMP 1))))
(OR (TRUE- NODE STATE 1)
(FALSE- NODE STATE |)
(EMPTY- NODE STATE 1))
(1 MPLI ES (NOT (EMPTY- NODE STATE 1))
(OR (EMPTY- NODE STATE (SUBL 1))
(I F (TRUE- NODE STATE 1)
(TRUE- NODE STATE (SUBL 1))
(FALSE- NODE STATE (SUBL 1))))))

The term (PROPER- NODES STATE N) checks whether nodes (N,
are proper. Theinvariance property is stated as follows:

Theorem: Proper-Nodes-Invariant

(I MPLIES (AND (LESSP 1 N)
(1 NI TI AL- CONDI TI ON * (PROPER- NODES STATE

(QUOTE , N))
(FI FO- QUELE N)))
(I NVARI ANT * (PROPER- NODES STATE (QUOTE , N))

(FIFO- QUELE N)))

This theorem states that if the initial stateislegal, then all subsequent states are
legal. The legal state predicate is encoded as a backquoted [Steele 84] term, in the
following way: The first element of the term is the function symbol PROPER- NODES, so
PROPER- NODES is the function that is invariant. The second element is STATE, which is
adummy literal: upon evaluating the backquoted term in the context of some state in the
execution, STATE is bound to that state. The third element is (QUOTE , N) which is a

123

shorthand for introducing a variable into the formula. That is, the N in the hypothesisis
the same N that is in the conclusion, and is the same universally quantified N specifying
the size of the queue that we are describing via the function (FI FO- QUEUE N) .

The next invariant states that values are consumed in the order in which they
are produced. To specify this, we define the term (QUEUE- VALUES STATE N) which
returns alist of the valuesin the queue:

Definition:
(QUEUE- VALUES STATE N)

(I F (ZEROP N)
NI L
(1 F (AND (NOT (EMPTY- NODE STATE N))
(EMPTY- NODE STATE (SUBL N)))
(CONS (TRUE- NODE STATE N)
(QUEUE- VALUES STATE (SUBL N)))
(QUEUE- VALUES STATE (SUBL N))))

Specifically, a node only counts if it is non-empty and its successor is empty.
The invariant depends upon the queue being in a legal configuration and is specified in
the following way:

Theorem: Queue-Values-Invariant

(I MPLI ES (AND (1 NI TI AL- CONDI Tl ON
* (AND (PROPER- NODES STATE (QUOTE , N))
(EQUAL (VALUE STATE (QUOTE | NPUT))
(APPEND (QUEUE- VALUES STATE

(QUOTE , N))
(VALUE STATE

(QUOTE QUTPUT)))))
(FI FO- QUEUE N))

(LESSP 1 N))
(I NVARI ANT * (EQUAL (VALUE STATE (QUOTE | NPUT))
(APPEND (QUEUE- VALUES STATE

(QUOTE , N))
(VALUE STATE

(QUOTE QUTPUT))))
(FI FO- QUEUE N)))

Thisinvariant states that the produced values always equal the concatenation of
the values in the queue and the consumed values. Interestingly, this invariant can be
satisfied by an incorrect program: we must also prove that the variables | NPUT and
QUTPUT only grow. These statements have been proved as UNLESS properties stating

124

that for al statements in the program, the variables | NPUT and QUTPUT either remain
unchanged, or become extended by the values TRUE or FALSE.

Theorem: Input-Only-Adds-Boolean

(1 MPLI ES (LESSP 1 N)
(UNLESS * (EQUAL (VALUE STATE (QUOTE I NPUT))
(QUOTE , K))
‘(OR (EQUAL (VALUE STATE (QUOTE | NPUT))
(CONS (TRUE) (QUOTE , K)))
(EQUAL (VALUE STATE (QUOTE | NPUT))
(CONS (FALSE) (QUOTE ,K))))
(FI FO- QUEUE N)))

Theorem: Output-Only-Adds-Boolean

(I MPLIES (LESSP 1 N)
(UNLESS ‘ (EQUAL (VALUE STATE (QUOTE OUTPUT))
(QUOTE , K))

‘(OR (EQUAL (VALUE STATE (QUOTE OUTPUT))

(CONS (TRUE) (QUOTE , K)))
(EQUAL (VALUE STATE (QUOTE OQUTPUT))
(CONS (FALSE) (QUOTE ,K))))

(FI FO- QUELE N)))

The liveness condition requires that values be passed through the queue.
Without tagging queue values, this must be stated in the following way: if the queue is
non-empty, then eventually the number of consumed values increases. Thisis expressed
in the following LEADS- TO property:

Theorem: Output-Grows

(I MPLI ES (AND (I NI TI AL- CONDI TI ON ’ (PROPER- NODES STATE N)
(FI FO- QUELE N))
(LESSP 1 N))
(LEADS- TO ‘ (AND (LI STP (QUEUE- VALUES STATE N))
(EQUAL (LENGTH (VALUE
STATE
(QUOTE OUTPUT)))
(QUOTE , K)))
“ (LESSP (QUOTE , K)
(LENGTH (VALUE STATE
(QUOTE QUTPUT))))
(FI FO- QUELE N)))

125

7.3 The Correctness Proof

The proof of the invariance theorems proceeded by case analysis on the various
statements in the program. Since the functions specifying both legal states and queue
values are defined recursively, the proofs of these theorems were inductive and required
that generalizations of the invariance theorems be proved first. It is unfortunate that the
legal state invariant cannot be decomposed: although, the invariant is really three
conjuncts, the stability of each depends upon all three.

The liveness property is a more interesting proof and is the focus of this
section. We wish to prove that hon-empty values on the queue are eventually popped off
the queue; this was formalized by stating that the length of the history variable QUTPUT
recording popped values eventually increases. We prove this by demonstrating a
decreasing measure: non-empty values move forward in the queue; when one reaches
node 1, it is popped and the length of OUTPUT grows. We prove the decreasing measure
in arestricted sense: if anode in the queue is non-empty and the entire subqueue ahead of
it is empty, then that non-empty value moves forward. It is obvious that any non-empty
gqueue aso has a most forward element, so it is sufficient to prove this theorem.
Furthermore, it is simpler to prove this theorem than to consider the interactions of

unknown elementsin the queue. The theorem is stated in the following way:

126

Theorem: Full-Rest-Empty-M oves-Forward

(I MPLI ES (AND (I NI TI AL- CONDI TI ON ‘ (PROPER- NODES STATE
(QUOTE , N))
(FI FO- QUEUE N))
(LESSP 1 N)
(LESSP | N)
(NOT (ZERCP 1)))
(LEADS- TO ‘ (AND (NOT (EMPTY- NODE
STATE (QUOTE , (ADDL 1))))
(AND (EMPTY- NODE STATE (QUOTE |, 1))
(NOT (LI STP (QUEUE- VALUES
STATE
(QUOTE ,1))))))
‘ (AND (NOT (EMPTY- NODE STATE (QUOTE , 1)))
(AND (EMPTY- NODE STATE
(QUOTE , (SUBL 1)))
(NOT (LI STP
(QUEUE- VALUES
STATE

(QUOTE , (SUBL 1)))))))
(FI FO- QUELE N)))

This theorem can be applied inductively, since it says that if the (ADD1) 'th
gueue value is the topmost non-empty value, eventualy the | 'th element will be the
topmost non-empty value. This is applied inductively until the node 1 is the topmost
non-empty value. The following theorem states that QUTPUT then grows:

Theorem: Output-Grows-lmmediately

(I MPLI ES (AND (I NI TI AL- CONDI TI ON * (PROPER- NODES STATE
(QUOTE , N))
(FI FO- QUELE N))
(LESSP 1 N))
(LEADS- TO * (AND (NOT (EMPTY- NODE STATE 1))
(AND (EMPTY- NODE STATE 0)
(EQUAL (LENGTH (VALUE STATE

' QUTPUT))
(QUOTE , K))))
* (LESSP (QUOTE , K)
(LENGTH (VALUE STATE ' OUTPUT)))
(FI FO- QUEUE N)))
The theorem Output-Only-Adds-Boolean implies that the length of QUTPUT
only grows. This fact, along with the previoudly stated two theorems, permits the proof

of the liveness property, Output-Grows:

127

Theorem: Output-Grows

(I MPLI ES (AND (I NI TI AL- CONDI TI ON ' (PROPER- NODES STATE N)
(FI FO- QUELE N))
(LESSP 1 N))
(LEADS- TO * (AND (LI STP (QUEUE- VALUES STATE N))
(EQUAL (LENGTH (VALUE
STATE

(QUOTE OUTPUT)))
(QUOTE , K)))
“ (LESSP (QUOTE , K)
(LENGTH (VALUE STATE

(QUOTE QUTPUT))))
(FI FO- QUELE N)))

7.4 Conclusion

This chapter demonstrates how techniques for reasoning about concurrent
programs may be applied to delay insensitive circuits. In this case, a proof system
mechanizing Unity has been used to specify and verify both safety and liveness
properties for an n-node FIFO circuit. This specification of the queue formalizes the
assumptions about its environment. Mechanized Unity permits the mechanically verified

proof of circuits of arbitrary size.

This work is similar to Synchronized Transitions [Staunstrup & Greenstreet
89], especialy the later work [Staunstrup, Garland, & Guttag 90] which was mechanized
on LP[Garland, Guttag, & Horning 90]. Synchronized Transitions uses a syntax similar
to Unity for specifying hardware. It can only be used, however, to prove invariance
properties. The invariance property of a high level specification of a FIFO circuit was
mechanically verified in [Staunstrup, Garland, & Guttag 90]. Synchronized Transitions

does provide a nice composition mechanism for hierarchical circuit design.

The Boyer-Moore prover has been used to verify parameterized clocked
hardware as well. [Hunt 89] verified a microprocessor; its ALU was verified for arbitrary
register sizes. [German 85] has verified several combinational designs also. The circuits
discussed there are synchronous and depend upon a clock. Idedly, one would like to
merge verification techniques, in order to be able to reason about asynchronous
collections of synchronous hardware.

128

Other research has produced promising techniques for fully automatic
verification of certain safety [Dill 88] and liveness properties[Burch 90] using trace
theory and model checking. These systems check whether a finite state machine satisfies
a formula by, essentialy, completely simulating the machine. If the machine does not
satisfy the formula, the system can return an offending trace; this facility is useful for
debugging. Such systems may be more useful than semi-automatic techniques for
verifying fixed size circuit components, since invariants specifying legal states become
very complicated. However, these systems cannot reason about arbitrary sized
components or about non-propositional correctness properties. Also, one must still
determine the circuit’s suitable initial states, which, in the genera case, is similar to
determining invariants. A useful system (which does not yet exist) might combine
automatic techniques for verifying fixed sized circuit components with semi-automatic

techniques for combining these components.

There are two assumptions underlying this work. The first is that the behavior
of delay insensitive circuits is accurately modeled by the interleaved model of
concurrency. This assumption permits one to ignore isochronic forks and use the same
wire in severa inputs. The second is that the circuit being verified is truly delay
insensitive. Severa criteria have been proposed to test delay insensitivity: Martin checks
whether his production rules map to VLSI components and the rules' preconditions are
mutually exclusive. Straunstrup et. al, propose the two conditions of consumed values
and correspondence, while Chandy and Misra suggest stability of preconditions. Since
these conditions sometimes conflict, characterizing delay insensitive circuits remains an
incompletely answered question. In this chapter, an arbitrary sized circuit known to be

delay insensitive was verified under the interleaved model of concurrency.
This chapter is based on [Goldschlag 91b, Goldschlag 91c].
All the theorems in this section were verified on the extended Boyer-Moore

prover, with many extra lemmas. Taking the underlying proof system and the naturals

libraries for granted, this proof required 19 definitions and 49 lemmas, comprising 3177

129

lines of pretty printed text. Many of these lemmas, however, were manually broken

down into multiple goals using the Kaufmann Proof Checker.

The entire event list is presented in Appendix F.

Chapter 8

Conclusion

This thesis presents a mechanically verified proof system based on the
Unity [Chandy & Misra 88] logic, for reasoning about concurrent programs on the Boyer-
Moore prover [Boyer & Moore 88a]. Mechanized Unity also provides a theory for
reasoning about the Unity logic, by providing an operational semantics as a foundation

for Unity’s proof rules.

The proof system was demonstrated by the mechanically verified proofs of four
concurrent programs. These proofs exercised reasoning under a variety of fairness
notions, demonstrated the safety notion of deadlock-freedom, and verified a delay
insengitive circuit. All the algorithms verified here were parameterized; the correctness

results are valid for arbitrary sized systems.

Specifications and algorithms in this proof system are presented in an extension
of the Boyer-Moore logic that permits fully quantified non-recursive definitions. No
front end is provided to translate formulas from some domain specific notation into the
mechanized logic. This choice was deliberate, because proofs require so much
interaction from the user that adding another level of indirection simply complicates
matters. Formulas are still clear, since the quantifier extension permits the definition of
meaningful specification predicates. Although proofs are long, specifications are
typically short and readable.

Proofs in this system are expensive to construct. This may be because the
proof system is clumsy, or because mechanized proofs, or proofs in general, are difficult

to develop. It is reasonable to ask whether this proof system is harder to use than

130

131

comparable systems. The only other proof system for concurrent programs that has been
used to mechanically verify programs from first principles (i.e., completely) is [Russi noff
90, Russinoff 91], which encodes a subset of Manna and Pnueli’s temporal logic on the
Boyer-Moore prover. That system possesses a front end, which, the author claims,
permits the automatic proof of many complicated theorems. However, these automatic
proofs are supported by specialy constructed libraries. Furthermore, the comparison is
somewhat uneven. Much of the complexity present here derives from the parameterized
programs. To analyze these statements effectively, it appears to be necessary to divide
the cases manually. [Russinoff 90] handles only fixed size programs. A valid comparison
would be to verify some fixed size program on this system, taking advantage of similarly

constructed libraries.

8.1 Lessons Learned

This project provided insight into both Unity and the Boyer-Moore logic. By
defining an operational semantics of concurrency, the liveness specification predicate,
LEADS- TO can be simply characterized. This predicate may be proved to satisfy Unity’s
defining axioms for LEADS- TO. This process demonstrates the soundness of those
axioms. Many other theorems of Unity’s LEADS- TO were proved about this LEADS- TO

aswell.

Since proofs in this proof system use only Unity’s proof rules, and do not
depend upon the operational semantics of concurrency, it would not be ssimpler to use a
mechanization of Unity on a temporal logic theorem prover (assuming that the provers
are otherwise equally powerful). Although certain proof rules do contain references to
the arbitrary fair computation S, such references are only a logical device serving two
purposes:

* They provide a particular state with which to compare predicates. In afirst
order logic, in order to determine whether one predicate is stronger than
another, one must check the effect of the predicates on all relevant states.

» References to the fair computation S instead of some arbitrary state indicates
that the state being considered is reachable. This provides additional
information, since reachable states satisfy computation invariants.

132

These proof rules may not be as pretty as their counterparts in temporal logic,
but they are no more complicated. Furthermore, the particular composition of Skolem
functions, that identify which point in the computation must be considered, is generated
automatically by the instantiation of other parts of the proof rule which would have to be

instantiated in temporal logic too.

The ability to refer to arbitrary reachable states also resolves a point of possible
confusion in Unity. In Unity, both UNLESS and ENSURES also refer to reachable states,
and the substitution axiom may be used to simplify such terms. However, the use of the
substitution axiom there may prevent the program composition of UNLESS and ENSURES.
In this mechanization, UNLESS and ENSURES refer to arbitrary states, and the substitution
axiom does not simplify them. Therefore, they always compose.

This project also prompted two extensions to the Boyer-Moore logic. Thefirgt,
functional instantiation [Boyer, Goldschlag, Kaufmann, & Moore 91], permits the
definition of partially characterized functions. This extension was necessary in order to
reason about arbitrary computations. The second, Defn-Sk [Kaufmann 89], permits full
guantification in the body of non-recursive function definitions. Without this extension,
predicates like LEADS- TO could not be defined, and specifications would have been more
complicated, although proofs would have been very similar.

8.2 Mechanized Proofs

These proof were carried out using the Boyer-Moore prover extended with the
Kaufmann Proof Checker [Kaufmann 87]. Neither the basic speed of these programs nor
of the supporting hardware was a significant factor in these proofs, although the fact that
the programs are well coded and were run on relatively fast machines certainly made life
more pleasant.2’ The bulk of one's proof time is spent developing the proof. It would
have been much more difficult to complete these proofs on the Boyer-Moore prover
alone, since most of Unity’s proof rules have free variables in the hypotheses that cannot,

27Even so, some proofs took aday or more to prove again.

133

in general, be instantiated automatically. These proof rules are similar to transitivity or
other theorems with existentially quantified variables in the hypotheses. Although the
Boyer-Moore prover does provide a hint mechanism to instantiate these variables, the

proof checker provides more flexibility.

The proof checker both encourages the user to take larger proof steps and to
take many small steps. For example, a theorem may be proved that requires
backchaining over several lemmas which could never have been used together
automatically. During the course of this manual proof, the user may make many small
simplifications. This is one reason, for example, that the average lemma event in
Appendix F is 62 lines long, although the average length of the actual formulas in those
lemmas is only 12 pretty printed lines. The difference is the sequence of proof checker
commands.

The two longest lemmas in that proof, both have 17 lines in their actua
statement, while their instruction lists are 388 and 629 lines long. The long length of
these two lemmas was due to repeated uses of the proof checker’'s generalize command
which permits the replacement of a term by a new variable. Terms referring to Skolem
functions are often extremely complicated since they include references to al the
universally quantified variables they depend upon. Moreover, some of these variables are
instantiated to literals representing correctness terms and are very long. In these proofs,
these Skolem variables could typically be generalized away since the Skolem functions
identified some arbitrary point in the computation, but what is important is that the
computation is being referred to and not some arbitrary state. The particular composition
of Skolem functions is irrelevant. Generalizing the long terms away greatly speeds up

the proof, but adds lines to the proof script.

Another advantage of the proof checker is the ability to do full simplification
on backchained hypotheses. The Boyer-Moore prover does not attempt full
simplification to relieve these hypotheses, for reasons of efficiency. Using the proof

checker, rewrite rules may be applied manually, and the subsequent theorems submitted

134

to the prover as first class lemmas, for automatic proof. This technique may also be used

to control case analysis.

8.3 Future Work

Perhaps the most promising approach for simplifying proofs and reducing the
cost of mechanical verification would be an effective combination of automatic and semi-
automatic proof systems. In many cases, the analysis of program statements is tedious
and difficult, but these statements are really only finite state machines. If a proof could
be decomposed into its finite and non-finite components, the cost of verification may
decrease dramaticaly. To do this effectively, it is necessary to analyze the domains

being worked with.

For example, none of the programs considered here is finite state, since the
programs are parameterized. However, components of the programs may till be finite
state. Consider the delay-insensitive FIFO circuit presented in chapter 7. Each node in
the circuit is a very simple circuit that modifies two output wires, in response to changes
on four input wires. In fact, each node isisolated from every other node except for its | eft
and right neighbors. Certain properties of three adjacent nodes ought to be automatically
decidable. Of course, the process of decomposition may itself be difficult, but even
semi-automatic proofs must be decomposed into manageable components. This approach
would require induction over the size of the program and the proof of basic properties for

each component.

The dining philosophers program (chapter 6) may be decomposed in a similar
way. The decomposition of the simplest program, the mutual exclusion problem (chapter
4), is not finite state, since even a single process may cycle an arbitrary number of times
after moving from waiting to critical. The decomposition of the minimum tree algorithm
(chapter 5) is more complicated, since it has two levels of induction in the

decomposition: one to descend the tree, and the other to span children of each node.

Doing such decompositions in Mechanized Unity introduces a subtle problem.

135

It appears to be impossible, in general, to relate LEADS- TO properties of one program to

another program. For example, one would like to prove the following non-theorem:

(1 MPLI ES (AND (PERVUTATI ONP PRG 1 PRG 2)
(LEADS-TO P Q PRG 1))
(LEADS-TO P Q PRG 2))

where PERMUTATI ONP checks whether its two arguments are permutations of one
another. This formula is a non-theorem because LEADS- TO is defined with respect to
some fair computation. Although this computation is arbitrary, it is still some particular
computation which may possess peculiar LEADS- TO properties due to the scheduler.
These scheduler dependent properties need not hold for LEADS- TO of both PRG- 1 and
PRG 2.

Notice, however, that these peculiar LEADS- TO properties are not provable,
neither in Mechanized Unity nor in Unity. However, in Unity, since LEADS- TO is
defined to be only provable LEADS- TO properties, the Unity version of this candidate
non-theorem is indeed valid for Unity programs. This observation validates Unity’'s
choice of characterizing LEADS- TO as the strongest predicate satisfying the three

characterizing axioms, since thisties LEADS- TOdirectly to provability.

8.4 Final Notes

The development of this proof system contributed to the enhancement of the
Boyer-Moore logic and illuminated certain design decisions in Unity. This proof system
provides a foundation for future research in the mechanical verification of concurrent
programs.

Appendix A.

Backquote

This appendix presents Boyer and Moore's Common Lisp code defining
Ngthm'’ s interpretation of backquote, which is consistent with the specification presented
in [Steele 84].

After loading this code, Ngthm's backquote is enabled by evaluating the form
(BACKQUOTE- SETTI NG ' NQTHM) . The origina interpretation is restored by evaluating
the form (BACKQUOTE- SETTING * ORI G .

The setting (BACKQUOTE- SETTI NG ’ NQTHM) is used for the proofs of the
theoremsin the other appendices.
(DEFPARAMETER * BACKQUOTE- COUNTER* 0)
(DEFPARAMETER * COMVA* (MAKE- SYMBOL " COMVA"))
(DEFPARAMETER * COMMA- ATSI G* (MAKE- SYMBOL " COMVA- ATSI GN'))
(DEFUN BACKQUOTE (X)

; SEE THE FI LE REMARKS. TEXT FOR SOME HI STORI CAL | NFORVATI ON REGARDI NG
; OUR | MPLEMENTATI ON OF BACKQUOTE.

(COND ((Sl MPLE- VECTOR- P X)
(LI ST * APPLY * (FUNCTI ON VECTOR)
(BACKQUOTE (COERCE X ' LIST))))
(ATOM X) (LI'ST * QUOTE X))
(EQ (CAR X) *COMVA*) (CADR X))
(EQ (CAR X) *COVMA- ATSI G*)
(ER SOFT NIL |*, |IS| |AN| |ERROR| [.]))
(T (BACKQUOTE-LST X))))

(
(
(

(DEFUN BACKQUOTE- LST (L)
(COND ((ATOM L)

(LI ST * QUOTE L))
((EQ (CAR L) *COMVA*)

(CADR L))

((EQ (CAR L) *COMMA- ATSI G\¥)

(ER SOFT NIL |. , [IS| |ILLEGAL| |.[))

((AND (CONSP (CAR L))

136

(EQ (CAAR L) *COMMA*))
(LI ST * CONS
(CADR (CAR L))
(BACKQUOTE- LST (CDR L))))
((AND (CONSP (CAR L))
(EQ (CAAR L) *COMMA- ATSI G\¥))
(LI ST ' APPEND (CADR (CAR L)) (BACKQUOTE-LST (CDR L))))
(T (LIST ’* CONS
(BACKQUOTE (CAR L))
(BACKQUOTE- LST (CDR L))))))

(DEFUN BACKQUOTE- SETTI NG (ARG)

; BACKQUOTE- SETTING IS TO BE USED TO SET THE COMVA AND BACKQUOTE

; FUNCTIONS I N *READTABLE*. |F ARGIS 'ORIG THEN WE REVERT TO THE
; ORIG NAL SETTING IF ARG IS 'NQTHM THEN WE USE THE NQTHM

; DEFI NI TI ONS.

; VWE USE THE NQTHM DEFI NI TI ONS | N PROVE- FI LE, AND VWE RECOMMVEND THAT
; ANY NQTHM USER WHO WANTS TO USE BACKQUOTE | N NQTHM FORMS ESTABLI SH
; THE NQTHM SETTI NGS | N THE DEFAULT TOP LEVEL READER BY | NVOKI NG

; (BACKQUOTE- SETTI NGS ' NQTHVM AT THE TOP LEVEL OF LI SP.

(COND ((NOT (MEMBER ARG ' (ORI G NQTHM))
(ER SOFT (ARG |THE| | ARGUMENT| |TO BACKQUOTE- SETTI NG | MUST|
| BE| | THE] | SYMBOL| NQTHM | OR| | THE| | SYMBOL| ORI G | BUT|
(IPPR ARG NIL) [IS| |NEITHER |.[)))
(SET- MACRO- CHARACTER
#
(COND ((EQ ARG ' NQTHW)
(LAVBDA (STREAM CHAR)
(DECLARE (| GNORE CHAR))
(LET ((*BACKQUOTE- COUNTER* (1+ *BACKQUOTE- COUNTER*)))
(BACKQUOTE (READ STREAMT NIL T)))))
(T (GET- MACRO- CHARACTER #* (COPY- READTABLE NIL)))))
(SET- MACRO- CHARACTER
#\
(COND ((EQ ARG ' NQTHW)
(LAVBDA (STREAM CHAR)
(DECLARE (| GNORE CHAR))
(LET ((*BACKQUOTE- COUNTER* (1- *BACKQUOTE- COUNTER*)))
(COND ((< *BACKQUOTE- COUNTER* 0)
(ER SOFT NIL |ILLEGAL| | COMMA| | ENCOUNTERED
|BY| READ |.])))
(CASE (PEEK-CHAR NIL STREAMT NIL T)
((#\ # .) (READ-CHAR STREAMT NIL T)
(LI ST *COVMA- ATS| G* (READ STREAM T NIL T)))
(OTHERW SE (LI ST *COMMA* (READ STREAM T NIL T)))))))
(T (GET- MACRO- CHARACTER #\, (COPY- READTABLE NiL))))))

137

Appendix B.

Proof System Events

This appendix contains the complete events list supporting the proof system
described in chapters 2 and 3.

This event list constructs the proof system system on top of the naturals
library [Bevier 88], on top of the extended Boyer-Moore Prover.
(NOTE- LI B " NATURALS")

(PROVEALL "I NTERPRETER' ' (

;o SEVERAL USEFUL THEOREMS

(PROVE- LEMMA EQUAL- | FF (REVWRI TE)
(I MPLIES (AND (OR (TRUEP A)
(FALSEP A))
(OR (TRUEP B)
(FALSEP B)))
(EQUAL (EQUAL A B)
(IFF A B))))

(DI SABLE EQUAL- | FF)

(DEFN LENGTH (LI ST)
(I'F (LISTP LI ST)
(ADDL (LENGTH (CDR LI ST)))
0))

(DEFN NTH (LI ST N)
(I F (ZEROP N)
(CAR LI ST)
(NTH (CDR LIST) (SUBL N))))

(DEFN PCSI TI ON (PRG E)
(IF (LI STP PRO
(IF (EQUAL (CAR PRG E)
0

(ADDL (POSI TION (CDR PRG) E)))
0))

(PROVE- LEMVA NTH MEMBER (REVRI TE)

(I MPLIES (LESSP N (LENGTH LI ST))
(MEMBER (NTH LIST N) LIST)))

138

139

(PROVE- LEMVA LI STP- NOT- ZERO- LENGTH (REWRI TE)
(EQUAL (EQUAL (LENGTH LI ST) 0)
(NOT (LISTP LIST))))

(PROVE- LEMVA PQSI TI ON- ZERO (REVRI TE)
(I MPLI ES (NOT (MEMBER E PRG))
(EQUAL (POSI TI ON PRG E)
(LENGTH PRG))))

(PROVE- LEMMA PCSI TI ON- LESSP (REWRI TE)
(I MPLI ES (MEMBER E PRG

(LESSP (POSI TI ON PRG E)

(LENGTH PRG))))

(PROVE- LEMVA NTH- PCSI TI ON (REVRI TE)
(EQUAL (NTH PRG (PCSI TI ON PRG E))
(I F (MEMBER E PRG)
E

0)))

(PROVE- LEMVA PQSI TI ON- NTH (REWRI TE)
(I MPLI ES (AND (MEMBER E LI ST)
(NOT (EQUAL (NTH LIST N) E)))
(EQUAL (EQUAL (POSITICNLISTE) N) F)))

(PROVE- LEMVA MEMBER- APPEND (REVRI TE)
(EQUAL (MEMBER E (APPEND J K))
(OR (MEMBER E J)
(MEMBER E K))))

(PROVE- LEMVA APPEND- | S- ASSOCI ATI VE (REWRI TE)
(EQUAL (APPEND (APPEND X V) 2)
(APPEND X (APPEND Y 2))))

;3 THE W TNESS FUNCTI ON FOR THE COWPUTATI ON

(DEFN MCHOOSE (PRG 1)
(NTH PRG (REMAI NDER | (LENGTH PRG))))

(DEFN MNEXT (PRG E 1)
(PLUS |
(IF (LESSP (POSI TI ON PRG E)
(REMAI NDER | (LENGTH PRG)))
(PLUS (PCSI TI ON PRG E)
(DI FFERENCE (LENGTH PRG)
(REMAI NDER | (LENGTH PRG))))
(DI FFERENCE (POSI TI ON PRG E)
(REMAI NDER | (LENGTH PRG))))))

(PROVE- LEMMA MNEXT- FI XES (REWRI TE)
(I MPLI ES (AND (MEMBER E PRG)
(NOT (NUMBERP 1)))
(EQUAL (MNEXT PRG E)
(MNEXT PRG E 0))))

(PROVE- LEMVA NUMBERP- MNEXT (REVRI TE)
(I MPLI ES (MEMBER E PRG)

140

(NUMBERP (MNEXT PRG E 1))))

(PROVE- LEMMA MCHOOSE- CHOOSES (REWRI TE)
(1 MPLI ES (LI STP PRG
(MEMBER (MCHOGSE PRG |) PRG)))

(PROVE- LEMMA MCHOOSE- FI XES (REWRI TE)
(I MPLIES (AND (LI STP PRO)
(NOT (NUMBERP 1)))
(EQUAL (MCHOOSE PRG 1)
(MCHOOSE PRG 0))))

(PROVE- LEMMA MNEXT- CHO CE- 1 (REWRI TE)
(I MPLI ES (MEMBER E PRG)
(NOT (LESSP (MNEXT PRG E 1) 1))))

(PROVE- LEMMA MNEXT- CHO CE- 2- S| MPLI FI ED (REVRI TE)

(I MPLI ES

(LESSP E N)

(EQUAL (REMAI NDER (PLUS |

(IF (LESSP E (REMAINDER | N))
(PLUS E (DI FFERENCE N
(REMAINDER | N)))
(DI FFERENCE E (REMAINDER | N))))

(FIXB)))

(PROVE- LEMVA MNEXT- CHOl CE- 2 (REWRI TE)
(I MPLI ES (MEMBER E PRG)
(EQUAL (MCHOOSE PRG (MNEXT PRG E 1)) E))
((USE (MNEXT- CHOl CE-2- SIMPLI FIED (1 1)
(N (LENGTH PRG))
(E (POSITION PRG E))))))

(PROVE- LEMMA REMAI NDER- OF- ADDL (REWRI TE)
(I MPLIES (AND (LESSP X (REMAI NDER A B))
(LESSP X (REMAI NDER (ADDL A) B)))
(EQUAL (REMAI NDER (ADDL A) B)
(ADDL (REMAI NDER A B)))))

(PROVE- LEMVA REMAI NDER- OF- ADD1- 1 (REWRI TE)
(I MPLIES (AND (NOT (LESSP X (REMAINDER A B)))
(LESSP X (REMAI NDER (ADDL A) B)))
(EQUAL (REMAI NDER A B)

(FIXX))))

(PROVE- LEMMA REMAI NDER- OF- ADD1- 2 (REWRI TE)
(I MPLI ES (AND (LESSP X (REMAI NDER A B))
(NOT (LESSP X (REMAI NDER (ADDL A) B))))
(AND (EQUAL (REMAI NDER (ADDL A) B)
0)
(EQUAL (REMAI NDER A B)
(SuB1 B)))))

(PROVE- LEMMA REMAI NDER- OF- ADD1- 3 (REWRI TE)
(I MPLI ES (AND (NOT (LESSP X (REMAINDER A B)))
(LESSP X B)
(NUMBERP X)

141

(NOT (EQUAL X (REMAINDER A B)))
(NOT (LESSP X (REMAI NDER (ADDL A) B))))
(EQUAL (REMAI NDER (ADDL A) B)
(ADDL (REMAI NDER A B)))))

(PROVE- LEMMA REMAI NDER- OF- ADD1- 3- 1 (REWRI TE)
(I MPLIES (AND (NOT (LESSP (PGS TI ON PRG E)

(REMAI NDER | (LENGTH PRG))))

(NOT (LESSP (PGS TI ON PRG E)
(REMAI NDER (ADDL 1) (LENGTH PRG))))

(NOT (EQUAL (NTH PRG (REMAI NDER | (LENGTH PRG)))
)

(MEMBER E PRG))

(EQUAL (REMAI NDER (ADDL I) (LENGTH PRG))
(ADDL (REMAI NDER | (LENGTH PRG))))))

(Dl SABLE MCHOOSE)
(DI SABLE MNEXT)

;» THE STATEMENT | NTERPRETER

(DEFN N (OLD NEW E)
(APPLY$ (CAR E) (APPEND (LIST OLD NEW (CDR E))))

(DEFN- SK EXI STS- SUCCESSOR (OLD E)
(EXI STS NEW (N OLD NEWE))
((SUFFI X X)))

(PROVE- LEMVA EXI STS- SUCCESSOR- | MPLI ES (REVRI TE)
(I MPLI ES (EXI STS- SUCCESSCR OLD E)
(N OLD (NEWK E OLD) E)))

(PROVE- LEMMA PROVE- EXI STS- SUCCESSOR (REVRI TE)
(I MPLIES (N OLD NEW E)
(EXI STS- SUCCESSOR OLD E))
((DI SABLE EXI STS- SUCCESSOR)
(USE (EXI STS- SUCCESSOR))))

(DI SABLE EXI STS- SUCCESSOR)

(DEFN MB (PRG I)
(I F (ZEROP)
NI L
(IF (N (M5 PRG (SUBL I))
(NEWK (MCHOCSE PRG (SUBL I))
(M5 PRG (SUBL 1)))
(MCHOOSE PRG (SUBL 1)))
(NEWK (MCHOCSE PRG (SUBL |))
(M5 PRG (SUBL 1)))
(M5 PRG (SUBL 1)))))

(PROVE- LEMMA MB- TRANSI TI ON- SUCCESSFUL (REWRI TE)
(I MPLIES (AND (LI STP PRG)
(N (M5 PRG |) NEW (MCHOOSE PRG 1)))
(N (MB PRG |) (M PRG (ADDL I))
(MCHOOSE PRG 1)))
((DI SABLE N)))

(PROVE- LEMVA M5- TRANSI Tl ON- | DLE (REVRI TE)

142

(I MPLIES (AND (LI STP PRO)
(NOT (N (MB PRG |) (NEWK (MCHOOSE PRG)
(M5 PRG 1))
(MCHOOSE PRG 1))))
(EQUAL (M5 PRG (ADDL 1))
(M5 PRG 1)))
((DI SABLE N)))

;' CHARACTERI ZI NG AN ARBI TRARY COVPUTATI ON

(CONSTRAI N COMPUTATI ON (REWRI TE)
(AND (1 MPLIES (LI STP PRG)
(MEMBER (CHOCSE PRG |) PRG))
(I MPLI ES (MEMBER E PRG)
(NOT (LESSP (NEXT PRGE I) 1)))
(I MPLI ES (MEMBER E PRG
(EQUAL (CHOCSE PRG (NEXT PRG E 1)) E))
(I MPLI ES (AND (LI STP PRO)
(N (S PRG |) NEW (CHOCSE PRG 1)))
(N (S PRG 1) (S PRG (ADDL 1)) (CHOOSE PRG 1)))
(I MPLI ES (AND (LI STP PRO)
(NOT (N (S PRG I)
(NEWK (CHOOSE PRG |)
(S PRG 1))
(CHOCSE PRG 1))))
(EQUAL (S PRG (ADDL 1))
(S PRG 1)))
(I MPLI ES (MEMBER E PRG)
(NUMBERP (NEXT PRG E 1)))
(I MPLIES (AND (LI STP PRG)
(NOT (NUMBERP 1)))
(EQUAL (S PRG I)
(S PRG 0)))
(I MPLI ES (AND (LI STP PRO)
(NOT (NUMBERP 1)))
(EQUAL (CHOCSE PRG)
(CHOCSE PRG 0)))
(I MPLI ES (AND (MEMBER E PRG)
(NOT (NUMBERP 1)))
(EQUAL (NEXT PRG E I)
(NEXT PRG E 0))))
((CHOOSE MCHOOSE)
(NEXT MNEXT)
(S M)
((DI SABLE N)))

(DI SABLE MNEXT- FI XES)

(DI SABLE NUNMBERP- MNEXT)

(DI SABLE MCHOOSE- CHOOSES)

(DI SABLE MCHOOSE- FI XES)

(DI SABLE MNEXT- CHOI CE- 1)

(DI SABLE MNEXT- CHOl CE- 2- SI MPLI FI ED)
(DI SABLE MNEXT- CHOl CE- 2)

(DI SABLE REMAI NDER- OF- ADD1)

(DI SABLE REMAI NDER- OF- ADD1- 1)
(DI SABLE REMAI NDER- OF- ADD1- 2)
(DI SABLE REMAI NDER- OF- ADD1- 3)
(DI SABLE REMAI NDER- OF- ADDL- 3- 1)

(DI SABLE EXI STS- SUCCESSOR- | MPLI ES)

143

(DI SABLE PROVE- EXI STS- SUCCESSOR)
(DI SABLE Ms- TRANSI Tl ON- SUCCESSFUL)
(DI SABLE Ms- TRANSI TI ON- | DLE)

(DI SABLE N)
::; THE PREDI CATE | NTERPRETER

(DEFN EVAL (PRED STATE)
(EVAL$ T PRED (LI ST (CONS ' STATE STATE))))

(PROVE- LEMVA EVAL- NOT (REWRI TE)
(EQUAL (EVAL (LIST ' NOT P) STATE)
(NOT (EVAL P STATE))))

(PROVE- LEMVMA EVAL- AND (REVRI TE)
(EQUAL (EVAL (LIST 'AND P Q STATE)
(AND (EVAL P STATE)
(EVAL Q STATE))))

(PROVE- LEMVA EVAL- OR (REWRI TE)
(EQUAL (EVAL (LIST 'OR P Q STATE)
(OR (EVAL P STATE)
(EVAL Q STATE))))

(PROVE- LEMVA EVAL- | MPLI ES (REWRI TE)
(EQUAL (EVAL (LIST ' IMPLIES P Q STATE)
(I MPLIES (EVAL P STATE)
(EVAL Q STATE))))

(PROVE- LEMVA EVAL- | FF (REWRI TE)
(EQUAL (EVAL (LIST 'IFF P Q STATE)
(I FF (EVAL P STATE)
(EVAL Q STATE))))

(PROVE- LEMVA EVAL- EQUAL (REWRI TE)
(EQUAL (EVAL (LIST 'EQUAL P Q) STATE)
(EQUAL (EVAL P STATE)
(EVAL Q STATE))))

(PROVE- LEMVA EVAL- TRUE (REWRI TE)
(EQUAL (EVAL ' (TRUE) STATE)
m)

(PROVE- LEMMA EVAL- FALSE (REWRI TE)
(EQUAL (EVAL ' (FALSE) STATE)
F)

(DI SABLE EVAL)

vy THE STABILITY OPERATOR UNLESS

(DEFN- SK UNLESS (P Q PRO
(FORALL (OLD NEW E)
(I MPLI ES (AND (MEMBER E PRG)
(AND (N OLD NEW E)
(EVAL (LIST "AND P (LIST 'NOT Q) OLD)))
(EVAL (LIST'ORP Q NEW))
((SUFFI X U)))

(DI SABLE UNLESS)

(PROVE- LEMMA PROVE- UNLESS (REVRI TE)
(I MPLIES (I MPLIES (AND (MEMBER (EU P PRG Q PRG)
(N (OLDU P PRG Q (NEWJ P PRG Q
(EU P PRG Q)

(EVAL P (OLDU P PRG Q)

(NOT (EVAL Q (OLDU P PRG Q))))
(OR (EVAL P (NEWJ P PRG Q)

(EVAL Q (NEWJ P PRG Q)))

(UNLESS P Q PRG))
((USE (UNLESS))))

(PROVE- LEMMA UNLESS- | MPLI ES (REWRI TE)
(I MPLIES (AND (UNLESS P Q PRG
(MEMBER E PRO)
(N OLD NEW E)
(EVAL P OLD)
(NOT (EVAL Q OLD)))
(EVAL (LIST'ORP Q NEW)
((USE (UNLESS))))

(DI SABLE PROVE- UNLESS)
(DI SABLE UNLESS- | MPLI ES)

;v THE PROGRESS OPERATOR LEADS-TO

(DEFN- SK LEADS- TO (P Q PRG
(FORALL | (IMPLIES (EVAL P (S PRG 1))
(EXI STS J
(AND (NOT (LESSP J 1))
(EVAL Q (S PRG J))))))
((SUFFI X LEADS)))

(DI SABLE LEADS- TO)

(PROVE- LEMMA PROVE- LEADS- TO (REWRI TE)
(IMPLIES (I MPLIES (EVAL P (S PRG (I LEADS P PRG Q))
(AND (NOT (LESSP J (ILEADS P PRG Q))
(EVAL Q (S PRG J))))
(LEADS-TO P Q PRG))
((DI SABLE EVAL)
(USE (LEADS-TO))))

(PROVE- LEMMA LEADS- TO- | MPLI ES (REVWRI TE)
(I MPLI ES (AND (LEADS-TO P Q PRG)
(EVAL P (S PRG 1)))
(AND (NOT (LESSP (JLEADS | PRG Q 1))
(EVAL Q (S PRG (JLEADS | PRG Q))))
((DI SABLE EVAL)
(USE (LEADS-TO))))

(DI SABLE PROVE- LEADS- TO)
(DI SABLE LEADS- TO- | MPLI ES)

., THE MOST EFFECTI VE TRACE
(DEFN- SK SCHEDULABLE (PRG)

(FORALL | (EXI STS NEW (N (S PRG |) NEW (CHOOSE PRG 1))))
((SUFFI X 9)))

144

145

(DI SABLE SCHEDULABLE)

(PROVE- LEMMA PROVE- SCHEDULABLE (REWRI TE)
(IMPLIES (N (S PRG (1S PRG) NEW
(CHOCSE PRG (1S PRG)))
(SCHEDULABLE PRG))
((USE (SCHEDULABLE))))

(PROVE- LEMVA SCHEDULABLE- | MPLI ES (REWRI TE)
(I MPLI ES (SCHEDULABLE PRG)
(N (S PRG |)
(NEVS | PRG
(CHOCSE PRG 1)))
((USE (SCHEDULABLE))))

(DI SABLE PROVE- SCHEDULABLE)
(DI SABLE SCHEDULABLE- | MPLI ES)

(PROVE- LEMMA SCHEDULABLE- | MPLI ES- EFFECTI VE- COVPUTATI ON (REWRI TE)
(I MPLI ES (AND (SCHEDULABLE PRG)
(LI STP PRO))
(N (S PRG 1)
(S PRG (ADDL 1))
(CHOCSE PRG 1)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE COVPUTATI ON (($NEW (NEWS | PRG))))
(REWRI TE SCHEDULABLE- | MPLI ES))))

(PROVE- LEMVA COVPUTATI ON- N (REVRI TE)
(I MPLI ES (AND (SCHEDULABLE PRG)
(MEMBER E PRG))
(N (S PRG (NEXT PRG E 1))
(S PRG (ADDL (NEXT PRG E 1)))
B))
((1 NSTRUCTI ONS PROMOTE (DI VE 3) (= (CHOOSE PRG (NEXT PRG E 1))) TOP
(REWRI TE SCHEDULABLE- | MPLI ES- EFFECTI VE- COMPUTATI ON) (DROP 1)
PROVE)))

(PROVE- LEMMA EFFECTI VE- | DLE (REWRI TE)
(1 MPLI ES (LI STP PRG
(OR (EQUAL (S PRG (ADDL I)) (S PRG 1))
(N (S PRG 1) (S PRG (ADDL 1))
(CHOOSE PRG 1))))
((USE (COVPUTATI ON (NEW (NEWK (CHOOSE PRG |) (S PRG 1)))))))

(DI SABLE EFFECTI VE- | DLE)
;; LEADS- TO PROOF RULES

(PROVE- LEMMA LEADS- TO- TRANSI Tl VE (REWRI TE)
(I MPLI ES (AND (LEADS-TO P Q PRO)
(LEADS-TO Q R PRG))
(LEADS-TO P R PRO))
((ENABLE LEADS- TO-| MPLI ES)
(USE (PROVE- LEADS- TO (P P)
(QR
(PRG PRG
(J (JLEADS (JLEADS (I LEADS P PRG R)
PRG Q
PRG R))))))

146

(DI SABLE LEADS- TO- TRANSI Tl VE)

(PROVE- LEMMA LEADS- TO- TRANSI Tl VE- GENERAL (REWRI TE)
(I MPLIES (AND (LEADS-TO P-1 Q1 PRG
(LEADS-TO Q 2 R-1 PRQ
(IMPLIES (EVAL Q1 (S PRG (JLEADS (I LEADS P PRG R)
PRG Q1)))
(EVAL Q2 (S PRG (JLEADS (ILEADS P PRG R)
PRG Q1))))
PRG (1 LEADS P PRG R)))
(S PRG (I LEADS P PRG R))))
(S PRG (JLEADS (JLEADS
(I LEADS P PRG R)
PRG Q 1)
PRG R-1)))
(EVAL R (S PRG (JLEADS (JLEADS
(I LEADS P PRG R)

(IMPLIES (EVAL P (
(EVAL P-1
(IMPLIES (EVAL R-1

PRG Q 1)
PRG R-1)))))
(LEADS-TO P R PRG))
((ENABLE LEADS- TO- | MPLI ES)
(USE (PROVE- LEADS- TO (P P)
(QR)
(PRG PRO)
(J (JLEADS (JLEADS (I LEADS P PRG R)
PRG Q 1)

PRG R-1))))))
(DI SABLE LEADS- TO- TRANSI TI VE- GENERAL)

(PROVE- LEMVA Q LEADS- TO-Q (REWRI TE)
(LEADS-TO Q Q PRO)
((USE (PROVE- LEADS-TO (P Q
(J (ILEADS Q PRG Q)))))

(DI SABLE Q LEADS-TO-Q

(PROVE- LEMVA FALSE- LEADS- TO- ANYTHI NG (REVRI TE)
(LEADS- TO ' (FALSE) P PRG)
((USE (PROVE- LEADS-TO (P ' (FALSE)) (Q P) (PRG PRG)))))

(DI SABLE FALSE- LEADS- TO- ANYTHI NG)

(PROVE- LEMVA P- | MPLI ES- @ LEADS- TO (REWRI TE)
(IMPLIES (I MPLIES (EVAL P (S PRG (I LEADS P PRG Q))
(EVAL Q (S PRG (I LEADS P PRG Q)))
(LEADS-TO P Q PRG))
((USE (PROVE-LEADS-TO (P P) (Q Q (PRG PRQ
(J (ILEADS P PRG Q)))))

(DI SABLE P- 1 MPLI ES- Q@ LEADS- TO

(PROVE- LEMVA LEADS- TO- STRENGTHEN- LEFT (REWRI TE)
(I MPLIES (AND (I MPLIES (EVAL Q (S PRG (I LEADS Q PRG R)))
(EVAL P (S PRG (I LEADS Q PRG R))))
(LEADS-TO P R PRO))
(LEADS-TO Q R PRG))
((USE (PROVE- LEADS-TO (P Q
(QR
(PRG PRG)
(J (JLEADS (ILEADS Q PRG R PRG R)))

147

(LEADS- TO- | MPLI ES (P P)
(QR
(PRG PRQ)
(I (ILEADS Q PRG R))))))

(DI SABLE LEADS- TO- STRENGTHEN- LEFT)

(PROVE- LEMVA LEADS- TO- WEAKEN- Rl GHT (REVRI TE)
(I'MPLIES (AND (I MPLIES (EVAL Q (S PRG (JLEADS (I LEADS P PRG R
PRG Q))
(EVAL R (S PRG (JLEADS (I LEADS P PRG R)
PRG Q)))
(LEADS-TO P Q PRG))
(LEADS-TO P R PRG))
((USE (PROVE- LEADS-TO (P P)
(QR
(PRG PRG)
(J (JLEADS (I LEADS P PRG R) PRG Q))
(LEADS-TO- | MPLIES (P P)
(QQ
(PRG PRG)
(I (ILEADS P PRG R))))))

(DI SABLE LEADS- TO- WEAKEN- Rl GHT)

(PROVE- LEMVA LEADS- TO- MODI FY- BOTH (REVRI TE)
(I MPLIES (AND (I MPLIES (EVAL P (S PRG (I LEADS P PRG Q))
(EVAL P-1 (S PRG (ILEADS P PRG Q)))
(IMPLIES (EVAL Q1 (S PRG (JLEADS (ILEADS P PRG Q
PRG Q1)))
(EVAL Q (S PRG (JLEADS (ILEADS P PRG Q
PRG Q1))))
(LEADS-TO P-1 Q1 PRG)
(LEADS-TO P Q PRG))
((USE (PROVE- LEADS-TO (P P)
(QQ
(PRG PRO)
(J (JLEADS (ILEADS P PRG Q) PRG Q 1)))
(LEADS- TO- | MPLI ES (P P-1)
(QQ1)
(PRG PRG
(I (ILEADS P PRG Q)))))

(DI SABLE LEADS- TO- MODI FY- BOTH)

(PROVE- LEMVA DI SJO N-LEFT (REWRI TE)
(I MPLI ES (AND (LEADS-TO P R PRG)
(LEADS-TO Q R PRO))
(LEADS-TO (LIST "OR P Q R PRG)
((USE (PROVE- LEADS-TO (P (LIST 'OR P Q)
(QR
(PRG PRG)
(J (JLEADS (ILEADS (LIST 'OR P Q
PRG R)
PRG R)))
(LEADS- TO- | MPLIES (P P)
(QR
(PRG PRG)
(I (ILEADS (LIST'ORP Q PRGR)))
(LEADS- TO- | MPLIES (P Q
(QR

148

(PRG PRO)
(1 (ILEADS (LIST'OR P Q PRGR)))))

(DI SABLE DI SJOI N- LEFT)

(PROVE- LEMVA DI SJO N- LEFT- GENERAL (REVRI TE)
(I MPLIES (AND (LEADS-TO P-1 Q1 PRQ
(LEADS-TO P-2 Q2 PRQ
(IMPLIES (EVAL P (S PRG (I LEADS P PRG Q))
(EVAL (LIST 'OR P-1 P-2)
(S PRG (I LEADS P PRG Q)))
(IMPLIES (EVAL Q1 (S PRG
(JLEADS (1LEADS P PRG Q
PRG Q1)))
(EVAL Q (S PRG
(JLEADS (1LEADS P PRG Q
PRG Q1))))
(IMPLIES (EVAL Q2 (S PRG
(JLEADS (1LEADS P PRG Q
PRG Q2)))
(EVAL Q (S PRG
(JLEADS (1LEADS P PRG Q
PRG Q2)))))
(LEADS-TO P Q PRG))
((USE (PROVE- LEADS-TO (P P)
(QQ
(J (JLEADS (ILEADS P PRG Q
PRG Q1)))
(PROVE- LEADS- TO (P P)
(QQ
(J (JLEADS (ILEADS P PRG Q
PRG Q 2)))
(LEADS- TO- | MPLI ES

(I LEADS P PRG Q))
(LEADS- TO- | MPLI ES (P P-2)
(QQ2)
(PRG PRO)
(I (ILEADS P PRG Q)))))

(DI SABLE DI SJO N- LEFT- GENERAL)

(PROVE- LEMVMA CANCELLATI ON- LEADS- TO (REWRI TE)
(I MPLI ES (AND (LEADS-TO P (LIST ' OR Q B) PRQ)
(LEADS-TO B R PRG))
(LEADS-TO P (LIST "OR Q R) PRO))
((USE (PROVE- LEADS-TO (P P)
(Q(LIST 'R QR)
(PRG PRO)
(J (JLEADS (JLEADS (| LEADS P PRG
(LIST'OR QR)
PRG (LIST *OR Q B))
PRG R)))
(PROVE- LEADS- TO (P P)
(Q(LIST 'R QR)
(PRG PRG)
(J (JLEADS (ILEADS P PRG
(LIST'ORQR)
PRG (LIST 'OR Q B))))

(LEADS- TO- | MPLI ES (P P)

(Q (LIST "R Q B))

(PRG PRO)

(I (ILEADS P PRG (LIST 'CR Q R))))
(LEADS- TO- | MPLI ES (P B)

(QR

(PRG PRG)

(I (JLEADS (I LEADS P PRG

(LIST'ORQR)

PRG (LIST "OR QB)))))))

(DI SABLE CANCELLATI ON- LEADS- TO)

(PROVE- LEMMA CANCELLATI ON- LEADS- TO- GENERAL (REVRI TE)
(I MPLI ES (AND (LEADS-TO P-1 D PRG)
(LEADS-TO B R-1 PRG
(IMPLIES (EVAL (LIST *AND D (LI ST ' NOT B))
(S PRG (JLEADS (1LEADS P PRG R)

PRG D))
(EVAL R (S PRG (JLEADS (I LEADS P PRG R)
PRG D))))
(I MPLIES (EVAL R-1
(S PRG
(JLEADS (JLEADS (I LEADS P PRG R)
PRG D)
PRG R-1)))

(EVAL R (S PRG
(JLEADS (JLEADS (I LEADS P PRG R)
PRG D)
PRG R-1))))
(IMPLIES (EVAL P (S PRG (I LEADS P PRG R)))
(EVAL P-1 (S PRG (ILEADS P PRG R)))))
(LEADS-TO P R PRG))
((USE (PROVE- LEADS-TO (P P)
(QR
(PRG PRG)
(J (JLEADS (ILEADS P PRG R)
PRG D)))
(PROVE- LEADS- TO (P P)
(QR
(PRG PRG
(J (JLEADS (JLEADS (I LEADS P PRG R)
PRG D)
PRG R-1)))
(LEADS- TO- | MPLI ES (P P-1)
(QD
(PRG PRG)
(I (ILEADS P PRG R)))
(LEADS- TO- | MPLI ES (P B)
(QR1)
(PRG PRO)
(I (JLEADS (ILEADS P PRG R)
PRGD))))))

(DI SABLE CANCELLATI ON- LEADS- TO- GENERAL)

(DEFN ENSURES- | NTERVAL (PRG Q TOP 1)
(IF (LESSP TOP 1)
(FI X TOP)
(IF (EVAL Q (S PRG 1))
(FIX 1)

149

(ENSURES- | NTERVAL PRG Q TOP (ADDL 1))))
((LESSP (DI FFERENCE (ADDL TOP) 1))))

(PROVE- LEMVA ENSURES- | NTERVAL- FI XES (REWRI TE)
(I MPLIES (AND (LI STP PRO)
(NOT (NUMBERP 1)))
(EQUAL (ENSURES- | NTERVAL PRG Q TCP I)
(ENSURES- | NTERVAL PRG Q TCP 0))))

(PROVE- LEMVA ENSURES- | NTERVAL- BI GGER (REWRI TE)
(EQUAL (LESSP (ENSURES-| NTERVAL PRG Q TOP 1) 1)
(LESSP TOP 1))
((ENABLE EQUAL- 1 FF)))

(PROVE- LEMVA PSP- PROVES- SOVETHI NG (REWRI TE)
(I MPLI ES (AND (LEADS-TO P Q PRO)
(UNLESS R B PRG
(LI STP PRG)
(NUVBERP 1)
(EVAL P (S PRG BASE))
(EVAL R (S PRG I))
(LESSP (JLEADS BASE PRG Q TOP)
(NOT (LESSP (JLEADS BASE PRG Q I))
(EQUAL FINAL (LIST 'OR Q B)))
(EVAL (LIST 'OR (LIST 'AND Q R B)
(S PRG (ENSURES- | NTERVAL PRG FINAL TOP 1))))
((1 NSTRUCTI ONS
(I NDUCT (ENSURES- | NTERVAL PRG FI NAL TOP 1)) PROVE
PROVE S SPLIT (CLAIM (EVAL Q (S PRG 1)) 0) PROVE
(CONTRADI CT 14) (DIVE 2 2) (= (FIX (JLEADS BASE PRG Q))) UP
(= (S PRG (JLEADS BASE PRG Q)) TOP
(REWRI TE LEADS- TO- | MPLI ES)
PROVE (CLAIM (EVAL B (S PRG (ADDL I))) 0) PROVE
(CLAIM (EVAL (LIST "OR R B) (S PRG (ADDL I))) 0) PROVE
(CONTRADI CT 14)
(CLAIM (OR (EQUAL (S PRG (ADDL 1)) (S PRG I))
(N (S PRG 1) (S PRG (ADDL 1)) (CHOOSE PRG 1)))
0)
SPLIT
(REWRI TE UNLESS- | MPLI ES
(($PRG PRG ($E (CHOOSE PRG I)) ($OLD (S PRG 1))))
(REWRI TE COVPUTATI ON) PROVE PROVE (CONTRADI CT 15) SPLIT
(REWRI TE COVPUTATI ON (($NEW (NEWK (CHOOSE PRG 1) (S PRG 1)))))
PROVE)))

(DI SABLE PSP- PROVES- SOVETHI NG

(PROVE- LEMVA PSP (REVRI TE)
(I MPLIES (AND (LEADS-TO P Q PRG
(UNLESS R B PRG
(LI STP PRO))
(LEADS-TO (LIST 'AND P R)
(LIST "OR (LIST 'AND Q R) B)
PRG))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE PROVE- LEADS- TO
(($J (ENSURES- | NTERVAL PRG (LI ST ' OR Q B)
(ADDL (JLEADS (ILEADS (LIST 'AND P R) PRG
(LIST "OR (LIST "AND Q R) B))
PRG Q)
(I LEADS (LIST 'AND P R) PRG

150

(LIST "OR (LIST "AND Q R) B))))))
(USE- LEMVA PSP- PROVES- SOVETHI NG
((PP) (QQ (RR (PRGPRG (FINAL (LIST 'OR Q B))
(TOP (ADDL (JLEADS (I LEADS (LIST 'AND P R) PRG
(LIST "OR (LIST 'AND Q R) B))
PRG Q))
(I (FIX (1LEADS (LIST *AND P R) PRG
(LIST "OR (LIST 'AND Q R) B))))
(BASE (I LEADS (LIST 'AND P R) PRG
(LIST "OR (LIST 'AND Q R) B)))))
(USE- LEMVA LEADS- TO- | MPLI ES
((PP) (QQ (PRG PRG
(I (ILEADS (LIST 'AND P R) PRG
(LIST "OR (LIST "AND Q R) B)))))
PROVE)))

(DI SABLE PSP)

(PROVE- LEMMA PSP- GENERAL (REVRI TE)
(I MPLI ES
(AND (LEADS-TO P Q PRG
(UNLESS R B PRO)
(IMPLIES (EVAL PR (S PRG (| LEADS PR PRG QB)))
(EVAL (LIST *AND P R)
(S PRG (I LEADS PR PRG QB))))
(IMPLIES (EVAL (LIST 'OR (LIST 'AND Q R) B)
(S PRG (JLEADS (I LEADS PR PRG QB)
PRG
(LIST "OR (LIST 'AND Q R) B))))
(EVAL QB (S PRG (JLEADS (| LEADS PR PRG QB)
PRG
(LIST "OR (LIST *AND Q R)
B)))))
(LI STP PRG))
(LEADS- TO PR QB PRG))
((ENABLE PSP)
(USE (LEADS- TO- MODI FY-BOTH (P PR) (Q QB)
(P-1 (LIST "AND P R))
(Q1 (LIST'OR (LIST'AND QR B))))))

(DI SABLE PSP- GENERAL)
(PROVE- LEMVA LEADS- TO- TRUE (REVRI TE)
(LEADS-TO P ’ (TRUE) PRG)
((USE (PROVE-LEADS-TO (P P) (Q ' (TRUE))
(J (1LEADS P PRG’ (TRUE)))))))
7 INITIAL CONDI TI ON AND | NVARI ANTS

(DEFN | NI TI AL- CONDI TI ON (1 C PRG)
(EVAL IC (S PRG 0)))

(DI SABLE | NI TI AL- CONDI Tl ON)

(DEFN- SK | NVARI ANT (1 NV PRG)
(FORALL | (EVAL INV (S PRG 1)))
((SUFFI X 1)))

(DI SABLE | NVARI ANT)

(PROVE- LEMVA PROVE- | NVARI ANT (REVRI TE)

151

(IMPLIES (EVAL INV (S PRG (I INV PRG)))
(I NVARI ANT | NV PRG))
((USE (1 NVARI ANT))))

(PROVE- LEMMA | NVARI ANT- | MPLI ES (REWRI TE)
(I MPLI ES (1 NVARI ANT | NV PRG)
(EVAL INV (S PRG 1)))
((USE (1 NVARI ANT))))

(DI SABLE PROVE- | NVARI ANT)

(PROVE- LEMVA | NVARI ANT- CONSEQUENCE (REVRI TE)
(I MPLIES (AND (1 NVARI ANT P PRG)
(IMPLIES (EVAL P (S PRG (Il QP
(EVAL Q (S PRG (11 QP
(I NVARI ANT Q PRG))
((ENABLE PROVE- | NVARI ANT)))

(PROVE- LEMMA | NVARI ANTS- PERSI ST- GENERAL (REVRI TE)
(I MPLIES (AND (UNLESS P ' (FALSE) PRG
(EVAL P (S PRG I))
(LI STP PRG)
(NOT (LESSP J 1)))
(EVAL P (S PRG J)))
((INDUCT (PLUS J 1))
(USE (UNLESS- 1 MPLIES (P P)
(Q ' (FALSE))
(OLD (S PRG (SUBL J)))
(NEW (S PRG J))
(E (CHOOSE PRG (SUBL J))))
(EFFECTI VE- | DLE (PRG PRG (I (SUBL J))))))

(DI SABLE | NVARI ANTS- PERSI ST- GENERAL)

(PROVE- LEMMA UNLESS- PROVES- | NVARI ANT (REVRI TE)
(I MPLIES (AND (I NI Tl AL- CONDI TI ON | C PRG)
(UNLESS P ' (FALSE) PRG
(IMPLIES (EVAL I C (S PRG 0))
(EVAL P (S PRG 0)))
(LI STP PRO))
(I NVARI ANT P PRG))
((ENABLE PROVE- | NVARI ANT | NI TI AL- CONDI TI ON
| NVARI ANTS- PERS| ST- GENERAL)))

(PROVE- LEMVA LEADS- TO- FALSE- | NVARI ANT (REWRI TE)
(I MPLI ES (AND (LEADS-TO P’ (FALSE) PR
(IMPLIES (EVAL (LIST 'NOT P) (S PRG (I INV PRG))
(EVAL INV (S PRG (11 INV PRG))))
(I NVARI ANT | NV PRG))
((USE (LEADS-TO I MPLIES (P P) (Q’ (FALSE)) (PRG PRO)

(I (Il INV PRO))
(PROVE- | NVARI ANT (I NV INV) (PRG PRG)))))

;; EVENTUAL STABILITY

(DEFN- SK EVENTUALLY- | NVARI ANT (R PRG)
(EXISTS | (FORALL J (IMPLIES (NOT (LESSP J 1))
(EVAL R (S PRG J)))))
((SUFFI X ES)))

152

153

(DI SABLE EVENTUALLY- | NVARI ANT)

(PROVE- LEMMA PROVE- EVENTUALLY- | NVARI ANT (REWRI TE)
(IMPLIES (I MPLIES (NOT (LESSP (JES | PRGR) 1))
(EVAL R (S PRG (JES | PRG R))))
(EVENTUALLY- | N\VARI ANT R PRG))
((USE (EVENTUALLY- | NVARI ANT))))

(PROVE- LEMVA EVENTUALLY- | NVARI ANT- | MPLI ES (REWRI TE)
(I MPLI ES (AND (EVENTUALLY- | NVARI ANT R PRG)
(NOT (LESSP J (I1ES PRG R))))
(EVAL R (S PRG J)))
((USE (EVENTUALLY- | NVARI ANT))))

(DI SABLE PROVE- EVENTUALLY- | NVARI ANT)
(DI SABLE EVENTUALLY- | NVARI ANT- | MPLI ES)

(PROVE- LEMMA NOT- LEADS- TO- PROVES- EVENTUALLY- | NVARI ANT (REWRI TE)
(I MPLI ES (AND (NOT (LEADS-TO P NOT-R PRG))
(I MPLIES (NOT (EVAL NOT-R
(S PRG (JES (I LEADS P PRG NOT-R)
PRG R)))
(EVAL R (S PRG (JES (ILEADS P PRG NOT-R)
PRG R))))
(EVENTUALLY- | N\VARI ANT R PRG))
((USE (PROVE- LEADS-TO (P P)
(Q NOT-R)
(PRG PRG)
(J (JES (I LEADS P PRG NOT-R)
PRG R)))
(PROVE- EVENTUALLY- | NVARI ANT (I (I LEADS P PRG NOT-R))
(RR
(PRG PRG)))))

(DI SABLE NOT- LEADS- TO- PROVES- EVENTUALLY- | NVARI ANT)

(PROVE- LEMVA NOT- EVENTUALLY- | NVARI ANT- PROVES- LEADS- TO (REVRI TE)
(I MPLI ES (AND (NOT (EVENTUALLY- | NVARI ANT NOT- Q PRG))
(IMPLIES (NOT (EVAL NOT-Q
(S PRG (JES (ILEADS P PRG Q
PRG NOT-Q)))
(EVAL Q (S PRG (JES (ILEADS P PRG Q
PRG NOT-Q))))
(LEADS-TO P Q PRG))
((USE (NOT- LEADS- TO- PROVES- EVENTUALLY- | NVARI ANT
(P P)
(NOT-R Q
(R NOT-Q
(PRG PRG)))))

(DI SABLE NOT- EVENTUALLY- | NVARI ANT- PROVES- LEADS- TO)

(PROVE- LEMMA TRUE- LEADS- TO- PROVES- NOT- EVENTUALLY- | NVARI ANT (REVRI TE)
(I MPLI ES (AND (LEADS-TO * (TRUE) NOT-R PRQ)
(I MPLIES (EVAL NOT-R (S PRG (JLEADS (I ES PRG R)
PRG NOT-R)))
(NOT (EVAL R (S PRG (JLEADS (I ES PRG R)
PRG NOT-R))))))
(NOT (EVENTUALLY- | NVARI ANT R PRG)))
((USE (LEADS-TO I MPLIES (P ' (TRUE)) (Q NOT-R) (PRG PRG)
(I (IES PRGR)))

(EVENTUALLY- | N\VARI ANT- | MPLI ES (R R) (PRG PRG)
(J (JLEADS (1 ES PRG R)
PRG NOT-R))))))

(DI SABLE TRUE- LEADS- TO- PROVES- NOT- EVENTUALLY- | NVARI ANT)

(PROVE- LEMVA EVENTUALLY- | NVARI ANT- PROVES- NOT- TRUE- LEADS- TO (REWRI TE)
(I MPLI ES (AND (EVENTUALLY- | NVARI ANT NOT- Q PRG)
(I MPLIES (EVAL NOT-Q (S PRG (JLEADS (I ES PRG NOT-Q
PRG Q))
(NOT (EVAL Q (S PRG (JLEADS (I ES PRG NOT-Q
PRG Q)))))
(NOT (LEADS-TO ' (TRUE) Q PRG)))
((USE (TRUE- LEADS- TO- PROVES- NOT- EVENTUALLY- | NVARI ANT
(RNOT-Q (NOT-R Q (PRG PRG)))))

(DI SABLE EVENTUALLY- | NVARI ANT- PROVES- NOT- TRUE- LEADS- TO)

(PROVE- LEMMA EVENTUALLY- | NVARI ANT- WEAKEN (REWRI TE)
(I MPLI ES (AND (EVENTUALLY- | NVARI ANT P PRG)
(IMPLIES (EVAL P (S PRG (JES (IES PRGP) PRG R)))
(EVAL R (S PRG (JES (IES PRG P) PRG R)))))
(EVENTUALLY- | N\VARI ANT R PRG))
((USE (EVENTUALLY- | NVARI ANT- | MPLI ES (R P) (PRG PRO)
(J (JES (1ES PRG P) PRG R)))
(PROVE- EVENTUALLY- | NVARI ANT (R R) (PRG PRG)
(I (IESPRGP))))))

(DI SABLE EVENTUALLY- | NVARI ANT- VVEAKEN)

(PROVE- LEMMA EVENTUALLY- | NVARI ANT- CONJUNCTI ON (REWRI TE)
(I MPLI ES (AND (EVENTUALLY- | NVARI ANT P PRG)
(EVENTUALLY- | N\VARI ANT Q PRG)
(IMPLIES (EVAL (LIST 'AND P Q

(S PRG (JES (I F (LESSP (1ES PRG P)
(IES PRG Q)
(1ES PRG Q
(1ES PRG P))
PRG R)))

(EVAL R (S PRG
(JES (1 F (LESSP (I ES PRG P)
(IES P
(1ES PRG Q
(1ES PRG P))
PRG R)))))
(EVENTUALLY- | N\VAR ANT R PRG))
((USE (PROVE- EVENTUALLY- I NVARI ANT (R R) (PRG PRG)
(I (IF (LESSP (1ES PRG P)
(IES PRG Q)
(1ES PRG Q
(1ES PRG P))))
(EVENTUALLY- | NVARI ANT- | MPLI ES (R P) (PRG PRG)

(J (JES (I F (LESSP (I ES PRG P)
(IES PRG Q)
(1ES PRG Q
(1 ES PRG P))
PRG R)))

(EVENTUALLY- | NVARI ANT- | MPLI ES (R Q (PRG PRG)
(J (JES (IF (LESSP (IES PRG P)
(I1ES PRG Q)
(1 ES PRG Q

154

155

(1 ES PRG P))
PRG R))))))

(DI SABLE EVENTUALLY- | NVARI ANT- CONJUNCTI ON)

(PROVE- LEMMA EVENTUALLY- | NVARI ANT- FALSE (REWRI TE)
(I MPLI ES (AND (LEADS-TO P Q PRG)
(IMPLIES (EVAL Q (S PRG (JLEADS (I ES PRG P)
PRG Q))
(NOT (EVAL P (S PRG (JLEADS (I ES PRG P)
PRG Q)))))
(NOT (EVENTUALLY- | NVARI ANT P PRG)))
((USE (LEADS-TO-IMPLIES (P P) (Q Q (PRG PRO)
(I (1ES PRG P)))
(EVENTUALLY- | NVARI ANT- | MPLI ES (R P) (PRG PRG)
(J (JLEADS (1 ES PRG P)
PRG Q))
(EVENTUALLY- | NVARI ANT- | MPLIES (R P) (PRG PRG (ININ)
(J (IESPRGP))))))

(DI SABLE EVENTUALLY- | NVARI ANT- FALSE)

(PROVE- LEMVA STABLE- OCCURS- PROVES- EVENTUALLY- | NVARI ANT (REWRI TE)
(I MPLIES (AND (LI STP PRO)
(UNLESS P ' (FALSE) PRG
(LEADS-TO ' (TRUE) P PRG))
(EVENTUALLY- | N\VARI ANT P PRG))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE PROVE- EVENTUALLY- | NVARI ANT (($! (JLEADS 0 PRG P))))
PROMOTE
(REVRI TE | NVARI ANTS- PERS| ST- GENERAL (($! (JLEADS 0 PRG P))))
(REWRI TE LEADS- TO- | MPLI ES (($P * (TRUE))))
(BASH (DI SABLE EVAL)))))

(DI SABLE STABLE- OCCURS- PROVES- EVENTUALLY- | NVARI ANT)

3+ THE BASI C ENSURES OPERATCR

(DEFN- SK ENSURES (P Q PRG
(EXI STS E
(AND (MEMBER E PRQG)
(FORALL (OLD NEW
(I MPLI ES
(AND (N OLD NEW E)
(EVAL (LIST *AND P (LIST 'NOT Q) OLD))

(EVAL Q NEW))))
((SUFFI X E)))

(DI SABLE ENSURES)

(PROVE- LEMVA PROVE- ENSURES (REVRI TE)
(I MPLI ES (AND (MEMBER E PRG)
(IMPLIES (AND (N (OLDEEP Q (NEVEE P Q E)
(EVAL P (OLDE E P Q)
(NOT (EVAL Q (OLDE E P Q)))
(EVAL Q (NEVE E P Q)))
(ENSURES P Q PRG))
((USE (ENSURES))))

(PROVE- LEMVA ENSURES- | MPLI ES (REWRI TE)
(AND (1 MPLI ES (ENSURES P Q PRG)
(MEMBER (EE P PRG Q PRG))
(I MPLI ES (AND (ENSURES P Q PRG)
(N OLD NEW (EE P PRG Q)
(EVAL P OLD)
(NOT (EVAL Q OLD)))
(EVAL Q NEW))
((USE (ENSURES))))

(DI SABLE PROVE- ENSURES)
(DI SABLE ENSURES- | MPLI ES)

(PROVE- LEMVA ENSURES- PROVES- SOVMETHI NG (REWRI TE)
(I MPLI ES (AND (ENSURES P Q PRG)
(UNLESS P Q PRG
(SCHEDULABLE PRG)
(LESSP (NEXT PRG (EE P PRG Q BASE) TOP)
(NOT (LESSP (NEXT PRG (EE P PRG Q) BASE) 1))
(NOT (LESSP | BASE))
(NUMBERP 1)
(EVAL P (S PRG 1)))
(EVAL Q (S PRG (ENSURES- | NTERVAL PRG Q TCP 1))))
((1 NSTRUCTI ONS PROVOTE
(CLAIM (MEMBER (EE P PRG Q PRG ((ENABLE ENSURES-| MPLI ES)))
(CLAIM (LI STP PRG) (I NDUCT (ENSURES- | NTERVAL PRG Q TOP 1))
PROVE PROVE S SPLIT (DIVE 2 2) X X TOP
(CLAIM (EVAL Q (S PRG (ADDL |))) 0) PROVE (CONTRADI CT 14)
(REWRI TE ENSURES- | MPLIES (($P P) ($PRG PRG ($OLD (S PRG 1))))
PROVE PROVE PROVE
(CLAIM (EVAL (LIST'ORP Q (S PRG (ADDL I))) 0) PROVE
(CONTRADI CT 16)
(REWRI TE UNLESS- | MPLI ES
(($PRG PRG ($E (CHOOSE PRG I)) ($OLD (S PRG 1))))
PROVE PROVE)))

(PROVE- LEMMA THE- | NTERVAL- OF- ENSURES (REVRI TE)
(I MPLI ES (AND (ENSURES P Q PRG)
(UNLESS P Q PRG
(SCHEDULABLE PRG)
(EVAL P (S PRG 1)))
(EVAL Q
(S PRG (ENSURES- | NTERVAL
PRG Q
(ADDL (NEXT PRG (EE P PRG Q 1)) 1))))
((I NSTRUCTI ONS PROMOTE (CLAI M (NUMBERP 1) 0)
(REVRI TE ENSURES- PROVES- SOVETHI NG (($P P) ($BASE 1))) PROVE
(PROVE (ENABLE ENSURES- | MPLI ES)) PROVE (DI VE 2 2)
(REWRI TE ENSURES- | NTERVAL- FI XES) TCP
(REWRI TE ENSURES- PROVES- SOVETHI NG (($P P) ($BASE 0)))
(PROVE (ENABLE ENSURES- | MPLI ES)) PROVE PROVE (DEMOTE 4)
(DIVE 1 2) (REWRITE COVPUTATION) TOP S
(CLAIM (MEMBER (EE P PRG Q PRG ((ENABLE ENSURES-| MPLI ES)))
PROVE
(CLAIM (MEMBER (EE P PRG Q PRG ((ENABLE ENSURES-| MPLI ES)))
PROVE)))

(PROVE- LEMMA ENSURES- PROVES- LEADS- TO (REWRI TE)
(I MPLI ES (AND (SCHEDULABLE PRG)
(UNLESS P Q PRG
(ENSURES P Q PRG))

156

(LEADS-TO P Q PRG))
((USE (PROVE- LEADS-TO (J (ENSURES- | NTERVAL
PRG Q
(ADDL (NEXT PRG (EE P PRG Q
(I LEADS P PRG Q))
(I LEADS P PRG Q)))
(PP) (QQ (PRGPR3))
(ENABLE ENSURES- | MPLI ES)))

(DI SABLE ENSURES- PROVES- SOVETHI NG)
(DI SABLE THE- | NTERVAL- OF- ENSURES)

(DI SABLE ENSURES- PROVES- LEADS- TO)
v, TOTAL PROGRAMS, STATEMENTS ARE ASSI GNMENTS

(DEFN- SK TOTAL (PRG
(FORALL E (I MPLIES (MEMBER E PRG)
(FORALL OLD
(EXI STS NEW (N OLD NEWE)))))
((SUFFI X T)))

(DI SABLE TOTAL)

(PROVE- LEMVA PROVE- TOTAL (REWRI TE)
(I MPLI ES (I MPLIES (MEMBER (ET PRG) PRG
(N (OLDT PRG NEW (ET PRG)))
(TOTAL PRG))
((USE (TOTAL))))

(PROVE- LEMVA TOTAL- | MPLI ES (REWRI TE)
(I MPLI ES (AND (TOTAL PRG)
(MEMBER E PRG))
(N OLD (NEW E OLD) E))
((USE (TOTAL))))

(DI SABLE PROVE- TOTAL)
(DI SABLE TOTAL- | MPLI ES)

(PROVE- LEMMA TOTAL- | MPLI ES- SCHEDULABLE (REWRI TE)
(I MPLIES (AND (TOTAL PRG
(LI STP PRG))
(SCHEDULABLE PRG))
((USE (PROVE- SCHEDULABLE (NEW (NEWI (CHOOSE PRG (1S PRG))

(S PRG (1S PRG)))))
(ENABLE TOTAL- | MPLI ES)))

1+ ENABLED TRANSI TI ONS

(DEFN- SK ENABLI NG- CONDI TI ON (C E PRG)
(AND (MEMBER E PRG)
(FORALL (OLD NEW
(I MPLIES (N OLD NEW E)
(EVAL C OLD)))
(FORALL OLD (I MPLIES (EVAL C OLD)
(EXI STS NEW (N OLD NEWE)))))
((SUFFI X ©)))

(DI SABLE ENABLI NG CONDI Tl ON)

157

(PROVE- LEMVA PROVE- ENABLI NG- CONDI TI ON (REVRI TE)
(I MPLI ES (AND (MEMBER E PRG)
(IMPLIES (N (OLDC C E) (NEWC C E) E)
(EVAL C (OLDC C E)))
(IMPLIES (EVAL C (OLDC-1 C E))
(N (OLDC-1 C E) NEWE)))
(ENABLI NG- CONDI TION C E PRG))
((USE (ENABLI NG CONDI TION))))

(PROVE- LEMMA ENABLI NG CONDI TI ON- | MPLI ES (REWRI TE)
(AND (1 MPLI ES (ENABLI NG CONDI TION C E PRQG)
(MEMBER E PRG))
(I MPLI ES (AND (ENABLI NG CONDI TION C E PRG)
(N OLD NEWE))
(EVAL C OLD))
(I MPLI ES (AND (ENABLI NG CONDI TI ON C E PRG)
(EVAL C OLD))
(N OLD (NEWC-1 E OLD) E)))
((USE (ENABLI NG- CONDI TI ON))))

(DI SABLE PROVE- ENABLI NG- CONDI Tl ON)
(DI SABLE ENABLI NG CONDI TI ON- | MPLI ES)

ENSURES W TH ENABLI NG

(DEFN- SK E- ENSURES (P Q C PRG
(EXI STS E
(AND (MEMBER E PRG)
(ENABLI NG- CONDI TION C E PRG)
(FORALL (OLD NEW
(I MPLI ES
(AND (N OLD NEW E)
(EVAL (LIST "AND P (LIST 'NOT Q) OLD))

(EVAL Q NEW))))
((SUFFI X EE)))

(DI SABLE E- ENSURES)

(PROVE- LEMVA PROVE- E- ENSURES (REVRI TE)

(I MPLI ES (AND (MEMBER E PRO)

(ENABLI NG- CONDI TION C E PRG)

(IMPLIES (AND (N (OLDEE EP Q (NEWVEE E P Q E)

(EVAL (LIST *AND P (LIST ' NOT Q)
(OLDEE E P Q))
(EVAL Q (NEVEE E P Q)))
(E-ENSURES P Q C PRO))

((USE (E-ENSURES))))

(DI SABLE PROVE- E- ENSURES)

(DEFN- SK E- ENSURES- ENABLI NG (P Q C PRQO)
(EXI STS E

(AND
(MEMBER E PRG)
(FORALL (OLD NEW

(AND (1 MPLIES (N OLD NEW E)

(EVAL C OLD))
(I MPLIES (AND (N OLD NEW E)

(EVAL (LIST "AND P (LIST "NOT Q)

aLD))
(EVAL Q NEW)))

158

159

(FORALL OLD (I MPLIES (EVAL C OLD)
(EXI STS NEW (N OLD NEWE))))))
((SUFFI X EEE)))

(DI SABLE E- ENSURES- ENABLI NG)

(PROVE- LEMVA HELP- PROVE- E- ENSURES (REVRI TE)
(I MPLI ES (AND (MEMBER E PRG)
(IMPLIES (N (OLDEEE CE P Q
(NEVEEE CE P Q
E)
(AND (EVAL C (OLDEEE CE P Q)
(EVAL Q(NEV\E CEPQ)
(I MPLIES (EVAL C (OLDEEE-1 C E))
(N (OLDEEE-1 C E) NEWE))
(IMPLIES (EVAL C (OLDEEE CE P Q)
(EVAL (LIST "AND P (LIST 'NOT Q)
(OLDEEE CE P Q)))
(E-ENSURES P Q C PRO))
((USE (PROVE- E- ENSURES (E (EEEE C P PRG Q))
(PROVE- ENABLI NG- CONDI TI ON
(E (EEEE C P PRG Q)
(NEW (NEWEEE- 1
c
(OLDC-1 C (EEEE C P PRG Q) P PRG Q))
(E- ENSURES- ENABLI NG (OLD (OLDEE (EEEE C
(NEW (NEVEE (EEEE C
(E- ENSURES- ENABLI NG (OLD (OLDC C (EEEE C P P
(NEW (NEWC C (EEEE C P P
(E- ENSURES- ENABLI NG (OLD (OLDC-1 C (EEEE C P

))

(PROVE- LEMMA E- ENSURES- | MPLI ES (REWRI TE)
(AND (1 MPLI ES (E-ENSURES P Q C PRG)
(MEMBER (EEE C P PRG Q PRO))
(I MPLI ES (E-ENSURES P Q C PRG
(ENABLI NG- CONDI TION C
(EEE C P PRG Q
PRG))
(I MPLIES (AND (E-ENSURES P Q C PRG)
(N OLD NEW (EEE C P PRG Q)
(EVAL (LIST "AND P (LIST 'NOT Q)
oLD))
(EVAL Q NEW))
((USE (E-ENSURES))))

(DI SABLE E- ENSURES- | MPLI ES)
(DI SABLE HELP- PROVE- E- ENSURES)

;5 UNION THEOREMS

(PROVE- LEMVA TOTAL- UNI ON-1 (REVRI TE)
(I MPLI ES (TOTAL (APPEND PRG 1 PRG 2))
(AND (TOTAL PRG 1)
(TOTAL PRG-2)))
((USE (PROVE- TOTAL (PRG PRG 1)
(NEW (NEWT (ET PRG 1)
(OLDT PRG-1))))
(PROVE- TOTAL (PRG PRG 2)
(NEW (NEWT (ET PRG 2)
(OLDT PRG 2)))))

160

(ENABLE TOTAL- | MPLI ES)))

(PROVE- LEMVA TOTAL- UNI ON-2 (REVRI TE)
(I MPLIES (AND (TOTAL PRG 1) (TOTAL PRG 2))
(TOTAL (APPEND PRG 1 PRG 2)))
((1 NSTRUCTI ONS
(USE- LEMVA PROVE- TOTAL
((PRG (APPEND PRG 1 PRG 2))
(NEW (NEWT (ET (APPEND PRG 1 PRG 2))
(OLDT (APPEND PRG- 1 PRG 2))))))
(DEMOTE 1) (DIVE 1) (DIVE 1) (DIVE 1) (REWRI TE MEMBER- APPEND)
TOP S SPLIT (CONTRADI CT 2) (REWRI TE TOTAL- | MPLI ES)
(CONTRADI CT 3) (REVWRI TE TOTAL- | MPLIES))))

(PROVE- LEMVA TOTAL- UNI ON (REWRI TE)
(EQUAL (TOTAL (APPEND PRG 1 PRG 2))
(AND (TOTAL PRG 1)
(TOTAL PRG-2)))
((ENABLE EQUAL- | FF)))

(DI SABLE TOTAL- UNI ON- 1)
(DI SABLE TOTAL- UNI ON- 2)

(PROVE- LEMMA UNLESS- UNI ON- 1 (REWRI TE)
(I MPLI ES (UNLESS P Q (APPEND PRG 1 PRG 2))
(AND (UNLESS P Q PRG 1) (UNLESS P Q PRG 2)))
((1 NSTRUCTI ONS SPLI T (REWRI TE PROVE- UNLESS) PROMOTE
(USE- LEMMA UNLESS- | MPLI ES
((E(EUP PRG1 Q) (PRG (APPEND PRG- 1 PRG 2))
(OLD (OLDU P PRG-1 Q) (NEW(NEWJ P PRG1 Q)))
PROVE (REVRI TE PROVE- UNLESS) PROMOTE
(USE- LEMVA UNLESS- | MPLI ES
((E (EU P PRG2 Q) (PRG (APPEND PRG- 1 PRG 2))
(OLD (OLDU P PRG-2 Q) (NEW (NEWJ P PRG-2 Q)))
PROVE)))

(PROVE- LEMVA UNLESS- UNI ON- 2 (REWRI TE)
(I MPLIES (AND (UNLESS P Q PRG-1) (UNLESS P Q PRG 2))
(UNLESS P Q (APPEND PRG 1 PRG 2)))
((1 NSTRUCTI ONS PROVOTE (REWRI TE PROVE- UNLESS)
(DIVE 1) (DIVE 1) (REWRI TE MEMBER- APPEND) TOP PROMOTE
(USE- LEMVA UNLESS- | MPLI ES

((E (EU P (APPEND PRG1 PRG2) Q) (P P) (QQ
(OLD (OLDU P (APPEND PRG- 1 PRG2) Q)
(NEW (NEWJ P (APPEND PRG 1 PRG-2) Q) (PRG PRG 1)))

(USE- LEMVA UNLESS- | MPLI ES
((E (EU P (APPEND PRG- 1 PRG2) Q) (P
(OLD (OLDU P (APPEND PRG- 1 PRG 2) Q)
(NEW (NEWJ P (APPEND PRG 1 PRG2) Q)
PROVE)))

P) (QRQ

(PRG PRG 2)))

(PROVE- LEMVA UNLESS- UNI ON (REWRI TE)
(EQUAL (UNLESS P Q (APPEND PRG 1 PRG 2))
(AND (UNLESS P Q PRG 1)
(UNLESS P Q PRG 2)))
((ENABLE EQUAL- I FF)))

(DI SABLE UNLESS- UNI ON- 1)
(DI SABLE UNLESS- UNI ON- 2)

161

(PROVE- LEMVA ENSURES- UNI ON-1 (REWRI TE)
(I MPLI ES (ENSURES P Q (APPEND PRG 1 PRG 2))
(OR (ENSURES P Q PRG-1) (ENSURES P Q PRG 2)))

((1 NSTRUCTI ONS PROVOTE

(CLAIM (MEMBER (EE P (APPEND PRG 1 PRG 2) Q
(APPEND PRG 1 PRG 2))
0)

(DEMOTE 2) (DI VE 1) (REWRI TE MEMBER- APPEND) TOP SPLIT
(REWRI TE PROVE- ENSURES (($E (EE P (APPEND PRG1 PRG2) Q)))
PROVOTE (REWRI TE ENSURES- | MPLI ES)
(REWRI TE PROVE- ENSURES (($E (EE P (APPEND PRG 1 PRG2) Q)))
PROVOTE (REWRI TE ENSURES- | MPLI ES) (CONTRADI CT 3)
(REWRI TE PROVE- ENSURES (($E (EE P (APPEND PRG 1 PRG2) Q)))
PROMOTE (REWRI TE ENSURES- | MPLI ES) (CONTRADI CT 2)
(REVRI TE ENSURES- | MPLI ES))))

(PROVE- LEMVA ENSURES- UNI ON-2 (REWRI TE)
(I MPLIES (OR (ENSURES P Q PRG-1) (ENSURES P Q PRG 2))
(ENSURES P Q (APPEND PRG- 1 PRG 2)))
((1 NSTRUCTI ONS SPLI T (REWRI TE PROVE- ENSURES (($E (EE P PRG-2 Q)))

(USE- LEMVA ENSURES- | MPLI ES ((E (EE P PRG-2 Q)))
(PROVE (ENABLE ENSURES- | MPLI ES)) PROVOTE
(REWRI TE ENSURES- | MPLI ES)
(REVRI TE PROVE- ENSURES (($E (EE P PRG 1 Q)))
(PROVE (ENABLE ENSURES- | MPLI ES))
(PROVE (ENABLE ENSURES- | MPLI ES)))))

(DI SABLE ENSURES- UNI ON- 1)
(DI SABLE ENSURES- UNI ON- 2)

(PROVE- LEMVA ENSURES- UNI ON (REVRI TE)
(EQUAL (ENSURES P Q (APPEND PRG 1 PRG 2))
(OR (ENSURES P Q PRG 1)
(ENSURES P Q PRG 2)))
((ENABLE EQUAL- | FF)
(USE (ENSURES- UNI ON- 1)
(ENSURES- UNI ON-2))))

;,, HELP PROVE TOTAL, UNLESS, AND ENSURES.

(DEFN TOTAL- SUFFI Cl ENT (STATEMENT PROGRAM OLD NEW
(I MPLI ES (MEMBER STATEMENT PROGRAM)
(N OLD NEW STATEMENT)))

(PROVE- LEMVA HELP- PROVE- TOTAL (REWRI TE)
(I MPLI ES (TOTAL- SUFFI CI ENT (ET PRG)

(TOTAL PRG))
((USE (PROVE- TOTAL))))

(DEFN UNLESS- SUFFI Cl ENT (STATEMENT PROGRAM OLD NEW P Q
(I MPLI ES (AND (MEMBER STATEMENT PROGRAM
(N OLD NEW STATEMENT)
(EVAL P OLD)
(NOT (EVAL Q OLD)))

(EVAL (LIST "ORP Q NEW))

(PROVE- LEMMA HELP- PROVE- UNLESS (REWRI TE)

(I MPLI ES (UNLESS- SUFFI Cl ENT (EU P PRG Q
PRG
(OLDU P PRG Q
(NEW P PRG Q
PQ

(UNLESS P Q PRG))
((USE (PROVE- UNLESS))))

(DEFN ENSURES- KEY (STATEMENT PROGRAM OLD NEW P Q
(AND (MEMBER STATEMENT PROGRAM)
(I MPLIES (AND (N OLD NEW STATEMENT)
(EVAL P OLD)
(NOT (EVAL Q OLD)))
(EVAL Q NEW)))

(PROVE- LEMMA HELP- PROVE- ENSURES (REVRI TE)
(I MPLI ES (ENSURES- KEY STATEMENT PRG
(OLDE STATEMENT P Q
(NEVE STATEMENT P Q
PQ
(ENSURES P Q PRG))
((ENABLE PROVE- ENSURES)))

(DEFN ENSURES- REST (STATEMENT KEY PROGRAM OLD NEW P Q
(I MPLI ES (AND (MEMBER STATEMENT PROGRAM
(NOT (EQUAL STATEMENT KEY))
(N OLD NEW STATEMENT)
(EVAL P OLD)
(NOT (EVAL Q OLD)))
(EVAL P NEW))

(PROVE- LEMMA HELP- PROVE- UNLESS- ENSURES (REVRI TE)
(I MPLI ES (AND (ENSURES- KEY STATEMENT PRG
(OLDU P PRG Q
(NEWJ P PRG Q
PQ

(ENSURES- REST (EU P RG Q STATEMENT PRG
(OLDU P PRG Q (NEWJ P PRG Q

P Q)
(UNLESS P Q PRO))
((USE (HELP- PROVE- UNLESS))))

v STRENGTHENI NG AND WEAKENI NG UNLESS AND ENSURES

(DEFN- SK STRONGER-P (P Q
(FORALL STATE (I MPLIES (EVAL P STATE)
(EVAL Q STATE)))
((SUFFI X 9)))

(DI SABLE STRONGER- P)

(PROVE- LEMVA STRONGER: P- | MPLI ES (REWRI TE)
(I MPLIES (AND (STRONGER-P P Q
(EVAL P STATE))
(EVAL Q STATE))
((USE (STRONGER-P))))

162

(PROVE- LEMVA STRONGER: P- REWRI TE (REWRI TE)
(EQUAL (STRONGER-P P Q
(I MPLIES (EVAL P (STATES P Q)
(EVAL Q (STATES P Q)))
((USE (STRONGER- P (STATE (STATES P Q))

(DI SABLE STRONGER- P- | MPLI ES)

(DEFN- SK EQUAL-P (P Q
(FORALL STATE (EQUAL (EVAL P STATE)
(EVAL Q STATE)))
((SUFFI X E)))

(Dl SABLE EQUAL- P)

(PROVE- LEMMA EQUAL- P- | MPLI ES (REWRI TE)
(IMPLIES (EQUAL-P P Q
(EQUAL (EVAL P STATE)
(EVAL Q STATE)))

((USE (EQUAL-P))))
(DI SABLE EQUAL- P- | MPLI ES)

(PROVE- LEMVA EQUAL- P- REWRI TE (REVRI TE)
(EQUAL (EQUAL-P P Q
(EQUAL (EVAL P (STATEE P Q)
(EVAL Q (STATEE P Q)))
((USE (EQUAL-P (STATE (STATEE P Q)))))
(PROVE- LEMMA EQUAL- P- COMMUTATI VE (REWRI TE)
(EQUAL (EQUAL-P P Q
(EQUAL-P Q P))
((USE (EQUAL-P-1MPLIES (P P) (Q Q
(EQUAL-P-IMPLIES (P Q (Q

(PROVE- LEMVA ENSURES- STRENGTHEN- LEFT (REWRI TE)
(I MPLI ES (AND (ENSURES Q R PRO)
(STRONGER-P P Q)
(ENSURES P R PRG))
((USE (PROVE-ENSURES (P P) (Q R (PRG PRQ
(E (EE Q PRGR)))
(ENSURES- | MPLIES (P Q (Q R (PRG PRG)

(OLD (OLDE (EE Q PRGR) P R)
(NEW (NEVE (EE Q PRGR) P R

(STRONGER-P-I MPLIES (P P) (QQ

(STATE (STATEE Q P)
P) (STATE (STATEE P Q

))
))))

)

(STATE (OLDE (EE Q PRGR) P R))))

(DI SABLE STRONGER- P- REWRI TE)))
(DI SABLE ENSURES- STRENGTHEN- LEFT)

(PROVE- LEMVA ENSURES- WEAKEN- Rl GHT (REVRI TE)
(I MPLI ES (AND (ENSURES P Q PRG)
(STRONGER-P Q R))
(ENSURES P R PRG))
((USE (PROVE-ENSURES (P P) (Q R) (PRG PRG
(E (EE P PRG Q))
(ENSURES- | MPLIES (P P) (Q Q (PRG PRG)
(OLD (OLDE (EE P PRG Q
(NEW (NEVE (EE P PRG Q
(STRONGER-P-I MPLIES (P Q (QR)

(STATE (NEVE (EE P PRG Q

PR))

163

(STRONGER-P-I MPLIES (P Q (QR
(STATE (OLDE (EE P PRG Q P R))))
(DI SABLE STRONGER- P- REWRI TE)))

(DI SABLE ENSURES- WVEAKEN- Rl GHT)

(PROVE- LEMMA UNLESS- VEAKEN- Rl GHT (REWRI TE)
(I MPLI ES (AND (UNLESS P Q PRG
(STRONGER-P Q R))
(UNLESS P R PRG))
((USE (PROVE-UNLESS (P P) (Q R (PRG PRO))
(UNLESS-IMPLIES (P P) (Q Q (PRG PRG
(E (EU P PRG R))
(OLD (OLDU P PRG R))
(NEW (NEWJ P PRG R)))
(STRONGER- P- I MPLIES (P Q (QR)
(STATE (OLDU P PRG R)))
(STRONGER- P- I MPLIES (P Q (QR)
(STATE (NEWJ P PRG R))))
(DI SABLE STRONGER- P- REWRI TE)))

(DI SABLE UNLESS- WEAKEN- RI GHT)

(PROVE- LEMMA UNLESS- EQUAL- P (REWRI TE)
(IMPLIES (EQUAL-P P Q
(EQUAL (UNLESS P R PRG
(UNLESS Q R PRG)))
((ENABLE PROVE- UNLESS)
(DI SABLE HELP- PROVE- UNLESS)
(USE (UNLESS-IMPLIES (P P) (QR)

(OLD (OLDU Q PRG R))
(NEW (NEWJ Q PRG R))
(E (EU Q PRG R)))

(EQUAL-P-IMPLIES (P Q (QP)

(STATE (OLDU Q PRG R)))
(EQUAL-P-IMPLIES (P Q (QP)

(STATE (NEWJ Q PRG R)))
(UNLESS- I MPLIES (P Q (QR)

(OLD (OLDU P PRG R))

(NEW (NEWJ P PRG R))

(E (EU P PRG R))
(EQUAL-P-IMPLIES (P P) (QQ

(STATE (OLDU P PRG R)))
(EQUAL-P-IMPLIES (P P) (QQ

(STATE (NEWJ P PRG R))))))

(PROVE- LEMMA UNLESS- CONJUNCTI ON (REWRI TE)
(I MPLI ES (AND (UNLESS P-1 Q PRO)
(UNLESS P-2 Q PRG)
(EQUAL-P P (LIST 'AND P-1 P-2)))
(UNLESS P Q PRG))
((ENABLE PROVE- UNLESS)

(DI SABLE HELP- PROVE- UNLESS)
(USE (UNLESS-I MPLIES (P P-1) (Q Q
P

(EQUAL-P-1MPLIES (P P) (Q (LIST 'AND P-1 P-2))
(STATE (OLDU P PRG Q))

(EQUAL-P- I MPLIES (P P) (Q (LIST 'AND P-1 P-2))
(STATE (NEW P PRG Q))))))

(PROVE- LEMMA UNLESS- DI SJTUNCTI ON (REVRI TE)
(I MPLIES (AND (UNLESS P-1 Q PRG)
(UNLESS P-2 Q PRO)
(EQUAL-P P (LIST 'OR P-1 P-2)))
(UNLESS P Q PRG))
((ENABLE PROVE- UNLESS)

(DI SABLE HELP- PROVE- UNLESS)
(USE (UNLESS-I MPLIES (P P-1) (Q Q
P
P

(UNLESS- I MPLIES (P P-2) (QQ
(OLD (OLDU P PRG Q)
(NEW (NEWJ P PRG Q)
(E (EU P PRG Q))
(EQUAL-P-I MPLIES (P P) (Q (LIST 'OR P-1
(STATE (OLDU P PRG Q)))
(EQUAL-P-I MPLIES (P P) (Q (LIST "OR P-1
(STATE (NEWJ P PRG Q)

;o FAIRNESS THEOREMS

(PROVE- LEMMA UNCONDI TI ONAL- FAI RNESS (REWRI TE)
(I MPLIES (AND (UNLESS P Q PRG
(ENSURES P Q PRO)
(TOTAL PRG))
(LEADS-TO P Q PRG))
((I NSTRUCTI ONS PROMOTE (REWRI TE ENSURES- PROVES- LEADS- TO)
(REWRI TE TOTAL- | MPLI ES- SCHEDULABLE)

(CLAIM (MEMBER (EE P PRG Q PRG ((ENABLE ENSURES-| MPLI ES)))

PROVE)))
(DI SABLE UNCONDI Tl ONAL- FAI RNESS)

(PROVE- LEMMA UNCONDI TI ONAL- FAI RNESS- GENERAL (REVRI TE)
(I MPLIES (AND (UNLESS P-1 Q1 PRG)
(ENSURES P-2 Q2 PRG)
(IMPLIES (EVAL P (S PRG (I LEADS P PRG Q))
(EVAL P-1 (S PRG (I LEADS P PRG Q)))
(STRONGER-P P-1 P-2)

(IMPLIES (EVAL Q1 (S PRG (JLEADS (ILEADS P-1 PRG Q

PRG Q 1)))
(EVAL Q (S PRG (JLEADS (ILEADS P-1 PRG Q
PRG Q1))))
(STRONGER-P Q2 Q1)
(TOTAL PRO))
(LEADS-TO P Q PRG))
((USE (LEADS- TO- STRENGTHEN- LEFT (Q P) (R Q (P P-1) (PRG PRG)
(LEADS- TO- VEAKEN-RI GHT (P P-1) (R Q (Q Q1) (PRG PRG))

(ENSURES- STRENGTHEN- LEFT (P P-1) (R Q@ 2) (Q P-2) (PRG PRG)

(ENSURES- WEAKEN-RI GHT (P P-1) (R Q1) (Q Q2))
(UNCONDI TI ONAL- FAIRNESS (P P-1) (Q Q1) (PRGPRG))))

(DI SABLE UNCONDI Tl ONAL- FAI RNESS- GENERAL)

165

(CONSTRAI N STRONG- FAI RNESS (REWRI TE)
(I MPLIES (AND (UNLESS P Q PRG
(E-ENSURES P Q C PRG)
(LEADS-TO P (LIST "OR Q O PRG
(STRONGLY- FAI R PRG))
(LEADS-TO P Q PRG))
((STRONGLY- FAI R SCHEDULABLE))
((USE (ENSURES- PROVES- LEADS- TO)
(PROVE- ENSURES (E (EEE C P PRG Q))
(E- ENSURES- | MPLI ES (OLD (OLDE (EEE C

PPRGQ P Q)
(NEW (NEVE (EEE C P PRGQ P Q)))))

(DI SABLE STRONG- FAI RNESS)

(PROVE- LEMVA STRONG- FAI RNESS- GENERAL (REVRI TE)
(I MPLIES (AND (UNLESS P-1 Q 1 PRO)
(E-ENSURES P-2 Q2 C PRG
(LEADS-TO P (LIST "OR Q O PRO)
(IMPLIES (EVAL P (S PRG (I LEADS P PRG Q))
(EVAL P-1 (S PRG (I LEADS P PRG Q)))
(IMPLIES (EVAL P-1 (S PRG
(I LEADS P-1 PRG
(LIST'OR Q1 Q)))
(EVAL P (S PRG (I LEADS P-1 PRG
(LIST'OR Q1 0))))
(STRONGER-P P-1 P-2)
(IMPLIES (EVAL Q1 (S PRG (JLEADS (ILEADS P-1 PRG Q
PRG Q1)))
(EVAL Q (S PRG (JLEADS (ILEADS P-1 PRG Q

PRG Q1))))
(IMPLIES (EVAL (LIST 'OR Q Q)
(S PRG (JLEADS (I LEADS
P PRG
(LIST'OR Q1 Q)
PRG (LIST'OR Q O))))
(EVAL (LIST'OR Q1 O
(S PRG (JLEADS (I LEADS
P PRG
(LIST'OR Q1 Q)
PRG (LIST 'OR Q 0))))
(STRONGER-P @2 Q1)
(STRONGLY- FAI R PRG))
(LEADS-TO P Q PRG))
((USE (PROVE- E- ENSURES (E (EEE C P-2 PRG Q2))
(P P-1) (QQ1) (PRG PRG)
(E- ENSURES- | MPLIES (P P-2) (Q Q2) (C C (PRG PRG
(OLD (OLDEE (EEE C P-2 PRG Q 2)
P-1 Q1))
(NEW (NEVEE (EEE C P-2 PRG Q 2)
P-1 Q1)))
(LEADS- TO- STRENGTHEN- LEFT (Q P) (R Q (P P-1) (PRG PRG)
(LEADS- TO- STRENGTHEN- LEFT (Q P-1) (R (LIST'OR Q1 Q)
(P P) (PRG PRO))
(LEADS- TO- VEAKEN-RI GHT (P P-1) (R Q (Q Q1) (PRG PRG)
(LEADS- TO- VEAKEN-RI GHT (P P) (R (LIST'OR Q1 Q)
(Q(LIST'ORQC)) (PRG PRO)
(STRONGER- P- | MPLI ES (P P-1) (Q P-2)
(STATE (OLDEE (EEE C P-2 PRG Q 2)
P-1Q1)))
(STRONGER-P- I MPLIES (P Q@ 2) (Q Q1)
(STATE (OLDEE (EEE C P-2 PRG Q 2)

166

P-1Q1)))
(STRONGER- P- I MPLIES (P Q@ 2) (Q Q1)
(STATE (NEVEE (EEE C P-2 PRG Q 2)
P-1 Q1))
(STRONG- FAIRNESS (P P-1) (Q Q1) (C O (PRG PRG)))))

(DI SABLE STRONG FAI RNESS- GENERAL)

(DEFN VEW (I J P Q C PRO
(IF (LESSP | J)
(IF (EVAL Q (S PRG 1))
|

(IF (EVAL P (S PRG I))
(IF (EVAL C (S PRG I))
(WFW (ADD1 1) J P Q C PRG
D
)
(FIX 1))
((LESSP (DI FFERENCE J 1))))

(PROVE- LEMVA WFW Bl GGER (REWRI TE)
(NOT (LESSP (WEW | J P Q C PRG 1)))

(PROVE- LEMVA ABOUT- WEW (REWRI TE)
(I MPLIES (AND (UNLESS P Q PRG
(LI STP PRO)
(EVAL P (S PRG I))
(NOT (LESSP J 1)))
(OR (EVAL Q (S PRG (WWI J P Q C PRG))
(AND (EVAL P (S PRG (WWI J P Q C PRG))
(NOT (EVAL Q (S PRG (WWI J P Q C PRG)))
(NOT (EVAL C (S PRG (WWI J P Q C PRG)))
(AND (EQUAL (WEWI J P Q C PRG (FIX J))
(OR (EVAL P (S PRG J))
(EVAL Q (S PRG J))))))
((1 NSTRUCTI ONS
(INDUCT (WFW 1 J P Q C PRG) PROVE
(CLAIM (EVAL Q (S PRG (ADDL 1))) 0) PROVE
(CLAIM (EVAL (LIST'ORP Q (S PRG (ADDL 1))) 0) PROVE PROMOTE
PROMOTE (CONTRADI CT 2)
(USE- LEMVA EFFECTI VE- I DLE ((PRG PRG (I 1)))
(USE- LEMVA UNLESS- | MPLI ES
((PRG PRG) (OLD (S PRG 1)) (NEW (S PRG (ADDL 1)))
(E (CHOOSE PRG 1))))
PROVE PROVE PROVE PROVE)))

(DEFN W TNESS (P Q C PRO)
(WEW (1 LEADS P PRG Q
(NEXT PRG (EEE C P PRG Q
(I LEADS P PRG Q)

P QC PRG)

(PROVE- LEMMA WEAK- FAI RNESS (REVRI TE)
(I MPLI ES (AND (UNLESS P Q PRG
(E-ENSURES P Q C PRO)

(I MPLIES (EVAL (LIST *AND P (LIST 'NOT Q)
(S PRG (WTNESS P Q RG)))
(EVAL C (S PRG (W TNESS P PRG)))))

(LEADS-TO P Q PRG))
((1 NSTRUCTI ONS

167

PROMOTE
(CLAI M (MEMBER (EEE C P PRG Q PRQ)
((ENABLE E- ENSURES- | MPLI ES)))
(CLAIM (LI STP PRG))
(USE- LEMVA ABOUT- WFW
((PP) (QOQ (CO (PRGPRG (I (ILEADS P PRG Q)
(J (NEXT PRG (EEE C P PRG Q (ILEADS P PRG Q))))
(REWMRI TE PROVE- LEADS- TO
(($J (IF (EVAL Q (S PRG (WTNESS P Q C PRG)))
(WTNESS P Q C PRG
(ADDL (WTNESS P Q C PRG))))))
PROMOTE (DIVE 1) (= T) UP (DEMOTE 6) (DIVE 1) (DIVE 1) (= T)
TOP PROMOTE S-PROP (DI VE 3) (DI VE 1)
(REWRI TE E- ENSURES- | MPLI ES
(($P P) ($C C) ($PRG PRO)
($OLD (S PRG (WTNESS P Q C PRG)))))
TOP S (DIVE 3) (= (CHOOSE PRG (WTNESS P Q C PRG))) UP
(REWRI TE COVPUTATI ON
((SNEW (NEWC-1 (EEE C P PRG Q
(S PRG (WTNESS P Q C PRG))))))
(DIVE 3) (= (EEE C P PRG Q) UP
(REWRI TE ENABLI NG- CONDI TI ON- | MPLI ES (($C C) ($PRG PRQ)))
(REWRI TE E- ENSURES- | MPLI ES) PROVE PROVE)))

(DI SABLE WEAK- FAI RNESS)

(PROVE- LEMMA VIEAK- FAI RNESS- GENERAL (REWRI TE)
(I MPLIES (AND (UNLESS P-1 Q1 PRG)
(E-ENSURES P-2 Q2 C PRO
(IMPLIES (EVAL (LIST *AND P-1 (LIST ' NOT Q1))
(S PRG (WTNESS P-1 Q1 C PRG)))
(EVAL C (S PRG (WTNESS P-1 Q1 C PRG))))
(IMPLIES (EVAL P (S PRG (I LEADS P PRG Q))
(EVAL P-1 (S PRG (ILEADS P PRG Q)))
(STRONGER-P P-1 P-2)
(IMPLIES (EVAL Q1 (S PRG (JLEADS (ILEADS P-1 PRG Q
PRG Q1)))
(EVAL Q (S PRG (JLEADS (ILEADS P-1 PRG Q
PRG Q1))))
(STRONGER-P Q2 Q1))
(LEADS-TO P Q PRG))
((USE (PROVE- E- ENSURES (E (EEE C P-2 PRG Q 2))
(P P-1) (QQ1) (PRGPRG)
(E- ENSURES- | MPLIES (P P-2) (Q @2) (C C (PRG PRG
(OLD (OLDEE (EEE C P-2 PRG Q 2)
P-1 Q1))
(NEW (NEVEE (EEE C P-2 PRG Q 2)
P-1 Q1)))
(LEADS- TO- STRENGTHEN- LEFT (Q P) (R Q (P P-1) (PRG PRG)
(LEADS- TO- VEAKEN-RI GHT (P P-1) (R Q (Q Q1) (PRG PRG))
(STRONGER- P- | MPLI ES (P P-1) (Q P-2)
(STATE (OLDEE (EEE C P-2 PRG Q 2)
P-1 Q1)))
(STRONGER- P- I MPLIES (P Q@ 2) (Q Q1)
(STATE (OLDEE (EEE C P-2 PRG Q 2)
P-1 Q1)))
(STRONGER-P-I MPLIES (P Q@ 2) (Q Q1)
(STATE (NEVEE (EEE C P-2 PRG Q 2)
P-1 Q1)))
(VEAK- FAIRNESS (P P-1) (Q @ 1) (C O (PRG PRG))))

168

(DI SABLE WEAK- FAl RNESS- GENERAL)
(DI SABLE W TNESS)

(PROVE- LEMVA DEADLOCK- FREEDOM W TNESS (REWRI TE)
(I MPLI ES (AND (UNLESS | NV ’ (FALSE) PR
(ENABLI NG- CONDI TION C E PRG)
(I MPLIES (EVAL | NV
(S PRG
(NEXT PRG E
(I LEADS | NV PRG
"(FALSE)))))
(NOT (EVAL C
(S PRG
(NEXT PRG E
(I LEADS | NV PRG
"(FALSE)))))))
(SCHEDULABLE PRG))
(LEADS-TO I NV ' (FALSE) PRG))
((1 NSTRUCTI ONS PROVOTE
(CLAIM (MEMBER E PRG) ((ENABLE ENABLI NG CONDI TI ON- | MPLI ES)))
(REWRI TE PROVE- LEADS- TO) (CONTRADI CT 3) (DI VE 1) (DI VE 1)
(REVRI TE | NVARI ANTS- PERSI ST- GENERAL
(($! (1LEADS I NV PRG ' (FALSE)))))
UP (DIVE 2) (DIVE 1)
(REWRI TE ENABLI NG- CONDI TI ON- | MPLI ES
(($E E) ($PRG PRQ
(SNEW (S PRG
(ADDL (NEXT PRG E
(I LEADS | NV PRG ' (FALSE))))))))
TOP S (REWRI TE COMPUTATI ON-N) PROVE PROVE PROVE)))

(DI SABLE DEADLOCK- FREEDOM W TNESS)

(CONSTRAI N DEADLOCK- FREEDOM (REVRI TE)
(I MPLI ES (AND (UNLESS I NV ’ (FALSE) PRG)
(ENABLI NG- CONDI TI ON C E PRQ)
(I MPLIES (EVAL | NV
(S PRG
(NEXT PRG E
(I LEADS | NV PRG
"(FALSE)))))
(NOT (EVAL C
(S PRG
(NEXT PRG E
(I LEADS | NV PRG
"(FALSE)))))))
(DEADLOCK- FREE PRG))
(LEADS-TO | NV ' (FALSE) PRG))
((DEADLOCK- FREE SCHEDULABLE))
((USE (DEADLOCK- FREEDOM W TNESS))))

(PROVE- LEMVA DEADLOCK- FREEDOMVE GENERAL (REWR! TE)
(I MPLIES (AND (UNLESS I NV ’ (FALSE) PRG)
(ENABLI NG- CONDI TION C E PRG)
(I MPLIES (EVAL | NV
(S PRG
(NEXT PRG E
(I LEADS | NV PRG
"(FALSE)))))

169

(NOT (EVAL C
(S PRG
(NEXT PRG E
(I LEADS | NV PRG
"(FALSE)))))))
(IMPLIES (NOT (EVAL INV (S PRG (Il P PRG)))
(EVAL P (S PRG (11 P PRG)))
(DEADLOCK- FREE PRG))
(I NVARI ANT P PRG))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE | NVARI ANT- CONSEQUENCE (($P (LIST ' NOT 1NV))))
(REVRI TE LEADS- TO- FALSE- | NVARI ANT (($P IN\V)))
(REWRI TE DEADLOCK- FREEDOM) S (DROP 1 2 3 5) PROVE)))

(ENABLE EVAL)
(ENABLE N)

;; SOME HELPFUL DEFI NI TI ONS AND THEOREMS

(DEFN UPDATE- ASSOC (KEY VALUE ALI ST)
(I'F (LI STP ALI ST)
(I F (EQUAL (CAAR ALI ST) KEY)
(CONS (CONS KEY VALUE) (CDR ALIST))
(CONS (CAR ALI ST)
(UPDATE- ASSCC KEY VALUE (CDR ALIST))))
(LI ST (CONS KEY VALUE))))

(PROVE- LEMMA SI MPLI FY- ASSOC (REWRI TE)
(EQUAL (ASSOC KEY-1 (UPDATE- ASSOC KEY-2 VALUE ALI ST))
(I F (EQUAL KEY-1 KEY-2)
(CONS KEY-1 VALUE)
(ASSOC KEY-1 ALIST))))

(DEFN ADD1- MOD (N X)
(I F (LESSP (ADDL X) N)
(ADDL X)
0))

(DEFN SUB1- MOD (N X)
(IF (LESSP X N)
(I F (ZEROP X)
(SUBL N)
(SUBL X))
0))

(DEFN UC (OLD NEW KEYS EXCPT)
(I'F (LI STP KEYS)
(I F (MEMBER (CAR KEYS) EXCPT)

(UC OLD NEW (CDR KEYS) EXCPT)
(I F (EQUAL (ASSOC (CAR KEYS) OLD)
(ASSOC (CAR KEYS) NEW)
(UC OLD NEW (CDR KEYS) EXCPT)

F))
m)

(PROVE- LEMVA UC- BASI G- PROPERTY (REVRI TE)
(I MPLIES (AND (UC OLD NEW KEYS EXCPT)
(MEMBER KEY KEYS)
(NOT (MEMBER KEY EXCPT)))
(EQUAL (EQUAL (ASSOC KEY OLD)

170

(ASSOC KEY NEW)
mn))

(PROVE- LEMVA UG- COWUTATI VE (REWRI TE)
(EQUAL (UC OLD NEW KEYS EXCPT)
(UC NEW OLD KEYS EXCPT)))

(PROVE- LEMMA UG- REFLEXI VE (REWRI TE)
(UC LI ST LI ST KEYS EXCPT))

(PROVE- LEMMA UC- OF- UPDATE- ASSCC (REVRI TE)
(EQUAL (UC LIST-1
(UPDATE- ASSOC KEY VALUE LI ST- 2)
KEYS EXCPT)
(I F (MEMBER KEY EXCPT)
(UC LIST-1 LI ST-2 KEYS EXCPT)
(I F (MEMBER KEY KEYS)
(AND (EQUAL (ASSCC KEY LI ST-1)
(CONS KEY VALUE))

(UC LIST-1 LIST-2 KEYS (CONS KEY EXCPT)))

(UC LIST-1 LI ST-2 KEYS EXCPT)))))

(PROVE- LEMMA STRI P- CARS- APPEND (REWRI TE)
(EQUAL (STRI P-CARS (APPEND A B))
(APPEND (STRI P- CARS A)
(STRI P-CARS B))))

(PROVE- LEMMA UC- APPEND (REVRI TE)
(EQUAL (UC OLD NEW (APPEND A B) EXCPT)
(AND (UC OLD NEW A EXCPT)
(UC OLD NEW B EXCPT))))

(PROVE- LEMVA UC- COVMMUTATI VE- 2 (REWRI TE)
(EQUAL (UC OLD NEW (APPEND A B) EXCPT)
(UC OLD NEW (APPEND B A) EXCPT)))

(DI SABLE UC- APPEND)

(PROVE- LEMVA KEY- NOT- MEMBER- STRI P- CARS (REVRI TE)
(I MPLI ES (NOT (MEMBER KEY (STRI P- CARS ALIST)))
(EQUAL (ASSOC KEY AL ST)
F))

(PROVE- LEMMA UC- PROPERTY (REVRI TE)
(I MPLI ES (AND (UC OLD NEW (APPEND (STRI P- CARS OLD)
(STRI P- CARS NEW)
EXCPT)
(NOT (MEMBER KEY EXCPT)))
(EQUAL (EQUAL (ASSOC KEY OLD)
(ASSOC KEY NEW)
)
((DI SABLE UC- BAS| C- PROPERTY)
(USE (UC- BASI C- PROPERTY (KEYS (STRI P- CARS (APPEND OLD NEW))))))

(PROVE- LEMMA ABOUT- UC (REVRI TE)
(IMPLIES (AND (UC A B (APPEND (STRI P-CARS A)
(STRI P- CARS B))
EXCPT)
(NOT (MEMBER KEY EXCPT)))
(EQUAL (ASSOC KEY A)

171

172

(ASSCC KEY B)))
((DI SABLE UC- PROPERTY)
(USE (UC- PROPERTY (OLD A) (NEWB)))))

(DEFN CHANGED (OLD NEW EXCPT)
(UC OLD NEW (STRI P- CARS (APPEND OLD NEW) EXCPT))

Appendix C.

Mutual Exclusion Events

This appendix contains the complete events list supporting the proof of mutual
exclusion described in chapter 4.

This event list constructs the proof of mutua exclusion on top of the library
created by the eventslisted in Appendix B.
(NOTE- LI B " | NTERPRETER")
(PROVEALL "ME" " (
;;; TH'S FI LES DEFI NES A TOKEN PASSI NG SOLUTI ON TO THE N PROCESSOR
;33 MUTUAL EXCLUSI ON PROBLEM

(DEFN STATUS (STATE | NDEX)
(CDR (ASSOC (CONS ' ME | NDEX) STATE)))

(DEFN WAI T (STATE | NDEX)
(EQUAL (STATUS STATE | NDEX) ' WAIT))

(DEFN NON- CRI Tl CAL (STATE | NDEX)
(EQUAL (STATUS STATE | NDEX) ' NON- CRI TI CAL))

(DEFN CRI TI CAL (STATE | NDEX)
(AND (NOT (NON-CRI TI CAL STATE | NDEX))
(NOT (WAI T STATE | NDEX))))

(DEFN TI CKS (STATE | NDEX)
(FI X (STATUS STATE | NDEX)))

(DEFN CRI Tl CAL- TI CKS (STATE | NDEX TI CKS)
(AND (CRI TI CAL STATE | NDEX)
(EQUAL (TICKS STATE | NDEX)
(FIX TICKS))))

(DEFN CHANNEL (STATE | NDEX)
(CDR (ASSOC (CONS ' C | NDEX) STATE)))

(DEFN TOKEN (STATE | NDEX)
(LI STP (CHANNEL STATE | NDEX)))

(DEFN ME (OLD NEW | NDEX SI ZE)

(I'F (NON-CRI TI CAL OLD | NDEX)
(I F (NON- CRI TI CAL NEW | NDEX)

173

174

(I F (TOKEN QLD | NDEX)
(I F (EQUAL (ADDIL-MOD S| ZE | NDEX) | NDEX)
(AND (EQUAL (LENGTH (CHANNEL NEW I NDEX))
(LENGTH (CHANNEL OLD I NDEX)))
(CHANGED OLD NEW
(LIST (CONS ' C I NDEX))))
(AND (EQUAL (CHANNEL NEW | NDEX)
(CDR (CHANNEL OLD | NDEX)))
(EQUAL (LENGTH (CHANNEL NEW (ADD1- MOD S| ZE | NDEX)))
(ADDL (LENGTH (CHANNEL OLD
(ADDL- MOD SI ZE
I NDEX)))))
(CHANGED OLD NEW
(LI'ST (CONS ’ C | NDEX)
(CONS ' C (ADD1- MOD Sl ZE | NDEX))))))
(CHANGED OLD NEW NI L))
(AND (WAl T NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ' ME | NDEX)))))
(IF (WAI T OLD I NDEX)
(I F (TOKEN OLD | NDEX)
(AND (EQUAL (CHANNEL NEW | NDEX)
(CDR (CHANNEL OLD | NDEX)))
(CRI TI CAL NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ’ ME | NDEX)
(CONS ' C INDEX))))
(CHANGED OLD NEW NI L))
(OR (AND (LESSP (TI CKS NEW I NDEX) (Tl CKS OLD I NDEX))
(CRI TI CAL NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ’ ME I NDEX))))
(AND (NON- CRI TI CAL NEW | NDEX)
(EQUAL (LENGTH (CHANNEL NEW (ADD1- MOD Sl ZE | NDEX)))
(ADDL (LENGTH (CHANNEL OLD (ADDL- MOD SI ZE | NDEX)))))
(CHANGED OLD NEW
(LI ST (CONS * C (ADDL- MOD S| ZE | NDEX))

(CONS ' ME I NDEX))))))))

(DEFN ME- FUNCTI ON (| NDEX S| ZE STATE)
(I F (NON- CRI TI CAL STATE | NDEX)
(I F (TOKEN STATE | NDEX)
(UPDATE- ASSOC (CONS * C (ADDL- MOD S| ZE | NDEX))
(CONS * TOKEN
(CHANNEL (UPDATE- ASSOC
(CONS ’ C | NDEX)
(CDR (CHANNEL STATE | NDEX))
STATE)
(ADDL- MOD SI ZE | NDEX)))
(UPDATE- ASSCC (CONS ' C | NDEX)
(CDR (CHANNEL STATE | NDEX))
STATE))
STATE)
(I F (WAI T STATE | NDEX)
(I F (TOKEN STATE | NDEX)
(UPDATE- ASSOC (CONS ’ C | NDEX)
(CDR (CHANNEL STATE | NDEX))
(UPDATE- ASSOC (CONS ' ME | NDEX)
0
STATE))
STATE)
(I F (ZEROP (TI CKS STATE | NDEX))
(UPDATE- ASSCC (CONS ’ C (ADD1- MOD S| ZE | NDEX))
(CONS * TOKEN (CHANNEL STATE (ADDL- MOD S| ZE

I NDEX)))
(UPDATE- ASSOC (CONS ' ME | NDEX)
" NON- CRI TI CAL
STATE))
(UPDATE- ASSOC (CONS ’ ME | NDEX)
(SUBL (TI CKS STATE | NDEX))
STATE)))))

(PROVE- LEMVA TOTAL- ME (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(ME OLD (ME- FUNCTI ON | NDEX S| ZE OLD) | NDEX Sl ZE)))

(DEFN PROGRAM (| NDEX SI ZE)
(I F (ZEROP | NDEX)
NI L
(CONS (LIST ' ME (SUBL | NDEX) S| ZE)
(PROGRAM (SUB1 | NDEX) Sl ZE))))

(DEFN ME- PRG (SI ZE)
(PROGRAM S| ZE SI ZE))

(PROVE- LEMVA MEMBER- PROGRAM (REVRI TE)
(EQUAL (MEMBER STATEMENT (PROGRAM | NDEX S| ZE))
(I F (ZEROP | NDEX)
F
(AND (EQUAL (CAR STATEMENT) ’ ME)
(NUMBERP (CADR STATEMENT))
(LESSP (CADR STATEMENT) | NDEX)
(EQUAL (CADDR STATEMENT) Sl ZE)
(EQUAL (CDDDR STATEMENT) NIL))))
((EXPAND (PROGRAM 1 SI ZE)
(PROGRAM 0 SI ZE))))

(PROVE- LEMVA MEMBER- ME- PRG (REVRI TE)
(EQUAL (MEMBER STATEMENT (ME- PRG SI ZE))
(I F (ZEROP S| ZE)
F
(AND (EQUAL (CAR STATEMENT) ' ME)
(NUMBERP (CADR STATEMENT))
(LESSP (CADR STATEMENT) Sl ZE)
(EQUAL (CADDR STATEMENT) Sl ZE)
(EQUAL (CDDDR STATEMENT) NIL)))))

(DI SABLE ME- PRG)

(PROVE- LEMVA TOTAL- PRG (REWRI TE)
(TOTAL (ME-PRG Sl ZE))
((DI SABLE PROVE- TOTAL ME- FUNCTI ON ME)
(USE (PROVE- TOTAL (PRG (ME- PRG Sl ZE))
(NEW (ME- FUNCTI ON (CADR (ET (ME- PRG SI ZE)))
(CADDR (ET (ME-PRG SI ZE)))
(OLDT (ME-PRG SIZE))))))))

(DEFN VI GHT- OF- TRI PLE (STATE | NDEX S| ZE)
(PLUS (I F (CRITI CAL STATE | NDEX)
1 0)
(LENGTH (CHANNEL STATE | NDEX))
(LENGTH (CHANNEL STATE (ADDL- MOD Sl ZE | NDEX)))))

175

(PROVE- LEMVA VIl GHT- OF- TRI PLE- PRESERVED (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP 1 S| ZE)
(LESSP | NDEX S| ZE)
(ME OLD NEW | NDEX S| ZE))
(EQUAL (VEI GHT- OF- TRI PLE NEW | NDEX S| ZE)
(VEI GHT- OF- TRI PLE OLD | NDEX SI ZE))))

(DEFN WEI GHT- BUT- TRI PLE (STATE | NDEX S| ZE N)
(I'F (ZEROP N)
0

(IF (EQUAL (SUBL N) |NDEX)
(Vil GHT- BUT- TRI PLE STATE | NDEX S| ZE (SUBL N))
(PLUS (I F (CRITI CAL STATE (SUBL N))

1 0)

(IF (EQUAL (SUBL N) (ADDL-MOD S| ZE | NDEX))
0

(LENGTH (CHANNEL STATE (SUBL N))))
(VEI GHT- BUT- TRI PLE STATE | NDEX S| ZE (SUBL N))))))

(PROVE- LEMMA VAEI GHT- BUT- TRI PLE- PRESERVED (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX S| ZE)
(ME OLD NEW | NDEX S| ZE))
(EQUAL (VEI GHT- BUT- TRI PLE NEW | NDEX SI ZE N)
(VEI GHT- BUT- TRI PLE OLD | NDEX SI ZE N))))

(DEFN VAEI GHT (STATE SI ZE)
(I F (ZEROP Sl ZE)
0

(PLUS (I F (CRITI CAL STATE (SUBL Sl ZE))
1 0)
(LENGTH (CHANNEL STATE (SUBL Sl ZE)))
(VEl GHT STATE (SUBL SI ZE)))))

(PROVE- LEMVA VAEI GHT- | S- SUM (REVRI TE)
(I MPLI ES
(AND (NUMBERP | NDEX)
(LESSP | NDEX S| ZE)
(LESSP 1 S| ZE))
(EQUAL (VEEI GHT STATE N)
(PLUS (I F (LESSP | NDEX N)
(PLUS (I F (CRITI CAL STATE | NDEX)
1 0)
(LENGTH (CHANNEL STATE | NDEX)))
0)
(I F (LESSP (ADDL-MD S| ZE | NDEX) N)
(LENGTH (CHANNEL STATE (ADD1- MOD SI ZE
I NDEX)))
0)
(VEEI GHT- BUT- TRI PLE STATE | NDEX SI ZE N)))))

(PROVE- LEMMA VIl GHT- PRESERVED- 1 (REVRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX S| ZE)
(LESSP 1 S| ZE)
(ME OLD NEW | NDEX S| ZE))
(EQUAL (VEI GHT NEW S| ZE)
(VEI GHT OLD SI ZE)))
((DI SABLE ME VAl GHT- OF- TRI PLE- PRESERVED)

176

177

(USE (\AEI GHT- OF- TRI PLE- PRESERVED))))

(PROVE- LEMMA VI GHT- PRESERVED- 2 (REVRI TE)
(IMPLIES (ME OLD NEWO 1)
(EQUAL (VEI GHT NEW 1)
(VEI GHT OLD 1))))

(PROVE- LEMMA ABOUT- S| ZE- | NDEX ()
(I MPLIES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(OR (AND (EQUAL | NDEX 0)
(EQUAL SIZE 1))
(LESSP 1 SIZE))))

(PROVE- LEMVA VAEI GHT- PRESERVED (REVWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX S| ZE)
(ME OLD NEW | NDEX S| ZE))
(EQUAL (VEI GHT NEW S| ZE)
(VEI GHT OLD SI ZE)))
((DI SABLE VEEI GHT- | S- SUM ME)
(USE (ABOUT- SI ZE- | NDEX))))

(DI SABLE VEI GHT- | S- SUM

(DI SABLE V\EI GHT- PRESERVED- 1)

(DI SABLE V\EI GHT- PRESERVED- 2)

(DI SABLE VEI GHT- OF- TRI PLE- PRESERVED)
(DI SABLE VEI GHT- BUT- TRI PLE- PRESERVED)
(DI SABLE TOTAL- ME)

(DEFN MUTUAL- EXCLUSI ONP (STATE SI ZE)
(EQUAL (VEI GHT STATE SI ZE) 1))

(PROVE- LEMMA MJTUAL- EXCLUSI ONP- UNLESS- SUFFI CI ENT (REVRI TE)
(UNLESS- SUFFI CI ENT STATEMENT
(ME- PRG S| ZE)
OLD NEW
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
" (FALSE))
((DI SABLE ME)))

(DI SABLE WEI GHT- PRESERVED)

(PROVE- LEMVA MUTUAL- EXCLUSI ONP- PRG (REWRI TE)
(UNLESS * (MJTUAL- EXCLUSI ONP STATE (QUOTE , Sl ZE))
" (FALSE)
(ME- PRG S| ZE))
((DI SABLE ME- PRG UNLESS- SUFFI Cl ENT)))

(PROVE- LEMMA WAl T- UNLESS- CRI TI CAL-1 ()
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX S| ZE)
(ME OLD NEW | NDEX S| ZE)
(WAI T OLD | NDEX))
(OR (WAI T NEW I NDEX)
(CRI TI CAL NEW | NDEX))))

(PROVE- LEMMA WAI T- UNLESS- CRI TI CAL- 2 ()
(I MPLIES (AND (NUMBERP | NDEX)
(LESSP | NDEX S| ZE)

(NUMBERP | NDEX1)
(LESSP | NDEX1 Sl ZE)
(NOT (EQUAL | NDEX | NDEX1))
(ME OLD NEW | NDEXL S| ZE)
(WAI T OLD | NDEX))

(OR (WAI T NEW I NDEX)
(CRITI CAL NEW | NDEX))))

(PROVE- LEMVA WAl T- UNLESS- CRI Tl CAL- UNLESS- SUFFI Cl ENT (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(UNLESS- SUFFI CI ENT STATEMENT

(ME- PRG S| ZE)
oD
NEW
“(WAI T STATE (QUOTE , | NDEX))
“* (CRI TI CAL STATE (QUOTE , I NDEX))))

((DI SABLE ME)

(USE (WAl T- UNLESS- CRI TI CAL- 1)
(WAl T- UNLESS- CRI TI CAL- 2 (I NDEX1 (CADR STATEMENT))))))

(PROVE- LEMMA WAI T- UNLESS- CRI TI CAL (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX S| ZE)
(NOT (ZEROP SI ZE)))
(UNLESS * (WAI T STATE (QUOTE , | NDEX))
“(CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG SI ZE)))
((DI SABLE ME
WAI T CRI TI CAL
UNLESS- SUFFI CI ENT)))

(PROVE- LEMVA CELCOR- ENSURES- KEY (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(ENSURES- KEY (LI ST ' ME | NDEX S| ZE)
(ME- PRG S| ZE)
OLD NEW
“* (AND (CRITI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , (ADDL TI CKS))))
“(OR (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE
(QUOTE , | NDEX))
(QUOTE , TI CKS)))
(TOKEN STATE
(QUOTE , (ADDL- MOD Sl ZE
INDEX)))))))

(PROVE- LEMMA CELCOR- ENSURES- REST (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(ENSURES- REST STATEMENT
(LI ST ' ME | NDEX S| ZE)
(ME- PRG S| ZE)
OLD NEW
“ (AND (CRITI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , (ADDL TI CKS))))

Q))

178

(PROVE- LEMVA CRI Tl CAL- ENSURES- LESS- CRI TI CAL- OR- Rl GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(ENSURES * (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , (ADDL TI CKS))))
“(OR (AND (CRITI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , TI CKS)))
(TOKEN STATE (QUOTE , (ADDL- MOD S| ZE | NDEX))))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT (LI ST ’* ME I NDEX SI ZE))))
(REWRI TE CELCOR- ENSURES- KEY))))

(PROVE- LEMMA CRI Tl CAL- UNLESS- LESS- CRI Tl CAL- OR- RI GHT (REWRI TE)
(I MPLI ES
(AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(UNLESS * (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , (ADDL TI CKS))))
*(OR (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , TI CKS)))
(TOKEN STATE (QUOTE , (ADDL- MOD S| ZE | NDEX))))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS
PROMOTE
(REWRI TE HELP- PROVE- UNLESS- ENSURES
(($STATEMENT (LI ST’ ME I NDEX SI ZE))))
(REWRI TE CELCOR- ENSURES- KEY) (REWRI TE CELCOR- ENSURES- REST))))

(PROVE- LEMVMA W.CEC- ENSURES- KEY (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(ENSURES- KEY (LI ST ’ ME | NDEX S| ZE)

(ME- PRG S| ZE)

OLD NEW

“(AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))

“(CRITI CAL STATE (QUOTE , | NDEX)))))

(PROVE- LEMVA W.CEC- ENSURES- REST (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(ENSURES- REST STATEMENT (LI ST ' ME | NDEX SI ZE)
(ME-PRG S| ZE) OLD NEW
“(AND (WAI T STATE (QUOTE , | NDEX))

(TOKEN STATE (QUOTE , | NDEX)))
Q)
((1 NSTRUCTI ONS

(CLAIM (EQUAL (ADDIL-MD S| ZE (CADR STATEMENT)) | NDEX) 0)
PROVE PROVE)))

(PROVE- LEMMA WAl T- AND- LEFT- CHANNEL- ENSURES- CRI TI AL (REWRI TE)
(I MPLIES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(ENSURES ‘' (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
*(CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG SI ZE)))

179

((1 NSTRUCTI ONS PROVOTE
(REWRI TE HELP- PROVE- ENSURES (($STATEMENT (LI ST ' ME | NDEX SI ZE))))
(REWRI TE W.CEC- ENSURES- KEY))))

(PROVE- LEMMA VAl T- AND- LEFT- CHANNEL- UNLESS- CRI TI AL (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(UNLESS * (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
* (CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE HELP- PROVE- UNLESS- ENSURES
(($STATEMENT (LI ST ’* ME I NDEX SI ZE))))
(REWRI TE W.CEC- ENSURES- KEY) (REWRI TE W.CEC- ENSURES- REST))))

(PROVE- LEMMA NCLCEW.CORC- ENSURES- KEY (REVRI TE)
(I MPLIES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(ENSURES- KEY (LI ST *' ME | NDEX S| ZE)
(ME- PRG S| ZE)
OLD NEW
“ (AND (NON- CRI TI CAL STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
“(OR (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
(TOKEN STATE
(QUOTE , (ADDL- MOD Sl ZE
IINDEX)))))))

(PROVE- LEMVA NCLCEW.CORC- ENSURES- REST (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(ENSURES- REST STATEMENT
(LI ST ' ME | NDEX S| ZE)
(ME- PRG S| ZE)
OLD NEW
“ (AND (NON- CRI TI CAL STATE (QUOTE , | NDEX))

(TOKEN STATE (QUOTE , | NDEX)))
Q)
((1 NSTRUCTI ONS

(CLAI M (EQUAL (ADDL-MXD S| ZE (CADR STATEMENT)) | NDEX) 0)
PROVE PROVE)))

(PROVE- LEMMA NON- CRI TI CAL- LEFT- ENSURES- WAl T- LEFT- OR- Rl GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX Sl ZE))
(ENSURES ‘' (AND (NON-CRI Tl CAL STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
“(OR (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
(TOKEN STATE (QUOTE , (ADDL- MOD S| ZE | NDEX))))
(ME-PRG SI ZE)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE HELP- PROVE- ENSURES (($STATEMENT (LI ST ' ME | NDEX SI ZE))))
(REWRI TE NCLCEW.CORC- ENSURES- KEY))))

(PROVE- LEMVA NON- CRI Tl CAL- LEFT- UNLESS- WAl T- LEFT- OR- Rl GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(UNLESS * (AND (NON-CRI TI CAL STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
“(OR (AND (WAI T STATE (QUOTE , | NDEX))

180

181

(TOKEN STATE (QUOTE , | NDEX)))
(TOKEN STATE (QUOTE , (ADDL- MOD S| ZE | NDEX))))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE HELP- PROVE- UNLESS- ENSURES
(($STATEMENT (LI ST ' ME I NDEX SI ZE))))
(REVRI TE NCLCEW.CORC- ENSURES- KEY)
(REWRI TE NCLCEW.CORC- ENSURES- REST))))

(PROVE- LEMVA LI STP- ME- PRG (REWRI TE)
(I MPLI ES (NOT (ZEROP Sl ZE))
(LI STP (ME-PRG Sl ZE)))
((ENABLE ME- PRG)))

(PROVE- LEMVA MUTUAL- EXCLUSI ONP- | S- | NVARI ANT (REVWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
(ME- PRG S| ZE))
(NOT (ZEROP SI ZE)))
(I NVARI ANT * (MUTUAL- EXCLUSI ONP STATE (QUOTE , Sl ZE))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE UNLESS- PROVES- | NVARI ANT
(($1 C (LI ST * MJTUAL- EXCLUSI ONP * STATE

(LI ST * QUOTE SI ZE)))))
(REWRI TE MUTUAL- EXCLUSI ONP- PRG) S (REWRI TE LI STP- ME-PRG))))

(PROVE- LEMVA CRI Tl CAL- LEADS- TO- LESS- CRI Tl CAL- OR- Rl GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(LEADS- TO * (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , (ADDL TI CKS))))
*(OR (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , TI CKS)))
(TOKEN STATE (QUOTE , (ADDL- MOD S| ZE | NDEX))))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS PROVOTE (REWRI TE UNCONDI Tl ONAL- FAI RNESS)
(REVRI TE CRI Tl CAL- UNLESS- LESS- CRI TI CAL- OR- Rl GHT)
(REWRI TE CRI Tl CAL- ENSURES- LESS- CRI Tl CAL- OR- Rl GHT)
(REVRI TE TOTAL- PRG))))

(PROVE- LEMMA CRI Tl CAL- Tl CKS- LEADS- TO- Rl GHT (REWRI TE)
(I MPLIES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(LEADS- TO * (AND (CRI TI CAL STATE (QUOTE , | NDEX))
(LESSP (Tl CKS STATE (QUOTE , | NDEX))
(QUOTE , (ADDL TI CKS))))
“ (TOKEN STATE (QUOTE , (ADD1- MOD Sl ZE | NDEX)))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS
(INDUCT (PLUS TICKS J)) PROMOTE PROMOTE
(REVRI TE LEADS- TO- WEAKEN- Rl GHT
(($Q (LIST ' OR
(LI ST * AND
(LI ST * CRITI CAL ’ STATE
(LI ST * QUOTE | NDEX))
(LI ST ' LESSP
(LI ST * TI CKS ’ STATE
(LI ST * QUOTE | NDEX))
(LI ST ' QUOTE TI CKS)))
(LI ST * TOKEN ’ STATE

182

(LI ST * QUOTE (ADD1- MOD SI ZE | NDEX)))))))
PROVE (REWRI TE CRI Tl CAL- LEADS- TO- LESS- CRI TI CAL- OR- Rl GHT)
PROMOTE PROMOTE (DEMOTE 2) (DIVE 1) (DIVE 1) S UP S TOP
PROVOTE
(REVRI TE LEADS- TO- WEAKEN- Rl GHT
(($Q (LIST * OR
(LI ST * TOKEN ’ STATE
(LI ST * QUOTE (ADDL- MOD S| ZE | NDEX)))
(LI ST * TOKEN ' STATE
(LI ST * QUOTE (ADDL- MOD SI ZE | NDEX)))))))
PROVE
(REWRI TE CANCELLATI ON- LEADS- TO
(($B (LIST * AND
(LI ST * CRITI CAL ’ STATE
(LI ST ' QUOTE | NDEX))
(LI ST ’ LESSP
(LI ST * TI CKS ' STATE
(LI ST * QUOTE | NDEX))
(LI'ST * QUOTE (ADDL (SUBL TICKS))))))))
(REVRI TE LEADS- TO- WEAKEN- Rl GHT
(($Q (LIST ' OR
(LI ST * AND
(LI ST * CRITI CAL ’ STATE
(LI ST * QUOTE | NDEX))
(LI ST ' LESSP
(LI ST * TI CKS ’ STATE
(LI ST * QUOTE | NDEX))
(LI ST ' QUOTE (ADDL (SUBL TICKS)))))
(LI ST * TOKEN ’ STATE
(LI ST * QUOTE (ADDL- MOD SI ZE | NDEX)))))))
PROVE (DIVE 2) (DIVE 2) (DIVE 1) (DIVE 2) (DIVE 2) (DIVE 1)
(DIVE 2) (DIVE 2) (DIVE 1) (DIVE 2) (DIVE 1) S TOP
(REWRI TE CRI Tl CAL- LEADS- TO- LESS- CRI Tl CAL- OR- Rl GHT) (DEMOTE 4)

9)))

(PROVE- LEMMA CRI Tl CAL- LEADS- TO- Rl GHT (REVRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(LEADS- TO * (CRI TI CAL STATE (QUOTE , | NDEX))
* (TOKEN STATE (QUOTE , (ADD1- MOD Sl ZE | NDEX)))
(ME- PRG SI ZE)))
((DI SABLE ADD1- MOD)
(USE
(LEADS- TO- STRENGTHEN- LEFT
(Q (LIST ’ CRITI CAL ’ STATE (LI ST ' QUOTE | NDEX)))
(R (LI ST * TOKEN * STATE (LI ST ' QUOTE (ADDL- MOD Sl ZE | NDEX))))

(P (LIST
" AND
(LIST ' CRITI CAL
' STATE
(LI ST * QUOTE | NDEX))
(LI ST ' LESSP
(LI ST * TI CKS
" STATE
(LI ST * QUOTE | NDEX))
(LI ST * QUOTE
(ADDL (Tl CKS
(S (ME-PRG Sl ZE)
(I LEADS

(LI'ST " CRITI CAL
" STATE

(LI ST ' QUOTE | NDEX))
(ME- PRG S| ZE)
(LI ST * TOKEN
' STATE
(LI ST * QUOTE
(ADDL- MOD SI ZE | NDEX)))))
INDEX))))))
(PRG (ME- PRG SI ZE))))))

(PROVE- LEMVA VWA T- LEFT- LEADS- TO- CRI TI CAL (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(LEADS-TO * (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
“(CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS PROVOTE (REWRI TE UNCONDI TI ONAL- FAI RNESS)
(REWRI TE WAl T- AND- LEFT- CHANNEL- UNLESS- CRI TI AL)
(REWRI TE WAl T- AND- LEFT- CHANNEL- ENSURES- CRI Tl AL)
(REWRI TE TOTAL- PRG))))

(PROVE- LEMMA NON- CRI TI CAL- LEFT- LEADS- TO- WAl T- LEFT- OR- Rl GHT (REVRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(LEADS- TO * (AND (NON- CRI TI CAL STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
“(OR (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
(TOKEN STATE (QUOTE , (ADDL- MOD S| ZE | NDEX))))
(ME-PRG SI ZE)))
((1 NSTRUCTI ONS PROVOTE (REWRI TE UNCONDI TI ONAL- FAI RNESS)
(REWRI TE NON- CRI Tl CAL- LEFT- UNLESS- WAl T- LEFT- OR- RI GHT)
(REWRI TE NON- CRI Tl CAL- LEFT- ENSURES- WAI T- LEFT- OR- Rl GHT)
(REWRI TE TOTAL- PRG))))

(PROVE- LEMVA VWAl T- LEFT- LEADS- TO- Rl GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(LEADS-TO * (AND (WAI T STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))
* (TOKEN STATE (QUOTE , (ADD1- MOD Sl ZE | NDEX)))
(ME- PRG SI ZE)))
((DI SABLE ADDL- MOD LEADS- TO- TRANSI T VE)
(USE (LEADS- TO- TRANSI TI VE
(PRG (ME- PRG SI ZE))
(P (LIST ’ AND
(LIST ' WAI T * STATE (LI ST ' QUOTE | NDEX))
(LI ST * TOKEN ’ STATE
(LI ST * QUOTE | NDEX))))
(Q (LIST ’ CRITI CAL ’ STATE
(LI ST * QUOTE | NDEX)))
(R (LI ST ’ TOKEN ' STATE
(LI ST * QUOTE (ADDL- MOD SI ZE

IINDEX))))))))

(PROVE- LEMMA NON- CRI TI CAL- LEFT- LEADS- TO- Rl GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE))
(LEADS- TO * (AND (NON- CRI TI CAL STATE (QUOTE , | NDEX))
(TOKEN STATE (QUOTE , | NDEX)))

* (TOKEN STATE (QUOTE , (ADD1- MOD Sl ZE | NDEX)))
(ME- PRG SI ZE)))

((DI SABLE ADD1- MOD EVAL)

(USE (CANCELLATI ON- LEADS- TO

(P (LIST ’ AND

183

(LI ST * NON- CRI TI CAL ' STATE
(LI ST * QUOTE | NDEX))
(LI ST * TOKEN * STATE
(LI ST ' QUOTE I NDEX))))
(B (LIST ’ AND
(LIST ' WAIT * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * TOKEN * STATE
(LI ST ' QUOTE I NDEX))))
(Q (LI ST ’ TOKEN ’ STATE
(LI ST * QUOTE (ADDL- MOD Sl ZE | NDEX))))
(R (LI ST ’ TOKEN ’ STATE
(LI ST * QUOTE (ADDL- MOD Sl ZE | NDEX))))
(PRG (ME-PRG S| ZE)))
(LEADS- TO- VEAKEN- Rl GHT
(PRG (ME- PRG SI ZE))
(P (LIST ' AND
(LI ST ' NON- CRI TI CAL ’ STATE

(LI'ST " QUOTE | NDEX))
(LI'ST " TOKEN ’ STATE

(LI ST * QUOTE | NDEX))))
(Q (LIST 'R

(LI ST ’ AND
(LIST ' WAI T * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * TOKEN ’ STATE
(LI ST * QUOTE | NDEX)))
(LI ST * TOKEN ' STATE
(LI ST * QUOTE (ADDL- MOD
SI ZE I NDEX)))))
(R (LIST'OR
(LI ST * TOKEN * STATE
(LI ST * QUOTE (ADD1- MOD
SI ZE | NDEX)))
(LI ST * AND
(LIST ' WAI T ’ STATE
(LI ST * QUOTE | NDEX))
(LI ST * TOKEN * STATE
(LI ST * QUOTE | NDEX))))))
(LEADS- TO- VEAKEN- Rl GHT
(PRG (ME- PRG SI ZE))
(P (LIST ’ AND
(LI ST * NON- CRI TI CAL * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * TOKEN ’ STATE

(LI ST * QUOTE | NDEX))))
(Q (LIST ' OR

(LI ST * TOKEN * STATE
(LI ST * QUOTE
(ADDL- MOD S| ZE | NDEX)))
(LI ST * TOKEN * STATE
(LI ST * QUOTE
(ADDL- MOD SI ZE | NDEX)))))
(R (LI ST ’* TOKEN ’ STATE
(LI ST * QUOTE
(ADDL- MOD SI ZE | NDEX))))))))

(PROVE- LEMMA CRI Tl CAL- WAI T- NON- CRI TI CAL (REWRI TE)
(OR (CRITI CAL STATE | NDEX)
(WAI T STATE | NDEX)
(NON- CRI TI CAL STATE | NDEX)))

185

(DEFN TOKENS (STATE Sl ZE)
(I F (ZEROP S| ZE)
NI L
(I F (TOKEN STATE (SUBL Sl ZE))
(CONS (SUBL S| ZE)
(TOKENS STATE (SUBL SI ZE)))
(TOKENS STATE (SUBL SI ZE)))))

(DEFN CRI TI CALS (STATE S| ZE)
(I F (ZEROP S| ZE)
NI L
(I F (CRITICAL STATE (SUBL Sl ZE))
(CONS (SUBL S| ZE)
(CRI TI CALS STATE (SUBL Sl ZE)))
(CRI TI CALS STATE (SUBL SI ZE)))))

(PROVE- LEMVA EQUAL- PLUS-1 (REWRI TE)
(EQUAL (EQUAL (PLUS A B) 1)
(OR (AND (EQUAL A 1)
(ZERCP B))
(AND (EQUAL B 1)
(ZEROP A)))))

(PROVE- LEMMA ABOUT- MUTUAL- EXCLUSI ONP ()
(I F (ZEROP (VEI GHT STATE Sl ZE))
(AND (EQUAL (TOKENS STATE SI ZE) NIL)
(EQUAL (CRITICALS STATE SI ZE) NIL))
(I F (EQUAL (VEI GHT STATE Sl ZE)
1)
(OR (AND (EQUAL (LENGTH (TOKENS STATE SI ZE)) 1)
(EQUAL (CRITICALS STATE SIZE) NIL))
(AND (EQUAL (LENGTH (CRITI CALS STATE SI ZE)) 1)
(EQUAL (TOKENS STATE SIZE) NIL)))
)
((I NDUCT (VEI GHT STATE SI ZE))))

(DI SABLE EQUAL- PLUS- 1)

(PROVE- LEMVA NUMBERP- CAR- TOKENS (REWRI TE)
(NUMBERP (CAR (TOKENS STATE SI ZE))))

(PROVE- LEMVA NUMBERP- CAR- CRI Tl CALS (REWRI TE)
(NUMBERP (CAR (CRI TI CALS STATE SI ZE))))

(PROVE- LEMVA LESSP- CAR- TOKENS (REVRI TE)
(EQUAL (LESSP (CAR (TOKENS STATE Sl ZE)) S| ZE)
(NOT (ZEROP SI ZE))))

(PROVE- LEMVA LESSP- CAR- CRI TI CALS (REWRI TE)
(EQUAL (LESSP (CAR (CRI TI CALS STATE Sl ZE)) S| ZE)
(NOT (ZEROP SI ZE))))

(PROVE- LEMMA MUTUAL- EXCLUSI ONP- REQUI RES- STATE ()
(1 MPLI ES (MUTUAL- EXCLUSI ONP STATE S| ZE)
(NOT (ZERCP Sl ZE))))

(PROVE- LEMVA LESSP- CAR- TOKENS- AND- CRI Tl CALS (REWRI TE)
(I MPLI ES (MUTUAL- EXCLUSI ONP STATE SI ZE)
(AND (LESSP (CAR (TOKENS STATE SI ZE)) Sl ZE)
(LESSP (CAR (CRI TI CALS STATE SIZE)) SIZE)))
((USE (MJTUAL- EXCLUSI ONP- REQUI RES- STATE))))

(PROVE- LEMVA ABOUT- MEMBER- LI ST- LENGTH ONE (REWRI TE)
(I MPLIES (EQUAL (LENGTH LIST) 1)
(EQUAL (MEMBER X LI ST)

(EQUAL X (CAR LIST)))))

(PROVE- LEMVA ABOUT- MEMBER- CAR- TOKENS- CRI TI CALS (REVRI TE)
(I MPLI ES
(MUTUAL- EXCLUSI ONP STATE S| ZE)
(AND (EQUAL (MEMBER | NDEX (TOKENS STATE S| ZE))
(AND (LI STP (TOKENS STATE S| ZE))
(EQUAL | NDEX (CAR (TOKENS STATE Sl ZE)))))
(EQUAL (MEMBER | NDEX (CRI Tl CALS STATE Sl ZE))
(AND (LI STP (CRI TI CALS STATE Sl ZE))
(EQUAL | NDEX (CAR (CRI TI CALS STATE SI ZE)))))))
((USE (ABOUT- MUTUAL- EXCLUSI ONP))))

(PROVE- LEMVA NOT- MEMBER- TOKENS (REVRI TE)
(I MPLIES (NOT (LESSP | NDEX SI ZE))
(NOT (MEMBER | NDEX (TOKENS STATE SI ZE))))
((1 NDUCT (TOKENS STATE SI ZE))))

(PROVE- LEMVA NOT- MEMBER- CRI Tl CALS (REVRI TE)
(I MPLIES (NOT (LESSP | NDEX S| ZE))
(NOT (MEMBER | NDEX (CRI TI CALS STATE SI ZE))))
((1 NDUCT (CRITI CALS STATE SI ZE))))

(PROVE- LEMVA TOKEN- EQUALS (REVRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(EQUAL (TOKEN STATE | NDEX)
(MEMBER | NDEX (TOKENS STATE Sl ZE))))
((1 NDUCT (TOKENS STATE SI ZE))))

(PROVE- LEMVA CRI Tl CAL- EQUALS (REVRI TE)
(I MPLI ES (AND (NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(EQUAL (CRITICAL STATE | NDEX)
(MEMBER | NDEX (CRI TI CALS STATE SI ZE))))
((1 NDUCT (CRITI CALS STATE SI ZE))))

(PROVE- LEMVA MTOKEN- EQUALS (REWRI TE)
(I MPLI ES (AND (MUTUAL- EXCLUSI ONP STATE S| ZE)
(NUMBERP | NDEX)

(LESSP | NDEX SI ZE))

(EQUAL (TOKEN STATE | NDEX)

(AND (LI STP (TOKENS STATE S| ZE))
(EQUAL | NDEX (CAR (TOKENS STATE Sl ZE))))))

((DI SABLE TOKEN- EQUALS)
(USE (TOKEN- EQUALS))))

(PROVE- LEMMA MCRI TI CAL- EQUALS (REVRI TE)
(I MPLI ES (AND (MUTUAL- EXCLUSI ONP STATE S| ZE)
(NUMBERP | NDEX)
(LESSP | NDEX SI ZE))
(EQUAL (CRITICAL STATE | NDEX)
(AND (LI STP (CRITI CALS STATE Sl ZE))
(EQUAL | NDEX (CAR (CRI TI CALS STATE Sl ZE))))))
((DI SABLE CRI Tl CAL- EQUALS)
(USE (CRI Tl CAL- EQUALS))))

186

187

(PROVE- LEMVA MJTUAL- EXCLUSI ONP- | MPLI ES (REWRI TE)
(I MPLI ES (MUTUAL- EXCLUSI ONP STATE SI ZE)
(I FF (LI STP (TOKENS STATE S| ZE))
(NOT (LI STP (CRITI CALS STATE SI ZE)))))
((USE (ABOUT- MUTUAL- EXCLUSI ONP))))

(DI SABLE LESSP- CAR- CRI Tl CALS)

(DI SABLE LESSP- CAR- TOKENS)

(DI SABLE ABQUT- MEMBER- LI ST- LENGTH- ONE)
(DI SABLE NOT- MEMBER- TOKENS)

(DI SABLE NOT- MEMBER- CRI Tl CALS)

(DI SABLE TOKEN)

(DI SABLE CRI Tl CAL)

(DI SABLE NON- CRI Tl CAL)

(DI SABLE WAI T)

(DI SABLE MUTUAL- EXCLUSI ONP)

(PROVE- LEMVA MUTUAL- EXCLUSI ONP- | MPLI ES- PRG (REWRI TE)
(I MPLI ES (MUTUAL- EXCLUSI ONP STATE SI ZE)
(LI STP (ME- PRG SI ZE)))
((USE (MUTUAL- EXCLUSI ONP- REQUI RES- STATE))
(ENABLE ME-PRG)))

(PROVE- LEMMA LEFT- LEADS- TO-RI GHT (REVWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE)
(I'NI TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
(ME- PRG S| ZE)))
(LEADS- TO * (TOKEN STATE (QUOTE , | NDEX))
“ (TOKEN STATE (QUOTE , (ADD1- MOD Sl ZE | NDEX)))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS (DI SABLE ADD1- MOD) PROMOTE
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST ' OR
(LI ST ’ AND
(LIST ' WAI T * STATE
(LI ST * QUOTE | NDEX))
(LI ST * TOKEN * STATE
(LI ST ' QUOTE | NDEX)))
(LI ST ’ AND
(LI ST * NON- CRI TI CAL * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * TOKEN ’ STATE
(LI'ST " QUOTE INDEX)))))))
(CLAIM (EVAL (LI ST ’® MJTUAL- EXCLUSI ONP * STATE
(LI ST * QUOTE SI ZE))
(S (ME-PRG Sl ZE)
(I LEADS (LI ST * TOKEN ’ STATE
(LI ST * QUOTE | NDEX))
(ME- PRG S| ZE)
(LI ST * TOKEN ’ STATE
(LI ST * QUOTE
(ADDL- MOD SI ZE | NDEX))))))
0)
(USE- LEMVA CRI TI CAL- WAl T- NON- CRI TI CAL
((STATE (S (ME- PRG S| ZE)
(I LEADS (LI ST * TOKEN * STATE
(LI ST ' QUOTE | NDEX))
(ME- PRG S| ZE)

188

(LI ST * TOKEN ' STATE
(LI ST * QUOTE
(ADDL- MOD SI ZE | NDEX))))))
(I NDEX | NDEX)))

(BASH (DI SABLE ADD1- MOD)) (CONTRADI CT 4)
(REVRI TE | NVARI ANT- | MPLI ES)
(REWRI TE MUTUAL- EXCLUSI ONP- | S- | NVARI ANT) PROVE PROVE
(REVRI TE DI SJO N-LEFT) (REVRI TE WAl T- LEFT- LEADS- TO- Rl GHT)
(REVRI TE NON- CRI Tl CAL- LEFT- LEADS- TO-RI GHT))))

(DEFN WALK- RI NG (A B SI ZE)
(I F (NUVBERP A)
(I F (NUVBERP B)
(I F (LESSP A S| ZE)
(I F (LESSP B S| ZE)
(IF (EQUAL A B)
T

(WALK- R NG (ADDL- MOD S| ZE A) B SI ZE))
T
m
T
M
((LESSP (I F (NOT (LESSP B A))
(DI FFERENCE B A)
(PLUS (ADD1 B) (DI FFERENCE SI ZE A))))))

(PROVE- LEMVA ANY- LEFT- LEADS- TO- Rl GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP LEFT) (LESSP LEFT SIZE) (NUMBERP RI GHT)
(LESSP RI GHT Sl ZE)
(I'NITI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
(ME- PRG SI ZE)))
(LEADS- TO * (TOKEN STATE (QUOTE , LEFT))
* (TOKEN STATE (QUOTE , RI GHT))
(ME-PRG SI ZE)))

((1 NSTRUCTI ONS (1 NDUCT (WALK- RI NG LEFT RI GHT Sl ZE)) PROMOTE PROMOTE
(DIVE 1) (DIVE 2) (DIVE 2) (DIVE 1) (DIVE 2) (DIVE 1) = TOP
(REVRI TE Q LEADS- TO-Q PROMOTE PROMOTE (DEMOTE 6) (DI VE 1)
(DIVE 1) (= T) TOP SPLIT
(REVRI TE LEADS- TO- TRANSI TI VE

(($Q (LI ST * TOKEN * STATE
(LI ST * QUOTE (ADDL- MOD SI ZE LEFT))))))
(REVRI TE LEFT-LEADS-TO-RIGHT) S S S 9)))

(PROVE- LEMMA LESSP- ADD1- MOD- S| ZE (REWRI TE)
(I MPLI ES (MUTUAL- EXCLUSI ONP STATE SI ZE)
(LESSP (ADDL-MXD SIZE N) Sl ZE))
((USE (MJTUAL- EXCLUSI ONP- REQUI RES- STATE))))

(PROVE- LEMMA ANY- CRI TI CAL- LEADS- TO- Rl GHT (REWRI TE)
(I MPLIES (AND (NUMBERP LEFT) (LESSP LEFT SIZE) (NUMBERP RI GHT)
(LESSP RI GHT S| ZE)
(I' NI TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
(ME- PRG SI ZE)))
(LEADS- TO * (CRI TI CAL STATE (QUOTE , LEFT))
* (TOKEN STATE (QUOTE , RI GHT))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS
(DI SABLE ADD1- MOD) PROMOTE

(REVRI TE LEADS- TO- TRANSI TI VE
(($Q (LI ST * TOKEN ’ STATE
(LI ST * QUOTE (ADDL- MOD S| ZE LEFT))))))
(REVRI TE CRI Tl CAL- LEADS- TO- Rl GHT)
(REWRI TE ANY- LEFT- LEADS- TO- Rl GHT) PROVE)))

(PROVE- LEMVA ANY- LEADS- TO- Rl GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE)
(I'NITI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
(ME- PRG SI ZE)))
(LEADS- TO ' (TRUE)
* (TOKEN STATE (QUOTE , | NDEX))
(ME- PRG S| ZE)))
((1 NSTRUCTI ONS (DI SABLE ADD1- MOD) PROMOTE
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST ' OR
(LI ST * TOKEN ’ STATE
(LI ST * QUOTE
(CAR
(TOKENS
(S (ME- PRG Sl ZE)
(I LEADS ' (TRUE) (ME-PRG SI ZE)
(LI ST * TOKEN ’ STATE
(LI ST * QUOTE I NDEX))))
SIZE))))
(LI ST * CRITI CAL ’ STATE
(LI ST * QUOTE
(CAR
(CRI TI CALS
(S (ME-PRG Sl ZE)
(I LEADS ’ (TRUE) (ME-PRG SI ZE)
(LI ST * TOKEN ' STATE
(LI ST * QUOTE | NDEX))))
SIZE))))))))
PROVOTE

(CLAIM (EVAL (LI ST ’® MJTUAL- EXCLUSI ONP * STATE
(LI ST * QUOTE SI ZE))
(S (ME-PRG Sl ZE)
(I LEADS ’ (TRUE) (ME- PRG SI ZE)
(LI ST * TOKEN ' STATE
(LI ST * QUOTE I NDEX)))))
0)

(BASH (DI SABLE ADD1- MOD)) (CONTRADI CT 5)

(REVRI TE | NVARI ANT- | MPLI ES)

(REWRI TE MUTUAL- EXCLUSI ONP- | S- | NVARI ANT) PROVE PROVE
(REVRI TE DI SJO N-LEFT) (REWRI TE ANY- LEFT- LEADS- TO- Rl GHT)

(REVRI TE NUMBERP- CAR- TOKENS) (REVWRI TE LESSP- CAR- TOKENS) PROVE

(REVRI TE ANY- CRI Tl CAL- LEADS- TO- Rl GHT)

(REVRI TE NUMBERP- CAR- CRI Tl CALS) (REVRI TE LESSP- CAR- CRI Tl CALS)

PROVE)))

(PROVE- LEMVA ME- PRG- NON- ZERO S ZE (REVRI TE)
(EQUAL (LISTP (ME-PRG Sl ZE)) (NOT (ZERCP S| ZE)))
((ENABLE ME-PRG)))

(PROVE- LEMVA VWAl T- LEADS- TO- LEFT- WAI T- OR- CRI TI CAL (REWRI TE)
(I MPLI ES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE)
(I' NI TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
(ME- PRG SI ZE)))

189

(LEADS- TO * (AND (TRUE)
(WAI T STATE (QUOTE , | NDEX)))
“(OR (AND (TOKEN STATE (QUOTE , | NDEX))
(WAI T STATE (QUOTE , | NDEX)))
(CRI TI CAL STATE (QUOTE , | NDEX)))
(ME- PRG SI ZE)))
((1 NSTRUCTI ONS PROMOTE (REVRI TE PSP) (REVRI TE ANY- LEADS- TO- Rl GHT)
(REWRI TE WAl T- UNLESS- CRI TI CAL) BASH BASH
(REVRI TE ME- PRG- NON- ZERO- S| ZE) PROVE)))

(PROVE- LEMMA WAl T- LEADS- TO- CRI TI CAL (REWRI TE)
(I MPLIES (AND (NUMBERP | NDEX) (LESSP | NDEX S| ZE)
(I' NI TI AL- CONDI TI ON
* (MUTUAL- EXCLUSI ONP STATE (QUOTE |, SI ZE))
(ME- PRG SI ZE)))
(LEADS- TO * (WAI T STATE (QUOTE , | NDEX))
* (CRI TI CAL STATE (QUOTE , | NDEX))
(ME- PRG SI ZE)))
((I NSTRUCTI ONS PROMOTE
(REVRI TE LEADS- TO- WEAKEN- Rl GHT
(($Q (LIST ' OR
(LI ST * CRI TI CAL ’ STATE
(LI ST ' QUOTE | NDEX))
(LI ST * CRITI CAL ’ STATE

(LI'ST " QUOTE I NDEX))))))
BASH

(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST * AND ' (TRUE)
(LIST ' WAIT * STATE (LI ST * QUOTE | NDEX))))))
BASH
(REWRI TE CANCELLATI ON- LEADS- TO
(($B (LIST * AND
(LI ST * TOKEN ’ STATE (LI ST ' QUOTE | NDEX))
(LIST ' WAIT * STATE (LI ST * QUOTE | NDEX))))))
(REWRI TE LEADS- TO- WEAKEN- Rl GHT
(($Q (LIST ' OR
(LI ST ’ AND
(LI ST * TOKEN * STATE
(LI ST * QUOTE | NDEX))
(LIST ' WAI T * STATE
(LI ST ' QUOTE | NDEX)))
(LI ST * CRI TI CAL ’ STATE
(LI ST * QUOTE | NDEX))))))
BASH (REWRI TE WAl T- LEADS- TO- LEFT- WAl T- OR- CRI Tl CAL)
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST * AND
(LIST ' WAI T * STATE (LI ST ' QUOTE | NDEX))
(LI ST * TOKEN * STATE (LI ST ’* QUOTE | NDEX))))))
BASH (REWRI TE WAl T- LEFT- LEADS- TO- CRI TI CAL))))

190

Appendix D.

Min Tree Vaue Events

This appendix contains the complete events list supporting the proof of the
minimum tree value algorithm described in chapter 5.

This event list constructs the proof of the minimun tree value algorithm on top

of the proof system presented in Appendix B.
(NOTE- LI B " | NTERPRETER")
(PROVEALL "M N' "’ (

;o5 LI ST OPERATI ONS

(PROVE- LEMMA CAR- APPEND (REWRI TE)
(EQUAL (CAR (APPEND A B))
(IF (LISTP A)
(CAR A)
(CAR B))))

(PROVE- LEMVA LI STP- APPEND (REVRI TE)
(EQUAL (LI STP (APPEND A B))
(OR (LISTP A)
(LISTP B))))

(PROVE- LEMVA LENGTH- APPEND (REVRI TE)
(EQUAL (LENGTH (APPEND A B))
(PLUS (LENGTH A) (LENGTH B))))

(DEFN PLI STP (LI ST)
(I'F (LI STP LI ST)
(PLI STP (CDR LI ST))
(EQUAL LIST NIL)))

(PROVE- LEMVA PLI STP- APPEND- PLI STP (REWRI TE)

(EQUAL (PLISTP (APPEND A B))
(PLI STP B)))

(PROVE- LEMMA APPEND- PLI STP- NI L (REWRI TE)
(EQUAL (EQUAL (APPEND A NIL) A)

191

(PLISTP A)))

(PROVE- LEMMA NOT- LESSP- COUNT- APPEND (REWRI TE)
(NOT (LESSP (PLUS (COUNT X) (COUNT Y))
(COUNT (APPEND X Y)))))

(DEFN ALL- NUMBERPS (LI ST)
(I'F (LI STP LI ST)
(I F (NUVBERP (CAR LI ST))
(ALL- NUMBERPS (CDR LI ST))
F)
m)

(PROVE- LEMVA ALL- NUVBERPS- | MPLI ES (REVWRI TE)
(I MPLI ES (AND (ALL- NUVBERPS LI ST)
(MEMBER E LI ST))
(NUMBERP E)))

o3 SET OPERATI ONS

(DEFN SETP (LI ST)
(I'F (LI STP LI ST)
(I F (MEMBER (CAR LIST) (CDR LIST))
F
(SETP (CDR LIST)))

)

(PROVE- LEMMA SETP- APPEND (REVRI TE)
(IMPLIES (OR (NOT (SETP A))
(NOT (SETP B)))
(NOT (SETP (APPEND A B)))))

(PROVE- LEMMA SETP- MEMBER (REVRI TE)
(I MPLI ES (AND (MEMBER X A)
(MEMBER X B))
(NOT (SETP (APPEND A B)))))

(PROVE- LEMVA SETP- APPEND- CONS (REWRI TE)
(EQUAL (SETP (APPEND A (CONS X B)))
(SETP (CONS X (APPEND A B)))))

(PROVE- LEMMA SETP- APPEND- NOT- LI STP (REWRI TE)
(I MPLIES (NOT (LI STP B))
(EQUAL (SETP (APPEND A B))
(SETP A))))

(PROVE- LEMMA SETP- APPEND- CANONI CAL| ZE (REWRI TE)
(EQUAL (SETP (APPEND A B))
(SETP (APPEND B A))))

(PROVE- LEMVA SETP- MEMBER- 1 (REWRI TE)
(I MPLI ES (AND (SETP (APPEND A B))
(MEMBER X B))
(NOT (MEMBER X A))))

(PROVE- LEMVA SETP- MEMBER- 2 (REWRI TE)
(I MPLI ES (AND (SETP (APPEND A B))

192

(MEMBER X A))
(NOT (MEMBER X B))))

;5 SUBSET OPERATI ONS

(DEFN SUBLI STP (SUB LI ST)
(I'F (LI STP SUB)
(AND (MEMBER (CAR SUB) LI ST)
(SUBLI STP (CDR SUB) LIST))
m)

(PROVE- LEMMA SUBLI STP- APPEND (REVRI TE)
(EQUAL (SUBLI STP (APPEND A B) LIST)
(AND (SUBLI STP A LI ST)
(SUBLI STP B LI ST))))

(PROVE- LEMMA MEMBER- OF- SUBLI STP- | S- MEMBER (REVRI TE)
(I MPLIES (AND (MEMBER A B)
(SUBLI STP B Q)
(MEMBER A Q)))

(PROVE- LEMMA SUBLI| STP- OF- SUBLI STP- | S- SUBLI STP (REWRI TE)
(I MPLIES (AND (SUBLI STP A B)
(SUBLI STP B Q)
(SUBLISTP A Q)))

(PROVE- LEMMA SUBLI STP- NORMALI ZE (REVRI TE)
(I MPLI ES (NOT (PLISTP B))
(EQUAL (SUBLISTP A B)
(SUBLI STP A (APPEND B NIL)))))

(DEFN SEI (A B)
(IF (LISTP A)
(SEI (CDR A) (APPEND B (LIST (CAR A))))
M)

(PROVE- LEMVA SUBLI| STP- EASY (REVWRI TE)
(SUBLI STP A (APPEND B A))
((INDUCT (SEl A B))))

(PROVE- LEMMA SUBLI STP- REFLEXI VE (REWRI TE)
(SUBLI STP A A)
((USE (SUBLI STP-EASY (B NIL)))))

(PROVE- LEMMA SUBLI STP- | N- APPEND (REWRI TE)
(I MPLIES (OR (SUBLI STP X A)
(SUBLI STP X B))

(SUBLI STP X (APPEND A B))))

(PROVE- LEMVA SUBLI STP- | N- CONS (REWRI TE)

(I MPLI ES (SUBLISTP A Y)
(SUBLI STP A (CONS X Y))))

;3 TREE OPERATI ONS

(DEFN NODES- REC (FLAG TREE)

193

(I'F (LI STP TREE)
(I F (EQUAL FLAG ' TREE)
(CONS (CAR TREE)
(NODES- REC * FOREST (CDR TREE)))
(APPEND (NODES- REC ’ TREE (CAR TREE))
(NODES- REC * FOREST (CDR TREE))))
NIL))

(DEFN NODES (TREE)
(NODES- REC * TREE TREE))

(DEFN ROOTS (FOREST)
(I F (LI STP FOREST)
(CONS (CAAR FOREST)
(ROOTS (CDR FOREST)))
FOREST))

(DEFN CHI LDREN- REC (FLAG NODE TREE)
(I F (LI STP TREE)
(I F (EQUAL FLAG ' TREE)
(I F (EQUAL (CAR TREE) NODE)
(APPEND (ROOTS (CDR TREE))

(CHI LDREN- REC * FOREST NODE (CDR TREE)))

(CH LDREN- REC * FOREST NODE (CDR TREE)))
(APPEND (CHI LDREN- REC ' TREE NODE (CAR TREE))
(CH LDREN- REC * FOREST NODE (CDR TREE))))
NIL))

(DEFN CHI LDREN (NODE TREE)
(CHI LDREN- REC * TREE NCDE TREE))

(DEFN PARENT- REC (FLAG NCDE TREE)
(I'F (LI STP TREE)
(I F (EQUAL FLAG ' TREE)
(I F (MEMBER NODE (ROOTS (CDR TREE)))
(CONS (CAR TREE)
(PARENT- REC * FOREST NCDE (CDR TREE)))
(PARENT- REC * FOREST NCDE (CDR TREE)))
(APPEND (PARENT- REC ' TREE NODE (CAR TREE))
(PARENT- REC * FOREST NCDE (CDR TREE))))
NIL))

(DEFN PARENT (NODE TREE)
(CAR (PARENT- REC ' TREE NODE TREE)))

(DEFN PROPER- TREE (FLAG TREE)
(I F (EQUAL FLAG ' TREE)
(IF (LI STP TREE)
(PROPER- TREE ' FOREST (CDR TREE))
F)
(I F (LI STP TREE)
(AND (PROPER- TREE ' TREE (CAR TREE))
(PROPER- TREE ’ FOREST (CDR TREE)))
(EQUAL TREE NIL))))

(PROVE- LEMVA CANONI CAL| ZE- NODES- REC- FLAG ()
(EQUAL (NODES- REC FLAG TREE)
(I F (EQUAL FLAG ' TREE)
(NODES- REC * TREE TREE)
(NODES- REC ' FOREST TREE))))

194

195

(PROVE- LEMVA CANONI CAL| ZE- PROPER- TREE- FLAG ()
(EQUAL (PROPER- TREE FLAG TREE)
(I F (EQUAL FLAG ' TREE)
(PROPER- TREE ' TREE TREE)
(PROPER- TREE ’ FOREST TREE))))

(PROVE- LEMMA CANONI CAL| ZE- PARENT- REC- FLAG ()
(EQUAL (PARENT- REC FLAG CHI LD TREE)
(I F (EQUAL FLAG ' TREE)
(PARENT- REC * TREE CHI LD TREE)
(PARENT- REC ’ FOREST CHI LD TREE))))

(PROVE- LEMMA CANONI CALI ZE- CHI LDREN- REC- FLAG ()
(EQUAL (CHI LDREN- REC FLAG PARENT TREE)
(I F (EQUAL FLAG ' TREE)
(CH LDREN- REC ' TREE PARENT TREE)
(CH LDREN- REC * FOREST PARENT TREE))))

(PROVE- LEMVMA NOT- FLAG TREE (REVRI TE)
(I MPLIES (AND (NOT (EQUAL FLAG ' TREE))
(NOT (EQUAL FLAG ' FOREST)))
(AND (EQUAL (NCDES- REC FLAG TREE)
(NODES- REC ’ FOREST TREE))
(EQUAL (PROPER- TREE FLAG TREE)
(PROPER- TREE ' FOREST TREE))
(EQUAL (PARENT- REC FLAG CHI LD TREE)
(PARENT- REC * FOREST CHI LD TREE))
(EQUAL (CHI LDREN- REC FLAG PARENT TREE)
(CH LDREN- REC ' FOREST PARENT TREE))))
((USE (CANONI CAL| ZE- NODES- REC- FLAG)
(CANONI CAL| ZE- PROPER- TREE- FLAG)
(CANONI CAL| ZE- PARENT- REC- FLAG)
(CANONI CAL| ZE- CHI LDREN- REC- FLAG))))

(PROVE- LEMMA PARENT- REC- CH LDREN- REC (REVRI TE)
(EQUAL (MEMBER CHI LD (CHI LDREN- REC FLAG PARENT TREE))
(MEMBER PARENT (PARENT- REC FLAG CHI LD TREE))))

(DI SABLE PARENT- REC- CHI LDREN- REC)

(PROVE- LEMMA PLI STP- CH LDREN- REC (REWRI TE)
(PLI STP (CHI LDREN- REC FLAG PARENT TREE)))

(PROVE- LEMMA PLI STP- PARENT- REC (REWRI TE)
(PLI STP (PARENT- REC FLAG CHI LD TREE)))

(PROVE- LEMVA PLI STP- ROOTS (REWRI TE)
(I MPLI ES (PROPER- TREE ' FOREST FOREST)
(PLI STP (ROOTS FOREST))))

(PROVE- LEMMA MEMBER- ROOTS- MEMBER- FOREST (REVRI TE)
(I MPLI ES (AND (PROPER- TREE ' FOREST FOREST)
(MEMBER NODE (ROOTS FOREST)))
(MEMBER NODE (NODES- REC ’ FOREST FOREST))))

(PROVE- LEMVA NOT- MEMBER- NO- PARENT (REVRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(NOT (MEMBER NCDE (NODES- REC FLAG TREE))))
(EQUAL (PARENT- REC FLAG NODE TREE)
NIL)))

(PROVE- LEMVA MEMBER- CHI LD- TREE (REWRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(MEMBER CHI LD (CHI LDREN- REC FLAG NODE TREE)))
(MEMBER CHI LD (NODES- REC FLAG TREE))))

(PROVE- LEMMA SETP- TREE- UNI QUE- PARENT (REVRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(SETP (NODES- REC FLAG TREE)))
(EQUAL (PARENT- REC FLAG CHI LD TREE)
(I F (MEMBER CHI LD (NODES- REC FLAG TREE))
(IF (OR (AND (EQUAL FLAG ' TREE)
(EQUAL (CAR TREE) CHILD))
(AND (NOT (EQUAL FLAG ' TREE))
(MEMBER CHI LD (ROOTS TREE))))
NI L
(LI ST (CAR (PARENT- REC FLAG CHI LD TREE))))

NIL))))

(DI SABLE SETP- TREE- UNI QUE- PARENT)

(PROVE- LEMVA MEMBER- PARENT- PARENT (REVRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(SETP (NODES- REC FLAG TREE))
(MEMBER PARENT (PARENT- REC FLAG CHI LD TREE)))
(EQUAL (PARENT- REC FLAG CHI LD TREE)
(LI ST PARENT)))
((1 NSTRUCTI ONS PROVOTE (DI VE 1) (REWRI TE SETP- TREE- UNI QUE- PARENT)
TOP (DEMOTE 3) (DIVE 1) (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) TOP PROVE)))

(PROVE- LEMVA PARENT- OF- CHI LD (REWRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(SETP (NODES- REC FLAG TREE))
(MEMBER CHI LD (CHI LDREN- REC FLAG PARENT TREE)))
(EQUAL (PARENT- REC FLAG CHI LD TREE)
(LI ST PARENT)))
((ENABLE PARENT- REC- CHI LDREN- REC)))

(PROVE- LEMVA MEMBER- PARENT- MEMBER- TREE (REVRI TE)
(I MPLI ES (MEMBER PARENT (PARENT- REC FLAG CHI LD TREE))
(MEMBER PARENT (NODES- REC FLAG TREE))))

(PROVE- LEMMA NODE- THAT- HAS- CHI LD- | S- | N TREE (REVWRI TE)
(I MPLIES (LI STP (CHI LDREN- REC FLAG PARENT TREE))
(MEMBER PARENT (NODES- REC FLAG TREE))))

(PROVE- LEMMA NODE- THAT- HAS- PARENT- | S- | N- TREE (REWRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(LI STP (PARENT- REC FLAG CHI LD TREE)))
(MEMBER CHI LD (NODES- REC FLAG TREE))))

(PROVE- LEMVA SUBLI| STP- CHI LDREN- GENERALI ZED (REWRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(SUBLI STP CHI LDREN (CHI LDREN- REC FLAG PARENT TREE)))
(SUBLI STP CHI LDREN
(NODES- REC FLAG TREE)))
((1 NDUCT (LENGTH CHI LDREN))))

(DI SABLE SUBLI STP- CHI LDREN- GENERALI ZED)

(PROVE- LEMVA SUBLI STP- CHI LDREN (REVRI TE)

196

197

(I MPLI ES (PROPER- TREE FLAG TREE)
(SUBLI STP (CHI LDREN- REC FLAG PARENT TREE)
(NODES- REC FLAG TREE)))
((USE (' SUBLI STP- CHI LDREN- GENERAL| ZED
(CHI LDREN (CHI LDREN- REC FLAG PARENT TREE))))))

(DEFN SUBTREEP (FLAG SUBTREE TREE)
(IF (AND (LI STP TREE)
(LI STP SUBTREE))
(I F (EQUAL FLAG ' TREE)
(I F (EQUAL SUBTREE TREE)
T
(SUBTREEP ' FOREST SUBTREE (CDR TREE)))
(I F (SUBTREEP * TREE SUBTREE (CAR TREE))

T

(SUBTREEP ’ FOREST SUBTREE (CDR TREE))))

M)

(DEFN SUBTREES (FLAG TREE)
(I'F (LI STP TREE)
(I F (EQUAL FLAG ' TREE)
(CONS TREE (SUBTREES ' FOREST (CDR TREE)))
(APPEND (SUBTREES ' TREE (CAR TREE))
(SUBTREES ’ FOREST (CDR TREE))))
NIL))

(PROVE- LEMMA SUBTREEP- SUBTREES (REWRI TE)
(I MPLI ES (MEMBER SUBTREE (SUBTREES FLAG TREE))
(SUBTREEP FLAG SUBTREE TREE)))

(DEFN NEXT- LEVEL (SUBTREES)
(I'F (LI STP SUBTREES)
(APPEND (CDAR SUBTREES)
(NEXT- LEVEL (CDR SUBTREES)))
SUBTREES))

(PROVE- LEMMA NODES- REC- FOREST- APPEND (REVRI TE)
(EQUAL (NODES- REC * FOREST (APPEND A B))
(APPEND (NODES- REC ’ FOREST A)
(NODES- REC * FOREST B))))

(PROVE- LEMVA NEXT- LEVEL- REDUCES- COUNT (REWRI TE)
(I MPLI ES (LI STP SUBTREES)
(LESSP (COUNT (NEXT- LEVEL SUBTREES))
(COUNT SUBTREES))))

(PROVE- LEMMA NEXT- LEVEL- OF- TREE- | N- SUBTREES (REWRI TE)
(I MPLI ES (PROPER- TREE ' FOREST FOREST)
(SUBLI STP FOREST (SUBTREES ' FOREST FOREST)))
((EXPAND (SUBTREES ’ TREE (CAR FOREST)))))

(PROVE- LEMVA SUBTREES- OF- SUBTREE- | N- COVPLETE- SUBTREES (REWRI TE)
(I MPLI ES (AND (PROPER TREE ' TREE SUBTREE)
(MEMBER SUBTREE (SUBTREES FLAG TREE)))
(SUBLI STP (SUBTREES ' TREE SUBTREE)
(SUBTREES FLAG TREE))))

(PROVE- LEMMA SUBTREES- OF- SUBTREES- | N- COVPLETE- SUBTREES (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ’ FOREST SUBTREES)
(SUBLI STP SUBTREES (SUBTREES FLAG TREE)))
(SUBLI STP (SUBTREES ’ FOREST SUBTREES)

(SUBTREES FLAG TREE)))
((1 NDUCT (LENGTH SUBTREES))))

(PROVE- LEMVA NEXT- LEVEL- | N- SUBTREES- FOREST (REWRI TE)
(I MPLI ES (PROPER- TREE ' FOREST SUBTREES)
(SUBLI STP (NEXT- LEVEL SUBTREES)
(SUBTREES ' FOREST SUBTREES))))

(PROVE- LEMVA NEXT- LEVEL- OF- SUBTREES- | N- COVPLETE- SUBTREES (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' FOREST SUBTREES)
(SUBLI STP SUBTREES (SUBTREES FLAG TREE)))
(SUBLI STP (NEXT- LEVEL SUBTREES)
(SUBTREES FLAG TREE)))
((USE (SUBLI STP- OF- SUBLI STP- | S- SUBLI STP
(A (NEXT-LEVEL SUBTREES))
(B (SUBTREES ’ FOREST SUBTREES))
(C (SUBTREES FLAG TREE))))))

(PROVE- LEMMA PROPER- TREE- OF- APPEND (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' FOREST A)
(PROPER- TREE ’ FOREST B))
(PROPER- TREE * FOREST (APPEND A B))))

(PROVE- LEMVA PROPER- TREE- NEXT- LEVEL- OF- PROPER- TREE (REVRI TE)
(I MPLI ES (PROPER- TREE ' FOREST SUBTREES)
(PROPER- TREE * FOREST (NEXT- LEVEL SUBTREES))))

(PROVE- LEMVA NOT- MEMBER- SUBTREES (REWRI TE)
(I MPLI ES (NOT (MEMBER ROOT (NODES- REC FLAG TREE)))
(NOT (MEMBER (CONS ROOT FOREST)
(SUBTREES FLAG TREE)))))

(PROVE- LEMVA NOT- MEMBER- NO- CHI LDREN (REWRI TE)
(I MPLI ES (NOT (MEMBER PARENT (NODES- REC FLAG TREE)))
(EQUAL (CHI LDREN- REC FLAG PARENT TREE)
NIL)))

(PROVE- LEMMA NO- CHI LDREN- | N- REST- OF- FOREST (REWRI TE)
(I MPLI ES (AND (SETP (APPEND (NODES- REC ’ TREE TREE)
(NODES- REC * FOREST FOREST)))
(MEMBER PARENT (NODES- REC ' TREE TREE)))
(EQUAL (CHI LDREN-REC ' FOREST PARENT FOREST)
NIL)))

(PROVE- LEMMA NO- CHI LDREN- | N- REST- OF- TREE (REWRI TE)
(I MPLI ES (AND (SETP (APPEND (NODES- REC ’ TREE TREE)
(NODES- REC * FOREST FOREST)))
(MEMBER PARENT (NODES- REC ’ FOREST FOREST)))
(EQUAL (CHI LDREN-REC ' TREE PARENT TREE)
NIL)))

(PROVE- LEMVA MEMBER- SUBTREE- MEMBER- TREE (REWRI TE)
(I MPLI ES (MEMBER (CONS ROOT FOREST) (SUBTREES FLAG TREE))
(MEMBER ROOT (NODES- REC FLAG TREE))))

(PROVE- LEMMA CHI LDREN- OF- SETP- TREE (REWRI TE)
(I MPLIES (AND (SETP (NODES- REC FLAG TREE))
(PROPER- TREE FLAG TREE)
(MEMBER (CONS ROOT FOREST) (SUBTREES FLAG TREE)))
(EQUAL (CHI LDREN- REC FLAG ROOT TREE)
(ROOTS FOREST)))

198

((1 NDUCT (CHI LDREN- REC FLAG ROOT TREE))))

(PROVE- LEMMA NODE- HAS- PARENT (REVRI TE)
(I MPLI ES (AND (MEMBER NODE (NODES- REC FLAG TREE))
(PROPER- TREE FLAG TREE)
(I F (EQUAL FLAG ' TREE)
(NOT (EQUAL NODE (CAR TREE)))
(NOT (MEMBER NCDE (ROOTS TREE)))))
(MEMBER (CAR (PARENT- REC FLAG NCDE TREE))
(NODES- REC FLAG TREE))))

(PROVE- LEMMA PARENT- | S- NOT- | TSELF- GENERALI ZED (REWRI TE)
(I MPLI ES (AND (SETP (NODES- REC FLAG TREE))
(PROPER- TREE FLAG TREE)
(LI STP (PARENT- REC FLAG CHI LD TREE)))
(NOT (EQUAL CHILD (CAR (PARENT- REC FLAG CHI LD TREE))))))

(PROVE- LEMVA PARENT- | S- NOT- | TSELF (REVRI TE)
(I MPLIES (AND (SETP (NODES- REC ' TREE TREE))
(PRODER— TREE ' TREE TREE)
(MEMBER CHI LD (CDR (NODES- REC ' TREE TREE))))
(NOT (EQUAL CHI LD (CAR (PARENT- REC ' TREE CHI LD TREE)))))
((USE (SETP- TREE- UNI QUE- PARENT
(CH LD CHILD) (TREE TREE) (FLAG ' TREE))
(PARENT- | S- NOT- | TSELF- GENERAL| ZED
(FLAG ’ TREE)))
(DI SABLE PARENT- | S- NOT- | TSELF- GENERALI ZED)))

(PROVE- LEMMA LI STP- PARENT- REC- EQUALS (REVRI TE)

(I MPLI ES (AND (SETP (NODES- REC FLAG TREE))

(PROPER- TREE FLAG TREE))
(EQUAL (LISTP (PARENT- REC FLAG CHI LD TREE))
(AND (MEMBER CHI LD (NCDES- REC FLAG TREE))
(I F (EQUAL FLAG ' TREE)
(NOT (EQUAL CHILD (CAR TREE)))
(NOT (MEMBER CHI LD (ROOTS TREE)))))))

((USE (SETP- TREE- UNI QUE- PARENT))))

(PROVE- LEMVA PARENT- | S- NOT- CHI LD (REWRI TE)
(I MPLI ES (AND (SETP (NODES- REC FLAG TREE))
(PROPER- TREE FLAG TREE)
(LI STP (PARENT- REC FLAG CHI LD TREE)))
(NOT (MEMBER (CAR (PARENT- REC FLAG CH LD TREE))
(CH LDREN- REC FLAG CHI LD TREE)))))

(PROVE- LEMMA PARENT- NOT- | N- CHI LDREN (REWRI TE)
(I MPLIES (AND (SETP (NODES- REC ' TREE TREE))
(PROPER- TREE ' TREE TREE)
(MEMBER PARENT (CDR (NODES- REC ' TREE TREE))))
(NOT (MEMBER PARENT (CHI LDREN- REC ' TREE PARENT TREE))))
((1 NSTRUCTI ONS PROVOTE (DI VE 1) (REWRI TE PARENT- REC- CHI LDREN- REC)
(DI VE 2) (REWRI TE SETP- TREE- UNI QUE- PARENT) (DI VE 1) (DI VE 2) X
TOP BASH)))

v+ VAR ABLES AND CHANNEL OPERATI ONS

199

(DEFN VALUE (KEY STATE)
(CDR (ASSCC KEY STATE)))

(DEFN CHANNEL (NAME STATE)
(VALUE NAME STATE))

(DEFN EMPTY (NAME STATE)
(NOT (LI STP (CHANNEL NAME STATE))))

(DEFN HEAD (NAME STATE)
(CAR (CHANNEL NAME STATE)))

(DEFN SEND (CHANNEL MESSAGE STATE)
(APPEND (CHANNEL CHANNEL STATE)
(LI ST MESSAGE)))

(DEFN RECEI VE (CHANNEL STATE)
(CDR (CHANNEL CHANNEL STATE)))

;3 PROGRAM SPECI FI C

(DEFN STATUS (NODE STATE)
(VALUE (CONS ' STATUS NODE) STATE))

(DEFN FOUND- VALUE (NODE STATE)
(VALUE (CONS ' FOUND- VALUE NODE) STATE))

(DEFN OUTSTANDI NG (NODE STATE)
(VALUE (CONS ’ OUTSTANDI NG NODE) STATE))

(DEFN NODE- VALUE (NODE STATE)
(VALUE (CONS ’ NODE- VALUE NODE) STATE))

(DEFN SEND- FI ND (TO- CHI LDREN OLD NEW
(I'F (LI STP TO- CHI LDREN)
(AND (EQUAL (CHANNEL (CAR TO CHI LDREN) NEW
(SEND (CAR TO- CHI LDREN) ' FIND OLD))
(SEND- FI ND (CDR TO- CHI LDREN) OLD NEW)

mn)
;;; THE FOUR PROGRAM STATEMENTS

(DEFN RECE! VE- FI ND (OLD NEW NODE FROM PARENT TO- PARENT TO- CHI LDREN)
(I F (EQUAL (HEAD FROM PARENT OLD) ' FI ND)
(AND (EQUAL (CHANNEL FROM PARENT NEW
(RECEl VE FROM PARENT OLD))
(EQUAL (STATUS NODE NEW ’ STARTED)
(EQUAL (FOUND- VALUE NODE NEW (NODE- VALUE NODE OLD))
(EQUAL (OUTSTANDI NG NCDE NEW (LENGTH TO- CHI LDREN))
(SEND- FI ND TO- CHI LDREN OLD NEW
(EQUAL (CHANNEL TO PARENT NEW
(I F (ZEROP (LENGTH TO CHI LDREN))
(SEND TO PARENT (NODE- VALUE NODE OLD) OLD)
(CHANNEL TO- PARENT OLD)))
(CHANGED OLD NEW
(APPEND (LI ST FROM PARENT TO- PARENT
(CONS ' STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NCDE))
TO CHI LDREN)))
(CHANGED OLD NEWNIL)))

200

201

(DEFN M N (X Y)
(IF (LESSP X Y)
(FIX X)
(FIX'Y)))

(DEFN RECE| VE- REPORT (OLD NEW NCDE FROM CHI LD TO- PARENT)
(I F (EMPTY FROM CHI LD OLD)
(CHANGED OLD NEW NI L)
(AND (EQUAL (CHANNEL FROM CHI LD NEW
(RECEl VE FROM CHI LD OLD))
(EQUAL (FOUND- VALUE NCDE NEW
(M N (FOUND- VALUE NODE OLD)
(HEAD FROM CHI LD OLD)))
(EQUAL (OUTSTANDI NG NCDE NEW
(SUBL (OUTSTANDI NG NODE OLD)))
(EQUAL (CHANNEL TO PARENT NEW
(I F (ZEROP (OUTSTANDI NG NODE NEW)
(SEND TO PARENT (FOUND- VALUE NODE NEW
oLD)
(CHANNEL TO PARENT OLD)))
(CHANGED OLD NEW (LI ST FROM CHI LD TO- PARENT
(CONS * OUTSTANDI NG NODE)
(CONS * FOUND- VALUE NODE))))))

(DEFN START (OLD NEW ROOT TO- CHI LDREN)
(I F (EQUAL (STATUS ROOT OLD) ' NOT- STARTED)
(AND (EQUAL (STATUS ROOT NEW ' STARTED)
(EQUAL (FOUND- VALUE ROOT NEW (NODE- VALUE ROOT OLD))
(EQUAL (OUTSTANDI NG ROOT NEW (LENGTH TO- CHI LDREN))
(SEND- FI ND TO- CHI LDREN OLD NEW
(CHANGED OLD NEW
(APPEND (LI ST (CONS ' STATUS ROOT)
(CONS * FOUND- VALUE ROOT)
(CONS * QUTSTANDI NG ROOT))
TO CHI LDREN)))
(CHANGED OLD NEWNIL)))

(DEFN ROOT- RECEI VE- REPORT (OLD NEW ROOT FROM CHI LD)
(I F (EMPTY FROM CHI LD OLD)
(CHANGED OLD NEW NI L)
(AND (EQUAL (CHANNEL FROM CHI LD NEW
(RECEl VE FROM CHI LD OLD))
(EQUAL (FOUND- VALUE ROOT NEW
(M N (FOUND- VALUE ROOT OLD)
(HEAD FROM CHI LD OLD)))
(EQUAL (OUTSTANDI NG ROOT NEW
(SUBL (OUTSTANDI NG ROOT OLD)))
(CHANGED OLD NEW (LI ST FROM CHI LD
(CONS * QUTSTANDI NG ROOT)
(CONS * FOUND- VALUE ROOT))))))

;o3 THE PROGRAM

(DEFN RFP (NODE CHI LDREN)
(I'F (LI STP CHI LDREN)
(CONS ((CONS NODE (CAR CHI LDREN))
(RFP NODE (CDR CHI LDREN)))
NIL))

(DEFN RECEI VE- FI ND- PRG (NCDES TREE)
(I'F (LI STP NODES)

202

(CONS (LI ST ’ RECEI VE- FI ND
(CAR NODES)
(CONS (PARENT (CAR NODES) TREE) (CAR NODES))
(CONS (CAR NODES) (PARENT (CAR NODES) TREE))
(RFP (CAR NCDES) (CH LDREN (CAR NODES) TREE)))
(RECEI VE- FI ND- PRG (CDR NODES) TREE))
NIL))

(PROVE- LEMVA MEMBER- RECEI VE- FI ND- PRG (REWRI TE)
(EQUAL (MEMBER STATEMENT (RECEI VE- FI ND- PRG NODES TREE))
(AND (EQUAL (CAR STATEMENT) * RECEI VE- FI ND)
(MEMBER (CADR STATEMENT) NODES)
(LI STP (CADDR STATEMENT))
(EQUAL (CAADDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CDADDR STATEMENT) (CADR STATEMENT))
(LI STP (CADDDR STATEMENT))
(EQUAL (CAADDDR STATEMENT) (CADR STATEMENT))
(EQUAL (CDADDDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CADDDDR STATEMENT)
(RFP (CADR STATEMENT)
(CH LDREN (CADR STATEMENT) TREE)))
(EQUAL (CDDDDDR STATEMENT) NIL)))
((DI SABLE CHI LDREN PARENT)))

(DEFN RRP (NODE CHI LDREN PARENT)

(I'F (LI STP CH LDREN)
(CONS (LI ST ’ RECEI VE- REPORT

NODE

(CONS (CAR CHI LDREN) NODE)

(CONS NODE PARENT))
(RRP NODE (CDR CHI LDREN) PARENT))
NIL))

(PROVE- LEMVA MEMBER- RRP (REVRI TE)
(EQUAL (MEMBER STATEMENT (RRP NODE CHI LDREN PARENT))
(AND (EQUAL (CAR STATEMENT) * RECEI VE- REPORT)

(EQUAL (CADR STATEMENT) NODE)
(LI STP (CADDR STATEMENT))
(MEMBER (CAADDR STATEMENT) CHI LDREN)
(EQUAL (CDADDR STATEMENT) NODE)
(LI STP (CADDDR STATEMENT))
(EQUAL (CAADDDR STATEMENT) NODE)
(EQUAL (CDADDDR STATEMENT) PARENT)
(EQUAL (CDDDDR STATEMENT) NiL))))

(DEFN RECE! VE- REPORT- PRG (NODES TREE)
(I'F (LI STP NODES)
(APPEND (RRP (CAR NODES) (CHI LDREN (CAR NODES) TREE)
(PARENT (CAR NODES) TREE))
(RECEI VE- REPORT- PRG (CDR NODES) TREE))
NIL))

(PROVE- LEMVA MEMBER- RECEI VE- REPORT- PRG (REVRI TE)
(EQUAL (MEMBER STATEMENT (RECEI VE- REPORT- PRG NODES TREE))
(AND (EQUAL (CAR STATEMENT) ' RECEI VE- REPORT)
(MEMBER (CADR STATEMENT) NODES)
(LI STP (CADDR STATEMENT))
(MEMBER (CAADDR STATEMENT)
(CH LDREN (CADR STATEMENT) TREE))

(EQUAL (CDADDR STATEMENT) (CADR STATEMENT))
(LI STP (CADDDR STATEMENT))
(EQUAL (CAADDDR STATEMENT) (CADR STATEMENT))
(EQUAL (CDADDDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CDDDDR STATEMENT) NiL)))
((DI SABLE PARENT CHI LDREN)))

(DEFN START- PRG (ROOT TREE)
(LI ST (LIST ’ START ROOT (RFP ROOT (CHI LDREN ROOT TREE)))))

(PROVE- LEMVA MEMBER- START- PRG (REWRI TE)
(EQUAL (MEMBER STATEMENT (START- PRG ROOT TREE))
(AND (EQUAL (CAR STATEMENT) * START)
(EQUAL (CADR STATEMENT) ROOT)
(EQUAL (CADDR STATEMENT)
(RFP ROOT (CHI LDREN ROOT TREE)))

(EQUAL (CDDDR STATEMENT) NIL)))

((DI SABLE CHI LDREN)))

(DEFN RRRP (ROOT CHI LDREN)
(I'F (LI STP CH LDREN)
(CONS (LI ST * ROOT- RECEI VE- REPORT
ROOT
(CONS (CAR CHI LDREN) ROOT))
(RRRP ROOT (CDR CHI LDREN)))
NIL))

(PROVE- LEMVA MEMBER- RRRP (REVRI TE)
(EQUAL (MEMBER STATEMENT (RRRP ROOT CHI LDREN))
(AND (EQUAL (CAR STATEMENT) ' ROOT- RECEl VE- REPORT)
(EQUAL (CADR STATEMENT) ROOT)
(LI STP (CADDR STATEMENT))
(MEMBER (CAADDR STATEMENT) CHI LDREN)
(EQUAL (CDADDR STATEMENT) ROOT)
(EQUAL (CDDDR STATEMENT) NIL))))

(DEFN ROOT- RECE| VE- REPORT- PRG (ROOT TREE)
(RRRP ROOT (CHI LDREN ROOT TREE)))

(PROVE- LEMVA MEMBER- ROOT- RECEI VE- REPORT- PRG (REWRI TE)
(EQUAL (MEMBER STATEMENT (ROOT- RECEl VE- REPORT- PRG ROOT TREE))
(AND (EQUAL (CAR STATEMENT) * ROOT- RECE! VE- REPORT)

(EQUAL (CADR STATEMENT) ROOT)
(LI STP (CADDR STATEMENT))
(MEMBER (CAADDR STATEMENT) (CHI LDREN ROOT TREE))
(EQUAL (CDADDR STATEMENT) ROOT)
(EQUAL (CDDDR STATEMENT) NIL)))

((DI SABLE CHI LDREN)))

(DEFN TREE- PRG (TREE)
(APPEND (START- PRG (CAR TREE) TREE)
(APPEND (ROOT- RECE! VE- REPORT- PRG (CAR TREE) TREE)
(APPEND (RECEI VE- FI ND- PRG (CDR (NODES TREE)) TREE)
(RECEI VE- REPORT- PRG (CDR (NODES TREE)) TREE)))))

(PROVE- LEMVA EQUAL-| F (REWRI TE)
(EQUAL (EQUAL (IF TEST P1 P2)
(IF TEST RL R2))
(I F TEST
(EQUAL P1 R1)

203

(EQUAL P2 R2))))

(PROVE- LEMMA MEMBER- TREE- PRG (REVRI TE)
(EQUAL (MEMBER STATEMENT (TREE- PRG TREE))
: (START ROOT TO-CHI LDREN)
(OR (AND (EQUAL (CAR STATEMENT) ’ START)
(EQUAL (CADR STATEMENT) (CAR TREE))
(EQUAL (CADDR STATEMENT)
(RFP (CAR TREE)
(CH LDREN (CAR TREE) TREE)))
(EQUAL (CDDDR STATEMENT) NiL))
; (ROOT- RECEI VE- REPORT ROOT FROM CHI LD)
(AND (EQUAL (CAR STATEMENT) ’ ROOT- RECE! VE- REPORT)
(EQUAL (CADR STATEMENT) (CAR TREE))
(LI STP (CADDR STATEMENT))
(MEMBER (CAADDR STATEMENT)
(CH LDREN (CAR TREE) TREE))
(EQUAL (CDADDR STATEMENT) (CAR TREE))
(EQUAL (CDDDR STATEMENT) NiL))
: (RECEI VE- FI ND NODE FROM PARENT TO- PARENT TO- CHI LDREN)
(AND (EQUAL (CAR STATEMENT) ' RECEI VE- FI ND)
(MEMBER (CADR STATEMENT) (CDR (NODES TREE)))
(LI STP (CADDR STATEMENT))
(EQUAL (CAADDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CDADDR STATEMENT) (CADR STATEMENT))
(LI STP (CADDDR STATEMENT))
(EQUAL (CAADDDR STATEMENT) (CADR STATEMENT))
(EQUAL (CDADDDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CADDDDR STATEMENT)
(RFP (CADR STATEMENT)
(CH LDREN (CADR STATEMENT) TREE)))
(EQUAL (CDDDDDR STATEMENT) NI L))
: (RECE| VE- REPORT NODE FROM CHI LD TO- PARENT)
(AND (EQUAL (CAR STATEMENT) ' RECE| VE- REPORT)
(MEMBER (CADR STATEMENT) (CDR (NODES TREE)))
(LI STP (CADDR STATEMENT))
(MEMBER (CAADDR STATEMENT)
(CH LDREN (CADR STATEMENT) TREE))
(EQUAL (CDADDR STATEMENT) (CADR STATEMENT))
(LI STP (CADDDR STATEMENT))
(EQUAL (CAADDDR STATEMENT) (CADR STATEMENT))
(EQUAL (CDADDDR STATEMENT)
(PARENT (CADR STATEMENT) TREE))
(EQUAL (CDDDDR STATEMENT) NiL))))
((DI SABLE PARENT CHI LDREN NODES
ROOT- RECE| VE- REPORT- PRG
START- PRG)))

1, CORRECTNESS

(DEFN TREEP (TREE)
(AND (SETP (NODES TREE))
(ALL- NUMBERPS (NODES TREE))
(PROPER- TREE ' TREE TREE)))

(DEFN TOTAL- OUTSTANDI NG (NODES TREE STATE)
(I'F (LI STP NODES)
(PLUS (TOTAL- OUTSTANDI NG (CDR NCDES) TREE STATE)
(I F (EQUAL (STATUS (CAR NODES) STATE) ® STARTED)

204

205

(QUTSTANDI NG (CAR NODES) STATE)
(ADDL (LENGTH (CHI LDREN (CAR NODES) TREE)))))

0))

(DEFN DL (DOWK- LI NKS STATE)
(I'F (LI STP DO LI NKS)
(AND (OR (AND (EMPTY (CAR DOMK- LI NKS) STATE)
(EQUAL (STATUS (CAAR DOWN- LI NKS) STATE)
(STATUS (CDAR DOWR- LI NKS) STATE)))
(AND (EQUAL (CHANNEL (CAR DOAK- LI NKS) STATE)
(LI ST * FIND))
(EQUAL (STATUS (CAAR DOWN- LI NKS) STATE)
' STARTED)
(EQUAL (STATUS (CDAR DOWN- LI NKS) STATE)
" NOT- STARTED)))
(DL (CDR DOAR- LI NKS) STATE))

)

(DEFN DONE (NODE STATE)
(AND (EQUAL (STATUS NCDE STATE) ' STARTED)
(ZERCP (OUTSTANDI NG NODE STATE))))

(DEFN UL (UP-LINKS STATE)
(I'F (LI STP UP- LI NKS)
(AND (OR (EMPTY (CAR UP-LINKS) STATE)
(AND (EQUAL (CHANNEL (CAR UP-LINKS) STATE)
(LI ST (FOUND- VALUE (CAAR UP- LI NKS) STATE)))
(DONE (CAAR UP- LI NKS) STATE)))
(UL (CDR UP-LINKS) STATE))

)

(DEFN REPORTED (NODE PARENT STATE)
(AND (DONE NODE STATE)
(EMPTY (CONS NCDE PARENT) STATE)))

(DEFN NUMBER- NOT- REPORTED (CHI LDREN PARENT STATE)
(I'F (LI STP CHI LDREN)
(I F (REPORTED (CAR CHI LDREN) PARENT STATE)
(NUMBER- NOT- REPORTED (CDR CHI LDREN) PARENT STATE)
(ADDL (NUMBER- NOT- REPORTED (CDR CHI LDREN) PARENT STATE)))

0))

(DEFN M N- OF- REPORTED (CHI LDREN PARENT STATE M N)
(I'F (LI STP CHI LDREN)
(I F (REPORTED (CAR CHI LDREN) PARENT STATE)
(M N (FOUND- VALUE (CAR CHI LDREN) STATE)
(M N OF- REPORTED (CDR CHI LDREN) PARENT STATE M N))
(M N OF- REPORTED (CDR CHI LDREN) PARENT STATE M N))

MN)

(DEFN NO (NCDES TREE STATE)
(I'F (LI STP NODES)
(AND (1 F (EQUAL (STATUS (CAR NODES) STATE) ' STARTED)
(AND (EQUAL
(OUTSTANDI NG (CAR NODES) STATE)
(NUMBER- NOT- REPORTED (CHI LDREN (CAR NODES) TREE)
(CAR NODES) STATE))
(EQUAL
(FOUND- VALUE (CAR NODES) STATE)
(M N- OF- REPORTED (CHI LDREN (CAR NODES) TREE)
(CAR NODES) STATE

(NODE- VALUE (CAR NODES) STATE))))
L))
(NO (CDR NODES) TREE STATE))
m)

(DEFN DOR- LI NKS-1 (PARENT CHI LDREN)
(I'F (LI STP CHI LDREN)
(CONS ((CONS PARENT (CAR CHI LDREN))
(DOWN- LI NKS-1 PARENT (CDR CHI LDREN)))
NIL))

(DEFN DOWK- LI NKS (NODES TREE)
(I'F (LI STP NODES)
(APPEND (DOAR- LI NKS-1 (CAR NODES) (CHI LDREN (CAR NODES) TREE))

(DOWK- LI NKS (CDR NODES) TREE))
NIL))

(DEFN UP- LI NKS (NODES TREE)
(I'F (LI STP NODES)
(CONS (CONS (CAR NODES) (PARENT (CAR NODES) TREE))
(UP-LI NKS (CDR NODES) TREE))
NIL))

(DEFN | NV (TREE STATE)
(AND (DL (DOWK LI NKS (NODES TREE) TREE) STATE)
(UL (UP-LINKS (CDR (NCDES TREE)) TREE) STATE)
(NO (NODES TREE) TREE STATE)))

(DEFN NOT- STARTED (NODES STATE)
(I'F (LI STP NODES)
(AND (EQUAL (STATUS (CAR NODES) STATE) ' NOT- STARTED)
(NOT- STARTED (CDR NODES) STATE))
m)

(DEFN ALL- CHANNELS (TREE)
(APPEND (UP- LI NKS (CDR (NODES TREE)) TREE)
(DOWK- LI NKS (NODES TREE) TREE)))

(DEFN ALL- EMPTY (CHANNELS STATE)
(I'F (LI STP CHANNELS)
(AND (EMPTY (CAR CHANNELS) STATE)
(ALL- EMPTY (CDR CHANNELS) STATE))
m)

(DEFN M N- NODE- VALUE (NODES STATE M N)
(I'F (LI STP NODES)
(M N (NODE- VALUE (CAR NODES) STATE)
(M N- NODE- VALUE (CDR NODES) STATE M N))
MN))

(DEFN CORRECT (TREE STATE)
(EQUAL (FOUND- VALUE (CAR TREE) STATE)
(M N- NODE- VALUE (CDR (NODES TREE)) STATE
(NODE- VALUE (CAR TREE) STATE))))

;. PROOF OF CORRECTNESS
(PROVE- LEMVA ALL- EMPTY- | MPLI ES- EMPTY (REVRI TE)

(I MPLIES (AND (ALL- EMPTY CHANNELS STATE)
(MEMBER CHANNEL CHANNELS))

206

(NOT (LI STP (CHANNEL CHANNEL STATE)))))

(PROVE- LEMMA NOT- STARTED- | MPLI ES- NOT- STARTED (REWRI TE)
(I MPLI ES (AND (NOT- STARTED NCDES STATE)
(MEMBER NODE NCDES))
(EQUAL (CDR (ASSOC (CONS ' STATUS NODE) STATE))
" NOT- STARTED)))

(PROVE- LEMVA ALL- EMPTY- APPEND (REWRI TE)
(EQUAL (ALL-EMPTY (APPEND A B) STATE)
(AND (ALL- EMPTY A STATE)
(ALL- EMPTY B STATE))))

(PROVE- LEMMA ALL- EMPTY- | MPLI ES- UL (REWRI TE)
(I MPLI ES (ALL- EMPTY UP- LI NKS STATE)
(UL UP-LINKS STATE)))

(DEFN NODES- | N CHANNELS (CHANNELS)
(I'F (LI STP CHANNELS)
(CONS (CAAR CHANNELS)
(CONS (CDAR CHANNELS)
(NODES- | N- CHANNELS (CDR CHANNELS))))
NIL))

(PROVE- LEMVA ALL- EMPTY- NOT- STARTED- | MPLI ES- DL (REWRI TE)
(I MPLIES (AND (ALL- EMPTY DOMR- LI NKS STATE)
(NOT- STARTED (NODES- | N- CHANNELS DOWK- LI NKS) STATE))
(DL DOWN- LI NKS STATE)))

(PROVE- LEMMA NOT- STARTED- | MPLI ES- NO (REVRI TE)
(I MPLI ES (NOT- STARTED NODES STATE)
(NO NODES TREE STATE)))

(PROVE- LEMVA NODES- | N- DOAR- LI NKS- 1- | N- NODES (REVRI TE)
(EQUAL (MEMBER NODE (NODES- | N- CHANNELS
(DOWR- LI NKS-1 PARENT CHI LDREN)))
(I'F (LI STP CH LDREN)
(MEMBER NODE (CONS PARENT CHI LDREN))

)

(PROVE- LEMVA NCDES- | N- CHANNEL S- APPEND (REVRI TE)
(EQUAL (NODES- | N- CHANNELS (APPEND A B))
(APPEND (NODES- | N- CHANNELS A)
(NODES- | N- CHANNELS B))))

(PROVE- LEMMA NCDES- | N- DOAR- LI NKS- | N- NODES (REVRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(MEMBER NODE (NODES- | N- CHANNELS
(DOWR- LI NKS NODES TREE))))
(MEMBER NODE (NODES TREE))))

(PROVE- LEMVA SUBLI| STP- NOT- STARTED (REWRI TE)
(I MPLI ES (AND (SUBLI STP SUB LI ST)
(NOT- STARTED LI ST STATE))
(NOT- STARTED SUB STATE)))

(PROVE- LEMVA SUBLI| STP- DOMR- LI NKS- 1 (REWRI TE)
(I MPLI ES (AND (SUBLI STP CHI LDREN NODES)
(MEMBER PARENT NODES))
(SUBLI STP (NODES- | N- CHANNELS
(DOW- LI NKS-1 PARENT CHI LDREN))

207

208

NODES)))

(PROVE- LEMVA CHI LDREN- OF- NON- NODE (REVRI TE)
(I MPLI ES (NOT (MEMBER PARENT (NODES- REC FLAG TREE)))

(EQUAL (CHI LDREN- REC FLAG PARENT TREE)
NIL)))

(PROVE- LEMMA DOWR- LI NKS- | S- SUBLI STP (REWRI TE)
(I MPLI ES (PROPER- TREE ' TREE TREE)
(SUBLI STP (NODES- | N- CHANNELS (DOWR- LI NKS NODES TREE))
(NODES- REC * TREE TREE)))
((1 NSTRUCTI ONS (1 NDUCT (LENGTH NODES))

(CLAI M (MEMBER (CAR NCDES) (NODES- REC ' TREE TREE)) 0) BASH
BASH BASH)))

(PROVE- LEMMA | NI TI AL- CONDI TI ONS- | MPLY- | NVARI ANT (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(ALL- EMPTY (ALL- CHANNELS TREE) STATE)
(NOT- STARTED (NODES TREE) STATE))
(INV TREE STATE))
((1 NSTRUCTI ONS BASH PROMOTE
(REWRI TE ALL- EMPTY- NOT- STARTED- | MPLI ES- DL)
(REWRI TE SUBLI STP- NOT- STARTED (($LI ST (NODES- REC ' TREE TREE))))
(REVRI TE DOAR- LI NKS- | S- SUBLI STP))))

(DEFN FOUND- VAL UE- NODE- VALUE (SUBTREES STATE)
(I'F (LI STP SUBTREES)
(AND (EQUAL (FOUND- VALUE (CAAR SUBTREES) STATE)
(M N- NODE- VALUE (CDR (NODES- REC ' TREE (CAR SUBTREES)))
STATE
(NODE- VALUE (CAAR SUBTREES) STATE)))
(FOUND- VALUE- NODE- VALUE (CDR SUBTREES) STATE))
m)

(DEFN NATI (SUBTREES)
(I'F (LI STP SUBTREES)
(NATI (NEXT- LEVEL SUBTREES))
m)

(PROVE- LEMVA FOUND- VAL UE- NODE- VALUE- APPEND (REVRI TE)
(EQUAL (FOUND- VALUE- NCDE- VALUE (APPEND A B) STATE)
(AND (FOUND- VALUE- NODE- VALUE A STATE)
(FOUND- VALUE- NODE- VALUE B STATE))))

; FI ND- VALUE- OF- NCDE- VALUE FOR A SUBTREE IS TRUE | F
; FI ND- VALUE- OF- NODE- VALUE FOR THE NEXT-LEVEL OF THAT SUBTREE | S TRUE.

(PROVE- LEMMA NO- | MPLI ES (REWRI TE)
(I MPLIES (AND (NO NODES TREE STATE)
(MEMBER NODE NODES)
(EQUAL (STATUS NODE STATE) ' STARTED))
(AND (EQUAL (NUMBER- NOT- REPORTED (CHI LDREN NODE TREE)
NODE STATE)
(CDR (ASSOC (CONS * OUTSTANDI NG NODE) STATE)))
(NUMBERP (CDR (ASSOC (CONS ' QUTSTANDI NG NODE)
STATE)))
(EQUAL (CDR (ASSOC ((CONS ' FOUND- VALUE NODE) STATE))
(M N OF- REPORTED (CHI LDREN NCDE TREE)
NODE STATE
(NODE- VALUE NODE STATE))))))

(PROVE- LEMVA TOTAL- QUTSTANDI NG- 0- | MPLI ES (REWRI TE)
(AND (1 MPLIES (AND (EQUAL (TOTAL- OUTSTANDI NG NODES TREE STATE) 0)
(MEMBER NODE NODES)
(NUMBERP (CDR (ASSOC (CONS ' QUTSTANDI NG NODE)
STATE))))
(EQUAL (CDR (ASSOC ((CONS ' OUTSTANDI NG NODE) STATE))
0))
(I MPLI ES (AND (EQUAL (TOTAL- OUTSTANDI NG NODES TREE STATE) 0)
(MEMBER NODE NODES))
(EQUAL (CDR (ASSOC ((CONS ' STATUS NODE) STATE))
" STARTED))))

(PROVE- LEMVA NUMBER- NOT- REPORTED- - | MPLI ES (REWRI TE)
(I MPLI ES (AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT STATE)
0)
(MEMBER NODE CHI LDREN))
(REPORTED NCDE PARENT STATE))
((DI SABLE REPORTED)))

(PROVE- LEMVA PROPER- TREE- TREE- | MPLI ES- NODES- EXI STS (REVRI TE)
(1 MPLI ES (PROPER- TREE ' TREE TREE)
(LI STP (NODES- REC ’ TREE TREE))))

(PROVE- LEMVA M N- OF- TWO- NODES- VALUES (REWRI TE)
(EQUAL (M N (M N- NODE- VALUE FOREST- 1
STATE
(CDR (ASSOC (CONS * NODE- VALUE ROOT)
STATE)))
(M N- NODE- VALUE REST- OF- FOREST
STATE M N))
(M N- NODE- VALUE (CONS ROOT (APPEND FOREST- 1
REST- OF- FOREST))
STATE M N)))

(PROVE- LEMVA FOUND- VALUE- M N- VALUE- GENERALI ZED (REWRI TE)
(1 MPLI ES (AND (FOUND- VALUE- NODE- VALUE FOREST STATE)

(EQUAL (NUMBER- NOT- REPORTED (ROOTS FOREST)

ROOT STATE)
0)
(PROPER- TREE ' FOREST FOREST))
(EQUAL (M N OF- REPORTED (ROOTS FOREST)
ROOT STATE
MN)

(M N- NODE- VALUE (NODES- REC ' FOREST FOREST)

STATE

MN)))
((1 NSTRUCTI ONS (1 NDUCT (LENGTH FOREST))
(BASH T (DI SABLE M N REPORTED)) PROMOTE (DI VE 1) (DIVE 1) =
(REVRI TE M N- OF- TWO- NCDES- VALUES) TOP DROP
(BASH (DI SABLE M N)) PROVE)))

(PROVE- LEMVA NO- AT- TERM NATI ON (REVRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(PROPER- TREE * FOREST SUBTREES)
(SETP (NODES- REC ' TREE TREE))
(NO (NODES- REC ' TREE TREE) TREE STATE)
(EQUAL (TOTAL- QUTSTANDI NG
(NODES- REC * TREE TREE)
TREE STATE)
0)

(SUBLI STP SUBTREES (SUBTREES ' TREE TREE)))

209

(FOUND- VALUE- NODE- VALUE SUBTREES STATE))

((I NSTRUCTI ONS (| NDUCT (NATI SUBTREES)) CHANGE- GOAL PROVE (BASH T)
(1 NDUCT (FOUND- VALUE- NODE- VALUE SUBTREES STATE)) CHANGE- GOAL
PROVE (BASH T) PROMOTE (DI VE 1)

(REWRI TE FOUND- VALUE- M N- VALUE- GENERALI ZED) TOP S (DI VE 1)
(DIVE 1) (= (CHI LDREN W TREE)) UP
(REWRI TE NO- | MPLI ES (($NODES (NODES- REC ' TREE TREE))))
(REWRI TE TOTAL- QUTSTANDI NG- 0- | MPLI ES

(($NODES (NODES- REC ' TREE TREE)) ($TREE TREE)))
TOP S (REVWRI TE MEMBER- SUBTREE- MEMBER- TREE)
(REWRI TE NO- | MPLI ES

(($NODES (NODES- REC ’ TREE TREE)) ($TREE TREE)))
(REWRI TE MEMBER- SUBTREE- MEMBER- TREE) (DI VE 1) S
(REWRI TE TOTAL- QUTSTANDI NG- O0- | MPLI ES

(($NODES (NODES- REC ’ TREE TREE)) ($TREE TREE)))
TOP S (REWRI TE MEMBER- SUBTREE- MEMBER- TREE)
(REVRI TE MEMBER- SUBTREE- MEMBER- TREE) (DI VE 1) S
(REWRI TE TOTAL- QUTSTANDI NG O- | MPLI ES

(($NCDES (NODES- REC ’ TREE TREE)) ($TREE TREE)))
TOP S (REWRI TE MEMBER- SUBTREE- MEMBER- TREE))))

(PROVE- LEMMVA | NV- | MPLI ES- AUGVENTED- CORRECTNESS- CONDI TI ON (REVRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SETP (NODES- REC ' TREE TREE))
(I NV TREE STATE)
(EQUAL (TOTAL- OUTSTANDI NG (NCDES TREE)
TREE STATE)
0))
(CORRECT TREE STATE))
((USE (NO- AT- TERM NATI ON (SUBTREES (LI ST TREE))
(TREE TREE) (STATE STATE)))
(DI SABLE NO- AT- TERM NATI ON)))

(DEFN SEND- FI ND- FUNC (TO- CHI LDREN OLD)
(I'F (LI STP TO- CHI LDREN)
(UPDATE- ASSOC (CAR TO- CHI LDREN)
(SEND (CAR TO-CHI LDREN) ’ FI ND OLD)
(SEND- FI ND- FUNC (CDR TO- CHI LDREN) OLD))
oLD))

(DEFN RECE! VE- FI ND- FUNC (OLD NODE FROM PARENT TO PARENT TO- CHI LDREN)
(I F (EQUAL (HEAD FROM PARENT OLD) ' FI ND)
(UPDATE- ASSCC
FROM PARENT (RECEI VE FROM PARENT OLD)
(UPDATE- ASSCC
(CONS ' STATUS NODE) ' STARTED
(UPDATE- ASSOC
(CONS * FOUND- VALUE NODE) (NODE- VALUE NCDE OLD)
(UPDATE- ASSCC
(CONS * OUTSTANDI NG NODE) (LENGTH TO- CHI LDREN)
(I F (ZEROP (LENGTH TO CHI LDREN))
(UPDATE- ASSOC
TO PARENT (SEND TO- PARENT (NODE- VALUE NODE OLD) OLD)
(SEND- FI ND- FUNC TO- CHI LDREN OLD))
(SEND- FI ND- FUNC TO- CHI LDREN OLD))))))
oLD))

(PROVE- LEMVA SEND- FI ND- FUNC- | MPLEMENTS- SEND- FI ND (REWRI TE)
(SEND- FI ND TO- CHI LDREN
QD

210

(SEND- FI ND- FUNC TO- CHI LDREN OLD)))

(PROVE- LEMMA NODES- ARE- NOT- LI TATOMS (REWRI TE)
(I MPLI ES (AND (ALL- NUVBERPS (NODES- REC FLAG TREE))
(MEMBER NODE (NODES- REC FLAG TREE)))
(EQUAL (EQUAL (PACK X) NCDE) F))
((USE (ALL- NUMBERPS- | MPLI ES (LI ST (NODES- REC FLAG TREE))
(E NODE)))
(DI SABLE ALL- NUVBERPS- | MPLI ES)))

(PROVE- LEMMA PARENT- | S- NOT- A- LI TATOM (REWRI TE)
(I MPLI ES (AND (ALL- NUVBERPS (NODES- REC ’ TREE TREE))

(SETP (NODES- REC ' TREE TREE))

(PRCPER— TREE ' TREE TREE)

(MEMBER CHI LD (CDR (NCDES- REC ' TREE TREE))))

(EQUAL (EQUAL (PACK X)
(CAR (PARENT- REC ' TREE CHI LD TREE)))
F))

((I NSTRUCTI ONS PROMOTE (DI VE 1)
(REWRI TE NODES- ARE- NOT- LI TATOVS (($FLAG * TREE) ($TREE TREE)))
TOP S (REWRI TE NODE- HAS- PARENT) (DROP 1 2) (DI VE 2) X TOP
PROVE (DROP 1) (DEMOTE 1) (DIVE 1) (DIVE 1) X TOP PROVE)))

(PROVE- LEMMA CHI LDREN- ARE- NOT- LI TATOMS (REVRI TE)
(I MPLI ES (AND (ALL- NUVBERPS (NODES- REC FLAG TREE))
(PROPER- TREE FLAG TREE)
(MEMBER CHI LD (CHI LDREN- REC FLAG PARENT TREE)))
(EQUAL (EQUAL (PACK X) CHILD)
F))
((1 NSTRUCTI ONS PROMOTE (DI VE 1)
(REWRI TE NODES- ARE- NOT- LI TATOVS (($FLAG FLAG) ($TREE TREE)))
TOP S (REVWRI TE MEMBER- CHI LD- TREE (($NODE PARENT))))))

(PROVE- LEMMA CHI LDREN- ARE- NOT- LI TATOVB- MEMBER (REVRI TE)
(I MPLI ES (AND (ALL- NUVBERPS (NODES- REC FLAG TREE))
(PROPER- TREE FLAG TREE))
(EQUAL (MEMBER (PACK X) (CHI LDREN-REC FLAG PARENT TREE))
F)
((USE (CHI LDREN- ARE- NOT- LI TATOMB (CHI LD (PACK X))))))

(PROVE- LEMVA SEND- FI ND- OF- UPDATE- ASSCC (REWRI TE)
(I MPLI ES (NOT (MEMBER KEY TO CHI LDREN))
(EQUAL (SEND-FI ND TO- CHI LDREN OLD
(UPDATE- ASSOC KEY VALUE STATE))
(SEND- FI ND TO- CHI LDREN OLD STATE))))

(PROVE- LEMMA ASSOC- OF- SEND- FI ND- FUNC (REVRI TE)
(I MPLI ES (NOT (MEMBER KEY TO- CHI LDREN))
(EQUAL (ASSOC KEY (SEND- FI ND- FUNC TO- CHI LDREN OLD))
(ASSOC KEY OLD))))

(PROVE- LEMVA ABOUT- RFP (REWRI TE)
(I MPLIES (NOT (MEMBER P Q))
(NOT (MEMBER (CONS V P)
(RFP V. O)))))

(PROVE- LEMVA ABOUT- RFP- NUVBERP (REVRI TE)
(I MPLI ES (NUMBERP A)
(NOT (MEMBER (CONS (PACK X) YY)
(RFP A B)))))

211

212

(PROVE- LEMVA PARENT- NOT- | N- RFP (REVRI TE)
(I MPLI ES (AND (SETP (NODES- REC ' TREE TREE))

(PRO:’ER- TREE ' TREE TREE)

(MEMBER V (CDR (NODES- REC ' TREE TREE))))

(NOT (MEMBER (CONS V (CAR (PARENT- REC ' TREE V TREE)))
(RFP V (CHI LDREN- REC * TREE V TREE)))))
((1 NSTRUCTI ONS PROVOTE (DI VE 1) (REWRI TE ABOUT-RFP) TOP S (DI VE 1)
(REWRI TE PARENT-1S-NOT-CHI LD) TOP S (BASH T))))

(PROVE- LEMMA TO- NODE- NOT- | N- RFP (REVRI TE)
(I MPLI ES (NOT (MEMBER NODE CHI LDREN))
(NOT (MEMBER (CONS X NODE)
(RFP NODE CHI LDREN)))))

(PROVE- LEMVA UC- OF- SEND- FI ND- FUNC (REVRI TE)
(I MPLI ES (SUBLI STP TO CHI LDREN EXCPT)
(EQUAL (UC OLD (SEND- FI ND- FUNC TO- CHI LDREN STATE)
KEYS EXCPT)
(UC OLD STATE KEYS EXCPT))))

(PROVE- LEMMA RECEI VE- FI ND- FUNC- | MPLEMENTS- RECEI VE- FI ND (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (RECEI VE- FI ND- PRG
(CDR (NODES TREE)) TREE)))
(N OLD
(RECEI VE- FI ND- FUNC OLD
(CADR STATEMENT)
(CADDR STATEMENT)
(CADDDR STATEMENT)
(CADDDDR STATEMENT))
STATEMENT)))

(DEFN RECE| VE- REPORT- FUNC (OLD NODE FROM CHI LD TO- PARENT)
(I F (EMPTY FROM CHI LD OLD)
oD
(UPDATE- ASSOC
FROM CHI LD (RECEI VE FROM CHI LD OLD)
(UPDATE- ASSCC
(CONS * FOUND- VALUE NODE) (M N (FOUND- VALUE NODE OLD)
(HEAD FROM CHI LD OLD))
(UPDATE- ASSCC
(CONS * OUTSTANDI NG NODE) (SUBL (OUTSTANDI NG NCDE OLD))
(I F (ZEROP (SUBL (OUTSTANDI NG NCDE OLD)))
(UPDATE- ASSOC TO- PARENT
(SEND TO- PARENT (M N (FOUND- VALUE NCDE OLD)
(HEAD FROM CHI LD OLD))
oLD)
oLD)
aD))))))

(PROVE- LEMMA RECEI VE- REPORT- FUNC- | MPLEMENTS- RECEI VE- REPORT (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (RECE| VE- REPORT- PRG
(CDR (NODES TREE)) TREE)))
(N OLD

(RECEI VE- REPORT- FUNC QLD
(CADR STATEMENT)
(CADDR STATEMENT)
(CADDDR STATEMENT))

STATEMENT))

213

((DI SABLE M N)))

(DEFN START- FUNC (OLD ROOT TO- CHI LDREN)
(I F (EQUAL (STATUS ROOT OLD) ' NOT- STARTED)

(UPDATE- ASSOC

(CONS ' STATUS ROOT) ’ STARTED

(UPDATE- ASSCC
(CONS * FOUND- VALUE ROOT) (NODE- VALUE ROOT OLD)
(UPDATE- ASSCC
(CONS * OUTSTANDI NG ROOT) (LENGTH TO- CHI LDREN)
(SEND- FI ND- FUNC TO- CHI LDREN OLD))))

oD)

(PROVE- LEMVA START- FUNC- | MPLEMENTS- START (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (START- PRG (CAR TREE) TREE)))
(N OLD

(START- FUNC OLD
(CADR STATEMENT)
(CADDR STATEMENT))

STATEMENT)))

(DEFN ROOT- RECEI VE- REPORT- FUNC (OLD ROOT FROM CHI LD)
(I F (EMPTY FROM CHI LD OLD)
oD
(UPDATE- ASSCC
FROM CHI LD (RECEI VE FROM CHI LD OLD)
(UPDATE- ASSCC
(CONS * FOUND- VALUE ROOT) (M N (FOUND- VALUE ROOT OLD)
(HEAD FROM CHI LD OLD))
(UPDATE- ASSOC (CONS ’ QUTSTANDI NG ROOT)
(SUBL (OUTSTANDI NG ROOT OLD))
oD)))))

(PROVE- LEMMA ROOT- RECE! VE- REPORT- FUNGC- | MPLEMENTS- ROOT- RECE! VE- REPORT
(REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (ROOT- RECE| VE- REPORT- PRG
(CAR TREE) TREE)))
(N OLD
(ROOT- RECE| VE- REPORT- FUNC OLD
(CADR STATEMENT)
(CADDR STATEMENT))
STATEMENT))
((DI SABLE M N)))

(PROVE- LEMVA RECEI VE- FI ND- PRG- | S- TOTAL (REWRI TE)
(I MPLI ES (TREEP TREE)
(TOTAL- SUFFI CI ENT STATEMENT
(RECEI VE- FI ND- PRG
(CDR (NCDES TREE))
TREE)
oD
(RECEI VE- FI ND- FUNC
oD
(CADR STATEMENT)
(CADDR STATEMENT)
(CADDDR STATEMENT)
(CADDDDR STATEMENT))))
((DI SABLE N
RECE! VE- FI ND

RECEI VE- FI ND- FUNC
MEMBER- RECE| VE- FI ND- PRG
NODES SETP PROPER- TREE ALL- NUVBERPS)
(USE (RECEI VE- FI ND- FUNC- | MPLEMENTS- RECEI VE- FI ND))))

(PROVE- LEMMA RECEI VE- REPORT- PRG | S- TOTAL (REWRI TE)
(I MPLI ES (TREEP TREE)
(TOTAL- SUFFI CI ENT STATEMENT
(RECEI VE- REPORT- PRG
(CDR (NODES TREE))
TREE)
oD
(RECEI VE- REPORT- FUNC
oD
(CADR STATEMENT)
(CADDR STATEMENT)
(CADDDR STATEMENT))))
((DI SABLE N
RECE! VE- REPORT
RECE! VE- REPORT- FUNC
MEMBER- RECE! VE- REPORT- PRG
NODES SETP PROPER- TREE ALL- NUVBERPS)
(USE (RECEI VE- REPORT- FUNC- | MPLEMENTS- RECEI VE- REPCRT))))

(PROVE- LEMVA START- PRG- | S- TOTAL (REWRI TE)
(I MPLI ES (TREEP TREE)
(TOTAL- SUFFI CI ENT STATEMENT
(START- PRG (CAR TREE) TREE)
oD
(START- FUNC
oD
(CADR STATEMENT)
(CADDR STATEMENT))))
((DI SABLE N
START
START- FUNC
START- PRG
NODES SETP PROPER- TREE ALL- NUVBERPS)
(USE (START- FUNC- | MPLEMENTS- START))))

(PROVE- LEMMA ROOT- RECEI VE- REPORT- PRG- | S- TOTAL (REWRI TE)
(I MPLI ES (TREEP TREE)
(TOTAL- SUFFI CI ENT STATEMENT
(ROOT- RECE| VE- REPORT- PRG
(CAR TREE) TREE)
oD
(ROOT- RECE| VE- REPORT- FUNC
oD
(CADR STATEMENT)
(CADDR STATEMENT))))
((DI SABLE N
ROOT- RECE| VE- REPORT
ROOT- RECE| VE- REPORT- FUNC
ROOT- RECE| VE- REPORT- PRG
MEMBER- ROOT- RECE| VE- REPORT- PRG
NODES SETP PROPER- TREE ALL- NUVBERPS)
(USE (ROOT- RECE! VE- REPORT- FUNC- | MPLEMENTS- ROOT- RECEI VE- REPORT))))

(PROVE- LEMMA TOTAL- TREE- PRG (REWRI TE)
(I MPLI ES (TREEP TREE)
(TOTAL (TREE- PRG TREE)))

214

215

((1 NSTRUCTI ONS
(BASH (DI SABLE N ROOT- RECE| VE- REPORT- PRG- | S- TOTAL
START- PRG- | S- TOTAL RECEI VE- REPORT- PRG- | S- TOTAL
RECE! VE- FI ND- PRG- | S- TOTAL
MEMBER- ROOT- RECE| VE- REPORT- PRG MEMBER- START- PRG
MEMBER- RECE! VE- REPORT- PRG
MEMBER- RECE| VE- FI ND- PRG
ROOT- RECE| VE- REPORT- FUNC START- FUNC
RECEI VE- REPORT- FUNC RECE! VE- FI ND- FUNC
ROOT- RECE| VE- REPORT- PRG START- PRG
RECE! VE- REPORT- PRG RECE! VE- FI ND- PRG PROPER- TREE
ALL- NUVBERPS SETP NCDES TREEP MEMBER- TREE- PRG
TOTAL- SUFFI Cl ENT))
PROVOTE (REWRI TE HELP- PROVE- TOTAL)
(PUT (NEW (RECEI VE- REPORT- FUNC
(OLDT (RECEI VE- REPORT- PRG (CDR (NODES TREE))
TREE))
(CADR (ET (RECEI VE- REPORT- PRG (CDR (NODES TREE))
TREE)))
(CADDR (ET (RECE| VE- REPORT- PRG
(CDR (NODES TREE)) TREE)))
(CADDDR (ET (RECEl VE- REPORT- PRG
(CDR (NODES TREE)) TREE))))))
(REWRI TE RECEI VE- REPORT- PRG- | S- TOTAL) PROMOTE
(REWRI TE HELP- PROVE- TOTAL)
(PUT (NEW (RECEI VE- FI ND- FUNC
(OLDT (RECE! VE- FI ND- PRG (CDR (NCDES TREE)) TREE))
(CADR (ET (RECEI VE- FI ND- PRG (CDR (NCDES TREE))
TREE)))
(CADDR (ET (RECEI VE- FI ND- PRG (CDR (NODES TREE))
TREE)))
(CADDDR (ET (RECEI VE- FI ND- PRG (CDR (NODES TREE))
TREE)))
(CADDDDR (ET (RECEl VE- FI ND- PRG
(CDR (NODES TREE)) TREE))))))
(REWRI TE RECEI VE- FI ND- PRG | S- TOTAL) PROMOTE
(REWRI TE HELP- PROVE- TOTAL)
(PUT (NEW (ROOT- RECE| VE- REPORT- FUNC
(OLDT (ROOT- RECE| VE- REPORT- PRG (CAR TREE) TREE))
(CADR (ET (ROOT- RECEI VE- REPORT- PRG (CAR TREE)
TREE)))
(CADDR (ET (ROOT- RECEl VE- REPORT- PRG (CAR TREE)
TREE))))))
(REWRI TE ROOT- RECEl VE- REPORT- PRG- | S- TOTAL) PROMOTE
(REWRI TE HELP- PROVE- TOTAL)
(PUT (NEW (START- FUNC (OLDT (START- PRG (CAR TREE) TREE))
(CADR (ET (START- PRG (CAR TREE) TREE)))
(CADDR (ET (START- PRG (CAR TREE) TREE))))))
(REVRI TE START- PRG | S- TOTAL))))

(PROVE- LEMMA LI STP- TREE- PRG (REWRI TE)
(LI STP (TREE- PRG TREE)))

(PROVE- LEMVA NODE- VALUES- CONSTANT- UNLESS- SUFFI Cl ENT (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (NODES TREE)))
(UNLESS- SUFFI CI ENT STATEMENT

(TREE- PRG TREE)

OLD NEW

* (EQUAL (NODE- VALUE (QUOTE , NODE)

STATE)

(QUOTE , K))
" (FALSE)))
((DI SABLE TREE- PRG)))

(PROVE- LEMVA NODE- VALUES- CONSTANT- | NVARI ANT (REWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
“ (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS TREE))

STATE)
(AND (NOT- STARTED (QUOTE , (NODES TREE))
STATE)
(EQUAL (NODE- VALUE (QUOTE , NODE) STATE)
(QUOTE , K))))

(TREE- PRG TREE))
(TREEP TREE)
(MEMBER NODE (NODES TREE)))
(I NVARI ANT * (EQUAL (NCDE- VALUE (QUOTE , NODE) STATE)
(QUOTE , K))
(TREE- PRG TREE)))
((1 NSTRUCTI ONS
PROMOTE
(REWRI TE UNLESS- PROVES- | NVARI ANT
(($1C (LIST ’ AND
(LI ST * ALL- EMPTY
(LI ST * QUOTE (ALL- CHANNELS TREE))
' STATE)
(LI ST * AND
(LI ST * NOT- STARTED
(LI ST * QUOTE (NODES TREE)) ' STATE)
(LI ST * EQUAL
(LI ST * NODE- VALUE
(LI ST * QUOTE NODE) ® STATE)

(LI'ST " QUOTE K)))))))
(REWRI TE HELP- PROVE- UNLESS)
(REWRI TE NODE- VALUES- CONSTANT- UNLESS- SUFFI CI ENT)
(BASH (DI SABLE EVAL TREE-PRG)))))

(PROVE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL (REWRI TE)
(I MPLIES (AND (DL DOWN- LI NKS STATE)
(MEMBER DOVR- LI NK DOWR- LI NKS))
(OR (AND (EMPTY DOWR- LI NK STATE)
(EQUAL (STATUS (CAR DOWN- LI NK) STATE)
(STATUS (CDR DOWN- LI NK) STATE)))
(AND (EQUAL (CHANNEL DOWN- LI NK STATE)
(LIST * FIND))
(EQUAL (STATUS (CAR DOWN- LI NK) STATE)
* STARTED)
(EQUAL (STATUS (CDR DOWN- LI NK) STATE)
" NOT- STARTED)))))

(DI SABLE DL- | MPLI ES- | NSTANCE- OF- DL)

(PROVE- LEMMA UL- | MPLI ES- | NSTANCE- OF- UL (REWRI TE)
(I MPLIES (AND (UL UPLI NKS STATE)
(MEMBER UPLI NK UPLI NKS))

(OR (EMPTY UPLINK STATE)

(AND (EQUAL (CHANNEL UPLINK STATE)

(LI ST (FOUND- VALUE (CAR UPLI NK)
STATE)))
(DONE (CAR UPLINK) STATE)))))

216

(DI SABLE UL- I MPLI ES- | NSTANCE- OF- UL)

(PROVE- LEMMA UL- | MPLI ES- | NSTANCE- OF- UL- NOT- EMPTY- UPLI NK (REWRI TE)
(IMPLIES (AND (UL UPLINKS STATE)
(MEMBER UPLI NK UPLI NKS)
(NOT (EMPTY UPLINK STATE)))
(AND (EQUAL (CDR (ASSOC UPLI NK STATE))
(LI ST (FOUND- VALUE (CAR UPLI NK) STATE)))
(EQUAL (CDR (ASSOC ((CONS ' STATUS (CAR UPLI NK))
STATE))
' STARTED)
(ZERCP (CDR (ASSOC ((CONS ' OUTSTANDI NG (CAR UPLI NK))
STATE)))))
((USE (UL- | MPLI ES- | NSTANCE- OF- UL))))

(PROVE- LEMVA NO- | MPLI ES- | NSTANCE- OF- NO (REWRI TE)
(I MPLI ES (AND (NO NODES TREE STATE)
(MEMBER NODE NODES)
(EQUAL (STATUS NODE STATE) ' STARTED))
(AND (EQUAL (CDR (ASSOC (CONS ' OUTSTANDI NG NODE) STATE))
(NUMBER- NOT- REPORTED (CHI LDREN- REC * TREE
NODE TREE)
NODE STATE))
(EQUAL (CDR (ASSOC ((CONS ' FOUND- VALUE NODE) STATE))
(M N OF- REPORTED (CHI LDREN- REC * TREE
NODE TREE)
NODE STATE
(NODE- VALUE NODE STATE))))))

(PROVE- LEMVA MEMBER- DOWK- LI NKS- 1 (REWRI TE)
(EQUAL (MEMBER DOAR- LI NK (DOAR- LI NKS-1 PARENT CHI LDREN))
(AND (EQUAL (CAR DOWK- LI NK) PARENT)
(MEMBER (CDR DOWK- LI NK) CHI LDREN)
(LI STP DOWK- LI NK))))

(PROVE- LEMMA MEMBER- DOWK- LI NKS (REWRI TE)
(EQUAL (MEMBER DOWK- LI NK (DOWK- LI NKS NODES TREE))
(AND (MEMBER (CAR DOWR- LI NK) NODES)

(MEMBER (CDR DOWN- LI NK) (CHI LDREN (CAR DOMR- LI NK)

TREE))
(LI STP DOWK- LI NK)))
((DI SABLE CHI LDREN)))

(PROVE- LEMVA PARENT- NOT- CHI LD (REWRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(SETP (NODES- REC FLAG TREE)))
(NOT (MEMBER PARENT (CHI LDREN- REC FLAG PARENT TREE)))))

(PROVE- LEMVA PARENT- NOT- GRANDCHI LD (REWRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(SETP (NODES- REC FLAG TREE))
(MEMBER CHI LD (CHI LDREN- REC FLAG PARENT TREE)))
(NOT (MEMBER PARENT (CHI LDREN- REC FLAG CHI LD TREE)))))

(PROVE- LEMMA PARENT- OF- PARENT- NOT- NODE (REWRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(SETP (NODES- REC FLAG TREE))
(LI STP (PARENT- REC FLAG NCDE TREE))
(LI STP (PARENT- REC FLAG
(CAR (PARENT- REC FLAG NODE TREE))

217

TREE)))
(NOT (EQUAL (CAR (PARENT- REC FLAG
(CAR (PARENT- REC FLAG
NODE TREE))
TREE))
NODE)))
((1 NSTRUCTI ONS
(USE- LEMVA PARENT- NOT- GRANDCHI LD
((CHILD (CAR (PARENT- REC FLAG NCDE TREE)))
(PARENT (CAR (PARENT- REC FLAG
(CAR (PARENT- REC FLAG NODE TREE)) TREE)))))
PROVOTE (DEMOTE 1) (DIVE 1) (DIVE 1) S
(REWRI TE PARENT- REC- CH LDREN- REC) (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) UP UP (DI VE 2) (DI VE 1)
(REWRI TE PARENT- REC- CHI LDREN- REC) (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) TOP PROMOTE PROVE)))

(PROVE- LEMMA MEMBER- RFP (REWRI TE)
(EQUAL (MEMBER CHANNEL (RFP PARENT CHI LDREN))
(AND (EQUAL (CAR CHANNEL) PARENT)
(MEMBER (CDR CHANNEL) CHI LDREN)
(LI STP CHANNEL))))

(PROVE- LEMVA SEND- FI ND- | MPLI ES (REVRI TE)
(I MPLI ES (AND (SEND- FI ND CHANNELS OLD NEW
(MEMBER KEY CHANNELS))
(EQUAL (CDR (ASSOC KEY NEW)
(SEND KEY ' FIND OLD))))

(PROVE- LEMVA ASSOC- OF- CHANNEL - PRESERVED- ROOT- RECE! VE- REPORT (REWRI TE)
(I MPLI ES (AND (NOT (MEMBER W (NODES- REC ’ FOREST D)))
(SETP (NODES- REC ' FOREST D))
(MEMBER Z (NODES- REC ' FOREST D))
(UC NEW OLD
(APPEND (STRI P- CARS NEW
(STRI P- CARS OLD))
(LIST (CONS V W
(CONS * QUTSTANDI NG W
(CONS * FOUND- VALUE W)))
(EQUAL (ASSCC (CONS X Z) NEW
(ASSOC (CONS X Z) OLD)))
((USE (ABOUT-UC (A NEW (B OLD)
(EXCPT (LIST (CONS V W
(CONS * OUTSTANDI NG W
(CONS * FOUND- VALUE W))
(KEY (CONS X 2))))
(DI SABLE ABOUT- UC)))

(PROVE- LEMVA ASSOC- EQUAL- CONS (REWRI TE)
(EQUAL (EQUAL (ASSOC KEY ALIST) (CONS KEY VALUE))
(AND (LI STP (ASSOC KEY ALIST))
(EQUAL (CDR (ASSOC KEY ALIST)) VALUE))))

(PROVE- LEMVA SEND- FI ND- GENERAL (REWRI TE)
(I MPLI ES (AND (SEND- FI ND CHANNELS OLD NEW
(MEMBER KEY CHANNELS))
(EQUAL (ASSCC KEY NEW
(CONS KEY (SEND KEY ' FIND OLD)))))

(PROVE- LEMVA ALL- NUMBERPS- DO- NOT- CONTAI N- LI TATOM (REVRI TE)

218

219

(I MPLI ES (ALL- NUVBERPS LI ST)
(NOT (MEMBER (PACK X) LIST))))

(PROVE- LEMVA ALL- NUVBERPS- APPEND (REWRI TE)
(EQUAL (ALL- NUVBERPS (APPEND X Y))
(AND (ALL- NUMBERPS X)
(ALL- NUMBERPS Y))))

(PROVE- LEMVA ALL- NUVBERPS- NODES- | MPLI ES- ALL- NUVBERPS- PARENT (REWRI TE)
(I MPLI ES (ALL- NUVBERPS (NODES- REC FLAG TREE))
(ALL- NUMBERPS (PARENT- REC FLAG CHI LD TREE))))

(PROVE- LEMVA ALL- NUMBERPS- NODES- | MPLI ES- ALL- NUMBERPS- CAR- PARENT (REVRI TE)
(I MPLI ES (ALL- NUVBERPS (NODES- REC FLAG TREE))
(NUMBERP (CAR (PARENT- REC FLAG CHI LD TREE))))
((USE (ALL- NUVBERPS- NCDES- | MPLI ES- ALL- NUVBERPS- PARENT))
(DI SABLE ALL- NUVBERPS- NODES- | MPLI ES- ALL- NUVBERPS- PARENT)))

(PROVE- LEMMA PARENT- NOT- LI TATOM (REVRI TE)
(I MPLI ES (ALL- NUVBERPS (NODES- REC FLAG TREE))
(EQUAL (EQUAL (PACK X)
(CAR (PARENT- REC FLAG CHI LD TREE)))
F)
((USE (ALL- NUVBERPS- NCDES- | MPLI ES- ALL- NUMBERPS- CAR- PARENT))
(DI SABLE ALL- NUVBERPS- NODES- | MPLI ES- ALL- NUVBERPS- CAR- PARENT)))

(PROVE- LEMVA ALL- NUMBERPS- FOREST- | MPLI ES- ALL- NUVMBERPS- ROOTS (REVRI TE)
(I MPLI ES (ALL- NUVBERPS (NODES- REC ' FOREST FOREST))
(ALL- NUMBERPS (ROOTS FOREST))))

(PROVE- LEMVA ALL- NUMBERPS- NODES- | MPLI ES- ALL- NUMBERPS- CHI LDREN (REWRI TE)
(I MPLI ES (ALL- NUVBERPS (NODES- REC FLAG TREE))
(ALL- NUMBERPS (CHI LDREN- REC FLAG PARENT TREE))))

(PROVE- LEMMA DL- PRESERVES- | NSTANCE- OF- DL (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER DOWR- LI NK (DOAR- LI NKS (NODES TREE) TREE))
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(DL (DOM-LINKS (NODES TREE) TREE) OLD))
(OR (AND (EMPTY DOWK- LI NK NEW
(EQUAL (STATUS (CAR DOWK- LI NK) NEW
(STATUS (CDR DOWK- LI NK) NEW))
(AND (EQUAL (CHANNEL DOWN- LI NK NEW
(LI ST * FIND))
(EQUAL (STATUS (CAR DOWN- LI NK) NEW
" STARTED)
(EQUAL (STATUS (CDR DOWN- LI NK) NEW
" NOT- STARTED))))
((1 NSTRUCTI ONS
PROVOTE
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NK DOAR- LI NK) (STATE OLD)
(DOWR- LI NKS (DOWR- LI NKS (NODES TREE) TREE))))
(DEMOTE 6) (DIVE 1) (DIVE 1) S-PROP UP (S-PROP | MPLIES) TOP
PROVMOTE (CLAI M (EQUAL (CAR STATEMENT) ' START) 0) (DROP 5)
(BASH T (DI SABLE TREE-PRG)) PROMOTE (DI VE 1) (DI VE 1)
(REVRI TE
ABOUT- UC
(($B OLD)

(SEXCPT (CONS (CONS ' STATUS C)
(CONS ((CONS * FOUND- VALUE C)
(CONS ((CONS ’* OUTSTANDI NG C)
(RFP C (APPEND (ROOTS W NIL))))))))
TOP S PROVE PROMOTE (CLAIM (NOT (EQUAL Z C))) PROVE PROMOTE
(DIVE 1) (DIVE 1)
(REVRI TE
ABOUT- UC
(($B OLD)
(SEXCPT (CONS (CONS ' STATUS D)
(CONS (CONS ' FOUND- VALUE D)
(CONS ((CONS * OUTSTANDI NG D)
(RFP D (APPEND (ROOTS W NIL))))))))
TOP S PROVE
(CLAIM (EQUAL (CAR STATEMENT) ' ROOT- RECE| VE- REPORT) 0)
(DROP 5) (PROVE (DI SABLE TREE- PRG))
(CLAIM (EQUAL (CAR STATEMENT) ' RECEI VE- REPORT) 0) (DROP 5)
(CLAIM (AND (EQUAL (STATUS (CAR DOMK-LINK) NEW
(STATUS (CAR DOWN-LINK) OLD))
(EQUAL (STATUS (CDR DOWN- LI NK) NEW
(STATUS (CDR DOWN- LI NK) OLD))
(EQUAL (CHANNEL DOWN- LI NK NEW
(CHANNEL DOWR- LI NK OLD)))
0)
(DROP 1 23 46 7 8) PROVE (CONTRADICT 9) (DROP 5 6 7 9) SPLIT
(PROVE (DI SABLE TREE-PRG)) (PROVE (DI SABLE TREE- PRG))
(CLAIM (AND (NOT (EQUAL DOWR- LI NK (CADDR STATEMENT)))
(NOT (EQUAL DOMR-LINK (CADDDR STATEMENT))))
0)
(PROVE (DI SABLE TREE-PRG)) (CONTRADI CT 6) (DROP 3 6) SPLIT
(PROVE (DI SABLE TREE-PRG)) (BASH T (DI SABLE TREE- PRG)) PROMOTE
(CONTRADI CT 4) (DI VE 1) (REWRI TE PARENT- NOT- GRANDCHI LD) TOP S
(REWRI TE PARENT- REC- CH LDREN- REC) (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) TOP PROVE
(CLAI M (EQUAL DOWN- LI NK (CADDDR STATEMENT)) 0) (CONTRADI CT 10)
(DROP 3 5 6 10) (BASH T (DI SABLE TREE- PRG) PROMOTE
(CONTRADI CT 4) (DI VE 1) (REWRI TE PARENT- NOT- GRANDCHI LD) TOP S
(REWRI TE PARENT- REC- CH LDREN- REC) (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) TOP PROVE
(CLAI M (EQUAL DOWN- LI NK (CADDR STATEMENT)) 0)
(CLAI M (MEMBER DOMR- LI NK (CADDDDR STATEMENT)) 0)
(CONTRADI CT 12) (DROP 3 5 6 10 12) (BASH T (DI SABLE TREE- PRG))
(DROP 5) (BASH T (DI SABLE TREE- PRG))
(CLAI M (MEMBER DOWR- LI NK (CADDDDR STATEMENT)) 0)
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NK

(CONS (PARENT (CAR DOMK-LINK) TREE) (CAR DOWK-LINK)))
(STATE OLD) (DOWN LI NKS (DOMR-LINKS (NCDES TREE) TREE))))

(DEMOTE 13) (DIVE 1) (DIVE 1) (= * T IFF) TOP (DROP 5)
(BASH T (DI SABLE TREE- PRG)) PROMOTE (CLAIM (NOT (EQUAL Z CQ)))
PROVE S- PRCP
(CLAI M (MEMBER (CAR DOWK- LI NK) (CDR (NODES TREE))) 0)
(DROP 34567 89 10 11 12) (REWR TE MEMBER DOM- LI NKS) S
(DI VE 1) (REWRI TE NODE- HAS- PARENT) TOP S
(REWRI TE PARENT- REC- CH LDREN- REC) (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) TOP PROVE PROVE PROVE PROVE
PROVE PROVE ((CONTRADI CT 13) (DROP 3 5 6 10 11 13) PROVE
(CLAIM (AND (EQUAL (STATUS (CAR DOM- LI NK) NEW

(STATUS (CAR DOWN- LI NK) OLD))

(EQUAL (STATUS (CDR DOWN- LI NK) NEW
(STATUS (CDR DOWN- LI NK) OLD))

220

221

(EQUAL (CHANNEL DOWN- LI NK NEWY
(CHANNEL DOWR- LI NK OLD)))
0)
(DROP 12345789 10 11 12) PROVE (CONTRADI CT 13)
(DROP 5 6 13) (DEMOTE 3) (DI VE 1)
(=~
(RECEI VE- FI ND OLD NEW (CADR STATEMENT) (CADDR STATEMENT)
(CADDDR STATEMENT) (CADDDDR STATEMENT))
((DI SABLE TREE- PRG MEMBER- DOAR- LI NKS)))
X- DUMB TOP PROMOTE
(CLAIM (EQUAL (HEAD (CADDR STATEMENT) OLD) ' FIND) 0) (DI VE 1)
(DIVE 1) S (DIVE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CADDR STATEMENT)
(CADDDR STATEMENT)
(CONS * STATUS (CADR STATEMENT))
(CONS * FOUND- VALUE
(CADR STATEMENT))
(CONS * QUTSTANDI NG
(CADR STATEMENT)))
(CADDDDR STATEMENT)))))
TOP (DIVE 2) (DIVE 1) (DIVE 1) S (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT (APPEND (LI ST (CADDR STATEMENT)
(CADDDR STATEMENT)
(CONS ’ STATUS (CADR STATEMENT))
(CONS * FOUND- VALUE
(CADR STATEMENT))
(CONS * QUTSTANDI NG
(CADR STATEMENT)))
(CADDDDR STATEMENT)))))
TOP (DIVE 2) (DIVE 2) (DIVE 1) S (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CADDR STATEMENT)
(CADDDR STATEMENT)
(CONS * STATUS (CADR STATEMENT))
(CONS * FOUND- VALUE
(CADR STATEMENT))
(CONS * QUTSTANDI NG
(CADR STATEMENT)))
(CADDDDR STATEMENT)))))
TOP S (BASH T (DI SABLE TREE-PRG)) (DROP 3 4 5 6 10 11) PROVE
(BASH T (DI SABLE TREE- PRG))
(CLAIM (NOT (EQUAL (CDR DOWN- LI NK) (CADR STATEMENT))))
(DROP 10 11) PROVE PROVE (DRCP 10 11)
(CLAIM (NOT (EQUAL (CAR DOWN-LINK) (CADR STATEMENT))))
(PROVE (DI SABLE TREE-PRG)) (DROP 12 3456 7 8 9) PROVE)))

(PROVE- LEMVA DL- PRESERVES- SUBLI ST (REWRI TE)
(I MPLIES (AND (DL (DOAK-LINKS (NODES TREE) TREE) OLD)
(TREEP TREE)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(SUBLI STP SUBLI ST (DOAR- LI NKS (NODES TREE) TREE)))
(DL SUBLI ST NEW)
((I NSTRUCTI ONS (I NDUCT (DL SUBLI ST NEW) PROMOTE PROVOTE (DEMOTE 2)
(DIVE 1) (DIVE 1)
(= * T ((D SABLE N TREE- PRG MEMBER- TREE- PRG))) UP S TOP

222

PROVOTE X (DROP 7)
(USE- LEMVA DL- PRESERVES- | NSTANCE- OF- DL
((TREE TREE) (DOWN-LINK (CAR SUBLI ST))
(STATEMENT STATEMENT) (OLD OLD) (NEW NEW))
(DEMOTE 7) (DI VE 1) (DI VE 1)
(= * T ((D SABLE TREEP N TREE- PRG MEMBER- TREE- PRG NODES))) TOP
S PROVE)))

(PROVE- LEMVA DL- PRESERVES- DL (REWRI TE)
(I MPLIES (AND (DL (DOAK-LINKS (NODES TREE) TREE) OLD)
(TREEP TREE)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE)))
(DL (DOM-LINKS (NODES TREE) TREE) NEW)
((USE (DL- PRESERVES- SUBLI ST
(SUBLI ST (DOWK- LI NKS (NODES TREE) TREE))))
(DI SABLE TREE- PRG MEMBER- TREE- PRG)))

(PROVE- LEMMA MEMBER- UP- LI NKS (REVRI TE)
(EQUAL (MEMBER UP- LI NK (UP- LI NKS NODES TREE))
(AND (MEMBER (CAR UP- LI NK) NODES)
(EQUAL (CDR UP-LINK) (PARENT (CAR UP-LINK) TREE))
(LISTP UP-LINK))))

(PROVE- LEMVA ZERO- NOT- REPORTED- | MPLI ES- CHI LDREN- REPORTED (REWRI TE)

(I MPLI ES (AND (ZEROP (NUMBER- NOT- REPORTED CHI LDREN PARENT STATE))

(MEMBER CHI LD CHI LDREN))

(AND (EQUAL (CDR (ASSOC (CONS ' STATUS CHILD) STATE))
* STARTED)
(ZEROP (OUTSTANDI NG CHI LD STATE))
(NOT (LI STP (CDR (ASSOC (CONS CHI LD PARENT)
STATE))))))

((1 NDUCT (MEMBER CHI LD CHI LDREN))))

(PROVE- LEMMA DL- UL- NO- PRESERVES- | NSTANCE- OF- UL (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER UP- LI NK (UP- LI NKS (CDR (NODES TREE)) TREE))
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(DL (DOM-LINKS (NODES TREE) TREE) OLD)
(UL (UP-LINKS (CDR (NODES TREE)) TREE) OLD)
(NO (NODES TREE) TREE OLD))
(OR (EMPTY UP-LINK NEW
(AND (EQUAL (CHANNEL UP-LINK NEW
(LI ST (FOUND- VALUE (CAR UP-LINK) NEW))
(DONE (CAR UP-LINK) NEW)))
((1 NSTRUCTI ONS PROVOTE
(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL
((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE))
(UPLI NK UP- LI NK)
(STATE OLD)))
(DEMOTE 8)
(DI VE 1)
(DI VE 1)
S PROP UP
(S-PROP | MPLI ES)
TOP PROMOTE
(CLAIM (EQUAL (CAR STATEMENT) ' START)
0)
(DROP 5 6 7)

(CLAIM (AND (EQUAL (FOUND- VALUE (CAR UP-LINK) NEW
(FOUND- VALUE (CAR UP-LINK) OLD))
(EQUAL (CHANNEL UP-LINK NEW
(CHANNEL UP-LINK OLD))
(EQUAL (STATUS (CAR UP-LINK) NEW
(STATUS (CAR UP-LINK) OLD))
(EQUAL (OUTSTANDI NG (CAR UP- LI NK) NEW
(OUTSTANDI NG (CAR UP-LINK) OLD)))
0)
(DROP 1 2 3 4 6)
PROVE
(CONTRADI CT 7)
(DROP 5 7)
(BASH T (DI SABLE TREE- PRG))
PROVOTE
(CLAIM (NOT (EQUAL X D)))
PROVE PROMOTE
(CLAIM (NOT (EQUAL X D)))
PROVE PROMOTE
(CLAI'M (NOT (MEMBER (CONS X D)
(RFP D (APPEND (ROOTS V) NIL)))))
PROVE PROMOTE
(CLAI'M (NOT (MEMBER (CONS X
(CAR (PARENT- REC ' FOREST X V)))
(RFP D (APPEND (ROOTS V) NIL)))))
PROVE PROMOTE
(CLAIM (NOT (EQUAL X D)))
PROVE
(CLAIM (EQUAL (CAR STATEMENT)
* ROOT- RECE| VE- REPORT)
0)
(CLAIM (NOT (EQUAL (CAR UP-LINK) (CAR TREE)))
0)
CHANGE- GOAL
(CONTRADI CT 11)
(DROP 3456 7 89 10 11)
PROVE
(CLAIM (EQUAL UP-LINK (CADDR STATEMENT))
0)
(DROP 5 6 7 9)
(BASH T (DI SABLE TREE- PRG))
(CLAIM (AND (EQUAL (FOUND- VALUE (CAR UP-LINK) NEW
(FOUND- VALUE (CAR UP-LINK) OLD))
(EQUAL (CHANNEL UP-LINK NEW
(CHANNEL UP- LI NK OLD))
(EQUAL (STATUS (CAR UP-LINK) NEW
(STATUS (CAR UP-LINK) OLD))
(EQUAL (OUTSTANDI NG (CAR UP- LI NK) NEW
(QUTSTANDI NG (CAR UP-LINK) OLD)))
0)
(DROP 1234567910 11 12)
PROVE
(CONTRADI CT 13)
(DROP 5 6 7 8 9 13)
(BASH T (DI SABLE TREE- PRG))
(CLAIM (EQUAL (CAR STATEMENT) ' RECEI VE- FI ND)
0)
(CLAIM (EQUAL (CADR STATEMENT) (CAR UP- LI NK))
0)
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((STATE OLD)

223

(DOWR- LI NK (CONS (PARENT (CAR UP- LI NK) TREE)
(CAR UP-LINK)))
(DOWR- LI NKS (DOAK- LI NKS (NODES TREE) TREE))))
(DEMOTE 13)
(DI VE 1)
(DI VE 1)
S PROP
(REWRI TE MEMBER- DOAR- LI NKS)
s
(DI VE 1)
(= * T IFF)
UP S
(REWRI TE PARENT- REC- CHI LDREN- REC)
(DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT)
U S
(= * T IFF
CHANGE- GOAL
(DROP 3456789 10 11 12)
s
(DI VE 2)
(DI VE 1)
(=T
U S
(DI VE 1)
(=F)
UP S TOP X CHANGE- GOAL
(DEMOTE 1)
S CHANGE- GOAL
(DEMOTE 1)
S CHANGE- GOAL
(DROP 3456789 10 11 12)
s
(REWRI TE NODE- HAS- PARENT)
PROVE DEMOTE S S PROVE UP
(S-PROP | MPLI ES)
TOP PROMOTE
(DROP 5 6 7 9 10)
(BASH T (DI SABLE TREE- PRG))
(CLAIM (AND (EQUAL (FOUND- VALUE (CAR UP-LINK) NEW
(FOUND- VALUE (CAR UP-LINK) OLD))
(EQUAL (CHANNEL UP-LINK NEW
(CHANNEL UP- LI NK OLD))
(EQUAL (STATUS (CAR UP-LINK) NEW
(STATUS (CAR UP-LINK) OLD))
(EQUAL (OUTSTANDI NG (CAR UP- LI NK) NEW
(OUTSTANDI NG (CAR UP-LINK) OLD)))
0)
(DROP 1234567910 11 12)
PROVE
(CONTRADI CT 13)
(DROP 5 6 7 8 9 10 13)
(BASH T (DI SABLE TREE- PRG))
PROMOTE
(DI VE 1)
(DI VE 1)
(REVRI TE ABQUT- UC
(($B OLD)
(SEXCPT
(CONS
(CONS (CAR (PARENT- REC ' TREE D TREE))

224

D
(CONS
(CONS D

(CAR (PARENT- REC ' TREE D TREE)))

(CONS ((CONS * STATUS D)
(CONS ((CONS * FOUND- VALUE D)

(CONS ((CONS * QUTSTANDI NG D)

(RFP D

(CH LDREN-REC ' TREE D TREE))))))))))

TOP S
(DROP 7 8 9 10 11 12 14 15)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($SEXCPT
(CONS
(CONS (CAR (PARENT- REC ' TREE D TREE))
D)
(CONS
(CONS D

(CAR (PARENT- REC ' TREE D TREE)))

(CONS (CONS ’ STATUS D)
(CONS ((CONS * FOUND- VALUE D)

(CONS ((CONS * OUTSTANDI NG D)

(RFP D

(CHI LDREN- REC ' TREE D TREE))))))))))

TP S
(DROP 7 8 9 10 11 12 14 15)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT
(CONS
(CONS (CAR (PARENT- REC * TREE D TREE))
D
(CONS
(CONS D

(CAR (PARENT- REC ' TREE D TREE)))

(CONS ((CONS * STATUS D)
(CONS ((CONS * FOUND- VALUE D)

(CONS ((CONS * OUTSTANDI NG D)

(CHI LDREN- REC ' TREE D TREE))))))))))

(RFP D
TP S
(DROP 7 8 9 10 11 12 14 15)
(BASH T)
PROMOTE
(DI VE 1)

(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TOP S PROVE

(REWRI TE LI STP- PARENT- REC- EQUALS)
PROVE PROVE

(REVRI TE LI STP- PARENT- REC- EQUALS)
PROVE PROVE PROMOTE

(DI VE 1)

(DI VE 1)

(REWRI TE ABOUT- UC

225

226

(($B OLD)
(SEXCPT
(CONS
(CONS (CAR (PARENT- REC ' TREE D TREE))
D
(CONS
(CONS D
(CAR (PARENT- REC ' TREE D TREE)))
(CONS (CONS ’ STATUS D)
(CONS ((CONS * FOUND- VALUE D)
(CONS ((CONS ’* OUTSTANDI NG D)
(RFP D
(CHI LDREN- REC * TREE D TREE))))))))))
TP S
(DROP 7 8 9 10 11 12 14 15)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT
(CONS
(CONS (CAR (PARENT- REC ' TREE D TREE))
D
(CONS
(CONS D
(CAR (PARENT- REC ' TREE D TREE)))
(CONS (CONS ’ STATUS D)
(CONS ((CONS * FOUND- VALUE D)
(CONS ((CONS * OUTSTANDI NG D)
(RFP D
(CHI LDREN- REC * TREE D TREE))))))))))
TP S
(DROP 7 8 9 10 11 13 14)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT
(CONS
(CONS (CAR (PARENT- REC ' TREE D TREE))
D
(CONS
(CONS D
(CAR (PARENT- REC * TREE D TREE)))
(CONS (CONS ’ STATUS D)
(CONS ((CONS * FOUND- VALUE D)
(CONS ((CONS ’* OUTSTANDI NG D)
(RFP D
(CHI LDREN- REC * TREE D TREE))))))))))
TP S
(DROP 7 8 9 10 11 13 14)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REVRI TE ABQUT- UC
(($B OLD)
(SEXCPT
(CONS
(CONS (CAR (PARENT- REC ' TREE D TREE))

227

D
(CONS
(CONS D
(CAR (PARENT- REC ' TREE D TREE)))
(CONS ((CONS * STATUS D)
(CONS (CONS ' FOUND- VALUE D)
(CONS ((CONS * QUTSTANDI NG D)
(RFP D
(CHI LDREN- REC ' TREE D TREE))))))))))
TOP S
(DROP 7 8 9 10 11 13 14)
(BASH T)
PROMOTE
(CLAI' M (SETP (NODES- REC * TREE TREE)))
(DI VE 1)
(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TOP S PROVE PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT
(CONS
(CONS (CAR (PARENT- REC ' TREE D TREE))
D
(CONS
(CONS D
(CAR (PARENT- REC ' TREE D TREE)))
(CONS ((CONS * STATUS D)
(CONS (CONS ’ FOUND- VALUE D)
(CONS ((CONS * OUTSTANDI NG D)
(RFP D
(CH LDREN- REC ' TREE D TREE))))))))))

TP S

(DROP 7 8 9 10 11 13 14)

PROVE

(CLAIM (EQUAL UP-LINK (CADDR STATEMENT))
0)

(CLAIM (NOT (EQUAL (CADDR STATEMENT)
(CADDDR STATEMENT)))
0)
(DROP 5 6 7)
(BASH T (DI SABLE TREE- PRG))
(CONTRADI CT 13)
(DROP 356 7 8 13)
(PROVE (DI SABLE TREE- PRG))
(CLAIM (EQUAL UP-LINK (CADDDR STATEMENT))
0)
(CLAIM (EMPTY (CADDR STATEMENT) OLD)
0)
(CLAI M (CHANGED OLD NEW NI L) 0)
(DROP 1234567910 11 12 13 14)
PROVE
(CONTRADI CT 15)
(DROP 1256 7 8 12 13 15)
(PROVE (DI SABLE TREE- PRG))
(CLAIM (EMPTY UP-LINK OLD) 0)
(CLAIM (EQUAL (STATUS (CADR STATEMENT) OLD)
" STARTED)
0)
(DROP 5 6 7)

(BASH T (DI SABLE TREE- PRG M N))

PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LIST (CONS Z1 W
(CONS W
(CAR (PARENT- REC ' TREE W TREE)))
(CONS * OUTSTANDI NG W
(CONS * FOUND- VALUE W))))
TP S

(DROP 6 7 8 9 10 11 14 15 16)
PROVE PROMOTE

(DI VE 1)
(DI VE 1)
(REWRI TE ABQUT- UC
(($B OLD)
($EXCPT (LI ST (CONS Z1 W
(CONS W
(CAR (PARENT- REC ' TREE W TREE)))
(CONS * QUTSTANDI NG W
(CONS * FOUND- VALUE W))))
TP S

(DROP 6 7 8 9 10 11 14 15 16)
PROVE PROMOTE

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LIST (CONS Z1 W
(CONS W
(CAR (PARENT- REC ' TREE W TREE)))
(CONS * QUTSTANDI NG W
(CONS * FOUND- VALUE W))))
TP S
(DROP 6 7 8 9 10 11 14 15 16)
PROVE

(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL
((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE))

(STATE OLD)

(UPLI NK (CADDR STATEMENT))))
(DEMOTE 17)
(DI VE 1)
(DI VE 1)
S- PROP
(= * T IFF)
uP
(S-PROP | MPLI ES)
(S PROP OR)
UP PROMOTE
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL

((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE))
(STATE OLD)
(DOWR- LI NK (CONS (CADR STATEMENT)
(CAADDR STATEMENT)))))

(DEMOTE 19)
(DI VE 1)
(DI VE 1)
S- PROP
(= * T IFF)

228

upP
(S-PROP | MPLI ES)
TOP PROMOTE
(CONTRADI CT 16)
(DROP 1234567809 10 11 16)
PROVE
(DROP 356 7 8 14 15 16 17 18)
(BASH T (DI SABLE TREE- PRG))
(DROP 356 7 8 14 15 16)
(BASH T (DI SABLE TREE- PRG))
PROMOTE
(CONTRADI CT 7)
(DI VE 1)
(REWRI TE PARENT- REC- CH LDREN- REC)
(DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT)
TOP PROVE PROVE
(USE- LEMVA NO- | MPLI ES- | NSTANCE- OF- NO
((NODES (NODES TREE))
(TREE TREE)
(STATE OLD)
(NODE (CADR STATEMENT))))
(DEMOTE 16)
(DI VE 1)
(DI VE 1)
(= * T IFF)
upP
(S-PROP | MPLI ES)
TOP PROMOTE

(USE- LEMMA ZERO- NOT- REPORTED- | MPLI ES- CH LDREN- REPORTED
((CHI LDREN (CHI LDREN (CADR STATEMENT) TREE))

(PARENT (CADR STATEMENT))
(STATE OLD)
(CH LD (CAADDR STATEMENT))))
(CONTRADI CT 14)
(DROP 3 5 6 7 14)
(BASH T (DI SABLE TREE- PRG))
S- PRCP
(CLAIM (EQUAL (CADR STATEMENT) (CAR UP- LI NK))
((DI SABLE TREE- PRG)))
(DROP 3456 79 10 11 12 13 14)
PROVE
(CLAIM (AND (EQUAL (CHANNEL UP-LINK NEW
(CHANNEL UP-LINK OLD))
(EQUAL (STATUS (CAR UP-LINK) NEW
(STATUS (CAR UP-LINK) OLD))
(EQUAL (FOUND- VALUE (CAR UP-LINK) NEW
(FOUND- VALUE (CAR UP-LINK) OLD))
(EQUAL (OUTSTANDI NG (CAR UP- LI NK) NEW
(OUTSTANDI NG (CAR UP- LI NK) OLD)))
0)
(DROP 1234567910 11 12 13)
PROVE
(CONTRADI CT 14)
(CLAIM (NOT (EQUAL (CAR UP- LI NK)
(CADR STATEMENT)))
((DI SABLE TREE-PRG)))
(DROP 5 6 7 8 14)
(CLAI M (NUMBERP (CAR UP- LI NK)))
(DROP 2)
(BASH T (DI SABLE TREE-PRG M N)))))

229

230

(PROVE- LEMMA DL- UL- NO- PRESERVES- UL- SUBLI ST (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(DL (DOMR- LI NKS (NODES TREE) TREE) OLD)
(UL (UP-LINKS (CDR (NODES TREE)) TREE) OLD)
(NO (NODES TREE) TREE OLD)
(SUBLI STP SUBLI ST (UP-LI NKS (CDR (NCDES TREE))
TREE)))
(UL SUBLI ST NEW)
((I NSTRUCTI ONS (I NDUCT (UL SUBLI ST NEW) PROMOTE PROVOTE (DEMOTE 2)
(DIVE 1) (DIVE 1) S PROP
(= * T ((D SABLE N TREE- PRG MEMBER- TREE- PRG TREEP NCDES))) UP
S TOP PROMOTE X (DROP 9)
(USE- LEMVA DL- UL- NO- PRESERVES- | NSTANCE- OF- UL
((TREE TREE) (UP-LINK (CAR SUBLIST)) (STATEMENT STATEMENT)
(OLD OLD) (NEW NEW))
(DEMOTE 9) (DIVE 1) (DIVE 1) S-PROP
(= * T ((DI SABLE N TREE- PRG MEMBER- TREE- PRG TREEP NODES))) TOP

S PROMOTE PROMOTE X)))

(PROVE- LEMMA DL- UL- NO- PRESERVES- UL (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(DL (DOM-LINKS (NODES TREE) TREE) OLD)
(UL (UP-LINKS (CDR (NODES TREE)) TREE) OLD)
(NO (NODES TREE) TREE OLD))
(UL (UP-LINKS (CDR (NCDES TREE)) TREE) NEW)
((USE (DL- UL- NO- PRESERVES- UL- SUBLI ST
(SUBLI ST (UP-LINKS (CDR (NODES TREE)) TREE))))
(DI SABLE TREEP TREE- PRG MEMBER- TREE- PRG MEMBER- UP- LI NKS
NODES N)))

(PROVE- LEMVA PARENT- NOT- STARTED- | MPLI ES- ALL- EMPTY- AND- NOT- STARTED
(REVRI TE)
(I MPLI ES (AND (EQUAL (STATUS PARENT STATE) ' NOT- STARTED)
(DL (RFP PARENT CHI LDREN) STATE))
(AND (ALL- EMPTY (RFP PARENT CHI LDREN) STATE)
(NOT- STARTED CHI LDREN STATE))))

(PROVE- LEMMA START- PRESERVES- NO- FOR- PARENT (REWRI TE)
(I MPLI ES (AND (NUMBERP PARENT)
(NOT (MEMBER PARENT CHI LDREN))
(NOT- STARTED CHI LDREN OLD)
(SUBLI STP (RFP PARENT CHI LDREN)
(RFP PARENT EXCPT))
(CHANGED OLD NEW
(APPEND (LI ST (CONS ’ STATUS PARENT)
(CONS * FOUND- VALUE PARENT)
(CONS ' OUTSTANDI NG PARENT))
(RFP PARENT EXCPT))))
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT NEW
(LENGTH CHI LDREN))
(EQUAL (M N OF- REPORTED CHI LDREN PARENT
NEW VAL UE)
VALUE)))
((I NSTRUCTI ONS (I NDUCT (LENGTH CHI LDREN))
(CLAIM (EQUAL (CDR (ASSOC ((CONS ' STATUS (CAR CHI LDREN)) NEW)
* STARTED)

0)
PROMOTE PROMOTE (CONTRADI CT 1) (DIVE 1) (DIVE 1) (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS ® STATUS PARENT)
(CONS * FOUND- VALUE PARENT)
(CONS * OUTSTANDI NG PARENT))
(RFP PARENT EXCPT)))))
TOP PROVE PROVE PROVE PROVE PROVE)))

(PROVE- LEMMA UNCHANGED- PRESERVES- NO (REVRI TE)
(I MPLI ES (CHANGED OLD NEW NI L)
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT NEW
(NUMBER- NOT- REPORTED CHI LDREN PARENT OLD))

(EQUAL (M N- OF- REPORTED CHI LDREN PARENT NEW VALUE)

(M N- OF- REPORTED CHI LDREN PARENT
OLD VALUE)))))

(PROVE- LEMMA START- PRESERVES- NO- FOR- REST- OF- TREE (REVRI TE)
(I MPLI ES (AND (NUMBERP ROOT)
(NUMBERP PARENT)
(NOT (MEMBER PARENT CHI LDREN))
(NOT (MEMBER ROOT CHI LDREN))
(NOT (EQUAL ROOT PARENT))
(CHANGED OLD NEW
(APPEND (LI ST (CONS ' STATUS ROOT)
(CONS * FOUND- VALUE ROOT)
(CONS * QUTSTANDI NG ROOT))
(RFP ROOT EXCPT))))
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT NEW
(NUMBER- NOT- REPORTED CHI LDREN PARENT OLD))
(EQUAL (M N OF- REPORTED CHI LDREN PARENT NEW VALUE)
(M N- OF- REPORTED CHI LDREN PARENT
OLD VALUE)))))

(PROVE- LEMMA LENGTH RFP (REVRI TE)
(EQUAL (LENGTH (RFP PARENT CHI LDREN))
(LENGTH CHI LDREN)))

(PROVE- LEMMA START- PRESERVES- | NSTANCE- OF- NO (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(START OLD NEW (CAR TREE)
(RFP (CAR TREE)
(CH LDREN (CAR TREE) TREE)))
(MEMBER NODE (NODES TREE))
(DL (RFP (CAR TREE) (CHI LDREN (CAR TREE) TREE))
oLD)
(EQUAL (STATUS NODE NEW * STARTED)
(I MPLI ES (EQUAL (STATUS NCDE OLD) ' STARTED)
(AND (EQUAL (OUTSTANDI NG NODE OLD)
(NUMBER- NOT- REPORTED
(CH LDREN NCDE TREE)
NODE OLD))
(EQUAL (FOUND- VALUE NCDE OLD)
(M N OF- REPORTED
(CH LDREN NCDE TREE)
NODE OLD
(NODE- VALUE NODE OLD))))))
(AND (EQUAL (OUTSTANDI NG NODE NEW
(NUMBER- NOT- REPORTED (CHI LDREN NODE TREE)
NODE NEW)

231

232

(EQUAL (FOUND- VALUE NCDE NEW
(M N OF- REPORTED (CH LDREN NCDE TREE)
NODE NEW
(NODE- VALUE NODE NEW))))
((1 NSTRUCTI ONS PROMOTE (DEMOTE 2) (DI VE 1) X- DUMB
(CLAIM (EQUAL (STATUS (CAR TREE) OLD) ' NOT- STARTED) 0)
(DIVE 1) (DIVE 1) = UP UP S-PROP TOP PROMOTE
(CLAIM (EQUAL NODE (CAR TREE)) 0) (CLAI M (NUMBERP NCDE) 0)
(CLAIM (NOT (MEMBER NCDE (CHI LDREN NODE TREE))) 0)
(CLAI' M (NOT- STARTED (CH LDREN NCDE TREE) OLD) 0)
(CLAI' M (SUBLI STP (RFP NODE (CH LDREN NCDE TREE))
(RFP NODE (CHI LDREN (CAR TREE) TREE)))
0)
(DIVE 1) (DI VE 2)
(CLAI' M (CHANGED OLD NEW
(APPEND (LI ST (CONS ' STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE (CHI LDREN (CAR TREE) TREE))))
0)
(REWRI TE START- PRESERVES- NO- FOR- PARENT
(($OLD OLD) ($EXCPT (CH LDREN (CAR TREE) TREE))))
TOP (DIVE 2) (DI VE 2)
(REWRI TE START- PRESERVES- NO- FOR- PARENT
(($OLD OLD) ($EXCPT (CH LDREN (CAR TREE) TREE))))
TOP (DROP 3 9 10 11 12 13) PROVE TOP ((CONTRADI CT 13)
(DROP 1234569 10 11 12 13) PROVE (CONTRADI CT 12)
(DIVE 2) (DIVE 2) (DIVE 1) = TOP (REWRI TE SUBLI STP- REFLEXI VE)
(CONTRADI CT 11)
(REWRI TE PARENT- NOT- STARTED- | MPLI ES- ALL- EMPTY- AND- NOT- STARTED
(($PARENT (CAR TREE))))
(DIVE 1) (DIVE 2) (DIVE 1) = TOP S-PROP ((CONTRADI CT 10)
(DROP 3456 7 8 9 10) PROVE (CONTRADI CT 9)
(DROP 2 3456 7 9) PROVE (CLAIM (NUMBERP (CAR TREE)) 0)
(CLAI' M (NUMBERP NCDE) 0)
(CLAI'M (NOT (MEMBER NCDE (CHI LDREN NODE TREE))) 0)
(CLAI'M (NOT (MEMBER (CAR TREE) (CHI LDREN NODE TREE))) 0)
(DIVE 1) (DI VE 2)
(CLAI' M (CHANGED OLD NEW
(APPEND (LI ST (CONS ' STATUS (CAR TREE))
(CONS * FOUND- VALUE (CAR TREE))
(CONS * OUTSTANDI NG (CAR TREE)))
(RFP (CAR TREE)
(CH LDREN (CAR TREE) TREE))))
0)
(REWRI TE START- PRESERVES- NO- FOR- REST- OF- TREE
(($OLD OLD) ($ROOT (CAR TREE))
($EXCPT (CHI LDREN (CAR TREE) TREE))))
TOP (DIVE 2) (DI VE 2)
(REWRI TE START- PRESERVES- NO- FOR- REST- OF- TREE
(($OLD OLD) ($ROCT (CAR TREE))
($EXCPT (CHI LDREN (CAR TREE) TREE))))
TOP
(CLAIM (AND (EQUAL (STATUS NCDE NEW (STATUS NODE OLD))
(EQUAL (OUTSTANDI NG NCDE NEW
(OUTSTANDI NG NCDE OLD))
(EQUAL (FOUND- VALUE NCDE NEW
(FOUND- VALUE NCDE OLD))
(EQUAL (NODE- VALUE NODE NEW
(NODE- VALUE NODE OLD)))
0)

233

(DROP 123679 10 11 12 13)

(PROVE (DI SABLE STATUS OUTSTANDI NG FOUND- VALUE NODE- VALUE
CHI LDREN))

(CONTRADI CT 14) (DROP 3

(CONTRADI CT 13) (DROP 1

(CONTRADI CT 12) (DROP 3

(CONTRADI CT 11) (DROP 3 10 11) PROVE

(CONTRADI CT 10) (DROP 3 8 9 10) PROVE (CONTRADI CT 9)

(DROP 23456 7 89) PROVE S-PROP TOP PROMOTE (DI VE 1)

(DI VE 2) (REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TOP

(DIVE 2) (DIVE 2)

(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TCP PROVE)))

1 12 14) PROVE TOP
9 10 11 12 13) PROVE

45671
234568
45679 10 11 12) PROVE
456789
4567

(PROVE- LEMVA M N- COMMUTATI VE (REWRI TE)
(EQUAL (MN A B) (MNBA))

(PROVE- LEMVA M N- ASSOCI ATI VE (REWRI TE)
(EQUAL (MN (MNAB) © (MNA(MNB Q)))

(PROVE- LEMMA M N- COMMUTATI VE- 1 (REVRI TE)
(EQUAL (MNA (MNBOC) (MNB(MNAQ)))

(PROVE- LEMMA M N- OF- REPORTED- OF- M N (REWRI TE)
(EQUAL (M N- OF- REPORTED CHI LDREN PARENT STATE
(M N VALUE X))
(M N (M N-OF- REPORTED CHI LDREN PARENT STATE VALUE)
X))
((DI SABLE REPORTED FOUND- VALUE M N)))

(PROVE- LEMMA UPDATE- M N- OF- REPORTED (REWRI TE)
(I MPLI ES (AND (NUMBERP PARENT)
(NUMBERP CHI LD)
(NOT (EQUAL PARENT CHILD))
(ALL- NUMBERPS CHI LDREN)
(SETP CHI LDREN)
(NOT (MEMBER PARENT CHI LDREN))
(EQUAL (CHANNEL (CONS CHI LD PARENT) OLD)
(LI ST (FOUND- VALUE CHI LD OLD)))
(DONE CHI LD OLD)
(EQUAL (CHANNEL (CONS CHI LD PARENT) NEW
(RECEI VE (CONS CHI LD PARENT) OLD))
(CHANGED OLD NEW (LI ST (CONS CHI LD PARENT)
(CONS ' OUTSTANDI NG PARENT)
(CONS * FOUND- VALUE PARENT))))
(EQUAL (M N OF- REPORTED CHI LDREN PARENT NEW
VALUE)
(I F (MEMBER CHI LD CHI LDREN)
(M N (FOUND- VALUE CHI LD OLD)
(M N OF- REPORTED CHI LDREN PARENT OLD
VALUE))
(M N- OF- REPORTED CHI LDREN PARENT OLD VALUE))))
((1 NSTRUCTI ONS (1 NDUCT (LENGTH CHI LDREN)) PROMOTE PROMOTE
(DI SABLE REPORTED FOUND- VALUE HEAD CHANNEL RECEIVE M N DONE)
(DEMOTE 2) (DIVE 1) (DIVE 1) S PROP (= T) UP TOP SPLIT
(DIVE 1) X (DIVE 2) (DIVE 2) = UP UP (DIVE 3) = TOP (DROP 12)
(CLAIM (EQUAL CHILD (CAR CHI LDREN)) 0)
(CLAIM (AND (NOT (MEMBER CHI LD (CDR CHI LDREN)))
(MEMBER CHI LD CHI LDREN))
0)
S S-PROP SPLIT (DIVE 2) (DIVE 2) X (DIVE 1) (= F) UP S TOP

(DIVE 1) (DIVE 1) (DIVE 1) = UP (= (FOUND- VALUE CH LD OLD))

TOP S (CONTRADICT 15) (DROP 1 5 6 7 13 14 15) PROVE

(CONTRADI CT 13) (DROP 2 3 45 7 8 9 10 11 13) PROVE

(CLAI M (MEMBER CHI LD (CDR CHI LDREN)) 0)

(CLAIM (MEMBER CHI LD CHILDREN) 0) S S-PROP SPLIT (DI VE 2)

(DIVE 2) X (DIVE 1) (= T) TOP S (DIVE 1) (DIVE 1)

(= (FOUND- VALUE (CAR CHI LDREN) OLD)) TOP DROP

(PROVE (DI SABLE DONE M N RECEl VE CHANNEL HEAD FOUND- VALUE
REPORTED))

(DIVE 2) (DIVE 2) X (DIVE 1) (= F) TOP S (CONTRADI CT 14)

(DROP 123456789 10 11 12 14) PROVE

(CLAIM (NOT (MEMBER CHI LD CHILDREN)) 0) S (DIVE 2) X (DI VE 1)

(= (REPORTED (CAR CH LDREN) PARENT NEW) UP (DI VE 2) (DI VE 1)

(= (FOUND- VALUE (CAR CHI LDREN) NEW) TOP S ((CONTRADI CT 14)

(DROP 123456789 10 11 14) PROVE

(PROVE (DI SABLE DONE M N RECEI VE CHANNEL HEAD FOUND- VALUE
REPORTED)))))

(PROVE- LEMMA M N- OF- REPORTED- OF- NON- ROOT (REWR! TE)
(I MPLI ES (AND (NUMBERP ROOT)

(NUMBERP CHI LD)

(NUMBERP PARENT)

(ALL- NUVBERPS CHI LDREN)

(SETP CHI LDREN)

(NOT (MEMBER PARENT CHI LDREN))

(NOT (EQUAL ROOT PARENT))

(NOT (MEMBER ROOT CHI LDREN))

(CHANGED OLD NEW (LI ST (CONS CHI LD ROOT)

(CONS * OUTSTANDI NG ROOT)
(CONS * FOUND- VALUE ROOT))))
(EQUAL (M N OF- REPORTED CHI LDREN PARENT NEW VALUE)
(M N OF- REPORTED CHI LDREN PARENT OLD VALUE)))
((1 NSTRUCTI ONS

(DI SABLE M N REPORTED DONE FOUND- VALUE OUTSTANDI NG STATUS)
(I NDUCT (LENGTH CHI LDREN)) PROMOTE PROMOTE (DEMOTE 2) (DI VE 1)
(DIVE 1) (= T) UP S TOP PROMOTE (DIVE 1) X (DIVE 2) (DIVE 2) =
UP UP (DIVE 3) = TOP (DROP 11) (DIVE 1) (DIVE 1)
(= (REPORTED (CAR CH LDREN) PARENT OLD)) UP (DI VE 2) (DI VE 1)
(= (FOUND- VALUE (CAR CHILDREN) OLD)) TOP (DIVE 2) X TOP S
(PROVE (DI SABLE STATUS OUTSTANDI NG FOUND- VALUE DONE REPORTED

MN))))

(PROVE- LEMMA NUVMBER- NOT- REPORTED- OF- NON- ROOT (REWR! TE)
(I MPLI ES (AND (NUMBERP ROOT)
(NUMBERP CHI LD)
(NUMBERP PARENT)
(ALL- NUMBERPS CHI LDREN)
(SETP CHI LDREN)
(NOT (MEMBER PARENT CHI LDREN))
(NOT (EQUAL ROOT PARENT))
(NOT (MEMBER ROOT CHI LDREN))
(CHANGED OLD NEW (LI ST (CONS CHI LD ROOT)
(CONS * OUTSTANDI NG ROOT)
(CONS * FOUND- VALUE ROOT))))
(EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT NEW
(NUMBER- NOT- REPORTED CHI LDREN PARENT OLD)))
((1 NSTRUCTI ONS (| NDUCT (LENGTH CHI LDREN)) PROMOTE PROMOTE
(DEMOTE 2) (DIVE 1) (DIVE 1) (= T) UP S TOP PROMOTE (DI VE 1)
(DI SABLE REPORTED) X (DI VE 1)
(= (REPORTED (CAR CH LDREN) PARENT OLD)) UP (DIVE 2) = UP
(DIVE 3) (DIVE 1) = TOP (DROP 11) (DIVE 2) X TOP S

235

(PROVE (DI SABLE REPORTED)))))

(PROVE- LEMMA NUVBER- NOT- REPORTED- OF- ROOT (REWR! TE)
(I MPLI ES (AND (NUMBERP PARENT)
(NUMBERP CHI LD)
(NOT (EQUAL PARENT CHILD))
(ALL- NUVBERPS CHI LDREN)
(SETP CHI LDREN)
(NOT (MEMBER PARENT CHI LDREN))
(EQUAL (CHANNEL (CONS CHI LD PARENT) OLD)
(LI ST (FOUND- VALUE CHI LD OLD)))
(DONE CHI LD OLD)
(EQUAL (CHANNEL (CONS CHI LD PARENT) NEW
(RECEI VE (CONS CHI LD PARENT) OLD))
(CHANGED OLD NEW (LI ST (CONS CHI LD PARENT)
(CONS * OUTSTANDI NG PARENT)
(CONS * FOUND- VALUE PARENT))))
(EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT NEW
(I F (MEMBER CHI LD CHI LDREN)
(SUBL (NUMBER- NOT- REPORTED CHI LDREN
PARENT OLD))
(NUMBER- NOT- REPORTED CHI LDREN PARENT OLD))))
((1 NSTRUCTI ONS (| NDUCT (LENGTH CHI LDREN)) PROMOTE PROMOTE
(CLAIM (EQUAL CHI LD (CAR CHI LDREN)) 0)
(CLAIM (AND (MEMBER CHI LD CHI LDREN)
(NOT (MEMBER CHI LD (CDR CHI LDREN))))
0)
S (DEMOTE 2) (DIVE 1) (DIVE 1) (= T) UP S TOP PROVOTE (DI VE 1)
(DI SABLE REPORTED) X (DIVE 1) (= T) UP S = TOP (DI VE 2)
(DIVE 1) X (DIVE 1) (= F) TOP S (CONTRADI CT 14)
(DROP 2345689 10 11 12 14) PROVE (DEMOTE 2) (DI VE 1)
(DIVE 1) (=T) UP S TOP (DIVE 2) (DIVE 2) (DIVE 1) X TOP
S-PRCP SPLIT (DIVE 1) X (DIVE 1)
(= (REPORTED (CAR CH LDREN) PARENT OLD)) UP (DIVE 2) = UP
(DIVE 3) (DIVE 1) = TOP (DIVE 2) (DIVE 1) X TOP CHANGE- GOAL
(DIVE 1) X (DIVE 1) (= (REPORTED (CAR CHI LDREN) PARENT OLD))
TOP (DIVE 2) X TOP (DIVE 1) (DIVE 2) = UP (DIVE 3) (DIVE 1) =
TP S
(CLAIM (NOT (ZEROP (NUMBER- NOT- REPORTED (CDR CHI LDREN) PARENT
oD)))
0)
(DROP 123456789 10 11 12 13 14)
(PROVE (DI SABLE REPORTED)) (CONTRADI CT 15)
(DROP 1234567910 11 12 14 15)
(GENERALI ZE (((CDR CHILDREN) L))) (I NDUCT (MEMBER CHI LD L))
PROVE PROVE PROVE (PROVE (DI SABLE REPORTED)))))

(PROVE- LEMMA SETP- NODES- | MPLI ES- SETP- ROOTS (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' FOREST FOREST)
(SETP (NODES- REC ' FOREST FOREST)))
(SETP (ROOTS FOREST)))
((I NDUCT (ROOTS FOREST))))

(PROVE- LEMVA SETP- NODES- SETP- CHI LDREN (REWRI TE)
(I MPLI ES (AND (PROPER- TREE FLAG TREE)
(SETP (NODES- REC FLAG TREE)))
(SETP (CHI LDREN- REC FLAG PARENT TREE)))
((1 NSTRUCTI ONS (1 NDUCT (CHI LDREN- REC FLAG PARENT TREE)) PROMOTE
PROVOTE (DIVE 1) X (DIVE 2) (= NIL) TOP PROVE PROMOTE PROMOTE
PROVE PROMOTE PROMOTE (DI VE 1) X

236

(CLAIM (EQUAL (CHI LDREN-REC ’ TREE PARENT (CAR TREE)) NIL) 0)
TOP PROVE (DI VE 2)
(CLAI M (MEMBER PARENT (NODES- REC ’ TREE (CAR TREE)))) (= NIL)
TOP PROVE PROVE)))

(PROVE- LEMMA ROOT- RECE| VE- REPORT- PRESERVES- | NSTANCE- OF- NO (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER CHI LD (CHI LDREN (CAR TREE) TREE))
(ROOT- RECE| VE- REPORT CLD NEW (CAR TREE)
(CONS CHI LD (CAR TREE)))
(UL (UP-LINKS (CDR (NODES TREE)) TREE) OLD)
(MEMBER NODE (NODES TREE))
(EQUAL (STATUS NODE NEW ' STARTED)
(I MPLI ES (EQUAL (STATUS NCDE OLD) ' STARTED)
(AND (EQUAL (OUTSTANDI NG NODE OLD)
(NUMBER- NOT- REPORTED
(CH LDREN NCDE TREE)
NODE OLD))
(EQUAL (FOUND- VALUE NCDE OLD)
(M N OF- REPORTED
(CH LDREN NCDE TREE)
NODE OLD
(NODE- VALUE NODE OLD))))))
(AND (EQUAL (OUTSTANDI NG NODE NEW
(NUMBER- NOT- REPORTED (CHI LDREN NODE TREE)
NODE NEW)
(EQUAL (FOUND- VALUE NCDE NEW
(M N OF- REPORTED (CH LDREN NCDE TREE)
NODE NEW
(NODE- VALUE NODE NEW))))

((1 NSTRUCTI ONS PROMOTE (CLAI M (EQUAL (STATUS NODE OLD) ' STARTED))
(DEMOTE 7) (DIVE 1) (DIVE 1) S-PROP UP (S-PROP | MPLIES) TOP
PROVOTE (CLAI M (EQUAL NODE (CAR TREE)) 0) (DEMOTE 3) (DI VE 1)
X-DUMB TOP SPLIT (DI VE 2)

(REVRI TE NUMBER- NOT- REPORTED- OF- ROOT
(($CH LD CHILD) ($OLD OLD)))
TOP (DIVE 1) (DIVE1) = UP=(DIVE 1) (DIVE1) = UP = UP UP

(DROP 134567810 11 12 13 14) PROVE

(DROP 2356789 10 11 12 13 14) PROVE

(DROP 34567 89 10 11 12 13 14) PROVE

(DROP 3 456 7 8 10 11 12 13 14) PROVE

(DROP 2 3567 89 10 11 12 13 14) PROVE

(DROP 2356 7 89 10 11 12 13 14) PROVE

(DROP 23567 89 10 11 12 13 14) PROVE (DIVE 1) S

(REWRI TE UL- | MPLI ES- | NSTANCE- OF- UL- NOT- EMPTY- UPLI NK
(($UPLI NKS (UP-LINKS (CDR (NCDES TREE)) TREE))))

TOP S (DROP 3 5 6 7 8 10 11 12 13 14) PROVE (DI VE 1) (DI VE 1)

(DIVE 2) = TOP S-PROP

(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL- NOT- EMPTY- UPLI NK
((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE))
(UPLI NK (CONS CHI LD (CAR TREE))) (STATE OLD)))

(DEMOTE 15) (DIVE 1) (DIVE 1) S PROP

(DROP 345678910 11 12 13 14) (= T) TOP S
(DROP 1234567 8 10 12 13 14) PROVE
(DROP 1234567810 11 12 13) PROVE
(DEMOTE 1 2 3456 7 8 10 11 12 13 14)

(BOOKMARK (BEG N (EQSUB 1))) (= NODE (CAR TREE) 0)

(CLAIM (EQUAL NODE (CAR TREE)) TAUT) (DROP 1)

(BOOKMARK (END (EQSUB 1))) DROP PROVOTE (DI VE 2)

(REWRI TE UPDATE- M N- OF- REPORTED (($CHI LD CHILD) ($OLD OLD)))

237

TOP S-PROP (DIVE 1) = (DIVE 2) X-DUMB (DIVE 1) S

(REWRI TE UL- | MPLI ES- | NSTANCE- OF- UL- NOT- EMPTY- UPLI NK
(($UPLI NKS (UP-LINKS (CDR (NODES TREE)) TREE))))

TOP (DIVE 2) (DIVE 2) (DIVE 4)

(= * (NODE-VALUE (CAR TREE) OLD) 0) UP = TOP DROP

(PROVE (DI SABLE MN)) (DROP 3 456 7 8 9 10 11 12) PROVE

(DROP 3456789 10 11 12 13) PROVE

(DROP 234567809 10 11 12 13) PROVE

(DROP 34567 89 10 11 12 13) PROVE

(DROP 3456789 10 11 12 13) PROVE

(DROP 3456789 10 11 12 13) PROVE

(DROP 23456780910 11 12 13) PROVE

(DROP 23456780910 11 12 13) PROVE (DIVE 1) S

(REWRI TE UL- | MPLI ES- | NSTANCE- OF- UL- NOT- EMPTY- UPLI NK
(($UPLI NKS (UP-LINKS (CDR (NCDES TREE)) TREE))))

TOP S (DROP 4 5 6 7 8 9 10 11 12 13) PROVE

(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL- NOT- EMPTY- UPLI NK

((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE))

(UPLI NK (CONS CHI LD (CAR TREE))) (STATE OLD)))
(DEMOTE 14) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP S
(DROP 3456789 10 11 12 13) PROVE (DI VE 2)

(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TOP
(DROP 123456809 11 12 13 14) PROVE (DI VE 2)
(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TOP
(DROP 1234567911 12 13 14) PROVE (DI VE 2)
(REVRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TOP
(DROP 1 23 456 8 9 11) PROVE (D VE 2)
(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TOP
(DROP 123456 79 11) PROVE (DEMOTE 3) (DI VE 1) X-DUMB TOP
SPLI T (DI VE 2)
(REWRI TE NUMBER- NOT- REPORTED- OF- NON- ROOT

(($ROOT (CAR TREE)) ($CHILD CH LD) ($OLD OLD)))
TOP (DIVE 1) (= * (OQUTSTANDI NG NODE OLD) 0) = TOP S

(DROP 2356 7 8 10 11 12 13) PROVE

(DROP 2 3456 7 89 10 11 12 13 14) PROVE
(DROP 34567 89 10 11 12 13 14) PROVE

(DROP 2356789 10 11 12 13 14) PROVE

(DROP 2 3567 89 10 11 12 13 14) PROVE

(DROP 23567 89 10 11 12 13 14) PROVE

(DROP 2356789 10 11 12 13 14) PROVE

(DROP 2356 7 89 10 11 12 13 14) PROVE (DI VE 1)

(= * (FOUND- VALUE NODE OLD) 0) UP (DI VE 2)
(REWRI TE M N- OF- REPORTED- OF- NON- ROOT
(($OLD OLD) ($CHI LD CHILD) ($ROOT (CAR TREE))))
TOP (DIVE 1) = TOP (DI VE 2) (DIVE 4)
(= * (NODE-VALUE NODE OLD) 0) TOP S

(DROP 1234567 8 10 11 12 13) PROVE

(DROP 23456780910 11 12 13 14) PROVE
(DROP 34567 89 10 11 12 13 14) PROVE
(DROP 23567 89 10 11 12 13 14) PROVE
(DROP 2 3567 89 10 11 12 13 14) PROVE
(DROP 23567 89 10 11 12 13 14) PROVE
(DROP 2356789 10 11 12 13 14) PROVE
(DROP 2 3567 89 10 11 12 13 14) PROVE
(DROP 1234567810 11 12 13) PROVE (DI VE 2)

(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TCP (DI VE 1)
(= * (OUTSTANDI NG NODE OLD) 0) = TOP S

(DROP 123456789 11 12 13 14) PROVE (DI VE 2)

(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) (DI VE 4)

(= * (NODE-VALUE NODE OLD) 0) TCP (DI VE 1)

(= * (FOUND- VALUE NODE OLD) 0) = TOP S

238

(DROP 123456789 11 12 13 14) PROVE

(DROP 123456789 11 12 13 14) PROVE (DI VE 1)

(= * (OUTSTANDI NG NODE OLD) 0) = TOP (DI VE 2)

(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TOP S

(DROP 123456789 11) PROVE (D VE 1)

(= * (FOUND- VALUE NODE OLD) 0) = TOP (DI VE 2)

(REVRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) (DI VE 4)

= * (NODE- VALUE NODE OLD) 0) TOP S

(DROP 123456789 11) PROVE(DROP1 234567 89 11)
PROVE)))

(PROVE- LEMVA RECEI VE- FI ND- PRESERVES- NO- FOR- REST- OF- TREE (REWRI TE)
(I MPLI ES (AND (NUMBERP NODE)
(NUMBERP PARENT- OF- NODE)
(NUMBERP PARENT)
(NOT (EQUAL PARENT NODE))
(NOT (MEMBER NODE CHI LDREN))
(CHANGED OLD NEW
(APPEND (LI ST (CONS PARENT- OF- NCDE NODE)
(CONS NODE PARENT- OF- NODE)
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE EXCPT))))
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT NEW
(NUMBER- NOT- REPORTED CHI LDREN PARENT OLD))
(EQUAL (M N OF- REPORTED CHI LDREN PARENT NEW VALUE)
(M N- OF- REPORTED CHI LDREN PARENT
OLD VALUE))))
((DI SABLE M N)
(I NDUCT (LENGTH CHI LDREN))))

(PROVE- LEMVA RECEI VE- FI ND- PRESERVES- NO- FOR- NODE (REVRI TE)
(I MPLI ES (AND (NUMBERP NODE)
(NUMBERP PARENT- OF- NODE)
(NOT (MEMBER NODE CHI LDREN))
(NOT- STARTED CHI LDREN OLD)
(SUBLI STP (RFP NODE CHI LDREN)
(RFP NODE EXCPT))
(CHANGED OLD NEW
(APPEND (LI ST (CONS PARENT- OF- NCDE NODE)
(CONS NODE PARENT- OF- NODE)
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * OUTSTANDI NG NODE))
(RFP NODE EXCPT))))
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN NODE NEW
(LENGTH CHI LDREN))
(EQUAL (M N- OF- REPORTED CHI LDREN NODE NEW VAL UE)
(M N OF- REPORTED CHI LDREN NCDE
OLD VALUE))))
((1 NSTRUCTI ONS (DI SABLE M N) (1 NDUCT (LENGTH CHI LDREN))
(CLAIM (EQUAL (CDR (ASSOC ((CONS ' STATUS (CAR CHI LDREN)) NEW)
* STARTED)
0)
PROMOTE PROMOTE (CONTRADI CT 1) (DIVE 1) (DIVE 1) (DI VE 1)
(REVRI TE ABQUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS PARENT- OF- NODE NODE)
(CONS NODE PARENT- OF- NODE)
(CONS * STATUS NODE)

(CONS * FOUND- VALUE NODE)

(CONS * QUTSTANDI NG NODE))

(RFP NODE EXCPT)))))
TOP PROVE (DROP 1 2 3 4 5 6 7 8) PROVE (DRCP 1 3 9) PROVE
PROVE PROVE)))

(PROVE- LEMVA RECEI VE- FI ND- PRESERVES- NO- FOR- PARENT- OF- NODE (REWRI TE)
(I MPLI ES (AND (NUMBERP NODE)
(NUMBERP PARENT- OF- NODE)
(NOT (EQUAL NODE PARENT- OF- NODE))
(NOT (EQUAL (STATUS NCDE OLD) ' STARTED))
(I MPLI ES (ZEROP ((OUTSTANDI NG NODE NEW)
(NOT (EMPTY (CONS NODE PARENT- OF- NODE)

NEW))
(CHANGED OLD NEW
(APPEND (LI ST (CONS PARENT- OF- NCDE NODE)
(CONS NODE PARENT- OF- NODE)
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE EXCPT))))
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN
PARENT- OF- NODE NEW
(NUMBER- NOT- REPORTED CHI LDREN
PARENT- OF- NODE OLD))
(EQUAL (M N OF- REPORTED CHI LDREN
PARENT- OF- NODE NEW VAL UE)
(M N OF- REPORTED CHI LDREN

PARENT- OF- NODE OLD VALUE))))

((I NSTRUCTI ONS (DI SABLE M N) (1 NDUCT (LENGTH CHI LDREN)) PROMOTE
PROVOTE (DEMOTE 2) (DIVE 1) (DIVE 1) S PROP
(= * T ((D SABLE ZEROP OUTSTANDI NG EMPTY))) UP

(S-PROP | MPLI ES) TOP PROMOTE (DI VE 1) (DI VE 1) X- DUMB S- PROP
(DIVE 2) = UP (DIVE 3) (DIVE 1) = TOP (DIVE 2) (DIVE 1) X- DUMB

S-PROP (DIVE 2) (DIVE 2) = UP UP (DIVE 3) = TOP (DROP 8 9)

(CLAIM (EQUAL (CAR CHILDREN) NODE) 0) (PROVE (DI SABLE M N))

(CLAIM (EQUAL (REPORTED (CAR CHI LDREN) PARENT- OF- NODE NEW

(REPORTED (CAR CHI LDREN) PARENT- OF- NODE OLD))

0)
(PROVE (DI SABLE M N REPORTED)) (CONTRADI CT 9) (DROP 5 6 9)
(PROVE (DI SABLE M N)) PROVE)))

(PROVE- LEMVA DL- OF- APPEND (REWRI TE)
(EQUAL (DL (APPEND A B) STATE)
(AND (DL A STATE)
(DL B STATE))))

(PROVE- LEMVA DOMN- LI NKS- 1- RFP (REVWRI TE)
(EQUAL (DOWR- LI NKS-1 PARENT CHI LDREN)
(RFP PARENT CHI LDREN)))

(PROVE- LEMVA DL- DOWR- LI NKS- | MPLI ES- DL- RFP (REWRI TE)
(I MPLIES (AND (DL (DOAR- LI NKS NCDES TREE) STATE)
(MEMBER NODE NODES))
(DL (RFP NODE (CHI LDREN NODE TREE)) STATE)))

(DI SABLE DL- DOAN- LI NKS- | MPLI ES- DL- RFP)
(DI SABLE DOWN- LI NKS- 1- RFP)
(DI SABLE DL- OF- APPEND)

(PROVE- LEMVA RECEI VE- FI ND- PRESERVES- | NSTANCE- OF- NO (REVRI TE)

239

240

(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (CDR (NODES TREE)))
(RECEI VE- FI ND OLD NEW
NODE
(CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE (CHI LDREN NCDE TREE)))
(DL (DOM- LI NKS (NODES TREE) TREE) OLD)
(MEMBER N (NODES TREE))
(EQUAL (STATUS N NEW ’ STARTED)
(I MPLI ES (EQUAL (STATUS N OLD) * STARTED)
(AND (EQUAL (OUTSTANDI NG N OLD)
(NUMBER- NOT- REPORTED
(CHI LDREN N TREE)
N OLD))
(EQUAL (FOUND-VALUE N OLD)
(M N- OF- REPORTED
(CH LDREN N TREE)
N OLD
(NODE- VALUE N OLD))))))
(AND (EQUAL (OUTSTANDI NG N NEW
(NUMBER- NOT- REPORTED (CHI LDREN N TREE)

N NEW)
(EQUAL (FOUND- VALUE N NEW
(M N- OF- REPORTED (CHI LDREN N TREE)
N NEW
(NODE- VALUE N NEW))))
((1 NSTRUCTI ONS PROVOTE
(CLAIM (EQUAL (HEAD (CONS (PARENT NCDE TREE) NODE) OLD) ' FI ND)
0)
(CLAIM (EQUAL N NCDE) 0)
(CLAI' M (NOT- STARTED (CH LDREN NCDE TREE) OLD) 0) (DEMOTE 3)
(DIVE 1) X-DUMB S-PROP TOP (DROP 6) PROMOTE (DI VE 1) (DI VE 2)
(REWRI TE RECEI VE- FI ND- PRESERVES- NO- FOR- NODE
(($OLD OLD) ($PARENT- OF- NODE (PARENT NCDE TREE))
($EXCPT (CHI LDREN NODE TREE))))
TOP (DIVE 2) (DI VE 2)
(REWRI TE RECEI VE- FI ND- PRESERVES- NO- FOR- NODE
(($OLD OLD) ($PARENT- OF- NODE (PARENT NCDE TREE))
($EXCPT (CHI LDREN NODE TREE))))
TOP (BASH T) PROMOTE
(GENERALI ZE (((CHI LDREN- REC * TREE NODE TREE) CHI LDREN)))
(DROP 12345678911 12 13 14 16 17)
(I NDUCT (LENGTH CHI LDREN)) PROVE PROVE (DROP 2 3 5 6 7 8 9)
PROVE (DROP 3 456 7 8 9) PROVE (DROP 2 35 6 7 8 9) PROVE
(DIVE 1) (DIVE 1) = TOP S-PROP (DIVE 1) (DIVE 2) (DIVE 1) =
TOP (REVRI TE SUBLI STP- REFLEXI VE) PROVE (DROP 2 3 5 6 7 8 9)
PROVE (DROP 3 456 7 8 9) PROVE (DROP 2 35 6 7 8 9) PROVE
(DIVE 1) (DIVE 1) = TOP S PRCP (DIVE 1) (DIVE 2) (DIVE 1) =
TOP (REVRI TE SUBLI STP- REFLEXI VE) PROVE (CONTRADI CT 10)
(REWRI TE PARENT- NOT- STARTED- | MPLI ES- ALL- EMPTY- AND- NOT- STARTED
(($PARENT NODE)))
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE))
(DOWR- LI NK (CONS (PARENT NODE TREE) NODE)) (STATE OLD)))
(DEMOTE 11) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP
(DROP 12345679 10) PROVE (DRP3 456 7 8 9 10) S
(REWRI TE MEMBER- DOWK- LI NKS) S (DI VE 2)
(REWRI TE PARENT- REC- CHI LDREN- REC) TOP (DI VE 1)
(REWRI TE NODE- HAS- PARENT) TOP S (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) TOP PROVE PROVE PROVE PROVE

241

PROVE PROVE
(REWRI TE DL- DOMR- LI NKS- | MPLI ES- DL- RFP (($NODES (NODES TREE))))
PROVE (CLAIM (EQUAL N (PARENT NODE TREE)) 0) (DEMOTE 3)
(DIVE 1) X-DUMB S-PROP TOP PROMOTE (DI VE 1) (DI VE 2)
(REWRI TE RECEI VE- FI ND- PRESERVES- NO- FOR- PARENT- OF- NODE
(($OLD OLD) ($NODE NODE)
($EXCPT (CHI LDREN NODE TREE))))
UP TOP (DI VE 2) (DI VE 2)
(REWRI TE RECEI VE- FI ND- PRESERVES- NO- FOR- PARENT- OF- NODE
(($OLD OLD) ($NODE NODE)
($EXCPT (CHI LDREN NODE TREE))))
TOP (DIVE 1) (DIVE 1) (= * (OUTSTANDING N OLD) 0) TOP (DI VE 2)

(DIVE 1) (= * (FOUND-VALUE N OLD) 0) TOP (DIVE 2) (DI VE 2)
(DIVE 4) (= * (NODE-VALUE N OLD) 0) TOP (DEMOTE 6) (DI VE 1)
(DIVE 1) (= * T 0) TOP S (DEMOTE 5) (DIVE 1) (DIVE 1) S
(DI VE 1)

(REWRI TE ABQUT- UC

(($B OLD)
($EXCPT (APPEND (LI ST (CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE (CHI LDREN NODE TREE))))))
TOP S (DROP 1 2 3 4 5 6 7) PROVE (CLAI M (NUVBERP NODE) 0)
(DROP 123457 8) PROVE (CONTRADICT 9) (DROP 3 4 5 6 7 8 9)
PROVE (DIVE 1) S (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE (CHI LDREN NODE TREE))))))

TOP S(DROP 1 23 456 7 8 9) PROVE (CLAIM (NUVBERP NODE) 0)
(DROP 12345679 10) PROVE (CONTRAD CT 11)
(DROP 34567 89 10 11) PROVE (DIVE 1) S (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * OUTSTANDI NG NODE))
(RFP NODE (CHI LDREN NODE TREE))))))
TOP S(DROP 123 456 7 8 9) PROVE (CLAIM (NUVBERP NODE) 0)
(DROP 12345679 10) PROVE (CONTRADI CT 11)
(DROP 3456 7 89 10 11) PROVE (DIVE 1) S (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * OUTSTANDI NG NODE))
(RFP NODE (CHI LDREN NODE TREE))))))
TOP S (DROP 123 456 7 8 9) PROVE (CLAIM (NUVBERP NODE) 0)
(DROP 123456 79 10) PROVE (CONTRADI CT 11)
(DROP 34567 89 10 11) PROVE (DROP 3 4 5 6 7 8 9 10) PROVE
(DROP 2356 7 8 9 10) PROVE

242

(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE))
(DOWR- LI NK (CONS (PARENT NODE TREE) NODE)) (STATE OLD)))
(DEMOTE 11) (DIVE 1) (DIVE 1) S PROP
(REWRI TE MEMBER- DOWN- LI NKS) (DI VE 1) S
(REWRI TE NODE- HAS- PARENT) UP S
(REWRI TE PARENT- REC- CH LDREN- REC) (DI VE 2)

(REWRI TE SETP- TREE- UNI QUE- PARENT) S UP (= * T 0) TOP

(DROP 123456809 10) PROE (DROP3 456 7 8 9 10) PROVE
(DROP 23456789 10) PROVE (DROP2 3 456 7 8 9 10)
PROVE (DROP 3 4 5 6 7 8 9 10) PROVE (DROP 2 3 4 5 6 7 8 9 10)
PROVE S (DROP 3 456 7 8 9 10) PROVE (DROP 1 2 3 4 5 6 7 8)
(PROVE (Dl SABLE OUTSTANDI NG LENGTH RFP FOUND- VALUE STATUS

NODE- VALUE CHANGED))
(DROP 1234567 8)
(PROVE (DI SABLE CHANGED OUTSTANDI NG FOUND- VALUE STATUS RECEI VE
SEND LENGTH- RFP))
(DROP 34567 89 10) PROVE (DROP2 3 56 7 8 9 10) PROVE
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE))
(DOWR- LI NK (CONS (PARENT NODE TREE) NODE)) (STATE OLD)))
(DEMOTE 11) (DIVE 1) (DI VE 1) S PROP
(REWRI TE MEMBER- DOWN- LI NKS) (DI VE 1) S
(REWRI TE NODE- HAS- PARENT) UP S
(REWRI TE PARENT- REC- CHI LDREN- REC) (DI VE 2)

(REWRI TE SETP- TREE- UNI QUE- PARENT) UP S (= * T 0) TOP

(DROP 123 456 8 10) PROVE (DROP 3 4 56 7 8 9 10) PROVE
(DROP 23456789 10) PROVE (DROP2 3 456 7 8 9 10)
PROVE (DROP 3 4 5 6 7 8 9 10) PROVE (DROP 2 3 4 5 6 7 8 9 10)
PROVE S (DROP 3 4 56 7 8 9 10) PROVE (DROP 1 2 3 4 5 6 7 8)
(PROVE (DI SABLE SEND LENGTH RFP OUTSTANDI NG NCDE- VALUE

FOUND- VALUE STATUS RECEI VE CHANGED))
(DROP 123456 7 8)
(PROVE (DI SABLE LENGTH RFP CHANGED FOUND- VALUE NODE- VALUE SEND
RECEI VE OUTSTANDI NG))
(DEMOTE 3) (DIVE 1) X-DUMB S-PROP TOP PROMOTE (DI VE 1)
(DI VE 2)
(REWRI TE RECEI VE- FI ND- PRESERVES- NO- FOR- REST- OF- TREE
(($OLD OLD) ($NODE NODE)
($PARENT- OF- NODE (PARENT NODE TREE))
($EXCPT (CHI LDREN NODE TREE))))
UP (DIVE 1) S (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE (CHI LDREN NODE TREE))))))
TOP (DIVE 2) (DIVE 1) S (DIVE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE (CHI LDREN NODE TREE))))))
UP UP (DI VE 2)
(REWRI TE RECEI VE- FI ND- PRESERVES- NO- FOR- REST- OF- TREE

243

(($OLD OLD) ($NODE NODE)
($PARENT- OF- NODE (PARENT NODE TREE))
($EXCPT (CHI LDREN NODE TREE))))
(DIVE 4) S (DIVE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(CONS ' STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE (CHI LDREN NODE TREE))))))
TOP (DEMOTE 6) (DEMOTE 5) (DIVE 1) (DIVE 1) S (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (APPEND (LI ST (CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(CONS * STATUS NODE)
(CONS * FOUND- VALUE NODE)
(CONS * QUTSTANDI NG NODE))
(RFP NODE (CHI LDREN NODE TREE))))))
TOP S(DROP 1234567
(PROVE (DI SABLE FOUND- VALUE STATUS OUTSTANDI NG NODE- VALUE SEND
RECEl VE CHANNEL EMPTY HEAD LENGTH RFP))
(CLAIM (NUMBERP NODE) 0) (DROP 1 2 3 4 5 7 8) PROVE
(CONTRADI CT 9) (DROP 3 4 5 6 7 8 9) PROVE
(DROP 12345678 09)
(PROVE (DI SABLE LENGTH RFP STATUS OUTSTANDI NG NODE- VALUE
FOUND- VALUE SEND RECEI VE CHANNEL EMPTY HEAD
CHI LDREN PARENT))
(CLAIM (NUMBERP NODE) 0) (DROP 1 2 3 4 56 7 9 10) PROVE
(CONTRADI CT 11) (DROP 3 4 56 7 8 9 10 11) PROVE
(DROP 3456 7 89 10) PROVE (DROP 3 45 6 7 8 9 10) PROVE
(DROP 2356 7 89 10) PROVE (DROP 3 5 6 7 10) PROVE
(DROP 12345678 09)
(PROVE (DI SABLE LENGTH RFP CHANGED STATUS FOUND- VALUE
OUTSTANDI NG NODE- VALUE SEND RECEI VE CHANNEL
EMPTY CHI LDREN PARENT))
(DROP 12345678 09)
(PROVE (DI SABLE LENGTH RFP STATUS OUTSTANDI NG NODE- VALUE
FOUND- VALUE CHANNEL EMPTY SEND RECEI VE
CHI LDREN PARENT))
(CLAIM (NUMBERP NODE) 0) (DROP 1 2 3 4 56 7 9 10) PROVE
(CONTRADI CT 11) (DROP 3 4 56 7 8 9 10 11) PROVE
(DROP 12345678 09)
(PROVE (DI SABLE LENGTH RFP CHI LDREN PARENT STATUS OUTSTANDI NG
NODE- VALUE FOUND- VALUE SEND RECEI VE CHANNEL
EMPTY))
(CLAIM (NUMBERP NODE) 0) (DROP 1 2 3 4 56 7 9 10) PROVE
(CONTRADI CT 11) (DROP 3 4 56 7 8 9 10 11) PROVE
(DROP 3456789 10) PROVE (DROP3 456 7 8 9 10) PROVE

(DROP 2 356 7 8 9 10) PROVE (DROP 3 5 6 7 10) PROVE
(DROP 12345678 09)
(PROVE (DI SABLE PARENT CHI LDREN OUTSTANDI NG NODE- VALUE

FOUND- VALUE STATUS LENGTH RFP RECEI VE SEND
CHANNEL EMPTY HEAD))
(DEMOTE 3) (DIVE 1) X-DUMB S-PROP TOP PROMOTE (DRCP 7)
(DIVE 1) (DI VE 2)
(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TCP (DI VE 2)
(DI VE 2) (REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TOP
(DROP 1 2 3 4) (PROVE (DI SABLE PARENT CHI LDREN)))))

(PROVE- LEMVA RECEI VE- REPORT- PRESERVES- NO- FOR- REST- OF- TREE (REWRI TE)
(I MPLI ES (AND (NUMBERP NODE)
(NUMBERP PARENT- OF- NODE)
(NUMBERP CHI LD- OF- NODE)
(NUMBERP PARENT)
(NOT (EQUAL PARENT NODE))
(NOT (MEMBER NODE CHI LDREN))
(CHANGED OLD NEW
(LI ST (CONS CHI LD- OF- NODE NODE)
(CONS NODE PARENT- OF- NODE)
(CONS * QUTSTANDI NG NODE)
(CONS ' FOUND- VALUE NODE))))
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT NEW
(NUMBER- NOT- REPORTED CHI LDREN PARENT OLD))
(EQUAL (M N OF- REPORTED CHI LDREN PARENT NEW VALUE)
(M N OF- REPORTED CHI LDREN PARENT
OLD VALUE))))
((DI SABLE M N)
(I NDUCT (LENGTH CHI LDREN))))

(PROVE- LEMMA RECEI VE- REPORT- PRESERVES- NO- FOR- NODE (REVRI TE)
(I MPLI ES (AND (NUMBERP NODE)
(NUMBERP PARENT)
(NUMBERP CHI LD)
(NOT (MEMBER NODE CHI LDREN))
(ALL- NUMBERPS CHI LDREN)
(SETP CHI LDREN)
(EQUAL (CHANNEL (CONS CHI LD NODE) OLD)
(LI ST (FOUND- VALUE CHI LD OLD)))
(DONE CHI LD OLD)
(EQUAL (CHANNEL (CONS CHI LD NODE) NEW
(RECEI VE (CONS CHI LD NODE) OLD))
(CHANGED OLD NEW
(LI ST (CONS CHI LD NODE)
(CONS NCDE PARENT)
(CONS * QUTSTANDI NG NODE)
(CONS * FOUND- VALUE NODE))))
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN NODE NEW
(I F (MEMBER CHI LD CHI LDREN)
(SUBL (NUMBER- NOT- REPORTED
CHI LDREN NODE OLD))
(NUMBER- NOT- REPORTED CHI LDREN NCDE OLD)))
(EQUAL (M N OF- REPORTED CHI LDREN NODE NEW VALUE)
(I F (MEMBER CHI LD CHI LDREN)
(M N (FOUND- VALUE CHI LD OLD)
(M N OF- REPORTED CHI LDREN
NODE OLD VALUE))
(M N OF- REPORTED CHI LDREN NCDE
OLD VALUE)))))
((1 NSTRUCTI ONS (1 NDUCT (LENGTH CHI LDREN)) PROMOTE PROMOTE
(DI SABLE REPORTED FOUND- VALUE HEAD CHANNEL RECEIVE M N DONE)
(DEMOTE 2) (DIVE 1) (DIVE 1) S-PROP (= T) TOP
(CLAIM (EQUAL CHI LD (CAR CHI LDREN)) 0)
(CLAIM (AND (MEMBER CHI LD CHI LDREN)
(NOT (MEMBER CHI LD (CDR CHI LDREN))))
0)
SSPLIT (DIVE 1) X (DIVE1) (= * TO) UP S (DIVE 1)
(= * (FOUND-VALUE CHILD OLD) 0) UP (DIVE 2) = TOP (DI VE 2)
(DIVE 2) X (DIVE 1) (= * F ((D SABLE DONE CHANNEL))) TOP S
(DROP 8 9 10 15 16 17) PROVE (DROP 15 16 17) PROVE (DIVE 1) X
(DIVE1) (=* T0) UPS=TOP (DIVE 2) (DIVE 1) X (DI VE 1)

244

245

= * F ((DI SABLE DONE CHANNEL))) TOP S (DROP 15 16) PROVE
(CONTRADI CT 13) (DROP 2 345 6 8 9 10 11 13) PROVE
(CLAIM (AND (MEMBER CHI LD (CDR CHI LDREN))
(MEMBER CHI LD CHI LDREN))
0)
S SPLIT (DIVE 1) X (DI VE 1)
(= * (REPORTED (CAR CHI LDREN) NODE OLD) 0) UP (DI VE 2)
(DIVE 1) (= * (FOUND-VALUE (CAR CHI LDREN) OLD) 0) UP (DI VE 2)
= UP UP (DIVE 3) = TOP (DIVE 2) (DIVE 2) X TOP DROP
(PROVE (DI SABLE DONE M N RECEI VE CHANNEL HEAD FOUND- VALUE
REPORTED))
(DROP 8 9 10 15 16 17) PROVE (DROP 8 9 10 15 16 17) PROVE
(DIVE 1) X (DIVE 1) (= * (REPORTED (CAR CHI LDREN) NODE OLD) 0)
UP (DIVE 2) = UP (DIVE 3) (DIVE 1) = TOP (DIVE 2) (DIVE 1) X
TOP S-PROP S S-PROP SPLI T (CONTRADI CT 18)
(DROP 1234567 10 11 12 14 15 16 17 18)
(GENERALI ZE (((CDR CHILDREN) L)))
(PROVE (DI SABLE CHANNEL DONE)) (DROP 8 9 10 13 14 15 16) PROVE
(DEMOTE 13) (DIVE 1) (DIVE 1) (DIVE 2) X UP S TOP PROMOTE
(CLAIM (NOT (MEMBER CHILD CHILDREN)) 0) S SPLIT (DIVE 1) X
(DIVE 1) (= * (REPORTED (CAR CHI LDREN) NODE OLD) 0) UP
(DIVE 2) (DIVE 2) = UP (DIVE 1)
(= * (FOUND- VALUE (CAR CHILDREN) OLD) 0) UP UP (DIVE 3) = TOP
(DIVE 2) X TOP S (DROP 8 9 10 15 16 17 18) PROVE
(DROP 8 9 10 15 16 17) PROVE (DIVE 1) X (DI VE 1)
(= * (REPORTED (CAR CHI LDREN) NCDE OLD) 0) UP (DIVE 2) = UP
(DIVE 3) (DIVE 1) = TOP (DIVE 2) X TOP S (DROP 8 9 10 15 16)
PROVE (CONTRADI CT 14) (DROP 2 3 4 5 6 8 9 10 11 14) PROVE
PROVE)))

(PROVE- LEMMA RECE| VE- REPORT- PRESERVES- NO- FOR- PARENT (REVRI TE)
(I MPLI ES (AND (NUMBERP NODE)
(NUMBERP PARENT)
(NOT (EQUAL NODE PARENT))
(I MPLI ES (ZEROP ((OUTSTANDI NG NODE NEW)
(NOT (EMPTY (CONS NODE PARENT) NEW))
(NOT (ZEROP (OUTSTANDI NG NODE OLD)))
(CHANGED OLD NEW
(LI ST (CONS CHI LD NODE)
(CONS NODE PARENT)
(CONS * QUTSTANDI NG NODE)
(CONS * FOUND- VALUE NODE))))
(AND (EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT NEW
(NUMBER- NOT- REPORTED CHI LDREN PARENT OLD))
(EQUAL (M N OF- REPORTED CHI LDREN PARENT NEW VALUE)
(M N OF- REPORTED CHI LDREN
PARENT OLD VALUE))))

((1 NSTRUCTI ONS (DI SABLE M N REPORTED) (| NDUCT (LENGTH CHI LDREN))
PROVMOTE PROMOTE (DEMOTE 2) (DIVE 1) (DIVE 1) (S-PROP AND) S UP
(S-PROP | MPLI ES) TOP PROMOTE
(CLAIM (EQUAL (CAR CHILDREN) NODE) 0) PROVE PROVE PROVE)))

(PROVE- LEMMA CHI LD- MEMBER- CDR- NCDES (REVRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SETP (NODES- REC ' TREE TREE))
(MEMBER CHI LD (CHI LDREN- REC ' TREE NCDE TREE)))
(MEMBER CHI LD (CDR (NCDES- REC ' TREE TREE))))
((1 NSTRUCTI ONS PROMOTE (CONTRADI CT 3) (DI VE 1)
(REWRI TE PARENT- REC- CHI LDREN- REC) (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) TOP (BASH T))))

246

(PROVE- LEMVA RECE| VE- REPORT- PRESERVES- | NSTANCE- OF- NO (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (CDR (NODES TREE)))
(MEMBER CHI LD (CHI LDREN NCDE TREE))
(MEMBER N (NODES TREE))
(RECEI VE- REPORT OLD NEW
NODE
(CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE)))
(EQUAL (STATUS N NEW ’ STARTED)
(UL (UP-LINKS (CDR (NODES TREE)) TREE) OLD)
(NO (NODES TREE) TREE OLD)
(DL (DOM- LI NKS (NODES TREE) TREE) OLD))
(AND (EQUAL (OUTSTANDI NG N NEW
(NUMBER- NOT- REPORTED (CHI LDREN N TREE)

N NEW)
(EQUAL (FOUND- VALUE N NEW
(M N OF- REPORTED (CHI LDREN N TREE)
N NEW
(NODE- VALUE N NEW))))
((1 NSTRUCTI ONS PROVOTE
(CLAIM (AND (NUVBERP NODE) (NUVBERP (PARENT NCDE TREE))
(NUMBERP N) (NUMBERP CHI LD)
(NOT (EQUAL CHI LD NODE))
(NOT (EQUAL (PARENT NCDE TREE) NODE))
(NOT (MEMBER NCDE (CHI LDREN NODE TREE)))
(NOT (MEMBER N (CHI LDREN N TREE)))
(ALL- NUMBERPS (CHI LDREN NCDE TREE))
(ALL- NUMBERPS (CHI LDREN N TREE))
(SETP (CHI LDREN NODE TREE))
(SETP (CHI LDREN N TREE)))
0)
(CLAIM (AND (EQUAL (STATUS N OLD) (STATUS N NEW)
(EQUAL (NODE-VALUE N OLD) (NCDE-VALUE N NEW))
0)
(CLAIM (EQUAL (CHANNEL (CONS CHI LD NODE) OLD)
(LI ST (FOUND- VALUE CHI LD OLD)))
0)
(CLAIM (DONE CHI LD OLD) 0)
(CLAIM (EQUAL (STATUS NODE OLD) ' STARTED) 0)
(CLAIM (EQUAL N NODE) 0)
(DEMOTE 1 2 3456 7 89 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26)
(= N NODE) DROP PROMOTE
(USE- LEMVA RECE! VE- REPORT- PRESERVES- NO- FOR- NODE
((NODE NODE) (PARENT (PARENT NODE TREE)) (CHI LD CHI LD)
(CHI LDREN (CH LDREN NCDE TREE)) (OLD OLD) (NEW NEW
(VALUE (NODE- VALUE NODE OLD))))
(DEMOTE 23) (DIVE 1) (DIVE 1) S-PROP (= * T 0) UP
(S-PROP | MPLI ES) TOP PROMOTE
(USE- LEMVA NO- | MPLI ES- | NSTANCE- OF- NO
((NODES (NODES TREE)) (TREE TREE) (STATE OLD) (NCDE NODE)))
(DEMOTE 25) (DIVE 1) (DIVE 1) S-PROP UP (S-PROP | MPLIES) TOP
PROVOTE (DIVE 1) (DIVE 2) = TOP (DIVE 2) (DIVE 2) (DIVE 4) =

UP = TOP
(DROP 123467891011 12 13 14 15 16 17 18 19 21 22 23
24)

(PROVE (DI SABLE CHANGED M N ZEROP CHANNEL))

(DROP 123467 89 10 11 12 13 14 15 16 17 18 19 21 22)
(PROVE (DI SABLE CHANNEL RECEI VE M N ZEROP CHANGED))
(CLAIM (EQUAL N (PARENT NODE TREE)) 0)

(DEMOTE 1 2 3456 7 89 10 11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27)
(= N (PARENT NCDE TREE)) DROP PROMOTE
(USE- LEMVA RECE! VE- REPORT- PRESERVES- NO- FOR- PARENT
((NODE NODE) (PARENT (PARENT NODE TREE)) (OLD OLD)
(NEW NEW (CHI LD CHI LD)
(CHI LDREN (CHI LDREN (PARENT NODE TREE) TREE))
(VALUE (NODE- VALUE (PARENT NCDE TREE) OLD))))
(DEMOTE 26) (DIVE 1) (DIVE 1) S-PROP (= * T 0) UP
(S-PROP | MPLI ES) TOP PROMOTE
(CLAIM (AND (EQUAL (OUTSTANDI NG (PARENT NCDE TREE) NEW
(QUTSTANDI NG (PARENT NODE TREE) OLD))
(EQUAL (FOUND- VALUE (PARENT NODE TREE) NEW
(FOUND- VALUE (PARENT NODE TREE) OLD)))
0)
(USE- LEMVA NO- | MPLI ES- | NSTANCE- OF- NO
((NODES (NODES TREE)) (TREE TREE) (STATE OLD)
(NODE (PARENT NODE TREE))))
(DEMOTE 30) (DIVE 1) (DIVE 1) S-PROP (DIVE 1) == UP S UP
(S-PROP | MPLI ES) TOP PROMOTE (DIVE 1) (DIVE 1) = UP (DIVE 2) =
TOP (DIVE 2) (DIVE 1) = UP (DIVE 2) (DIVE 4) = UP = TOP
(DROP 12345678910 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 2 6 27 28 29)
PROVE (CONTRADI CT 28)
(DROP 1234678091213 14 15 16 17 18 19 20 21 23 24 26
27 28)
(PROVE (DI SABLE CHANNEL M N ZEROP)) (DI VE 1) (DI VE 1)
(=* FO) UP S-PROP (DIVE 2) (DIVE 3) (DIVE 3) (= * T 0) TOP
(DIVE 1) (DIVE 8) (DIVE 3) (= * T 0) TOP
(CLAI'M (NOT (ZEROP (OUTSTANDI NG NODE OLD))) 0) S-PROP
(DROP 1234678091011 12 13 14 15 16 17 18 19 20 21 23
24 25 26)
(PROVE (DI SABLE M N CHANGED CHANNEL)) (CONTRADI CT 26) (DI VE 1)
(DIVE 1) S
(REVWRI TE NO- | MPLI ES- | NSTANCE- OF- NO
(($NCDES (NCDES TREE)) ($TREE TREE)))
TOP S (CLAIM (NOT (REPORTED CHI LD NODE OLD)) 0)
(CONTRADI CT 27)
(REWRI TE NUMBER- NOT- REPORTED- 0- | MPLI ES
(($CHI LDREN (CHI LDREN NODE TREE))))
(DEMOTE 27) DROP PROVE (CONTRADI CT 27) (DIVE 1) X-DUMB S- PROP
X-DUMB (DIVE 1) (DIVE 1) = TOP S
(DROP 3456789 10 11 12 13 14 15 1 17 18 19 20 21 22 23
24 25 26)
PROVE
(DROP 1234678091011 12 13 14 15 16 17 18 19 20 21 23
24 25 26 27)
(PROVE (DI SABLE CHANGED CHANNEL ZERCP M N))
(DROP 1234678091011 12 13 14 15 16 17 18 19 20 21 23
24 25 26 27 28)
(PROVE (DI SABLE CHANNEL CHANGED M N ZEROP))
(DROP 12345678910 11 12 13 14 15 16 17 18 19 20 21 22
23 24)
PROVE
(CLAIM (AND (EQUAL (FOUND-VALUE N OLD) (FOUND-VALUE N NEW)
(EQUAL (OUTSTANDI NG N OLD) (OUTSTANDI NG N NEW))
0)
(USE- LEMVA RECE! VE- REPORT- PRESERVES- NO- FOR- REST- OF- TREE
((NODE NODE) (CHI LD- OF- NODE CHI LD)
(PARENT- OF- NODE (PARENT NODE TREE)) (PARENT N)
(CH LDREN (CH LDREN N TREE)) (VALUE (NCDE-VALUE N OLD))))

247

(DEMOTE 31) (DIVE 1) (DIVE 1) S-PROP (= * T 0) UP
(S-PROP | MPLI ES) TOP PROMOTE
(USE- LEMVA NO- | MPLI ES- | NSTANCE- OF- NO
((NODES (NODES TREE)) (TREE TREE) (STATE OLD) (NCDE N)))
(DEMOTE 33) (DIVE 1) (DIVE 1) S-PROP (DIVE 1) == UP S UP
(S-PROP | MPLI ES) TOP PROMOTE (DIVE 1) (DIVE 1) = UP (DI VE 2) =
TOP (DIVE 2) (DIVE 1) = UP (DIVE 2) (DIVE 4) = UP = TOP
(DROP 12345678910 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32)
PROVE S-PROP SPLI T
(DROP 356 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 29 30)
PROVE
(DROP 1234678091011 12 13 14 15 16 17 18 19 20 21 22
23 25 26 27 28 29 30 31)
(PROVE (DI SABLE CHANGED CHANNEL M N ZEROP)) (CONTRADI CT 29)
(DROP 12346780916 17 18 19 20 21 22 23 25 26 29)
(PROVE (DI SABLE M N ZEROP CHANNEL))
(CLAIM (EQUAL (STATUS CHI LD OLD) ' STARTED) 0)
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE))
(DOWK- LI NK (CONS NODE CHI LD)) (STATE OLD)))
(CONTRADI CT 26) (DEMOTE 28) (DIVE 1) (DIVE 1) S-PROP (= * T 0)
TOP (DEMOTE 27) DROP PROVE
(DROP 5 6 7 8 9 18 19 20 21 22 23 24 25 26 27) PROVE
(CONTRADI CT 27)
(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL
((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE)) (STATE OLD)
(UPLI NK (CONS CHI LD NCDE))))
(DEMOTE 28) (DIVE 1) (DIVE 1) S-PROP (= * T 0) UP
(S-PROP | MPLI ES) TOP (DEMOTE 24) DROP PROVE
(DROP 5 6 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27)
PROVE (CONTRADI CT 25)
(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL
((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE)) (STATE OLD)
(UPLI NK (CONS CHI LD NCDE))))
(DEMOTE 26) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP (DEMOTE 24)
DROP PROVE
(DROP 5 6 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25)
PROVE (DEMOTE 5) (DIVE 1) X-DUMB (DIVE 1) (= * T 0) UP S PROP
TOP PROMOTE (DI VE 1) (DI VE 2)
(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TCP (DI VE 2)
(DIVE 2) (DIVE 4) = UP
(REWRI TE UNCHANGED- PRESERVES- NO (($OLD OLD))) TOP
(USE- LEMVA NO- | MPLI ES- | NSTANCE- OF- NO
((NODES (NODES TREE)) (TREE TREE) (STATE OLD) (NCDE N)))
(DEMOTE 25) (DIVE 1) (DIVE 1) S-PROP (DIVE 1) = = UP S UP
(S-PROP | MPLI ES) TOP (DEMOTE 24) DROP PROVE
(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL
((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE)) (STATE OLD)
(UPLI NK (CONS CHI LD NCDE))))
(DEMOTE 24) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP (DEMOTE 23)
DROP PROVE
(DROP 5 6 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
PROVE (CONTRADI CT 22)
(DROP 12346780916 17 18 19 20 21 22)
(PROVE (DI SABLE M N ZEROP CHANNEL SEND RECEI VE HEAD PARENT
CHI LDREN NODES))
(CONTRADI CT 10) (DROP 5 6 7 8 9 10) PROVE)))

248

249

(PROVE- LEMMA DL- UL- NO- PRESERVES- | NSTANCE- OF- NO (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(DL (DOMR- LI NKS (NODES TREE) TREE) OLD)
(UL (UP-LINKS (CDR (NODES TREE)) TREE) OLD)
(NO (NODES TREE) TREE OLD)
(MEMBER NODE (NODES TREE))
(EQUAL (STATUS NODE NEW ' STARTED))
(AND (EQUAL (OUTSTANDI NG NODE NEW
(NUMBER- NOT- REPORTED (CHI LDREN NODE TREE)
NODE NEW)
(EQUAL (FOUND- VALUE NCDE NEW
(M N OF- REPORTED (CH LDREN NCDE TREE)
NODE NEW
(NODE- VALUE NODE NEW))))
((1 NSTRUCTI ONS PROVOTE
(USE- LEMVA NO- | MPLI ES- | NSTANCE- OF- NO
((NODES (NODES TREE)) (TREE TREE) (STATE OLD) (NCDE NODE)))
(DEMOTE 9) (DIVE 1) (DIVE 1) S-PROP UP (DIVE 2) (DIVE 1)
(DIVE 1) (= (OUTSTANDI NG NODE OLD)) UP UP (DI VE 2) (DI VE 1)
(= (FOUND- VALUE NODE OLD)) TOP PROMOTE
(CLAIM (EQUAL (CAR STATEMENT) ' START) 0)
(USE- LEMVA START- PRESERVES- | NSTANCE- OF- NO
((TREE TREE) (OLD OLD) (NEW NEW (NCDE NODE)))
(DEMOTE 11) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP
(DROP 3 45 6 7 8 9) (PROVE (Dl SABLE TREE- PRG START)) (DROP 8)
(DEMOTE 8)
(DI SABLE STATUS OUTSTANDI NG FOUND- VALUE NODE- VALUE START
ROOT- RECE| VE- REPORT RECE! VE- FI ND RECE! VE- REPORT)
S SPLIT (DROP2 356 7 8 9 10 11 12) (D VE 1) (DI VE 2)
(= (CHI LDREN (CAR TREE) TREE)) TOP
(REWRI TE DL- DOMR- LI NKS- | MPLI ES- DL- RFP (($NODES (NODES TREE))))
PROVE (DROP 4 5 6 7 9 10 11) (PROVE (DI SABLE TREE- PRG START))
(DIVE 1) (DIVE 2) (= (CHILDREN (CAR TREE) TREE)) TOP
(REVRI TE DL- DOMR- LI NKS- | MPLI ES- DL- RFP (($NODES (NODES TREE))))
(DROP 234567809 10) PROVE (DROP 4 5 6 7 9)
(PROVE (DI SABLE TREE- PRG START))
(CLAIM (EQUAL (CAR STATEMENT) ' ROOT- RECE| VE- REPORT) 0)
(USE- LEMVA ROOT- RECE| VE- REPORT- PRESERVES- | NSTANCE- OF- NO
((TREE TREE) (CHI LD (CAADDR STATEMENT)) (OLD OLD)
(NEW NEW (NODE NCDE)))
(DEMOTE 9) (DEMOTE 11) (DIVE 1) (DIVE 1) S-PROP (DI VE 1)
(=* TO) UP(DIVE2) (DIVE1) (=* TO) TOP S
(DROP 456 7 8 9)
(PROVE (DI SABLE TREE- PRG ROOT- RECE| VE- REPORT))
(DROP 2 456 7 8 9) (PROVE (Dl SABLE TREE-PRG)) (DEMOTE 9)
(CLAIM (EQUAL (CAR STATEMENT) ° RECEI VE- FI ND) 0)
(USE- LEMVA RECEI VE- FI ND- PRESERVES- | NSTANCE- OF- NO
((TREE TREE) (NODE (CADR STATEMENT))

(PARENT (CAADDR STATEMENT)) (N NODE) (OLD OLD) (NEW NEW))
(DEMOTE 12) (DIVE 1) (DIVE 1) S-PROP S (DIVE 1) (= * T 0) UP
(DIVE2) (DIVE1) (=* TO) TOP S (DROP4 56 7 8 9 10)

(PROVE (DI SABLE TREE- PRG RECE! VE- FI ND))

(DROP 2 456 7 8 9 10) (PROVE (Dl SABLE TREE- PRG))

(USE- LEMVA RECE! VE- REPORT- PRESERVES- | NSTANCE- OF- NO
((TREE TREE) (NODE (CADR STATEMENT))

(CH LD (CAADDR STATEMENT)) (N NCDE) (OLD OLD) (NEW NEW))
(DEMOTE 12) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP S S-PROP S
SPLIT (DROP 4 5 6 7 8 12 13)

(PROVE (DI SABLE RECEI VE- REPORT TREE- PRG))

(DROP 2 45 6 7 8 12) (PROVE (DI SABLE TREE- PRG))
(DROP 2 4 5 6 7 8) (PROVE (DI SABLE TREE-PRG)))))

(PROVE- LEMMA DL- UL- NO- PRESERVES- NO- SUBLI ST (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(DL (DOM- LI NKS (NODES TREE) TREE) OLD)
(UL (UP-LINKS (CDR (NODES TREE)) TREE) OLD)
(NO (NODES TREE) TREE OLD)
(SUBLI STP SUBLI ST (NODES TREE)))
(NO SUBLI ST TREE NEW)
((1 NSTRUCTI ONS (1 NDUCT (NO SUBLI ST TREE NEW) PROMOTE PROMOTE
(DEMOTE 2) (DIVE 1) (DIVE 1) S-PROP (= * T 0) UP S TOP PROVOTE
X (DROP 9)
(USE- LEMVA DL- UL- NO- PRESERVES- | NSTANCE- OF- NO
((TREE TREE) (OLD OLD) (NEW NEW (STATEMENT STATEMENT)
(NODE (CAR SUBLIST))))
(DEMOTE 9) (DIVE 1) (DIVE 1) S-PROP (DIVE 1) (= * T 0) TOP S
(DROP 3 456 7) PROVE (DROP 2 3 4 5 6 7) PROVE PROVOTE
PROMOTE X)))

(PROVE- LEMMA | NV- PRESERVES- | NV (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(INV TREE OLD))
(INV TREE NEW)
((1 NSTRUCTI ONS (DI SABLE NODES N MEMBER- TREE- PRG TREE- PRG TREEP) S
SPLI T (REWRI TE DL- UL- NO- PRESERVES- NO- SUBLI ST)
(REWRI TE SUBLI STP- REFLEXI VE) (REWRI TE DL- UL- NO- PRESERVES- UL)
(REWRI TE DL- PRESERVES-DL))))

(PROVE- LEMMA | NV- | S- | NVARI ANT (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
“(AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))
(TREE- PRG TREE))
(TREEP TREE))
(I NVARI ANT * (I NV (QUOTE , TREE) STATE)
(TREE- PRG TREE)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE UNLESS- PROVES- | NVARI ANT
(($1C (LIST ’ AND
(LI ST * ALL- EMPTY
(LI ST * QUOTE (ALL- CHANNELS TREE))
' STATE)
(LI ST * NOT- STARTED

(LI ST ' QUOTE (NODES TREE)) ' STATE)))))

(BASH (DI SABLE | N\V TREEP N MEMBER- TREE- PRG TREE- PRG))
(BASH (DI SABLE | NV TREE-PRG)))))

(PROVE- LEMVA OUTSTANDI NG- NON- | NCREASI NG (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (TREE- PRG TREE))
(N OLD NEW STATEMENT)
(DL (DOM-LINKS (NODES TREE) TREE) OLD)

250

(MEMBER NODE (NODES TREE)))
(NOT (LESSP (I F (EQUAL (STATUS NODE OLD) ' STARTED)
(QUTSTANDI NG NODE OLD)
(ADDL (LENGTH (CHI LDREN NODE TREE))))
(I F (EQUAL (STATUS NODE NEW ’ STARTED)
(QUTSTANDI NG NCDE NEW
(ADDL (LENGTH (CHI LDREN NODE TREE)))))))
((1 NSTRUCTI ONS PROVOTE (CLAI M (EQUAL (CADR STATEMENT) NCDE) 0)
(CLAIM (EQUAL (CAR STATEMENT) ' RECEI VE- FIND) 0)
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE))
(STATE OLD)
(DOWR- LI NK (CONS (PARENT NODE TREE) NODE))))
(DEMOTE 8) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP (DROP 4)
(BASH T (DI SABLE M N ZEROP TREE- PRG)) (DRCP 3 4)
(CLAI'M (LI STP (PARENT- REC ' TREE NODE TREE)) 0) (DROP 2 4 5)
(PROVE (ENABLE PARENT- REC- CHI LDREN- REC)) (CONTRADI CT 6)
(DIVE 1) (REWRI TE SETP- TREE- UNI QUE- PARENT) TOP
(PROVE (DI SABLE TREE-PRG)) PROVE PROVE (DRCP 4)
(BASH T (DI SABLE TREE-PRG M N ZEROP)) PROMOTE (DI VE 1)
(DIVE 2) = TOP DROP PROVE PROMOTE (DI VE 1) (DIVE 2) = TOP DROP
PROVE (DROP 4) (BASH T (DI SABLE TREE-PRG M N ZEROP)))))

(PROVE- LEMMA TOTAL- OUTSTANDI NG- NON- | NCREASI NG SUBLI ST (REVWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (TREE- PRG TREE))
(N OLD NEW STATEMENT)
(DL (DOM-LINKS (NODES TREE) TREE) OLD)
(SUBLI STP SUBLI ST (NODES TREE)))
(NOT (LESSP (TOTAL- OUTSTANDI NG SUBLI ST TREE OLD)
(TOTAL- OUTSTANDI NG SUBLI ST TREE NEW)))
((1 NSTRUCTI ONS (| NDUCT (TOTAL- OUTSTANDI NG SUBLI ST TREE OLD))
PROMOTE PROMOTE (DEMOTE 2) (DIVE 1) (DIVE 1) S-PROP (= * T 0)
UP (S-PROP | MPLI ES) TOP PROMOTE
(USE- LEMVA OUTSTANDI NG- NON- | NCREASI NG
((TREE TREE) (STATEMENT STATEMENT) (OLD OLD) (NEW NEW
(NODE (CAR SUBLIST))))
(DEMOTE 8) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP
(DROP 2 3 4 5 6) (PROVE (DI SABLE OUTSTANDI NG STATUS CHI LDREN))
(DROP 2 3 4 5 7) PROVE (DROP 2 3 4 5) PROVE
(PROVE (DI SABLE TREEP TREE- PRG MEMBER- TREE- PRG NCDES N)))))

(PROVE- LEMMA TOTAL- OUTSTANDI NG- NON- | NCREASI NG (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (TREE- PRG TREE))
(N OLD NEW STATEMENT)
(DL (DOM-LINKS (NODES TREE) TREE) OLD))
(NOT (LESSP (TOTAL- OUTSTANDI NG (NODES TREE) TREE OLD)
(TOTAL- OUTSTANDI NG (NODES TREE) TREE NEW)))
((DI SABLE NODES TREEP TREE- PRG MEMBER- TREE- PRG)))

(PROVE- LEMVA PCSI TI ON- APPEND (REVRI TE)
(EQUAL (POSI TION (APPEND A B) E)
(I F (MEMBER E A)
(POSI TION A E)
(PLUS (LENGTH A)
(PCSITION B E)))))

(PROVE- LEMMA PARENTS- POSI TI ON- DECREASES (REVRI TE)
(I MPLI ES (AND (MEMBER NODE (NODES- REC FLAG TREE))
(SETP (NODES- REC FLAG TREE))

251

(PROPER- TREE FLAG TREE)
(I F (EQUAL FLAG ' TREE)
(NOT (EQUAL (CAR TREE) NODE))
(NOT (MEMBER NCDE (ROOTS TREE)))))
(LESSP (POSI TI ON (NODES- REC FLAG TREE)
(CAR (PARENT- REC FLAG NODE TREE)))
(POSI TI ON (NODES- REC FLAG TREE)
NODE))))

(DEFN PARENT- TO- ROOT- | NDUCTI ON (NODE TREE)
(IF (AND (MEMBER NODE (NODES TREE))
(SETP (NODES TREE))
(PROPER- TREE ’' TREE TREE))
(IF (EQUAL (CAR TREE) NODE)
T

(PARENT- TO- ROOT- | NDUCTI ON (PARENT NODE TREE) TREE))
T
((LESSP (POSI TI ON (NODES TREE) NODE))))

(PROVE- LEMMA DL- AND- ALL- EMPTY- | MPLI ES- ROOT- DEFI NES- STATUS (REWRI TE)
(I MPLIES (AND (DL (DOAR-LINKS (NODES TREE) TREE) STATE)
(ALL- EMPTY (DOAK- LI NKS (NODES TREE) TREE) STATE)
(SETP (NODES TREE))
(PRODER- TREE ' TREE TREE)
(MEMBER NODE (NODES TREE)))
(EQUAL (CDR (ASSOC ((CONS ' STATUS NODE) STATE))
(STATUS (CAR TREE) STATE)))
((1 NSTRUCTI ONS (1 NDUCT (PARENT- TO- ROOT- | NDUCTI ON NODE TREE)) PROVE
(CLAI' M (MEMBER NODE
(CHI LDREN- REC * TREE
(CAR (PARENT- REC ' TREE NCDE TREE)) TREE))

0)
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE)) (STATE STATE)
(DOWR- LI NK (CONS (PARENT NODE TREE) NODE))))
(USE- LEMVA ALL- EMPTY- | MPLI ES- EMPTY
((CHANNELS (DOAR- LI NKS (NODES TREE) TREE)) (STATE STATE)
(CHANNEL (CONS (PARENT NODE TREE) NODE))))
PROVE (CONTRADI CT 1) (REWRI TE PARENT- REC- CH LDREN- REC) PROVE
PROVE)))

(DEFN SUFFI X (S L)
(I'F (LISTP L)
(IF (EQUAL S L)
T

(SUFFIX S (CDR L)))
(NOT (LISTP 9))))

(PROVE- LEMMA SUFFI X- | MPLI ES- SUFFI X- CDR (REWRI TE)
(I MPLIES (SUFFI X S L)
(SUFFI X (CDR S) L)))

(PROVE- LEMVA MEMBER- SUFFI X- MEMBER- LI ST (REWRI TE)
(I MPLI ES (AND (MEMBER E S)
(SUFFI X S L))
(MEMBER E L)))

(PROVE- LEMVA CHI LDS- PCSI Tl ON- | NCREASES (REVRI TE)

252

253

(I MPLI ES (AND (MEMBER NODE (NODES- REC FLAG TREE))
(SETP (NODES- REC FLAG TREE))
(PROPER- TREE FLAG TREE)
(MEMBER CHI LD (CHI LDREN- REC FLAG NODE TREE)))
(LESSP (POSI TI ON (NODES- REC FLAG TREE)
NODE)
(POSI TI ON (NODES- REC FLAG TREE)
CH LD)))
((ENABLE PARENT- REC- CHI LDREN- REC)
(USE (PARENTS- POSI TI ON- DECREASES (NODE CHILD)))))

(PROVE- LEMVA SETP- LI ST- SETP- SUFFI X (REWRI TE)
(I MPLI ES (AND (SETP L)
(SUFFI X S L))
(SETP 9)))

(PROVE- LEMVA LATER- POSI TI ONS- ARE- | N- SUFFI X (REWRI TE)
(I MPLIES (AND (SETP L)
(SUFFIX S L)
(MEMBER X S)
(MEMBER Y L)
(LESSP (POSITION L X) (PGSITIONL Y)))
(MEMBER Y 9)))

(DEFN ALL- DONE (NODES STATE)
(I'F (LI STP NODES)
(I F (DONE (CAR NODES) STATE)
(ALL- DONE (CDR NODES) STATE)
F)
m)

(PROVE- LEMVA ALL- DONE- | MPLI ES- DONE (REVRI TE)
(I MPLIES (AND (ALL- DONE NODES STATE)
(MEMBER NODE NODES))
(DONE NODE STATE))
((DI SABLE DONE)))

(PROVE- LEMMA ALL- DONE- | MPLI ES- ALL- DONE- SUBLI ST (REWRI TE)
(I MPLI ES (AND (ALL- DONE NODES STATE)
(SUBLI STP SUBLI ST NODES))
(ALL- DONE SUBLI ST STATE))
((DI SABLE DONE)))

(DEFN ULNKS (CHI LDREN PARENT)
(I'F (LI STP CHI LDREN)
(CONS (CONS (CAR CHI LDREN) PARENT)
(ULNKS (CDR CHI LDREN) PARENT))
NIL))

(PROVE- LEMMA ALL- DONE- AND- ALL- EMPTY- | MPLI ES- NUMBER- NOT- REPORTED- 0
(REVRI TE)
(I MPLI ES (AND (ALL- DONE CHI LDREN STATE)
(ALL- EMPTY (ULNKS CHI LDREN PARENT) STATE))
(EQUAL (NUMBER- NOT- REPORTED CHI LDREN PARENT STATE)
0))
((DI SABLE DONE)))

254

(PROVE- LEMVA ALL- EMPTY- | MPLI ES- ALL- EMPTY- SUBLI ST (REWRI TE)
(I MPLI ES (AND (ALL- EMPTY CHANNELS STATE)
(SUBLI STP SUBLI ST CHANNELS))
(ALL- EMPTY SUBLI ST STATE))
((DI SABLE CHANNEL)))

(PROVE- LEMVA SUBLI ST- ULNKS (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SUBLI STP SUBLI ST (CHI LDREN PARENT TREE))
(SETP (NODES TREE)))
(SUBLI STP (ULNKS SUBLI ST PARENT)
(UP- LI NKS (CDR (NODES TREE)) TREE)))
((1 NDUCT (ULNKS SUBLI ST PARENT))))

(PROVE- LEMMA CHI LD- OF- NODE- | N- SUFFI X- | S- | N- SUFFI X (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)

(SETP (NODES TREE))

(MEMBER CHI LD (CHI LDREN NCDE TREE))
(SUFFI X NODES (NODES TREE))

(MEMBER NODE NCDES))

(MEMBER CHI LD (CDR NODES)))
((1 NSTRUCTI ONS PROVOTE (CLAI M (MEMBER CHI LD NCDES)) PROVE)))

(PROVE- LEMVA CHI LDREN- ARE- SUFFI X- OF- SUBLI ST- GENERALI ZED (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SETP (NODES TREE))
(SUFFI X NODES (NODES TREE))
(MEMBER NODE NODES)
(SUBLI STP SUBLI ST
(CHI LDREN- REC * TREE NCDE TREE)))
(SUBLI STP SUBLI ST (CDR NCDES)))
((1 NSTRUCTI ONS (1 NDUCT (LENGTH SUBLI ST)) PROMOTE PROMOTE X (DI VE 1)
(REWRI TE CHI LD- OF- NODE- | N- SUFFI X- 1 S- | N- SUFFI X
(($NCDE NODE) ($TREE TREE)))
TOP PROVE PROVE PROVE)))

(PROVE- LEMVA ALL- NODES- ARE- DONE (REWRI TE)
(1 MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SETP (NODES TREE))
(ALL- EMPTY (DOMN-LI NKS (NODES TREE) TREE) STATE)
(ALL- EMPTY (UP-LI NKS (CDR (NODES TREE)) TREE) STATE)
(DL (DOAN-LI NKS (NODES TREE) TREE) STATE)
(UL (UP-LINKS (CDR (NCDES TREE)) TREE) STATE)
(NO (NCDES TREE) TREE STATE)
(EQUAL (STATUS (CAR TREE) STATE) ' STARTED)
(SUFFI X NODES (NODES TREE)))
(ALL- DONE NODES STATE))
((I' NSTRUCTI ONS (| NDUCT (LENGTH NODES)) PROMOTE PROMOTE (DEMOTE 2)
(DIVE 1) (DIVE 1) S-PROP (REWRI TE SUFFI X- | MPLI ES- SUFFI X- CDR)
UP S TOP PROMOTE X (DI VE 1) (DI VE 1)
(REVRI TE DL- AND- ALL- EMPTY- | MPLI ES- ROOT- DEFI NES- STATUS
(($TREE TREE)))
= TOP S (DIVE 1) (DI VE 1)
(REVRI TE NO- | MPLI ES- | NSTANCE- OF- NO
(($NCDES (NODES TREE)) ($TREE TREE)))
(REVRI TE ALL- DONE- AND- ALL- EMPTY- | MPLI ES- NUMBER- NOT- REPORTED- 0)
TOP S
(REWRI TE ALL- DONE- | MPLI ES- ALL- DONE- SUBLI ST
(($NCDES (CDR NCDES))))
(REWRI TE CHI LDREN- ARE- SUFFI X- OF- SUBLI ST- GENERALI ZED

255

(($TREE TREE) ($NODE (CAR NODES))))
X (REWRI TE SUBLI STP- REFLEXI VE)
(REWRI TE ALL- EMPTY- | MPLI ES- ALL- EMPTY- SUBLI ST
(($CHANNELS (UP- LI NKS (CDR (NODES TREE)) TREE))))
(REWRI TE SUBLI ST- ULNKS) S (REWRI TE SUBLI STP- REFLEXI VE)
(REWRI TE MEMBER- SUFFI X- MEMBER- LI ST (($S NODES))) X S (DI VE 1)
(REWRI TE DL- AND- ALL- EMPTY- | MPLI ES- ROOT- DEFI NES- STATUS
(($TREE TREE)))
= TOP S (REWRI TE MEMBER- SUFFI X- MEMBER- LI ST (($S NODES))) X
(REWRI TE MEMBER- SUFFI X- MEMBER- LI ST (($S NODES))) X PROMOTE X)))

(PROVE- LEMVA ALL- DONE- | MPLI ES- TOTAL- QUTSTANDI NG- 0 (REVRI TE)
(1 MPLI ES (ALL- DONE NODES STATE)
(EQUAL (TOTAL- OUTSTANDI NG NODES TREE STATE)
0)))

(PROVE- LEMVA ALL- EMPTY- ROOT- STARTED- | MPLI ES- TOTAL- QUTSTANDI NG 0 (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SETP (NCDES TREE))
(I NV TREE STATE)
(ALL- EMPTY (DOAR- LI NKS (NODES TREE) TREE) STATE)
(ALL- EMPTY (UP-LINKS (CDR (NCDES TREE)) TREE) STATE)
(EQUAL (STATUS (CAR TREE) STATE) ’ STARTED))
(EQUAL (TOTAL- QUTSTANDI NG (NODES TREE) TREE STATE)
0))
((I NSTRUCTI ONS PROMOTE (DEMOTE 3) (DI VE 1) X- DUVB TOP PROMOTE
(DIVE 1) (REWRI TE ALL- DONE- | MPLI ES- TOTAL- QUTSTANDI NG-0) TOP S
(REWRI TE ALL- NODES- ARE- DONE (($TREE TREE))) X)))

(DEFN FULL- CHANNEL (CHANNELS STATE)
(I'F (LI STP CHANNELS)
(I F (EMPTY (CAR CHANNELS) STATE)
(FULL- CHANNEL (CDR CHANNELS) STATE)
(CAR CHANNELS))

)

(PROVE- LEMMA NOT- ALL- EVPTY- | MPLI ES- FULL- CHANNEL- FULL (REWRI TE)
(I MPLIES (AND (NOT (ALL- EMPTY CHANNELS STATE))
(NOT (MEMBER F CHANNELS)))
(AND (LI STP (CDR (ASSOC (FULL- CHANNEL CHANNELS STATE)
STATE)))
(MEMBER (FULL- CHANNEL CHANNELS STATE) CHANNELS)
(FULL- CHANNEL CHANNELS STATE))))

(PROVE- LEMMA NOT- TOTAL- OUTSTANDI NG- 0- | MPLI ES- FULL- CHANNEL (REWRI TE)
(I MPLI ES (AND (PROPER- TREE ' TREE TREE)
(SETP (NODES TREE))
(I NV TREE STATE)
(OR (EQUAL (STATUS (CAR TREE) STATE) ' STARTED)
(EQUAL (STATUS (CAR TREE) STATE) ' NOT- STARTED))
(NOT (EQUAL (TOTAL- OUTSTANDI NG (NODES TREE)
TREE STATE)
0)))
(OR (EQUAL (STATUS (CAR TREE) STATE) ' NOT- STARTED)
(FULL- CHANNEL (DOAR- LI NKS (NODES TREE) TREE) STATE)
(FULL- CHANNEL (UP- LI NKS (CDR (NCDES TREE)) TREE)
STATE)))
((I NSTRUCTI ONS PROMOTE (CONTRADI CT 5) (DI VE 1)
(REWRI TE ALL- EMPTY- ROOT- STARTED- | MPLI ES- TOTAL- OUTSTANDI NG- 0)
TOP S SPLIT (CONTRADI CT 6)

(REWRI TE NOT- ALL- EMPTY- | MPLI ES- FULL- CHANNEL- FULL)
(DROP 3 4 5 6 7) PROVE SPLIT (CONTRADI CT 7)

(REWRI TE NOT- ALL- EMPTY- | MPLI ES- FULL- CHANNEL- FULL)
(DROP 3 4 5 6 7) PROVE SPLIT)))

(PROVE- LEMVA STATUS- ROOT- BECOVES- STARTED- OR- UNCHANGED (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (TREE- PRG TREE))
(N OLD NEW STATEMENT))
(OR (EQUAL (STATUS (CAR TREE) NEW * STARTED)
(EQUAL (STATUS (CAR TREE) NEW
(STATUS (CAR TREE) OLD))))
((I NSTRUCTI ONS PROMOTE
(CLAIM (EQUAL (CADR STATEMENT) (CAR TREE)) 0)
(PROVE (DI SABLE TREE-PRG M N)) (PROVE (DI SABLE TREE-PRG M N)))))

(PROVE- LEMMA ROOT- STARTED- OR- NOT- STARTED- | S- | NVARI ANT (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
“ (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))
(TREE- PRG TREE))
(TREEP TREE))
(I NVARI ANT * (OR (EQUAL (STATUS (QUOTE , (CAR TREE))
STATE)
' STARTED)
(EQUAL (STATUS (QUOTE , (CAR TREE))
STATE)
* NOT- STARTED))
(TREE- PRG TREE)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE UNLESS- PROVES- | NVARI ANT
(($1C (LIST ’ AND
(LI ST * ALL- EMPTY
(LI ST * QUOTE (ALL- CHANNELS TREE))
' STATE)
(LI ST * NOT- STARTED
(LI ST ' QUOTE (NODES TREE)) ' STATE)))))
(REWRI TE HELP- PROVE- UNLESS) (DROP 1)
(GENERALI ZE
(((EU (LIST ' OR
(CONS * EQUAL
(CONS (CONS ’ STATUS
(CONS (LI ST * QUOTE (CAR TREE))
' (STATE)))
' (" STARTED)))
(CONS * EQUAL
(CONS (CONS ’ STATUS
(CONS (LI ST * QUOTE (CAR TREE))
' (STATE)))
* (" NOT- STARTED))))
(TREE- PRG TREE) ' (FALSE))
STATEMENT)
((OLDU (LIST ' OR
(CONS * EQUAL
(CONS (CONS ’ STATUS
(CONS (LI ST * QUOTE (CAR TREE))
' (STATE)))

256

257

' (" STARTED)))
(CONS * EQUAL
(CONS (CONS * STATUS
(CONS (LI'ST ' QUOTE (CAR TREE))
' (STATE)))
* (" NOT- STARTED))))
(TREE- PRG TREE) ' (FALSE))
aLD)
((NEWJ (LIST ’OR
(CONS * EQUAL
(CONS (CONS * STATUS
(CONS (LI'ST * QUOTE (CAR TREE))
' (STATE)))
" (" STARTED)))
(CONS * EQUAL
(CONS ((CONS ’ STATUS
(CONS (LI'ST ' QUOTE (CAR TREE))
' (STATE)))
* (" NOT- STARTED))))
(TREE- PRG TREE) ' (FALSE))
NEW))
(USE- LEMVA STATUS- ROOT- BECOVES- STARTED- OR- UNCHANGED
((TREE TREE) (OLD OLD) (NEW NEW))
(PROVE (DI SABLE TREE- PRG MEMBER- TREE- PRG N))
(PROVE (DI SABLE TREE- PRG)
(EXPAND (NOT- STARTED (NODES- REC ' TREE TREE)
(S (TREE- PRG TREE) 0)))))))

(PROVE- LEMVA TOTAL- OUTSTANDI NG- DECREASES- SUBLI ST (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(DL (DOM- LI NKS (NODES TREE) TREE) OLD)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(SUBLI STP NCDES (NODES TREE))
(MEMBER NODE NODES)
(LESSP (I F (EQUAL (STATUS NODE NEW ’ STARTED)
(OUTSTANDI NG NODE NEW
(ADDL (LENGTH (CHI LDREN NODE TREE))))
(I F (EQUAL (STATUS NODE OLD) ' STARTED)
(QUTSTANDI NG NCDE OLD)
(ADDL (LENGTH (CHI LDREN NODE TREE))))))
(LESSP (TOTAL- QUTSTANDI NG NODES TREE NEW
(TOTAL- OUTSTANDI NG NODES TREE OLD)))
((1 NSTRUCTI ONS (| NDUCT (MEMBER NODE NODES))
(PROVE (DI SABLE TREE- PRG MEMBER- TREE- PRG TREEP STATUS
OUTSTANDI NG CHI LDREN))
(PROVE (DI SABLE TREE- PRG MEMBER- TREE- PRG TREEP STATUS
OUTSTANDI NG CHI LDREN NODES N)
(EXPAND (TOTAL- OUTSTANDI NG NODES TREE OLD)
(TOTAL- OUTSTANDI NG NODES TREE NEW))
PROMOTE PROMOTE (DEMOTE 3) (DIVE 1) (DIVE 1) S-PROP (= * T 0)
UP S TOP PROMOTE (DRCP 8 9)
(UUSE- LEMVA QUTSTANDI NG- NON- | NCREASI NG
((TREE TREE) (STATEMENT STATEMENT) (OLD OLD) (NEW NEW
(NODE (CAR NODES))))
(PROVE (DI SABLE TREE- PRG MEMBER- TREE- PRG TREEP STATUS
OUTSTANDI NG CHI LDREN NODES N)
(EXPAND (TOTAL- OUTSTANDI NG NODES TREE OLD)
(TOTAL- OUTSTANDI NG NODES TREE NEW))
(DROP 3 4 5 6)

258

(PROVE (DI SABLE STATUS OUTSTANDI NG NODES CHI LDREN)))))

(DEFN TOU (OLD NEW NODE TREE)
(LESSP (I F (EQUAL (STATUS NODE NEW ’ STARTED)
(OUTSTANDI NG NCDE NEW
(ADDL (LENGTH (CHI LDREN NODE TREE))))
(I F (EQUAL (STATUS NODE OLD) ' STARTED)
(OUTSTANDI NG NCDE OLD)
(ADDL (LENGTH (CHI LDREN NODE TREE))))))

(PROVE- LEMVA TOTAL- OUTSTANDI NG- DECREASES (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(DL (DOM- LI NKS (NODES TREE) TREE) OLD)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(MEMBER NODE (NODES TREE))
(TOU OLD NEW NCDE TREE))
(LESSP (TOTAL- OUTSTANDI NG (NODES TREE) TREE NEW
(TOTAL- OUTSTANDI NG (NODES TREE) TREE OLD)))
((1 NSTRUCTI ONS PROVOTE (DEMOTE 6) (DI VE 1) X TOP PROMOTE
(PROVE (DI SABLE TREE- PRG MEMBER- TREE- PRG N TREEP NODES)))))

(PROVE- LEMMA START- DECREASES- TOU (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(EQUAL (STATUS (CAR TREE) OLD) ' NOT- STARTED)
(N OLD NEW (LI ST * START (CAR TREE)
(RFP (CAR TREE)
(CH LDREN (CAR TREE) TREE)))))
(TOU OLD NEW (CAR TREE) TREE)))

(PROVE- LEMMA OTHERS- PRESERVE- ROOT- NOT- STARTED (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(NOT (EQUAL STATEMENT
(LI ST * START (CAR TREE)
(RFP (CAR TREE)
(CHI LDREN (CAR TREE)
TREE))))))
(EQUAL (CDR (ASSOC ((CONS ' STATUS (CAR TREE)) NEW)
(STATUS (CAR TREE) OLD)))
((1 NSTRUCTI ONS
(BASH T
(DI SABLE TREE- PRG M N ZEROP PARENT CHI LDREN NODES))
PROMOTE
(CLAIM (AND (NUMBERP W
(NUMBERP (PARENT W (CONS X 2))))
0)
(DI VE 1)
(DI VE 1)
(REVRI TE ABOUT- UC
(($B OLD)
($EXCPT
(CONS
(CONS (PARENT W (CONS X 2)) W
(CONS (CONS W (PARENT W (CONS X 2)))
(CONS (CONS ’ STATUS W
(CONS ((CONS * FOUND- VALUE W
(CONS ((CONS * OUTSTANDI NG W
(RFP W

(CHILDREN W (CONS X 2)))))))))))

TP S
(DROP 4 56 7 8 9 11 12)
(BASH T

(DI SABLE PARENT CHI LDREN NODES))
PROVOTE

(CONTRADI CT 7)
(DROP 3 4 6 7)
PROVE
(CONTRADI CT 14)
(DROP 4 5 6 7 8 9 10 11 12 14)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC

(($B OLD)

($SEXCPT

(CONS

(CONS (PARENT W (CONS X 7)) W
(CONS (CONS W (PARENT W (CONS X 2)))
(CONS (CONS ’ STATUS W
(CONS ((CONS ’ FOUND- VALUE W
(CONS ((CONS * OUTSTANDI NG W
(RFP W
(CHILDREN W (CONS X 2)))))))))))
TP S
(CLAIM (AND (NUMBERP W
(NUMBERP (PARENT W (CONS X 2))))

0)
(DROP 4 5 6 7 8 10 11)
(BASH T

(DI SABLE CHI LDREN PARENT NODES))
PROVOTE

(CONTRADI CT 7)

(DROP 3 456 7)

PROVE

(CONTRADI CT 13)

(DROP 456 7 89 10 11)

PROVE PROMOTE

(DI VE 1)

(DI VE 1)

(REWRI TE ABOUT- UC

(($B OLD)
($EXCPT (LIST (CONS Z1 W

(CONS W (PARENT W (CONS X 2)))
(CONS * OUTSTANDI NG W
(CONS * FOUND- VALUE W))))

TP S

(CLAIM (AND (NUVBERP Z1)

(NUMBERP W

0 (NOT (EQUAL X W))

(DROP 1234567809 10 11 12)
PROVE
(CONTRADI CT 13)
(DROP 4 56 7 8 9 10 13)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)

259

260

($EXCPT (LIST (CONS Z1 W
(CONS W (PARENT W (CONS X 2)))
(CONS * OUTSTANDI NG W
(CONS * FOUND- VALUE W))))
TP S
(CLAIM (AND (NUMBERP Z1) (NUMBERP W)
0)
(DROP 1234567809 10 11 12)
(PROVE (DI SABLE PARENT))
(CONTRADI CT 13)
(DROP 4 56 7 89 10 13)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LIST (CONS Z1 W
(CONS W (PARENT W (CONS X 2)))
(CONS * OUTSTANDI NG W
(CONS * FOUND- VALUE W))))
TP S
(CLAIM (AND (NUMBERP Z1) (NUMBERP W)
0)
(DROP 1234567809 10 11 12)
(PROVE (DI SABLE PARENT))
(CONTRADI CT 13)
(DROP 4 56 7 89 10 13)
PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LIST (CONS Z1 W
(CONS W (PARENT W (CONS X 2)))
(CONS * OUTSTANDI NG W
(CONS * FOUND- VALUE W))))
TP S
(CLAIM (AND (NUMBERP Z1) (NUMBERP W)
0)
(DROP 1234567809 10 11 12)
(PROVE (DI SABLE PARENT))
(CONTRADI CT 13)
(DROP 4 56 7 89 10 13)
PROVE PROMOTE

(DI VE 1)
(DI VE 1)
(REVRI TE ABOUT- UC
(($B OLD)
($EXCPT (LIST (CONS V X)
(CONS * OUTSTANDI NG X)
(CONS * FOUND- VALUE X)))))
TP S

(CLAI' M (NUMBERP V) 0)
(DROP1234567809)
PROVE

(CONTRADI CT 10)

(DROP 4 5 6 7 8 10)
PROVE)))

(PROVE- LEMVA ROOT- RECEI VE- REPORT- DECREASES- TOU (REVRI TE)

261

(I MPLI ES (AND (TREEP TREE)
(LI STP (CHANNEL (CONS CHI LD (CAR TREE)) OLD))
(MEMBER CHI LD (CHI LDREN (CAR TREE) TREE))
(N OLD NEW
(LI ST * ROOT- RECE| VE- REPORT (CAR TREE)
(CONS CHI LD (CAR TREE))))
(INV TREE OLD))
(TOU OLD NEW (CAR TREE) TREE))
((1 NSTRUCTI ONS PROMOTE
(CLAIM (EQUAL (STATUS (CAR TREE) OLD) ' STARTED) 0)
(CLAI M (NOT (ZEROP (OUTSTANDI NG (CAR TREE) OLD))) 0) (DROP 5)
PROVE
(USE- LEMVA NUVBER- NOT- REPORTED- 0- | MPLI ES
((CHI LDREN (CHI LDREN (CAR TREE) TREE)) (PARENT (CAR TREE))
(STATE OLD) (NODE CHILD)))
(CONTRADI CT 2) (DROP 2) (DEMOTE 6) (DIVE 1) (DIVE 1) S
(REVRI TE NO- | MPLI ES- | NSTANCE- OF- NO
(($TREE TREE) ($NODES (NODES TREE))))
TOP (DROP 4) DEMOTE S (DEMOTE 4) S (DROP 2 3 4 5 6) PROVE
(CONTRADI CT 6)
(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL
((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE))
(UPLI NK (CONS CHI LD (CAR TREE))) (STATE OLD)))
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE)) (STATE OLD)
(DOWR- LI NK (CONS (CAR TREE) CHILD))))
(DROP 4 6) (DEMOTE 5) (DIVE 1) (DIVE 1) (= * T 0) TOP
(DEMOTE 5) (DIVE 1) (DIVE 1) (= * T 0) TOP (DROP 1 3 4) DEMOTE
PROVE (DROP 2) (DIVE 1) (DIVE 1) (= T) TOP (DROP 3) S-PROP
(DIVE 1) (REWRI TE MEMBER- DOWK- LI NKS) TOP PROVE (DI VE 1)
(DIVE 1) (DROP 5) (= T) UP (DIVE 2) (REWRI TE MEMBER- UP- LI NKS)
(DROP 2 4) (DIVE 2) (DIVE 1) (DIVE 2) S (DIVE 1)
(REWRI TE PARENT- OF- CHI LD (($PARENT (CAR TREE)))) TOP PROVE
PROVE PROVE PROVE)))

(PROVE- LEMMA OTHERS- PRESERVE- UP- TO- ROOT- FULL (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(LI STP (CHANNEL (CONS CHI LD (CAR TREE)) OLD))
(MEMBER CHI LD (CHI LDREN (CAR TREE) TREE))
(MEMBER STATEMENT (TREE- PRG TREE))
(NOT (EQUAL STATEMENT
(LI ST * ROOT- RECE| VE- REPORT (CAR TREE)
(CONS CHI LD (CAR TREE)))))
(N OLD NEW STATEMENT))
(LI STP (CDR (ASSOC (CONS CHI LD (CAR TREE)) NEW)))
((1 NSTRUCTI ONS PROVOTE
(CLAIM (AND (NUMBERP CHI LD)
(NUMBERP (CAR TREE)))
0)
(BASH T
(DI SABLE TREE- PRG M N ZEROP PARENT CHI LDREN NODES))
PROMOTE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT (CONS (CONS ' STATUS W
(CONS (CONS * FOUND- VALUE W
(CONS ((CONS ’* OUTSTANDI NG W
(RFP W (CHI LDREN W (CONS W Z)))))))))

262

TP S
(CLAIM (NOT (EQUAL W CHILD)) 0)
(DROP 123456789 10 11)
(PROVE (DI SABLE CHI LDREN))
(CONTRADI CT 14)
(DROP 4 6 7 8 9 10 11)
PROVE PROMOTE
(CLAIM (AND (EQUAL D CHI LD)
(EQUAL X (PARENT D (CONS X 2))))
0)
(PROVE (DI SABLE PARENT CHI LDREN NODES))
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT
(CONS
(CONS (PARENT D (CONS X Z)) D)
(CONS (CONS D (PARENT D (CONS X 2)))
(CONS (CONS ’ STATUS D)
(CONS ((CONS * FOUND- VALUE D)
(CONS ((CONS * OUTSTANDI NG D)
(RFP D
(CHILDREN D (CONS X 2)))))))))))
TP S
(DROP 4 7 8 9 10 11 12 13 14 15)
(BASH T
(DI SABLE PARENT CHI LDREN NODES))
PROVOTE
(DI VE 1)
s
(REWRI TE PARENT- NOT- GRANDCHI LD)
TOP S X
(DEMOTE 1 2)
DROP PROVE
(DEMOTE 6)
S PROMOTE
(CONTRADI CT 7)
(DEMOTE 1 2)
DROP PROVE PROMOTE
(DI VE 1)
(DI VE 1)
(CLAIM (EQUAL D CHILD) 0)
(CLAIM (EQUAL X (PARENT D (CONS X 2)))
0)
(DI VE 1)
(DI VE 1)
=P
(DI VE 2)
=UP WP U =TOP S TOP
(CONTRADI CT 18)
(DI VE 2)
s
(DI VE 1)
(REWRI TE PARENT- OF- CHI LD
(($PARENT X)))
TOP S X
(DEMOTE 1)
s
(DI VE 1)
= ToP

263

(DEMOTE 5)
s
(CLAIM (NOT (EQUAL D X)) 0)
(REVRI TE ABOUT- UC
(($B OLD)
($EXCPT
(CONS
(CONS (PARENT D (CONS X Z)) D)
(CONS (CONS D (PARENT D (CONS X 2)))
(CONS ((CONS * STATUS D)
(CONS ((CONS * FOUND- VALUE D)
(CONS ((CONS * OUTSTANDI NG D)
(RFP D
(CHILDREN D (CONS X 2)))))))))))

TP S
(DROP 4 7 8 9 10 11 12 13 14)
(PROVE (DI SABLE NODES CHI LDREN PARENT))
TOP
(CONTRADI CT 18)
(DEMOTE 1 6)
DROP PROVE PROMOTE
(CLAIM (EQUAL D CHILD) 0)
(CLAIM (EQUAL X (PARENT D (CONS X 2)))

0)
(DI VE 1)
(DI VE 1)
(DI VE 1)
(DI VE 1)
= U
(DI VE 2)
=UWPUWUW=TPS
(CONTRADI CT 18)
(DI VE 2)
s
(DI VE 1)
(REWRI TE PARENT- OF- CHI LD

(($PARENT X)))

TOP S X
(DEMOTE 1)
s
(DI VE 1)
= TOP
(DEMOTE 5)
s
(CLAIM (NOT (EQUAL C CHILD)) 0)
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS C D)
(CONS D (PARENT D (CONS X 2)))
(CONS * QUTSTANDI NG D)
(CONS * FOUND- VALUE D)))))
TP S

(DROP 5 8 9 10 11 12 13 14)

(PROVE (DI SABLE CHI LDREN PARENT NODES))
(CLAIM (EQUAL D X) 0)

(CONTRADI CT 6)

(DI VE 1)

(DI VE 1)

= ToP

264

(DEMOTE 1)

DROP PROVE

(CONTRADI CT 19)

(DI VE 1)

(= * (PARENT CHILD (CONS X 2)) 0)

TOP

(DI VE 1)

s

(DI VE 1)

(REWRI TE PARENT- OF- CHI LD

(($PARENT X)))

TOP S X

(DEMOTE 1)

s

(DEMOTE 5)

s

(DI VE 2)

s

(DI VE 1)

(DI VE 2)

= U

(REWRI TE PARENT- OF- CHI LD

(($PARENT D)))

TOP S X

(DEMOTE 1)

s

(DEMOTE 7)

S PROMOTE

(CLAIM (EQUAL D CHILD) 0)

(CLAIM (EQUAL (PARENT D (CONS X 2)) X)
0)

(DI VE 1)

(DI VE 1)

(DI VE 1)

(DI VE 1)

= up

(DI VE 2)

(DI VE 1)

(CONTRADI CT 18)

(DI VE 1)

(DI VE 1)

= U S

(DI VE 1)

(REWRI TE PARENT- OF- CHI LD
(($PARENT X)))

TOP S X

(DEMOTE 1)

s

(DEMOTE 5)

s

(CLAIM (EQUAL C CHILD) 0)

(CONTRADI CT 6)

(DI VE 1)

(DI VE 1)

(=* X0)

TOP

(DEMOTE 1)

DROP PROVE

(DI VE 1)

(= * (PARENT CHILD (CONS X 2)) 0)

s

(DI VE 1)

(REVRI TE PARENT- OF- CHI LD
(($PARENT X)))

TOP S X

(DEMOTE 1)

s

(DEMOTE 5)

s

(DI VE 2)

(DI VE 1)

= U S

(DI VE 1)

(REWRI TE PARENT- OF- CHI LD
(($PARENT D)))

TOP S X

(DEMOTE 1)

s

(DEMOTE 7)

s

(DI VE 1)

(DI VE 1)

(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS C D)

(CONS D (PARENT D (CONS X 2)))
(CONS ' QUTSTANDI NG D)
(CONS * FOUND- VALUE D)))))

TOP S

(DROP 123456789 10 11 12 13 14)

PROVE PROMOTE

(CLAIM (EQUAL C CHILD) 0)

(CONTRADI CT 17)

(DROP 4 8 9 10 11 12 13 14 17)

(BASH T)

PROMOTE

(CONTRADI CT 8)

(DI VE 1)

(REWRI TE PARENT- REC- CHI LDREN- REC)

TOP PROVE

(CLAIM (EQUAL D CHILD) 0)

(DI VE 1)

(DI VE 1)

(DI VE 1)

(DI VE 1)

= U

(DI VE 2)

(= * (PARENT D (CONS X 2)) 0)

UPUP UP = TOP S

(DI VE 2)

(DI VE 1)

= U S

(DI VE 1)

(REWRI TE PARENT- OF- CHI LD
(($PARENT X)))

TOP S X

(DEMOTE 1)

s

(DEMOTE 5)

s

265

266

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS C D)
(CONS D (PARENT D (CONS X 2)))
(CONS * QUTSTANDI NG D)
(CONS * FOUND- VALUE D)))))
TP S

(DROP 123456789 10 11 12 13 14)

(PROVE (DI SABLE PARENT))

PROVOTE

(CLAIM (EQUAL C CHILD) 0)

(DROP 4 8 9 10 11 12 13 14)

(DEMOTE 6)

(DI VE 1)

s

(REWRI TE PARENT- REC- CHI LDREN- REC)

TOP

(BASH T)

(CLAIM (EQUAL D CHILD) 0)

(DI VE 1)

(DI VE 1)

(DI VE 1)

(DI VE 1)

= U

(DI VE 2)

(= * (PARENT D (CONS X 2)) 0)

UPUPUP=TOPS

(DEMOTE 4)

(DI VE 1)

(DI VE 1)

(DI VE 1)

(DI VE 1)

(DI VE 2)

(= * (PARENT D (CONS X 2)) 0)

uP

(DI VE 1)

= TOP S

(DI VE 2)

s

(DI VE 1)

(REWRI TE PARENT- OF- CHI LD
(($PARENT X)))

TOP S X

(DEMOTE 1)

s

(DI VE 1)

= TOP

(DEMOTE 4)

s

(DI VE 2)

s

(DI VE 1)

(REWRI TE PARENT- OF- CHI LD
(($PARENT X)))

TOP S X

(DEMOTE 1)

s

(DI VE 1)

= ToP

267

(DEMOTE 5)
s
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS C D)
(CONS D (PARENT D (CONS X 2)))
(CONS * QUTSTANDI NG D)
(CONS * FOUND- VALUE D)))))
TP S
(DROP 123456789 10 11 12 13 14)
PROVE
(CONTRADI CT 7)
(DROP 2 456 7)
PROVE)))

(PROVE- LEMMA RECEI VE- FI ND- DECREASES- TOU (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(LI STP (CHANNEL (CONS (PARENT NODE TREE) NCDE) OLD))
(MEMBER NODE (CDR (NODES TREE)))
(N OLD NEW (LI ST * RECEI VE- FI ND NODE
(CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE
(CH LDREN NODE TREE))))
(INV TREE OLD))
(TOU OLD NEW NCDE TREE))
((1 NSTRUCTI ONS PROVOTE
(CLAIM (AND (EQUAL (STATUS NODE OLD) ' NOT- STARTED)
(EQUAL (HEAD (CONS (PARENT NODE TREE) NODE) OLD)
" FIND))
0)
(DROP 5) (PROVE (DI SABLE CHI LDREN PARENT NODES))
(CONTRADI CT 6)
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE))
(DOWR- LI NK (CONS (PARENT NODE TREE) NODE)) (STATE OLD)))
(DEMOTE 7) (DIVE 1) (DIVE 1) (= * T O0) (DROP 1 3 4 5 6) TOP
DEMOTE (PROVE (DI SABLE PARENT NODES)) S SPLIT (DROP 2 4 5 6 7)
(REWRI TE MEMBER- DOWR- LI NKS) (DIVE 2) (DIVE 1) S
(REWRI TE PARENT- REC- CHI LDREN- REC) TCP S
(CLAI' M (MEMBER NODE (NODES- REC ' TREE TREE))) (DI VE 1)
(REWRI TE NODE- HAS- PARENT) TOP S (DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT) TOP PROVE PROVE PROVE PROVE
PROVE PROVE)))

(PROVE- LEMMA OTHERS- PRESERVE- DOAK- TO- NCDE- FULL (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(LI STP (CHANNEL (CONS (PARENT NCDE TREE)
NODE) OLD))
(MEMBER NODE (CDR (NODES TREE)))
(MEMBER STATEMENT (TREE- PRG TREE))
(NOT (EQUAL STATEMENT
(LI ST ' RECEI VE- FI ND NCDE
(CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE
(CHI LDREN NODE TREE)))))
(N OLD NEW STATEMENT))
(LI STP (CDR (ASSOC (CONS (CAR (PARENT- REC ' TREE NODE

268

TREE))
NODE) NEW)))
((1 NSTRUCTI ONS PROVOTE
(CLAIM (AND (NUVBERP NODE)
(NUMBERP (PARENT NODE TREE)))
0)
(DI VE 1)
(DI VE 1)
(DI VE 1)
(DI VE 1)
(= (PARENT NODE TREE))
TOP
(BASH T
(DI SABLE TREE- PRG M N ZEROP PARENT CHI LDREN NODES))
PROVOTE
(CLAIM (EQUAL (PARENT NODE (CONS X 2)) X)
0)
(DI VE 1)
(DI VE 1)
(DI VE 1)
(DI VE 1)
= UP UP
(REWRI TE SEND- FI ND- GENERAL
(($OLD OLD)
($CHANNELS (RFP X (CHILDREN X (CONS X 2))))))
TP S
(REWRI TE MEMBER- RFP)
s
(DI VE 2)
(DI VE 2)
= ToP

(REWRI TE PARENT- REC- CH LDREN- REC)
(DROP 3 46 89 10 11 12 13 14 15)
PROVE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (CONS (CONS ' STATUS X)
(CONS ((CONS * FOUND- VALUE X)
(CONS ((CONS * OUTSTANDI NG X)
(RFP X (CHILDREN X (CONS X 2)))))))))
TOP S PROP
(DROP 123456789 10 11 12 13)
(PROVE (DI SABLE PARENT CHI LDREN))
PROMOTE
(CLAIM (EQUAL V NCDE) 0)
(CONTRADI CT 9)
(= V NODE)
s
(CLAIM (EQUAL V (PARENT NODE TREE)) 0)
(CLAI' M (MEMBER NODE (CHI LDREN V TREE))
0)
(DI VE 1)
(DI VE 1)
(DI VE 1)
(DI VE 1)
= UP P
(REWRI TE SEND- FI ND- GENERAL
(($OLD OLD)
($CHANNELS (RFP V (CHILDREN V TREE)))))

TP S
(REWRI TE MEMBER- RFP)
s
(DEMOTE 22)
s
(CONTRADI CT 22)
s
(REWRI TE PARENT- REC- CHI LDREN- REC)
(DI VE 1)
= TOP S
(DROP 3 4 6 89 10 11 12 13 14 15 16 17 18 19 20 21 22)
PROVE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT
(CONS (CONS (PARENT V TREE) V)
(CONS (CONS V (PARENT V TREE))
(CONS ((CONS ’ STATUS V)
(CONS ((CONS * FOUND- VALUE V)
(CONS ((CONS * OUTSTANDI NG V)
(RFP V (CHILDREN V TREE))))))))))
TOP S- PROP
(DROP 12345678910 11 12 13 14 15 16 17 18)
(PROVE (DI SABLE CHI LDREN PARENT))
PROMOTE
(CLAIM (EQUAL V NCDE) 0)
(CONTRADI CT 9)
(DI VE 1)
(DI VE 1)
= TOP S-PROP
(CLAIM (EQUAL V (PARENT NODE TREE)) 0)
(DI VE 1)
(DI VE 1)
(REWRI TE SEND- FI ND- GENERAL
(($OLD OLD)
($CHANNELS (RFP V (CHILDREN V TREE)))))
TP S
(DI VE 1)
(DI VE 1)
= TOP
(REWRI TE MEMBER- RFP)
s
(DI VE 2)
(DI VE 2)
= ToP
(REWRI TE PARENT- REC- CHI LDREN- REC)
(DROP 3 46 89 10 11 12 13 14 15 16 17 18 19 20 21)
PROVE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT
(CONS (CONS (PARENT V TREE) V)
(CONS (CONS V (PARENT V TREE))
(CONS ((CONS ’ STATUS V)
(CONS (CONS ' FOUND- VALUE V)
(CONS ((CONS * QUTSTANDI NG V)
(RFP V (CHILDREN V TREE))))))))))

269

270

TOP S PROP
(DROP 1234567810 11 12 13 14 15 16 17 18)
(PROVE (DI SABLE PARENT CHI LDREN))
PROVOTE
(CLAIM (EQUAL NODE (PARENT V TREE)) 0)
(CLAIM (EQUAL V (PARENT NODE TREE)) 0)
(CONTRADI CT 21)
(DI VE 1)
(DI VE 2)
(DI VE 1)
= ToP
(DI VE 1)
s
(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TP S
(DEMOTE 1 2)
DROP PROVE
(REWRI TE LI STP- PARENT- REC- EQUALS)
(DEMOTE 1 2 5 8)
DROP PROVE
(DEMOTE 1 2)
DROP PROVE
(DROP 3 46 89 10 11 12 13 14 15 16 17 18 19 21)
PROVE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT
(CONS (CONS (PARENT V TREE) V)
(CONS (CONS V (PARENT V TREE))
(CONS ((CONS * STATUS V)
(CONS ((CONS * FOUND- VALUE V)
(CONS ((CONS * OUTSTANDI NG V)
(RFP V (CHILDREN V TREE))))))))))
TOP S PROP
(DROP 1234567810 11 12 13 14 15 16 17 18)
(PROVE (DI SABLE PARENT CHI LDREN))
(CLAIM (EQUAL V (PARENT NODE TREE)) 0)
(DI VE 1)
(DI VE 1)
(REWRI TE SEND- FI ND- GENERAL
(($OLD OLD)
($CHANNELS (RFP V (CHILDREN V TREE)))))
TP S
(REWRI TE MEMBER- RFP)
s
(DI VE 1)
(DI VE 2)
= TOP S
(DI VE 2)
(DI VE 2)
= ToP
(REWRI TE PARENT- REC- CH LDREN- REC)
(DEMOTE 1 2 5 7)
DROP PROMOTE
(DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT)
TOP PROVE PROVE
(DI VE 1)
(DI VE 1)

(REWRI TE ABQUT- UC
(($B OLD)
(SEXCPT
(CONS (CONS (PARENT V TREE) V)
(CONS (CONS V (PARENT V TREE))
(CONS (CONS ’ STATUS V)
(CONS ((CONS * FOUND- VALUE V)
(CONS ((CONS * OUTSTANDI NG V)
(RFP V (CHILDREN V TREE))))))))))
TOP S PROP
(DEMOTE 9 19 20 21)
DROP
(PROVE (DI SABLE PARENT CHI LDREN))
PROMOTE
(CLAIM (AND (NOT (EQUAL V NODE))
(NOT (MEMBER NODE (CHI LDREN V TREE)))
(NOT (EQUAL (CONS V (PARENT V TREE))
(CONS (PARENT NODE TREE) NODE))))
0)
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT
(CONS (CONS (PARENT V TREE) V)
(CONS (CONS V (PARENT V TREE))
(CONS (CONS ’ STATUS V)
(CONS ((CONS * FOUND- VALUE V)
(CONS ((CONS * OUTSTANDI NG V)
(RFP V (CHILDREN V TREE))))))))))
TOP S PROP
(DEMOTE 9 18 19 20 21)
DROP
(PROVE (DI SABLE PARENT CHI LDREN NODES))
(CONTRADI CT 19)
(DEMOTE 1 2 5 7 8 9 15 18)
DROP
(BASH T
(DI SABLE PARENT CHI LDREN NODES))
PROMOTE
(DROP 6 7 8)
(DI VE 1)
(DI VE 1)
S up
(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TOP S PROVE PROVE PROVE PROMOTE
(DEMOTE 6)
(DI VE 1)
(DI VE 1)
(DI VE 1)
X- DUVB TOP DROP
(PROVE (DI SABLE CHI LDREN))
PROMOTE
(CLAIM (AND (NOT (MEMBER NODE (CHI LDREN V TREE)))
(NOT (EQUAL (CONS V (PARENT V TREE))
(CONS (PARENT NODE TREE) NODE))))
0)
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)

271

(SEXCPT
(CONS (CONS (PARENT V TREE) V)
(CONS (CONS V (PARENT V TREE))
(CONS (CONS ’ STATUS V)
(CONS ((CONS * FOUND- VALUE V)
(CONS ((CONS * OUTSTANDI NG V)
(RFP V (CHILDREN V TREE))))))))))
TOP S- PROP
(DEMOTE 9 18 19 20)
DROP
(PROVE (DI SABLE PARENT CHI LDREN))
(CONTRADI CT 19)
(DEMOTE 1 2 5 7 8 15)
DROP PROMOTE SPLIT
(DEMOTE 6)
(DI VE 1)
(DI VE 1)
(DI VE 1)
X- DUVB TOP DROP
(PROVE (DI SABLE CHI LDREN))
(DROP 6)
(BASH T
(DI SABLE PARENT CHI LDREN NODES))
PROMOTE
(DI VE 1)
s
(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TOP S PROVE PROVE PROVE PROMOTE
(CLAIM (AND (NOT (MEMBER NODE (CHI LDREN V TREE)))
(NOT (EQUAL (CONS V (PARENT V TREE))
(CONS (PARENT NODE TREE) NODE))))
0)
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT
(CONS (CONS (PARENT V TREE) V)
(CONS (CONS V (PARENT V TREE))
(CONS ((CONS * STATUS V)
(CONS ((CONS * FOUND- VALUE V)
(CONS ((CONS * OUTSTANDI NG V)
(RFP V (CHILDREN V TREE))))))))))
TOP S PROP
(DEMOTE 9 18 19 20)
DROP
(PROVE (DI SABLE PARENT CHI LDREN))
(CONTRADI CT 19)
(DEMOTE 1 2 5 7 8 9 15)
DROP PROMOTE SPLI T
(DEMOTE 7)
(DI VE 1)
(DI VE 1)
(DI VE 1)
X- DUMB TOP DROP
(PROVE (DI SABLE CHI LDREN))
(DROP 7)
(BASH T
(DI SABLE PARENT CHI LDREN NODES))
PROVOTE
(DI VE 1)

272

s
(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TOP S PROVE PROVE PROVE PROMOTE
(CLAIM (AND (NOT (EQUAL (CONS W V)
(CONS (PARENT NODE TREE) NODE)))
(NOT (EQUAL (CONS V (PARENT V TREE))
(CONS (PARENT NODE TREE) NODE))))

0)
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS WV)
(CONS V (PARENT V TREE))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP
(DEMOTE 17 18 19)

DROP

(PROVE (DI SABLE CHI LDREN PARENT))

(CONTRADI CT 18)

(DEMOTE 1 2 5 7 8 9)

DROP PROMOTE

(BASH T (DI SABLE PARENT CHI LDREN))

PROVOTE

(DI VE 1)

s

(REWRI TE PARENT- OF- PARENT- NOT- NODE)

TOP S PROVE PROVE PROVE PROMOTE

(DI VE 1)

s

(REWRI TE PARENT- | S- NOT- CHI LD)

TOP S PROVE PROVE PROMOTE

(CLAIM (AND (NOT (EQUAL (CONS (PARENT NODE TREE) NODE)
(CONS WV)))

(NOT (EQUAL (CONS (PARENT NODE TREE) NODE)

(CONS V (PARENT V TREE)))))

0)
(DI VE 1)
(DI VE 1)
(REVRI TE ABQUT- UC
(($B OLD)
($EXCPT (LIST (CONS W V)
(CONS V (PARENT V TREE))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP
(DEMOTE 17 18 19)

DROP

(PROVE (DI SABLE PARENT))
(CONTRADI CT 18)

(DEMOTE 1 2 5 7 8 9)
DROP

(BASH T)

PROVOTE

(DI VE 1)

(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TOP S X

(BASH T)

PROVE PROMOTE

(DI VE 1)

273

274

(REWRI TE PARENT- | S- NOT- CHI LD)
TOP S X PROVE PROMOTE
(CLAIM (AND (NOT (EQUAL (CONS W V)
(CONS (PARENT NODE TREE) NODE)))
(NOT (EQUAL (CONS V (PARENT V TREE))
(CONS (PARENT NODE TREE) NODE))))

0)
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V TREE))
(CONS * OUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S- PROP
(DEMOTE 17 18 19)

DROP
(PROVE (DI SABLE PARENT))
(CONTRADI CT 18)
(DEMOTE 1 2 5 7 8 9)
DROP
(BASH T
(DI SABLE PARENT CHI LDREN NODES))
PROVOTE
(DI VE 1)
s
(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TP S
(DROP 4 5 6)
PROVE PROVE PROVE
(BASH T)
PROVOTE
(DI VE 1)
(REWRI TE PARENT- | S- NOT- CHI LD)
TP S
(DROP 4)
PROVE PROVE PROVOTE
(CLAIM (AND (NOT (EQUAL (CONS W V)
(CONS (PARENT NODE TREE) NODE)))
(NOT (EQUAL (CONS V (PARENT V TREE))
(CONS (PARENT NODE TREE) NODE))))

0)
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V TREE))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP
(DEMOTE 17 18 19)

DROP
(PROVE (DI SABLE PARENT))
(CONTRADI CT 18)
(DEMOTE 1 2 5 7 8 9)
DROP
(BASH T
(DI SABLE PARENT CHI LDREN NODES))
PROMOTE

275

(DI VE 1)

s

(REWRI TE PARENT- OF- PARENT- NOT- NODE)
TP S

(DROP 4 5 6)

PROVE PROVE PROVE

(BASH T)

PROMOTE

(DI VE 1)

(REWRI TE PARENT- | S- NOT- CHI LD)
TP S

(DROP 4)

PROVE PROVE PROMOTE

(CLAIM (NOT (EQUAL NODE X)) 0)

(DI VE 1)
(DI VE 1)
(REWRI TE ABQUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W X)
(CONS * QUTSTANDI NG X)
(CONS * FOUND- VALUE X)))))
TOP S PROP
(DEMOTE 14 15)
DROP

(PROVE (Dl SABLE PARENT))
(CONTRADI CT 15)

(DEMOTE 1 2 5 7)

DROP PROVE

(CONTRADI CT 7)

(DROP 2 5 6 7)

PROVE)))

(PROVE- LEMVA RECEI VE- REPORT- DECREASES- TOU (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(LI STP (CHANNEL (CONS CHI LD NODE) OLD))
(MEMBER NODE (CDR (NODES TREE)))
(MEMBER CHI LD (CHI LDREN NCDE TREE))
(N OLD NEW
(LI ST * RECEl VE- REPORT NODE
(CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE))))
(INV TREE OLD))
(TOU OLD NEW NCDE TREE))
((1 NSTRUCTI ONS PROVOTE (CLAI M (EQUAL (STATUS NODE OLD) ' STARTED) 0)
(CLAIM (EQUAL (STATUS NODE NEW ' STARTED) 0)
(CLAI'M (NOT (ZEROP ((OUTSTANDI NG NODE OLD))) 0) (DROP 1 3 4 6)
(PROVE (DI SABLE CHANGED M N)) (CONTRADICT 9) S (DI VE 1)
(DI VE 1)
(REVRI TE NO- | MPLI ES- | NSTANCE- OF- NO
(($NCDES (NCDES TREE)) ($TREE TREE)))
TOP
(USE- LEMVA NUVBER- NOT- REPORTED- 0- | MPLI ES
((CHI LDREN (CHI LDREN NODE TREE)) (PARENT NODE)
(NODE CHILD) (STATE OLD)))
(DIVE 3) (DIVE 1)
(REVRI TE NO- | MPLI ES- | NSTANCE- OF- NO
(($NCDES (NCDES TREE)) ($TREE TREE)))
TOP (DROP 13567 89) (DIVE 1) (DIVE 1) (D VE 1)
(= (CH LDREN NODE TREE)) TOP (PROVE (DI SABLE CHI LDREN))
(DEMOTE 6) S (DROP 2 4 5 6 7 8 9 10) PROVE (DEMOTE 6) S
(DROP 2 456 7 8 9 PROVE (CONTRADI CT 8) (DRCP 6 8) (DI VE 1)

276

S (DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE))
(CONS * OUTSTANDI NG NODE)
(CONS * FOUND- VALUE NODE)))))
TOP (DEMOTE 6) S (DROP 1 3 4 6) (PROVE (DI SABLE ZEROP M N))
(DROP 2 5 6) PROVE (CONTRADI CT 7) (DEMOTE 6) (DI VE 1) X- DUMB
TOP PROMOTE (DRCP 5 6 9)
(USE- LEMVA UL- | MPLI ES- | NSTANCE- OF- UL
((UPLI NKS (UP- LI NKS (CDR (NODES TREE)) TREE))
(UPLI NK (CONS CHI LD NCDE)) (STATE OLD)))
(USE- LEMVA DL- | MPLI ES- | NSTANCE- OF- DL
((DOAR- LI NKS (DOWN- LI NKS (NODES TREE) TREE)) (STATE OLD)
(DOWR- LI NK (CONS NODE CHILD))))
(DEMOTE 8) (DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP (DEMOTE 7)
(DIVE 1) (DIVE 1) S-PROP (= * T 0) TOP (DROP 1 3 4 5 6) PROVE
S (REWRI TE MEMBER- UP- LINKS) (DIVE 2) (DIVE 1) (DIVE 2) S
(DIVE 1) (REWRI TE PARENT- OF- CHI LD (($PARENT NCDE))) TOP
(DROP 5 6) PROVE (DEMOTE 1) S (DEMOTE 1) S (DEMOTE 4) S S
(REWRI TE MEMBER- DO LI NKS) (DRCP 2 5 6 7) PROVE)))

(PROVE- LEMVA OTHERS- PRESERVE- UP- TO- NODE- FULL (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(LI STP (CHANNEL (CONS CHI LD NODE) OLD))
(MEMBER NODE (CDR (NODES TREE)))
(MEMBER CHI LD (CHI LDREN NCDE TREE))
(NOT (EQUAL STATEMENT
(LI ST * RECEl VE- REPORT NODE
(CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE)))))
(MEMBER STATEMENT (TREE- PRG TREE))
(N OLD NEW STATEMENT))
(LI STP (CDR (ASSOC (CONS CHI LD NODE) NEW)))
((1 NSTRUCTI ONS PROVOTE
(CLAI M (MEMBER CHI LD (CDR (NCDES TREE)))
0)
(CLAIM (EQUAL NODE (PARENT CHI LD TREE))
0)
(DEMOTE 1 2 3 4 5 6 7 8)
(= NCDE (PARENT CHI LD TREE))
DROP PROMOTE
(CLAIM (AND (NUVMBERP CHI LD)
(NUMBERP (PARENT CHI LD TREE))
(NOT (EQUAL CHILD (CAR TREE)))
(NOT (EQUAL (PARENT CHI LD TREE)
(CAR TREE)))
(NUMBERP (PARENT (PARENT CHI LD TREE) TREE)))
0)
(BASH T
(DI SABLE TREE- PRG M N ZEROP PARENT CHI LDREN NODES))
PROMOTE
(CLAIM (EQUAL V CHILD) 0)
(DEMOTE 6 17 22)
DROP PROVE
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
(SEXCPT

277

(CONS
(CONS (PARENT V (CONS X 2)) V)
(CONS (CONS V (PARENT V (CONS X 2)))
(CONS (CONS ’ STATUS V)
(CONS ((CONS * FOUND- VALUE V)
(CONS ((CONS * OUTSTANDI NG V)
(RFP V
(CHILDREN V (CONS X 2)))))))))))
TOP S PROP
(DROP 6 10 11 12 13 14 15 16 17 18)
(BASH T)
PROVOTE
(CLAIM (EQUAL V CHILD) 0)
(PROVE (DI SABLE PARENT CHI LDREN NODES))
(DI VE 1)
(DI VE 1)
(REWRI TE ABQUT- UC
(($B OLD)
(SEXCPT
(CONS
(CONS (PARENT V (CONS X 2)) V)
(CONS (CONS V (PARENT V (CONS X 2)))
(CONS ((CONS ’ STATUS V)
(CONS ((CONS * FOUND- VALUE V)
(CONS ((CONS * OUTSTANDI NG V)
(RFP V
(CHILDREN V (CONS X 2)))))))))))
TOP S PROP
(DROP 6 10 11 12 13 14 15 16 17)
PROVE PROMOTE
(CLAIM (EQUAL CHILD V) 0)
(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(DROP 6 12 13 14 15 16 17 18)

(PROVE (DI SABLE PARENT CHI LDREN NODES))
PROVOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REVRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(DROP 6 12 13 14 15 16 17 18)

(CLAIM (AND (NUMBERP X) (NUMBERP CHI LD))
0)

(BASH T
(DI SABLE PARENT CHI LDREN NODES))

(CONTRADI CT 15)

(DROP 8 9 10 11 12 13 14 15)

PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS * OUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(CLAI'M (NUMBERP CHI LD) 0)

(DROP 6 12 13 14 15 16 17 18)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(CONTRADI CT 23)

(DROP 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE CHI LDREN NODES PARENT))

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS ' QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(DROP 6 12 13 14 15 16 17 18)

(CLAI M (NUMBERP CHI LD) 0)

(PROVE (DI SABLE CHI LDREN PARENT NODES))
(CONTRADI CT 15)

(DROP 8 9 10 11 12 13 14 15)

PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REVRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(DROP 6 12 13 14 15 16 17 18)
(CLAI M (NUMBERP CHILD) 0)
(PROVE (DI SABLE PARENT CHI LDREN NODES))
(CONTRADI CT 15)
(DROP 8 9 10 11 12 13 14 15)
PROVE PROMOTE
(CLAIM (EQUAL V CHILD) 0)
(PROVE (DI SABLE PARENT CHI LDREN NODES))
(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))

278

279

(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))

TOP S PROP

(DROP 6 12 13 14 15 16 17 18)

(CLAI M (NUMBERP CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(CONTRADI CT 15)

(DROP 8 9 10 11 12 13 14 15)

PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(DROP 6 12 13 14 15 16 17 18)

(CLAIM (NUMBERP CHI LD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))
(CONTRADI CT 15)

(DROP 8 9 10 11 12 13 14 15)

PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LIST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS * OUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S- PROP

(DROP 6 12 13 14 15 16 17 18)

(CLAI M (NUMBERP CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))
(CONTRADI CT 15)

(DROP 8 9 10 11 12 13 14 15)

PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS ' QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(DROP 6 12 13 14 15 16 17 18)

(CLAIM (NUMBERP CHI LD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))
(CONTRADI CT 15)

(DROP 8 9 10 11 12 13 14 15)

PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

280

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REVRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS WV)
(CONS V (PARENT V (CONS X 2)))
(CONS * OUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(DROP 6 12 13 14 15 16 17 18)

(CLAI M (NUMBERP CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))
(CONTRADI CT 15)

(DROP 8 9 10 11 12 13 14 15)

PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS W V)
(CONS V (PARENT V (CONS X 2)))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PRCP

(CLAI M (NUMBERP CHILD) 0)

(DROP 6 12 13 14 15 16 17 18)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(CONTRADI CT 23)

(DROP 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
PROVE PROMOTE

(CLAIM (EQUAL V CHILD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))

(DI VE 1)
(DI VE 1)
(REWRI TE ABOUT- UC
(($B OLD)
($EXCPT (LI ST (CONS WV)
(CONS V (PARENT V (CONS X 2)))
(CONS * QUTSTANDI NG V)
(CONS * FOUND- VALUE V)))))
TOP S PROP

(DROP 6 12 13 14 15 16 17 18)
(CLAI' M (NUMBERP CHI LD) 0)

(PROVE (DI SABLE PARENT CHI LDREN NODES))
(CONTRADI CT 15)

(DROP 8 9 10 11 12 13 14 15)
PROVE

(CONTRADI CT 9)

(DROP 2 56 7 9)

PROVE

(CONTRADI CT 9)

(DROP 2 56 7 9)

PROVE

(CONTRADI CT 8)

(DROP 2 5 6 7 8)

PROVE)))

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(DI SABLE
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(DI SABLE
(

281

TOTAL- OUTSTANDI NG- DECREASES)

TQV)

TOTAL- OUTSTANDI NG- DECREASES- SUBLI ST)

STATUS- ROOT- BECOVES- STARTED- OR- UNCHANGED)
NOT- TOTAL- OUTSTANDI NG- - | MPLI ES- FULL- CHANNEL)
NOT- ALL- EMPTY- | MPLI ES- FULL- CHANNEL- FULL)
FULL- CHANNEL)

ALL- EMPTY- ROOT- STARTED- | MPLI ES- TOTAL- QUTSTANDI NG- 0)
ALL- DONE- | MPLI ES- TOTAL- QUTSTANDI NG- 0)

ALL- NODES- ARE- DONE)

CHI LDREN- ARE- SUFFI X- OF- SUBLI ST- GENERALI ZED)
CHI LD- OF- NODE- | N- SUFFI X- | S- | N- SUFFI X)

SUBLI ST- ULNKS)

ALL- EMPTY- | MPLI ES- ALL- EMPTY- SUBLI ST)

ALL- DONE- AND- ALL- EMPTY- | MPLI ES- NUVBER- NOT- REPORTED- 0)
ULNKS)

ALL- DONE- | MPLI ES- ALL- DONE- SUBLI ST)

ALL- DONE- | MPLI ES- DONE)

ALL- DONE)

LATER- PCS| Tl ONS- ARE- | N- SUFFI X)

SETP- LI ST- SETP- SUFFI X)

CHI LDS- PCSI TI ON- | NCREASES)

MEMBER- SUFFI X- MEMBER:- LI ST)

SUFFI X- | MPLI ES- SUFFI X- CDR)

SUFFI X)

DL- AND- ALL- EMPTY- | MPLI ES- ROOT- DEFI NES- STATUS)
PARENT- TO- ROOT- | NDUCTI ON)

PARENTS- POSI TI ON- DECREASES)

POSI TI ON- APPEND)

TOTAL- OUTSTANDI NG- NON- | NCREASI NG)

TOTAL- OUTSTANDI NG- NON- | NCREAS! NG- SUBLI ST)
OUTSTANDI NG NON- | NCREASI NG)

DL- UL- NO- PRESERVES- NO- SUBLI ST)

DL- UL- NO- PRESERVES- | NSTANCE- OF- NO)

RECE! VE- REPORT- PRESERVES- | NSTANCE- OF- NO)

CHI LD- MEMBER- CDR- NODES)

RECE! VE- REPORT- PRESERVES- NO- FOR- PARENT)

RECE! VE- REPORT- PRESERVES- NO- FOR- NODE)

RECE! VE- REPORT- PRESERVES- NO- FOR- REST- OF- TREE)
RECE! VE- FI ND- PRESERVES- | NSTANCE- OF- NO)

DL- DOWN- LI NKS- | MPLI ES- DL- RFP)

DO LI NKS- 1- RFP)

DL- OF- APPEND)

RECE! VE- FI ND- PRESERVES- NO- FOR- PARENT- OF- NODE)
RECE! VE- FI ND- PRESERVES- NO- FOR- NODE)

RECE! VE- FI ND- PRESERVES- NO- FOR- REST- OF- TREE)
ROOT- RECE| VE- REPORT- PRESERVES- | NSTANCE- OF- NO)
SETP- NODES- SETP- CHI LDREN)

SETP- NODES- | MPLI ES- SETP- ROOTS)

NUVBER- NOT- REPORTED- OF- ROOT)

NUVBER- NOT- REPORTED- OF- NON- ROOT)

M N- OF- REPORTED- OF- NON- ROOT)

UPDATE- M N- OF- REPORTED)

M N- OF- REPORTED- OF- M N)

M N- COMWUTATI VE- 1)

M N- ASSOCI ATI VE)

M N- COMVUTATI VE)

START- PRESERVES- | NSTANCE- OF- NO)

LENGTH- RFP)

START- PRESERVES- NO- FOR- REST- OF- TREE)
UNCHANGED- PRESERVES- NO)

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(DI SABLE
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(DI SABLE
(

282

START- PRESERVES- NO- FOR- PARENT)

PARENT- NOT- STARTED- | MPL| ES- ALL- EMPTY- AND- NOT- STARTED)
DL- UL- NO- PRESERVES- UL)

DL- UL- NO- PRESERVES- UL- SUBLI ST)

DL- UL- NO- PRESERVES- | NSTANCE- OF- UL)

ZERO- NOT- REPORTED- | MPLI ES- CHI LDREN- REPORTED)
MEMBER- UP- LI NKS)

DL- PRESERVES- DL)

DL- PRESERVES- SUBLI ST)

DL- PRESERVES- | NSTANCE- OF- DL)

ALL- NUVBERPS- NODES- | MPLI ES- ALL- NUVBERPS- CHI LDREN)
ALL- NUVBERPS- FOREST- | MPLI ES- ALL- NUMBERPS- ROOTS)
PARENT- NOT- LI TATOW)

ALL- NUVMBERPS- NODES- | MPLI ES- ALL- NUVBERPS- CAR- PARENT)
ALL- NUVBERPS- NODES- | MPLI ES- ALL- NUVBERPS- PARENT)
ALL- NUVMBERPS- APPEND)

SEND- FI ND- GENERAL)

ASSOC- EQUAL- CONS)

SEND- FI ND- | MPLI ES)

MEMBER- RFP)

PARENT- OF- PARENT- NOT- NODE)

PARENT- NOT- GRANDCHI LD)

PARENT- NOT- CHI LD)

MEMBER- DOR- LI NKS)

MEMVBER- DOWR- LI NKS- 1)

UL- | MPLI ES- | NSTANCE- OF- UL- NOT- EMPTY- UPLI NK)

NO- | MPLI ES- | NSTANCE- OF- NO)

UL- | MPLI ES- | NSTANCE- OF- UL)

DL- | MPLI ES- | NSTANCE- OF- DL)

| NV- | MPLI ES- AUGVENTED- CORRECTNESS- CONDI TI ON)

| NI TI AL- CONDI TI ONS- | MPLY- | NVARI ANT)

ALL- EMPTY- NOT- STARTED- | MPLI ES- DL)
I NV)

DL)

NCDE- VALUES- CONSTANT- | NVARI ANT)

NODE- VALUES- CONSTANT- UNLESS- SUFFI CI ENT)

LI STP- TREE- PRG)

ROOT- RECE| VE- REPORT- PRG- | S- TOTAL)

START- PRG- | S- TOTAL)

RECE! VE- REPORT- PRG- | S- TOTAL)

RECE! VE- FI ND- PRG- | S- TOTAL)

ROOT- RECE| VE- REPORT- FUNC- | MPLEMENTS- ROOT- RECE| VE- REPORT)
ROOT- RECE| VE- REPORT- FUNC)

START- FUNC- | MPLEMENTS- START)

START- FUNC)

RECE! VE- REPORT- FUNC- | MPLEMENTS- RECE! VE- REPORT)
RECE! VE- REPORT- FUNC)

RECE! VE- FI ND- FUNC- | MPLEMENTS- RECEI VE- FI ND)
UC- OF- SEND- FI ND- FUNC)

TO NODE- NOT- | N- RFP)

PARENT- NOT- | N- RFP)

ABOUT- RFP- NUVBERP)

ABOUT- RFP)

ASSOC- OF- SEND- FI ND- FUNC)

SEND- FI ND- OF- UPDATE- ASSCC)

CHI LDREN- ARE- NOT- LI TATOMS- MEMBER)

CHI LDREN- ARE- NOT- LI TATOVB)

PARENT- | S- NOT- A- LI TATOM

NODES- ARE- NOT- LI TATOVE)

SEND- FI ND- FUNC- | MPLEMENTS- SEND- FI ND)

RECE! VE- FI ND- FUNC)

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(DI SABLE
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(DI SABLE
(

SEND- FI ND- FUNC)

NO- AT- TERM NATI ON)

FOUND- VALUE- M N- VAL UE- GENERAL| ZED)
M N- OF- TWO- NODES- VAL UES)
PROPER- TREE- TREE- | MPLI ES- NODES- EXI STS)
NUVBER- NOT- REPORTED- 0- | MPLI ES)
TOTAL- OUTSTANDI NG- 0- | MPLI ES)
NO- | MPLI ES)

FOUND- VAL UE- NODE- VAL UE- APPEND)
NATI)

FOUND- VAL UE- NCDE- VAL UE)

DOVR- LI NKS- | S- SUBLI STP)

CHI LDREN- OF- NON- NODE)

SUBLI STP- DOAR- LI NKS- 1)

SUBLI STP- NOT- STARTED)

NODES- | N- DOWR- LI NKS- | N- NODES)
NODES- | N- CHANNEL S- APPEND)
NODES- | N- DOWK- LI NKS- 1- | N- NODES)
NOT- STARTED- | MPLI ES- NO)

NODES- | N- CHANNEL S)

ALL- EMPTY- | MPLI ES- UL)

ALL- EMPTY- APPEND)

NOT- STARTED- | MPLI ES- NOT- STARTED)
ALL- EMPTY- | MPLI ES- EMPTY)
CORRECT)

M N- NODE- VAL UE)

ALL- EMPTY)

ALL- CHANNELS)

NOT- STARTED)

UP- LI NKS)

DOVR- LI NKS)

DOVR- LI NKS- 1)

NO)

M N- OF- REPORTED)

NUVBER- NOT- REPORTED)

REPORTED)

uL)

DONE)

TOTAL- OUTSTANDI NG)

TREEP)

MEMBER- TREE- PRG)

EQUAL- | F)

TREE- PRO)

MEMBER- ROOT- RECE| VE- REPORT- PRG)
ROOT- RECE| VE- REPORT- PRG)
MEMBER- RRRP)

RRRP)

MEMBER- START- PRG)

START- PRG)

MEMBER- RECE! VE- REPORT- PRG)
RECE! VE- REPORT- PRG)

MEMBER- RRP)

RRP)

MEMBER- RECE! VE- FI ND- PRG)

RECE! VE- FI ND- PRG)

RFP)

ROOT- RECE| VE- REPORT)

START)

RECE! VE- REPORT)

MN)

RECE! VE- FI ND)

283

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE
DI SABLE

DI SABLE
DI SABLE
DI SABLE

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(DI SABLE
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(DI SABLE
(

284

SEND- FI ND)

NODE- VAL UE)

OUTSTANDI NG)

FOUND- VAL UE)

STATUS)

RECE! VE)

SEND)

HEAD)

EMPTY)

CHANNEL)

VALUE)

PARENT- NOT- | N- CHI LDREN)

PARENT- | S- NOT- CHI LD)

LI STP- PARENT- REC- EQUALS)
PARENT- | S- NOT- | TSELF)

PARENT- | S- NOT- | TSELF- GENERAL| ZED)
NODE- HAS- PARENT)

CHI LDREN- OF- SETP- TREE)

MEMBER- SUBTREE- MEMBER- TREE)

NO- CHI LDREN- | N- REST- OF- TREE)

NO- CHI LDREN- | N- REST- OF- FOREST)
NOT- MEMBER- NO- CHI LDREN)

NOT- MEMBER- SUBTREES)

PROPER- TREE- NEXT- LEVEL- OF- PROPER- TREE)
PROPER- TREE- OF- APPEND)

NEXT- LEVEL- OF- SUBTREES- | N- COVPLETE- SUBTREES)
NEXT- LEVEL- | N- SUBTREES- FOREST)
SUBTREES- OF- SUBTREES- | N- COMPLETE- SUBTREES)
SUBTREES- OF- SUBTREE- | N- COVPLETE- SUBTREES)
NEXT- LEVEL- OF- TREE- | N- SUBTREES)
NEXT- LEVEL- REDUCES- COUNT)
NODES- REC- FOREST- APPEND)

NEXT- LEVEL)

SUBTREEP- SUBTREES)

SUBTREES)

SUBTREEP)

SUBLI STP- CHI LDREN)

SUBLI STP- CHI LDREN- GENERAL| ZED)
NODE- THAT- HAS- PARENT- | S- | N- TREE)
NODE- THAT- HAS- CHI LD- | S- | N- TREE)
MEMVBER- PARENT- MEVBER- TREE)
PARENT- OF- CHI LD)

MEMBER- PARENT- PARENT)

MEMBER- CHI LD- TREE)

NOT- MEMBER- NO- PARENT)

PLI STP- ROOTS)

PLI STP- PARENT- REC)

PLI STP- CH LDREN- REC)

MEMBER- ROOTS- MEMBER- FOREST)
PARENT- REC- CHI LDREN- REC)

NOT- FLAG- TREE)

CANONI CAL| ZE- CHI LDREN- REC- FLAG)
CANONI CAL| ZE- PARENT- REC- FLAG)
CANONI CAL| ZE- PROPER- TREE- FLAG)
CANONI CAL| ZE- NODES- REC- FLAG)
PROPER- TREE)

PARENT)

PARENT- REC)

CHI LDREN)

CHI LDREN- REC)

ROOTS)

(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE
(DI SABLE

(DI SABLE

NODES)

NODES- REC)

SUBLI STP- | N- CONS)

SUBLI STP- | N- APPEND)

SUBLI STP- REFLEXI VE)

SUBLI STP- EASY)

SEl)

SUBLI STP- NORMAL| ZE)

SUBLI STP- OF- SUBLI STP- | S- SUBLI STP)
MEMBER- OF- SUBLI STP- | S- MEMBER)
SUBLI STP- APPEND)

SUBLI STP)

SETP- MEMBER- 2)

SETP- MEMBER- 1)

SETP- APPEND- CANONI CAL| ZE)
SETP- APPEND- NOT- LI STP)
SETP- APPEND- CONS)

SETP- MEMBER)

SETP- APPEND)

SETP)

ALL- NUMBERPS- | MPLI ES)
ALL- NUVBERPS)

NOT- LESSP- COUNT- APPEND)
APPEND- PLI STP- NI L)

PLI STP- APPEND- PL| STP)

PLI STP)

LENGTH APPEND)

LI STP- APPEND)

CAR- APPEND)

N)

(PROVE- LEMVA MEMBER- CDR- NODES- MEMBER- NODES (REVRI TE)

(I MPLI ES (AND (MEMBER NODE (CDR (NODES TREE)))
(TREEP TREE))
(MEMBER NODE (NODES TREE)))
((ENABLE TREEP PROPER- TREE)))

(PROVE- LEMVA TOTAL- OUTSTANDI NG- DECREASES- EXPANDED (REVRI TE)
(I MPLI ES (AND (TREEP TREE)

(INV TREE OLD)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (TREE- PRG TREE))
(MEMBER NODE (NODES TREE))
(TOU OLD NEW NCDE TREE))
(AND (EQUAL (LESSP (TOTAL- OUTSTANDI NG (NODES TREE)
TREE NEW
(TOTAL- OUTSTANDI NG (NCDES TREE)
TREE OLD))
T
(LESSP (TOTAL- OUTSTANDI NG (NODES TREE) TREE NEW
(TOTAL- OUTSTANDI NG (NODES TREE) TREE OLD))))

((ENABLE | NV)

(USE

(TOTAL- OQUTSTANDI NG DECREASES))))

(PROVE- LEMVMA TOTAL- OUTSTANDI NG- DECREASES- EXPANDED- COUNT (REVRI TE)
(I MPLI ES (AND (TREEP TREE)

(INV TREE OLD)

(N OLD NEW STATEMENT)

(MEMBER STATEMENT (TREE- PRG TREE))
(MEMBER NODE (NODES TREE))

285

286

(TOU OLD NEW NCDE TREE)

(EQUAL (TOTAL- OUTSTANDI NG (NODES TREE) TREE OLD)
(ADDL COUNT)))

(AND (EQUAL (LESSP (TOTAL- OQUTSTANDI NG (NODES TREE)
TREE NEW
(ADDL COUNT))

)

(LESSP (TOTAL- OUTSTANDI NG (NODES TREE) TREE NEW
(ADDL COUNT)))))

(PROVE- LEMVA TOTAL- OUTSTANDI NG- NON- | NCREAS! NG- EXPANDED (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (TREE- PRG TREE))
(N OLD NEW STATEMENT)
(INV TREE OLD))
(AND (EQUAL (LESSP (TOTAL- OUTSTANDI NG (NODES TREE)

TREE OLD)
(TOTAL- OUTSTANDI NG (NCDES TREE)
TREE NEW)
F)
(NOT (LESSP (TOTAL- OUTSTANDI NG (NODES TREE)
TREE OLD)

(TOTAL- QUTSTANDI NG (NCDES TREE)
TREE NEW))))
((ENABLE | NV)
(USE (TOTAL- OUTSTANDI NG- NON- | NCREASI NG))))

(PROVE- LEMVA TOTAL- OUTSTANDI NG- NON- | NCREAS| NG- EXPANDED- COUNT (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER STATEMENT (TREE- PRG TREE))
(N OLD NEW STATEMENT)
(INV TREE OLD)
(EQUAL (TOTAL- QUTSTANDI NG (NCDES TREE) TREE OLD)
(ADDL COUNT)))
(AND (EQUAL (LESSP (ADDL COUNT)
(TOTAL- QUTSTANDI NG (NCDES TREE)
TREE OLD))
F)
(NOT (LESSP (ADDL COUNT)
(TOTAL- OUTSTANDI NG (NCDES TREE)

TREE NEW)))))

(PROVE- LEMMA KEY- STATEMENTS- MEMBER- TREE- PRG (REWRI TE)
(AND (1 MPLI ES (TREEP TREE)
(MEMBER (LI ST * START (CAR TREE)
(RFP (CAR TREE)
(CHI LDREN (CAR TREE)
TREE)))
(TREE- PRG TREE)))
(I MPLI ES (AND (TREEP TREE)
(MEMBER CHI LD (CHI LDREN (CAR TREE) TREE)))
(MEMBER (LI ST ' ROOT- RECEl VE- REPORT (CAR TREE)
(CONS CHI LD (CAR TREE)))
(TREE- PRG TREE)))
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (CDR (NODES TREE))))
(MEMBER (LI ST ' RECEI VE- FI ND NODE
(CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE
(CH LDREN NCDE TREE)))

287

(TREE- PRG TREE)))
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (CDR (NODES TREE)))
(MEMBER CHI LD (CHI LDREN NODE TREE)))
(MEMBER (LI ST ' RECEI VE- REPORT NCDE
(CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE)))
(TREE- PRG TREE))))
((ENABLE MEMBER- TREE- PRG)))

(PROVE- LEMVA DOWR- LI NK- FULL- DECREASES- TOTAL- OUTSTANDI NG- ENSURES (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (CDR (NODES TREE)))
(INV TREE OLD)
(LI STP (CHANNEL (CONS (PARENT NODE TREE) NCDE) OLD))
(N OLD NEW
(LI ST ' RECEI VE- FI ND
NODE
(CONS (PARENT NODE TREE) NCDE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE (CHI LDREN NODE TREE)))))
(LESSP (TOTAL- QUTSTANDI NG (NODES TREE) TREE NEW
(TOTAL- OUTSTANDI NG (NODES TREE) TREE OLD)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE TOTAL- OUTSTANDI NG- DECREASES- EXPANDED
(($STATEMENT
(LI ST * RECEI VE- FI ND NCDE
(CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE (CHI LDREN NCDE TREE))))
($NODE NODE)))
PROVE PROVE PROVE)))

(PROVE- LEMVA DOWR- LI NK- FULL- UNLESS (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (CDR (NODES TREE)))
(LI STP (CHANNEL (CONS (PARENT NODE TREE) NCDE) OLD))
(MEMBER STATEMENT (TREE- PRG TREE))
(NOT (EQUAL STATEMENT
(LI ST * RECEI VE- FI ND
NODE
(CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE (CHI LDREN NCDE TREE)))))
(N OLD NEW STATEMENT))
(LI STP (CHANNEL (CONS (PARENT NODE TREE) NODE) NEW))
((1 NSTRUCTI ONS PROVOTE (DIVE 1) (DIVE 1) (DIVE 1) X UP UP X X TOP
PROVE)))

(PROVE- LEMVA DOWR- LI NK- FULL- DECREASES- TOTAL- OUTSTANDI NG (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (CDR (NODES TREE))))
(LEADS- TO * (AND (I NV (QUOTE , TREE) STATE)

(AND (LI STP (CHANNEL

(QUOTE , (CONS (PARENT NODE
TREE)
NODE))
STATE))
(EQUAL (TOTAL- QUTSTANDI NG

(QUOTE , (NODES TREE))
(QUOTE , TREE)

STATE)
(QUAOTE , (ADD1 COUNT)))))
“ (LESSP (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADDL COUNT)))
(TREE- PRG TREE)))
((1 NSTRUCTI ONS
PROVMOTE (REWRI TE UNCONDI TI ONAL- FAI RNESS)
(REWRI TE HELP- PROVE- UNLESS)
(CLAIM (EQUAL (EU (LI ST ' AND

(CONS ' I NV
(CONS (LI ST ’* QUOTE TREE)
" (STATE)))
(LI ST * AND
(LIST ' LISTP
(CONS * CHANNEL
(CONS
(LI ST * QUOTE
(CONS (PARENT NODE
TREE)
NODE))
' (STATE))))
(LI ST ' EQUAL
(CONS * TOTAL- QUTSTANDI NG
(CONS

(LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ’* QUOTE TREE)
" (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST ' LESSP
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ’* QUOTE TREE)
"(STATE))))
(LI ST * QUOTE (ADDL COUNT))))
(LI ST ' RECEI VE- FI ND NCDE
(CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE (CHI LDREN NODE TREE))))
0)
PROVE PROVE
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LI ST ' RECEI VE- FI ND NCDE
(CONS (PARENT NODE TREE) NODE)
(CONS NODE (PARENT NODE TREE))
(RFP NODE (CHI LDREN NODE TREE))))))
PROVE PROVE)))

(PROVE- LEMMA MEMBER- CAR- TREE- NODES- TREE (REVRI TE)
(I MPLI ES (TREEP TREE)
(MEMBER (CAR TREE) (NCDES TREE)))
((ENABLE TREEP PROPER- TREE NCDES NODES- REC)))

(PROVE- LEMMA ROOT- UP- LI NK- FULL- DECREASES- TOTAL- OUTSTANDI NG- ENSURES
(REVRI TE)
(I MPLI ES (AND (TREEP TREE)

288

(INV TREE OLD)
(MEMBER CHI LD (CHI LDREN (CAR TREE) TREE))
(LI STP (CHANNEL (CONS CHI LD (CAR TREE)) OLD))
(N OLD NEW
(LI ST * ROOT- RECE| VE- REPORT (CAR TREE)
(CONS CHI LD (CAR TREE)))))
(LESSP (TOTAL- OUTSTANDI NG (NCDES TREE) TREE NEW
(TOTAL- OUTSTANDI NG (NODES TREE) TREE OLD)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE TOTAL- OUTSTANDI NG- DECREASES- EXPANDED
(($STATEMENT
(LI ST ' ROOT- RECE| VE- REPORT (CAR TREE)
(CONS CHI LD (CAR TREE))))
($NODE (CAR TREE))))
PROVE PROVE PROVE)))

(PROVE- LEMVA ROOT- UP- LI NK- FULL- UNLESS (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER CHI LD (CHI LDREN (CAR TREE) TREE))
(LI STP (CHANNEL (CONS CHI LD (CAR TREE)) OLD))
(MEMBER STATEMENT (TREE- PRG TREE))
(NOT (EQUAL STATEMENT
(LI ST * ROOT- RECE| VE- REPORT (CAR TREE)
(CONS CHI LD (CAR TREE)))))

(N OLD NEW STATEMENT))

(LI STP (CHANNEL (CONS CHI LD (CAR TREE)) NEW))

((I NSTRUCTI ONS PROMOTE (DI VE 1) X X TOP PROVE)))

(PROVE- LEMMA UP- LI NK- FULL- DECREASES- TOTAL- OUTSTANDI NG- ENSURES (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(INV TREE OLD)
(MEMBER NODE (CDR (NODES TREE)))
(MEMBER CHI LD (CHI LDREN NCDE TREE))
(LI STP (CHANNEL (CONS CHI LD NODE) OLD))
(N OLD NEW
(LI ST * RECEl VE- REPORT NODE
(CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE)))))
(LESSP (TOTAL- OUTSTANDI NG (NCDES TREE) TREE NEW
(TOTAL- OUTSTANDI NG (NODES TREE) TREE OLD)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE TOTAL- OUTSTANDI NG- DECREASES- EXPANDED
(($STATEMENT
(LI ST ' RECEI VE- REPORT NODE (CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE))))))
PROVE PROVE PROVE)))

(PROVE- LEMMA UP- LI NK- FULL- UNLESS (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (CDR (NODES TREE)))
(MEMBER CHI LD (CHI LDREN NCDE TREE))
(LI STP (CHANNEL (CONS CHI LD NODE) OLD))
(MEMBER STATEMENT (TREE- PRG TREE))
(NOT (EQUAL STATEMENT
(LI ST * RECEl VE- REPORT NODE
(CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE)))))
(N OLD NEW STATEMENT))
(LI STP (CHANNEL (CONS CHI LD NODE) NEW))
((1 NSTRUCTI ONS PROVOTE (DI VE 1) X X TOP PROVE)))

289

(PROVE- LEMVA MEMBER- CDR- NODES- EQUALS (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(NOT (EQUAL NODE (CAR TREE))))
(EQUAL (MEMBER NODE (NODES TREE))
(MEMBER NODE (CDR (NODES TREE)))))
((ENABLE TREEP PROPER- TREE NODES NODES- REC)))

(PROVE- LEMVA UP- LI NK- FULL- DECREASES- TOTAL- QUTSTANDI NG (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(MEMBER NODE (NODES TREE))
(MEMBER CHI LD (CHI LDREN NODE TREE)))
(LEADS- TO * (AND (I NV (QUOTE , TREE) STATE)
(AND (LI STP (CHANNEL
(QUOTE , (CONS CHI LD NCDE))
STATE))
(EQUAL (TOTAL- QUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADD1 COUNT)))))
* (LESSP (TOTAL- QUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADDL COUNT)))
(TREE- PRG TREE)))
((1 NSTRUCTI ONS PROVOTE (CLAI M (EQUAL NCDE (CAR TREE)) 0)
(REWRI TE UNCONDI Tl ONAL- FAI RNESS) (REWRI TE HELP- PROVE- UNLESS)
(CLAIM (EQUAL (EU (LI ST * AND
(CONS ' I NV
(CONS (LI ST * QUOTE TREE)
' (STATE)))
(LI ST * AND
(LI ST ’ LI STP
(CONS ' CHANNEL
(CONS
(LI ST * QUOTE
(CONS CHI LD NODE))
"(STATE))))
(LI ST ' EQUAL
(CONS * TOTAL- QUTSTANDI NG
(CONS
(LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ’* QUOTE TREE)
" (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST ' LESSP
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ’* QUOTE TREE)
"(STATE))))
(LI ST * QUOTE (ADDL COUNT))))
(LI ST * ROOT- RECE| VE- REPORT (CAR TREE)
(CONS CHI LD (CAR TREE))))
0)
PROVE PROVE
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LI ST * ROOT- RECE| VE- REPORT (CAR TREE)

290

(CONS CHI LD (CAR TREE))))))
PROVE PROVE (REVRI TE UNCONDI TI ONAL- FAI RNESS)
(REWRI TE HELP- PROVE- UNLESS)
(CLAIM (EQUAL (EU (LI ST ' AND
(CONS ' I NV
(CONS (LI ST ’* QUOTE TREE)
' (STATE)))
(LI ST * AND
(LIST ' LISTP
(CONS * CHANNEL
(CONS
(LI ST * QUOTE
(CONS CHI LD NODE))
" (STATE))))
(LI ST * EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS
(LI ST ' QUOTE (NODES TREE))
(CONS (LI ST ’* QUOTE TREE)
' (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST ’ LESSP
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ’* QUOTE TREE)
" (STATE))))
(LI ST ' QUOTE (ADDL COUNT))))
(LI ST * RECEl VE- REPORT NODE (CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE))))
0)
PROVE PROVE
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LI ST * RECEI VE- REPORT NODE (CONS CHI LD NODE)
(CONS NODE (PARENT NODE TREE))))))
PROVE PROVE)))

(PROVE- LEMVA NOT- STARTED- ROOT- DECREASES- TOTAL- OUTSTANDI NG- ENSURES
(REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(INV TREE OLD)
(EQUAL (STATUS (CAR TREE) OLD) ' NOT- STARTED)
(N OLD NEW
(LI ST * START (CAR TREE)
(RFP (CAR TREE)
(CH LDREN (CAR TREE) TREE)))))
(LESSP (TOTAL- OUTSTANDI NG (NCDES TREE) TREE NEW
(TOTAL- OUTSTANDI NG (NODES TREE) TREE OLD)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE TOTAL- OUTSTANDI NG- DECREASES- EXPANDED
(($STATEMENT
(LI ST * START (CAR TREE)
(RFP (CAR TREE)
(CH LDREN (CAR TREE) TREE))))
($NODE (CAR TREE))))
PROVE PROVE PROVE)))

(PROVE- LEMVA NOT- STARTED- ROOT- UNLESS (REVRI TE)
(I MPLI ES (AND (TREEP TREE)
(EQUAL (STATUS (CAR TREE) OLD) ' NOT- STARTED)

291

292

(MEMBER STATEMENT (TREE- PRG TREE))
(NOT (EQUAL STATEMENT
(LI ST * START (CAR TREE)
(RFP (CAR TREE)
(CHI LDREN (CAR TREE)
TREE)))))
(N OLD NEW STATEMENT))
(EQUAL (STATUS (CAR TREE) NEW ' NOT- STARTED))
((ENABLE STATUS VALUE)))

(PROVE- LEMMA NOT- STARTED- ROOT- DECREASES- TOTAL- OUTSTANDI NG (REWRI TE)
(I MPLI ES (TREEP TREE)
(LEADS- TO * (AND (I NV (QUOTE , TREE) STATE)
(AND (EQUAL (STATUS (QUOTE , (CAR TREE))
STATE)
* NOT- STARTED)
(EQUAL (TOTAL- QUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADD1 COUNT)))))
“ (LESSP (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADDL COUNT)))
(TREE- PRG TREE)))
((1 NSTRUCTI ONS PROVOTE (REWRI TE UNCONDI TI ONAL- FAI RNESS)
(REWRI TE HELP- PROVE- UNLESS)
(CLAIM (EQUAL (EU (LI ST * AND
(CONS ' I NV
(CONS (LI ST * QUOTE TREE)
' (STATE)))
(LI ST ’ AND
(CONS * EQUAL
(CONS
(CONS * STATUS
(CONS
(LI ST * QUOTE (CAR TREE))
" (STATE)))
" (" NOT- STARTED)))
(LI ST * EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS
(LI ST * QUOTE (NODES TREE))
(CONS (LI ST * QUOTE TREE)
' (STATE))))
(LI ST * QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST * LESSP
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST ’* QUOTE TREE)
" (STATE))))
(LI ST ' QUOTE (ADDL COUNT))))
(LI ST * START (CAR TREE)
(RFP (CAR TREE)
(CH LDREN (CAR TREE) TREE))))
0)
PROVE PROVE
(REWRI TE HELP- PROVE- ENSURES

293

(($STATEMENT
(LI ST ’ START (CAR TREE)
(RFP (CAR TREE)
(CHI LDREN (CAR TREE) TREE))))))
PROVE PROVE)))

(PROVE- LEMMA FULL- CHANNEL- NOT- F- | MPLI ES (REWRI TE)
(I MPLI ES (FULL- CHANNEL CHANNELS STATE)
(AND (MEMBER (FULL- CHANNEL CHANNELS STATE) CHANNELS)
(LI STP (CHANNEL (FULL- CHANNEL CHANNELS STATE)
STATE))))
((ENABLE FULL- CHANNEL EMPTY CHANNEL VALUE)))

(PROVE- LEMMA TOTAL- OUTSTANDI NG- DECREASES- LEADS- TO (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(I NI TI AL- CONDI TI ON
“ (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))
(TREE- PRG TREE)))
(LEADS- TO * (EQUAL (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADDL COUNT)))
“ (LESSP (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADDL COUNT)))
(TREE- PRG TREE)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE LEADS- TO- STRENGTHEN- LEFT

(($P
(LIST 'OR
(LI ST ’ AND
(LIST "INV
(LI ST * QUOTE TREE)
" STATE)
(LI ST ' AND
(LI ST * EQUAL
(LI ST * STATUS
(LI ST * QUOTE (CAR TREE))
" STATE)
’* NOT- STARTED)
(LI ST * EQUAL
(LI ST * TOTAL- OUTSTANDI NG
(LI ST ' QUOTE (NCDES TREE))
(LI ST * QUOTE TREE)
" STATE)
(LI ST ' QUOTE (ADDL COUNT)))))
(LIST ' OR
(LI ST * AND
(LIST "INV
(LI ST * QUOTE TREE)
" STATE)
(LI ST * AND
(LI ST * FULL- CHANNEL

(LI ST * QUOTE
(DOWK- LI NKS (NODES TREE) TREE))

294

' STATE)
(LI ST * EQUAL
(LI ST * TOTAL- OUTSTANDI NG
(LI ST ' QUOTE (NCDES TREE))
(LI ST * QUOTE TREE)
' STATE)
(LI ST ' QUOTE (ADDL COUNT)))))

(LI ST * AND
(LIST "INV
(LI ST * QUOTE TREE)
' STATE)
(LI ST ' AND
(LI ST * FULL- CHANNEL
(LI ST * QUOTE
(UP- LI NKS (CDR (NODES TREE)) TREE))
' STATE)
(LI ST ' EQUAL
(LI ST * TOTAL- QUTSTANDI NG
(LI ST * QUOTE (NODES TREE))
(LI ST ' QUOTE TREE)
' STATE)
@ (LI'ST " QUOTE (ADD1 COUNT))))))))))
AM
(EVAL
(LIST ' AND
(LIST "INV
(LI ST * QUOTE TREE)
' STATE)
(LIST ' OR
(LI ST * EQUAL
(LI ST * STATUS
(LI ST * QUOTE (CAR TREE))
" STATE)
"' STARTED)
(LI ST * EQUAL
(LI ST ’ STATUS
(LI ST * QUOTE (CAR TREE))
' STATE)
"' NOT- STARTED)))
(s

(TREE- PRG TREE)
(I LEADS (LI ST ' EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI'ST * QUOTE (ADDL COUNT)))
(TREE- PRG TREE)
(LI ST ' LESSP
(CONS ' TOTAL- QUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(OONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI'ST " QUOTE (ADDL COUNT))))))
0)
(DROP 2)
(GENERALI ZE
(((s
(TREE- PRG TREE)
(I LEADS (LI ST ' EQUAL
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))

(LI ST ' QUOTE (ADDL COUNT)))
(TREE- PRG TREE)
(LI ST * LESSP
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST ' QUOTE TREE) ’ (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
STATE)))
(USE- LEMVA NOT- TOTAL- QUTSTANDI NG- 0- | MPLI ES- FULL- CHANNEL)
(PROVE (ENABLE TREEP PROPER- TREE))
(CONTRADI CT 3)
(DROP 3)
(PROVE (DI SABLE EVAL- OR EVAL)
(ENABLE | NV-1 S- | NVARI ANT))
(REVRI TE DI SJO N- LEFT)
(REWRI TE NOT- STARTED- ROOT- DECREASES- TOTAL- OUTSTANDI NG)
(REVRI TE DI SJO N- LEFT)
(CLAIM
(FULL- CHANNEL
(DOWR- LI NKS (NODES TREE) TREE)
(s
(TREE- PRG TREE)
(I LEADS
(LI ST * AND
(CONS ' I NV
(CONS (LI ST * QUOTE TREE) ' (STATE)))
(LI ST * AND
(CONS * FULL- CHANNEL
(CONS (LI ST * QUOTE
(DOWK- LI NKS (NODES TREE) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ’ (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST * LESSP
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ' (STATE))))
(LI ST * QUOTE (ADDL COUNT))))))

0)
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P
(LI ST * AND
(LIST "INV
(LI ST * QUOTE TREE)
" STATE)
(LI ST ’ AND
(LI ST ' LISTP
(LI ST ' CHANNEL
(LI ST * QUOTE
(CONS
(PARENT
(CDR

(FULL- CHANNEL

(DOWR- LI NKS (NODES TREE) TREE)
(s

(TREE- PRG TREE)

(I LEADS

295

(LI ST * AND
(CONS ' | NV
(CONS (LI ST ' QUOTE TREE) ' (STATE)))
(LI ST * AND
(CONS ' FULL- CHANNEL
(CONS (LI ST ' QUOTE
(DOWK- LI NKS (NODES TREE) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS ’ TOTAL- OUTSTANDI NG
(CONS (LI ST ' QUOTE (NODES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST * LESSP
(CONS ' TOTAL- OUTSTANDI NG
(CONS (LIST ' QUOTE (NODES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI ST * QUOTE (ADDL COUNT)))))))
TREE)
(CDR
(FULL- CHANNEL
(DOAN- LI NKS (NODES TREE) TREE)
(s
(TREE- PRG TREE)
(1 LEADS
(LI ST * AND
(CONS ' | NV
(CONS (LI ST ' QUOTE TREE) ' (STATE)))
(LI ST * AND
(CONS * FULL- CHANNEL
(CONS (LI ST ' QUOTE
(DOWK- LI NKS (NODES TREE) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ' QUOTE (NODES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST * LESSP
(CONS ' TOTAL- OUTSTANDI NG
(CONS (LI ST ' QUOTE (NODES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI'ST " QUOTE (ADD1 COUNT)))))))))
' STATE))
(LI ST ' EQUAL
(LI ST ' TOTAL- OUTSTANDI NG
(LI ST ' QUOTE (NODES TREE))
(LI ST ' QUOTE TREE)
' STATE)
(LI'ST " QUOTE (ADDL COUNT))))))))
(GENERAL| ZE
(((s
(TREE- PRG TREE)
(1 LEADS
(LI ST * AND
(CONS ' I NV
(CONS (LI ST ' QUOTE TREE) ' (STATE)))
(LI ST * AND
(CONS ' FULL- CHANNEL

296

(CONS (LIST ’* QUOTE
(DOWR- LI NKS (NODES TREE) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST * QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ' (STATE))))
(LI ST * QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST * LESSP
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ' (STATE))))
(LI ST * QUOTE (ADDL COUNT)))))

STATE)))
(DROP 2)
BASH PROMOTE
(CLAI M
(EQUAL
(CONS (PARENT (CDR (FULL- CHANNEL (DOWK-LINKS (NODES TREE) TREE)
STATE))
TREE)
(CDR (FULL- CHANNEL (DOWK- LI NKS (NODES TREE) TREE)
STATE)))
(FULL- CHANNEL (DOWR- LI NKS (NCDES TREE) TREE)
STATE))
0)
PROVE
(CONTRADI CT 5)
(DROP 4 5)

(CLAI' M (MEMBER (FULL- CHANNEL (DOWK- LI NKS (NODES TREE) TREE)

STATE)
(DOWK- LI NKS (NODES TREE) TREE))
0)

(DEMOTE 4)
(DI VE 1)
(REWRI TE MEMBER- DOAR- LI NKS)

TOP

(DROP 2 3)
(CLAI M
(EQUAL (PARENT (CDR (FULL- CHANNEL (DOWR- LI NKS (NODES TREE) TREE)

0)

STATE))
TREE)
(CAR (FULL- CHANNEL (DOWK-LINKS (NODES TREE) TREE)
STATE)))

PROVE PROMOTE
(CONTRADI CT 2)
(DROP 2)
(DI VE 1)

X

(DI VE 1)
(REWRI TE PARENT- OF- CHI LD

(($PARENT (CAR (FULL- CHANNEL (DOWK- LI NKS (NODES TREE) TREE)
STATE)))))

TP S
(DEMOTE 1)
(DI VE 1)
X TOP S
(DEMOTE 1)
(DI VE 1)

297

X
(DI VE 1)
(DI VE 1)
X TOP S
(DEMOTE 2)
(DI VE 1)
(DI VE 2)
(DI VE 1)
(DI VE 2)
X TOP S
(CONTRADI CT 4)
(REWRI TE FULL- CHANNEL- NOT- F- | MPLI ES)
(REVWRI TE DOAR- LI NK- FULL- DECREASES- TOTAL- QUTSTANDI NG)
(GENERALI ZE
(s
(TREE- PRG TREE)
(I LEADS
(LI ST ’ AND
(CONS ' I NV
(CONS (LI ST * QUOTE TREE) ' (STATE)))
(LI ST ’ AND
(CONS * FULL- CHANNEL
(CONS (LI ST ’* QUOTE
(DOWK- LI NKS (NODES TREE) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))

(CONS (LI ST * QUOTE TREE) ' (STATE))))

(LI'ST " QUOTE (ADD1 COUNT)))))
(TREE- PRG TREE)
(LI ST ' LESSP
(CONS '’ TOTAL- OQUTSTANDI NG
(CONS (LI ST ' QUOTE (NODES TREE))
(CONS (LIST ' QUOTE TREE) ' (STATE))))
(LI'ST " QUOTE (ADD1 COUNT)))))
STATE)))
(DRCP 2)
(CLAIM (MEMBER (FULL- CHANNEL (DOAN-LI NKS (NODES TREE) TREE)
STATE)
(DOWN- LI NKS (NODES TREE) TREE))
0)
(DEMOTE 3)
(DI VE 1)
(REVRI TE MEMBER- DOVWN- LI NKS)
TOP SPLIT
(REWRI TE MEMBER- OF- SUBLI STP- | S- MEMBER

(($B (CHI LDREN (CAR (FULL- CHANNEL (DOWK- LI NKS (NODES TREE) TREE)

STATE))
TREE))))
(REWRI TE CHI LDREN- ARE- SUFFI X- OF- SUBLI ST- GENERAL| ZED
(($TREE TREE)

($NODE (CAR (FULL- CHANNEL (DOWK- LI NKS (NODES TREE) TREE)

STATE)))))
(DEMOTE 1)
(DI VE 1)
X TOP S
(DEMOTE 1)
(DI VE 1)
X TOP S X
(DI VE 1)

298

299

X TOP
(REWRI TE SUBLI STP- REFLEXI VE)
(CONTRADI CT 3)
(REWRI TE FULL- CHANNEL- NOT- F- | MPLI ES)
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P ' (FALSE))))
PROVE
(REWRI TE FALSE- LEADS- TO- ANYTHI NG)
(CLAI M
(FULL- CHANNEL
(UP- LI NKS (CDR (NODES TREE)) TREE)
(s
(TREE- PRG TREE)
(I LEADS
(LI ST ’ AND
(CONS * I NV
(CONS (LI ST * QUOTE TREE) ' (STATE)))
(LI ST ’ AND
(CONS * FULL- CHANNEL
(CONS (LI ST ’* QUOTE
(UP- LI NKS (CDR (NODES TREE)) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ' (STATE))))
(LI ST * QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST ’ LESSP
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST * QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ’ (STATE))))
(LI ST ' QUOTE (ADDL COUNT))))))
0)
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
((sP
(LI ST ’ AND
(LIST "INV
(LI ST * QUOTE TREE)
" STATE)
(LIST ' AND
(LIST ' LISTP
(LI ST * CHANNEL
(LI ST * QUOTE
(CONS
(CAR
(FULL- CHANNEL
(UP- LI NKS (CDR (NODES TREE)) TREE)
(s
(TREE- PRG TREE)
(I LEADS
(LI ST ' AND
(CONS ' I NV
(CONS (LI ST * QUOTE TREE) * (STATE)))
(LI ST ’ AND
(CONS * FULL- CHANNEL
(CONS (LIST ’* QUOTE
(UP- LI NKS (CDR (NODES TREE)) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS * TOTAL- QUTSTANDI NG

(CONS (LIST ' QUOTE (NODES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI ST * QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST * LESSP
(OONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI'ST " QUOTE (ADDL COUNT)))))))
(CDR
(FULL- CHANNEL
(UP-LI NKS (CDR (NODES TREE)) TREE)
(s
(TREE- PRG TREE)
(1 LEADS
(LI ST * AND
(CONS ' I NV
(CONS (LI ST ' QUOTE TREE) ' (STATE)))
(LI ST ' AND
(CONS ' FULL- CHANNEL
(CONS (LI ST ' QUOTE
(UP- LI NKS (CDR (NODES TREE)) TREE))
' (STATE)))
(LI'ST ' EQUAL
(CONS ' TOTAL- QUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(OCONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI'ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST ’ LESSP
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI'ST " QUOTE (ADDL COUNT)))))))))
' STATE))
(LI ST ' EQUAL
(LI ST * TOTAL- QUTSTANDI NG
(LI ST * QUOTE (NODES TREE))
(LI ST ' QUOTE TREE)
' STATE)
(LI'ST " QUOTE (ADDL COUNT))))))))
(GENERALI ZE
(((s
(TREE- PRG TREE)
(1 LEADS
(LI ST ' AND
(CONS ' I NV
(CONS (LI ST ' QUOTE TREE) ' (STATE)))
(LI ST ' AND
(CONS * FULL- CHANNEL
(CONS (LI ST ' QUOTE
(UP-LI NKS (CDR (NODES TREE)) TREE))
' (STATE)))
(LI ST ' EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST ' QUOTE TREE) ' (STATE))))
(LI'ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST ' LESSP
(CONS * TOTAL- QUTSTANDI NG

300

(CONS (LI ST ' QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ' (STATE))))
(LI ST * QUOTE (ADDL COUNT)))))
STATE)))
(DROP 2)
BASH PROMOTE
(CONTRADI CT 5)
(DROP 3 4 5)
(CLAI M (MEMBER (FULL- CHANNEL (UP-LINKS (CDR (NODES TREE)) TREE)
STATE)
(UP- LI NKS (CDR (NODES TREE)) TREE)))
(DEMOTE 3)
(DI VE 1)
(REWRI TE MEMBER- UP- LI NKS)
TP S
(REWRI TE UP- LI NK- FULL- DECREASES- TOTAL- OUTSTANDI NG)
(GENERALI ZE
(((s
(TREE- PRG TREE)
(I LEADS
(LI ST ’ AND
(CONS ' | NV
(CONS (LI ST * QUOTE TREE) ' (STATE)))
(LI ST * AND
(CONS * FULL- CHANNEL
(CONS (LI ST * QUOTE
(UP- LI NKS (CDR (NODES TREE)) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST * QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ’ (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST * LESSP
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST ' QUOTE TREE) ’ (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
STATE)))
(DROP 2)
(CLAI' M (MEMBER (FULL- CHANNEL (UP-LINKS (CDR (NODES TREE)) TREE)
STATE)
(UP- LI NKS (CDR (NODES TREE)) TREE)))
(DEMOTE 3)
(DI VE 1)
(REWRI TE MEMBER- UP- LI NKS)
TOP SPLIT
(DI VE 1)
= X TOP
(DI VE 2)
X TOP
(REWRI TE NODE- HAS- PARENT)
(DI VE 2)
(= * (NODES TREE) ((ENABLE NCDES)))
TOP
(REWRI TE MEMBER- CDR- NCDES- MEMBER- NODES)
(DEMOTE 1)
(DI VE 1)
X TOP S S
(DI VE 1)

301

(DROP 2 3 4)
TOP
(DI'VE 1)
(DI VE 2)
(= *

(CAR (NODES TREE))

((ENABLE NODES NODES- REC)))
TOP
(:

(NOT (EQUAL (CAR (FULL- CHANNEL (UP-LINKS (CDR (NCDES TREE)) TREE)

STATE))
(CAR (NODES TREE)))))

(CONTRADI CT 2)
(DI'VE 1)
(DI VE 1)
= TOP
(DEMOTE 1)
(DI VE 1)
X

(DI VE 1)
X TOP PROVE
(GENERALI ZE
(s
(TREE- PRG TREE)
(I LEADS
(LI ST ’ AND
(CONS ' I NV
(CONS (LI ST * QUOTE TREE) ' (STATE)))
(LI ST ’ AND
(CONS * FULL- CHANNEL
(CONS (LI ST ’* QUOTE
(UP- LI NKS (CDR (NODES TREE)) TREE))
' (STATE)))
(LI ST * EQUAL
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ' (STATE))))
(LI ST * QUOTE (ADDL COUNT)))))
(TREE- PRG TREE)
(LI ST ’ LESSP
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ’ (STATE))))
(LI ST ' QUOTE (ADDL COUNT)))))
STATE)))
(DROP 2)
(CLAI' M (MEMBER (FULL- CHANNEL (UP-LINKS (CDR (NODES TREE)) TREE)
STATE)
(UP- LI NKS (CDR (NODES TREE)) TREE)))
(DEMOTE 3)
(DI VE 1)
(REWRI TE MEMBER- UP- LI NKS)
TOP SPLIT
(DI VE 2)
(DI VE 1)
= X UP X TOP
(REWRI TE PARENT- REC- CHI LDREN- REC)
(DI VE 2)
(REWRI TE SETP- TREE- UNI QUE- PARENT)
(DI VE 1)
(DI VE 2)

302

303

(= * (NODES TREE) ((ENABLE NCDES)))

uP

(REWRI TE MEMBER- CDR- NCDES- MEMBER- NODES)
U S

(DI VE 1)

(=* FO0)

TOP S X

— *

(NOT (EQUAL (CAR (NODES TREE))
(CAR (FULL- CHANNEL (UP-LINKS (CDR (NODES TREE)) TREE)
STATE))))
((ENABLE NODES NODES- REC)))
(CONTRADI CT 5)
(DI VE 1)
(DI VE 1)
= ToP
(DEMOTE 1)
(DI VE 1)
X

(DI VE 1)
X TOP S

(DEMOTE 1)
(DI VE 1)
X TOP S

(DEMOTE 1)
(DI VE 1)
X

(DI VE 1)

(DI VE 1)

X TOP S

(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P ' (FALSE))))

PROVE

(REWRI TE FALSE- LEADS- TO- ANYTHI NG))))

(PROVE- LEMVA TERM NATI ON- | NDUCTI ON (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(I'NITI AL- CONDI TI ON
“ (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))
(TREE- PRG TREE)))
(LEADS- TO * (LESSP (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
(QUOTE , (ADDL COUNT)))
* (EQUAL (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
0)
(TREE- PRG TREE)))
((1 NSTRUCTI ONS (1 NDUCT (PLUS COUNT J)) PROMOTE PROMOTE
(REVRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (CONS ' EQUAL
(CONS ((CONS ’ TOTAL- OUTSTANDI NG
(CONS (LI ST * QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ' (STATE))))

"(0))))))
PROVE (REVRI TE Q LEADS- TO-Q PROMOTE PROMOTE (DEMOTE 2)
(DIVE 1) (DIVE 1) S-PROP TOP SPLIT
(REVRI TE LEADS- TO- TRANSI TI VE
(($Q (LI ST ’ LESSP
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST * QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ’ (STATE))))
(LI ST ' QUOTE (ADDL (SUBL COUNT)))))))
(DROP 4)
(CLAI'M (NOT (LESSP (TOTAL- OUTSTANDI NG (NODES TREE) TREE
(S (TREE- PRG TREE)
(I LEADS
(LI ST * LESSP
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST ' QUOTE TREE)
"(STATE))))
(LI ST * QUOTE (ADDL COUNT)))
(TREE- PRG TREE)
(LI ST ’ LESSP
(CONS * TOTAL- OUTSTANDI NG
(CONS (LI ST * QUOTE (NCDES TREE))
(CONS (LI ST ’* QUOTE TREE)
" (STATE))))
(LI ST ' QUOTE (ADDL (SUBL COUNT)))))))
(ADDL (SUBL COUNT))))
0)
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST * EQUAL
(LI ST * TOTAL- QUTSTANDI NG
(LI ST * QUOTE (NODES TREE))
(LI ST ' QUOTE TREE) ' STATE)
(LI ST ' QUOTE (ADDL (SUBL COUNT)))))))
(DROP 2 3) PROVE
(REWRI TE TOTAL- OUTSTANDI NG- DECREASES- LEADS- TO)
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST * LESSP
(CONS * TOTAL- QUTSTANDI NG
(CONS (LI ST ’* QUOTE (NCDES TREE))
(CONS (LI ST * QUOTE TREE) ' (STATE))))
(LI ST ' QUOTE (ADDL (SUBL COUNT)))))))
(DROP 3) PROVE (REWRI TE Q LEADS-TO-Q))))

(PROVE- LEMMA TERM NATI ON (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(I NI TI AL- CONDI TI ON
“ (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))
(TREE- PRG TREE)))
(LEADS- TO * (TRUE)
* (EQUAL (TOTAL- OUTSTANDI NG
(QUOTE , (NODES TREE))
(QUOTE , TREE)
STATE)
0)
(TREE- PRG TREE)))
((1 NSTRUCTI ONS PROVOTE

304

305

(REVRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LI ST ' LESSP
(LI ST * TOTAL- OUTSTANDI NG
(LI ST ' QUOTE (NCDES TREE))
(LI ST ' QUOTE TREE) ’ STATE)
(LI ST * QUOTE
(ADDL
(TOTAL- OUTSTANDI NG (NCDES TREE)
TREE
(S (TREE- PRG TREE)
(I LEADS * (TRUE) (TREE- PRG TREE)
(CONS * EQUAL
(CONS
(CONS * TOTAL- OUTSTANDI NG
(CONS
(LI ST * QUOTE (NODES TREE))
(CONS (LI ST ’* QUOTE TREE)
"(STATE))))
"(0)))))))))N))
PROVE (REVWRI TE TERM NATI ON- | NDUCTI ON))))

(PROVE- LEMMA CORRECTNESS- CONDI TI ON (REWRI TE)
(I MPLI ES (AND (TREEP TREE)
(I NI TI AL- CONDI TI ON
“ (AND (ALL- EMPTY (QUOTE , (ALL- CHANNELS TREE))
STATE)
(NOT- STARTED (QUOTE , (NODES TREE))
STATE))
(TREE- PRG TREE)))
(LEADS- TO * (TRUE)
* (CORRECT (QUOTE , TREE) STATE)
(TREE- PRG TREE)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE LEADS- TO- WEAKEN- Rl GHT
(($Q (LI ST * EQUAL
(LI ST * TOTAL- OQUTSTANDI NG
(LI ST * QUOTE (NODES TREE))
(LI ST * QUOTE TREE) ® STATE)

0))))
BASH PROMOTE
(REVRI TE | NV- | MPLI ES- AUGVENTED- CORRECTNESS- CONDI TI ON)
(DEMOTE 1) (DIVE 1) X TOP S (DEMOTE 1) (DIVE 1) X (DI VE 1)
(DIVE 1) X TOP S
(CLAIM (EVAL (LIST ' INV (LIST ' QUOTE TREE) ' STATE)
(S (TREE- PRG TREE)
(JLEADS (1LEADS ' (TRUE) (TREE-PRG TREE)
(CONS * CORRECT
(CONS (LI ST * QUOTE TREE)
" (STATE))))
(TREE- PRG TREE)
(CONS * EQUAL
(CONS
(CONS * TOTAL- QUTSTANDI NG
(CONS
(LI ST * QUOTE (NCDES TREE))
(CONS (LI ST ’* QUOTE TREE)
" (STATE))))
"(0))))))
((DI SABLE EVAL) (ENABLE | NV-1S-1 NVARI ANT)))
PROVE (REVRI TE TERM NATI ON))))

306

Appendix E.

Dining Philosophers Events

This appendix contains the complete events list supporting the prrof of the
dining philosophers algorithm described in chapter 6.

This event list constructs the proof of the dining philosophers algorithm on top
of the library created by the eventsin Appendix B.
(NOTE- LI B " | NTERPRETER")

(PROVEALL "DINING' "’ (

v THE PROGRAM

(DEFN STATUS (STATE | NDEX)
(CDR (ASSOC (CONS 'S | NDEX) STATE)))

(DEFN THI NKI NG (STATE | NDEX)
(EQUAL (STATUS STATE | NDEX) ' THI NKI NG))

(DEFN HUNGRY (STATE | NDEX)
(EQUAL (STATUS STATE | NDEX) ' HUNGRY))

(DEFN EATI NG (STATE | NDEX)
(EQUAL (STATUS STATE | NDEX) ' EATING))

(DEFN FORK (STATE | NDEX)
(CDR (ASSOC (CONS ' F | NDEX) STATE)))

(DEFN FREE (STATE | NDEX)
(EQUAL (FORK STATE | NDEX) ' FREE))

(DEFN OMNS- LEFT (STATE | NDEX)
(EQUAL (FORK STATE | NDEX) | NDEX))

(DEFN OANS- RI GHT (STATE | NDEX N)
(EQUAL (FORK STATE (ADD1-MOD N I NDEX)) | NDEX))

(DEFN THI NKI NG TO (OLD NEW | NDEX)
(I F (TH NKI NG OLD | NDEX)
(AND (OR (THI NKI NG NEW | NDEX)
(HUNGRY NEW | NDEX))
(CHANGED OLD NEW (LI ST (CONS ’ S I NDEX))))
(CHANGED OLD NEW NI L)))

307

(DEFN HUNGRY- LEFT (OLD NEW | NDEX)
(AND (HUNGRY OLD | NDEX)
(FREE OLD | NDEX)
(OWNS- LEFT NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ’ F I NDEX)))))

(DEFN HUNGRY- RI GHT (OLD NEW | NDEX N)
(AND (HUNGRY OLD | NDEX)
(FREE OLD (ADD1- MOD N | NDEX))
(OWNS- RI GHT NEW | NDEX N)
(CHANGED OLD NEW (LI ST (CONS *' F (ADD1-MOD N | NDEX))))))

(DEFN HUNGRY- BOTH (OLD NEW | NDEX N)
(I F (AND (HUNGRY OLD | NDEX)
(OWNS- LEFT OLD | NDEX)
(OWNS- RI GHT OLD | NDEX N))
(AND (EATI NG NEW | NDEX)
(CHANGED OLD NEW (LI ST (CONS ’ S I NDEX))))
(CHANGED OLD NEWNIL)))

(DEFN EATI NG TO (OLD NEW | NDEX N)
(I F (EATI NG OLD | NDEX)
(AND (THI NKI NG NEW | NDEX)
(FREE NEW | NDEX)
(FREE NEW (ADD1- MOD N | NDEX))
(CHANGED OLD NEW (LI ST (CONS * S | NDEX)
(CONS * F | NDEX)

(CONS ' F (ADD1- MOD N | NDEX)))))

(CHANGED OLD NEWNIL)))

(DEFN PHI L (1 NDEX N)
(LI ST (LI'ST * THI NKI NG TO | NDEX)
(LI ST * HUNGRY- LEFT | NDEX)
(LI ST * HUNGRY- Rl GHT | NDEX N)
(LI ST * HUNGRY- BOTH | NDEX N)
(LI ST ' EATING TO | NDEX N)))

(DEFN RI NG (I NDEX N)
(I F (ZEROP | NDEX)
NI L
(APPEND (PHIL (SUBL I NDEX) N)
(RING (SUBL INDEX) N))))

(DEFN PHI L- PRG (N)
(RING N N))

(DI SABLE PHI L- PRG)
(DI SABLE *1*PHI L- PRO)

;1 CORRECTNESS

(PROVE- LEMVA MEMBER- RI NG (REWRI TE)
(EQUAL (MEMBER STATEMENT (RI NG | NDEX N))
(AND (MEMBER STATEMENT (PHIL (CADR STATEMENT) N))
(NUMBERP (CADR STATEMENT))
(LESSP (CADR STATEMENT) | NDEX)))
((1 NSTRUCTI ONS | NDUCT BASH
(CLAIM (EQUAL (CADR STATEMENT) (SUBL | NDEX)) 0)
(BASH (DI SABLE PHIL)) PROVOTE (DIVE 1) (DIVE 2) X UP

308

309

(REWRI TE MEMBER- APPEND) (DIVE 1) (= F) UP S = TOP (DROP 3)
(BASH (DI SABLE PHI L)) PROVOTE (DROP 4)
(GENERALI ZE (((CADR STATEMENT) ?))) PROVE)))

(PROVE- LEMVA MEMBER- PHI L- PRG (REVRI TE)
(EQUAL (MEMBER STATEMENT (PHI L- PRG N))
(AND (MEMBER STATEMENT (PHIL (CADR STATEMENT) N))
(NUMBERP (CADR STATEMENT))
(LESSP (CADR STATEMENT) N)))
((DI SABLE PHI L)
(ENABLE PH L- PRG)))

(DEFN PROPER- FORKS- REC (STATE | NDEX N)
(I F (ZEROP | NDEX)
T

(AND (OR (FREE STATE (SUBL | NDEX))
(EQUAL (FORK STATE (SUBL | NDEX)) (SUBL | NDEX))
(EQUAL (FORK STATE (SUBL | NDEX)) (SUB1-MOD N (SUBL | NDEX))))
(PROPER- FORKS- REC STATE (SUBL | NDEX) N))))

(PROVE- LEMVA PROPER- FORKS- REC- | MPLI ES (REWRI TE)
(I MPLI ES (AND (PROPER- FORKS- REC STATE | NDEX N)
(NOT (LESSP N I NDEX))
(LESSP 1 N)
(LESSP | | NDEX)
(NUMBERP 1))
(OR (FREE STATE |)
(EQUAL (FORK STATE 1) 1)
(EQUAL (FORK STATE |) (SUBL-MOD N 1))))
((1 NDUCT (PROPER- FORKS- REC STATE | NDEX N))))

(DEFN PROPER- FORKS (STATE N)
(PROPER- FORKS- REC STATE N N))

(PROVE- LEMVA PROPER- FORKS- | MPLI ES (REVRI TE)
(I MPLI ES (AND (PROPER- FORKS STATE N)
(LESSP 1 N)
(LESSP | N)
(NUMBERP 1))
(OR (FREE STATE |)
(EQUAL (FORK STATE 1) 1)
(EQUAL (FORK STATE |) (SUBL-MOD N 1))))
((USE (PROPER- FORKS- REC- | MPLI ES (1 NDEX N)))))

(DEFN PROPER- PHI L (STATE PHI L RI GHT)
(AND (1 MPLI ES (THI NKI NG STATE PHI L)
(AND (NOT (EQUAL (FORK STATE PHIL) PHIL))
(NOT (EQUAL (FORK STATE RIGHT) PHIL))))
(I MPLI ES (EATI NG STATE PHI L)
(AND (EQUAL (FORK STATE PHIL) PHIL)
(EQUAL (FORK STATE RIGHT) PHIL)))
(OR (THI NKI NG STATE PHI L)
(HUNGRY STATE PHI L)
(EATI NG STATE PHIL))))

(DEFN PROPER- PHI LS- REC (STATE | NDEX N)
(I F (ZEROP | NDEX)
T
(AND (PROPER- PHI L STATE (SUBL | NDEX) (ADDL-MOD N (SUBL I NDEX)))
(PROPER- PHI LS- REC STATE (SUBL I NDEX) N))))

(PROVE- LEMVA PROPER- PHI LS- REC- | MPLI ES- PROPER- PHI L (REWRI TE)
(I MPLI ES (AND (PROPER- PHI LS- REC STATE | NDEX N)
(LESSP 1 N)
(NOT (LESSP N I NDEX))
(LESSP PHI L | NDEX)
(NUMBERP PHI L)
(EQUAL RI GHT (ADD1-MOD N PHIL)))
(PROPER- PH L STATE PHIL RI GHT))
((1 NDUCT (PROPER- PHI LS- REC STATE | NDEX N))
(DI SABLE PROPER- PHI L)))

(PROVE- LEMVA PROPER- PHI LS- REC- | MPLI ES (REWRI TE)
(I MPLI ES (AND (PROPER- PHI LS- REC STATE | NDEX N)
(NOT (LESSP N | NDEX))
(LESSP 1 N)
(LESSP PHI L | NDEX)
(NUMBERP PHI L))
(AND (1 MPLI ES (THI NKI NG STATE PHI L)
(AND (NOT (OWNS- LEFT STATE PHIL))
(NOT (OMNS- RI GHT STATE PHIL N))))
(I MPLI ES (EATI NG STATE PHI L)
(AND (OANS- LEFT STATE PHI L)
(OWNS- RI GHT STATE PHIL N)))
(OR (THI NKI NG STATE PHI L)
(HUNGRY STATE PHI L)
(EATI NG STATE PHIL))))
((USE (PROPER- PHI LS- REC- | MPLI ES- PROPER- PHI L
(RIGHT (ADD1-MOD N PHIL))))
(DI SABLE PROPER- PHI LS- REC- | MPLI ES- PROPER- PHI L)))

(DEFN PROPER- PHI LS (STATE N)
(PROPER- PHI LS- REC STATE N N))

(PROVE- LEMVA PROPER- PHI LS- | MPLI ES- PROPER- PHI L (REWRI TE)
(I MPLI ES (AND (PROPER- PHI LS STATE N)
(LESSP 1 N)
(LESSP PHI L N)
(NUMBERP PHI L)
(EQUAL RI GHT (ADD1-MOD N PHIL)))
(PROPER- PH L STATE PHIL Rl GHT))
((USE (PROPER- PHI LS- REC- | MPLI ES- PROPER- PHI L (I NDEX N)))
(DI SABLE PROPER- PHI L
PROPER- PHI LS- REC- | MPLI ES- PROPER- PHI L)))

(DEFN ALL- LEFTS (STATE | NDEX)
(I F (ZEROP | NDEX)
T

(AND (OANS- LEFT STATE (SUBL | NDEX))
(HUNGRY STATE (SUBL | NDEX))
(ALL- LEFTS STATE (SUBL | NDEX)))))

(PROVE- LEMMA ALL- LEFTS- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP | N)
(NUVBERP 1)
(ALL- LEFTS STATE N))
(AND (HUNGRY STATE 1)
(OWNS- LEFT STATE 1)))
((1 NDUCT (ALL- LEFTS STATE N))))

310

311

(DEFN ALL- Rl GHTS- REC (STATE | NDEX N)
(I F (ZEROP | NDEX)
T

(AND (OMNS- RI GHT STATE (SUBL | NDEX) N)
(HUNGRY STATE (SUBL | NDEX))
(ALL- Rl GHTS- REC STATE (SUBL | NDEX) N))))

(PROVE- LEMMA ALL- Rl GHTS- REC- | MPLI ES (REWRI TE)
(IMPLIES (AND (LESSP 1 N)
(NOT (LESSP N I NDEX))
(LESSP | | NDEX)
(NUMBERP 1)
(ALL- Rl GHTS- REC STATE | NDEX N))
(AND (HUNGRY STATE 1)
(OWNS-RI GHT STATE | N)))
((1 NDUCT (ALL- Rl GHTS- REC STATE | NDEX N))))

(DEFN ALL- Rl GHTS (STATE N)
(ALL- Rl GHTS- REC STATE N N))

(PROVE- LEMMA ALL- RI GHTS- | MPLI ES (REVRI TE)

(I MPLIES (AND (LESSP 1 N)

(LESSP | N)

(NUVBERP 1)

(ALL- RI GHTS STATE N))

(AND (HUNGRY STATE 1)

(OWNS- RI GHT STATE | N)))

((USE (ALL-RI GHTS- REC- I MPLI ES (I NDEX N)))))

: (DEFN | NI TI AL (STATE N)
:© (AND (PROPER- FORKS STATE N)
: (PROPER- PHI LS STATE N)))

(PROVE- LEMMA LI STP- PHI L- PRG (REWRI TE)
(EQUAL (LISTP (PH L-PRG N))
(NOT (ZEROP N)))
((ENABLE PHI L-PRG N)))

(DEFN PFUSI (1 NDEX N STATEMENT)
(I F (ZEROP | NDEX)
T

(IF (EQUAL (SUBL I NDEX) (CADR STATEMENT))
(PFUSI (SUBL | NDEX) N STATEMENT)
(IF (EQUAL (SUBL | NDEX) (ADDIL-MOD N (CADR STATEMENT)))
(PFUSI (SUBL | NDEX) N STATEMENT)
(PFUSI (SUBL | NDEX) N STATEMENT)))))

(PROVE- LEMVA PROPER- FORKS- REC- UNLESS- SUFFI Cl ENT (REWRI TE)
(I MPLI ES (AND (NOT (LESSP N | NDEX))

(LESSP 1 N))
(UNLESS- SUFFI Cl ENT STATEMENT

(PH L- PRG N)

OLD NEW

* (PROPER- FORKS- REC STATE
(QUOTE , | NDEX)
(QUOTE , N))

" (FALSE)))

((INDUCT (PFUSI | NDEX N STATEMENT))))

312

(DEFN PROPER- TRI PLE (STATE PHIL N)
(AND (PROPER- PHI L STATE (SUBL- MCD N PHI L)
(ADD1- MOD N (SUB1-MOD N PHIL)))
(PROPER- PHI L STATE PHI L (ADDL-MOD N PHIL))
(PROPER- PH L STATE (ADDL1- MOD N PHI L)
(ADDL- MOD N (ADDL-MOD N PHIL)))))

(DEFN BUT- TRI PLE (STATE | NDEX PHIL N)
(I F (ZEROP | NDEX)
T
(IF (OR (EQUAL (SUBL I NDEX) (SUBL-MOD N PHIL))
(EQUAL (SUBL | NDEX) PHIL)
(EQUAL (SUBL | NDEX) (ADDL-MOD N PHIL)))
(BUT- TRI PLE STATE (SUBL I NDEX) PHIL N)

(AND (PROPER- PHI L STATE (SUBL | NDEX) (ADDL-MOD N (SUBL | NDEX)))

(BUT- TRI PLE STATE (SUBL INDEX) PH L N)))))

(PROVE- LEMVA LESSP-1 (REWRI TE)
(EQUAL (LESSP 1 N)
(AND (NOT (ZERCP N))
(NOT (EQUAL N 1)))))

(PROVE- LEMVA LESSP-2 (REWRI TE)
(EQUAL (LESSP X 2)

(OR (EQUAL X 1)

(ZERCP X))))

(PROVE- LEMVA LESSP- 2-2 (REWRI TE)
(EQUAL (LESSP 2 X)
(AND (NOT (ZEROP X))
(NOT (EQUAL X 1))
(NOT (EQUAL X 2)))))

(PROVE- LEMVA PROPER- TRI PLE- PRESERVED (REVRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP PHIL N)
(NUMBERP PHI L)
(MEMBER STATEMENT (PHIL PHIL N))
(N OLD NEW STATEMENT)
(PROPER- TRI PLE OLD PHIL N))
(PROPER- TRI PLE NEWPHI L N))
((1 NSTRUCTI ONS
PROMOTE
(BOOKMARK (BEG N ELI M)
(CLAI M (EQUAL STATEMENT
(CONS (CAR STATEMENT) (CDR STATEMENT)))
0)
(CHANGE- GOAL (MAIN . 1)) (CONTRADICT 7) S (CHANGE- GOAL MAIN)
(GENERALI ZE (((CAR STATEMENT) X) ((CDR STATEMENT) 2)))
(SUBV (STATEMENT (CONS X Z))) (DROP 7) (BOOKMARK (END ELIM)
(CLAIM (OR (AND (EQUAL X * THINKI NG TO) (EQUAL Z (LIST PHIL)))
(AND (EQUAL X ' HUNGRY- LEFT) (EQUAL Z (LIST PHIL)))
(AND (EQUAL X ' HUNGRY- Rl GHT)
(EQUAL Z (LIST PHIL N)))
(AND (EQUAL X ' HUNGRY- BOTH)
(EQUAL Z (LIST PHIL N)))
(AND (EQUAL X 'EATING TO) (EQUAL Z (LIST PHIL N))))
0)
(DROP 4)
(CLAIM (LESSP 2 N) 0)
(CLAIM (EQUAL PHIL (SUBL N)) 0)

313

(CLAIM (EQUAL PHIL 0) 0)
(CONTRADI CT 7)

(DROP 4 5 6 7)

PROVE

PROVE

(CLAIM (EQUAL PHIL 0) 0)
PROVE

PROVE

PROVE

(CONTRADI CT 7)

(DROP 12356 7)
PROVE
(DROP 1 2 35 6 7) PROVE)))

(PROVE- LEMVA BUT- TRI PLE- PRESERVED (REVRI TE)
(I MPLIES (AND (LESSP 1 N)

(NOT (LESSP N I NDEX))

(LESSP PHI L N)

(NUMBERP PHI L)

(MEMBER STATEMENT (PHIL PHIL N))

(N OLD NEW STATEMENT)

(BUT- TRI PLE OLD INDEX PHIL N))

(BUT- TRI PLE NEW I NDEX PHIL N))
((1 NSTRUCTI ONS

(I NDUCT (BUT- TRI PLE NEW I NDEX PHIL N)) PROVE PROMOTE
PROVOTE X-DUMB (DIVE 3) (DIVE 1) (= * T 0) TOP S PRCP
(DEMOTE 10) (DIVE 1) X-DUMB (DIVE 3) (DIVE 1) (= * T 0) UP UP
S PROP TOP PROMOTE (DEMOTE 3) (DIVE 1) (DI VE 1)
(= * T ((DI SABLE LESSP-1 ZERCP PHI L N ADD1- MOD SUB1-MOD))) TOP
S-PROP (DROP 134567 89 10) PROVE
(DROP 13456789 10 11) PROVE PROVOTE PROVOTE (DEMOTE 10)
(DIVE 1) X-DUMB (DIVE 38) (DIVE 1) (= * F 0) UP UP S-PROP TCP
PROVOTE X-DUMB (DIVE 3) (DIVE 1) (= * F 0) TOP S PRCP
(DEMOTE 3) (DIVE 1) (DI VE 1)
(= * (BUT-TRIPLE OLD (SUBL INDEX) PHIL N) 0) TOP (DEMOTE 9)
S PROP SPLIT (DROP 12 13) PROVE (DROP 9 2)
(PROVE (DI SABLE PHIL N)) (DROP 1 3 456 7 8 9 10 11) PROVE
(DROP 134567 89 10) PROVE)))

(PROVE- LEMMA BUT- TRI PLE- AND- TR PLE- ALL (REWRI TE)
(I MPLI ES
(AND (NUMBERP PHI L)
(NOT (LESSP N I NDEX)))
(EQUAL
(PROPER- PHI LS- REC STATE | NDEX N)
(AND (BUT- TRI PLE STATE I NDEX PHIL N)
(I F (LESSP (ADDL-MOD N PHIL) | NDEX)
(I F (LESSP PH L | NDEX)
(I'F (LESSP (SUBL-MOD N PHIL) | NDEX)
(PROPER- TRI PLE STATE PHIL N)
(AND (PROPER- PHI L STATE PHI L
(ADDL- MOD N PHI L))
(PROPER- PHI L STATE (ADD1- MOD N
PHI L)
(ADDL- MOD N (ADD1-MOD N PHIL)))))
(I F (LESSP (SUBL-MOD N PHIL) | NDEX)
(AND (PROPER- PHI L STATE (SUBL- MOD N PHI L)
(ADDL- MOD N (SUBL1-MOD N PHIL)))
(PROPER- PH L STATE (ADDL-MOD N PHI L)
(ADDL- MOD N (ADD1-MOD N PHIL))))
(PROPER- PH L STATE (ADDL1- MOD N PHI L)

(ADDL- MOD N (ADD1-MOD N PHIL)))))
(I F (LESSP PHI L | NDEX)
(I F (LESSP (SUBL-MOD N PHIL) | NDEX)
(AND (PROPER- PHI L STATE PHIL (ADD1-MOD N PHIL))
(PROPER- PH L STATE (SUB1-MOD N PHI L)
(ADD1- MOD N (SUB1-MOD N PHIL))))
(PROPER- PH L STATE PHI L (ADDL-MOD N PHIL)))
(I F (LESSP (SUBL-MOD N PHIL) | NDEX)
(PROPER- PHI L STATE (SUB1-MOD N PHI L)
(ADDL- MOD N (SUBL1-MOD N PHIL)))
m)))))
((DI SABLE ADD1- MOD SUB1- MOD PROPER- PHI L)
(I NDUCT (BUT- TRI PLE STATE INDEX PHIL N))))

(PROVE- LEMMA PROPER- PHI LS- PRESERVED (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(MEMBER STATEMENT (PHI L- PRG N))
(N OLD NEW STATEMENT)
(PROPER- PH LS OLD N))
(PROPER- PHI LS NEW N))
((DI SABLE PROPER-TRI PLE PHI L PROPER-PHIL N)))

(DI SABLE BUT- TRI PLE- AND- TRI PLE- ALL)
(DI SABLE BUT- TRl PLE- PRESERVED)

(DI SABLE PROPER- TRI PLE- PRESERVED)
(DI SABLE PROPER- PHI LS)

(PROVE- LEMMA PROPER- PHI LS- UNLESS- SUFFI Cl ENT (REVRI TE)
(I MPLIES (LESSP 1 N)
(UNLESS- SUFFI CI ENT STATEMENT (PHI L- PRG N)
OLD NEW
* (PROPER- PHI LS STATE (QUOTE , N))
" (FALSE)))
((DI SABLE MEMBER- PHI L- PRG N)))

(PROVE- LEMMA ALL- LEFTS- UNCHANGED (REVRI TE)
(I MPLI ES (AND (ALL-LEFTS OLD N)
(CHANGED OLD NEW NI L))
(ALL- LEFTS NEWN)))

(PROVE- LEMMA ALL- LEFTS- UNLESS- SUFFI Cl ENT (REWRI TE)
(I MPLIES (LESSP 1 N)
(UNLESS- SUFFI CI ENT STATEMENT
(PH L-PRG N)
OLD NEW
* (ALL- LEFTS STATE (QUOTE , N))
" (FALSE)))
((USE (ALL- LEFTS-1MPLIES (1 (CADR STATEMENT)) (STATE OLD))
(ALL- LEFTS- I MPLI ES (1 (ADDL-MOD N (CADR STATEMENT)))
(STATE OLD)))
(DI SABLE ALL- LEFTS-| MPLI ES)))

(DI SABLE ALL-LEFTS-| MPLI ES)
(DI SABLE ALL- LEFTS- UNCHANGED)

(PROVE- LEMVA ALL- RI GHTS- REC- UNCHANGED (REVRI TE)
(I MPLI ES (AND (ALL- Rl GHTS- REC OLD | NDEX N)
(CHANGED OLD NEW NI L)
(NOT (LESSP N I NDEX)))
(ALL- Rl GHTS- REC NEW | NDEX N)))

314

315

(PROVE- LEMVA ALL- RI GHTS- UNLESS- SUFFI Cl ENT (REWRI TE)
(IMPLIES (LESSP 1 N)
(UNLESS- SUFFI Cl ENT STATEMENT
(PH L-PRG N)
OLD NEW
“ (ALL- Rl GHTS STATE (QUOTE , N))
" (FALSE)))
((USE (ALL-RI GHTS- | MPLIES (I (CADR STATEMENT)) (STATE OLD)
(N'N)
(ALL-RI GHTS- | MPLI ES (I (SUB1-MOD N (CADR STATEMENT)))
(STATE OLD) (N N)))
(DI SABLE ALL- Rl GHTS- | MPLI ES)))

(DI SABLE ALL- RI GHTS- | MPLI ES)
(DI SABLE ALL- Rl GHTS- REC- UNCHANGED)

(PROVE- LEMVA PROPER- FORKS- REC- | NV (REWRI TE)
(IMPLIES (LESSP 1 N)
(UNLESS * (PROPER- FORKS- REC STATE (QUOTE , N)
(QUOTE , N))

" (FALSE)
(PH L-PRG N)))

((1 NSTRUCTI ONS PROVOTE (REWRI TE HELP- PROVE- UNLESS)

(REWRI TE PROPER- FORKS- REC- UNLESS- SUFFI Cl ENT) PROVE)))

(PROVE- LEMVA PROPER- FORKS- | NV (REWRI TE)

(I MPLIES (LESSP 1 N)
(UNLESS * (PROPER- FORKS STATE (QUOTE , N))
" (FALSE)
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE UNLESS- EQUAL- P
(($Q (LI ST ’ PROPER FORKS- REC ' STATE (LI ST ’* QUOTE N)

(LIST "QUOTE N)))))
(REWRI TE PROPER- FORKS- REC- | NV) PROVE)))

(PROVE- LEMVA PROPER- PHI LS- | NV (REWRI TE)
(I MPLIES (LESSP 1 N)
(UNLESS * (PROPER- PHI LS STATE (QUOTE , N))
" (FALSE)
(PH L-PRG N))))

(PROVE- LEMVA ALL- LEFTS- I NV (REWRI TE)
(I MPLIES (LESSP 1 N)
(UNLESS * (ALL- LEFTS STATE (QUOTE , N))
" (FALSE)
(PH L-PRG N))))

(PROVE- LEMMA ALL- Rl GHTS- | NV (REWRI TE)
(IMPLIES (LESSP 1 N)
(UNLESS * (ALL- Rl GHTS STATE (QUOTE , N))
" (FALSE)
(PH L-PRG N))))

(PROVE- LEMVA PHI L- PRG- | N\VARI ANT- 1 (REWRI TE)
(IMPLIES (AND (LESSP 1 N)
(I NI TI AL- CONDI TI ON
“ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N)))

(AND (1 NVARI ANT * (PROPER- PHI LS STATE (QUOTE , N))
(PH L-PRG N))
(I NVARI ANT * (PROPER- FORKS STATE (QUOTE , N))
(PH L-PRG N))
(I NVARI ANT * (AND (PROPER- PHI LS STATE
(QUOTE , N))
(PROPER- FORKS STATE

(QUOTE , N)))
(PH L-PRG N))))
((1 NSTRUCTI ONS (DI SABLE EVAL) SPLIT (PROVE (DI SABLE EVAL))
(REWRI TE UNLESS- PROVES- | NVARI ANT
(($1C (LIST ’ AND
(LI ST * PROPER- PHI LS * STATE
(LI ST * QUOTE N))
(LI ST * PROPER- FORKS ' STATE
(LIST "QUOTE N))))))
(REWRI TE PROPER- FORKS- | NV) (PROVE (DI SABLE EVAL))
(PROVE (DI SABLE EVAL))
(REWRI TE | NVARI ANT- CONSEQUENCE
(($P (LI ST * PROPER PHI LS ' STATE (LI ST ' QUOTE N)))))
(PROVE (DI SABLE EVAL)) (BASH (DI SABLE EVAL)) PROMOTE
(REWRI TE | NVARI ANT- | MPLI ES)
(REWRI TE UNLESS- PROVES- | NVARI ANT
(($1 C (LIST ’ AND
(LI ST * PROPER- PHI LS ' STATE
(LI ST * QUOTE N))
(LI ST * PROPER- FORKS ' STATE
(LIST "QUOTE N))))))
(PROVE (DI SABLE EVAL)) (PROVE (DI SABLE EVAL))
(PROVE (DI SABLE EVAL)))))

(PROVE- LEMMA PROPER- PHI L- | NVARI ANT (REWRI TE)
(I MPLIES (AND (LESSP | NDEX N)
(NUMBERP | NDEX)
(LESSP 1 N)
(I'NI TI AL- CONDI TI ON
“ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N)))
(I NVARI ANT * (PROPER- PHI L STATE (QUOTE , | NDEX)
(QUOTE , (ADDIL- MOD N | NDEX)))
(PH L-PRG N)))
((I NSTRUCTI ONS PROMOTE
(REVRI TE | NVARI ANT- CONSEQUENCE
(($P (LI ST * PROPER PHI LS ' STATE (LI ST ' QUOTE N)))))
PROVE (PROVE (DI SABLE PROPER-PHIL)))))

(DEFN PROPER- FORK (STATE | NDEX LEFT)
(OR (FREE STATE | NDEX)
(EQUAL (FORK STATE | NDEX) | NDEX)
(EQUAL (FORK STATE | NDEX) LEFT)))

(PROVE- LEMMA PROPER- FORK- | NVARI ANT (REWRI TE)
(I MPLI ES (AND (LESSP | NDEX N)

(NUMBERP | NDEX)

(LESSP 1 N)

(I'NITI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))

(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N)))
(I NVARI ANT * (PROPER- FORK STATE (QUOTE , | NDEX)

316

(QUOTE , (SUB1- MOD N | NDEX)))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE | NVARI ANT- CONSEQUENCE
(($P (LI ST * PROPER FORKS ' STATE (LI ST ' QUOTE N)))))
PROVE (DROP 4)
(USE- LEMVA PROPER- FORKS- | MPLI ES
((N'N) (I 1 NDEX)
(STATE (S (PH L-PRG N)
(Il (LIST ' PROPER- FORK ' STATE
(LI ST * QUOTE | NDEX)
(LI ST * QUOTE ('SUB1- MOD N | NDEX)))
(PHIL-PRG N))))))
PROVE)))

(PROVE- LEMVA HUNGRY- UNLESS- OAKS- LEFT (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS * (HUNGRY STATE (QUOTE , | NDEX))
* (OWNS- LEFT STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE (((EU (LI ST ’ HUNGRY

' STATE
(LI ST ' QUOTE | NDEX))
(PH L-PRG N)
(LI ST * OANS- LEFT
' STATE
(LI ST * QUOTE | NDEX)))
STATEMENT)))
(CLAIM (EQUAL (CADR STATEMENT) | NDEX)

0)
PROVE PROVE)))

(PROVE- LEMMA HUNGRY- UNLESS- OWNS- Rl GHT (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS * (HUNGRY STATE (QUOTE , | NDEX))
“ (OMNS- Rl GHT STATE (QUOTE , | NDEX) (QUOTE , N))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROMOTE
(REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE (((EU (LI ST ' HUNGRY
' STATE

(LI ST * QUOTE | NDEX))

(PH L-PRG N)
(LI ST ' OMS- RI GHT
' STATE

(LI ST * QUOTE | NDEX)

(LIST * QUOTE N)))
STATEMENT)))
(CLAIM (EQUAL (CADR STATEMENT) | NDEX)
0)
PROVE PROVE)))

(PROVE- LEMVMA HUNGRY- LEFT- FREE- E- ENSURES- OAKNS- LEFT (REWRI TE)
(I MPLIES (AND (LESSP 1 N)

317

(LESSP | NDEX N)
(NUMBERP | NDEX))
(E- ENSURES * (HUNGRY STATE (QUOTE , | NDEX))
* (OWNS- LEFT STATE (QUOTE , | NDEX))
“ (AND (HUNGRY STATE (QUOTE , | NDEX))
(FREE STATE (QUOTE , | NDEX)))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE HELP- PROVE- E- ENSURES
(($E (LI ST * HUNGRY- LEFT | NDEX))
($SNEW (UPDATE- ASSOC (CONS * F | NDEX) | NDEX
(OLDEEE- 1
(LI ST ’ AND
(LI ST * HUNGRY * STATE
(LI ST * QUOTE | NDEX))
(LI ST * FREE ’ STATE
(LI ST ' QUOTE | NDEX)))
(LI ST * HUNGRY- LEFT I NDEX))))))
PROVE PROVE PROVE PROVE)))

(PROVE- LEMMA HUNGRY- Rl GHT- FREE- E- ENSURES- OAKNS- RI GHT (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(E- ENSURES * (HUNGRY STATE (QUOTE , | NDEX))
* (OMNS- Rl GHT STATE (QUOTE , | NDEX) (QUOTE , N))
“ (AND (HUNGRY STATE (QUOTE , | NDEX))
(FREE STATE
(QUOTE , (ADDL- MOD N | NDEX))))
(PH L-PRG N)))
((1 NSTRUCTI ONS
PROMOTE
(REWRI TE HELP- PROVE- E- ENSURES
(($E (LI ST * HUNGRY- RI GHT | NDEX N))
($SNEW (UPDATE- ASSOC (CONS * F (ADD1- MOD N | NDEX))
| NDEX
(OLDEEE- 1
(LI ST * AND
(LI ST * HUNGRY ' STATE
(LI ST * QUOTE | NDEX))
(LI ST ® FREE ’ STATE
(LI ST * QUOTE
(ADDL- MOD N | NDEX))))
(LI ST * HUNGRY- RI GHT | NDEX N))))))
PROVE PROVE PROVE PROVE)))

(PROVE- LEMVA HUNGRY- UNLESS- EATI NG (REVRI TE)
(IMPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS * (HUNGRY STATE (QUOTE , | NDEX))
* (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE (REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI'ST * HUNGRY ' STATE (LI ST ' QUOTE | NDEX))
(PH L-PRG N)
(LI ST * EATI NG * STATE (LI ST * QUOTE | NDEX)))
STATEMENT)))
(CLAIM (EQUAL (CADR STATEMENT) |NDEX) 0) PROVE PROVE)))

318

319

(PROVE- LEMVA OAKS- LEFT- UNLESS- SUFFI Cl ENT (REVRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS- SUFFI Cl ENT
STATEMENT
(PH L-PRG N)
OLD NEW
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(OWNS- LEFT STATE (QUOTE , | NDEX)))
“ (EATI NG STATE (QUOTE , I NDEX))))
((1 NSTRUCTI ONS PROVOTE X- DUMB PROMOTE
(= * (OR (OANS-LEFT NEW | NDEX) (EATI NG NEW | NDEX)) 0)
(CLAI M (PROPER- PH L OLD (SUBL- MOD N | NDEX) | NDEX) 0)
(CLAI M (OWNS- LEFT OLD | NDEX) 0) (DRCP 6)
(CLAIM (EQUAL (CADR STATEMENT) (SUBL-MOD N | NDEX)) 0) PROVE
(DROP 7) (CLAIM (EQUAL (CADR STATEMENT) | NDEX) 0) PROVE
(DROP 6) PROVE (CONTRADICT 9) (DROP 1 2 3 45 7 8 9)
(PROVE (DI SABLE OANS- LEFT)) (CONTRADI CT 8) (DROP 4 5 7 8)
(DEMOTE 4) (DI VE 1)
(= * (AND (PROPER-PH LS OLD N) (OWNS-LEFT OLD | NDEX))
((DI SABLE OAKS- LEFT)))
TOP PROMOTE
(REWRI TE PROPER- PHI LS- | MPLI ES- PROPER-PHI L (($N N)))
(DROP 2 3 4 5) PROVE (DROP 1 4 5) PROVE (DROP 2 3 7)
(PROVE (DI SABLE N MEMBER- PHI L- PRG OWNS- LEFT EATI NG
PROPER- PHI LS)))))

(PROVE- LEMMA OAKS- Rl GHT- UNLESS- SUFFI CI ENT (REVRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS- SUFFI CI ENT
STATEMENT
(PH L- PRG N)
OLD NEW
“ (AND (PROPER- PHI LS STATE (QUOTE , N))
(OWNS- RI GHT STATE (QUOTE , | NDEX) (QUOTE , N)))
* (EATI NG STATE (QUOTE , I NDEX))))
((1 NSTRUCTI ONS PROVOTE X- DUMB PROMOTE
= * (OR (OWNS-RI GHT NEWINDEX N) (EATI NG NEW | NDEX)) 0)
(CLAI' M (PROPER- PHI L OLD (ADD1- MOD N | NDEX)
(ADDL- MOD N (ADDL- MOD N | NDEX)))
0)
(CLAIM (OWNS- RI GHT OLD INDEX N) 0) (DROP 6)
(CLAIM (EQUAL (CADR STATEMENT) (ADDL-MOD N | NDEX)) 0) PROVE
(DROP 7) (CLAIM (EQUAL (CADR STATEMENT) | NDEX) 0) PROVE
(DROP 6) PROVE (CONTRADICT 9) (DROP 1 2 3 45 7 8 9)
(PROVE (DI SABLE OANS- RI GHT)) (CONTRADICT 8) (DROP 4 5 7 8)
(REWRI TE PROPER- PHI LS- | MPLI ES- PROPER-PHI L (($I NDEX N) ($N N)))
(PROVE (DI SABLE PROPER-PHI L)) (DROP 1 3 4) PROVE (DRCP 7)
(PROVE (DI SABLE N OWNS- RI GHT EATI NG MEMBER- PHI L- PRG)))))

(PROVE- LEMVA OWNS- RI GHT- UNLESS- EATI NG (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS * (AND (PROPER- PHI LS STATE (QUOTE , N))
(OWNS- RI GHT STATE (QUOTE , | NDEX)

(QUOTE , N)))
* (EATI NG STATE (QUOTE , | NDEX))

320

(PH L-PRG N)))
((DI SABLE PHI L- PRG UNLESS- SUFFI Cl ENT)))

(PROVE- LEMMA OANS- LEFT- UNLESS- EATI NG (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS * (AND (PROPER- PHI LS STATE (QUOTE , N))
(OWNS- LEFT STATE (QUOTE , | NDEX)))
“ (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((DI SABLE UNLESS- SUFFI Cl ENT PH L- PRG)))

(PROVE- LEMVA OANS- BOTH UNLESS- EATI NG (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS * (AND (OWNS- LEFT STATE (QUOTE , | NDEX))
(AND (OMNS- RI GHT STATE (QUOTE , | NDEX)
(QUOTE , N))
(PROPER- PHI LS STATE (QUOTE , N))))
* (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE UNLESS- CONJUNCTI ON
(($P-1 (LIST ' AND
(LI ST * PROPER- PHI LS ' STATE
(LI ST * QUOTE N))
(LI ST * OWNS- LEFT ’ STATE
(LI ST ' QUOTE I NDEX))))
($P-2 (LIST ’ AND

(LI ST * PROPER- PHI LS ' STATE
(LIST ' QUOTE N))
(LI ST * OANS- RI GHT ’ STATE
(LI ST ' QUOTE | NDEX)
(LIST "QUOTE N))))))
(REVRI TE OWNS- LEFT- UNLESS- EATI NG)
(REVRI TE OMNS- RI GHT- UNLESS- EATI NG) (PROVE (DI SABLE EVAL)))))

(PROVE- LEMVA OAKS- BOTH- E- ENSURES- EATI NG (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(E- ENSURES * (AND (OWNS- LEFT STATE (QUOTE , | NDEX))
(AND (OANS- RI GHT STATE (QUOTE , | NDEX)
(QUOTE , N))
(PROPER- PHI LS STATE (QUOTE , N))))

* (EATI NG STATE (QUOTE , | NDEX))

* (TRUE)

(PH L-PRG N)))

((1 NSTRUCTI ONS PROVOTE
(REWRI TE PROVE- E- ENSURES (($E (LI ST * HUNGRY- BOTH | NDEX N))))
PROVE
(REWRI TE PROVE- ENABLI NG- CONDI TI ON
(($NEW (I F (AND (HUNGRY (OLDC-1 ' (TRUE)
(LI ST * HUNGRY- BOTH | NDEX N))
| NDEX)
(ONNS- LEFT
(OLDC-1 ' (TRUE)
(LI ST * HUNGRY- BOTH | NDEX N))

| NDEX)
(OANS- RI GHT
(OLDG-1 ’ (TRUE)
(LI ST * HUNGRY- BOTH | NDEX N))
| NDEX N))
(UPDATE- ASSOC (CONS ' S | NDEX) ' EATI NG
(OLDC-1 ' (TRUE)
(LI ST * HUNGRY- BOTH | NDEX N)))
(OLDC-1 ' (TRUE)
(LI ST * HUNGRY- BOTH | NDEX N))))))
PROVE PROVE PROVE
(CLAI' M (HUNGRY (OLDEE (LI ST ’ HUNGRY- BOTH | NDEX N)
(LI ST ’ AND
(LI ST ' OANS- LEFT * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * AND
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE | NDEX)
(LI ST * QUOTE N))
(LI ST * PROPER- PHI LS ' STATE
(LIST "QUOTE N))))
(LI ST * EATI NG * STATE
(LI ST ' QUOTE | NDEX)))

| NDEX)
0)

(PROVE (DI SABLE HUNGRY EATI NG OMNS- LEFT OWNS- Rl GHT))
(CONTRADI CT 4)
(USE- LEMVA PROPER- PHI LS- | MPLI ES- PROPER: PHI L
((PHIL INDEX) (N N)
(STATE (OLDEE (LI ST * HUNGRY- BOTH | NDEX N)
(LI ST ’ AND
(LI ST ' OANS- LEFT * STATE
(LI ST ' QUOTE | NDEX))
(LI ST ’ AND
(LI ST ' OANS- Rl GHT * STATE
(LI ST ' QUOTE | NDEX)
(LI ST * QUOTE N))
(LI ST * PROPER- PHI LS * STATE
(LIST "QUOTE N))))
(LI ST * EATI NG ’ STATE (LI ST * QUOTE | NDEX))))
(RIGHT (ADDL- MOD N | NDEX))))
(PROVE (DI SABLE ADD1- MOD PROPER- PHI LS- | MPLI ES- PROPER- PHI L)))))

(PROVE- LEMVA OAKS- BOTH- LEADS- TO- EATI NG (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX)
(I NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N)))
(LEADS- TO * (AND (OWNS- LEFT STATE (QUOTE , | NDEX))
(OWNS- RI GHT STATE (QUOTE , | NDEX)
(QUOTE , N)))
* (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE VEAK- FAl RNESS- GENERAL
(($Q 1 (LI ST * EATING * STATE (LI ST * QUOTE | NDEX)))
($Q 2 (LI ST ’ EATING ' STATE (LI ST ' QUOTE | NDEX)))
($P-1 (LIST ’ AND

321

(LI ST ' OANS- LEFT ' STATE
(LI ST * QUOTE | NDEX))

(LI ST * AND
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE | NDEX)
(LI ST * QUOTE N))
(LI ST * PROPER- PHI LS ' STATE
(LI'ST "QUOTE N)))))

($P-2 (LIST ' AND

(LI ST ' OANS- LEFT ’ STATE
(LI ST * QUOTE | NDEX))

(LI ST ' AND
(LI ST ' OANS- Rl GHT * STATE
(LI ST * QUOTE | NDEX)
(LIST ' QUOTE N))
(LI ST * PROPER- PHI LS * STATE
(LIST "QUOTE N)))))

($C ' (TRUB))))

(REWRI TE OWNS- BOTH UNLESS- EATI NG)

(REVRI TE OWNS- BOTH- E- ENSURES- EATI NG (BASH (DI SABLE EVAL))
(BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL))

(BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)))))

(PROVE- LEMMA EATI NG- UNLESS- FREE (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(UNLESS * (EATI NG STATE (QUOTE , | NDEX))
“* (AND (FREE STATE (QUOTE , | NDEX))
(FREE STATE
(QUOTE , (ADDL- MOD N | NDEX))))
(PH L-PRG N)))
((1 NSTRUCTI ONS
PROMOTE
(REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE (((EU (LI ST ' EATI NG
' STATE
(LI ST * QUOTE | NDEX))
(PH L-PRG N)
(LI ST * AND
(LI ST * FREE
' STATE
(LI ST * QUOTE | NDEX))
(LI ST * FREE
' STATE
(LI ST * QUOTE (ADD1-MOD N | NDEX)))))
STATEMENT)))
(CLAIM (EQUAL (CADR STATEMENT) | NDEX)
0)
PROVE PROVE)))

(PROVE- LEMVA EATI NG E- ENSURES- FREE (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX))
(E- ENSURES * (EATI NG STATE (QUOTE , | NDEX))
* (AND (FREE STATE (QUOTE , | NDEX))
(FREE STATE

(QUOTE , (ADDL- MOD N | NDEX))))
" (TRUE)

(PH L-PRG N)))

322

((1 NSTRUCTI ONS
PROVOTE
(REWRI TE PROVE- E- ENSURES
(($E (LIST ' EATING TO I NDEX N))))

PROVE
(REWRI TE PROVE- ENABLI NG- CONDI TI ON
((SNEW
(IF

(EATI NG (OLDC-1 ' (TRUE)
(LI ST * EATI NG TO | NDEX N))
| NDEX)
(UPDATE- ASSCC
(CONS * S | NDEX)
" TH NKI NG
(UPDATE- ASSCC
(CONS * F 1 NDEX)
" FREE
(UPDATE- ASSOC (CONS ' F (ADDL- MOD N | NDEX))
" FREE
(OLDC-1 ' (TRUE)
(LI ST * EATING TO I NDEX N)))))
(OLDC-1 ' (TRUE)
(LI ST * EATING TO I NDEX N))))))
PROVE PROVE PROVE
(PROVE (DI SABLE EATI NG THI NKI NG FREE ADD1- MOD)))))

(PROVE- LEMVA EATI NG LEADS- TO- FREE (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX)
(I NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N)))
(LEADS- TO * (EATI NG STATE (QUOTE , | NDEX))
“* (AND (FREE STATE (QUOTE , | NDEX))
(FREE STATE
(QUOTE , (ADDIL- MOD N | NDEX))))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE VEAK- FAl RNESS- GENERAL
(($Q 1 (LIST ' AND
(LI ST * FREE ’ STATE (LI ST ' QUOTE | NDEX))
(LI ST * FREE * STATE
(LI ST * QUOTE (ADD1-MOD N | NDEX)))))
($Q 2 (LIST ’ AND
(LI ST * FREE * STATE (LI ST ' QUOTE | NDEX))
(LI ST * FREE ’ STATE
(LI ST ' QUOTE (ADD1- MOD N | NDEX)))))
($P-1 (LI ST ’ EATING ' STATE (LI ST ' QUOTE | NDEX)))
($P-2 (LI ST ’ EATING ' STATE (LI ST ' QUOTE | NDEX)))
($C " (TRUB))))
(REWRI TE EATI NG UNLESS- FREE) (REWRI TE EATI NG E- ENSURES- FREE)
(BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL))
(BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL))
(BASH (DI SABLE EVAL)))))

(PROVE- LEMMA LEADS- TO- EXPANDED- Rl GHT- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)

323

324

(NUMBERP | NDEX)
(I' NI TI AL- CONDI TI ON
“ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(LEADS- TO * (TRUE)
“(OR ((OMNS- Rl GHT
STATE (QUOTE , (SUBL- MOD N | NDEX))
(QUOTE , N))
(OR (FREE STATE (QUOTE , | NDEX))
(OR (EATI NG STATE
(QUOTE , | NDEX))
(TH NKI NG
STATE
(QUOTE , I NDEX)))))
(PH L-PRG N)))
(LEADS- TO * (TRUE)
*(OR (FREE STATE (QUOTE , | NDEX))
(OANS- RI GHT STATE
(QUOTE , (SUB1- MOD N | NDEX))
(QUOTE , N)))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE CANCELLATI ON- LEADS- TO- GENERAL
(($P-1 ' (TRUE))
($B (LI ST ' EATING * STATE (LI ST ' QUOTE | NDEX)))
($R-1 (LI ST * FREE * STATE (LI ST ' QUOTE | NDEX)))
($D (LI ST ' OR
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE (SUBL- MOD N | NDEX))
(LIST ' QUOTE N))
(LIST ' OR
(LI ST * FREE ’ STATE
(LI ST * QUOTE | NDEX))
(LIST *OR
(LI ST * EATI NG ’ STATE
(LI ST * QUOTE | NDEX))
(LI ST * THI NKI NG * STATE
(LIST " QUOTE INDEX))))))))
(REWRI TE LEADS- TO- WEAKEN- Rl GHT
(($Q (LI'ST * AND
(LI ST * FREE ’ STATE (LI ST ' QUOTE | NDEX))
(LI ST * FREE * STATE
(LI ST ' QUOTE (ADD1- MOD N | NDEX)))))))
(PROVE (DI SABLE EVAL)) (REVRI TE EATI NG LEADS- TO- FREE)
(CLAIM (EVAL (LI ST’ PROPER-PHI L ' STATE (LI ST * QUOTE | NDEX)
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(S (PH L-PRG N)
(JLEADS (I LEADS ' (TRUE) (PH L-PRG N)
(LIST ' OR
(LI ST * FREE * STATE
(LI ST ' QUOTE | NDEX))
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE
(SUB1- MOD N | NDEX))
(LIST "QUOTE N))))

(PH L- PRG N)

(LIST * OR
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE

(SUBL- MOD N | NDEX))

(LIST ' QUOTE N))
(LIST ' OR
(LI ST * FREE * STATE
(LI ST ' QUOTE | NDEX))
(LIST ' OR
(LI ST * EATI NG * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * THI NKI NG * STATE
(LI'ST " QUOTE INDEX))))))))
((DI SABLE EVAL ADDL- MOD)))
(CLAIM (EVAL (LI ST’ PROPER- FORK ' STATE (LI ST * QUOTE | NDEX)
(LI ST * QUOTE (SUBL- MOD N | NDEX)))
(S (PH L-PRG N)
(JLEADS (I LEADS ’ (TRUE) (PH L-PRG N)
(LIST ' OR
(LI ST * FREE * STATE
(LI ST ' QUOTE | NDEX))
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE
(SUB1- MOD N | NDEX))
(LIST "QUOTE N))))

(PH L- PRG N)

(LIST ' OR
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE

(SUBL- MOD N | NDEX))

(LI ST * QUOTE N))

(LIST ' OR

(LI ST * FREE ’ STATE
(LI ST * QUOTE | NDEX))

(LIST ' OR
(LI ST * EATI NG * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * THI NKI NG ’ STATE
(LI'ST " QUOTE INDEX))))))))

((DI SABLE EVAL SUB1- MOD)))
(GENERALI ZE
(((S (PHI L-PRG N)
(JLEADS (I LEADS ' (TRUE) (PH L-PRG N)
(LIST ' OR

(LI ST * FREE ’ STATE
(LI ST * QUOTE | NDEX))

(LI ST * OANS- RI GHT ’ STATE
(LI ST * QUOTE
(SUBL- MOD N | NDEX))
(LI'ST "QUOTE N))))

(PH L-PRG N)
(LIST ' OR
(LI ST ' OANS- RI GHT * STATE

(LI ST * QUOTE ('SUBL- MOD N | NDEX))

(LI ST * QUOTE N))
(LIST ' OR

(LI ST * FREE ’ STATE

(LI ST * QUOTE | NDEX))

(LIST ' OR

(LI ST * EATI NG * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * THI NKI NG ’ STATE

(LI'ST * QUOTE 1NDEX)))))))
STATE)))

(DROP 4 5) BASH (PROVE (DI SABLE EVAL)) 9)))

325

(PROVE- LEMVA LEADS- TO- EXPANDED- LEFT- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX)
(I' NI TI AL- CONDI TI ON
“ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(LEADS- TO * (TRUE)
“(OR (OMNS- LEFT
STATE
(QUOTE , (ADDIL- MOD N | NDEX)))
(OR (FREE
STATE
(QUOTE , (ADDL- MOD N | NDEX)))
(OR (EATI NG STATE (QUOTE , | NDEX))
(TH NKI NG STATE
(QUAOTE , INDEX)))))
(PH L-PRG N)))
(LEADS- TO * (TRUE)
“(OR (FREE STATE (QUOTE , (ADDL- MOD N | NDEX)))
(ONNS- LEFT STATE
(QUOTE , (ADDL- MOD N | NDEX))))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE CANCELLATI ON- LEADS- TO- GENERAL
(($P-1 ' (TRUE))
($B (LI ST ' EATI NG
' STATE
(LI ST * QUOTE | NDEX)))
($R-1 (LIST ’ AND
(LI ST * FREE
' STATE
(LI ST * QUOTE | NDEX))
(LI ST * FREE
' STATE

(LI ST * QUOTE (ADD1-MOD N | NDEX)))))
($D (LIST ' OR

(LI ST ' OANS- LEFT
' STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LIST ' OR
(LI ST * FREE
' STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LIST ' OR
(LI ST ' EATI NG
' STATE
(LI ST ' QUOTE | NDEX))
(LI ST * THI NKI NG
' STATE
(LI'ST * QUOTE INDEX))))))))
(REVRI TE EATI NG LEADS- TO- FREE)
(CLAI M
(EVAL
(LI ST * PROPER- PHI L
' STATE
(LI ST * QUOTE | NDEX)
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(s
(PH L-PRG N)

326

(JLEADS (1 LEADS °’ (TRUE)
(PH L- PRG N)
(LIST "R
(LI ST * FREE
' STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LI ST * OANS- LEFT
' STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))))

(PHI L- PRG N)
(LIST 'R
(LI ST ' ONS- LEFT
' STATE
(LI'ST * QUOTE (ADD1- MOD N | NDEX)))
(LIST "R
(LI ST * FREE
' STATE
(LI ST * QUOTE (ADD1- MOD N | NDEX)))
(LIST 'R
(LI ST ' EATI NG
' STATE

(LI ST * QUOTE | NDEX))
(LI ST * THI NKI NG
' STATE
(LI'ST " QUOTE INDEX))))))))
((DI SABLE EVAL ADD1- MOD)))
(CLAIM
(EVAL
(LI ST ' PROPER- FORK
' STATE
(LI ST ' QUOTE (ADD1- MOD N | NDEX))
(LI ST ' QUOTE
(SUB1- MOD N (ADD1- MOD N | NDEX))))
(s
(PHI L- PRG N)
(JLEADS (| LEADS ' (TRUE)
(PHI L-PRG N)
(LIST "R
(LI ST ' FREE
' STATE
(LI ST ' QUOTE (ADDL- MOD N | NDEX)))
(LI ST ' OANS- LEFT
' STATE
(LI ST ' QUOTE (ADDL- MOD N | NDEX)))))

(PH L-PRG N)
(LIST "OR
(LI ST ' OANS- LEFT
' STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LIST ' OR
(LI ST * FREE
' STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LIST "OR
(LI ST ' EATI NG
' STATE

(LI'ST " QUOTE | NDEX))
(LI'ST " THI NKI NG
' STATE

(LI'ST " QUOTE INDEX))))))))
((DI SABLE EVAL SUB1- MD)))

327

(GENERALI ZE
(((s
(PH L- PRG N)
(JLEADS
(I LEADS ’ (TRUE)
(PH L- PRG N)
(LIST ' OR
(LI ST * FREE
' STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LI ST * OANS- LEFT
' STATE
(LI ST * QUOTE (ADDL1-MOD N | NDEX)))))
(PHI L- PRG N)
(LIST ' OR
(LI ST * OANS- LEFT
' STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LIST " OR
(LI ST * FREE
' STATE
(LI ST * QUOTE (ADD1- MOD N | NDEX)))
(LIST ' OR
(LI ST * EATI NG
' STATE
(LI ST * QUOTE | NDEX))
(LI ST * THI NKI NG
' STATE
STATD))) (LI'ST " QUOTE INDEX)))))))
(DROP 4 5)
BASH

(PROVE (DI SABLE EVAL))
S)))

(PROVE- LEMVA TRUE- LEADS- TO- LEFT- FREE- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX)
(STRONGLY- FAI R (PHI L- PRG N))
(I'NITI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(LEADS- TO * (TRUE)
“(OR (FREE STATE (QUOTE , | NDEX))
(OWNS- LEFT STATE (QUOTE , | NDEX)))
(PH L-PRG N)))
(LEADS- TO * (HUNGRY STATE (QUOTE , | NDEX))
* (OWNS- LEFT STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE STRONG FAI RNESS
(($C (LI ST * AND

(LI ST * HUNGRY ' STATE (LI ST ' QUOTE | NDEX))
(LI ST * FREE * STATE (LI ST * QUOTE | NDEX))))))

(REWRI TE HUNGRY- UNLESS- OAKS- LEFT)
(REWRI TE HUNGRY- LEFT- FREE- E- ENSURES- OWNS- LEFT)
(REWRI TE PSP- GENERAL
(($P ’ (TRUE))
($Q (LI ST ' OR

328

329

(LI ST * FREE ’ STATE (LI ST ' QUOTE | NDEX))
(LI ST ' OANS- LEFT ’ STATE
(LI ST * QUOTE | NDEX))))
($R (LI ST ' HUNGRY ' STATE (LI ST ' QUOTE | NDEX)))
($B (LI ST ' OANS- LEFT * STATE (LI ST ' QUOTE | NDEX)))))
(REWRI TE HUNGRY- UNLESS- OANS- LEFT) (PROVE (DI SABLE EVAL))
(PROVE (DI SABLE EVAL)) PROVE)))

(PROVE- LEMVA TRUE- LEADS- TO- Rl GHT- FREE- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX)
(STRONGLY- FAI R (PHI L- PRG N))
(I' NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(LEADS- TO * (TRUE)
*(OR (FREE STATE
(QUOTE , (ADDL- MOD N | NDEX)))
(OWNS- RI GHT STATE (QUOTE , | NDEX)

(QUOTE , N)))
(PHL-PRG N)))

(LEADS- TO * (HUNGRY STATE (QUOTE , | NDEX))
* (OWNS- RI GHT STATE (QUOTE , | NDEX)
(QUOTE , N))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE STRONG FAI RNESS
(($C (LIST * AND
(LI ST * HUNGRY ' STATE (LI ST ' QUOTE | NDEX))
(LI ST * FREE * STATE
(LI ST ' QUOTE (ADD1- MOD N | NDEX)))))))
(REWRI TE HUNGRY- UNLESS- OAKS- Rl GHT)
(REWRI TE HUNGRY- RI GHT- FREE- E- ENSURES- OAKS- Rl GHT)
(REWRI TE PSP- GENERAL
(($P ' (TRUE))
($Q (LI ST ' OR
(LI ST * FREE ’ STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE | NDEX)
(LIST *QUOTE N))))
($R (LI ST ' HUNGRY ' STATE (LI ST ' QUOTE | NDEX)))
($B (LI ST ' OANS- RI GHT * STATE (LI ST ' QUOTE | NDEX)
(LIST "QUOTE N)))))
(REWRI TE HUNGRY- UNLESS- OANS- RI GHT) (PROVE (DI SABLE EVAL))
(PROVE (DI SABLE EVAL)) PROVE)))

(PROVE- LEMVA HUNGRY- LEADS- TO- OMNS- Rl GHT- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP 1 N)

(LESSP | NDEX N)

(NUMBERP | NDEX)

(STRONGLY- FAI R (PHI L- PRG N))

(I'NITI AL- CONDI TI ON
“ (AND (PROPER- PHI LS STATE (QUOTE , N))

(PROPER- FORKS STATE (QUOTE , N)))

(PH L-PRG N))

(LEADS- TO * (HUNGRY STATE (QUOTE , | NDEX))

* (OWNS- RI GHT STATE (QUOTE , | NDEX)
(QUOTE , N))

330

(PH L-PRG N)))
(LEADS- TO * (AND (HUNGRY STATE (QUOTE , | NDEX))
(OWNS- LEFT STATE (QUOTE , | NDEX)))
* (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROMOTE
(REWRI TE CANCELLATI ON- LEADS- TO- GENERAL
(($P-1 (LIST ' AND
(LI ST * HUNGRY ' STATE
(LI ST * QUOTE | NDEX))
(LI ST ' OANS- LEFT * STATE

(LI ST ' QUOTE I NDEX))))
($B (LI ST ' AND

(LI ST ' OANS- LEFT * STATE
(LI ST ' QUOTE | NDEX))
(LI ST ' OANS- RI GHT * STATE
(LIST ' QUOTE INDEX) (LIST ' QUOTE N))))
($R-1 (LI ST ’ EATING ' STATE (LI ST ' QUOTE | NDEX)))
($D (LI ST ' OR
(LI ST ' AND
(LI ST ' OANS- LEFT ’ STATE
(LI ST * QUOTE | NDEX))
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE | NDEX)
(LIST " QUOTE N)))
(LI ST * EATI NG ' STATE (LI ST ' QUOTE | NDEX))))))
(REWRI TE PSP- GENERAL
(($P (LI ST * HUNGRY ’ STATE (LI ST ' QUOTE | NDEX)))
($Q (LI ST ’ OANS- RI GHT * STATE (LI ST ' QUOTE | NDEX)
(LIST * QUOTE N)))
($R (LI ST ' AND
(LI ST * PROPER- PHI LS * STATE
(LIST ' QUOTE N))
(LI ST ' OANS- LEFT ’ STATE
(LI ST * QUOTE | NDEX))))
($B (LI ST ' EATI NG ’ STATE (LI ST * QUOTE | NDEX)))))
(REWRI TE OWNS- LEFT- UNLESS- EATI NG (BASH (DI SABLE EVAL))
(PROVE (DI SABLE EVAL)) PROVE
(REVRI TE OWNS- BOTH LEADS- TO- EATI NG) (PROVE (DI SABLE EVAL)) S

S)))

(PROVE- LEMVA HUNGRY- LEADS- TO- OMNS- LEFT- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX)
(STRONGLY- FAI R (PHI L- PRG N))
(I'NI TI AL- CONDI TI ON
“ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(LEADS- TO * (HUNGRY STATE (QUOTE , | NDEX))
* (OWNS- LEFT STATE (QUOTE , | NDEX))
(PH L-PRG N)))
(LEADS- TO * (AND (HUNGRY STATE (QUOTE , | NDEX))
(OWNS- RI GHT STATE (QUOTE , | NDEX)
(QUOTE , N)))
* (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE CANCELLATI ON- LEADS- TO- GENERAL
(($P-1 (LIST ' AND

(LI ST * HUNGRY ' STATE
(LI ST * QUOTE | NDEX))
(LI ST * OANS- RI GHT ’ STATE
(LI ST ' QUOTE | NDEX)

(LIST "QUOTE N))))
($B (LIST ' AND

(LI ST ' OANS- LEFT ' STATE
(LI ST * QUOTE | NDEX))
(LI ST ' OANS- RI GHT ' STATE
(LI ST ' QUOTE I NDEX) (LIST ' QUOTE N))))
($R-1 (LI ST ’ EATING ’ STATE (LI ST ' QUOTE | NDEX)))
($D (LI ST ' OR
(LI ST ’ AND
(LI ST * OWNS- LEFT ’ STATE
(LI ST ' QUOTE | NDEX))
(LI ST ' OANS- RI GHT * STATE
(LI ST ' QUOTE | NDEX)
(LIST ' QUOTE N)))
(LI ST * EATI NG * STATE (LI ST * QUOTE | NDEX))))))
(REVRI TE PSP- GENERAL
(($P (LI ST * HUNGRY ’ STATE (LI ST ' QUOTE | NDEX)))
($Q (LI ST ' OANS- LEFT * STATE (LI ST * QUOTE | NDEX)))
($R (LI ST ' AND
(LI ST * PROPER- PHI LS * STATE
(LIST ' QUOTE N))
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE | NDEX)
(LIST "QUOTE N))))
($B (LI ST ’ EATI NG * STATE (LI ST ’ QUOTE | NDEX)))))
(REWRI TE OWNS- Rl GHT- UNLESS- EATI NG) (BASH (DI SABLE EVAL))
(PROVE (DI SABLE EVAL)) PROVE
(REWRI TE OWNS- BOTH- LEADS- TO- EATI NG) (PROVE (DI SABLE EVAL)) S

S)))

(DEFN LEFT-CHAIN (I J N STATE)
(I F (AND (NUVBERP |)
(NUMBERP J)
(LESSP | N)
(LESSP J N))
(IF (EQUAL | J)
(AND (HUNGRY STATE I)
(OWNS- LEFT STATE 1))
(AND (HUNGRY STATE 1)
(OWNS- LEFT STATE 1)
(LEFT- CHAI N (SUBL-MOD N 1) J N STATE)))
F)
((LESSP (IF (NOT (LESSP | J))
(DI FFERENCE (ADDL 1) J)
(PLUS (ADD1 1) (DI FFERENCE N J))))))

(DEFN RI GHT-CHAIN (I J N STATE)
(I F (AND (NUVBERP |)
(NUMBERP J)
(LESSP | N)
(LESSP J N))
(IF (EQUAL | J)
(AND (HUNGRY STATE I)
(OWNS-RI GHT STATE | N))
(AND (HUNGRY STATE 1)
(OWNS-RI GHT STATE | N)
(Rl GHT- CHAI N (ADDL-MOD N 1) J N STATE)))

331

332

F)
((LESSP (I F (NOT (LESSP J 1))
(DI FFERENCE (ADDL J) I)
(PLUS (ADD1 J) (DI FFERENCE N 1))))))

(PROVE- LEMMA BREAK- LEFT- CHAI N (REWRI TE)
(I MPLIES (AND (LESSP | N)

(LESSP J N)

(NUMBERP 1)

(NUMBERP J)

(LESSP | J))

(EQUAL (LEFT-CHAIN | J N STATE)
(AND (LEFT-CHAIN | 0 N STATE)
(LEFT-CHAIN (SUBL N) J N STATE)))))

(DEFN LCC (I J K)
(I'F (AND (NUVBERP |)
(NUMBERP J)
(NUMBERP K)
(LESSP | K)
(LESSP J K)
(NOT (EQUAL | J))
(NOT (ZEROP K)))
(IF (EQUAL (ADDL 1) K)
(LCC (SUBL I) J (SUBL K))
(IF (EQUAL (ADDL J) K)
(LCC | (SUBL J) (SUBL K))
(LCC 1 J (SUBL K))))
M)

(PROVE- LEMVA LEFT- CHAI N- COMBI NE (REWRI TE)
(I MPLI ES (AND (NUMBERP 1)
(NUMBERP J)
(NUMBERP K)
(LESSP K N)
(LESSP | K)
(LESSP J K))

(EQUAL (AND (LEFT-CHAIN | 0 N STATE)
(LEFT-CHAIN K (ADDL 1) N STATE))
(AND (LEFT-CHAIN J 0 N STATE)
(LEFT-CHAIN K (ADDL J) N STATE))))

((INDUCT (LCC I J K))
(DI SABLE HUNGRY OWNS- LEFT
BREAK- LEFT- CHAI N)))

(PROVE- LEMVA LESSP-1-1 (REWRI TE)
(EQUAL (LESSP N 1)
(ZEROP N)))

(DI SABLE LESSP-1-1)

(PROVE- LEMVA LEFT- CHAI N- CANONI CALI ZE (REWRI TE)
(I MPLI ES (AND (NUMBERP 1)
(LESSP | N))
(EQUAL (LEFT-CHAIN | (ADDI-MD N |) N STATE)
(LEFT-CHAIN (SUBL N) 0 N STATE)))
((USE (LEFT- CHAI N-COMBI NE (K (SUBL N)) (I (SUBL (SUBL N)))
(J 1) (STATE STATE))
(BREAK- LEFT-CHAIN (1 I) (J (ADDL-MD N 1))
(N N) (STATE STATE)))
(DI SABLE LEFT- CHAI N- COVBI NE BREAK- LEFT- CHAI N

ALL- LEFTS- | MPLI ES HUNGRY OAKS- LEFT LESSP- 1)
(ENABLE LESSP-1-1)))

(PROVE- LEMVA LEFT- CHAI N- CANONI CALI ZE- ALL- LEFTS (REWRI TE)
(I MPLIES (AND (NOT (ZEROP | NDEX))
(NOT (LESSP N I NDEX)))
(EQUAL (LEFT-CHAIN (SUB1 | NDEX) O N STATE)
(ALL- LEFTS STATE | NDEX)))
((DI SABLE HUNGRY OAKS- LEFT)
(I NDUCT (ALL- LEFTS STATE | NDEX))))

(PROVE- LEMMA LEFT- CHAl N- COMPLETE (REWRI TE)
(I MPLI ES (AND (NUMBERP 1)
(LESSP | N))
(EQUAL (LEFT-CHAIN | (ADDI-MD N |) N STATE)
(ALL- LEFTS STATE N)))
((1 NSTRUCTI ONS PROVOTE (DI VE 1) (REWRI TE LEFT- CHAI N- CANCNI CAL| ZE)

(REVRI TE LEFT- CHAI N- CANONI CALI ZE- ALL- LEFTS) TOP S PROVE PROVE

PROVE)))

(DI SABLE LEFT- CHAI N- CANONI CAL| ZE- ALL- LEFTS)
(DI SABLE LEFT- CHAI N- CANONI CALI ZE)

(DI SABLE LEFT- CHAI N- COMBI NE)

(DI SABLE BREAK- LEFT- CHAI N)

(PROVE- LEMMA BREAK- Rl GHT- CHAI N (REWRI TE)
(I MPLIES (AND (LESSP | N)
(LESSP J N)
(NUVBERP 1)
(NUVBERP J)

(LESSP J 1))

(EQUAL (RIGHT-CHAIN | J N STATE)
(AND (RIGHT-CHAIN | (SUBL N) N STATE)
(RIGHT-CHAIN 0 J N STATE)))))

(DEFN RCC (I J K N)
(IF (AND (LESSP | N)
(LESSP J N)
(NUMBERP K)
(LESSP K 1)
(LESSP K J)
(NOT (EQUAL | J))
(NOT (EQUAL K N)))
(IF (EQUAL K (SUBL 1))
(RCC (ADDL I) J (ADDL K) N)
(IF (EQUAL K (SUBL J))
(RCC | (ADDL J) (ADDL K) N)
(RCC1 J (ADDL K) N)))
M
((LESSP (DI FFERENCE N K))))

(PROVE- LEMMA RI GHT- CHAI N- COMBI NE (REWRI TE)
(I MPLI ES (AND (NUMBERP K)
(LESSP | N)
(LESSP J N)
(LESSP K 1)
(LESSP K J))

(EQUAL (AND (RIGHT-CHAIN | (SUBL N) N STATE)

(RIGHT-CHAIN K (SUBL I) N STATE))

(AND (RIGHT-CHAIN J (SUBL N) N STATE)
(RIGHT-CHAIN K (SUBL J) N STATE))))

333

((I NSTRUCTI ONS (DI SABLE HUNGRY OWNS- RI GHT BREAK- Rl GHT- CHAI N)
(INDUCT (RCC | J K N)) PROMOTE PROMOTE (DIVE 1) (DIVE 1) X UP
(DIVE 2) X TOP (DIVE 2) (DIVE 2) X TOP (DEMOTE 9) (DI VE 1)
(DIVE 2) (DIVE 1) (DIVE 2) X TOP
(PROVE (DI SABLE BREAK- Rl GHT- CHAI N OANS- RI GHT HUNGRY)) PROMOTE
PROVOTE (DIVE 1) (DIVE 2) X TOP (DIVE 2) (DIVE 1) X UP
(DIVE 2) X TOP (DEMOTE 10) (DIVE 1) (DIVE 2) (DIVE 2) (DI VE 2)
X TOP PROMOTE
(PROVE (DI SABLE BREAK- RI GHT- CHAI N OANS- RI GHT HUNGRY)) PROMOTE
PROVOTE (DIVE 1) (DIVE 2) X TOP (DIVE 2) (DIVE 2) X TOP
(PROVE (DI SABLE BREAK- RI GHT- CHAI N OANS- RI GHT HUNGRY))

(PROVE (DI SABLE BREAK- RI GHT- CHAI N OANS- RI GHT HUNGRY)))))

(PROVE- LEMMA RI GHT- CHAI N- CANONI CALI ZE (REWRI TE)
(I MPLI ES (AND (NUMBERP 1)

(LESSP | N))
(EQUAL (RIGHT-CHAIN | (SUBL-MOD N |) N STATE)
(RIGHT-CHAIN 0 (SUBL N) N STATE)))
((USE (RI GHT- CHAI N- COVBI NE (K 0) (I 1)
J 1) (STATE STATE))

(
(BREAK- RI GHT-CHAIN (1 1) (J (SUBL-MD N 1))
(N N) (STATE STATE)))
(DI SABLE RI GHT- CHAI N- COMBI NE BREAK- Rl GHT- CHAI N
ALL- RI GHTS- | MPLI ES HUNGRY OWNS- Rl GHT LESSP- 1)
(ENABLE LESSP-1-1)))

(PROVE- LEMMA Rl GHT- CHAI N- EXTEND- RI GHT (REWRI TE)
(I MPLI ES (AND (NUMBERP 1)
(NUMBERP J)
(LESSP | N)
(LESSP J N)
(NOT (EQUAL I J)))
(EQUAL (RIGHT-CHAIN | J N STATE)
(AND (RIGHT-CHAIN | (SUB1-MOD N J) N STATE)
(HUNGRY STATE J)
(OWNS-RI GHT STATE J N))))
((DI SABLE OAKS- Rl GHT HUNGRY)
(INDUCT (RIGHT-CHAIN | J N STATE))))

(PROVE- LEMMA RI GHT- CHAI N- CANONI CALI ZE- ALL- RI GHTS (REWRI TE)
(I MPLIES (AND (NOT (ZEROP | NDEX))
(NOT (LESSP N I NDEX)))
(EQUAL (RIGHT-CHAIN O (SUBL I NDEX) N STATE)
(ALL- Rl GHTS- REC STATE | NDEX N)))
((I NSTRUCTI ONS (DI SABLE OANS- RI GHT HUNGRY)
(I NDUCT (ALL- Rl GHTS- REC STATE | NDEX N))
(PROVE (DI SABLE HUNGRY OANS- RI GHT)) PROMOTE PROMOTE (DEMOTE 2)
(DIVE 1) (DIVE 1) (DIVE 2)
(= * T ((DI SABLE HUNGRY OWNS-RI GHT))) TOP S-PROP S DI VE
(= * T ((D SABLE HUNGRY OMNS-RI GHT))) TOP DI VE (DI VE 1)
(REVRI TE RI GHT- CHAl N- EXTEND- RI GHT) TOP
(PROVE (DI SABLE HUNGRY OMNS- Rl GHT)) PROVE PROVE PROVE)))

(PROVE- LEMVA RI GHT- CHAI N- COMPLETE (REVRI TE)
(I MPLI ES (AND (NUMBERP 1)
(LESSP | N))
(EQUAL (RIGHT-CHAIN | (SUBL-MOD N |) N STATE)
(ALL- Rl GHTS STATE N)))
((1 NSTRUCTI ONS PROVOTE (DI VE 1) (REWRI TE RI GHT- CHAI N- CANONI CALI ZE)
(REWRI TE R GHT- CHAI N- CANONI CALI ZE- ALL- Rl GHTS)

334

TOP S PROVE
PROVE PROVE)))

(DI SABLE RI GHT- CHAI N- CANONI CALI ZE- ALL- RI GHTS)
(DI SABLE RI GHT- CHAI N- EXTEND- Rl GHT)

(DI SABLE RI GHT- CHAI N- CANONI CALI ZE)

(DI SABLE RI GHT- CHAI N- COMBI NE)

(DI SABLE BREAK- Rl GHT- CHAI N)

(PROVE- LEMMA NOT- EVENTUALLY- LEFT- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX)
(I' NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(NOT (EVENTUALLY- | NVARI ANT
“ (AND (HUNGRY STATE (QUOTE , | NDEX))
(OWNS- LEFT STATE (QUOTE , | NDEX)))
(PH L-PRG N))))
(LEADS- TO * (TRUE)
*(OR ((OMNS- Rl GHT
STATE (QUOTE , (SUBL- MOD N | NDEX))
(QUOTE , N))
(OR (FREE STATE (QUOTE , | NDEX))
(OR (EATI NG STATE
(QUOTE , | NDEX))
(TH NKI NG
STATE
(QUOTE , I NDEX)))))
(PH L-PRG N)))
((1 NSTRUCTI ONS
PROVOTE
(REWRI TE NOT- EVENTUALLY- | NVARI ANT- PROVES- LEADS- TO
(($NOT-Q (LI ST ' AND
(LI ST * HUNGRY * STATE
(LI ST * QUOTE | NDEX))
(LI ST ' OANS- LEFT ' STATE
(LI ST * QUOTE | NDEX))))))
(CLAI M

(EVAL (LI ST ’ PROPER-PHI L ' STATE (LI ST ’ QUOTE | NDEX)
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(S (PH L-PRG N)

(JES (1 LEADS
" (TRUE) (PHIL-PRG N)
(LIST ' OR
(LI ST ' OANS- RI GHT * STATE

(LI ST * QUOTE
(SUB1- MOD N | NDEX))
(LI ST * QUOTE N))
(LIST ' OR
(LI ST * FREE ’ STATE
(LI ST * QUOTE | NDEX))
(LIST ' OR
(LI ST * EATI NG * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * THI NKI NG ’ STATE
(o (LI ST * QUOTE | NDEX))))))
PH L-P
(LI ST ’ AND

335

(LI ST * HUNGRY ' STATE
(LI ST * QUOTE | NDEX))
(LI ST ' OANS- LEFT * STATE
(LI ST * QUOTE I NDEX))))))
((DI SABLE EVAL ADDL- MOD)))
(CLAIM
(EVAL (LI ST ’ PROPER- FORK ' STATE (LI ST ' QUOTE | NDEX)
(LI ST * QUOTE (SUBL- MOD N | NDEX)))
(S (PH L-PRG N)
(JES (1 LEADS ' (TRUE) (PHIL-PRG N)
(LIST ’OR
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE
(SUBL- MOD N | NDEX))
(LIST ' QUOTE N))
(LIST ' OR
(LI ST * FREE ’ STATE
(LI ST * QUOTE | NDEX))
(LIST " OR
(LI ST * EATI NG ' STATE
(LI ST * QUOTE | NDEX))
(LI ST * THI NKI NG * STATE
(LI ST * QUOTE
INDEX))))))
(PH L-PRG N)
(LI ST ’ AND
(LI ST * HUNGRY ’ STATE
(LI ST ' QUOTE | NDEX))
(LI ST ' OANS- LEFT ’ STATE
(LI ST * QUOTE | NDEX))))))
((DI SABLE EVAL SUB1- MOD)))
(DROP 4 5)
(GENERALI ZE
(((S (PHIL-PRG N)
(JES (1 LEADS ’ (TRUE) (PHIL-PRG N)
(LIST ' OR
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE (SUBL- MOD N | NDEX))
(LIST ' QUOTE N))
(LIST ' OR
(LI ST * FREE ’ STATE
(LI ST * QUOTE | NDEX))
(LIST " OR
(LI ST * EATI NG ’ STATE
(LI ST * QUOTE | NDEX))
(LI ST * THI NKI NG * STATE
(LI ST * QUOTE | NDEX))))))
(PH L- PRG N)
(LI ST ' AND
(LI ST * HUNGRY * STATE (LI ST ' QUOTE | NDEX))
(LI ST ' OANS- LEFT * STATE
(LI ST * QUOTE I NDEX)))))
STATE)))

(BASH (DI SABLE EATI NG HUNGRY THI NKI NG FORK)))))

(PROVE- LEMVA NOT- EVENTUALLY- Rl GHT- | MPLI ES (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | NDEX N)
(NUMBERP | NDEX)
(I' NI TI AL- CONDI TI ON

336

* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(NOT (EVENTUALLY- | NVARI ANT
“ (AND (HUNGRY STATE (QUOTE , | NDEX))
(OWNS- RI GHT STATE (QUOTE , | NDEX)

(QUOTE , N)))
(PH L-PRG N))))
(LEADS- TO * (TRUE)
“(OR (OMNS- LEFT
STATE
(QUOTE , (ADDL- MOD N | NDEX)))
(OR (FREE
STATE

(QUOTE , (ADDL- MOD N | NDEX)))
(OR (EATI NG STATE (QUOTE , | NDEX))
(TH NKI NG STATE
(QUAOTE , INDEX)))))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE NOT- EVENTUALLY- | NVARI ANT- PROVES- LEADS- TO
(($NOT-Q (LI ST ’ AND
(LI ST * HUNGRY ' STATE
(LI ST * QUOTE | NDEX))
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE | NDEX)
(LIST "QUOTE N))))))
(CLAIM (EVAL (LI ST’ PROPER-PHI L ' STATE (LI ST ' QUOTE | NDEX)
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(S (PH L-PRG N)
(JES (1 LEADS ' (TRUE) (PHIL-PRG N)

(LIST ' OR
(LI ST ' OANS- LEFT ' STATE
(LI ST * QUOTE
(ADDL- MOD N | NDEX)))
(LIST ' OR
(LI ST * FREE ’ STATE
(LI ST * QUOTE
(ADDL- MOD N | NDEX)))
(LIST ' OR

(LI ST * EATI NG ' STATE
(LI ST * QUOTE | NDEX))
(LI ST * THI NKI NG * STATE
(LI ST * QUOTE I NDEX))))))
(PH L-PRG N)
(LI ST * AND

(LI ST * HUNGRY ' STATE

(LI ST * QUOTE | NDEX))

(LI ST ' OANS- RI GHT * STATE

(LI ST * QUOTE | NDEX)

(LIST "QUOTE N))))))

((DI SABLE EVAL ADDI1- MOD)))
(CLAIM (EVAL (LI ST’ PROPER- FORK ’ STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX))
(LI ST * QUOTE
(SUBL- MOD N (ADDL- MOD N | NDEX))))
(S (PH L-PRG N)
(JES (1 LEADS ' (TRUE) (PHIL-PRG N)
(LIST ’ OR
(LI ST ' OANS- LEFT ' STATE

(LI ST * QUOTE

337

338

(ADDL- MOD N | NDEX)))
(LIST ' OR
(LI ST * FREE * STATE
(LI ST * QUOTE
(ADDL- MOD N | NDEX)))
(LIST * OR
(LI ST * EATI NG * STATE
(LI ST * QUOTE | NDEX))
(LIST ' THI NKI NG ’ STATE
(LI ST * QUOTE | NDEX))))))
(PH L- PRG N)
(LI ST ' AND
(LI ST * HUNGRY * STATE
(LI ST * QUOTE | NDEX))
(LI ST ' OANS- RI GHT * STATE
(LI ST * QUOTE | NDEX)
(LIST "QUOTE N))))))
((DI SABLE EVAL SUB1- MD)))
(DROP 4 5)
(GENERALI ZE
(((S (PHIL-PRG N)
(JES (1 LEADS ’ (TRUE) (PHIL-PRG N)
(LIST ' OR
(LI ST ' OANS- LEFT * STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LIST ' OR
(LI ST * FREE * STATE
(LI ST * QUOTE (ADDL- MOD N | NDEX)))
(LIST ' OR
(LI ST * EATI NG * STATE
(LI ST ' QUOTE | NDEX))
(LI ST * THI NKI NG ’ STATE
(LI ST * QUOTE I NDEX))))))
(PH L-PRG N)
(LI ST * AND
(LI ST * HUNGRY ' STATE (LI ST ' QUOTE | NDEX))
(LI ST ' OANS- RI GHT * STATE

(LI'ST * QUOTE | NDEX) (LIST ' QUOTE N)))))
STATE)))

(BASH (DI SABLE EATI NG HUNGRY THI NKI NG FORK)))))

(PROVE- LEMMA RI GHT- CHAI N- | NDUCTI ON (REWRI TE)
(I MPLI ES (AND (STRONGLY- FAIR (PHI L-PRG N))
(LESSP 1 N)
(LESSP | N)
(LESSP J N)
(NUMBERP 1)
(NUMBERP J)
(I'NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(EVENTUALLY- | NVARI ANT * (AND (HUNGRY STATE (QUOTE , J))
(OANS- Rl GHT STATE
(QUOTE , J)
(QUOTE , N)))
(PH L-PRG N)))

(EVENTUALLY- | NVARI ANT * (Rl GHT- CHAI N (QUOTE |, I)
(QUOTE , J)
(QUOTE , N)
STATE)

(PH L-PRG N)))
((1 NSTRUCTI ONS (1 NDUCT (RI GHT-CHAIN | J N STATE)) PROMOTE PROMOTE
(REWRI TE EVENTUALLY- | NVARI ANT- WEAKEN
(($P (LIST * AND (LI ST ' HUNGRY ' STATE (LI ST ’* QUOTE J))
(LI ST ' OANS- RI GHT ' STATE (LI ST * QUOTE J)
(LIST "QUOTE N))))))
(DROP 6 8 9) (BASH (DI SABLE HUNGRY OWNS- Rl GHT)) PROMOTE
PROMOTE
(REWRI TE EVENTUALLY- | NVARI ANT- CONJUNCTI ON
(($P (CONS ’ RI GHT- CHAI N
(CONS (LI ST ' QUOTE (ADDL-MD N 1))
(CONS (LI ST ' QUOTE J)
(CONS (LI'ST * QUOTE N) ' (STATE))))))
($Q (LIST * AND (LI ST * HUNGRY * STATE (LI ST * QUOTE I))
(LI ST ' OANS- Rl GHT ' STATE (LI ST * QUOTE I)
(LIST "QUOTE N))))))
(BASH (DI SABLE EVAL)) (DEMOTE 6) (DIVE 1) (DI VE 1)
(= * T ((DI SABLE EVAL))) TOP SPLIT (CONTRADI CT 10) (DI VE 1)
(REWRI TE EVENTUALLY- | NVARI ANT- FALSE
(($Q (LI ST * EATI NG ’ STATE
(LI ST * QUOTE (ADDL-MD N 1))))))
TP S
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST * AND
(LI ST * HUNGRY ' STATE
(LI ST * QUOTE (ADDL-MD N 1)))
(LI ST ' OANS- RI GHT * STATE
(LI ST ' QUOTE (ADD1-MD N I))
(LIST "QUOTE N))))))
(DROP 8 9 10) BASH (CLAI M (LESSP (ADDL-MD N 1) N))
(REWRI TE HUNGRY- LEADS- TO- OWNS- LEFT- | MPLI ES)
(REWRI TE TRUE- LEADS- TO- LEFT- FREE- | MPLI ES)
(REVRI TE LEADS- TO- EXPANDED- LEFT- | MPLI ES)
(REWRI TE NOT- EVENTUALLY- Rl GHT- | MPLI ES) (DROP 6 8 9 10) BASH
(DROP 6 7 9 10) BASH PROVE)))

(PROVE- LEMMA EVENTUALLY- | NVARI ANT- Rl GHT- | MPLI ES- ALL- RI GHTS (REVRI TE)
(I MPLIES (AND (LESSP 1 N)

(LESSP J N)

(NUMBERP J)

(STRONGLY- FAI R (PHI L- PRG N))

(I NI TI AL- CONDI TI ON

* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(EVENTUALLY- | NVARI ANT * (AND (HUNGRY STATE (QUOTE , J))
(ONNS- RI GHT STATE
(QUOTE , J)
(QUOTE , N)))
(PH L-PRG N)))
(EVENTUALLY- | NVARI ANT * (ALL- Rl GHTS STATE
(QUOTE , N))
(PH L-PRG N)))
((1 NSTRUCTI ONS
PROVOTE
(REWRI TE EVENTUALLY- | NVARI ANT- VEAKEN
(($P (LIST * RIGHT-CHAI N (LI ST ' QUOTE (ADD1- MDD N J))
(LI'ST * QUOTE J) (LIST ' QUOTE N) ' STATE))))

(REVRI TE RI GHT- CHAI N- | NDUCTI ON) PROVE (DRCP 4 5 6)
(USE- LEMVA

339

Rl GHT- CHAI N- COVPLETE
((1 (ADDL-MOD N J)) (N N)
(STATE (S (PH L-PRG N)
(JES (1ES (PH L-PRG N)
(CONS * RI GHT- CHAI N
(CONS
(LI ST ' QUOTE (ADD1- MOD N J))
(CONS (LI ST * QUOTE J)
(CONS (LIST * QUOTE N)
"(STATE))))))
(PH L- PRG N)
(LIST ' ALL- RI GHTS ’ STATE (LI ST ' QUOTE N)))))))
(BASH (DI SABLE ALL-RI GHTS)))))

(PROVE- LEMVA NEVER- ALL- RI GHTS (REWRI TE)
(I MPLI ES (AND (DEADLOCK- FREE (PHI L- PRG N))
(LESSP 1 N))
(I NVARI ANT * (NOT (ALL- RI GHTS STATE (QUOTE , N)))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE LEADS- TO- FALSE- | NVARI ANT
(($P (LIST * ALL- RI GHTS * STATE (LI ST ' QUOTE N)))))
(REWRI TE DEADLOCK- FREEDOM
(($C* (AND (HUNGRY STATE ' 0) (FREE STATE '0)))
($E * (HUNGRY- LEFT 0))))
(REWRI TE ALL- Rl GHTS- | NV)
(REWRI TE PROVE- ENABLI NG- CONDI TI ON
(($NEW (UPDATE- ASSOC (CONS ' F 0) 0
(OLDC-1 (LIST * AND
(LI ST * HUNGRY * STATE
(LI ST * QUOTE 0))
(LI ST * FREE ’ STATE

(LIST * QUOTE 0)))
(LI ST * HUNGRY- LEFT 0))))))

PROVE PROVE PROVE (DROP 1) BASH PROMOTE (DEMOTE 4) (DI VE 1) X

TOP BASH (BASH (DI SABLE EVAL)))))

(PROVE- LEMVA NOT- EVENTUALLY- OWNS- Rl GHT (REWRI TE)
(I'MPLIES (AND (LESSP 1 N
(LESSP J N)
(NUMBERP J)
(STRONGLY- FAIR (PHI L- PRG N))
(DEADLOCK- FREE (PHI L- PRG N))
(I'NI'TI AL- CONDI TI ON
‘ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PHIL-PRG N)))
(NOT (EVENTUALLY- | NVARI ANT
‘ (AND (HUNGRY STATE (QUOTE ,J))
(OMNS- RI GHT STATE
(QUCTE , J)
(QUOTE , N)))
(PH'L-PRG N))))
((1 NSTRUCTI ONS PROMOTE
(USE- LEMVA EVENTUALLY- | NVARI ANT- Rl GHT- | MPLI ES- ALL- RI GHTS)
(DEMOTE 7) (DI VE 1) (DI VE 2)
(REWRI TE EVENTUALLY- | NVARI ANT- FALSE (($Q ' (TRUE)))) TOP
(BASH (DI SABLE EVAL))
(REVWRI TE LEADS- TO- STRENGTHEN- LEFT (($P ' (FALSE))))
(CLAIM (EVAL (LIST 'NOT
(LI'ST " ALL- RI GHTS ’ STATE (LI ST " QUOTE N)))

340

(S (PH L-PRG N)
(I LEADS (LI ST ' ALL- R GHTS ’ STATE
(LI ST * QUOTE N))
(PH L-PRG N) ' (TRUE))))
((DI SABLE EVAL EVAL-NOT)))
(BASH (DI SABLE EVAL)) (REWRI TE LEADS- TO- TRUE)
(CLAIM (EVAL (LIST ’ NOT
(LI ST * ALL- RI GHTS * STATE (LI ST * QUOTE N)))
(S (PH L-PRG N)
(JLEADS (1ES (PH L-PRG N)
(LI ST * ALL- Rl GHTS * STATE
(LIST " QUOTE N)))
(PH L-PRG N) ' (TRUE))))
((DI SABLE EVAL EVAL-NOT)))
(BASH (DI SABLE EVAL)))))

(PROVE- LEMVA HUNGRY- LEADS- TO- OWNS- LEFT (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(NUMBERP | NDEX)
(LESSP | NDEX N)
(I' NI TI AL- CONDI TI ON
“ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(STRONGLY- FAI R (PHI L- PRG N))
(DEADLOCK- FREE (PHI L- PRG N)))
(LEADS- TO * (HUNGRY STATE (QUOTE , | NDEX))
* (OWNS- LEFT STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROMOTE (REWRI TE TRUE- LEADS- TO- LEFT- FREE- | MPLI ES)
(USE- LEMVA LEADS- TO- EXPANDED- LEFT- | MPLI ES
((1 NDEX (SUB1-MOD N | NDEX))))
(DEMOTE 7) (DIVE 1) (DIVE 1) (DIVE 2 2 2 2)
(REWRI TE NOT- EVENTUALLY- Rl GHT- | MPLI ES) TOP BASH PROVE BASH)))

(PROVE- LEMVA LEFT- CHAI N- | NDUCTI ON (REWRI TE)
(I MPLI ES (AND (STRONGLY- FAIR (PHI L-PRG N))
(LESSP 1 N)
(LESSP | N)
(LESSP J N)
(NUMBERP 1)
(NUMBERP J)
(I NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(EVENTUALLY- | NVARI ANT * (AND (HUNGRY STATE (QUOTE , J))
(ONNS- LEFT STATE

(QUOTE , J)))
(PH L-PRG N)))
(EVENTUALLY- | NVARI ANT * (LEFT- CHAI N (QUOTE , I)
(QUOTE , J)
(QUOTE , N)
STATE)
(PH L-PRG N)))
((1 NSTRUCTI ONS (1 NDUCT (LEFT-CHAIN | J N STATE)) PROVOTE PROMOTE
(REWRI TE EVENTUALLY- | NVARI ANT- VEAKEN
(($P (LIST * AND (LI ST ' HUNGRY ' STATE (LI ST ’® QUOTE J))
(LI ST * OWNS- LEFT ’ STATE (LI ST ' QUOTE J))))))
(DROP 6 8 9) (BASH (DI SABLE HUNGRY OWNS- LEFT)) PROMOTE PROMOTE
(REWRI TE EVENTUALLY- | NVARI ANT- CONJUNCTI ON

341

(($P (CONS ' LEFT- CHAI N
(CONS (LI ST ’ QUOTE (SUB1-MOD N 1))
(CONS (LI ST ' QUOTE J)
(CONS (LIST * QUOTE N) ' (STATE))))))
($Q (LIST " AND (LI ST * HUNGRY ®' STATE (LI ST * QUOTE |))
(LI ST * OANS- LEFT * STATE (LI ST * QUOTE 1))))
(BASH (DI SABLE EVAL)) (DEMOTE 6) (DIVE 1) (DI VE 1)
(= * T ((DI SABLE EVAL))) TOP SPLIT (CONTRADI CT 10) (DI VE 1)
(REWRI TE EVENTUALLY- | NVARI ANT- FALSE
(($Q (LI ST * EATI NG ’ STATE
(LI'ST * QUOTE (SUBL-MD N 1))))))

))

TP S
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST * AND
(LI ST * HUNGRY ' STATE
(LI ST * QUOTE (SUBL-MD N 1)))
(LI ST ' OANS- LEFT ' STATE
(LI ST * QUOTE (SUBL-MD N 1)))))))
(DROP 8 9 10) BASH (CLAI M (LESSP (SUBL-MOD N 1) N))
(REWRI TE HUNGRY- LEADS- TO- OWNS- RI GHT- | MPLI ES)
(REWRI TE TRUE- LEADS- TO- Rl GHT- FREE- | MPLI ES) (DI VE 2) (DI VE 2)
(DIVE 1) (DIVE 2) (DIVE 2) (DIVE 1) (DIVE 2) (DIVE 1) (= 1)
TOP (REVRI TE LEADS- TO- EXPANDED- Rl GHT- | MPLI ES)
(REWRI TE NOT- EVENTUALLY- LEFT-1 MPLI ES) (DROP 6 8 9 10) BASH
(DROP 6 7 9 10) BASH PROVE)))

(PROVE- LEMVA EVENTUALLY- | NVARI ANT- LEFT- | MPLI ES- ALL- LEFTS (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP J N)
(NUMBERP J)
(STRONGLY- FAI R (PHI L- PRG N))
(I'NITI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(EVENTUALLY- | NVARI ANT * (AND (HUNGRY STATE (QUOTE , J))
(ONNS- LEFT STATE
(QUOTE , J)))
(PH L-PRG N)))
(EVENTUALLY- | NVARI ANT * (ALL- LEFTS STATE
(QUOTE , N))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE EVENTUALLY- | NVARI ANT- WEAKEN
(($P (LIST * LEFT- CHAIN (LI ST ' QUOTE (SUB1-MOD N J))
(LIST ' QUOTE J) (LIST *QUOTE N) ' STATE))))
(REWRI TE LEFT- CHAI N- | NDUCTI ON) PROVE (DROP 4 5 6)
(USE- LEMVA LEFT- CHAI N- COVPLETE
((1 (SUBL-MOD N J)) (N N)
(STATE (S (PH L-PRG N)
(JES (1ES (PH L-PRG N)
(CONS * LEFT- CHAI N
(CONS
(LI ST * QUOTE (SUB1-MOD N J))
(CONS (LI ST * QUOTE J)
(CONS (LIST ' QUOTE N)
"(STATE))))))
(PH L- PRG N)
(LI ST ' ALL- LEFTS ' STATE (LI ST ' QUOTE N)))))))
(BASH (DI SABLE ALL-LEFTS)))))

343

(PROVE- LEMVA NEVER- ALL- LEFTS (REWRI TE)
(I MPLI ES (AND (DEADLOCK- FREE (PHI L- PRG N))
(LESSP 1 N))
(I NVARI ANT * (NOT (ALL- LEFTS STATE (QUOTE , N)))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROMOTE
(REWRI TE LEADS- TO- FALSE- | NVARI ANT
(($P (LIST * ALL- LEFTS * STATE (LI ST ' QUOTE N)))))
(REWRI TE DEADLOCK- FREEDOM
(($C (LIST * AND
(LI ST * HUNGRY * STATE
(LIST ' QUOTE (SUBL (SUBL N))))
(LI ST * FREE * STATE (LI ST * QUOTE (SUBL N)))))
($E (LI'ST ' HUNGRY- RI GHT (SUBL (SUBL N)) N))))
(REVRI TE ALL- LEFTS- | NV)
(REWRI TE PROVE- ENABLI NG- CONDI TI ON
(($SNEW (UPDATE- ASSOC (CONS ' F (SUBL N))
(SUBL (SUBL N))
(OLDG-1 (LIST ' AND
(LI ST * HUNGRY ' STATE
(LI ST * QUOTE (SUBL (SUBL N))))
(LI ST * FREE * STATE
(LIST ' QUOTE (SUBL N))))
(LI ST * HUNGRY- Rl GHT

(SUB1 (SUBL N) N)))))
BASH BASH BASH (DROP 1) BASH S)))

(PROVE- LEMVA NOT- EVENTUALLY- OANS- LEFT (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP J N)
(NUMBERP J)
(STRONGLY- FAI R (PHI L- PRG N))
(DEADLOCK- FREE (PHI L- PRG N))
(I' NI TI AL- CONDI TI ON
“ (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N)))
(NOT (EVENTUALLY- | NVARI ANT * (AND (HUNGRY STATE (QUOTE , J))
(ONNS- LEFT STATE
(QUOTE , J)))
(PH L-PRG N))))
((1 NSTRUCTI ONS PROVOTE
(USE- LEMVA EVENTUALLY- | NVARI ANT- LEFT- | MPLI ES- ALL- LEFTS)
(DEMOTE 7) (DIVE 1) (DI VE 2)
(REWRI TE EVENTUALLY- | NVARI ANT- FALSE (($Q ' (TRUE)))) TOP
(BASH (DI SABLE EVAL))
(REWRI TE LEADS- TO- STRENGTHEN- LEFT (($P ’ (FALSE))))
(CLAIM (EVAL (LIST ’ NOT
(LI ST * ALL- LEFTS ' STATE (LI ST ' QUOTE N)))
(S (PH L-PRG N)
(I LEADS (LI ST * ALL- LEFTS * STATE
(LIST * QUOTE N))
(PH L-PRG N) ’ (TRUE))))
((DI SABLE EVAL EVAL-NOT)))
(BASH (DI SABLE EVAL)) (REWRI TE LEADS- TO- TRUE)
(CLAIM (EVAL (LIST ’ NOT
(LIST * ALL- LEFTS ' STATE (LI ST ' QUOTE N)))
(S (PH L-PRG N)
(JLEADS (1ES (PH L-PRG N)
(LI ST ' ALL- LEFTS ' STATE
(LIST ' QUOTE N)))

(PHIL-PRG N " (TRUE))))
((DI SABLE EVAL EVAL-NOT)))
(BASH (DI SABLE EVAL)))))

(PROVE- LEMMA HUNGRY- LEADS- TO- OMKS- Rl GHT (REWRI TE)
(IMPLIES (AND (LESSP 1 N)
(NUMBERP | NDEX)
(LESSP | NDEX N)
(I'NI TI AL- CONDI TI ON
* (AND (PROPER- PHI LS STATE (QUOTE , N))
(PROPER- FORKS STATE (QUOTE , N)))
(PH L-PRG N))
(STRONGLY- FAI R (PHI L- PRG N))
(DEADLOCK- FREE (PHI L- PRG N)))
(LEADS- TO * (HUNGRY STATE (QUOTE , | NDEX))
* (OMNS- Rl GHT STATE (QUOTE , | NDEX)
(QUOTE , N))
(PH L-PRG N)))
((I NSTRUCTI ONS PROMOTE (REWRI TE TRUE- LEADS- TO- RI GHT- FREE- | MPLI ES)
(USE- LEMVA LEADS- TO- EXPANDED- RI GHT- | MPLI ES
((1 NDEX (ADDL- MOD N | NDEX))))
(DEMOTE 7) (DIVE 1) (DIVE 1) (DIVE 2 2 2 2)
(REWRI TE NOT- EVENTUALLY- LEFT- | MPLI ES) TOP BASH PROVE BASH)))

(PROVE- LEMVA CORRECTNESS (REVRI TE)
(I MPLIES (AND (LESSP 1 N)

(NUMBERP | NDEX)

(LESSP | NDEX N)

(I' NI TI AL- CONDI TI ON

“ (AND (PROPER- PHI LS STATE (QUOTE , N))

(PROPER- FORKS STATE (QUOTE , N)))

(PH L-PRG N))

(STRONGLY- FAI R (PHI L- PRG N))

(DEADLOCK- FREE (PHI L- PRG N)))

(LEADS- TO * (HUNGRY STATE (QUOTE , | NDEX))
* (EATI NG STATE (QUOTE , | NDEX))
(PH L-PRG N)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE LEADS- TO- TRANSI TI VE
(($Q (LIST ' OR
(LI ST * EATI NG ’ STATE (LI ST ' QUOTE | NDEX))
(LI ST ’ AND

(LI ST * HUNGRY * STATE
(LI ST ' QUOTE | NDEX))
(LI ST ' OANS- LEFT ’ STATE

(LI'ST " QUOTE INDEX)))))))
(REWRI TE PSP- GENERAL

(($P (LI ST * HUNGRY ’ STATE (LI ST ' QUOTE | NDEX)))
($Q (LI ST ' OANS- LEFT ' STATE (LI ST ' QUOTE | NDEX)))
($R (LI ST ' HUNGRY ' STATE (LI ST ' QUOTE | NDEX)))
($B (LI ST * EATI NG * STATE (LI ST * QUOTE | NDEX)))))

(REVRI TE HUNGRY- LEADS- TO- OWNS- LEFT)

(REWRI TE HUNGRY- UNLESS- EATI NG (BASH (DI SABLE EVAL))

(BASH (DI SABLE EVAL)) BASH (REWRI TE DI SJO N- LEFT)

(REVRI TE Q LEADS-TO-Q

(REWRI TE HUNGRY- LEADS- TO- OWKS- RI GHT- | MPLI ES)

(REWRI TE HUNGRY- LEADS- TO- OWNS- RI GHT))))

Appendix F.

FIFO Circuit Events

This appendix contains the complete events list supporting the proof of the
delay insensitive FIFO circuit described in chapter 7.

This events list constructs the proof of the delay insensitive FIFO circuit on top
of the proof system presented in Appendix B.
(NOTE- LI B " | NTERPRETER")

(PROVEALL "FI FO' "’ (

(DEFN VALUE (ALI ST KEY)
(CDR (ASSCC KEY ALIST)))

(DEFN CT (1)
(CONS " CT 1))

(DEFN CF (1)
(CONS ' CF 1))

(DEFN TEMP (1)
(CONS * TEMP 1))

(DEFN C- ELEMENT (OLD NEWA B C)
(IF (1FF (VALUE OLD A)
(VALUE OLD B))
(AND (1 FF (VALUE NEWC) (VALUE OLD A))
(CHANGED OLD NEW (LI ST Q)))
(CHANGED OLD NEWNIL)))

(DEFN NOR- GATE (OLD NEW A B Q)
(AND (1 FF (VALUE NEW C)
(NOT (OR (VALUE OLD A)
(VALUE OLD B))))
(CHANGED OLD NEW (LI ST Q))))

(DEFN FI FO- NODE (1)
(LI'ST (LIST ' CELEMENT (CT (ADDL 1)) (TEMP 1) (
(LIST ' G- ELEMENT (CF (ADDL 1)) (TEMP 1) (
(LI'ST ' NOR-GATE (CT (SUBL 1)) (CF (SUBL I))

CT 1))
CF 1))
(TEMP 1))))

(DEFN EMPTY- NODE (STATE 1)
(AND (NOT (VALUE STATE (CT I1)))

345

(NOT (VALUE STATE (CF 1)))))

(DEFN TRUE- NODE (STATE 1)
(AND (VALUE STATE (CT 1))
(NOT (VALUE STATE (CF 1)))))

(DEFN FALSE- NODE (STATE 1)
(AND (NOT (VALUE STATE (CT 1)))
(VALUE STATE (CF 1))))

(DEFN | N- NODE (OLD NEW 1)
(IF (1FF (VALUE OLD (TEMP 1))
(EMPTY-NODE OLD 1))
(I F (EMPTY- NODE OLD 1)
(OR (CHANGED OLD NEW NI L)
(AND (OR (TRUE- NODE NEW)
(FALSE- NODE NEW 1))
(EQUAL (VALUE NEW' | NPUT)
(CONS (TRUE- NODE NEW I)
(VALUE OLD ’ I NPUT)))
(CHANGED OLD NEW (LIST (CT 1) (CF 1) 'INPUT))))
(OR (CHANGED OLD NEW NI L)
(AND (EMPTY- NODE NEW)
(CHANGED OLD NEW (LI ST (CT 1) (CF 1))))))
(CHANGED OLD NEWNIL)))

(DEFN OUT- NCDE (OLD NEW
(AND (1 FF (VALUE NEW (CT 0))
(VALUE OLD (CT 1)))
(I FF (VALUE NEW (CF 0))
(VALUE OLD (CF 1)))
(I F (AND (EMPTY- NODE OLD 0)
(NOT (EMPTY- NODE NEW 0)))
(EQUAL (VALUE NEW ' OUTPUT)
(CONS (TRUE- NODE NEW 0)
(VALUE OLD ’ OUTPUT)))
(EQUAL (VALUE NEW’ OUTPUT) (VALUE OLD ' OUTPUT)))
(CHANGED OLD NEW (LI ST (CT 0) (CF 0) ' OUTPUT))))

(DEFN | NTERNAL- NODES (N)
(IF (ZEROP N)
NI L
(APPEND (FI FO- NODE N)
(I NTERNAL- NODES (SUBL N)))))

(DEFN EXTERNAL- NODES (N)
(LIST (LI'ST ’ I N-NODE N)
(LI ST * OUT- NODE)

(LI ST " NOR-GATE (CT (SUBL N)) (CF (SUBL N)) (TEMP N))))

(DEFN FI FO- QUEUE (N)
(APPEND (EXTERNAL- NODES N)
(I NTERNAL- NCDES (SUBL N))))

(PROVE- LEMVA MEMBER- | NTERNAL- NODES (REVRI TE)
(EQUAL (MEMBER STATEMENT (| NTERNAL- NODES N))
(AND (MEMBER STATEMENT (FI FO-NODE (CDADDDR STATEMENT)))
(NOT (LESSP N (CDADDDR STATEMENT)))
(NOT (ZEROP (CDADDDR STATEMENT))))))

346

347

(PROVE- LEMVA MEMBER- FI FO- QUEUE (REVRI TE)
(I MPLIES (LESSP 1 N)
(EQUAL (MEMBER STATEMENT (FI FO- QUEUE N))
(OR (MEMBER STATEMENT (| NTERNAL- NODES (SUBL N)))
(MEMBER STATEMENT (EXTERNAL- NODES N)))))
((DI SABLE MEMBER- | NTERNAL- NODES)))

(PROVE- LEMMA LI STP- FI FO- QUEUE (REVRI TE)
(LI STP (FI FO-QUELE N)))

(DI SABLE FI FO- QUEUE)
(DI SABLE * 1* FI FO- QUEUE)

(DEFN PROPER- NODE (STATE |)
(AND (1 MPLIES (AND (NOT (EMPTY- NODE STATE I))
(EMPTY- NODE STATE (SUBL 1)))
(VALUE STATE (TEMP 1)))
(I MPLI ES (AND (EMPTY- NODE STATE)
(NOT (EMPTY- NODE STATE (SUBL 1))))
(NOT (VALUE STATE (TEMP 1))))
(OR (TRUE- NODE STATE I)
(FALSE- NODE STATE |)
(EMPTY- NODE STATE 1))
(I MPLIES (NOT (EMPTY- NODE STATE I))
(OR (EMPTY- NODE STATE (SUBL I))
(I F (TRUE- NODE STATE I)
(TRUE- NODE STATE (SUBL 1))
(FALSE- NODE STATE (SUBL 1)))))))

(DEFN PROPER- NODES (STATE N)
(I F (ZEROP N)
T

(AND (PROPER- NODE STATE N)
(PROPER- NODES STATE (SUB1 N)))))

(PROVE- LEMVA PROPER- NODES- | MPLI ES (REVRI TE)
(I MPLI ES (AND (PROPER- NODES STATE N)
(NOT (LESSP N 1))
(NOT (ZEROP 1)))
(PROPER- NODE STATE 1))
((DI SABLE PROPER- NODE)))

(PROVE- LEMVA PROPER- NODES- PRESERVED- GENERAL (REVRI TE)
(I MPLIES (AND (N OLD NEW STATEMENT)
(PROPER- NODES OLD N)
(MEMBER STATEMENT (FI FO- QUELE N))
(NOT (LESSP N 1))
(LESSP 1 N))
(PROPER- NODES NEW I))
((1 NSTRUCTI ONS (| NDUCT (PROPER- NODES NEW I))
(BASH (DI SABLE MEMBER- FI FO- QUEUE))
(BASH (DI SABLE PROPER- NODE MEMBER- FI FO- QUEUE N)) PROMOTE
(DROP 3)
(CLAI' M (PROPER- NODE OLD 1)
((DI SABLE PROPER- NODE MEMBER- FI FO- QUELE N)))
(CLAIM (EQUAL | N) 0)
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 4 5)
PROVE
(CLAIM (NOT (EQUAL | (CDADDDR STATEMENT)))
((DI SABLE PROPER- NODE)))

348

(CLAIM (EQUAL | (ADD1 (CDADDDR STATEMENT))) 0) PROVE PROVE
(CLAIM (EQUAL | 1) 0)
(CLAI M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DRCP 4 5)
(CLAIM (NOT (EQUAL N 0))) PROVE
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(CLAI' M (PROPER- NODE OLD (ADDL 1)) ((DI SABLE PROPER- NODE)))
(DROP 4) PROVE (DROP 4) PROVE
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 4 5)
(CLAIM (AND (NOT (EQUAL (SUBL 1) N)) (NOT (EQUAL (SUBL I) 0)))

((DI SABLE PROPER- NODE EXTERNAL- NODES N)))
PROVE (CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(CLAI M (PROPER- NODE OLD (ADDL 1))

((DI SABLE PROPER- NODE EXTERNAL- NODES

MEMBER- | NTERNAL- NCDES N)))

(DROP 4) PROVE (CLAIM (EQUAL | (ADDL (CDADDDR STATEMENT))) 0)
(DROP 4) PROVE (DROP 4) PROVE)))

(PROVE- LEMMA PROPER- NODES- PRESERVED (REVRI TE)
(I MPLIES (AND (N OLD NEW STATEMENT)
(MEMBER STATEMENT (FI FO- QUELE N))
(PROPER- NODES OLD N)
(LESSP 1 N))
(PROPER- NODES NEW N))
((DI SABLE MEMBER- FI FO- QUEUE N)))

(DI SABLE PROPER- NODES- PRESERVED- GENERAL)

(PROVE- LEMVA PROPER- NCDES- UNLESS- FALSE (REWRI TE)
(IMPLIES (LESSP 1 N)
(UNLESS ' (PROPER- NODES STATE (QUOTE , N))
" (FALSE)

(FI FO- QUELE N)))
((DI SABLE MEMBER- FI FO- QUEUE N)))

(PROVE- LEMVA PROPER- NCDES- | NVARI ANT (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(I NI TI AL- CONDI TI ON * (PROPER- NODES STATE (QUOTE , N))
(FI FO- QUELE N)))
(I NVARI ANT * (PROPER- NODES STATE (QUOTE , N))

(FI FO-QUELE N))))

(PROVE- LEMMA PROPER- NCDE- | NVARI ANT (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(NOT (ZEROP 1))
(NOT (LESSP N 1))
(I'NI TI AL- CONDI TI ON * (PROPER- NODES STATE (QUOTE , N))
(FI FO- QUELE N)))
(I NVARI ANT * (PROPER- NCDE STATE (QUOTE , 1))
(FI FO QUELE N)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE | NVARI ANT- CONSEQUENCE
(($P (LI ST * PROPER- NODES ' STATE (LI ST * QUOTE N)))))
(REWRI TE PROPER- NODES- | NVARI ANT) (BASH (DI SABLE PROPER- NODE)))))

(DEFN QUEUE- VALUES (STATE N)
(I F (ZEROP N)
NI L
(IF (AND (NOT (EMPTY- NODE STATE N))
(EMPTY- NODE STATE (SUBL N)))
(CONS (TRUE- NODE STATE N)

349

(QUEUE- VALUES STATE (SUBL N)))
(QUEUE- VALUES STATE (SUBL N)))))

(PROVE- LEMVA EMPTY- EMPTY- EMPTY (REVRI TE)
(I MPLIES (AND (LESSP 1 N)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (FI FO- QUELE N))
(EMPTY- NODE OLD (ADDL 1))
(EMPTY- NCDE OLD 1)
(NUMBERP 1)
(LESSP | N))
(EMPTY- NODE NEW 1))
((1 NSTRUCTI ONS PROVOTE (CLAI M (EQUAL | (CDADDDR STATEMENT)) 0)
PROVE (CLAIM (NOT (EQUAL | N))) PROVE)))

(PROVE- LEMMA FULL- FULL- FULL (REWRI TE)
(IMPLIES (AND (LESSP 1 N)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (FI FO- QUELE N))
(NOT (EMPTY- NODE OLD (ADDL 1)))
(NOT (EMPTY- NODE OLD I))
(OR (I FF (TRUE- NODE OLD (ADDL 1))
(TRUE- NODE QLD I))
(I FF (FALSE- NODE OLD (ADDL 1))
(FALSE- NODE OLD 1)))
(NUMBERP 1)
(LESSP | N))
(NOT (EMPTY- NODE NEW)))
((1 NSTRUCTI ONS PROVOTE (CLAI M (EQUAL | (CDADDDR STATEMENT)) 0)
PROVE (CLAIM (NOT (EQUAL | N))) PROVE)))

(PROVE- LEMMA QUEUE- EMPTY- PRESERVED (REWRI TE)
(I MPLIES (AND (LESSP 1 N)
(N OLD NEW STATEMENT)
(MEMBER STATEMENT (FI FO- QUELE N))
(PROPER- NODES OLD N)
(EQUAL (QUEUE- VALUES OLD (ADDL I)) NIL)
(LESSP | N))
(EQUAL (QUEUE-VALUES NEW 1) NIL))
((1 NSTRUCTI ONS (| NDUCT (QUEUE- VALUES OLD 1))
(DI SABLE TRUE- NODE FALSE- NODE EMPTY- NODE N MEMBER- FI FO- QUEUE)
(BASH (DI SABLE MEMBER- FI FO- QUEUE N EMPTY- NODE FALSE- NODE
TRUE- NODE))
(BASH (DI SABLE MEMBER- FI FO- QUEUE N EMPTY- NCDE FALSE- NODE
TRUE- NODE))
PROMOTE PROMOTE
(CLAI' M (PROPER- NODE OLD 1)
((DI SABLE MEMBER- FI FO- QUEUE N EMPTY- NODE FALSE- NODE
TRUE- NODE PROPER- NODE)))
(BASH (DI SABLE MEMBER- FI FO- QUEUE N EMPTY- NODE FALSE- NODE
TRUE- NODE PROPER- NODES- | MPLI ES)))))

(PROVE- LEMMA VAL UE- MOVES- FORWARD (REVRI TE)
(I MPLIES (AND (LESSP 1 N)

(N OLD NEW STATEMENT)
(MEMBER STATEMENT (FI FO- QUELE N))
(PROPER- NODES OLD N)
(NOT (EMPTY- NODE OLD (ADDL 1)))
(EMPTY- NODE OLD 1)
(LESSP | N)
(NOT (ZEROP 1)))

350

(OR (AND (NOT (EMPTY- NODE NEW (ADDL 1)))
(EMPTY- NODE NEW 1))
(AND (NOT (EMPTY- NODE NEW 1))
(EMPTY- NODE NEW (SUBL 1)))))
((1 NSTRUCTI ONS PROVOTE
(CLAI' M (PROPER- NODE OLD 1)
((DI SABLE PROPER- NODE MEMBER: FI FO- QUEUE N
EMPTY- NODE)))
(CLAI M (PROPER- NODE OLD (ADDL 1))
((DI SABLE PROPER- NODE MEMBER- FI FO- QUEUE N
EMPTY- NODE)))
(CLAIM (EQUAL (ADDL 1) N) 0)
(CLAI M (MEMBER STATEMENT (EXTERNAL- NODES N))
0)
(DROP 3 4)
PROVE
(CLAIM (EQUAL | (CDADDDR STATEMENT))
0)
(DROP 4)
PROVE
(CLAIM (NOT (EQUAL (ADDL |) (CDADDDR STATEMENT)))
((DI SABLE PROPER- NODE)))
(DROP 4)
PROVE
(CLAIM (NOT (EQUAL | N))
((DI SABLE MEMBER- FI FO- QUEUE N PROPER- NCDE
EMPTY- NODE)))
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N))
0)
(DROP 3 4)
PROVE
(CLAIM (EQUAL (ADDL |) (CDADDDR STATEMENT))
0)
(DROP 4)
PROVE
(CLAIM (EQUAL | (CDADDDR STATEMENT))
0)
(DROP 4)
PROVE
(DROP 4)
PROVE)))

(PROVE- LEMMA NOT- LI STP- QUEUE- VALUES- EQUALS (REWRI TE)
(EQUAL (LISTP (QUEUE- VALUES STATE N))
(NOT (EQUAL (QUEUE- VALUES STATE N) NIL))))

(PROVE- LEMMA FULL- EMPTY- REST- UNLESS- MOVES- FORWARD (REVRI TE)
(I MPLIES (AND (LESSP 1 N)
(LESSP | N)
(NOT (ZEROP 1)))
(UNLESS ' (AND (PROPER- NODES STATE (QUOTE , N))
(AND (NOT (EMPTY- NODE STATE
(QUOTE , (ADD1 1))))
(AND (EMPTY- NODE STATE (QUOTE | 1))
(NOT (LI STP (QUEUE- VALUES
STATE
(QUOTE ,1)))))))
* (AND (NOT (EMPTY- NODE STATE (QUOTE , 1)))
(AND (EMPTY- NODE STATE (QUOTE , (SUBL 1)))
(NOT (LI STP (QUEUE- VALUES
STATE

351

(QUOTE , (SUBL 1)))))))
(FI FO QUELE N)))

((1 NSTRUCTI ONS PROMOTE (REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI ST ’ AND
(LI ST * PROPER- NODES ' STATE (LI ST ’* QUOTE N))
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NODE * STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE 1))
(LIST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES °’ STATE
(FI FO QUELE Ny (LIST "QUOTE 1)))))))
(LI ST ' AND
(LI ST ’ NOT
(LI ST * EMPTY- NODE * STATE
(LI'ST * QUOTE 1)))
(LI ST ’ AND

(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (SUBL 1)))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES ' STATE
STATENENT (LIST " QUOTE (SUBL 1))))))))
((OLDU (LI ST ' AND
(LI ST * PROPER- NODES * STATE (LI ST ’* QUOTE N))
(LI ST ' AND
(LI ST * NOT
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES ' STATE
(FI FO QUELE Ny (LIST "QUOTE 1)))))))
(LI ST * AND
(LI ST * NOT
(LI ST ' EMPTY- NODE ’ STATE
(LIST * QUOTE 1)))
(LIST ' AND

(LI ST ' EMPTY- NODE * STATE
(LI ST * QUOTE (SUBL 1)))
(LIST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES °’ STATE
(LIST ' QUOTE (SUBL 1))))))))
oLD)
((NEWJ (LI ST ' AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NODE * STATE

(LIST * QUOTE (ADDL 1))))
(LI ST ’ AND
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * LI STP
(LI ST * QUEUE- VALUES ' STATE
(LIST "QUOTE 1)))))))
(FI FO QUEUE N)
(LI ST * AND
(LI ST * NOT
(LI ST ' EMPTY- NODE ’ STATE
(LIST * QUOTE 1)))
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (SUBL 1)))
(LIST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES °’ STATE
(LIST ' QUOTE (SUBL 1))))))))
NEW))
(USE- LEMVA VALUE- MOVES- FORWARD NI L)
(BASH (DI SABLE MEMBER: FI FO- QUEUE N EMPTY- NODE)))))

(PROVE- LEMVA OUTPUT- ONLY- ADDS- BOOLEAN (REVRI TE)
(IMPLIES (LESSP 1 N)
(UNLESS * (EQUAL (VALUE STATE (QUOTE OUTPUT))
(QUOTE , K))
*(OR (EQUAL (VALUE STATE (QUOTE OUTPUT))
(CONS (TRUE) (QUOTE , K)))
(EQUAL (VALUE STATE (QUOTE OUTPUT))
(CONS (FALSE) (QUOTE ,K))))
(FIFO- QUELE N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE (((EU (LI ST ' EQUAL ' (VALUE STATE ' OUTPUT)
(LI ST * QUOTE K))
(FI FO- QUELUE N)
(LIST ' OR
(LI ST * EQUAL ’ (VALUE STATE ’ OUTPUT)
(LIST ' CONS ’ (TRUE)
(LI ST * QUOTE K)))
(LI ST * EQUAL ’ (VALUE STATE ’ OUTPUT)
(LI'ST ' CONS * (FALSE)

(LIST " QUOTE K)))))
STATEMENT)
((OLDU (LI ST ’ EQUAL ' (VALUE STATE ' OUTPUT)
(LI ST * QUOTE K))
(FI FO QUEUE N)
(LIST ' OR
(LI ST * EQUAL ’ (VALUE STATE ’ OUTPUT)
(LI ST ' CONS * (TRUE)
(LI ST * QUOTE K)))
(LI ST * EQUAL ’ (VALUE STATE ° OUTPUT)
(LI ST ' CONS * (FALSE)
(LI'ST "QUOTE K)))))
oLD)
((NEWJ (LI ST ’ EQUAL ' (VALUE STATE ' OUTPUT)

(LI'ST * QUOTE K))
(FI FO QUEUE N)
(LIST ' OR

352

(LI ST ' EQUAL ' (VALUE STATE ' QUTPUT)
(LI ST ' CONS * (TRUE)

(LI ST * QUOTE K)))
(LI ST ' EQUAL ' (VALUE STATE ' QUTPUT)
(LI ST * CONS * (FALSE)

(LI'ST " QUOTE K)))))

NEW))
PROVE)))

(PROVE- LEMMA | NPUT- ONLY- ADDS- BOOLEAN (REVRI TE)
(I MPLIES (LESSP 1 N)
(UNLESS * (EQUAL (VALUE STATE (QUOTE | NPUT))
(QUOTE , K))
“(OR (EQUAL (VALUE STATE (QUOTE | NPUT))
(CONS (TRUE) (QUOTE ,K)))
(EQUAL (VALUE STATE (QUOTE | NPUT))
(CONS (FALSE) (QUOTE ,K))))
(FI FO QUELE N)))
((1 NSTRUCTI ONS PROVOTE (REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE (((EU (LI ST ' EQUAL ' (VALUE STATE ' | NPUT)
(LI ST * QUOTE K))
(FI FO- QUELUE N)
(LIST ' OR
(LI ST * EQUAL ’ (VALUE STATE ' | NPUT)
(LIST ' CONS * (TRUE)
(LI ST * QUOTE K)))
(LI ST * EQUAL ’ (VALUE STATE ' | NPUT)
(LI'ST ' CONS ’ (FALSE)
(LIST " QUOTE K)))))
STATEMENT)
((OLDU (LI ST ’ EQUAL ' (VALUE STATE ' | NPUT)
(LI ST * QUOTE K))
(FI FO QUEUE N)
(LIST ' OR
(LI ST * EQUAL ’ (VALUE STATE ' | NPUT)
(LI ST ' CONS * (TRUE)
(LI ST * QUOTE K)))
(LI ST * EQUAL ’ (VALUE STATE ' | NPUT)
(LI ST * CONS * (FALSE)
(LI'ST " QUOTE K)))))
oLD)
((NEWJ (LI ST ’ EQUAL ' (VALUE STATE ' | NPUT)
(LI ST * QUOTE K))
(FI FO QUEUE N)
(LIST ' OR
(LI ST * EQUAL ’ (VALUE STATE ' | NPUT)
(LI ST ' CONS * (TRUE)
(LI ST * QUOTE K)))
(LI ST * EQUAL ' (VALUE STATE ' | NPUT)
(LI ST * CONS * (FALSE)
(LI'ST " QUOTE K)))))

NEW))
PROVE)))

(PROVE- LEMVA OUTPUT- NEVER- SHORTENS (REWRI TE)
(I MPLIES (LESSP 1 N)
(UNLESS * (EQUAL (LENGTH (VALUE STATE ' QUTPUT))
(QUOTE , K))
“(LESSP (QUOTE , K)
(LENGTH (VALUE STATE ' OUTPUT)))
(FI FO- QUELE N)))

353

((1 NSTRUCTI ONS PROVOTE (REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI ST * EQUAL ’ (LENGTH (VALUE STATE * QUTPUT))
(LIST * QUOTE K))
(FI FO QUEUE N)
(CONS ' LESSP
(CONS (LI ST ’* QUOTE K)
" ((LENGTH (VALUE STATE ' OUTPUT))))))
STATEMENT)
((OLDU (LI ST * EQUAL ' (LENGTH (VALUE STATE ' QUTPUT))
(LI ST * QUOTE K))
(FI FO QUEUE N)
(CONS * LESSP
(CONS (LI ST * QUOTE K)
" ((LENGTH (VALUE STATE ' OUTPUT))))))
oLD)
((NEWJ (LI ST ' EQUAL ' (LENGTH (VALUE STATE ’ OUTPUT))
(LI'ST * QUOTE K))
(FI FO- QUELUE N)
(CONS ' LESSP
(CONS (LI ST * QUOTE K)
" ((LENGTH (VALUE STATE ’ OUTPUT))))))
NEW))
(BASH T) PROMOTE (DIVE 2) (DIVE 1) = TOP DROP PROVE PROMOTE
(DIVE 2) (DIVE 1) = TOP DROP PROVE PROMOTE (DI VE 2) (DI VE 1)
TOP DROP PROVE)))

(PROVE- LEMMA TOTAL- SUFFI Cl ENT- FI FO- QUEUE (REWRI TE)
(I MPLIES (LESSP 1 N)
(TOTAL- SUFFI Cl ENT
STATEMENT (Fl FO- QUEUE N)
oD
(I F (EQUAL (CAR STATEMENT) ' C- ELEMENT)
(IF (1 FF (VALUE OLD (CADR STATEMENT))
(VALUE OLD (CADDR STATEMENT)))
(UPDATE- ASSOC (CADDDR STATEMENT)
(VALUE OLD
(CADR STATEMENT))
oLD)
oLD)
(I F (EQUAL (CAR STATEMENT) ' NOR- GATE)
(UPDATE- ASSOC
(CADDDR STATEMENT)
(NOT (OR (VALUE OLD (CADR STATEMENT))
(VALUE OLD (CADDR STATEMENT))))
oLD)
(I F (EQUAL (CAR STATEMENT) I N- NODE)
(IF (AND (EQUAL (VALUE
oD
(TEMP
(CADR STATEMENT)))
(EMPTY- NODE
oD
(CADR STATEMENT)))
(NOT (EMPTY- NODE
oD
(CADR STATEMENT))))
(UPDATE- ASSOC
(CT (CADR STATEMENT)) F
(UPDATE- ASSOC

354

355

(CF (CADR STATEMENT)) F
oD))
oLD)
(I F (EQUAL (CAR STATEMENT) ' QUT- NODE)
(UPDATE- ASSOC
(CT 0)
(VALUE OLD (CT 1))
(UPDATE- ASSOC
(CF 0)
(VALUE OLD (CF 1))
(I F (AND (EMPTY- NODE OLD 0)
(NOT (EMPTY-NODE OLD 1)))
(UPDATE- ASSOC
" QUTPUT
(CONS (TRUE- NODE OLD 1)
(VALUE OLD * QUTPUT))
oLD)
aD)))
aD))))))

(PROVE- LEMVA TOTAL- FI FO- QUEUE (REWRI TE)
(IMPLIES (LESSP 1 N)
(TOTAL (FIFO QUELE N)))
((DI SABLE TOTAL- SUFFI Cl ENT
TOTAL- SUFFI CI ENT- FI FO- QUEUE)
(USE (TOTAL- SUFFI Cl ENT- FI FO- QUEUE
(OLD (OLDT (FI FO QUELE N)))
(STATEMENT (ET (FI FO-QUELE N)))))))

(PROVE- LEMMA OUTPUT- GROWS- | MVEDI ATELY (REWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUEUE N))
(LESSP 1 N))
(LEADS- TO * (AND (NOT (EMPTY- NODE STATE 1))
(AND (EMPTY- NODE STATE 0)
(EQUAL (LENGTH (VALUE STATE

* QUTPUT))
(QUOTE , K))))
* (LESSP (QUOTE , K)
(LENGTH (VALUE STATE * QUTPUT)))

((I NSTRUCTI ONS PROVOTE (FIFOQEEND
(REWRI TE UNCONDI TI ONAL- FAI RNESS- GENERAL
(($P-1 (LIST ' AND
(LI ST * PROPER- NODES * STATE
(LI ST ' QUOTE N))
(LIST ' AND * (NOT (EMPTY- NODE STATE 1))
(LIST * AND ’ (EMPTY- NODE STATE 0)
(LI ST * EQUAL
" (LENGTH (VALUE STATE ’ OUTPUT))
(LI ST " QUOTE K))))))
($Q 1 (LIST ’*LESSP (LI ST ® QUOTE K)
" (LENGTH (VALUE STATE ’ QUTPUT))))
($P-2 (LIST *AND ' (NOT (ENMPTY- NODE STATE 1))
(LI ST * AND * (EMPTY- NODE STATE 0)
(LI ST ' EQUAL
" (LENGTH (VALUE STATE ’ QUTPUT))
(LI'ST " QUOTE K)))))
($Q 2 (LIST ' LESSP (LI ST ’® QUOTE K)
" (LENGTH (VALUE STATE ' QUTPUT))))))

356

(REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LIST " AND
(LI ST * PROPER- NODES '’ STATE (LI ST ' QUOTE N))
(LI'ST " AND ' (NOT (EMPTY- NODE STATE 1))
(LI'ST " AND ' (EMPTY- NODE STATE 0)
(LI'ST " EQUAL
" (LENGTH (VALUE STATE ' QUTPUT))
(LI'ST "QUOTE K)))))
(FI FO- QUEUE N)
(CONS ' LESSP
(CONS (LIST ' QUOTE K)
" ((LENGTH (VALUE STATE ' QUTPUT))))))
STATEMENT)
((OLDU (LIST ' AND
(LI ST ' PROPER- NODES ' STATE (LI ST ' QUOTE N))
(LI'ST " AND ' (NOT (EMPTY- NODE STATE 1))
(LI'ST " AND ’ (EMPTY- NODE STATE 0)
(LI'ST ' EQUAL
" (LENGTH (VALUE STATE ' QUTPUT))
(LI'ST " QUOTE K)))))
(FI FO- QUEUE N)
(CONS ' LESSP
(CONS (LI ST ' QUOTE K)
" ((LENGTH (VALUE STATE ' QUTPUT))))))
OLD)
((NEWJ (LIST ' AND
(LI ST * PROPER- NODES '’ STATE (LI ST ' QUOTE N))
(LI'ST " AND ' (NOT (EMPTY- NODE STATE 1))
(LI'ST " AND ' (EMPTY- NODE STATE 0)
(LI'ST " EQUAL
" (LENGTH (VALUE STATE ' QUTPUT))
(LI'ST " QUOTE K)))))
(FI FO- QUEUE N)
(CONS ' LESSP
(CONS (LIST ' QUOTE K)
" ((LENGTH (VALUE STATE ' QUTPUT))))))
NEW))
X- DUMB PROMOTE (CLAI M (PROPER-NCDE OLD 1) 0) (DROP 1 6)
(REVWRI TE EVAL-OR) (DI VE 1) (REVWRI TE EVAL- AND) (DI VE 1)
(=* T 0) TOP (CLAIM (NOT (EQUAL STATEMENT ' (QUT-NCDE))) 0)
(CLAIM (NOT (EQUAL N 1))
((DI SABLE MEMBER- FI FO- QUEUE PROPER- NCDE)))
(CLAIM (NOT (EQUAL N 0))
((DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE)))
(CLAIM (I MPLI ES (MEMBER STATEMENT (| NTERNAL- NODES (SUB1 N)))
(EQUAL (CDADDDR STATEMENT) 1))
0)
(PROVE (DI SABLE PROPER- NODES- | MPLI ES PROPER- NODES)) (DROP 2)
(PROVE (DI SABLE PROPER- NODES- | MPLI ES PROPER- NODES)) (DROP 2)
(BASH (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES)) PROMOTE
(DIVE 2) (DIVE 1) = TOP DROP PROVE PROVOTE (DI VE 2) (DIVE 1) =
TOP DROP PROVE (DROP 5) (BASH (DI SABLE MEMBER- FI FO- QUEUE N))
(CONTRADICT 7) (DROP 1 6 7) (BASH (DI SABLE PROPER- NCDE))
(REVWRI TE HELP- PROVE- ENSURES (($STATEMENT ' (QUT- NODE))))
(DROP 1)
(GENERALI ZE
(((OLDE ’ (QUT- NODE)
(LI'ST " AND ' (NOT (EMPTY- NODE STATE 1))
(LI'ST " AND ' (EMPTY- NODE STATE 0)
(LI'ST " EQUAL

357

" (LENGTH (VALUE STATE ’' OUTPUT))
(LI ST ' QUOTE K))))
(CONS * LESSP

(CONS (LIST ' QUOTE K)
" ((LENGTH (VALUE STATE ' QUTPUT))))))
oLD)
((NEVEE * (OUT- NODE)
(LIST ' AND ' (NOT (EMPTY- NODE STATE 1))
(LIST * AND * (EMPTY- NODE STATE 0)
(LI ST * EQUAL
" (LENGTH (VALUE STATE ' QUTPUT))
(LI'ST " QUOTE K))))
(CONS * LESSP

(CONS (LI ST ' QUOTE K)
" ((LENGTH (VALUE STATE ' OUTPUT))))))
NEW))
(BASH (DI SABLE MEMBER- | NTERNAL- NODES)) PROVOTE (DI VE 2)
(DIVE 1) = TOP DROP PROVE PROMOTE (DI VE 2) (DIVE 1) = TOP DROP
PROVE PROMOTE (DI VE 2) (DIVE 1) = TOP DROP PROVE
(BASH (DI SABLE EVAL MEMBER- FI FO- QUEUE N))
(BASH (DI SABLE EVAL MEMBER- FI FO- QUEUE N)) S
(BASH (DI SABLE EVAL MEMBER- FI FO- QUEUE N))
(REWRI TE TOTAL- FI FO- QUEUE))))

(PROVE- LEMVA TRUE- EMPTY- TEMP- MOVES (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON

* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUEUE N))

(LESSP 1 N)

(NOT (ZEROP 1))

(LESSP | N))

(LEADS- TO * (AND (TRUE- NODE STATE (QUOTE , (ADDL 1)))
(VALUE STATE (TEMP (QUOTE ,1))))
* (NOT (EMPTY- NODE STATE (QUOTE ,1)))

y (FI FO- QUELE N)))
| NSTRUCTI ONS PROMOTE
(REWRI TE UNCONDI TI ONAL- FAI RNESS- GENERAL
(($P-1 (LIST ' AND
(LI ST * PROPER- NODES ' STATE
(LI ST * QUOTE N))
(LI ST ' AND
(LI ST * TRUE- NODE ' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1))))))
($Q1 (LIST ' NOT
(LI ST ' EMPTY- NODE ’ STATE
(LI ST ' QUOTE 1))))
($P-2 (LIST ' AND

(LI ST * TRUE- NODE ' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))
($Q2 (LIST ' NOT
(LI ST ' EMPTY- NODE ’ STATE
(LI'ST "QUOTE 1))))))
(DROP 1) (REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI ST ’* AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST ’ AND

(LI'ST * TRUE- NODE ' STATE

(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE * STATE

(LI'ST " TEMP (LIST "QUOTE 1)))))

(FI FO QUEUE N)
(LI ST * NOT

(LI ST ' EMPTY- NODE * STATE (LI ST ' QUOTE 1))))

STATEMENT)
((OLDU (LI ST * AND

(LI ST ’ PROPER- NODES '’ STATE (LI ST * QUOTE N))

(LI'ST " AND
(LI ST * TRUE- NODE ' STATE

(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE * STATE

(LI'ST "TEMP (LIST "QUOTE 1)))))

(FI FO QUEUE N)
(LI ST ’ NOT

(LI ST ' EMPTY- NODE * STATE (LI ST ' QUOTE 1))))

oLD)
((NEWJ (LI ST ' AND

(LI ST ’ PROPER- NODES ' STATE (LI ST * QUOTE N))

(LI'ST " AND
(LI ST * TRUE- NODE ' STATE

(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE ' STATE

(LI'ST " TEMP (LIST "QUOTE 1)))))

(FI FO- QUEUE N)
(LI ST * NOT

(LI ST * EMPTY- NODE * STATE (LI ST ' QUOTE 1))))

NEW))
X- DUMB PROMOTE (CLAI M (PROPER- NODE OLD (ADDL 1)) 0)
(CLAI' M (PROPER- NODE OLD I) 0) (REWRI TE EVAL-OR) (DI VE 1)
(REVWRI TE EVAL-AND) (DIVE 1) (= * T 0) TOP
(CLAIM (EQUAL (ADDL 1) N) 0)
(CLAIM (NOT (EQUAL | N))

((DI SABLE MEMBER- FI FO- QUEUE N PROPER- NCDES

PROPER- NODES- | MPLI ES)))

(CLAI'M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 4)
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL (ADDL |) (CDADDDR STATEMENT)))

((DI SABLE PROPER- NCDE EVAL)))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0)
(CLAIM (NOT (EQUAL | N))

((DI SABLE EVAL MEMBER- FI FO- QUEUE PROPER- NCDE)))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL | N))

((DI SABLE PROPER- NODE MEMBER- FI FO- QUEUE)))
(CLAIM (EQUAL (ADDL |) (CDADDDR STATEMENT)) 0)
(CLAI' M (PROPER- NODE OLD (ADDL (ADDL 1)))

((DI SABLE PROPER- NCDE N MEMBER- FI FO- QUEUE)))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))

(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES PROPER- NODES

N MEMBER- FI FO- QUEUE))

(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))

358

359

(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LI ST * G- ELEMENT (CT (ADDL 1)) (TEMP 1) (CT 1)))))
PROVE (BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)) S
(BASH (DI SABLE EVAL)) (REWRI TE TOTAL- FI FO- QUEUE))))

(PROVE- LEMVA FALSE- EMPTY- TEMP- MOVES (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUELUE N))
(LESSP 1 N)
(NOT (ZEROP 1))
(LESSP | N))
(LEADS- TO * (AND (FALSE- NODE STATE (QUOTE , (ADDL 1)))
(VALUE STATE (TEMP (QUOTE ,1))))
“(NOT (EMPTY- NODE STATE (QUOTE , 1)))
(FIFO- QUELE N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE UNCONDI TI ONAL- FAI RNESS- GENERAL
(($P-1 (LIST ' AND
(LI ST * PROPER- NODES ’ STATE
(LI ST * QUOTE N))
(LI ST ’ AND
(LI ST * FALSE- NODE * STATE
(LIST * QUOTE (ADDL 1)))
(LI ST * VALUE ’ STATE
(LIST " TEMP (LIST ' QUOTE 1))))))
($Q 1 (LIST ' NOT
(LI ST * EMPTY- NODE * STATE
(LI ST * QUOTE 1))))
($P-2 (LIST ’ AND

(LI ST * FALSE- NODE * STATE
(LIST * QUOTE (ADDL 1)))
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST * QUOTE 1)))))
($Q 2 (LIST ' NOT
(LI ST * EMPTY- NODE * STATE
(LIST "QUOTE 1))))))
(DROP 1) (REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LIST ' AND
(LI ST * PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST * AND
(LI ST ' FALSE- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE * STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))
(FI FO QUEUE N)
(LIST ’ NOT
(LI ST ' EMPTY- NODE * STATE (LI ST ' QUOTE 1))))
STATEMENT)
((OLDU (LI ST ' AND
(LI ST * PROPER- NODES * STATE (LI ST * QUOTE N))
(LI ST * AND
(LI ST * FALSE- NODE * STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))
(FI FO- QUEUE N)
(LI ST ’ NOT
(LI ST * EMPTY- NODE * STATE (LI ST ' QUOTE 1))))

360

oLD)
((NEWJ (LI ST ’ AND
(LI ST * PROPER- NODES * STATE (LI ST * QUOTE N))
(LI ST ' AND
(LI ST * FALSE- NODE * STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))
(FI FO QUEUE N)
(LI ST * NOT
(LI ST * EMPTY- NODE * STATE (LI ST ' QUOTE 1))))
NEW))

X- DUMB PROMOTE (CLAI M (PROPER- NODE OLD (ADDL 1)) 0)
(CLAI' M (PROPER- NODE OLD I) 0) (REWRI TE EVAL-OR) (DI VE 1)
(REWRI TE EVAL-AND) (DIVE 1) (= * T 0) TOP
(CLAIM (EQUAL (ADDL 1) N) 0)
(CLAIM (NOT (EQUAL | N))

((DI SABLE MEMBER- FI FO- QUEUE N PROPER- NCDES

PROPER- NODES- | MPLI ES)))

(CLAI M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 4)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL (ADDL |) (CDADDDR STATEMENT)))

((DI SABLE PROPER- NODE EVAL)))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0)
(CLAIM (NOT (EQUAL | N))

((DI SABLE EVAL MEMBER- FI FO- QUEUE PROPER- NCDE)))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL | N))

((DI SABLE PROPER- NODE MEMBER- FI FO- QUEUE)))
(CLAIM (EQUAL (ADDL |) (CDADDDR STATEMENT)) 0)
(CLAI' M (PROPER- NODE OLD (ADDL (ADDL 1)))

((DI SABLE PROPER- NCDE N MEMBER- FI FO- QUEUE)))
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES PROPER- NODES

N MEMBER- FI FO- QUEUE))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LI ST * G- ELEMENT (CF (ADDL 1)) (TEMP 1) (CF 1)))))

PROVE (BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)) S
(BASH (DI SABLE EVAL)) (REWRI TE TOTAL- FI FO- QUEUE))))

(PROVE- LEMMA NOT- EMPTY- EMPTY- TEMP- MOVES (REWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUEUE N))
(LESSP 1 N)
(NOT (ZEROP 1))
(LESSP | N))
(LEADS- TO * (AND (NOT (EMPTY- NODE STATE
(QUOTE , (ADD1 1))))
(VALUE STATE (TEMP (QUOTE ,1))))
* (NOT (EMPTY- NODE STATE (QUOTE ,1)))
(FI FO- QUELE N)))

361

((1 NSTRUCTI ONS PROVOTE
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST ' OR
(LI ST ' AND
(LI ST * TRUE- NODE ' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST * QUOTE 1))))
(LI ST ' AND
(LI ST * FALSE- NODE * STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1))))))))
(CLAIM (EVAL (LI ST ’® PROPER- NCDE ' STATE (LI ST * QUOTE (ADDL 1)))
(S (FI FO QUEUE N)
(I LEADS (LI ST * AND
(LIST ’ NOT
(LI ST ' EMPTY- NODE * STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1))))
(FI FO- QUEUE N)
(LI ST * NOT
(LI ST * EMPTY- NODE * STATE
(LIST "QUOTE 1))))))
((DI SABLE EVAL)))

(DROP 1) PROVE (REWRI TE DI SJOI N LEFT)
(REWRI TE TRUE- EMPTY- TEMP- MOVES)
(REVRI TE FALSE- EMPTY- TEMP- MOVES))))

(PROVE- LEMVA EMPTY- EMPTY- SETS- TEMP (REWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUELUE N))
(LESSP 1 N)
(NUMBERP 1)
(LESSP I N))
(LEADS- TO * (AND (EMPTY- NODE STATE
(QUOTE , (ADDL 1)))
(EMPTY- NODE STATE (QUOTE , 1)))
* (VALUE STATE (TEMP (QUOTE , (ADDL 1))))
(FI FO QUELE N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE UNCONDI TI ONAL- FAI RNESS- GENERAL
(($P-1 (LIST ' AND
(LI ST * PROPER- NODES * STATE
(LIST ' QUOTE N))
(LI ST ’ AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * EMPTY- NODE * STATE
(LIST *QUOTE 1)))))
($Q 1 (LIST ’*VALUE ’ STATE
(LIST ' TEMP (LIST * QUOTE (ADDL 1)))))
($P-2 (LIST ’ AND
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (ADDL 1)))
(LI ST * EMPTY- NODE * STATE
(LI ST * QUOTE 1))))
($Q 2 (LIST ’ VALUE ’ STATE
(LIST ' TEMP (LIST ' QUOTE (ADDL 1)))))))

362

(REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI ST * AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST ’ AND
(LI ST * EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * EMPTY- NODE * STATE

(LI ST * QUOTE 1))))
(FI FO- QUEUE N)

(LI ST * VALUE ’ STATE
(LIST ' TEMP (LIST * QUOTE (ADDL 1)))))
STATEMENT)
((OLDU (LI ST ’ AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * EMPTY- NODE * STATE

(LIST ' QUOTE 1))))
(FI FO QUEUE N)

(LI ST * VALUE ’ STATE
(LIST ' TEMP (LIST ' QUOTE (ADDL 1)))))
oLD)
((NEWJ (LI ST ' AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST * AND
(LI ST ' EMPTY- NODE * STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * EMPTY- NODE * STATE

(LIST ' QUOTE 1))))
(FI FO QUEUE N)

(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST * QUOTE (ADDL 1)))))

NEW))
X- DUMB PROMOTE (DROP 1) (CLAI M (PROPER- NODE OLD (ADDL 1)) 0)
(REVWRI TE EVAL-OR) (DI VE 1) (REWRI TE EVAL-AND) (DI VE 1)
=* T 0) TOP (CLAIM (EQUAL (ADDL 1) N) 0)
(DI SABLE MEMBER- FI FO- QUEUE N PROPER- NODES

PROPER- NODES- | MPLI ES)

(CLAIM (NOT (EQUAL | N))

((DI SABLE PROPER- NODES- | MPLI ES PROPER- NODES N

MEMBER- FI FO- QUEUE)))

(CLAI M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 4)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL (ADDL |) (CDADDDR STATEMENT)))

((DI SABLE PROPER- NODE EVAL)))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL | N))

((DI SABLE EVAL MEMBER- FI FO- QUEUE PROPER- NODE)))
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0)
(CLAIM (EQUAL | 0) 0)
(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES))
(CLAIM (EQUAL (ADDL |) (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))

363

(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES PROPER- NODES
N MEMBER- FI FO- QUEUE))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LI ST * NOR-GATE (CT 1) (CF 1) (TEMP (ADDL 1))))))

PROVE (BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)) S

(BASH (DI SABLE EVAL)) (REWRI TE TOTAL- FI FO- QUEUE))))

(PROVE- LEMVA FULL- FULL- UNSETS- TEMP (REWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUELE N))
(LESSP 1 N)
(NUMBERP 1)
(LESSP | N))
(LEADS- TO * (AND (NOT (EMPTY- NODE STATE
(QUOTE , (ADDL 1))
(NOT (EMPTY- NODE STATE (QUOTE | 1))
*(NOT (VALUE STATE (TEMP (QUOTE , (ADDL
(FI FO- QUELE N)))
((I NSTRUCTI ONS PROMOTE
(REWRI TE UNCONDI TI ONAL- FAI RNESS- GENERAL
(($P-1 (LIST ' AND
(LI ST * PROPER- NODES ' STATE
(LI ST * QUOTE N))
(LIST ' AND (LI ST * NOT
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * NOT (LI ST * EMPTY- NODE * STATE
(LIST "QUOTE 1))))))
($Q 1 (LIST * NOT (LIST ® VALUE ’ STATE
(LIST ' TEMP (LIST ' QUOTE (ADDL 1))))))
($P-2 (LIST * AND (LI ST ' NOT
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (ADDL 1))))
(LI ST * NOT (LI ST ' EMPTY- NODE ’ STATE
(LIST "QUOTE 1)))))
($Q2 (LIST * NOT (LIST ’ VALUE ' STATE
(LIST ' TEMP (LIST * QUOTE (ADDL 1))))))))
(REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI ST ’ AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST ' AND (LI ST ’ NOT
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (ADDL 1))))
(LI ST * NOT (LI ST ’ EMPTY- NODE ’ STATE

(LIST "QUOTE 1)))))
(FI FO QUEUE N)

(LI'ST * NOT (LI ST ' VALUE ’ STATE
(LIST ' TEMP (LIST ' QUOTE (ADDL 1))))))
STATEMENT)
((OLDU (LI ST ’ AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST ' AND (LI ST ’ NOT
(LI ST ' EMPTY- NODE * STATE
(LI ST * QUOTE (ADDL 1))))
(LI'ST * NOT (LI ST ' EMPTY- NODE ’ STATE

(LIST "QUOTE 1)))))
(FI FO QUEUE N)

(LIST * NOT (LI ST ' VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE (ADDL 1))))))
oLD)
((NEWJ (LI ST ' AND
(LI ST * PROPER- NODES * STATE (LI ST ’* QUOTE N))
(LI ST ' AND (LI ST * NOT
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1))))
(LIST * NOT (LI ST ' EMPTY- NODE ’ STATE

(LI'ST * QUOTE 1)))))
(FI FO- QUELUE N)

(LIST * NOT (LI ST ' VALUE ' STATE
(LIST ' TEMP (LIST * QUOTE (ADDL 1))))))

NEW))
X- DUMB PROMOTE (DROP 1) (CLAI M (PROPER- NODE OLD (ADDL 1)) 0)
(REVRI TE EVAL-OR) (DI VE 1) (REMRI TE EVAL-AND) (DI VE 1)
(=* T 0) TOP (CLAIM (EQUAL (ADDL I) N) 0)
(DI SABLE MEMBER- FI FO- QUEUE N PROPER- NODES

PROPER- NODES- | MPLI ES)

(CLAIM (NOT (EQUAL | N))

((DI SABLE PROPER- NODES- | MPLI ES PROPER- NODES N

MEMBER- FI FO- QUEUE)))

(CLAI M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 4)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL (ADD1 |) (CDADDDR STATEMENT)))

((DI SABLE PROPER- NODE EVAL)))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL | N))

((DI SABLE EVAL MEMBER- FI FO- QUEUE PROPER- NCDE)))
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0)
(CLAIM (EQUAL | 0) 0)
(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (EQUAL (ADDL |) (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES PROPER- NODES

N MEMBER- FI FO- QUEUE))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LI ST * NOR-GATE (CT 1) (CF 1) (TEMP (ADDL 1))))))

PROVE (BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)) S
(BASH (DI SABLE EVAL)) (REWRI TE TOTAL- FI FO- QUEUE))))

(PROVE- LEMVA EMPTY- TRUE- NOT- TEMP- MOVES (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON

* (PROPER- NODES STATE (QUOTE , N))

(FI FO QUELE N))
(LESSP 1 N)
(NOT (ZEROP 1))
(LESSP | N))

(LEADS- TO * (AND (EMPTY- NODE STATE
(QUOTE , (ADDL 1)))
(AND (TRUE- NODE STATE (QUOTE , 1))
(NOT (VALUE STATE
(TEMP (QUOTE ,1))))))

* (EMPTY- NODE STATE (QUOTE , 1))
(FI FO QUELE N)))
((I NSTRUCTI ONS PROMOTE
(REWRI TE UNCONDI TI ONAL- FAI RNESS- GENERAL
(($P-1 (LIST ' AND
(LI ST * PROPER- NODES * STATE
(LIST ' QUOTE N))
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * AND
(LI ST ' TRUE- NODE ' STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * VALUE ' STATE
(LIST * TEMP (LIST ' QUOTE 1))))))))
($Q 1 (LIST ’* EMPTY- NODE ' STATE (LI ST ' QUOTE 1)))
($P-2 (LIST ’ AND
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * TRUE- NODE * STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE |
($Q2 (LI ST * EMPTY- NODE * STATE (LI ST * QUOTE 1)
(DROP 1) (REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI ST * AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * AND
(LI ST * TRUE- NODE ' STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))))

)))))))
))))

(FI FO QUEUE N)
(LI ST * EMPTY- NCDE ' STATE (LI ST * QUOTE 1)))
STATEMENT)
((OLDU (LI ST ' AND
(LI ST * PROPER- NODES ’ STATE (LI ST ’* QUOTE N))
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LIST ' AND
(LI ST * TRUE- NODE ' STATE
(LIST * QUOTE 1))
(LIST ’ NOT
(LI ST * VALUE ’ STATE
(LIST * TEMP (LI'ST ' QUOTE 1)))))))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE * STATE (LI ST * QUOTE 1)))
oLD)
((NEWJ (LI ST ’ AND
(LI ST * PROPER- NODES ' STATE (LI ST ’* QUOTE N))
(LI ST ' AND
(LI ST * EMPTY- NODE * STATE

365

366

(LIST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * TRUE- NODE ’ STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * VALUE * STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE ' STATE (LI ST ' QUOTE 1)))
NEW))
X- DUMB PROMOTE (CLAI M (PROPER- NODE OLD (ADDL 1)) 0)
(CLAI' M (PROPER- NODE OLD) 0) (REWRI TE EVAL-OR) (DI VE 1)
(REVWRI TE EVAL-AND) (DIVE 1) (= * T 0) TOP
(CLAIM (EQUAL (ADDL 1) N) 0)
(CLAIM (NOT (EQUAL | N))
((DI SABLE MEMBER- FI FO- QUEUE N PROPER- NCDES
PROPER- NODES- | MPLI ES)))
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 4)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL (ADDL1 |) (CDADDDR STATEMENT)))
((DI SABLE PROPER- NODE EVAL)))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL | N))
((DI SABLE EVAL MEMBER- FI FO- QUEUE PROPER- NCDE)))
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0)
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(CLAIM (EQUAL (ADDL |) (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES PROPER- NODES
N MEMBER- FI FO- QUEUE))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LI ST * G- ELEMENT (CT (ADDL 1)) (TEMP 1) (CT 1)))))
PROVE (BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)) S
(BASH (DI SABLE EVAL)) (REWRI TE TOTAL- FI FO- QUEUE))))

(PROVE- LEMMA EMPTY- FALSE- NOT- TEMP- MOVES (REWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUELUE N))
(LESSP 1 N)
(NOT (ZEROP 1))
(LESSP | N))
(LEADS- TO * (AND (EMPTY- NODE STATE
(QUOTE , (ADDL 1)))
(AND (FALSE- NODE STATE (QUOTE |, 1))
(NOT (VALUE STATE
(TEMP (QUOTE ,1))))))
* (EMPTY- NODE STATE (QUOTE , 1))
(FIFO- QUELE N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE UNCONDI TI ONAL- FAI RNESS- GENERAL
(($P-1 (LIST ' AND
(LI ST * PROPER- NODES ' STATE

367

(LIST ' QUOTE N))
(LI ST ’ AND
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * FALSE- NODE * STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * VALUE ' STATE
(LIST " TEMP (LIST ' QUOTE 1))))))))
($Q 1 (LI ST ’* EMPTY- NODE * STATE (LI ST * QUOTE 1)))
($P-2 (LIST ' AND
(LI ST * EMPTY- NODE * STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * FALSE- NODE * STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * VALUE * STATE
(LIST * TEMP (LIST ' QUOTE |
($Q 2 (LI ST * EMPTY- NODE ' STATE (LI ST * QUOTE 1)
(DROP 1) (REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI ST ’ AND
(LI ST ' PROPER- NODES ’ STATE (LI ST ' QUOTE N))
(LI ST ’ AND
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * FALSE- NODE * STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))))

)))))))
))))

(FI FO- QUEUE N)
(LI ST * EMPTY- NCDE ' STATE (LI ST ' QUOTE 1)))
STATEMENT)
((OLDU (LI ST ’ AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST * AND
(LI ST ' EMPTY- NODE * STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * AND
(LI ST ' FALSE- NODE ’ STATE
(LIST * QUOTE 1))
(LIST ’ NOT
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE ' STATE (LI ST * QUOTE 1)))
oLD)
((NEWJ (LI ST ' AND
(LI ST * PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LIST ' AND
(LI ST * FALSE- NODE * STATE
(LI ST * QUOTE 1))
(LIST ’ NOT
(LI ST * VALUE ’ STATE

(LIST ' TEMP (LIST ' QUOTE 1)))))))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE * STATE (LI ST * QUOTE 1)))

NEW))
X- DUMB PROMOTE (CLAI M (PROPER- NODE OLD (ADDL 1)) 0)
(CLAI' M (PROPER- NODE OLD I) 0) (REWRI TE EVAL-OR) (DI VE 1)
(REWRI TE EVAL-AND) (DIVE 1) (= * T 0) TOP
(CLAIM (EQUAL (ADDL 1) N) 0)
(CLAIM (NOT (EQUAL | N))

((DI SABLE MEMBER- FI FO- QUEUE N PROPER- NCDES

PROPER- NODES- | MPLI ES)))

(CLAI M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 4)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL (ADDL |) (CDADDDR STATEMENT)))

((DI SABLE PROPER- NODE EVAL)))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PRCPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (NOT (EQUAL | N))

((DI SABLE EVAL MEMBER: FI FO- QUEUE PROPER- NODE)))
(CLAI M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (EQUAL (ADDL |) (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(CLAIM (EQUAL | (CDADDDR STATEMENT)) 0)
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES))
(PROVE (DI SABLE PROPER- NODE PROPER- NODES- | MPLI ES PROPER- NODES

N MEMBER- FI FO- QUEUE))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(PROVE (DI SABLE MEMBER- FI FO- QUEUE PROPER- NODE PROPER- NODES N))
(REWRI TE HELP- PROVE- ENSURES
(($STATEMENT
(LIST ' G- ELEMENT (CF (ADDL 1)) (TEMP 1) (CF 1)))))

PROVE (BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)) S
(BASH (DI SABLE EVAL)) (REWRI TE TOTAL- FI FO- QUEUE))))

(PROVE- LEMVA EMPTY- NOT- TEMP- MOVES (REWRI TE)

(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO- QUEUE N))
(LESSP 1 N)
(NOT (ZEROP 1))
(LESSP | N))
(LEADS- TO * (AND (EMPTY- NODE STATE
(QUOTE , (ADDL 1)))
(NOT (VALUE STATE
(TEMP (QUOTE ,1)))))
* (EMPTY- NODE STATE (QUOTE |, 1))

(FI FO QUELE N)))
((1 NSTRUCTI ONS PROMOTE
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST ' OR
(LI ST * AND

(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))

(LI ST ' AND

(LI ST * TRUE- NODE ' STATE
(LIST * QUOTE 1))

(LI ST ’ NOT
(LI ST * VALUE ’ STATE

368

(LIST " TEMP (LIST ' QUOTE 1))))))
(LIST ' OR
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * AND
(LI ST * FALSE- NODE * STATE
(LIST * QUOTE 1))
(LIST ’ NOT
(LI ST * VALUE ’ STATE
(LIST " TEMP (LIST ' QUOTE 1))))))
(LI ST ' EMPTY- NODE ’ STATE
(LIST "QUOTE 1)))))))
(CLAIM (EVAL (LI ST ’® PROPER- NCDE ' STATE (LI ST * QUOTE I))
(S (FI FO QUEUE N)
(I LEADS (LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * NOT
(LI ST * VALUE ' STATE
(LIST ' TEMP (LIST ' QUOTE 1)))))
(FI FO- QUELE N)
(LI ST ' EMPTY- NODE ’ STATE

(LIST "QUOTE 1)))))
((DI SABLE EVAL)))
(DROP 1) PROVE (REWRI TE DI SJO N- LEFT)
(REWRI TE EMPTY- TRUE- NOT- TEMP- MOVES) (REWRI TE DI SJOI N- LEFT)
(REWRI TE EMPTY- FALSE- NOT- TEMP- MOVES) (REWRI TE Q LEADS-TO-Q)))

(PROVE- LEMMA EMPTY- 1- LEADS- TO- EMPTY-0 (REWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO- QUEUE N))
(LESSP 1 N))
(LEADS- TO * (EMPTY- NODE STATE (QUOTE , 1))
* (EMPTY- NODE STATE (QUOTE , 0))

(FI FO QUELE N)))
((I NSTRUCTI ONS PROMOTE
(REWRI TE UNCONDI TI ONAL- FAI RNESS- GENERAL
(($P-1 (LIST ' AND
(LI ST * PROPER- NODES ' STATE
(LI ST * QUOTE N))
(LI ST * EMPTY- NODE * STATE
(LI ST ' QUOTE 1))))
($Q 1 (LI ST ’* EMPTY- NODE ' STATE (LI ST ’ QUOTE 0)))
($P-2 (LI ST * EMPTY- NODE * STATE (LI ST * QUOTE 1)))
($Q 2 (LI ST ’* EMPTY- NODE ' STATE (LI ST ' QUOTE 0)))
(REWRI TE HELP- PROVE- UNLESS)
(GENERALI ZE
(((EU (LI ST ’ AND
(LI ST * PROPER- NODES * STATE (LI ST * QUOTE N))
(LI ST * EMPTY- NCDE ' STATE (LI ST ' QUOTE 1)))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE * STATE (LI ST * QUOTE 0)))
STATEMENT)
((OLDU (LI ST * AND
(LI ST ' PROPER- NODES ’ STATE (LI ST ' QUOTE N))
(LI ST * EMPTY- NCDE ' STATE (LI ST * QUOTE 1)))
(FI FO- QUELE N)
(LI ST * EMPTY- NCDE ' STATE (LI ST * QUOTE 0)))
oLD)

369

370

((NEWJ (LI ST ' AND
(LI ST ' PROPER- NODES ’ STATE (LI ST * QUOTE N))
(LI ST * EMPTY- NCDE * STATE (LI ST * QUOTE 1)))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE * STATE (LI ST * QUOTE 0)))
NEW))
(DROP 1) X- DUMB PROMOTE (REWRI TE EVAL-OR) (DI VE 1)
(REWRI TE EVAL- AND) (DI VE 1)
(= * T ((DI SABLE N MEMBER- FI FO- QUEUE))) TCP
(CLAI M (PROPER- NODE OLD 2)
((DI SABLE PROPER- NODE MEMBER- FI FO- QUELE N)))
(CLAI' M (MEMBER STATEMENT (EXTERNAL- NODES N)) 0) (DROP 2)
(CLAIM (NOT (MEMBER N’ (1 0)))) (H DE-HYPS 5)
(PROVE (DI SABLE PROPER- NODES))
(CLAIM (EQUAL (CDADDDR STATEMENT) 1) 0)
(CLAI' M (PROPER- NODE OLD 1) 0) CHANGE- GOAL (CONTRADI CT 9)
(DROP 2 356 7 8 9) (REWRI TE PROPER- NODES- | MPLI ES) PROVE
PROVE
(PROVE (DI SABLE PROPER- NODES PROPER- NODES- | MPLI ES
EXTERNAL- NODES))
(DROP 6) (PROVE (DI SABLE PROPER- NODES EXTERNAL- NODES))
(REWRI TE HELP- PROVE- ENSURES (($STATEMENT ' (OUT- NCDE))))
(DROP 1) PROVE (BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)) S
(BASH (DI SABLE EVAL)) (REWRI TE TOTAL- FI FO- QUEUE))))

(PROVE- LEMVA FULL- EMPTY- EMPTY- MOVES- FORWARD (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUELE N))

(LESSP 1 N)

(NOT (LESSP N (ADDL (ADDL 1))))

(NUMBERP 1))

(LEADS- TO
“ (AND (NOT (EMPTY- NODE
STATE (QUOTE , (ADDL (ADDL 1)))))
(AND (EMPTY- NODE STATE (QUOTE , (ADDL 1)))
(AND (EMPTY- NODE STATE (QUOTE | 1))
(NOT (LI STP (QUEUE- VALUES
STATE
(QUOTE , (ADDL 1))))))))
“ (AND (NOT (EMPTY- NODE STATE (QUOTE , (ADDL 1))))
(EMPTY- NODE STATE (QUOTE , 1)))
(FI FO- QUELE N)))
((1 NSTRUCTI ONS PROVOTE
(REWRI TE PSP- GENERAL

((s$P
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL (ADDL 1)))))
(LIST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST ' EMPTY- NCDE
' STATE
(LI'ST * QUOTE 1))
(LIST ’ NOT

(LI'ST ' LI STP

371

(LI ST * QUEUE- VALUES
' STATE
(50 (LI ST * R (LI'ST " QUOTE (ADD1 1)))))))))
(LI ST * NOT
(LI ST * EMPTY- NODE
' STATE

(LI ST * QUOTE (ADDL 1))))
(LI ST ' AND

(LIST ' NOT
(LI ST * EMPTY- NODE
' STATE
(LIST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE 1))
(LIST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
o (LIST *QUOTE 1))))))))
R
(LI ST ' AND
(LI ST * PROPER- NODES
' STATE
(LI'ST ' QUOTE N))
(LI ST ' AND
(LIST * NOT
(LI ST * EMPTY- NODE
' STATE
(LIST * QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1)))
(LIST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
" (LIST " QUOTE (ADDL 1)))))))))
B
(LI ST * AND
(LIST ' NOT
(LI ST * EMPTY- NCDE
' STATE

(LI ST * QUOTE (ADDL 1))))
(LI ST * AND

(LI ST ' EMPTY- NCDE
' STATE
(LI'ST * QUOTE (SUBL (ADDL 1))))
(LIST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI'ST " QUOTE (SuBl (ADDL 1)))))))))))
(REWRI TE CANCELLATI ON- LEADS- TO- GENERAL

(($P-1
(LI'ST " AND
(LI'ST " AND

(LI'ST ' EMPTY- NODE

' STATE
(LI'ST ' QUOTE (ADDL 1)))
(LI ST * EMPTY- NCDE
' STATE
(LIST " QUOTE 1)))
(LI ST ' AND
(LI ST ' PROPER- NODES
' STATE
(LI ST ' QUOTE N))
(LI ST * AND
(LI'ST " NOT
(LI ST ' EMPTY- NODE
' STATE
(LIST " QUOTE (ADD1 (ADDL 1)))))
(LI ST ' AND
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1)))
(LI'ST ' NOT
(LI'ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
o (LI'ST * QUOTE (ADDL 1))))))))))
(LIST " OR
(LI ST ' AND
(LI ST * VALUE
' STATE
(LIST ' TEMP (LI ST ' QUOTE (ADDL 1))))
(LI ST ' AND
(LI ST ' PROPER- NODES
' STATE
(LI'ST ' QUOTE N))
(LI ST * AND
(LI'ST " NOT
(LI ST ' EMPTY- NODE
' STATE
(LIST " QUOTE (ADD1 (ADD1 1)))))
(LI ST ' AND
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1)))
(LI'ST " NOT
(LI'ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI'ST * QUOTE (ADDL 1)))))))))
(LI ST * AND
(LI'ST ' NOT
(LI ST ' EMPTY- NODE
' STATE

(LI'ST " QUOTE (ADD1 1))))
(LI'ST " AND

(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (SUBL (ADDL 1))))
(LI ST * NOT
(LIST " LISTP
(LI ST ' QUEUE- VALUES
' STATE
(LI'ST * QUOTE (SUB1 (ADDL 1))))))))))

372

373

($B (LIST ' AND
(LI ST * NOT
(LI ST ' EMPTY- NODE
' STATE
(LI ST ' QUOTE (ADDL (ADDL 1)))))
(LI ST ' VALUE
' STATE
(LI ST * TEMP

(LIST ' QUOTE (ADDL 1))))))
($R-1 (LIST ’ NOT

(LI ST * EMPTY- NCDE
' STATE
(LI'ST " QUOTE (ADDL 1)))))))
(REWRI TE PSP)
(REWRI TE EMPTY- EMPTY- SETS- TEMP)
PROVE
(REWRI TE FULL- EMPTY- REST- UNLESS- MOVES- FORWARD)
PROVE PROVE
(REWRI TE NOT- EMPTY- EMPTY- TEMP- MOVES)
PROVE PROVE
(GENERALI ZE
(((s
(FI FO QUEUE N)
(JLEADS
(I LEADS
(LI ST * AND
(LI'ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL (ADDL 1)))))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ' AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE 1))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE

(LI'ST " QUOTE (ADD1 1))))))))
(FI FO- QUEUE N)

(LIST ' OR
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LIST ' LISTP

(LI'ST " QUEUE- VALUES

374

' STATE

(LIST "QUOTE 1))))))))
(FI FO- QUELUE N)

(LIST 'OR
(LI ST ’ AND
(LI ST * VALUE
' STATE
(LIST ' TEMP (LIST * QUOTE (ADDL 1))))
(LIST ' AND
(LI ST * PROPER- NODES
' STATE
(LIST ' QUOTE N))
(LI ST ’ AND
(LI'ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI'ST " QUOTE (ADDL 1)))))))))
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
" STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (SUBL (ADDL 1))))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI'ST " QUOTE (SuBl (ADDL 1)))))))))))
STATE)))
(DROP 1)

(BASH (DI SABLE EVAL))
(BASH (DI SABLE EVAL))
(CLAI M
(EVAL
(LI ST * PROPER- NODES
' STATE

(LI ST * QUOTE N))
(s

(FI FO- QUEUE N)
(I LEADS
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))

375

(LIST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST * LI STP
(LI ST * QUEUE- VALUES
' STATE
(" (LI'ST " QUOTE (ADDL 1))))))))
FI FO- QUEUE
(LIST " OR
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * AND
(LIST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1))))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LIST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
0 (LIST "QUOTE 1))))))))))
(GENERALI ZE
(((s
(FI FO QUEUE N)
(I LEADS
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LIST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES

' STATE
(FI FO QELE N (LIST " QUOTE (ADDL 1))))))))
(LIST R
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE

' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE 1))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LIST "QUOTE 1)))))))))
STATE)))
(DROP 1)
(BASH (DI SABLE EVAL))
(CONTRADI CT 5)
(REVRI TE | NVARI ANT- | MPLI ES)
(REVRI TE PROPER- NODES- | NVARI ANT)
(REWRI TE FULL- EMPTY- REST- UNLESS- MOVES- FORWARD)
PROVE PROVE
(CLAI M
(EVAL
(LI ST * PROPER- NODES
' STATE

(LI ST * QUOTE N))
(s

(FI FO QUEUE N)
(I LEADS
(LIST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL (ADDL 1)))))
(LIST ' AND
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LIST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE

(LI'ST " QUOTE (ADDL 1))))))))

(FI FO- QUEUE N)
(LI ST ' AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST ' EMPTY- NCDE
' STATE
0 (LIST "QUOTE 1))))))
(GENERALI ZE
(((s
(FI FO QUEUE N)
(1 LEADS
(LIST ' AND
(LI ST * NOT

376

377

(LI'ST * EMPTY- NODE
' STATE
(LI'ST " QUOTE (ADD1 (ADD1 1)))))

(LIST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST ' EMPTY- NCDE
' STATE
(LI'ST * QUOTE 1))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(" (LI'ST " QUOTE (ADDL 1))))))))
FI FO- QUEUE
(LI ST ’ AND
(LIST ’ NOT
(LI ST ' EMPTY- NCDE
' STATE

(LI ST * QUOTE (ADDL 1))))
(LI ST ' EMPTY- NCDE
' STATE
(LIST "QUOTE 1)))))
STATE)))
(DROP 1)
(BASH (DI SABLE EVAL))
(CONTRADI CT 5)
(REWRI TE | NVARI ANT- | MPLI ES)
(REWRI TE PROPER- NODES- | NVARI ANT)

(GENERALI ZE
(((s
(FI FO QUEUE N)
(JLEADS
(I LEADS
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES

' STATE
(FI FO QUELE Ny (LI'ST " QUOTE (ADD1 1))))))))
(LI ST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE

(LIST * QUOTE (ADDL 1))))
(LI ST * EMPTY- NCDE

' STATE

(LI ST " QUOTE 1))))

(FI FO-QUEUE N)

(LIST ' OR
(LI ST * AND
(LIST " OR
(LI'ST ' NOT
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1))))
(LI ST ' AND
(LI'ST ' NOT
(LI ST ' EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1))))
(LI ST * AND
(LI ST ' EMPTY- NODE
' STATE
(LI'ST ' QUOTE 1))
(LI'ST ' NOT
(LIST ' LISTP
(LI ST ' QUEUE- VALUES
' STATE
(LIST "QUOTE 1)))))))
(LI ST ' AND
(LI ST * PROPER- NODES
' STATE
(LIST ' QUOTE N))
(LI ST * AND
(LI'ST " NOT
(LI ST ' EMPTY- NODE
' STATE
(LI'ST " QUOTE (ADD1 (ADD1 1)))))
(LI ST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LI'ST ' QUOTE (ADDL 1)))
(LI'ST " NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
s A0 (LI'ST " QUOTE (ADDL 1)))))))))
(LI'ST ' NOT
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1))))
(LI ST * AND
(LI ST ' EMPTY- NODE
' STATE
(LI'ST ' QUOTE (SUBL (ADDL 1))))
(LI'ST ' NOT
(LIST ' LISTP
(LI ST ' QUEUE- VALUES
' STATE
(LI'ST * QUOTE (SUBL (ADDL 1)))))))))))
STATE)))

(DROP 1)
(BASH (DI SABLE EVAL)))))

378

(PROVE- LEMVA FULL- EMPTY- FULL- MOVES- FORWARD (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUEUE N))

(LESSP 1 N)

(NOT (LESSP N (ADDL (ADDL 1))))

(NUMBERP 1))

(LEADS- TO
“ (AND (NOT (EMPTY- NODE
STATE (QUOTE , (ADDL (ADDL 1)))))
(AND (EMPTY- NODE STATE (QUOTE , (ADDL 1)))
(AND (NOT (EMPTY- NODE STATE (QUOTE ,1)))
(NOT (LI STP (QUEUE- VALUES
STATE
(QUOTE , (ADDL 1))))))))
“ (AND (NOT (EMPTY- NODE STATE (QUOTE , (ADDL 1))))
(EMPTY- NODE STATE (QUOTE , 1)))
(FI FO QUELE N)))
((I NSTRUCTI ONS PROMOTE
(REWRI TE CANCELLATI ON- LEADS- TO- GENERAL

(($P-1
(LI ST * AND
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ' AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1)))
(LI ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
((LIST ' QUOTE (ADDL 1)))))))
LI ST * AND
(LI ST * PROPER- NODES
' STATE
(LI ST * QUOTE N))
(LI ST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1)))
(LI ST * NOT
(LI ST ’ LI STP
(LI ST * QUEUE- VALUES
' STATE
s (LI'ST " QUOTE (ADDL 1))))))))))
D
(LIST ' OR
(LI ST ' AND
(LI ST * EMPTY- NCDE
' STATE

(LIST * QUOTE 1))
(LI ST ’ AND

379

380

(LI ST * PROPER- NODES
' STATE
(LI ST * QUOTE N))
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NODE
' STATE
(LI ST ' QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NODE
' STATE
(LI ST ' QUOTE (ADDL 1)))
(LI ST ’ NOT
(LI'ST ’'LISTP
(LI ST ' QUEUE- VALUES
' STATE
((LI'ST " QUOTE (ADD1 1)))))))))
LI ST ' AND
(LI ST * NOT
(LI ST ' EMPTY- NODE
' STATE

(LI'ST * QUOTE (ADDL 1))))
(LI ST * AND

(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (SUBL (ADDL 1))))
(LI'ST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
s (LIST ' QUOTE (SUBL (ADDL 1))))))))))
(LI ST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST ' QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LI ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(SR 1 (LIST ' AND (LI'ST " QUOTE (ADDL 1)))))))))
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * EMPTY- NCDE
' STATE

(LIST "QUOTE 1))))))
CHANGE- GOAL

(REWRI TE FULL- EMPTY- EMPTY- MOVES- FORWARD)
CHANGE- GOAL

381

(CLAIM
(EVAL
(LI ST * PROPER- NODES
' STATE

(LI ST " QUOTE N))
(s

(FI FO- QUELE N)
(JLEADS
(I LEADS
(LI ST ' AND
(LI'ST " NOT
(LI ST ' EMPTY- NODE
' STATE
(LI'ST " QUOTE (ADD1 (ADDL 1)))))
(LI ST ' AND
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1)))
(LI ST * AND
(LI'ST ' NOT
(LI ST * EMPTY- NODE
' STATE
(LIST " QUOTE 1)))
(LI'ST * NOT
(LI'ST "LISTP
(LI ST ’ QUEUE- VALUES
' STATE
(LI'ST " QUOTE (ADDL 1))))))))
(FI FO QUELE N)
(LI ST * AND
(LI'ST ' NOT
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1))))
(LI ST * EMPTY- NODE
' STATE
(LIST ' QUOTE 1))))
(FI FO- QUELE N)

(LIST ' OR
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE 1))
(LI ST ' AND
(LI ST * PROPER- NODES
' STATE
(LI ST ' QUOTE N))
(LI ST * AND
(LIST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LIST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE

(LI'ST " QUOTE (ADDL 1)))))))))

382

(LIST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LIST ' QUOTE (SUBL (ADDL 1))))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI ST * QUOTE
0 (SUBL (ADDL 1))))))))))))
(GENERALI ZE
(((s
(FI FO- QUELUE N)
(JLEADS
(I LEADS
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST ' QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE 1)))
(LIST ’ NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE

(LI'ST " QUOTE (ADDL 1))))))))
(FI FO QUEUE N)
(LI ST * AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST ' EMPTY- NCDE
' STATE
(LIST ' QUOTE 1))))
(FI FO QUEUE N)

(LIST *OR
(LIST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LI ST ’ AND
(LI ST * PROPER- NODES
' STATE
(LI ST * QUOTE N))
(LIST ' AND

(LI'ST ' NOT

383

(LI'ST ' EMPTY- NODE

' STATE
(LI ST * QUOTE (ADDL (ADDL 1)))))
(LIST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LIST AND (LIST " QUOTE (ADDL 1)))))))))
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1))))
(LI ST * AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (SUBL (ADDL 1))))
(LI'ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE

(LI'ST " QUOTE (SuBl (ADDL 1)))))))))))

STATE)))
(BASH (DI SABLE EVAL))
(CONTRADI CT 5)
(REWRI TE | NVARI ANT- | MPLI ES)
(REWRI TE PROPER- NODES- | NVARI ANT)
CHANGE- GOAL
(CLAI M
(EVAL

(LI ST * PROPER- NODES

' STATE

(LI ST * QUOTE N))
(s

(FI FO QUEUE N)
(JLEADS
(JLEADS
(I LEADS
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1)))
(LIST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI'ST " QUOTE (ADDL 1))))))))

384

(FI FO QUELE N)
(LI ST ' AND
(LI ST ' NOT
(LI ST * EMPTY- NODE
' STATE
(LI ST ' QUOTE (ADDL 1))))
(LI ST * EMPTY- NODE
' STATE

(LI'ST "QUOTE 1))))
(FI FO-QUELE N)

(LIST "R
(LIST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LIST " QUOTE 1))
(LI'ST ' AND
(LI ST ’ PROPER- NODES
' STATE
(LI ST ' QUOTE N))
(LI'ST ' AND
(LI'ST * NOT
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL (ADDL 1)))))
(LI ST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LI'ST * QUOTE (ADDL 1)))
(LI'ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI'ST " QUOTE (ADDL 1)))))))))
(LI'ST ' AND
(LIST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST ' QUOTE (ADDL 1))))
(LIST ' AND
(LI ST ' EMPTY- NCDE
' STATE
(LI'ST ' QUOTE (SUBL (ADDL 1))))
(LI'ST * NOT
(LIST ' LISTP
(LI ST ’ QUEUE- VALUES
' STATE

(LI'ST * QUOTE (SUBL (ADDL 1))))))))))
(FI FO QUELE N)
(LI'ST ' AND
(LI'ST ' NOT
(LI ST * EMPTY- NCDE
' STATE
(LI'ST ' QUOTE (ADDL 1))))
(LI ST * EMPTY- NCDE
' STATE
| (LI'ST "QUOTE 1))))))
0
(GENERALI ZE
(((s
(FI FO- QUELE N)
(JLEADS

385

(JLEADS
(I LEADS
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE 1)))
(LI ST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE

(LI'ST " QUOTE (ADDL 1))))))))
(FI FO- QUEUE N)
(LI ST ' AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE 1))))
(FI FO QUEUE N)

(LIST ' OR
(LI ST ' AND
(LI ST ' EMPTY- NCDE
" STATE
(LIST * QUOTE 1))
(LI ST ’ AND
(LI ST * PROPER- NODES
' STATE
(LI ST * QUOTE N))
(LIST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1)))
(LI ST * NOT
(LI ST ’ LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI'ST " QUOTE (ADD1 1)))))))))
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LIST ' AND

(LI'ST ' EMPTY- NODE

386

' STATE
(LI ST * QUOTE (SUBL (ADDL 1))))
(LIST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI ST ' QUOTE (SUBL (ADDL 1))))))))))
(FI FO QUEUE N)
(LI ST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST * EMPTY- NODE
' STATE

(LI ST " QUOTE 1)))))
STATE)))

(BASH (DI SABLE EVAL))
(CONTRADI CT 5)
(REVRI TE | NVARI ANT- | MPLI ES)
(REWRI TE PROPER- NODES- | NVARI ANT)
CHANGE- GOAL
(CLAIM
(EVAL
(LI ST * PROPER- NODES
' STATE

(LI ST * QUOTE N))
(s

(FI FO QUEUE N)
(I LEADS
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL (ADDL 1)))))
(LI ST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * AND
(LIST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1)))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(FI Fo QUELE N (LI'ST " QUOTE (ADDL 1))))))))
(LI ST ' AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
" STATE
(LIST * QUOTE (ADDL 1))))
(LI ST * EMPTY- NCDE
' STATE
0 (LIST "QUOTE 1))))))
(GENERALI ZE
(((s

387

(FI FO- QUELUE N)

(I LEADS
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE 1)))
(LI ST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE

(LI'ST " QUOTE (ADDL 1))))))))
(FI FO- QUEUE N)
(LI ST ' AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST ' EMPTY- NCDE
' STATE

(LIST "QUOTE 1)))))
STATE)))

(BASH (DI SABLE EVAL))
(CONTRADI CT 5)
(REVRI TE | NVARI ANT- | MPLI ES)
(REWRI TE PROPER- NODES- | NVARI ANT)
(REVRI TE PSP)
CHANGE- GOAL
(REWRI TE FULL- EMPTY- REST- UNLESS- MOVES- FORWARD)
PROVE PROVE
(CLAIM (EQUAL | 0) 0)
(REVRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LI ST * EMPTY- NODE
' STATE
(LIST " QUOTE 1)))))
(DROP 1 2 3 4)

(BASH (DI SABLE EVAL))

BASH

(REWRI TE CANCELLATI ON- LEADS- TO- GENERAL
(($P-1 (LIST ' AND

(LI ST * AND
(LIST ’ NOT
(LI ST ' EMPTY- NCDE
' STATE
(st nor (LI'ST * QUOTE (ADDL (SUBL 1)))))
LIST
(LI ST * EMPTY- NCDE
' STATE
(st o (LIST * QUOTE (SUBL 1)))))

(LI ST * PROPER- NODES
' STATE

(LI ST ' QUOTE N))
(LI ST * EMPTY- NODE
' STATE
5 (LI'ST ' QUOTE (ADDL 1))))))
(LIST ' OR
(LI ST * AND
(LI ST ' NOT
(LI ST ' VALUE
' STATE
(LI ST * TEMP
(LI'ST ' QUOTE (ADDL (SUBL 1))))))
(LI ST ' AND
(LI ST * PROPER- NODES
' STATE
(LI ST ' QUOTE N))

(LI'ST ' EMPTY- NODE
' STATE

(LI'ST " QUOTE (ADDL 1)))))

(LI ST ' EMPTY- NODE
' STATE

(LI ST " QUOTE 1))))

($B (LIST " AND
(LI ST ' EMPTY- NODE
' STATE

(LI'ST " QUOTE (ADD1 1)))

(LIST * NOT
(LI ST * VALUE
' STATE

(LI'ST " TEMP (LIST "QUOTE 1))))))

($R-1 (LI ST ' EMPTY- NODE
' STATE
(LIST "QUOTE 1)))))
(REVRI TE PSP)

(REWRI TE FULL- FULL- UNSETS- TEMP)
PROVE CHANGE- GOAL
(REWRI TE EMPTY- NOT- TEMP- MOVES)
PROVE CHANGE- GOAL
(GENERALI ZE
(s
(FI FO- QUEUE N)
(JLEADS
(I LEADS
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE

(LI'ST " QUOTE (ADDL 1)))

(LI ST * AND
(LIST ’ NOT
(LIST

(LI ST * NOT
(LI ST

(FI FO- QUEUE N)
(LI'ST * EMPTY- NODE
' STATE

(LI'ST "QUOTE 1)))

" EMPTY- NODE
' STATE
(LIST * QUOTE 1)))

" LI STP
(LI' ST " QUEUE- VALUES
' STATE

(LI'ST * QUOTE (ADDL 1)))))))

388

389

(FI FO QUEUE N)
(LIST ' OR
(LI ST * AND
(LI ST * NOT
(LI ST * VALUE
" STATE
(LI ST * TEMP
(LI ST * QUOTE (ADDL (SUBL 1))))))
(LI ST ' AND
(LI ST * PROPER- NODES
' STATE
(LIST * QUOTE N))
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL 1)))))
(LI ST * EMPTY- NCDE
' STATE

(LIST "QUOTE 1)))))

STATE)))
(BASH (DI SABLE EVAL))
CHANGE- GOAL
(CLAIM
(EVAL
(LI ST * PROPER- NODES
' STATE
(LI ST * QUOTE N))
(s
(FI FO QUEUE N)
(JLEADS
(JLEADS
(I LEADS
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LIST ' AND
(LI ST * NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1)))
(LIST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES

' STATE
(LI'ST " QUOTE (ADDL 1)))))))
(FI FO- QUELE N)
(LI ST ' EMPTY- NCDE
' STATE
(LIST * QUOTE 1)))
(FI FO QUEUE N)
(LIST ' OR
(LIST ' AND
(LI ST * NOT
(LI ST * VALUE
' STATE
(LI ST * TEMP
(LIST * QUOTE (ADDL (SUBL 1))))))
(LI ST * AND
(LI ST * PROPER- NODES
' STATE
(LI ST * QUOTE N))

390

(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))))
(LI ST ' EMPTY- NCDE
' STATE
(LIST ' QUOTE 1))))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE
' STATE

(LIST "QUOTE 1)))))

0)
(GENERALI ZE
(((s
(FI FO- QUELUE N)
(JLEADS
(JLEADS
(I LEADS
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1)))
(LI'ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LIST " QUOTE (ADDL 1)))))))
(FI FO QUEUE N)
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE 1)))
(FI FO QUEUE N)
(LIST ' OR
(LI ST * AND
(LI ST ’ NOT
(LI ST * VALUE
' STATE
(LI ST * TEMP
(LI ST * QUOTE (ADDL (SUBL 1))))))
(LI ST ' AND
(LI ST * PROPER- NODES
' STATE
(LIST ' QUOTE N))
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE (ADDL 1)))))
(LI ST * EMPTY- NCDE
' STATE
(LI ST ' QUOTE 1))))
(FI FO- QUELUE N)
(LI ST ' EMPTY- NCDE
' STATE
(LIST ' QUOTE 1))))
STATE)))

(BASH (DI SABLE EVAL))
(CONTRADI CT 6)
(REVRI TE | NVARI ANT- | MPLI ES)

(REVRI TE PROPER- NODES- | NVARI ANT)
CHANGE- GOAL
(CLAIM
(EVAL
(LI ST * PROPER- NODES
' STATE

(LIST ' QUOTE N))
(s

(FI FO- QUEUE N)
(I LEADS
(LI ST ' AND
(LI ST * EMPTY- NCDE
' STATE

(LI ST * QUOTE (ADDL 1)))

(LI'ST " AND
(LI'ST " NOT

(LI'ST ' EMPTY- NODE
" STATE

(LI ST * QUOTE 1)))

(LI ST * NOT

(LI'ST ' LI STP

(LI'ST " QUEUE- VALUES

(FI FO- QUELUE N)
(LI ST * EMPTY- NCDE
' STATE

(LIST "QUOTE 1)))))

' STATE
(LI'ST " QUOTE (ADDL 1)))))))

(LI ST * QUOTE (ADDL 1)))

(LI ST ' EMPTY- NODE
' STATE

(LIST * QUOTE 1)))

(LI ST ' LI STP

(LI'ST ' QUEUE- VALUES

0)
(GENERALI ZE
(s
(FI FO QUEUE N)
(I LEADS
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LI ST * AND
(LI ST * NOT
(LI'ST * NOT
(FI FO QUEUE N)
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE 1))))
STATE)))

(BASH (DI SABLE EMPTY- NODE))

(CONTRADI CT 6)

(REVRI TE | NVARI ANT- | MPLI ES)

(REWRI TE PROPER- NODES- | NVARI ANT)
(REWRI TE HELP- PROVE- UNLESS)

(GENERALI ZE (((EU (LI ST ’ AND

' STATE
(LI'ST " QUOTE (ADDL 1)))))))

(LI' ST ’ PROPER- NODES

' STATE

(LI ST * QUOTE N))

391

392

(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE 1)))
STATEMENT)
((OLDU (LI ST ' AND
(LI ST * PROPER- NODES
' STATE
(LIST * QUOTE N))
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE (ADDL 1))))
(FI FO QUEUE N)
(LI ST ' EMPTY- NCDE
' STATE

(LI'ST * QUOTE 1)))
oLD)

((NEWJ (LI ST ’ AND
(LI ST * PROPER- NODES
' STATE
(LI ST * QUOTE N))
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(FI FO QUEUE N)
(LI ST * EMPTY- NCDE
' STATE

(LIST ' QUOTE 1)))

NEW))

(DROP 1)
X- DUMB PROMOTE
(BASH (DI SABLE MEMBER- FI FO- QUEUE N EMPTY- NODE))
PROVOTE
(CLAI M (MEMBER STATEMENT (EXTERNAL- NODES N))

0)
(DROP 8)
(DROP 9)
(CLAIM (NOT (EQUAL | N)))
(CLAIM (NOT (EQUAL (ADDL 1) N)))
(CLAIM (NOT (EQUAL (ADDL 1) 0)))
(BASH T)
(CLAIM (EQUAL (CDADDDR STATEMENT) 1)

0)
(DROP 10)
(DEMOTE 8)
(DI VE 1)
(REWRI TE MEMBER- FI FO- QUEUE)
(DI VE 3)
(=F
TOP
(DROP 12)
(BASH T)
(CLAIM (EQUAL (CDADDDR STATEMENT) (ADDL 1))

0)
(CLAI M (PROPER- NODE OLD (ADDL 1))

((DI SABLE PROPER- NODE EMPTY- NODE N MEMBER- FI FO- QUEUE

EXTERNAL- NCDES PROPER- NODES)))

(DEMOTE 8)

(DI VE 1)

(REWRI TE MEMBER- FI FO- QUEUE)
(DI VE 3)

(= F

TOP

(DROP 9 13)

(BASH T)

(DEMOTE 8)

(DI VE 1)

(REWRI TE MEMBER- FI FO- QUEUE)
(DI VE 3)

(= F

TOP

(DROP 9 13)

(BASH T))))

(PROVE- LEMMA FULL- EMPTY- MOVES- FORWARD (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUELE N))
(LESSP 1 N)
(NOT (LESSP N (ADDL (ADDL 1))))
(NUMBERP 1))
(LEADS- TO
“ (AND (NOT (EMPTY- NODE
STATE (QUOTE , (ADDL (ADDL 1)))))
(AND (EMPTY- NODE STATE (QUOTE , (ADDL 1)))
(NOT (LI STP (QUEUE- VALUES
STATE
(QUOTE , (ADDL 1)))))))
“ (AND (NOT (EMPTY- NODE STATE (QUOTE , (ADDL 1))
(EMPTY- NODE STATE (QUOTE , 1)))
(FI FO QUELE N)))
((1 NSTRUCTI ONS PROMOTE
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST ' OR
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NODE * STATE
(LIST ' QUOTE (ADDL (ADDL 1)))))
(LI ST ’ AND
(LI ST * EMPTY- NODE * STATE
(LIST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NODE ’ STATE
(LIST * QUOTE 1)))
(LIST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES °’ STATE
(LIST " QUOTE (ADDL 1))))))))
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL (ADDL 1)))))
(LI ST ' AND
(LI ST ' EMPTY- NODE * STATE
(LI ST * QUOTE (ADDL 1)))
(LI ST ’ AND
(LI ST * EMPTY- NCDE * STATE

))

393

394

(LIST * QUOTE 1))
(LI ST * NOT
(LI ST ’ LI STP
(LI ST * QUEUE- VALUES ' STATE
(LI'ST " QUOTE (ADDL 1))))))))))))

(BASH (DI SABLE EVAL)) (REWRI TE DI SJO N- LEFT)
(REWRI TE FULL- EMPTY- FULL- MOVES- FORWARD)
(REWRI TE FULL- EMPTY- EMPTY- MOVES- FORWARD))))

(PROVE- LEMVA FULL- REST- EMPTY- MOVES- FORWARD (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUELE N))
(LESSP 1 N)
(LESSP | N)
(NOT (ZEROP 1)))
(LEADS- TO
“ (AND (NOT (EMPTY- NODE
STATE (QUOTE , (ADDL 1))))
(AND (EMPTY- NODE STATE (QUOTE | 1))
(NOT (LI STP (QUEUE- VALUES
STATE
(QUOTE , 1))))))
“ (AND (NOT (EMPTY- NODE STATE (QUOTE , 1)))
(AND (EMPTY- NODE STATE (QUOTE , (SUBL 1)))
(NOT (LI STP (QUEUE- VALUES
STATE
(QUOTE , (SUBL 1)))))))

(FI FO- QUELE N)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE PSP- GENERAL
(($P (LIST * AND

(LIST ’ NOT
(LI ST * EMPTY- NODE * STATE
(LI ST * QUOTE (ADDL 1))))

(LI ST ' AND
(LI ST * EMPTY- NODE * STATE
(LI ST * QUOTE 1))
(LI ST * NOT
(LI ST ' LISTP

(LI ST * QUEUE- VALUES ' STATE

(LIST "QUOTE 1)))))))
($Q (LI ST ' AND

(LI ST ’ NOT
(LI ST * EMPTY- NODE * STATE
(LI ST * QUOTE 1)))
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (SUBL 1)))))
($R (LI ST ' AND

(LI ST * PROPER- NODES ' STATE
(LI'ST * QUOTE N))
(LI ST ' AND
(LI ST * NOT
(LI ST * EMPTY- NODE ’ STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST ’ AND
(LI ST ' EMPTY- NODE ' STATE
(LIST * QUOTE 1))
(LIST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES ' STATE

395

(LIST "QUOTE 1))))))))
($B (LIST ' AND

(LI'ST * NOT
(LI ST ' EMPTY- NODE * STATE
(LIST * QUOTE 1)))
(LI ST * AND
(LI ST ' EMPTY- NODE ’ STATE
(LI ST * QUOTE (SUBL 1)))
(LIST ’ NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES °’ STATE
(LIST " QUOTE (SUBL 1))))))))))
(USE- LEMVA FULL- EMPTY- MOVES- FORWARD ((I (SUBL 1))))
(BASH (DI SABLE EVAL))
(REWRI TE FULL- EMPTY- REST- UNLESS- MOVES- FORWARD)
(BASH (DI SABLE EVAL)) (BASH (DI SABLE EVAL)))))

(PROVE- LEMMA FULL- REST- EMPTY- QUTPUT- GROWS (REVRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
* (PROPER- NODES STATE (QUOTE , N))
(FI FO QUELE N))
(LESSP 1 N)
(LESSP | N)
(NUMBERP 1))
(LEADS- TO
“ (AND (NOT (EMPTY- NODE
STATE (QUOTE , (ADDL 1))))
(AND (EMPTY- NODE STATE (QUOTE | 1))
(AND (NOT (LI STP (QUEUE- VALUES
STATE
(QUOTE , 1))))
(EQUAL (LENGTH (VALUE STATE
(QUOTE QUTPUT)))

(QUOTE ,K)))))
* (LESSP (QUOTE |, K)
(LENGTH (VALUE STATE (QUOTE QUTPUT))))
(FI FO- QUELE N)))
((1 NSTRUCTI ONS
(INDUCT (PLUS | J))
PROMOTE PROMOTE
(REVRI TE LEADS- TO- STRENGTHEN- LEFT
(($P (LIST * AND
" (NOT (EMPTY- NODE STATE 1))

(LI ST ' AND
" (EMPTY- NODE STATE 0)
(LI ST * EQUAL

" (LENGTH (VALUE STATE ’ QUTPUT))
(LIST " QUOTE K)))))))
CHANGE- GOAL
(REWRI TE OUTPUT- GROWS- | MVEDI ATELY)
(GENERALI ZE
(s
(FI FO QUEUE N)
(1 LEADS
(LI ST ’ AND
(LI ST * NOT
(LI ST ' EMPTY- NCDE
' STATE

(LI ST * QUOTE (ADDL 1))))
(LIST ' AND

(LI' ST ' EMPTY- NODE

* STATE
(LI'ST ' QUOTE 1))
(LI'ST * AND
(LI ST ' NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
" STATE

(LI ST ' QUOTE 1))))
(LI ST ' EQUAL

" (LENGTH (VALUE STATE ' QUTPUT))
(LI'ST * QUOTE K)))))
(FI FO QUELE N)
(OONS '’ LESSP
(CONS (LI ST ' QUOTE K)
" ((LENGTH (VALUE STATE ' QUTPUT)))))))
STATE)))
BASH PROMOTE PROMOTE
(REWRI TE LEADS- TO- TRANSI TI VE
((3Q
(LIST 'R
(LI'ST ' AND
(LIST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LIST " QUOTE 1)))
(LI'ST ' AND
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (SUBL 1)))
(LI ST ' AND
(LIST * NOT
(LIST 'LISTP
(LI ST ’ QUEUE- VALUES
' STATE

(LI'ST "QUOTE (SUBL 1)))))
(LI'ST ' EQUAL

" (LENGTH (VALUE STATE ' QUTPUT))
(LI'ST * QUOTE K)))))
(LI ST * LESSP
(LI ST ' QUOTE K)
" (LENGTH (VALUE STATE ' QUTPUT)))))))
CHANGE- GOAL
(REWRI TE DI SJIO N- LEFT)
(BASH (DI SABLE EVAL))
(REWRI TE Q LEADS-TO-Q
(REVMRI TE PSP- GENERAL
(($P (LIST ' AND

(LI ST ' NOT
(LI ST * EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1))))
(LI ST ' AND
(LI ST * EMPTY- NODE
' STATE
(LIST ' QUOTE 1))
(LI ST * NOT
(LIST ' LISTP
(LI ST ' QUEUE- VALUES

' STATE

(LI'ST "QUOTE 1)))))))
($R (LI ST ’ EQUAL

396

" (LENGTH (VALUE STATE ’' QUTPUT))

(LI ST * QUOTE K)))
($Q (LI ST ' AND

(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE 1)))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI'ST * QUOTE (SUBL 1)))
(LI ST * NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES

' STATE
(LI'ST " QUOTE (SUBL 1))))))))
($B (CONS ' LESSP
(CONS (LI ST * QUOTE K)
" ((LENGTH (VALUE STATE ’ OUTPUT))))))))
(REWRI TE FULL- REST- EMPTY- MOVES- FORWARD)
(REWRI TE OUTPUT- NEVER- SHORTENS)

(GENERALI ZE
(((s
(FI FO QUEUE N)
(I LEADS
(LI ST ’ AND
(LI'ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE (ADDL 1))))
(LI ST ’ AND
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1))
(LI ST * AND
(LI ST ’ NOT
(LI ST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI ST ' QUOTE 1))))
(LI ST ' EQUAL

" (LENGTH (VALUE STATE ’ QUTPUT))

(LI ST * QUOTE K)))))
(FI FO QUEUE N)

(LIST ' OR
(LI ST * AND
(LI ST ’ NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST * QUOTE 1)))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI'ST * QUOTE (SUBL 1)))
(LI ST ’ AND
(LI ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE

(LI'ST "QUOTE (SUBL 1)))))
(LI'ST ' EQUAL

397

" (LENGTH (VALUE STATE ’' OUTPUT))
(LI'ST " QUOTE K)))))
(CONS * LESSP

(CONS (LI ST * QUOTE K)
" ((LENGTH (VALUE STATE ' QUTPUT))))))))

STATE)))
(BASH (DI SABLE EVAL))
(GENERALI ZE
(((s
(FI FO- QUELE N)
(JLEADS
(1 LEADS
(LI ST * AND
(LI'ST * NOT
(LI ST ' EMPTY- NODE
' STATE
(LI'ST ' QUOTE (ADDL 1))))
(LI ST ' AND
(LI ST * EMPTY- NCDE
' STATE
(LIST ' QUOTE 1))
(LI ST ' AND
(LI'ST ' NOT
(LIST ' LISTP
(LI ST ' QUEUE- VALUES
' STATE
(LI ST " QUOTE 1))))
(LI ST ' EQUAL
" (LENGTH (VALUE STATE ' QUTPUT))
(LIST * QUOTE K)))))
(FI FO- QUELE N)
(LIST ' OR
(LI ST ' AND
(LI'ST ' NOT
(LI ST * EMPTY- NCDE
' STATE
(LIST " QUOTE 1)))
(LI ST ' AND
(LI ST ' EMPTY- NODE
' STATE
(LI'ST ' QUOTE (SUBL 1)))
(LI ST * AND
(LI'ST * NOT
(LIST 'LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI'ST " QUOTE (SUBL 1)))))
(LI ST ' EQUAL
" (LENGTH (VALUE STATE ' QUTPUT))
(LI'ST " QUOTE K)))))
(CONS '’ LESSP

(CONS (LI ST * QUOTE K)
" ((LENGTH (VALUE STATE ' QUTPUT)))))))
(FI FO- QUEUE N)

(LIST "R
(LI ST * AND
(LI ST * AND
(LI ST ' NOT
(LI ST * EMPTY- NODE
' STATE

(LI'ST "QUOTE 1)))

398

(LIST ' AND

(LI ST * EMPTY- NCDE

' STATE

(LIST * QUOTE (SUBL 1)))
(LI ST * NOT

(LI ST * LI STP

(LI ST * QUEUE- VALUES
' STATE

(LI'ST " QUOTE (SUB1 1)))))))
(LI'ST " EQUAL

" (LENGTH (VALUE STATE ’ OUTPUT))
(LI ST * QUOTE K)))
(CONS ' LESSP
(CONS (LI ST ' QUOTE K)
" ((LENGTH (VALUE STATE ’ OUTPUT))))))))
STATE)))
(BASH (DI SABLE EVAL)))))

(DEFN FI RST- EMPTY- SUBQUEUE (STATE N)
(I F (ZEROP N)
0

(I'F (LI STP (QUEUE- VALUES STATE N))
(FI RST- EMPTY- SUBQUEUE STATE (SUBL N))

N))

(PROVE- LEMMA FI RST- EMPTY- SUBQUEUE- | S- EMPTY (REWRI TE)
(NOT (LI STP (QUEUE- VALUES
STATE
(FI RST- EMPTY- SUBQUEUE STATE N)))))

(PROVE- LEMMA QUEUE- NOT- EMPTY- | MPLI ES (REWRI TE)
(I MPLIES (LI STP (QUEUE- VALUES STATE N))
(AND (NOT (EMPTY- NODE STATE
(ADDL (FI RST- EMPTY- SUBQUEUE
STATE N))))
(EMPTY- NODE STATE (FI RST- EMPTY- SUBQUEUE STATE N))))
((DI SABLE EMPTY- NODE)))

(PROVE- LEMMA NOT- LESSP- FI RST- EMPTY- SUBQUEUE (REVRI TE)
(NOT (LESSP N (FI RST- EMPTY- SUBQUEUE STATE N))))

(PROVE- LEMMA LESSP- FI RST- EMPTY- SUBQUEUE (REVRI TE)
(I MPLIES (LI STP (QUEUE- VALUES STATE N))
(LESSP (FI RST- EMPTY- SUBQUEUE STATE N)

((EXPAND (QUEUE- VALUES STATE N)
(FI RST- EMPTY- SUBQUEUE STATE N))))

(PROVE- LEMVA OUTPUT- GROWS (REVRI TE)
(I MPLI ES (AND (I NI TI AL- CONDI TI ON * (PROPER- NODES STATE (QUOTE , N))
(FI FO QUEUE N))
(LESSP 1 N))
(LEADS- TO * (AND (LI STP (QUEUE- VALUES STATE N))
(EQUAL (LENGTH (VALUE STATE
(QUATE QUTPUT)))
(QUOTE , K)))
* (LESSP (QUOTE , K)
(LENGTH (VALUE STATE (QUOTE OUTPUT))))

(FIFO- QUELE N)))
((1 NSTRUCTI ONS PROVOTE

399

(CLAI M
(LI STP
(QUEUE- VALUES
(S (FI FO QUEUE N)
(I LEADS (LI ST * AND
" (LI STP (QUEUE- VALUES STATE N))
(LI ST * EQUAL
" (LENGTH (VALUE STATE ’ OUTPUT))
(LI ST * QUOTE K)))
(FI FO QUEUE N)
(CONS ' LESSP
(CONS (LI ST ’* QUOTE K)
" ((LENGTH (VALUE STATE ' OUTPUT)))))))

N))
0)
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P
(LI ST ’ AND
(LI'ST * NOT
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE
(ADDL (FI RST- EMPTY- SUBQUEUE STATE N)))))
(LI ST * AND
(LI ST ' EMPTY- NCDE
' STATE
(LI ST * QUOTE
(FI RST- EMPTY- SUBQUEUE STATE N)))
(LI ST ’ AND
(LI'ST * NOT
(LIST ' LISTP
(LI ST * QUEUE- VALUES
' STATE
(LI ST * QUOTE
(FI RST- EMPTY- SUBQUEUE STATE N)))))
(LI ST * EQUAL
" (LENGTH (VALUE STATE ’ QUTPUT))
(LI'ST "QUOTE K))))))))
(PUT
(STATE
(S (FIFO QUEUE N)
(I LEADS (LI ST * AND
" (LI STP (QUEUE- VALUES STATE N))
(LI ST * EQUAL
" (LENGTH (VALUE STATE ’ OUTPUT))
(LI ST * QUOTE K)))
(FI FO QUEUE N)
(CONS * LESSP
(CONS (LI ST ’* QUOTE K)
" ((LENGTH (VALUE STATE ’ QUTPUT)))))))))
BASH
(REVRI TE FULL- REST- EMPTY- QUTPUT- GROAB)
PROVE
(REWRI TE LEADS- TO- STRENGTHEN- LEFT
(($P ’ (FALSE))))
BASH
(REVRI TE PROVE- LEADS- TO)
PROVE)))

(PROVE- LEMMA | N- NODE- LEAVES- REST- OF- QUEUE- UNCHANGED (REVRI TE)
(I MPLIES (AND (N OLD NEW (LI ST ' I N-NODE N))

400

401

(LESSP 1 N)
(LESSP | N)
(NUMBERP 1))
(AND (EQUAL (VALUE NEW’ QUTPUT)
(VALUE OLD * OUTPUT))
(EQUAL (QUEUE- VALUES NEW)
(QUEUE- VALUES QLD 1))))
((1 NSTRUCTI ONS SPLIT BASH (I NDUCT (PLUS | J)) (BASH (DI SABLE N))
PROVMOTE PROVOTE
(CLAIM (AND (NOT (EQUAL | N)) (NOT (EQUAL (SUBL I) N)))
((DI SABLE N)))
(BASH T))))

(PROVE- LEMMA | N- NODE- PRESERVES- VALUES (REWRI TE)
(I MPLIES (AND (N OLD NEW (LI ST ' I N-NODE N))
(PROPER- NODE OLD N)
(EQUAL (VALUE CLD ' I NPUT)
(APPEND (QUEUE- VALUES OLD N)
(VALUE OLD ' QUTPUT)))
(LESSP 1 N))
(EQUAL (VALUE NEW' | NPUT)
(APPEND (QUEUE- VALUES NEW N)
(VALUE NEW’ OUTPUT))))
((INSTRUCTI ONS (DIVE 1) (DIVE 2) (DIVE 2) (DIVE 1) (DIVE 2)
(DIVE 1) X TOP PROVOTE (DI VE 2) (DIVE 1) X-DUMB (DI VE 3)
(DIVE 2) (DIVE 2)
(REWRI TE | N- NODE- LEAVES- REST- OF- QUEUE- UNCHANGED
(($OLD OLD) (SN N)))
UP UP (DI VE 3)
(REWRI TE | N- NODE- LEAVES- REST- OF- QUEUE- UNCHANGED
(($OLD OLD) ($N N)))
TOP (DIVE 2) (DI VE 2)
(REWRI TE | N- NODE- LEAVES- REST- OF- QUEUE- UNCHANGED
(($OLD OLD) (SN N) ($I (SUBL N))))
TOP (BASH T) PROVE PROVE PROVE)))

(PROVE- LEMMA OUT- NODE- PRESERVES- QUEUE- VALUES (REWRI TE)
(IMPLIES (AND (N OLD NEW' (OUT- NODE))
(LESSP 1 N)
(NOT (LESSP N 1))
(NOT (ZEROP 1)))
(AND (EQUAL (VALUE NEW' | NPUT)
(VALUE OLD * | NPUT))
(EQUAL (APPEND (QUEUE- VALUES NEW I)
(VALUE NEW’ OUTPUT))
(APPEND (QUEUE- VALUES OLD 1)
(VALUE OLD ’ QUTPUT)))))
((1 NSTRUCTI ONS SPLIT BASH (I NDUCT (PLUS | J)) (BASH (DI SABLE N))
(CLAIM (EQUAL | 1) 0)
(BASH T (EXPAND (QUEUE- VALUES OLD 1) (QUEUE- VALUES NEW 1)))
(BASH T))))

(PROVE- LEMMA EXTERNAL- NOR- GATES- PRESERVES- VALUES (REWRI TE)

(I MPLIES (AND (N OLD NEW

(LI ST * NOR- GATE (CT (SUBL N))

(CF (sSuB1 N)) (TEMP N)))
(LESSP 1 N)

(NOT (LESSP N 1))
(NUMBERP 1))
(AND (EQUAL (VALUE NEW' | NPUT)

402

(VALUE OLD ' I NPUT))
(EQUAL (VALUE NEW ' OUTPUT)
(VALUE OLD ’ QUTPUT))
(EQUAL (QUEUE- VALUES NEW)
(QUEUE- VALUES QLD 1))))
((I NSTRUCTI ONS SPLI T BASH BASH (I NDUCT (PLUS | J)) BASH BASH)))

(PROVE- LEMMA | NTERNAL- NODES- PRESERVES- REST- OF- QUEUE (REWRI TE)
(I MPLIES (AND (N OLD NEW STATEMENT)
(MEMBER STATEMENT (FI FO- NODE 1))
(NUVBERP J)
(LESSP J 1))
(EQUAL (QUEUE- VALUES NEW J)
(QUEUE- VALUES OLD J)))
((1 NSTRUCTI ONS (1 NDUCT (PLUS J K)) BASH PROMOTE PROMOTE
(CLAIM (NOT (EQUAL J 1))) (CLAIM (NOT (EQUAL (SUBL J) 1)))
(BASH T))))

(PROVE- LEMMA | NTERNAL- NODES- PRESERVE- VALUES (REVRI TE)
(I MPLIES (AND (N OLD NEW STATEMENT)
(MEMBER STATEMENT (FI FO-NODE 1))
(PROPER- NODE OLD (ADDL 1))
(PROPER- NODE OLD 1)
(NOT (ZEROP 1))
(LESSP | J))
(AND (EQUAL (VALUE NEW' | NPUT)
(VALUE OLD * | NPUT))
(EQUAL (VALUE NEW ' OUTPUT)
(VALUE OLD * OUTPUT))
(EQUAL (QUEUE- VALUES NEW J)
(QUEUE- VALUES QLD J))))
((1 NSTRUCTI ONS
SPLIT
(DROP 3 4 6)
(BASH T)
(DROP 3 4 6)
(BASH T)
(INDUCT (PLUS J K))
(BASH T (DI SABLE PROPER- NODE N))
PROMOTE PROMOTE
(DEMOTE 2)
(DI VE 1)
(DI VE 1)
(S NIL)
S ToP
(CLAIM (EQUAL (ADDL 1) J) 0)
PROVOTE
(DROP 9 7 1)
(CLAIM (EQUAL (QUEUE- VALUES NEW (SUBL (SUBL J)))
(QUEUE- VALUES OLD (SUBL (SUBL J))))
((DI SABLE FI FO- NODE PROPER- NCDE N)))
(BASH T
(DI SABLE | NTERNAL- NODES- PRESERVES- REST- OF- QUEUE))
(CLAIM (NOT (EQUAL | J)))
(DROP 4 5)
(BASH T))))

(PROVE- LEMVA VALUES- PRESERVED (REVRI TE)
(I MPLIES (AND (N OLD NEW STATEMENT)
(PROPER- NODES OLD N)

403

(LESSP 1 N)
(EQUAL (VALUE COLD ' | NPUT)
(APPEND (QUEUE- VALUES OLD N)
(VALUE OLD ’ OUTPUT)))
(MEMBER STATEMENT (FI FO- QUELE N)))
(EQUAL (VALUE NEW' | NPUT)
(APPEND (QUEUE- VALUES NEW N)
(VALUE NEW’ OUTPUT))))
((1 NSTRUCTI ONS
(BASH (DI SABLE N VALUE FI FO-NODE CT CF TEMP PROPER- NODE))
(USE- LEMVA EXTERNAL- NOR- GATES- PRESERVES- VALUES ((1 N)))
PROVOTE (DEMOTE 1) (DIVE 1) (DIVE 1) (S NIL) (= * T 0) TOP
SPLIT (DIVE1) == UP (DIVE 2) (DIVE1) = UP (DIVE 2) = TOP S
(DROP 1 2 4) PROVE
(USE- LEMVA OUT- NODE- PRESERVES- QUEUE- VALUES ((I N))) PROVOTE
(DEMOTE 1) (DIVE 1) (DIVE 1) (S NIL) (= * T 0) TOP SPLIT
(DIVE 1) = = TOP (DIVE 2) = TOP S (DROP 1 2 4) PROVE PROMOTE
(USE- LEMVA | N- NODE- PRESERVES- VALUES) (DEMOTE 5) (DI VE 1)
(DIVE 1) (SNL) (=* TIFF) UP (DIVE 2) (DIVE 2) (Dl VE 2)
(REVRI TE | N- NODE- LEAVES- REST- OF- QUEUE- UNCHANGED (($I 0))) TOP
S (DROP 1 2 4) PROVE S-PROP (REWRI TE PROPER- NODES- | MPLI ES)
DROP PROVE (DROP 1 2 4) PROVE (DROP 1 2 4) PROVE PROMOTE
(CLAI' M (LESSP (CDADDDR STATEMENT) N) 0)
(CLAI'M (NOT (ZEROP (CDADDDR STATEMENT))) 0) (DI VE 1)
(CLAI' M (PROPER- NODE OLD (CDADDDR STATEMENT)) 0)
(CLAI' M (PROPER- NODE OLD (ADD1 (CDADDDR STATEMENT))) 0)
(REWRI TE | NTERNAL- NODES- PRESERVE- VALUES
(($! (CDADDDR STATEMENT)) ($J N) ($OLD OLD)))
UP (DIVE 2) (DI VE 2)
(REWRI TE | NTERNAL- NODES- PRESERVE- VALUES
(($! (CDADDDR STATEMENT)) ($J N) ($OLD OLD)))
TOP (DIVE 1) = TOP S TOP (CONTRADI CT 13)
(REVRI TE PROPER- NODES- | MPLI ES)
(DROP 123456789 11 12 13) PROVE DROP PROVE TCP
(CONTRADI CT 12) (REWRI TE PROPER- NODES- | MPLI ES)

(DROP 123456789 11 12) PROVE (CONTRADI CT 11)
(DROP 1 2 3456 9 10 11) PROVE (CONTRADI CT 6)
(DROP 123456 7 8) PROVE)))

(PROVE- LEMVA VALUES- | NVARI ANT (REWRI TE)
(I MPLIES (LESSP 1 N)
(UNLESS * (AND (PROPER- NODES STATE (QUOTE , N))
(EQUAL (VALUE STATE (QUOTE | NPUT))
(APPEND (QUEUE- VALUES STATE

(QUOTE , N))
(VALUE STATE
(QUOTE QUTPUT)))))
" (FALSE)
(FI FO QUELE N)))
((1 NSTRUCTI ONS PROVOTE (REWRI TE HELP- PROVE- UNLESS)
(PROVE (DI SABLE MEMBER- FI FO- QUEUE VALUE N)))))

(PROVE- LEMMA QUEUE- VALUES- | NVARI ANT (REWRI TE)
(I MPLIES (AND (I NI TI AL- CONDI TI ON
“ (AND (PROPER- NODES STATE (QUOTE , N))
(EQUAL (VALUE STATE (QUOTE | NPUT))
(APPEND (QUEUE- VALUES STATE

(QUOTE , N))
(VALUE STATE
(QUOTE QUTPUT)))))

(FI FO QUEUE N))
(LESSP 1 N))
(I NVARI ANT * (EQUAL (VALUE STATE (QUOTE | NPUT))
(APPEND (QUEUE- VALUES STATE

(QUOTE , N))
(VALUE STATE
(QUOTE OUTPUT))))
(FI FO- QUELE N)))
((1 NSTRUCTI ONS PROVOTE
(REVRI TE | NVARI ANT- CONSEQUENCE
(($P (LIST * AND
(LI ST * PROPER- NODES ' STATE
(LI ST * QUOTE N))
(LI ST * EQUAL ’ (VALUE STATE ' | NPUT)
(LI ST ' APPEND
(LI ST * QUEUE- VALUES °’ STATE
(LIST ' QUOTE N))
" (VALUE STATE ' QUTPUT)))))))
(REWRI TE UNLESS- PROVES- | NVARI ANT
(($1C (LIST ’ AND
(LI ST * PROPER- NODES ’ STATE
(LI ST * QUOTE N))
(LI ST * EQUAL ' (VALUE STATE ' | NPUT)
(LI ST * APPEND
(LI ST * QUEUE- VALUES ' STATE
(LI ST ' QUOTE N))
" (VALUE STATE ' QUTPUT)))))))
(REVRI TE VALUES- | NVARI ANT) S DRCP (BASH (DI SABLE EVAL)))))

References

[Abadi & Lamport 88]
Martin Abadi and Leslie Lamport.
The Existence of Refinement Mappings.
Technical Report Research Report 29, DEC Systems Research Center,
130 Lytton Avenue, Palo Alto, CA 94301, August, 1988.

[Alpern & Schneider 85]
Bowen Alpern and Fred B. Schneider.
Defining Liveness.
Information Processing Letters 21:181-185, 1985.

[Alpern, Demers, & Schneider 86]
Bowen Alpern, Alan J. Demers, and Fred B. Schneider.
Safety Without Stuttering.
Information Processing Letters 23:177-180, 1986.

[Andersen | Flemming Anderson.
A Verified Theorem Prover for UNITY in Higher Order Logic.
PhD thesis, Technical University of Denmark, .
to appear.

[Apt, Francez, & Katz 88|
K.R. Apt, N. Francez, and S. Katz.
Appraising Fairnessin Distributed Languages.
Distributed Computing 2:226-241, August, 1988.

[Ben-Ari 84] M. Ben-Ari.
Algorithms for On-the-Fly Garbage Collection.
ACM Transactions of Programming Languages and Systems
6:281-296, 1984.

[Bevier 88] William R. Bevier.
A Library for Hardware Verification.
Technical Report, Computational Logic, Inc., Austin, Texas 78703,
1988.
CLI Internal Note 57.

405

406

[Bevier, Hunt, & Y oung 87]
William R. Bevier, Warren A. Hunt, Jr., and William D. Y oung.
Toward Verified Execution Environments.
Technical Report 5, Computational Logic, Inc., 1987.
Also appearsin ' Proceedings of the 1987 IEEE Symposium on
Security and Privacy’.

[Boyer & Moore 79]
R. S. Boyer and J S. Moore.
A Computational Logic.
Academic Press, New Y ork, 1979.

[Boyer & Moore 81]
R. S. Boyer and JS. Moore.
Metafunctions: Proving Them Correct and Using Them Efficiently as
New Proof Procedures.
InR. S. Boyer and J S. Moore (editors), The Correctness Problemin
Computer Science. Academic Press, London, 1981.

[Boyer & Moore 88al
R. S. Boyer and J S. Moore.
A Computational Logic Handbook.
Academic Press, Boston, 1988.

[Boyer & Moore 88b]

R. S. Boyer and J S. Moore.

The Addition of Bounded Quantification and Partial Functionsto A
Computational Logic and Its Theorem Prover.

Technical Report ICSCA-CMP-52, Institute for Computer Science,
University of Texas at Austin, January, 1988.

To appear in the Journal of Automated Reasoning, 1988. Also
available through Computational Logic, Inc., Suite 290, 1717 West
Sixth Street, Austin, TX 78703.

[Boyer, Goldschlag, Kaufmann, & Moore 91]
R.S. Boyer, D. Goldschlag, M. Kaufmann, J Strother Moore.
Functional Instantiation in First Order Logic.
In V. Lifschitz (editors), Artificial Intelligence and Mathematical
Theory of Computation: Papersin Honor of John McCarthy,
pages 7-26. Academic Press, 1991.

[Browne, Clarke, & Dill 86]
Michael C. Browne, Edmund M. Clarke, and David L. Dill.
Automatic Ciruit Verification Using Temporal Logic: Two New
Examples.
In George J. Milne and P. A. Subrahmanyam (editors), Formal Aspects
of VLS Design, Proceedings of the 1985 Edinburgh Workshop on
VLY, pages 113-124. North Holland, 1986.

407

[Burch 90] Jerry R. Burch.
Combining CTL, Trace Theory, and Timing Models.
In J. Sifakis (editors), Automatic Verification Methods for Finite State
Systems, pages 334-348. Springer-Verlag, 1990.

[Camilleri 90] Albert Camilleri.
Reasoning in CSP viathe HOL Theorem Prover.
|EEE Transactions on Software Engineering SE-16, September, 1990.

[Chandy & Misra 88]
K. Mani Chandy and Jayadev Misra.
Parallel Program Design: A Foundation.
Addison Wesley, Massachusetts, 1988.

[Clarke & Grumberg 87]
E.M. Clarke and O. Grumberg.
Research on Automatic Verification of Finite Sate Systems.
Technical Report CS-87-105, CMU, January, 1987.

[Clarke, Emerson, & Sistla 86]
E. M. Clarke, E. A. Emerson, and A. P. Sistla
Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic.
ACM Transactions on Programming Languages and Systems
8(2):244-263, April, 1986.

[Cohn 89] Avra Cohn.
The Notion of Proof in Hardware Verification.
Journal of Automated Reasoning 5(2):127-139, June, 1989.

[Crawford & Goldschlag 87]
Jimi Crawford and David Goldschlag.
The Mechanical Verification of Distributed Systems.
Technical Report, Computational Logic, Inc. Austin Texas 78703,
July, 1987.
Technical Report 7.

[Dill 88] David L. Dill.
Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits.
The MIT Press, Cambridge, Massachusetts, 1988.

[Francez 86] Nissim Francez.
Fairness.
Springer-Verlag, New Y ork, 1986.

[Garland, Guttag, & Horning 90]
S.J. Garland, J.V. Guttag, J.J. Horning.
Debugging Larch Shared L anguage Specifications.
|EEE Transactions on Software Engineering SE-16(9), September,
1990.

[German 85]

408

Steven M. German and Y u Wang.

Formal Verification of Parameterized Hardware Designs.

Proceedings of the |EEE International Conference on Computer
Design: VLS in Computers :549-552, 1985.

[Gerth & Pnueli 89]

[Goldschlag 89]

[Goldschlag 90a]

[Goldschlag 90b]

[Goldschlag 90c]

[Goldschlag 914]

[Goldschlag 91b]

[Goldschlag 91c]

Rob Gerth and Amir Pnueli.

Rooting UNITY.

In Fifth International Workshop on Software Specification and Design,
pages 11-19. ACM Sigsoft Engineering Notes, 1989.

David Goldschlag.

A Mechanically Verified Proof System for Concurrent Programs.

Technical Report, Computational Logic, Inc. Austin Texas 78703,
January, 1989.

Technical Report 32.

David M. Goldschlag.
Proving Proof Rules: A Proof System for Concurrent Programs.
Compass ' 90, June, 1990.

David M. Goldschlag.

Mechanizing Unity.

In M. Broy and C. B. Jones (editors), Programming Concepts and
Methods. North Holland, Amsterdam, 1990.

David M. Goldschlag.

Mechanically Verifying Concurrent Programs with the Boyer-Moore
Prover.

| EEE Transactions on Software Engineering SE-16(9), September,
1990.

David Goldschlag.

A Mechanica Formalization of Several Fairness Notions.

In S. Prehn and W.J. Toetend (editors), VDM '91: Formal Software
Development Methods. Springer-Verlag Lecture Notesin
Computer Science 551, 1991.

David M. Goldschlag.

Verifying Safety and Liveness Properties of a Delay Insensitive Fifo
Circuit on the Boyer-Moore Prover.

1991 International Workshop on Formal Methodsin VLS Design,
January, 1991.

David M. Goldschlag.

Mechanically Verifying Safety and Liveness Properties of Delay
Insensitive Circuits.

Computer Aided Verification 1991 , July, 1991.

[Good 79]

[Good 82]

[Gordon 87]

[Gries 77]

409

D. I. Good, R. M. Cohen, and J. Keeton-Williams.

Principles of Proving Concurrent Programsin Gypsy.

In Proceedings of 6th Symposium of Principles of Programming
Languages. ACM, January, 1979.

Donald |. Good.

The Proof of a Distributed System in Gypsy.

In Formal Specification - Proceedings of the Joint IBM/University of
Newcastle upon Tyne Seminar - M. J. Elphick (Ed.). September,
1982.

Also Technical Report #30, Institute for Computing Science, The
University of Texas at Austin.

M. Gordon.

HOL: A Proof Generating System for Higher-Order Logic.

Technical Report 103, University of Cambridge, Computer
Laboratory, 1987.

David Gries.
An Exercise in Proving Parallel Programs Correct.
CACM 20(12):921-930, 1977.

[Guttag, Horning, & Wing 85]

[Hehner 84]

[Hoare 694]

[Hoare 69b]

[Hoare 72]

[Hoare 78]

[Hoare 85]

John Guttag, James Horning, and Jeannette Wing.
The Larch Family of Specification Languages.
|EEE Transactions on Software Engineering :24-36, September, 1985.

Eric C.R. Hehner.
Predicative Programming.
CACM 27(2):134-151, 1984.

C.A.R. Hoare.
An Axiomatic Basis for Computer Programming.
CACM 12(10):576-580, 1969.

C.A.R. Hoare.
An Axiomatic Basis for Computer Programming.
CACM 12:271-281, 1969.

C.A.R. Hoare.

Towards a Theory of Parallel Programming.

In Hoare and Perott (editors), Operating System Techniques. Academic
Press, New York, 1972.

C.A.R. Hoare.
Communicating Sequential Processes.
CACM 21(8):666-677, 1978.

C.A.R. Hoare.
Communicating Sequential Processes.
Prentice Hall International, Englewood Cliffs, NJ, 1985.

[Hunt 89]

[INMOS 84]

[INMOS 88]

410

Warren A. Hunt, Jr.
Microprocessor Design Verification.
Journal of Automated Reasoning 5(4):429-460, December, 1989.

INMOS Limited.
Occam Programming Manual.
Prentice-Hall International, Englewood Cliffs, NJ, 1984.

INMOS Limited.
Transputer Reference Manual.
Prentice Hall International, New Y ork, 1988.

[Jifeng, Josephs, & Hoare 90]

[Jones 80]

He Jifeng, M.B. Josephs, and C.A.R. Hoare.

A Theory of Synchrony and Asynchrony.

In M. Broy and C. B. Jones (editors), Programming Concepts and
Methods, pages 459-478. North Holland, Amsterdam, 1990.

Cliff B. Jones.
Software Development: A Rigorous Approach.
Prentice Hall, 1980.

[Jutla, Knapp, & Rao 88]

[Kaufmann 86]

[Kaufmann 87]

[Kaufmann 89]

Charanjit S. Jutla, Edgar Knapp, and Josyula R. Rao.

Extensional Semantics of Parallel Programs.

Technical Report, Department of Computer Sciences, The University
of Texas at Austin, November, 1988.

M. Kaufmann.

A Formal Semantics and Proof of Soundness for the Logic of the
NQTHM Version of the Boyer-Moore Theorem Prover.

Technical Report, Ingtitute for Computing Science, University of
Texasat Austin, Austin, TX 78712, 1986.

ICSCA Internal Note 229.

M. Kaufmann.

A User’s Manual for an Interactive Enhancement to the Boyer-Moore
Theorem Prover.

Technical Report ICSCA-CMP-60, Institute for Computing Science,
University of Texas at Austin, Austin, TX 78712, 1987.

Also available through Computational Logic, Inc., Suite 290, 1717
West Sixth Street, Austin, TX 78703.

Matt Kaufmann.

DEFN-SK: An Extension of the Boyer-Moore Theorem Prover to
Handle First-Order Quantifiers.

Technical Report 43, Computational Logic, Inc., May, 1989.

Draft.

411

[Knapp 90] Edgar Knapp.
Soundness and Relative Completeness of Unity Logic.
Technical Report Department of Computer Science, The University of
Texas at Austin, October, 1990.

[Lamport 80] Ledlie Lamport.
The ‘Hoare Logic’ of Concurrent Programs.
Acta Informatica 14(1980):21-37, 1980.

[Lamport 88] Ledlie Lamport.
1988
Personal Communication.

[Lamport 89] Ledlie Lamport.
A Simple Approach to Specifying Concurrent Systems.
Communications of the ACM 32:32-45, 1989.

[Lamport 91] Ledlie Lamport.
The Temporal Logic of Actions.
Technical Report 79, DEC Systems Research Center, 130 Lytton
Avenue, Palo Alto, CA 94301, 1991.

[Lamport & Schneider 84]
Leslie Lamport and Fred B. Schneider.
The ‘Hoare Logic’ of CSP, and All That.
ACM Transactions of Programming Languages and Systems
6(2):281-296, 1984.

[Manna & Pnueli 81]
Z. Mannaand A. Pnudli.
Verification of Concurrent Programs:. The Temporal Framework.
InR. S. Boyer and J S. Moore (editors), The Correctness Problemin
Computer Science. Academic Press, London, 1981.

[Manna & Pnueli 84]
Zohar Manna and Amir Pnueli.
Adequate Proof Principles for Invariance and Liveness Properties of
Concurrent Programs.
Science of Computer Programming 4:257-289, 1984.

[Manna & Pnueli 90]
Zohar Mannaand Amir Pnueli.
An Exercise in the Verification of Multi-Process Programs.
In W.H.J. Feijen, A.J.M. van gasteren, D. Gries, and J. Misra (editors),
Beautry is Our Business, pages 289-301. Springer Verlag, 1990.

[Martin 86] Alain J. Martin.
Compiling Communicating Processes into Delay-Insensitive VLSI
Circuits.
Distributed Computing 1:226-234, 1986.

[Martin 87]

[Miller 65]

[Milner 80]

[Misra90a]

[Misra 90b]

[Misra 90c]

[Moore 894]

[Moore 89b]

412

Alain J. Martin.

Self-Timed FIFO: An Exercisein Compiling Programsinto VLSI
Circuits.

In From HDL Descriptions to Guaranteed Correct Circuit Designs,
pages 133-153. North-Holland, Amsterdam, 1987.

R. E. Miller.
Switching Theory.
Wiley, 1965.

Robin Milner.
A Calculus of Communicating Systems.
Springler-Verlag, Berlin, 1980.

Jayadev Misra.

Auxiliary Variables.

Technical Report Notes on UNITY: 15-90, Department of Computer
Sciences, The University of Texas at Austin, July, 1990.

Jayadev Misra.

Soundess of the Substitution Axiom.

Technical Report Notes on UNITY: 14-90, Department of Computer
Sciences, The University of Texas at Austin, March, 1990.

Jayadev Misra.

Preserving Progress Under Program Composition.

Technical Report Notes on UNITY: 17-90, Department of Computer
Sciences, The University of Texas at Austin, July, 1990.

J Strother Moore.
A Mechanically Verified Language | mplemenation.
Journal of Automated Reasoning 5(4):493-518, December, 1989.

J Strother Moore.
System Verification.
Journal of Automated Reasoning 5(4):409-410, December, 1989.

[Nagayama & Talcott 91]

[Owicki 75]

Misao Nagayama and Carolyn Talcott.

An NQTHM Mechanization of an Exercise in the Verification of Multi-
Process Programs.

Technical Report STAN-CS-91-1370, Stanford University, 1991.

S. Owicki.
Axiomatic Proof Techniques for Parallel Programs.
PhD thesis, Cornell University, 1975.

[Owicki & Gries 76]

Susan Owicki and David Gries.
Verifying Parallel Programs: An Aximatic Approach.
CACM 19(5):279-285, 1976.

413

[Owicki & Lamport 82]
S. Owicki and L. Lamport.
Proving Liveness Properties of Concurrent Programs.
ACM TOPLAS4 3:455-495, 1982.

[Pachl 90] J. Pachl.
A Smple Proof of a Completeness Result for leads-to in the UNITY
Logic.
Technical Report RZ 2060 (#72085), IBM Research Division,
November, 1990.

[Russinoff 90] David M. Russinoff.
Verifying Concurrent Programs with the Boyer-Moore Prover.
Technical Report STP/ACT-218-90, MCC, Austin, Texas, 1990.

[Russinoff 91] David M. Russinoff.
A Mechanically Verified Incremental Garbage Collector.
Technical Report STP/ACT--91, MCC, Austin, Texas, 1991.

[Sanders 90] B. A. Sanders.
Stepwise Refinement of Mixed Specifications of Concurrent
Programs.
In M. Broy and C. B. Jones (editors), Programming Concepts and
Methods. North Holland, Amsterdam, 1990.

[Shankar 87] N. Shankar.
Proof Checking Metamathematics: Volumes| and Il.
Technical Report 9, Computational Logic, Inc., April, 1987.

[Shankar 88] N. Shankar.
A Mechanical Proof of the Church-Rosser Theorem.
Journal of the ACM 35:475-522, 1988.

[Singh 89] Ambuj Singh.
Leads-To and Program Union.
Technical Report Notes on UNITY: 06-89, Department of Computer
Sciences, The University of Texas at Austin, June, 1989.

[Staunstrup & Greenstreet 89]

J. Staunstrup and M.R. Greenstreet.

Designing Delay Insensitive Circuits using ** Synchronized
Transitions'’.

In Dr. Luc Claesen (editors), Proceedings of the IMEC-IFIP
International Workshop on Applied Formal Methods for Correct
VLS Design, pages 741-758. Elsevier Science PublishersB.V .,
Amsterdam, 1989.

[Staunstrup, Garland, & Guttag 90]
Jorgen Staunstrup, Stephen J. Garland, and John V. Guttag.
Localized Verification of Circuit Descriptions.
In J. Sifakis (editors), Automatic Verification Methods for Finite Sate
Systems, pages 348-364. Springer-Verlag, 1990.

[Stesle 84]

[Wright 91]

[Young 89]

414

G. L. Steele, Jr.
Common Lisp The Language.
Digital Press, 30 North Avenue, Burlington, MA 01803, 1984.

J. von Wright.

Mechanising the Temporal Logic of Actionsin HOL.

In 1991 International Workshop on the HOL Theorem Proving System
and its Applications. 1991.

William D. Y oung.
A Mechanically Verified Code Generator.
Journal of Automated Reasoning 5(4):493-518, December, 19809.

Index

This index lists the primary reference to each of the definitions and theorems
introduced in the main text of this thesis. Definition names are in SMALL CAPI TALS.

Theorem names are in Boldface.

About-Uc 65

ALL- CHANNELS 90
ALL- EMPTY 90
Any-Leads-To-Right 72

C- ELEMENT 118
Cancdllation-Leads-To 40
CHANGED 64

CHANNEL 58

CHI LDREN 80

CHI LDREN- REC 80
Choose-Chooses 25

Choose-Next 26

CORRECT 91

Correctness 108
Correctness-Condition 92

CRI TI CAL 58
Critical-Ensures-Less-Critical-Or-Right 70
Critical-Leads-To-Right 71
Critical-Ticks-Leads-To-Right 70

Digoin-Left 39
DL 97

DONE 98
DOM- LI NKS 91

E- ENSURES 47
Eating-Leads-To-Free 110
EATI NG TO 106

EEE 159

ENABLI NG CONDI TI ON 47

415

ENSURES 46
Ensures-Strengthen-Left 54
Ensures-Union 53
Ensures-Weaken-Right 53

EVAL 33

Eval-Or 33

EVENTUALLY- | NVARI ANT 37
Eventually-Invariant-Conjunction 43
Eventually-Invariant-Right-lmplies-All-Rights 111
Eventually-lInvariant-Weaken 42

EXI STS- SUCCESSOR 29

EXTERNAL- NODES 121

FI FO- NODE 119
FI FO QUEUE 121
Full-Rest-Empty-Moves-Forward 126

HUNGRY- BOTH 105
Hungry-Leads-To-Owns-Left 112
HUNGRY- LEFT 105

HUNGRY- Rl GHT 105

|ES 37

I 151

| LEADS 35

I N-NODE 119

Index-1s-Numeric 26

I NI TI AL- CONDI TI ON 37
Initial-Conditions-Imply-Invariant 100
Input-Only-Adds-Boolean 124

| NTERNAL- NODES 121

INV 99
Inv-lmplies-Augmented-Correctness-Condition 101
Inv-ls-Invariant 100

| NVARI ANT 36

Invariant-Consequence 41
Invariant-Implies 40

JES 37
JLEADS 35

LEADS-TO 35
Leads-To-False-Invariant 42
Leads- To-Strengthen-Left 38
Leads-To-Transitive 38
Leads- To-Weaken-Right 39

MCHOCSE 27

416

ME- PRG 61
Member-Me-Prg 63

MN 84

M N- NODE- VALUE 92

M N- OF- REPORTED 99
MNEXT 28

Mnext-Choice-2 28

Ms 30

Ms-Transition-ldle 30
Ms-Transition-Successful 30
MUTUAL- EXCLUSI ONP 62
Mutual-Exclusionp-ls-Invariant 62

N 23

Never-All-Rights 112

NEWK 29

Next-1s-At-Or-After 26

NO 98

Node-Values-Constant-Invariant 93

NON- CRI TI CAL 57
Non-Critical-L eft-Ensur es-Wait-L eft-Or-Right 69
Non-Critical-L eft-Unless-Wait-L eft-Or-Right 69
NOR- GATE 117

Not-L eads-To-Proves-Eventually-Invariant 44
NOT- STARTED 90

NUMBER- NOT- REPORTED 99

QUT- NCDE 120

Output-Grows 124
Output-Grows-|mmediately 126
Output-Only-Adds-Boolean 124
Owns-Both-Leads-To-Eating 110

PARENT 81

PARENT- REC 81

PH L 106
Phil-Prg-Invariant-1 109
PROGRAM 61

PROPER- NCDE 122
Proper-Nodes-Invariant 122
PROPER- PHI L 108

PROPER- TREE 79

Psp 41

QUEUE- VALUES 123
Queue-ValuesInvariant 123

RECEI VE- FI ND 83

417

418

RECEI VE- FI ND- PRG 86

RECE| VE- REPORT 84

RECE| VE- REPORT- PRG 87
REPCRTED 99

RFP 86

ROOT- RECEI VE- REPCRT 85
ROOT- RECEI VE- REPORT- PRG 88
ROOTS 80

RRP 87

RRRP 87

S-Effective-Transition 24

Sldle-Transition 25

SEND- FI ND 82

SETP 79

Simplify-Assoc 68

Stable-Occur s-Proves-Eventually-Invariant 42
START 81

START- PRG 86

STATUS 57

STRONGER- P 53

Termination 102

THI NKI NG TO 104

TI CKS 58

TOKEN 58

TOTAL 45

Total-Me 66

TOTAL- QUTSTANDI NG 96
Total-Outstanding-Decreases-Leads-To 102
Total-Prg 65
Total-Tree-Prg 95
Total-Union 53

TREE- PRG 88

TREEP 80

uc 64

Uc-Commutative 64
Uc-Commutative-2 64
Uc-Of-Update-Assoc 171
UL 98
Unconditional-Fairness 46
UNLESS 34
Unless-Proves-Invariant 41
Unless-Union 53
Unless-Weaken-Right 53
UP- LI NKS 91

VALUE 76

WAI T 57

Wait-And-L eft-Channel-Ensures-Critical 69
Wait-L eads-To-Critical 63

Wait-L eads-To-L eft-Wait-Or-Critical 72
Wait-Unless-Critical 72
Weak-Fairness 48

VEI GHT 62

VEl GHT- OF- TRI PLE 68
Weight-Of-Triple-Preserved 68

WFW 49

W TNESS 49

419

VITA

David Moshe Goldschlag was born in Detroit, Michigan, on August 19, 1965, the son of
Rabbi Henry and Shoshana Goldschlag. After graduating from Cranbrook Schools in
Bloomfield Hills, he studied at Wayne State University in Detroit. There he completed a
B.S. in computer science with a double mgjor in mathematics. In 1985, he began
graduate work at the University of Texas at Austin. In 1988, he married Barbara Fern
(nee Bergson). He now works for the National Security Agency.

Address: 1619 R Street N.W. #105, Washington, D.C. 20009-6421

This dissertation was typed by the author.

TABLE OF CONTENTS

Acknowledgements Y
A 1 o PR Vii
Table Oof CONENESottt e e e e e e e e iX

Chapter 1. Introductiont

1
L UNIY o e 2
1.2. TheBoyer-MooreLogicandProver 5
1.2.1. The Boyer-Moore LOgiCo v oot et i 5
L2 2. EvalS .. 7
1.2.3. Functional Instantiation i, 8
1.2.4. Definitionswith Quantifiers 10
1.2.5. The Kaufmann Proof Checker it 12
L3 ReatledWork 13
1.3.1. Communicating Sequential Processesc.covviin... 13
1.3.2. AN AXIOMatiC APProach vt 14
1.33. Temporal LOgICot 15
1.34. Temporal Logicof ACtionS, 16
L 3D GYPSY .« ittt e e e 17
1.3.6. Mechanized Tempora Logic, 18
1.3.7.CSPINHOL 19
138 . Unity iNHOL ... o 20
1.3.9. Mutual Exclusion on the Boyer-MooreProver 21

Chapter 2. AnOperational Semantics.t 22

21 AConcurrent Program e 22
22, A COMPULELION . . . ot 23
23. TheScheduler 25
2.4, SOUNONESS . .o\ttt et e e e e e e 27

Chapter 3. The Proof System e 32

3.1. Specification Predicates e 32
B L L EVa . 33

B L 2. UNIESS ot 34

B33 LS TO .t 35
314 InvarianCe Propertiest 36
315 Eventua Invariancei i 37
32 Proof RUIES. . ..o 38
321 Liveness TheoremSot e ettt e 38
3.2.2. Safety TheOremMS . ..o e e 41
3.3. Fairnessand Deadlock Freedom 44
3.3.1. Unconditional Fairnessttt e e 44
33 2. Weak FaitnNesS oo 46
333 . SUONGFaIrNESSot e e e 49
334.Deadlock Freedom 51
3.4. Proof Rules about UNLESS, ENSURES, and TOTALo.... 52
3.4.1. Program COmMPOSITIONottt e e 52
3.4.2. Strengthening and Weakening UNLESS, and ENSURES 53
3.5. Comparison With Unity Predicates, 54
3.6. CONCIUSION ...t e 55
Chapter 4. Mutual EXCIUSION o e e e 56
41 The PrOCESSES . . i ot 57
4 2. The Program e 60
4.3. The Correctness Specification 62
4.4. The Proof of Mutual EXclusion 63
4.5. The Proof of Absenceof Starvation., 69
4.6. CoNCIUSION . ..o 73
Chapter 5. A Minimum TreeValue Algorithm 74
5. TheTransitionst e e e e e 75
5.2 . TheProgram 85
5.3. The Correctness Specification ..., 90
5.4.TheProof of COrmectnesst et 93
B . CONCIUSION . oot e 103
Chapter 6. Dining Philosophers 104
B6.1. TheTransitionNsttt e e et 104
6.2. The Correctness Specification 107
6.3. TheCorrectness Proof i e 109
B.4. CONCIUSION ...ttt e 113

Chapter 7. A Delay Insensitive FIFO Circuit ot 114

7L TheFIFO CIrCUIt ...t e 115
7.2. The Correctness Specifications i, 122
7.3. TheCorrectnessProof i 125
74, CoNCIUSION ... e 127
Chapter 8. CONCIUSIONt 130
B.l.Lessonslearned 131
8.2.Mechanized Proofs. 132
B3 . FutureWork 134
B4 . FiNal NOESo 135
AppendiX A. Backquote 136
Appendix B. Proof SystemEvents 138
Appendix C. Mutual ExclusionEvents. 173
Appendix D. MinTreeValueEvents i 191
Appendix E. Dining PhilosophersEvents.o i 307
Appendix F. FIFO Circuit Eventst e 345
ReEferenCeS 405
INAEX . .o e 415
VT A 420

Xi

