A MECHANIZED FRAMEWORK FOR SPECIFYING

PROBLEM DOMAINS AND

VERIFYING PLANS

APPROVED BY
DISSERTATION COMMITTEE:

Copyright
by
Sakthikumar Subramanian

1993

To my parents

A MECHANIZED FRAMEWORK FOR SPECIFYING
PROBLEM DOMAINS AND

VERIFYING PLANS

by

SAKTHIKUMAR SUBRAMANIAN, B.Tech., M.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 1993

Acknowledgments

First and foremost, I would like to warmly thank my advisor, Bob Boyer,
for everything he did to make this dissertation possible. Apart from lending valuable
ideas that helped shape this dissertation, Bob read anything and everything I wrote
with the greatest amount of care and always gave me excellent feedback. He was
always eager and available for discussing my work even on weekends and holidays
not to mention his incredibly prompt response to any electronic mail message that I
happened to send him. Thus, it is safe to say that this dissertation would not have
materialized without his assistance.

I would also like to thank my committee members Woody Bledsoe, Norman
Martin, Ben Kuipers, Bob Simmons and Vladimir Lifschitz for reading drafts of my
dissertation and giving useful suggestions. Lifschitz, in particular, brought many
subtle technical points to my attention.

There were also a number of others who readily responded to any questions
I asked them: Matt Kaufmann, David Russinoff and J Strother Moore of Computa-
tional Logic, Inc., Richard Waldinger of SRI and Gordon Novak of UT. They deserve
my thanks as well.

Thanks are also due to my friends Yuan Yu, Steve Kaufman, Norm Mc-
Cain, G. N. Kartha and Hudson Turner for many useful discussions and for com-
menting on my dissertation.

Finally, I would like to thank my wife, Sandhya, for reading the dissertation
and detecting typos, for taking great care of our wonderful son, Amrit, and for
extending her love and support even when the going was tough.

The work described here was supported in part by NSF Grant MIP-
9017499.

Sakthikumar Subramanian
The University of Texas at Austin
December, 1993

A MECHANIZED FRAMEWORK FOR SPECIFYING
PROBLEM DOMAINS AND

VERIFYING PLANS

Publication No

Sakthikumar Subramanian, Ph.D.

The University of Texas at Austin, 1993

Supervisor: Robert S. Boyer

This dissertation presents a framework for modeling problem domains in
the Boyer-Moore logic so that we can verify mechanically solutions to various prob-
lems using the Boyer-Moore theorem prover. A problem domain is given by a set of
states of the physical world and a set of actions that can be executed sequentially
to change state. A problem is given by an initial condition and a goal condition. A
solulion is a plan that when executed in a state satisfying the initial condition will
bring about a goal state. We are mainly interested in verifying plans that involve
conditional and repetitive actions for solving problems in domains such as the blocks

world. Such domains arise in both artificial intelligence and software engineering.

Our main contribution is a method of specifying problem domains in the
Boyer-Moore logic for verifying plans interactively. We illustrate our method by
verifying plans for solving problems in some variations of the blocks world. We show
how solutions to problems in a class of domains can be verified using the n X n
mutilated checkerboard problem. Our method of specifying domains does not suffer

from many of the limitations of current approaches such as the need for stating

vi

explicitly a large number of separate frame axioms and state constraints necessary
for reasoning about actions with side-effects. Our formalization also allows us to
express many other properties of plans such as efficiency requirements. Because
both specifications and plans are executable, we can prove properties about them in

logic as well as test them on concrete data.

Our method can also be used to obtain a formalization that would enable
a program to verify plans depending on changes to domain specifications received
as input at various times. Non-monotonic formalisms have generally been used for
this purpose but have proven difficult to implement. We illustrate our approach by

mechanizing reasoning about actions described in the language A.

vii

Acknowledgments

Abstract

Table of Contents

List of Figures

1. Introduction

1.1 Motivation

Table of Contents

1.2 A Model Of Problem Domains

1.3 Experimental Requirements 0 0oL,

1.4 Previous Work e

1.4.1 Plan Verification e

1.4.2 Dealing with Specification Modification

1.5 Our Approach L

1.5.1 Specifying Problem Domains

1.5.2 Formalizing “Non-monotonic” Reasoning

1.6 Contents of the Dissertation

1.7 The Automated Reasoning System Nqthm

1.7.1 The Logic o

1.7.2 The Theorem Prover

1.7.3 Syntax Summaryo

viii

vi

viii

x1i

2. Plan Verification in the Blocks World
2.1 Formalization of the Blocks World
2.1.1 A First Attempt o
2.1.2 Our Representation 0.
2.2 Examples of Recursive Plans 0000,
221 HowtoClear aBlock
2.2.2 Other Examples0 0 0.
2.3 Specification of Actions with Side-effects

2.4 Conclusion e e

3. The Mutilated Checkerboard Problem
3.1 The Mutilated Checkerboard Problem
3.2 Formalization of the Mutilated Checkerboard Problem
3.3 Proving the Theorem

3.4 Some Plans for Tiling Boards

4. Formalizing Plan Constraints
4.1 Related Work o
4.2 Our Approach L
4.3 Time e
4.4 Constraints on Execution Sequences

4.5 Constraints on Actions e

5. A General Framework
5.1 The General Frameworko
5.1.1 Definition of eval$

5.1.2 Our Formal Theory

ix

36

37

37

39

47

47

50

55

59

60

60

78

80

80

81

83

87

89

5.2 Representing Complex Actions 99

5.3 Specifying Partial Actionso oo 101
. Mechanizing Modifications to Domain Specifications 103
6.1 The Problem 104
6.2 Our Approach 106
6.3 The Language A 108
6.4 Our Formalization 111
6.0 Examples 117
6.6 Proving Properties of States L. 121
6.7 Verifying Plans Common to a Class of Domains 122
. Conclusion 125
7.1 Future Work e 126
. Formalization of the Blocks World 127
A.1 Verification of Blocks World Plans 131
A.2 Blocks World with Side-Effects 155
A.3 Formalizing Plan Constraints 160
. The Mutilated Checkerboard Problem 167
B.1 Some Plans for Tiling Boards 182
. A General Framework 185
C.1 Blocks World within the General Theory 187
. Mechanization of A 204
D.1 Theorems about A Domains 206
D.2 Verification of a Planner for A Domains 211

BIBLIOGRAPHY 217

Vita

xi

2.1 A blocks world state

List of Figures

xii

Chapter 1

Introduction

Two important problems are of interest to researchers in both common-
sense reasoning in artificial intelligence (Al) and formal methods for software de-
velopment. One is the problem of verifying whether or not a plan/program de-
sign/ prototype satisfies a problem specification/requirements specification. The other
is the problem of dealing efficiently, preferably automatically, with incremental changes
to problem specifications. This dissertation addresses both of these problems.

To tackle the former, we present a mechanized formal framework in the
Boyer-Moore logic for specifying problem domains and verifying mechanically, using
the Boyer-Moore theorem prover (a.k.a. Nqthm), whether or not a solution solves
a problem. A problem domain is defined by a set of possible states of a physical
system and a set of actions that can be executed sequentially to change state. A
problem specifies, in addition, an initial condition and a goal condition. A solution
to a problem is a plan that when executed in a state satisfying the initial condi-
tion brings about a state satisfying the goal. Roughly speaking, a problem domain
may specify any sequential physical machine and plans are sequential programs that
can be executed to transform an initial state of such a machine to a goal state.
Our main contribution is a single mechanized theory for specifying various problem
domains and verifying plans, a single programming language-like representation of
plans common to all domains and a method of modeling domains conveniently within
our framework. We illustrate our approach using problems in two dimensional space
such as the n X n mutilated checkerboard problem and general problems in the blocks
world. Our approach gives us a number of advantages. Our method of specifying
problem domains and verifying plans does not suffer from many of the limitations
of current approaches such as the need for stating explicitly a large number of sep-
arate frame axioms and state constraints necessary for reasoning about actions that
produce side-effects. Our plan representation has the expressive power of a program-
ming language in that we can express solutions that involve sequencing, conditional
execution, iteration and composition of actions. Our formalization also allows us to
verify mechanically many other properties of plans such as efficiency requirements.

The problem of minimizing the work to be redone when changes are made
to problem specifications is currently being addressed by developing reusable theo-
ries in software engineering and by formalized non-monotonic reasoning in artificial

intelligence. Since we have a single mechanized framework for formalizing problem
domains, theories developed within it are reusable. Non-monotonic formalisms are
being developed in Al to enable us to describe to a program the changes to be made
to problem specifications but have proven difficult to implement. We show how the
needed “non-monotonic” reasoning may be mechanized in the Boyer-Moore logic by
including domains as terms in the logic. We illustrate our approach by formalizing
the class of finite state machines that can be described in the language A, a language
designed primarily for testing non-monotonic formalisms.

1.1 Motivation

The problem of verifying whether or not a plan can bring about a goal
state when executed in an initial state arises in both commonsense reasoning [76, 86]
and software development [105, 65, 72, 70]. Commonsense reasoning is concerned
with the construction of robots that can plan and act to achieve their goals in the
physical world. Problem domains in commonsense reasoning and traditional robot
planning [30, 2] consist of a robot with preprogrammed action routines that it can
execute sequentially to manipulate objects in its physical environment. Consider the
well-known example of a robot in a blocks world [37]. There is a table on which there
are an arbitrary number of cubical blocks stacked one on top of another. Every block
can be either on top of exactly one other block or on the table. There is a robot that
can do one of two actions: either move a clear block (one that does not have any
other block on top of it) to the top of another clear block or unstack a clear block,
i.e., move it to the table. The robot may be given different goals at different times
such as “form a stack of 10 blocks” or “put all the blocks on the table”. To achieve
a goal, the robot must solve the planning problem of finding a sequence of actions to
transform the current state of the world to a state that satisfies the given goal.

When a robot is given general problems, it faces the task of automatically
constructing programs. Consider, for example, the problem of clearing a block where
we are not told whether the block is already clear or, if not, how many blocks are
above it [72]. One plan to solve the problem is to unstack repeatedly the blocks on
top of the given block until the latter is clear. Notice that the plan resembles an
imperative program in that it involves testing the state of the world and repeatedly
doing an action until a desired state is achieved. Since actions are preprogrammed
procedures that may be “called” to change the state of the world, a solution to the
problem is nothing but a procedure that generates a sequence of calls to the action
routines that, when executed, would result in a state in which the given block is
clear. Such a procedure has a flavor of a program design since it does not depend on
the programming language or hardware in which the actions may be implemented.
On the other hand, if we view the robot world as a programmable machine whose
basic instructions correspond to the atomic actions of the robot, then plans are
nothing but programs of such a machine. Observe that the situation is no different

even if a human were to program a blocks world robot to clear a given block. The
identical programming problem must be solved by designing a suitable procedure.
Recognizing the difficulty of generating plans for solving general problems completely
automatically, McCarthy and Hayes [86] proposed the construction of a program that

can verify plans interactively as a first step towards artificial intelligence®.

Of course, such problems of program construction using atomic actions
arise in various stages of software development. While robot planning involves syn-
thesis of abstract programs from problem specifications for execution by a robot in the
external world, program synthesis [72, 70, 105, 65], both interactive and automatic,
is concerned with the construction of imperative programs from problem specifica-
tions for execution by a computer. To see the analogy with planning, consider the
following programming exercise.

Write a PASCAL program that would take a blocks world state and
a block as input and produce as output a blocks world state in which the
given block is clear. The output state must have the same set of blocks
as the input state.

Such a program specification is called a requirements specification [63, 64, 16, 20]
and is usually the starting point of the software life cycle [64, 16]. There are two
kinds of specifications usually distinguished during program development, the speci-
fication of a program to be constructed before a particular programming language is
chosen and the specification of a program to be written in a particular programming
language given in terms of the data structures of the programming language [63].
A requirements specification is an informal but precise specification of the program
to be constructed couched in the vocabulary of the customer, the person who wants
the program built. Frequently, a requirements specification involves objects of the
physical world [105, 68, 49, 56] as in the blocks world programming exercise. Since
customers, more often than not, do not know precisely what their programs must
do for them, the requirements specification is obtained by a system designer as a
result of requirements analysis, which involves studying the problem carefully and
ascertaining what is relevant. After the requirements are ascertained, there are one
or more design phases whose purpose is to define a program structure consisting of
a number of modules that can be implemented independently and that, when imple-
mented, will together satisfy the requirements specification. In general, modules are
organized in a hierarchical fashion, with modules higher in the hierarchy implemented
in terms of (by means of calls on) modules lower in the hierarchy. For instance, a

'It seems unlikely that a problem solving system can generate correct plans to solve general
problems automatically since practically any formal system [27] such as set theory can be posed as
a problem domain with formulas or sequences of formulas as states and inference rules as actions.

design that solves our programming exercise may consist of two procedures: a primi-
tive procedure to unstack a block whenever the block is clear and another procedure
that clears a given block by calling the unstack procedure in the manner described
above. Although the task is one of modifying representations of blocks world states
within a computer, it is clear that a programmer faces the same problem as the robot
at the design stage, before a representation in data structures for the world has been
chosen viz. the problem of constructing a plan to clear a block using the unstack
procedure as an atomic action.

In fact, the problem of combining primitive actions into programs that sat-
isfy an input-output specification arises in practically all stages of top-down, stepwise
program development [22, 64, 54]. Jones [54, page 75] describes the process of step-
wise program development as follows:

At each intermediate step of development the given specification is be-
ing realized in terms of sub-units. Such a realization is a way of achieving
the given specification (documented with pre-/post-conditions) in terms
of more basic objects. As such, it consists of specifications (again, us-
ing pre-/post-conditions) and a proposed way of combining them. The
development process terminates when a step occurs whose realization
is achieved entirely in terms of available units. Such units may be the
statements of the programming language or use sophisticated services
from other support software.

To develop correct programs, we need proofs to show that “given any set of modules
which satisfy the specifications of the sub-units, combining such modules in the way
specified forms a unit which satisfies the given specification” [54, page 76].

At present, the importance of mechanizing all phases of the software life
cycle and the utility of interactive mechanical verification of designs with respect
to a specification during the software development process are well understood [52,
105, 65, 53]. The idea is to eliminate errors in the product as early as possible in
the software life cycle, preferably well before the program is coded in a programming
language. It is now known that the most expensive errors are caused by errors in
the requirements specification stemming from a misunderstanding by the designer
of the customer’s needs [20, 40, 64, 46, 1]. Formal validation, the technique of for-
malizing the requirements specification, proving general properties that follow from
the formal requirements specification and then comparing those with the informal
requirements specification, has been proposed [40, 46, 33] to minimize such errors.
However, in many cases [20, 1], a customer cannot be expected to know exactly what
she wants before a prototype of the product is built nor be expected to not change
the requirements after interacting with the prototype. Rapid prototyping [57, 1] has
been proposed to minimize the cost incurred when dealing with a changing require-
ments specification. Here the system designer takes a best guess at a requirements

specification and produces a prototype that the customer can interact with. When
deficiencies are found, the specification is modified and a prototype is built once again
and the cycle repeats until the customer is satisfied with the prototype. The main
application that we envisage for our mechanized framework for specifying problem
domains and verifying plans is rapid prototyping. Plans for solving problems such
as the problem of clearing a block are nothing but prototypes that can be verified
against a formal requirements specification given by the initial and goal condition.
And this is true whether we are developing programs for computers or for robots (cf.
[60]).

Another issue in software development is program modification [64, page
252], the changes that must be made to a program perhaps many years after it is
written due to changes in the customer’s requirements. In such a case, it is useful to
minimize the amount of work needed to redesign the program and prove it correct.
There are two kinds of modifications to a specification that are possible. One is a
change to the problem specification, i.e., changes to the initial and final condition
given by a problem. Forinstance, we may require that space on the table be optimized
by putting no more blocks than necessary on the table when clearing a block. Clearly
our previous plan to clear a block must be modified to suit the new requirement but
the domain theory need not be modified. We may design the following new plan:
if the given block b is not clear, then place the topmost block (say z) in its stack
on the table. Then repeatedly move the rest of the blocks on top of b to the top of
x until b becomes clear. This plan retains the previous procedures for moving and
unstacking blocks. It would be nice if all properties about the move and unstack
actions that we used to prove the earlier design correct were now available for the
proving the correctness of the new design. A more drastic change to the requirements
specification is a change to the domain specification. For instance, we may change
the blocks world by including other objects such as pyramids and by including more
features of the blocks such as weight and color. In such a case, we may have to
change our domain specification and, in general, much less of the previous design
can be reused for the new design.

The obvious way to deal with the program modification problem is to have
an automated reasoning system keep track of previous design histories so that only
those parts that need to be changed can be redesigned and proved correct while the
rest can be reused from the previous attempts. Thus, reusable theories and libraries
[52, 65, 53] have been identified as an important requirement for automated software
design. As Woodcock [120] puts it:

Re-usability is vital to the successful application of formal methods: it
allows us to remain flexible by sharing descriptions at every stage of the
development process. We are quite used to sharing code—in the form
of procedural abstractions in libraries—but here we are talking about

specifications sharing parts, proofs sharing arguments, theories sharing
abstractions, even problems sharing common aspects.

Similar sentiments are also expressed in [23, pages 7-8] and [53, pages 9-12].

Even when there are reusable design histories, the burden of figuring out
what to redesign and what to reuse rests with the designer. Some work on building
automated systems that can take into account changes to problem specifications and
programs is currently underway [96, 97]. The idea of constructing a program that can
accept as input, declarative facts that describe modifications to problem specifica-
tions so that the necessary changes to specifications can be carried out automatically
is being pursued by many researchers in commonsense reasoning [79, 77, 81]. For this
we need a formalism in which not only all possible domains but also facts describing
changes to a domain specification can be expressed. Non-monotonic reasoning [38]
has been found necessary for dealing with this problem in Al but has proven ex-
tremely difficult to formalize [84]. Gelfond and Lifschitz [35] identified a simple class
of domains, a class of finite state systems, which they describe using a language called
A for testing various approaches to formalizing non-monotonic reasoning. We show
how the semantics of A may be mechanized in the Boyer-Moore logic, a first-order
logic, by representing all possible domains as terms in the logic.

1.2 A Model Of Problem Domains

For mechanical verification of plans in various domains to be possible, we
need the following:

1. A rigorous formalization or model of problem domains.

2. A formal system in which we can formalize or “implement” the models cor-
responding to problem domains. Our formalization of problem domains must
allow us to express and prove “questions” of interest to us. That is, we must be
able to express the various problems and solutions that arise in various domains
and prove whether or not a solution solves a problem.

3. Since we are interested in a mechanical framework, we need a modeling method
that we can use to specify problem domains conveniently. Further, it should be
feasible from a practical standpoint to state and prove theorems mechanically.
That is, the formulas should not be so long and the proofs so detailed as to
render theorem proving practically impossible.

Since we have decided to formalize problem domains in the Boyer-Moore logic and
verify plans using the Boyer-Moore theorem prover, points 2 and 3 given above are
fairly settled. Thus, we are left with point 1. Fortunately, a rigorous state-transition
model of problem domains is already available and, by now, well-understood in Al

[37, 101]. It is also well-known that a fairly large number of problems fit this model
[100, 37, 99].

A problem domain is given by a set of possible states of a physical world
and a set of actions that can be executed sequentially to change the state of the world.
Actions are deterministic and terminating. When an action is executed in a state it
results in a unique next state. However, actions, in general, cannot be executed in
all states. Every action has associated with it a precondition, a predicate that must
be satisfied by a state for it to be possible to execute the action in that state?. In
general, there are an infinite number of states and an infinite number of actual actions
(possible state transitions) in a domain but only a finite number of parameterized
actions. For instance, in the blocks world, there are an infinite number of possible
states due to the presence of an infinite number of possible blocks. Similarly, there
are an infinite number of particular actions depending on which block or blocks are
moved. However, there are only two parameterized actions, move and unstack, which
respectively take a pair of blocks and one block as arguments. The precondition of
moving block b1 to the top of block b2 in a state s requires that b1 and b2 be clear
in s and that they be distinct. The precondition of unstacking a block only requires
that the block be clear. We allow blocks to be unstacked even when there are no
blocks under them.

A particular problem in a domain is specified by an initial condition and
a goal condition. A solution to a problem is a plan that when executed in a state
satisfying the initial condition will result in a state satisfying the goal. While it
is recognized that plans are essentially programs that produce a sequence of actions
when executed in a state, at present there seems to be no agreement on a precise rep-
resentation for plans [90]. Plans for solving general problems must generate distinct
sequences of actions depending on the state in which they are executed. Therefore,
for the execution of a plan to be possible in a state, it must be possible to execute
every action produced by the plan in the intermediate states in which they are ex-
ecuted. For instance, it is possible to clear a block using our plan to repeatedly
unstack blocks because every unstack action produced during the execution of the
plan is executable.

1.3 Experimental Requirements

The purpose of this section is to outline precisely the experimental require-
ments of the mechanized theory we are attempting to construct and to discuss some

2The use of “precondition” here is somewhat different from preconditions in the program verifi-
cation literature [24, 54]. In program verification, we usually do not care how the program executes
in a state that does not satisfy a precondition but here an action cannot be executed in a state that
does not satisfy its preconditions.

of the obstacles we must overcome to achieve our goal.

What are the requirements of a general mechanized framework for model-
ing problem domains and verifying plans? First of all, since a problem domain can
be any sequential physical machine, our method of modeling domains must allow us
to specify actions in conventional von Neumann machines. However, both states and
actions of these machines are considerably simpler than robot worlds such as the
blocks world. The states of a robot world may involve arbitrary objects of the physi-
cal world and their properties. Also, actions with side-effects are more the norm than
the exception. By side-effects, we mean the changes caused by an action to objects
that are not mentioned in the action, i.e., to objects that are not its arguments. In
programming, side-effects often arise when using pointers. If there are three variables
pointing to the same location and one of the variables (an argument of the action)
is assigned a new value then it has the side-effect of changing the values of the other
two variables. In our blocks world, moving a block b1 to the top of another block 52
in a state s in which b1 is on top of b3 produces the side-effect of b3 becoming clear.
In general, an action may affect an arbitrary number of other objects depending on
the state in which it is executed. This would be the case if moving a block caused
all the blocks on top of the block being moved to also move along with it to the
new location. Actions in the external world may involve creation or destruction of
objects including composite objects, objects which have other objects as parts. For
instance, in the blocks world, unstacking a block that has blocks underneath results
in the creation of a new stack. Putting the block back where it belonged results in
the destruction of the stack. A similar phenomenon arises in programming when we
allow dynamic creation and destruction of data structures. Finally, actions in the
external world also have indirect effects due to the physical constraints satisfied by
the objects in the world. In our blocks world, moving a block from the table to the
top of another block causes it to not be on the table, causes the number of stacks to
decrease by 1, etc. These indirect effects occur because all states of the blocks world
obey the constraint that a block is either on the table or on top of another block but
not both.

The idea of a single representation for plans common to all domains seems
even more formidable. Such a representation must cover programs that can be ex-
pressed by conventional programming languages as well as programs from robot
domains. For any given domain (machine), we must be able to express all possible
solutions (programs) of the domain. Thus, we need a programming language for
each domain such that all possible plans in the domain are the possible programs ex-
pressed in the language. Ideally the constructs for describing plans must include most
of the familiar programming constructs such as sequencing, conditional execution,
repetition and procedural composition.

Apart from being able to express all possible plans, we must be able to
express facts involved in proving whether or not a plan solves a problem. For this,
we must be able to translate facts about the real world into logical formulas. For

example, in order to prove that the plan to clear a block does not change the number
of blocks, we must be able to state and prove the invariant that unstacking a block
that exists in any of the infinite number of blocks world states does not change the
number of blocks. To prove that the plan works, we must show that every block that
exists in a state belongs to some stack in the state and that unstacking a block b1 that
is on top of another block b2 leaves block b2 clear. Also, we must use mathematical
induction to prove that the plan terminates because stacks are of finite length. Since
we are interested in a mechanized theory, we must able to state and prove theorems
fairly efficiently.

Because our framework for verifying plans mechanically is intended to be
used for program development, we must also be able to prove the absence of plans
to solve a given problem whenever possible. For instance, if we are asked to write a
program to place n queens on an n X n chessboard so that no queen can take any of
the others, we would find out that there are chessboards such as the 2 x 2 board for
which the problem cannot be solved and therefore there does not exist a program to
solve the problem. However, carrying out the argument formally using a program-
like representation of plans seems to be a difficult task because it requires quantifying
over all possible programs. Even more intriguing are proofs that use concepts not
mentioned in the problem as in the case of the well-known proof of impossibility
of covering a mutilated checkerboard completely with dominoes. Consider an n X n
checkerboard mutilated by removing the squares at the ends of one diagonal. Assume
that the squares are not colored. Can such a board be covered completely by placing
dominoes such that all the dominoes lie within the board and no two dominoes
overlap? It is clear that if n is odd, the n X n board will have an odd number of
squares and so will the mutilated n X n board. Since placing dominoes results in an
even number of covered squares, the mutilated board cannot be covered completely
with dominoes. When n is even, there is the following interesting argument [107]
involving the use of colors.

Let us color the squares alternately white and black (as on the usual
chess board). The two missing squares have the same color. Thus, the
mutilated board has an unequal number of white and black squares. Since
each domino covers exactly one black square and one white square, any
covering by dominoes covers an equal number of white and black squares
and so the desired covering does not exist.

Although the mutilated checkerboard problem was originally posed for automatic
discovery ([98, 75, 78, 107]) by programs, it is clear that any automated system for
interactive verification of program designs must be able to carry out such proofs.
Moreover, the problem is not a contrived example: one could easily imagine having
to write a graphics program to cover pixels on a screen in the given manner.

Apart from the initial condition and goal condition, a specification may
also include other kinds of constraints on solutions such as constraints on efficiency

10

and resource utilization [64]. Normally, we want not just some program that solves a
problem but an efficient one. For instance, the plan to clear a block is optimal in the
number of steps because every block above the block being cleared must be moved.
It would benefit a system designer if he could carry out mechanical proofs about plan
efficiency including optimality arguments. Also, programmers sometimes deal with
problems that stipulate additional constraints on the solution such as restrictions on
the order or the number of times some actions must be executed or restrictions on
the properties of states that ensue during the execution of the plan. When designing
a program, we may have to take into consideration the available hardware on which
the program is going to be ultimately executed to choose our solution. As Dijkstra
[22, page 23] puts it:

It is a programmer’s everyday experience that for a given problem to
be solved by a given algorithm, the program for a given machine is far
from uniquely determined. In the course of the design process he has to
select between alternatives; once he has a correct program he will often
be called to modify it, for instance because it is felt that an alternative
program would be more attractive as far as the demands that the com-
putations make upon the available equipment resources are concerned.

Dijkstra goes on to explain the need for comparing the effects of executing two
programs on available equipment in terms of the actions produced when executing
them. Forinstance, at the implementation level, it may be desirable to avoid dynamic
creation and deletion of data structures during program execution. Our plan to clear
a block creates many new stacks and so we may want to minimize the number of new
stacks that are created even though the plan is optimal in the number of actions.
Thus, we may want a plan that creates as few new stacks as possible during execution.
Knowing that unstack actions are the ones that result in new stacks, we may specify
this as the constraint that as few unstack actions as possible be used in the solution.
Such constraints may also be phrased in terms of properties of states that ensue
during the execution of the plan. For instance, Flatau [31] discusses the mechanical
verification of a compiler that takes into account the resource constraints of the target
machine when generating code. The resource constraints take the form of limits on
the amount of heap space, control stack space and temporary stack space that a
program is allowed to use during execution. An analogous constraint on a plan for
clearing a block is the restriction that the number of stacks in all the states that
ensue during the execution of the plan be no more than 1 + the number of stacks
in the initial state. In general, we may want to express arbitrary constraints on the
actions that occur in a plan as well as constraints on states that ensue during the
execution of a plan or perhaps both. It would be desirable to prove mechanically
whether or not a plan satisfies such constraints given in a problem. However, to
express many of these theorems, we must be able to express arbitrary predicates on
plans.

11

1.4 Previous Work

We will survey previous work in two parts. The first part relates work
done in mechanically generating or verifying program-like plans for solving general
problems. We will deal with work done in both artificial intelligence and software
engineering. The second part relates work done in dealing with changes to problem
specifications.

1.4.1 Plan Verification

McCarthy and Hayes [86] proposed the construction of a proof-checker that
can verify interactively whether or not a plan achieves a goal as a first step towards
the construction of intelligent robots. The situation calculus, a first-order language
in which states of the world, actions and plans are explicitly represented as terms,
was proposed as a formalism to carry out proofs about plans. The idea that plans or
strategies could be represented as programs and that program verification techniques
could be applied to plan verification was also mentioned. Actions were represented
by first-order terms such as move(A, B) and treated as procedure calls in ALGOL.
Plans with conditional actions and loops were represented by compound ALGOL
statements. There are two main problems in using constructs from a language like
ALGOL or PASCAL to model actions. One is the problem of modeling preconditions
since actions are partial functions executable only in those states that satisfy their
preconditions [86, 46]. The other is the problem of specifying actions with side-effects
[47].

One of the first attempts to automatically generate recursive plans to solve
general problems is that of Manna and Waldinger [69, 72]. The analogy between plans
and programs is explained by them as follows?:

Plans are closely analogous to imperative programs in that actions
may be regarded as computer instructions, tests as conditional branches
and the world as a huge data structure. This analogy suggests that
techniques for the synthesis of imperative programs may carry over into
the planning domain. Conversely, we may anticipate that insights we
develop by looking at a relatively simple planning domain, such as the
blocks world, would then carry over to program synthesis in a more com-
plex domain, involving array assignments, destructive list operations, and
other alterations of data structures.

3While they have observed that imperative programs may also be regarded as plans, we have
shown that many problems in the initial stages of the software development process can also be
regarded as planning problems (cf. [62]).

12

They formalize the problem of clearing a block in plan theory, a first-order logic
based on the situation calculus, and describe the task of mechanically synthesizing a
recursive program to solve the problem using their deductive tableau theorem prover.

In plan theory, there are two classes of terms: static terms which represent
the same entity independent of any state and fluent terms that represent entities
whose meaning varies from state to state. Static terms include terms that stand for
states, objects such as blocks and table, and truth values. Fluent terms include terms
such as hat(d) which stands for the object on top of d, clear(d) which stands for
the proposition that d is clear and put(a,b) which stands for the atomic action of
putting object @ on top of object b. The mapping from fluents to the static entities
represented by them in various states is formalized using linkage operators, :, :: and
;. For example, the static expressions, s : hat(d), s :: clear(d) and s; put(a,b) denote
the particular object on top of d in state s, the truth value depending on whether d
is clear in state s and the state got by putting @ on top of b in s, respectively.

Plans are represented by programs in a Lisp-like programming language
using actions as though they were built-in functions. Plans are regarded as fluent
terms that may be “linked” to distinct states depending on the properties of the
state in which they are executed. For instance, the plan to clear a block mentioned
above is represented in plan theory as follows:

if clear(a)

then A

else makeclear(hat(a));
put(hat(a),table).

makeclear(a) <

Here A is an empty plan and ; (an overloaded symbol) stands for functional
composition. Unfortunately, the representation of plans as programs without any
restriction leads to certain semantic difficulties. To see this, consider the monkey,
banana and bomb problem given in [72]. There is a monkey some distance away from
two boxes @ and . The monkey is informed that one box contains a banana and
the other a bomb but is not told which. His goal is to get the banana without being
killed by the bomb. Since terms that stand for various states including future states
are represented in the logic, the following program may be produced as a possible
solution to the problem.

if Hasbanana(goto'(s0, a))
getbanana(s0) < { then goto'(s0,a)
else goto'(s0,0).

Here goto'(s0, z) is a static term representing the state that would result if
the monkey executes the action goto(z) in s0. Mathematically speaking, the above
“plan” is a valid program. But it is difficult to interpret the program as a sequence

13

of actions to be executed. The “plan” may be read as follows. Go to box a and check
if the monkey has the banana. If so, go to box a now, otherwise go to box b. From
a physical standpoint, the above program doesn’t make sense because it looks at a
future state to determine what to do in the present.

Even if we disallow state terms in plans, there is yet another difficulty
created by the occurrence of tests in plans. For instance, the following program
“solves” the monkey-bomb problem even though it does not include state terms.

of in(banana, a)
getbanana(s0) <= $ then goto(a)
else goto(b).

Here in(banana, z) is a fluent term that is a precondition for the monkey to
have the banana on executing the action goto(z). From the problem statement it is
clear that there is no single plan that the monkey can execute in all initial states to get
the banana. But the above program could be produced as a solution in plan theory if
we do not further restrict the possible solutions to the problem. This difficulty arises
because we have not taken into account that the monkey cannot test the initial state
of the world to determine whether the banana is in a box or not. A similar situation
arises with the “bomb in the toilet problem” [88, 116]. To prevent the construction
of both forms of non-executable plans as solutions, Manna and Waldinger restrict
plans to contain only primitive symbols which are described as those symbols “which
we know how to execute”. While it is clear that the primitivity property of plans is
designed to exclude the above kinds of plans, it is unclear whether other operations
such as arithmetic operations are allowed to occur in plans. These may be needed,
for instance, in a plan that solves the problem of building a tower of n blocks using
n clear blocks.

From the standpoint of plan verification, plan theory shares some of the
disadvantages commonly associated with the situation calculus? style of formaliza-
tion. First, there is the frame problem [86, 69]. In addition to saying what fluents
are changed by an action, it is also necessary to provide frame azioms which state
explicitly what fluents are left unchanged. For example, the primary effect of putting
a block on the table is formalized by the following axiom named put-lable-on:

Clear(w,z) = On(put'(w, z, table), z, table)

for all states w and blocks z. Here Clear, On and put’ are the static counterparts
of the symbols clear, on and put used to form fluent terms. They take an additional

*However, the situation calculus is also used for formalizing domains in which the set of possible
states and actions are not taken as fixed, unlike the blocks world.

14

state term as an argument and represent the value of fluents in the given state. The
antecedent of the above axiom is the precondition of the action and the consequent
describes its effect. The axiom says that if x is clear in any state w then it would be
on the table in the state got by putting z on the table in w. Notice that the axiom
put-table-on does not say what happens to fluents other than on(z,table) when the
put action is executed. To prove, for instance, that the location of a block distinct
from z remains unchanged when z is put on the table, we need an additional axiom
that stipulates that putting z on the table does not change the locations of blocks
distinct from z. What makes the frame problem a problem is that, in domains of
realistic complexity, there are many more actions and fluents and so many more
frame axioms, thus making it practically impossible to obtain economical problem
specifications.

A related problem is the problem of side-effects [47, 102, 115]. This pre-
cludes the use of the “programming convention” that all fluents other than those
explicitly asserted to change in the problem specification are left unchanged by an
action. Side-effects are the changes caused by an action in objects other than its
arguments. When the action of putting a block a on the table is executed in a state
in which @ is on top of block b, it also has the side-effect of b becoming clear. But
this does not follow from the axiom put-table-on nor from frame axioms. Additional
axioms are needed because, in general, an action may produce distinct side-effects
depending on the properties of the state in which it is executed. The usual approach
to tackle side-effects is to include additional axioms such as the put-table-on axiom
with additional secondary preconditions [102].

Yet another difficulty with the situation calculus style of formalization is
the problem of determining the indirect effects of an action, the so-called ramification
problem. When a block a is put on the table in a state in which it is on top of another
block b, then the action also has the indirect effect of @ not being on top of b any
more. This fact does not follow from the axioms that describe the direct effects
including side-effects of the put action or the frame axioms. The usual solution to
deduce indirect effects is to include state constraints [37, pages 263-283] as part of
the problem specification. For instance, a state constraint that, in every state a
block is either on top of another block or on the table but not both, would allow us
to conclude that a is not on top of b after being unstacked. State constraints are
particularly useful when more than one problem must be solved in a domain because
they are applicable to all problems.

The additional axioms necessary to describe side-effects of actions and state
constraints once again make it difficult to obtain economical problem specifications.
The need for a large number of axioms also makes it a problem to create consistent
axiomatizations of problem domains. Further, mechanical theorem proving becomes
difficult in the presence of a large number of axioms as the following quotation from
[72] indicates.

15

The reader may have been struck by the complexity of the reasoning
required by the makeclear derivation, as constrasted with the apparent
simplicity of the original planning problem. In fact, the most difficult
parts of the proof are involved not with generating the plan itself, but
with proving that it meets the specified conditions successfully.

A recent theoretical proposal that also treats plans as programs is reported
in [111]. The authors propose a logical framework for specifying consistent axiom-
atizations of planning domains in Dynamic Logic [45] using a STRIPS-like [30, 29]
representation of actions. Unlike the situation calculus, states are not explicitly rep-
resented as terms in dynamic logic but are instead referred to using modal operators.
The essence of the proposal is to view states as sets of positive ground literals such
as on(A, B) and actions and plans as programs that modify states by adding and
deleting literals. States are supposed to be axiomatized as abstract data types [63]
using two operations, an add operation and a delete operation. The add operation
adds a literal to a state. The delete operation removes a literal from a state if the
literal belongs to the state, otherwise it leaves the state unchanged. Essentially, the
add and delete operations play the role of assignment statements in programming
languages in that they are the only ones that can be used in plans to modify states.
Both actions and plans are programs that use add and delete operations. Actions do
not terminate when executed in states that do not meet their preconditions. Non-
termination is modeled using a special instruction abort as in [24, 39]. For instance,
the action of unstacking a block (putting it on the table) is defined as follows.

rec unstack(z,y). if on(z,y) A clear(z)
then add — table(z);
add — clear(y);
delete — on(z,y)
else abort fi.

Since states cannot be directly mentioned in the language, objects within
states are accessed using a non-deterministic operator choose. C'hoose takes a vari-
able z and a plan as arguments and binds to z an arbitrary object. The operation
of choose is similar to the parameter passing mechanism for invoking procedures in
programming languages: the variable z is bound to a value “guessed” by choose in
the “environment” in which the plan is executed. Since most recursive plans involve
testing the state, they must be defined using the choose construct. For instance, our
plan to clear a block b requires us to access the topmost block in the stack containing
b whenever b is not clear. The plan may be expressed using the choose operator as
follows.

16

rec makeclear(z). if —clear(x)
then choose z
begin if clear(z) A above(z,)
then unstack(z);
else abort fi
end
else skip fi.

The frame problem is solved just as in the STRIPS approach. Since add
and delete are the basic operations and we know their complete effects, the complete
effects of programs defined using them can also be computed. However, the derivation
of frame axioms is not straightforward when the non-deterministic choose construct
is employed.

The main disadvantage of this approach is the difficulty of expressing ac-
tions with side-effects using this STRIPS-like representation of actions [115]. Also,
state constraints must be formulated by the user and introduced explicitly as part of
the domain specification. In general, it is difficult to formulate constraints in a way
consistent with the underlying action semantics. To ensure consistency, the authors
propose that domain constraints be proved as tnvariants of actions before they are
introduced as part of the domain specification.

So much for relevant research in artificial intelligence. Since von Neumann
machines are also problem domains and since plans resemble programs, it behooves
us to look carefully into research in mechanical program verification [9, 10, 18]. The
work most relevant to this dissertation seems to be the research on formalizing the
semantics of individual von Neumann machines such as a microprocessor [11], an as-
sembly language machine [95], a Micro-Gypsy (a Pascal-like language) machine [122]
and various other machines [5] in the Boyer-Moore logic for the purpose of verifying
programs and systems mechanically. The semantics of these various machines have
been formalized by defining Lisp interpreters for various programming languages in
the Boyer-Moore logic. Our work differs from these efforts in that it describes a
framework in which plans or programs of all domains are expressed using the same
programming language. Because we do not have to invent a programming language
when specifying a domain, we can formalize much more abstract machines such as
the blocks world. Moreover, it does not seem possible to formalize domains such as
the blocks world conveniently using any of these machines. Many of the programs of
(say) a microprocessor do not translate into clear-cut plans in the blocks world and
some aspects of the machine state such as program counters or the current instruc-
tion do not have a clear-cut meaning in terms of the entities of the blocks world.
It is clear that we need a much less detailed programming language whose concepts
are closer to the concepts of the physical world for formalizing realistic problem do-
mains. Because we can formalize arbitrary machines within our framework, we hope

17

that this dissertation would enable us to make progress towards the “ideal system
verification tool” described by Moore [5, page 410] as follows.

The ideal system verification tool is nothing more than a general-
purpose automated reasoning system: it must be possible to define virtu-
ally arbitrary abstract machines and to derive their properties. Such use
severely stresses the automated reasoning system because the semantics
of interesting machines is extraordinarily complicated.

Another group of researchers [40, 54, 34, 110] in software engineering have
proposed formal specification languages and techniques for verifying designs of pro-
grams with respect to specifications. Three typical specification formalisms [117] are
Larch [41], VDM [54] and Z (pronounced “zed”) [110]. In all three formalisms, a
system (problem domain) to be constructed is typically formalized as a set of states
and a set of operations or procedures to change state. In all three formalisms, the
state of a system is formalized, as in most imperative programming languages, as a
collection of variables associated with values. The variables are allowed to take on
values of abstract data types that may not be directly available in a programming lan-
guage. Operations on states are described in terms of the pre- and post-conditions.
Unfortunately, the specification of actions with side-effects has been a problem using
this approach [63]. A recent paper [7] also explains why the frame problem must
be addressed by these specification languages. In any case, mechanical support for
developing programs using these formalisms is still at a rudimentary stage [53, 33].
VDM and Z are more notations for humans to use when developing software rather
than languages with a precise formal semantics [6]. The Larch Shared Language,
however, has been used for expressing and validating some state-independent prop-
erties of a specification such as consistency using the Larch Prover [33, 41].

A related approach for developing software is the use of program transfor-
mations [105, pages 97-192]. However, this approach does not take the problem spec-
ification as the starting point of program synthesis. Rather, correctness-preserving
transformations are used to synthesize eflicient programs from ineflicient algorithms
that can be easily specified in a very high-level programming language. Yet another
approach to program synthesis that is being tried is theorem proving in a constructive
logic [17]. So far, this approach has been used primarily for constructing applicative
programs [71] rather than imperative programs.

Artificial intelligence techniques have also been applied to software en-
gineering [105, 65]. However, most systems (e.g. [106, 109]) are of the program
transformation kind and do not address the issue of formalizing problem domain
specifications. Further, many of the knowledge-based methods [65] do not have facil-
ities for carrying out induction proofs so vital for proving correctness of plans such
as the plan to clear a block.

18

1.4.2 Dealing with Specification Modification

As mentioned before, the most popular approach used by computer scien-
tists in software engineering for dealing with the problem of program modification
due to changes to the requirements specification is to use an automated system that
maintains reusable theories, libraries and design histories. Some work on building
automated systems that can reason about the effects of incremental changes made
to specifications and programs is currently underway [96, 97]. A more ambitious
approach, that of building a program that can accept as input declarative facts that
describe changes to be made to problem specifications is being pursued by many
researchers in Al.

The problem was first mentioned by McCarthy [79, 77] and was called the
qualification problem. One way to think of the qualification problem (in its broadest
sense) is as the “robot modification” problem. Normally, when we build a robot
like the blocks world robot, we would identify its problem domain constituting its
specification and construct it accordingly. If the problem domain (specification)
is modified (say) because of the inclusion of new objects like pyramids and their
properties or new actions, we would have to rebuild the robot according to the
new specification. So much is common to both programming and robot engineering
and perhaps most of systems engineering. What Al scientists are looking for is a
formalism in which not only all possible domain specifications but also facts about
changes to domain specifications can be expressed declaratively. Rather than change
an existing domain specification, they want a program to accept facts describing the
changes to be made as input and carry out the necessary changes. McCarthy [84]
explains this as follows:

.. .the existing formalizations don’t have enough of what I call elabo-
ration tolerance. The idea is that formalizations should follow human fact
representation in being modifiable primarily by extension rather than by
replacement of axioms.

Thus, the axioms that allow a program to plan an airplane trip don’t
take into account either the possibility of losing a ticket or the necessity
of wearing clothes. However, a human can modify a plan to take into ac-
count either of these requirements should they become relevant but would
not revise its general ideas about planning airplane trips to take them into
account explicitly. I have an axiomatization of airplane travel that han-
dles losing the ticket nicely, i.e., no axioms about the consequences of
losing a ticket or buying a replacement are used in the planning, but if
a sentence asserting the loss of a ticket is added, then the original plan
can no longer be shown to work and a revised plan involving buying a
replacement ticket can be shown to work.

19

Non-monotonic reasoning has been found necessary for this purpose and rules such
as circumscription [77, 80, 61] have been proposed for formalizing the needed non-
monotonic reasoning.

The ideas behind the problem of specification modification and the need
for non-monotonic reasoning are best illustrated using the class of domains (finite
state systems) proposed by Gelfond and Lifschitz [35] for testing non-monotonic
formalisms. The class of domains under consideration have the following properties:

1. The states of the system are given by the propositional values of a finite number
of boolean variables or fluents.

2. Actions are not parameterized and are assumed to be executable in all states.
However the actual effect of an action when executed in a state may depend
on the fluents that are true in the state.

The language A is used for describing such domains concisely. Each domain is
specified by a set of fluents, a set of actions, a set of propositions that specify the
effects of actions (e-propositions) and a set of propositions that specify the values of
fluents in various situations (v-propositions).

As an example, consider the following Switch Domain described in A. It
consists of fluents Light! and Light2, an action Switchl and the following proposi-
tions.

initially —Light1,

initially —Light2,

Switchl causes Lightl.
The first two lines are v-propositions and the last line is an e-proposition. According
to the semantics of A, there are 4 states of the Switch Domain depending on the
truth values of Light1 and Light2. There is one action Switchl which causes Lightl
to become true when executed in any state. Since the semantics of A incorporates
the default rule known as the “commonsense law of inertia” [61, 36] that an action
does not affect a fluent unless otherwise mentioned in a domain description, the
execution of Switchl in any state is assumed by default to leave the value of Light2
unchanged. Thus, the Switch Domain specifies a simple finite state machine whose
states are given by the boolean values of the fluents Lightl and Light2 at various
times and whose transitions are given by the actions of the domain viz. Swiitchl.
In addition, the actual values of the fluents in various states may be included in a
domain description in .A. The above domain description says that both Light! and
Light2 are false in the initial state.

One form of domain modification that has been frequently considered in
formal Al is addition of new information to a domain. For instance, we could modify
the Switch Domain to the following Extended Switch Domain by adding the following
e-proposition:

Switchl causes Light2.

20

Naturally, this defines a different finite state system and, in general, all facts that
are true about the original domain need not remain true about the new domain.
For instance, we know that if Switch! is executed in a state in which Light2 is
false, then Light2 will remain false in the Switch Domain but become true in the
Extended Switch Domain. The current approach to express domain modifications
is by adding formulas that describe a change to a domain to an existing first-order
formalization of the domain. However, simply adding formulas describing the new e-
proposition to a formalization of the Switch Domain would not give us a formalization
of the Extended Switch Domain in classical first-order logic because first-order logic
is monotonic: if a formula p can be proved by deduction from a set of formulas I" then
p can also be proved from ['U{g¢}. Thus, it is felt that a non-monotonic formalism—
usually first-order logic augmented by non-monotonic rules such as circumscription
[77, 80, 61]—is needed to express changes to domain specifications, as the following
quotation from Gelfond and Lifschitz [35] indicates.

The entailment relation of A is nonmonotonic, in the sense that adding
an e-proposition to a domain description D may nonmonotonically change
the set of propositions entailed by D. (This cannot happen when a v-
proposition is added.) For this reason, a modular translation from A
into another declarative language (that is, a translation that processes
propositions one by one) can be reasonably adequate only if this other
language is nonmonotonic also.

In a circumscription based formalism similar to [4], (a relevant part of) the
Switch Domain may be formalized as follows.

—mnoninertial(p, a) — (holds(p, s) = holds(p, result(a,s)))

noninertial(Lightl, Switchl)

holds(Lightl, result(Switchl, s))

Here variables p, s, and a are universally quantified from the outside over
fluents, situations and actions respectively. Circumscription is a rule that is used
to minimize the extension of certain predicates common to all domains. By adding
facts about these “control” predicates to an existing theory, we can “switch” from a
theory of one domain to a theory of another. In the above formalization, the control
predicate is moninertial which says whether or not an action affects a fluent. The
first axiom, sometimes called the “commonsense law of inertia”, says that if an action
a does not affect a fluent p, then the value of p after « is executed in any situation s

21

is the same as the value of p in s. We explicitly assert that Switchl affects Lightl
and specily the effects of Switchl on all fluents that it affects. Since noninertial is
minimized via circumscription, —noninertial(Light2, Switchl) is provable from the
above formulas. Thus, we can prove:

holds(Light2, s) = holds(Light2, result(Switchl, s))

To obtain the formalization of the Extended Switch Domain without chang-
ing the existing axioms, we simply add the following axioms. These clearly invalidate
the above inference.

noninertial(Light2, Switchl)
holds(Light2, result(Switchl, s))

Thus, we have succeeded in suppressing some of the inferences that are
not true in the new domain, i.e., in formalizing non-monotonic reasoning. But as
McCarthy [84] explains:

...unfortunately the most obvious and apparently natural axiomati-
zations tend to have unintended models, and this has been observed in
several examples, especially the Yale Shooting Problem [42]. This has
led to revised formalizations which work but don’t seem so natural. It
isn’t clear whether there is a problem with the systems of nonmonotonic
reasoning or whether we simply don’t have the right axiom sets.

At present, the formalization of non-monotonic reasoning is a subject of continuing
research.

1.5 Our Approach

In this section, we give an overview of our approach, pointing out its advan-
tages and disadvantages. We will first discuss our general framework for mechanizing
problem domains and verifying solutions and then explain our approach to formalize
“non-monotonic” reasoning.

1.5.1 Specifying Problem Domains

Our formalism is similar to the situation calculus and plan theory in that
we model states, actions and plans explicitly as terms in a first-order language. As
we have already noted, each problem domain may be thought of as specifying a
programmable machine whose basic instructions are the actions of the domain and

22

whose programs are plans. Below we first describe a general method for formalizing
the operational semantics of such machines in the Boyer-Moore logic so that we can
verify mechanically whether or not a plan solves a problem. Using this method,
we can formalize the semantics of individual problem domains separately, i.e., each
domain is viewed as a separate machine each with its own collection of plans. Later
we show how we can generalize these machines into a single machine with a single
programming language-like plan representation suitable for all domains.

The states of a problem domain (machine) are modeled by first choosing
suitable Lisp data structures to represent them and then defining a Lisp predicate
in the logic that recognizes those data structures. This may also require choosing
data structures and defining predicates on objects that go into the construction of
a state. For instance, we must choose a representation for blocks, define a suitable
predicate on blocks and then use it in defining the predicate on blocks world states.
Clearly, there are many ways of representing (say) blocks world states. As we shall
explain in Chapter 2, the particular choice of data structures to represent states
affects the size of the domain specification since it determines the number of explicit
state constraints that we must include in the domain specification. The ingenuity of
the programmer (i.e. the problem specifier) can make a difference in the number of
state constraints that must be explicitly included because properties that must be
explicitly asserted about one kind of data structure can be directly proved using the
semantics of Lisp when a “better” data structure is chosen. Once a representation of
states is chosen, any partial recursive function or predicate on states may be defined
in the logic as a suitable Lisp program. For instance, the on relation may be defined
by a Lisp program that takes blocks b7 and b2 and a state s as input and returns t
or f depending on whether or not b1 is on top of b2 in state s.

We distinguish between actions and specifications of actions. Roughly
speaking, actions are syntactic descriptions consisting of the action name and other
parameters whereas the specifications of actions give their input-output behavior
and thus are functions from states to states®. Thus, the possible actions of a domain
are also modeled by defining a Lisp predicate on the data structures that represent
them. For instance, the action of moving block b1 to the top of block 52 may be
represented as list (’move, b7, 2). Here b1 and b2 are variables and may be sub-
stituted by constants such as *a and ’b (that represent blocks) to get ’ (move a b),
the action of moving block ’a to the top of block *b. The specifications of actions are
given by Lisp programs which take the input state and the parameters of an action
as arguments and return the state got as a result of executing the action in the input
state. If the precondition of an action is not satisfied in the input state, an “error
state” that is distinct from all legal states of the domain is returned. For instance,

5The concepts of actions and specifications of actions are respectively similar in spirit to the
concepts of interface specification and behavior specification used in program specification [63].

23

the specification of the move action may be defined by a Lisp program res-move (b1,
b2, s) that returns an error state (which we normally represent as a list whose car is
’failed) if the input state s does not satisfy the preconditions. Otherwise it returns
the state got by moving b1 to the top of b2 in s. Thus, all the effects of executing
an action in a state are specified completely by Lisp programs.

To reason about the effects of executing an action in a state, we define
a function result that takes an action e and a state s as arguments and returns
the state, possibly an error state, got by executing a in s. Result may be viewed
as a simulator that executes actions by calling the Lisp functions that specify the
individual actions with the appropriate parameters. We ensure that the result of
executing any action in an error state is the same state. For instance, the result
function for the blocks world is defined as follows:

DEFINITION:

result (a, s)

= if car(s) = *failed then s
elseif movep (a) then res-move (cadr (a), caddr (a), s)
else res-unstack (cadr (a), s) endif

Here movep is a predicate on move actions and res-move and res-unstack
are Lisp functions that specify the input-output behavior of the move and unstack
actions.

Our representation of plans is novel. We represent plans as sequences of
actions (straightline programs) where each action may be a primitive action or a
complex action, where a complex action is an action that is expanded dynamically,
at the time of execution, to a sequence of primitive actions by the plan interpreter
resultlist, depending on the state in which the action is executed. Thus, plans
with tests and recursion such as the plan for clearing a block can be represented as
complex actions and included in other plans (sequences of actions). We will explain
how such plans are represented as complex actions after we present the definition of
the interpreter, resultlist. Resultlist accepts as input a list of actions [and a
state s and returns the state got by executing [sequentially in s.

DEFINITION:
resultlist ({, s)
= if [~ nil then s
else resultlist (cdr (1), result (car (1), s)) endif

There are two main insights that lead to our representation of recursive
plans. Observe, first of all, that it is sufficient to represent plans as lerminaling
programs since a plan that solves a problem must transform every state satisfying

24

the initial condition to some state satisfying the goal condition. Thus, the execution
of any plan in any state s satisfying the initial condition will only produce a finite
sequence of actions, however long, depending on s. (Recall that all actions terminate
either in a legal state or in an error state.). Secondly, observe that the sequence
of actions produced by a plan when executed in a particular initial state can be
computed from the initial state alone; the intermediate states are fully determined
by the initial state and the plan to be executed. In fact, for every plan, we can write
a Lisp program that would accept the initial state and other parameters of the plan
as arguments and return the sequence of actions that the plan will produce when
executed in the given initial state. We call such Lisp programs plan generators since
they are similar to the planning algorithms for generating straightline plans [2, 113]
used in Al. For example, the sequence of actions needed to clear a block in various
states according to our plan is computed by the following plan generating program
makeclear-gen. Makeclear-gen accepts a block b and a state s as input and returns
the finite sequence of actions that would clear b depending on where it is situated in
s. In the following definition, bu-statep is a predicate on blocks world states and
find-stack-of-block is a function that accepts a block b and a blocks world state
s as arguments and returns the stack (list of blocks) in s to which b belongs or f if
there is no such stack.

DEFINITION:
makeclear-gen (b, s)
= if (- find-stack-of-block (b, s)) V (- bw-statep (s)) then f
elseif b = car (find-stack-of-block (b, s)) then nil
else cons (unstack (car (find-stack-of-block (b, s))),
makeclear-gen (b,
result (unstack (car (find-stack-of-block (b,

s)));
s))) endif

Thus, the above recursive Lisp program succeeds in generating the se-
quence of actions produced by our plan to clear a block using the initial state alone.
This means that we need not test the intermediate states that arise during the ex-
ecution of a plan in order to determine the sequence of actions needed. In fact,
makeclear-gen may be used to state and prove that our plan to clear a block works
as follows:

THEOREM: makeclear-worksl
(bw-statep (s)
A find-stack-of-block (b, s)
A (pl = makeclear-gen (b, s))
A (s = resultlist (p1, s)))
— (bw-statep (s1) A planp (pI) A clear (b, s1))

25

The above theorem states that for every state s in which there is a stack to
which b belongs, the execution of the sequence of actions generated by makeclear-gen
in s results in a state in which b is clear. In addition, we prove that the sequence
of actions generated is a legal sequence. Essentially, we prove that our plan achieves
the desired goal by proving that for every state s that satisfies the initial condition,
the sequence of actions that would be produced by the plan in s does the job. Thus,
we have represented the recursive plan completely using the set of action sequences
it would generate in all possible states. This way we do not need constructs for tests
and recursion in plans per se. Instead, the constructs for tests and the recursion are
embedded in plan generating Lisp programs such as makeclear-gen.

Although this does count as verification of the plan, the above method of
formalizing problem domains and verifying plans suffers from the following disad-
vantages.

1. It does not allow us to use the plan to clear a block as a complex action in
other plans the way procedures are combined in an imperative programming
language. That is, there is no term in the logic that stands for the plan of
clearing a block. Such terms would let us describe complex plans succinctly.

2. Using the above method of specifying domains, each domain is formalized as
a separate machine with its own collection of actions. Our aim, however, is
to obtain a single machine whose states and actions encompass those of every
problem domain. The representation of plans of such a general machine may
be used uniformly across all problem domains.

We get around these two difficulties by generalizing the representation of actions as
follows. Our first step is to represent primitive actions by data structures that stand
for the names of the functions that specify them. Thus, since the action of moving
block z to the top of block y is specified by the function res-move (z, y, s), it is
represented by a data structure that stands for As. res-move (z, y, s) as in [76]. Such
terms are called fluents by McCarthy [76, 86]. The data structures that represent
such lambda expressions are chosen so that result can evaluate lambda expressions
on particular states using the Lisp interpreter eval$ available as a function in the
logic. Eval$ (as defined in the logic; see page 92 for details) takes three arguments,
flg, z and a. If flg equals ’list, eval$ interprets z as a list of quotations (data
structures that describe terms syntactically), otherwise it processes z as a quotation
of a particular term. The argument ¢ is an “environment” or association list that
assigns values to quoted variables, i.e., litatoms. Essentially, eval$ “unquotes” a
quoted term (or list of terms) z and returns its value (or list of values) using the
values of the variables specified by a. For instance, given t, ’(plus x y) (the
quotation of z 4+ y) and an environment > ((x . 2) (y . 3)) as arguments, eval$
would evaluate z to 2 and y to 3 and apply the definition of plus to list (2, 3) to get
5. In the general theory, result is defined using eval$ as follows.

26

DEFINITION:
result (a, s)
= if car(s) = *failed then s
else eval$ (t, append (a, list (list (> quote, s))), nil) endif

For example, the action of moving ’a to the top of ’b is now represented
by the data structure ’ (res-move ’a ’b) that stands for As. res-move (’a, ’b, s).
To execute the action ’(res-move ’a ’b) in a state s, result constructs the
term corresponding to the description or quotation of the term res-move(’a, ’b,
s0) and evaluates it using eval$ to obtain the value of res-move (’a, ’b, s0). The
quotations of terms such as res-move (’a, b, s0) are already available in the logic
because the meta-theory of the Boyer-Moore logic is formalized as part of the logic,
i.e., for every term in the logic there exists a term that is its syntactic description or
quotation. Notice that we do not represent the bound “lambda variable” explicitly in
the representation of actions. Instead we adopt the convention that the last argument
of a function that specifies an action is the initial state argument.

This device of representing actions as fluents can be used for representing
both primitive and complex actions. For instance, the input-output behavior of the
complex action corresponding to the plan given by makeclear-gen can be specified
by the following function.

DEFINITION:
res-makeclear (b, s) = resultlist (makeclear-gen (b, s),)

Res-makeclear is a function that takes a block b and a state s as arguments
and returns the state got by executing the plan generated by makeclear-gen in s.
The complex action corresponding to the plan given by makeclear-gen can again
be represented as As. res-makeclear (b, s). Since result and resultlist can once
again be used to execute such actions in various states by lambda evaluation, we may
allow complex actions to be included in plans. Thus, with our new representation, a
plan is a sequence of actions where each action may be either a primitive action or
a complex action.

Because all actions of all domains are represented in the same way, we
now have a single machine or “programming language” whose states and actions
encompass those of every other problem domain. The set of states of this general
machine is given by the set of Lisp data structures and the set of actions is given
by those data structures that can be interpreted as lambda expressions that are
names of action specifications. Plans, sequences of actions, may be thought of as
programs of this machine and the interpreter resultlist may be thought of specifying
the operational semantics. We represent error states of this machine by lists whose
car is *failed.

27

Advantages Our method of specifying problem domains for mechanical verification
of plans has a number of advantages.

1. Because we specify problem domains by programming, our approach makes
it possible to formalize complex domains while retaining the power of logic
to prove general properties. Thus, it combines the benefits of procedural and
declarative specifications [76, 92, 119]. The frame problem does not arise any
more than when programming a simulator for a domain in Lisp because all
changes brought about by the execution of an action are specified using a pro-
gram. Similarly, side-effects are also not a problem because the specifications
of actions are Lisp programs that operate on Lisp data structures that repre-
sent the entire state, i.e., one that includes all the objects and their properties.
Thus, all changes to objects that are not arguments to an action can also be
carried out on a given state data structure depending on the properties of the
objects in it.

2. Since states are modeled as data structures, state constraints—properties true
of all states—can be proved from the form of the data structures chosen to
represent states. By choosing the state representation cleverly, we can reduce
the burden of explicitly stating a large number of state constraints considerably.

3. The problem of building consistent domain specifications is circumvented by
adding the programs constituting a domain specification as definilions to the
logic. This makes domain specifications consistent relative to the Boyer-Moore
logic.

4. Our representation of plans as sequences of actions rather than as Lisp-like pro-
grams gives us a number of advantages. First, we cannot form “non-executable”
plans as in the monkey-bomb problem because neither states nor conditionals
occur in the plan representation. Also, any concepts such as arithmetic needed
in a plan can be used without any restriction in plan generating programs such
as makeclear-gen. Our restriction of plans to terminating, straightline pro-
grams has the advantage of making plan verification somewhat more tractable
than full-blown program verification but has the disadvantage of being inap-
plicable to domains in which non-terminating plans may be necessary.

5. From the standpoint of rapid prototyping, our approach has the advantage that
we can execute requirements specifications a la Lisp programs as well as prove
general properties about them as in formal validation [33, 46, 1]. Similarly,
whether a particular prototype (plan) satisfies a specification or not can be
ascertained by either direct execution on test cases or “scenarios” [64, pages
257-262] or by mechanical verification. The former has the advantage of getting
simple bugs out of the way.

28

6. Because we have a single framework within which all problem domains are
formalized, we have the advantage of reusability; work done about one domain
can be reused in another. Also, specifications are parameterized and can be
composed [14, 33] because they are in a programming language. Since plans are
parameterized and can be composed, we allow parameterized and composable
designs as well. Both promote reusability.

7. Our formalization also allows us to specify problems with arbitrary constraints
including efliciency requirements, restrictions on the types of actions included
in a plan as well as constraints on the states that ensue during the execution
of a plan.

So far, we have assumed that all the effects of all actions are given in a problem.
Sometimes, it may be necessary to specify partial actions wherein the effects of
actions on only some aspects of a state may be given. In such a case, it would
not be possible to define an interpreter for the domain as we have been doing since
actions cannot be modeled by programs. We show in Chapter 5 how we may use the
CONSTRAIN event [8] of Nqthm to specify partial actions. Obviously, we would lose
the benefit of executability if actions are specified this way.

1.5.2 Formalizing “Non-monotonic” Reasoning

How do we succeed in formalizing “non-monotonic” reasoning in classical
first-order logic? The answer is simple. If we include all possible domains such
as the Switch Domain and the Extended Switch Domain as terms in the language,
we can express directly in first-order logic that “Switchl does not affect Light2
in the SwitchDomain” and that “Switchl causes Light2 to become true in the
EatendedSwitchDomain” without the two facts “interfering” with each other®. Here
SwitchDomain and EztendedSwitchDomain are terms in the logic that stand for
the Switch Domain and the Extended Switch Domain respectively. This is somewhat
similar to the device of introducing explicit state terms that allowed us to express in
first-order logic facts that may be true in one situation and false in another without
them interfering with each other. Since the effects of executing an action varies from
domain to domain, we define the functions result and resultlist with an extra
domain parameter. So we have terms such as result (*switchil, s0, SWITCH-DOM1)
which stands for the result of executing Switchl in state sO of the Switch Domain
and prove theorems such as the following:

%The connection between this and the proposal to include contextsas objects of [81, 85] is unclear.
In some sense, different domains are different contexts in which same action may have different
meanings.

29

THEOREM: l-th2
holds (> (1ight2 . 0), s)
— holds (’ (1ight2 . 1), result (’switchi, s, SWITCH-DOM2))

The above theorem says that if Light2 is false in any state of the Extended
Switch Domain (swiTcH-DOM2) then it will become true when Switchl is executed.
The inclusion of domains as terms in the logic amounts to formalizing the meta-theory
used by designers of non-monotonic rules to prove their correctness and completeness.

Our approach has a number of advantages.

1. Because our formalization is in first-order logic, efficient implementations such
as the one given in this dissertation are possible.

2. Since all possible domains are represented as terms in the logic, we can prove
very general theorems by defining predicates over domains and by quantifying
over domains. We can also define plan generators that output plans as a
function of the domain in which the plan is to be executed to solve a problem
that arises in more than one domain. Such solutions are applicable to a class
of domains.

3. Since proofs of theorems about one domain do not interfere with proofs of
theorems about another, we do not need a “truth maintenance” mechanism
[25, 21] for deleting proofs that no longer hold simply because the domain has
changed.

4. Since domains are represented as data structures in Lisp, we can consider mod-
ifications other than addition of new information to a domain. For instance,
we could consider deletion of information as a possible modification.

1.6 Contents of the Dissertation

The dissertation is organized as follows.

In Chapter 2, we use our method of specifying problem domains to specify
the blocks world we described earlier. We discuss the effect of alternate representa-
tions for states on the size of a domain specification and give a number of examples
of general problems in the blocks world and plans for solving them. These examples
demonstrate how a single domain theory can be reused to verify plans for solving
multiple problems within the domain. We also show how a variation of the blocks
world (originally used by Fahlman [28] and suggested to us by Richard Waldinger)
in which the move action has the side-effect of moving the blocks on top of it can be
modeled using our approach. We give an example of a plan to form a single tower
using all the blocks in the initial state. The example also demonstrates what hap-
pens when changes are made to a domain specification and how theorems common to

30

two similar problem domains can be shared. Plans are expressed as plan generating
programs and verified to solve problems. The list of events given as input to the
theorem prover to formalize the blocks world and to carry out the mechanical proofs
of theorems mentioned in Chapter 2 is in Appendix A.

In Chapter 3, we specify the n x n mutilated checkerboard problem and
describe an interactive mechanical proof of the impossibility of covering a mutilated
n X n board completely with dominoes. The proof formalizes the well-known argu-
ment requiring the “invention” of colors. We also show how some plans for covering
portions of two dimensional space with dominoes can be expressed. The list of events
to formalize the checkerboard domain and carry out the mechanical proof is included
in Appendix B.

Chapter 4 describes how solutions to problems in the blocks world that
require constraints on the actions composing a plan and on the states generated
during the execution of a plan can be expressed using the blocks world formalization
of Chapter 2.

Chapter 5 presents our general framework for modeling problem domains
and verifying plans. We describe a formalization of a single problem domain or
machine whose set of states and set of actions includes those of every other problem
domain. Thus, every problem domain can be specified using a subset of states and
actions of this general machine. This gives us a uniform way of representing actions
and plans of all domains. Also, we show how plans—sequences of actions—can
be represented as complex atomic actions and used in other plans much the way
procedures are combined in a programming language. We show how the blocks world
described in Chapter 2 can be formalized within the general framework and how the
mechanical proofs of the theorems in Chapter 2 can be carried out without change
using the new formalization. The list of events describing the general framework and
a blocks world formalization within the general framework is given in Appendix C.

Chapter 6 deals with the problem of dealing efficiently with modifications
to domain specifications. We show that by including domains as terms in the logic,
we can describe solutions to problems common to a class of domains. This also avoids
the need for non-monotonic reasoning. The example class of domains in this chapter
is the class of finite state machines that can described in the language A [35]. The
list of events for formalizing this class of domains and proving typical theorems is
included in Appendix D.

In Chapter 7, we summarize the dissertation and suggest directions for
future work.

Throughout this dissertation we follow the following style of presentation.
Whenever we introduce definitions in the logic for formalizing new concepts and when
we state theorems, we usually give an example that “tests” the theorem or definition
on concrete Lisp data structures. Apart from enabling the reader to pin down the

31

concepts used in the example, this also demonstrates the suitability of our theory for
program development wherein testing is used to get simple errors, particularly in the
specification, out of the way. Most of the theorems mentioned in the dissertation have
been checked by the theorem prover. Unfortunately, some of them have not been
checked mainly due to lack of time. In these cases, we give examples of instantiations
of the theorems on concrete data structures that have been proved (automatically)
by the theorem prover and then give the statement of the general theorem. We
do not feel this is a serious blemish. We believe that the main contribution of
this dissertation is the novel representation of plans and the convenient method of
programming problem domains that allows us to express theorems needed to be
proved in this context as facts about Lisp programs. Since the Boyer-Moore theorem
prover is known to prove theorems of the sort mentioned in the dissertation fairly
efficiently, it wouldn’t be wrong to conclude that mechanical proofs of these theorems
are a routine albeit time-consuming exercise. To avoid misunderstanding, we place
the dagger symbol shown in the margin of this line alongside theorems that have not
been checked mechanically. We have also explained the difficulties we experienced in
getting the theorem prover to check some of the proofs.

We conclude the introduction with a brief review of the automated rea-
soning system Nqthm, also known as ‘the Boyer-Moore Theorem Prover’ reproduced
with minor alterations from [11].

1.7 The Automated Reasoning System Nqthm

Detailed knowledge of Nqthm is unnecessary for those who are happy
enough with the informal paraphrases of the formulas in the remainder of this dis-
sertation. Nqthm is a Common Lisp program for proving mathematical theorems.
Since A Computational Logic [9] was published in 1979, Nqthm has been used by
several dozen users to check proofs of over 16,000 theorems from many areas of num-
ber theory, proof theory, and computer science. An extensive partial listing may be
found in [10, pages 5-9]. See also [5]. For a thorough and precise description of the
Nqthm logic, we refer the reader to the rigorous treatment in [10], especially Chapter
4, in which the logic is precisely defined. In the body of this dissertation, we have
been using a conventional syntax rather than the official Lisp-like syntax of Nqthm.
The translation between the conventional syntax and the official Lisp-like syntax is
reproduced from [12] in Section 1.7.3.

1.7.1 The Logic

The logic of Nqthm is a quantifier-free first order logic with equality. The
basic theory includes axioms defining the following:

e the Boolean constants t and f, corresponding to the true and false truth values.

32

e equality. z = y is t or f according to whether z is equal to y.
e an if-then-else function. if z then y else z endifis z if z is f and y otherwise.

e the Boolean arithmetic operations z Ay, 2z Vy, 7z, z — y, and z & y.

The logic of Nqthm contains two ‘extension’ principles under which the
user can introduce new concepts into the logic with the guarantee of consistency.

e The Shell Principle allows the user to add axioms introducing ‘new’ inductively
defined ‘abstract data types.” Natural numbers, ordered pairs, and symbols are
axiomatized in the logic by adding shells:

— Natural Numbers. The nonnegative integers are built from the constant 0
by successive applications of the constructor function ‘add1’. The function
‘numberp’ recognizes natural numbers. The function ‘subl’ returns the
predecessor of a non-0 natural number. z € N abbreviates numberp(z).

— Symbols. The data type of symbols, e.g., *failed, is built using the
primitive constructor ‘pack’ and O-terminated lists of ASCII codes. The
symbol ’nil, also abbreviated nil, is used to represent the empty list.

— Ordered Pairs. Given two arbitrary objects, the function ‘cons’ builds
an ordered pair of these two objects. The function ‘listp’ recognizes or-
dered pairs. The functions ‘car’ and ‘cdr’ return the first and second
component of such an ordered pair. Lists of arbitrary length are con-
structed with nested pairs. Thus list(args,...,arg,) is an abbreviation
for cons(argy, ..., cons(arg,, nil)).

e The Definitional Principle allows the user to define new functions in the logic.
For recursive functions, there must be an ordinal measure of the arguments
that can be proved to decrease in each recursion, which, intuitively, guarantees
that one and only one function satisfies the definition. Many functions are
added as part of the basic theory by this definitional principle. For example,
we define for the natural numbers these familiar expressions: ¢ + j, 7 — j, i <
Jyixj, i+ 7,1 mod j, and exp (i, j). ¢ ~ O returns fif and only if ¢ is a
positive integer. evenp (z) returns fif and only if z is an odd positive integer.

The rules of inference of the logic are those of propositional logic and
equality with the addition of instantiation and mathematical induction.

33

1.7.2 The Theorem Prover

Nqgthm is a mechanization of the preceding logic. It takes as input a term
in the logic, and repeatedly transforms it in an effort to reduce it to non-f. Many
heuristics and decision procedures are implemented as part of the transformation
mechanism.

The theorem prover is fully automatic in the sense that once a proof at-
tempt has started, the system accepts no advice or directives from the user. The only
way the user can interfere with the system is to abort the proof attempt. However,
on the other hand, the theorem prover is interactive: the system may gain more
proving power through its data base of lemmas, which have already been formulated
by the user and proved by the system. Each conjecture, once proved, is converted
into some ‘rules’ which influence the prover’s action in subsequent proof attempts.

The commands to the theorem prover include those for defining new func-
tions, proving lemmas, and adding shells, etc. The following two commands are the
most often used.

e To admit a new function under the definitional principle we invoke:
DEFINITION: fn-name (z, y) = body

e To initiate a proof attempt for the conjecture statement, naming it lemma-
name, we invoke

THEOREM: lemma-name
statement

Typically, the checking of difficult theorems by Nqthm requires extensive
user interaction. The behavior of the prover is influenced profoundly by the user’s
actions. The user first formalizes the problem to be solved in the logic. The formal-
ization may involve many concepts and so the specification may be very complicated.
The user then leads the theorem prover to a proof of the goal theorem by proving
lemmas that, once proved, control the search for additional proofs. Typically, the
user first discovers a hand proof, identifies the key steps in the proof, formulates
them as a sequence of lemmas, and gets each checked by the prover.

1.7.3 Syntax Summary

Here is a summary of the conventional syntax used in this report in terms
of the official syntax of the Nqthm logic described in [10]. (‘cond’ and ‘let’ are recent
extensions not described in [10].)

1. Variables. z, y, z, etc. are printed in italics.

34

. Function application. For any function symbol for which special syntax is not
given below, an application of the symbol is printed with the usual notation;
e.g., the term (fn x y z) is printed as fn(z, y, z). Note that the function
symbol is printed in Roman. In the special case that ‘¢’ is a function symbol
of no arguments, i.e., it is a constant, the term (c) is printed merely as ¢,
in small caps, with no trailing parentheses. Because variables are printed in
italics, there is no confusion between the printing of variables and constants.

. Other constants. t, f; and nil are printed in bold. Quoted constants are printed
in the ordinary fashion of the Nqthm logic, e.g., > (a b c) is still printed just
that way. #b001 is printed as 001,, #0765 is printed as 765g, and #xA9 is
printed as A91¢ .

. (if x y z) is printed as

if z then y else z endif.

. (cond (testl valuel) (test2 value2) (t value3d)) is printed as

if testl1 then valuel elseif test? then value? else value3 endif.

. (let ((varl vall) (var2 val2)) form) is printed as

let var! be vall, var2 be val2 in form endlet.

. The remaining function symbols that are printed specially are described in the
following table.

Nqgthm Syntax

‘ Conventional Syntax ‘

(or x y)
(and x y)
(times x y)
(plus x y)
(remainder x y)
(quotient x y)
(difference x y)
(implies x y)
(member x y)
(geq x y)
(greaterp x y)
(leg x y)
(lessp x y)
(equal x y)
(not (member x y))
(not (geq xy))
(not (greaterp x y))
(not (leq x y))
(not (lessp xy))
(not (equal x y))
(minus x)
(add1 x)
(nlistp x)
(zerop x)
(numberp x)
(subl x)
(not (nlistp x))
(not (zerop x))
(not (numberp x))

T Vy
T ANy
T *xy
Tty

z mod y

SRS
[
SIS

4

&
N4

B R 8 8 8 8 8 8 8 8 8

R+ DA A R I A TA VIV ™
NSNS IINS SN NS S =BV~ BV BN N

8

&=
E. =
e

8
12
o

r €N

z % nil

r %0
r¢N

35

Chapter 2

Plan Verification in the Blocks World

In this chapter, we use our method of formalizing problem domains in the
Boyer-Moore logic to specify the blocks world described in Chapter 1. The blocks
world has been used as an example problem domain in Al for a long time [118, 112, 28]
and at present there is some controversy over whether or not it is a “solved” problem.
It is therefore worth emphasizing that we are interested in an implementation that
would allow us to express all possible problems and plans, including those that involve
conditionals and recursion such as our plan for clearing a block, so that we can verify
mechanically whether or not a plan solves a given blocks world problem. While many
blocks world implementations exist, very few of them can express general problems
and verify plans such as the plan for clearing a block [72] that require mathematical
induction. It is perhaps for this reason that Hayes [48] remarked recently that “we
do not know how to do the blocks world very well”. McCarthy [74] lists the blocks
world as an “open problem” and Minsky [93, page 29] justifies the use of the blocks
world as follows.

In attempting to make our robot work, we found that many everyday
problems were much more complicated than the sorts of problems, puzzles
and games adults consider hard. At every point, in that world of blocks,
when we were forced to look more carefully than usual, we found an
unexpected universe of problems.

In Section 2.1, we present our formalization of the blocks world. We discuss
how the choice of the representation of states in Lisp affects the size of the domain
specification by considering alternative representations for blocks world states. In
Section 2.2, we give examples of general problems in the blocks world including the
problem of clearing a block and show how plans for solving general problems in the
blocks world may be expressed as plan generating Lisp programs. We state theorems
that must be proved to verify such plans. Our examples demonstrate how the same
domain theory can be re-used to solve different problems within a domain. Because
the plans use the same set of primitive actions, theorems about the effects of actions
proved for one problem can be used for another. In Section 2.3, we specify a variation
of the blocks world that shows more clearly how our method is applicable to domains
in which actions have side-effects. This blocks world [28] includes exactly one move

36

37

action which has the side-effect of moving all the blocks above the block that is
moved along with it. We present an example of a plan to form a single tower using
all the blocks in the initial state. The example also demonstrates what happens
when changes are made to a domain specification and how theorems common to two
similar problem domains can be shared.

The list of events given as input to the theorem prover to formalize the
blocks world and prove the theorems mentioned in this chapter are included in Ap-
pendix A. Throughout the chapter, we show how theorems can be “tested” by stat-
ing instantiations of theorems with variables substituted by concrete data structures.
Apart from demonstrating that both the specifications and theorems can be tested
on “scenarios”, the examples are also meant to help the reader grasp the actual rep-
resentations used in our formalization. The proofs of such concrete theorems were
carried out automatically by the theorem prover.

2.1 Formalization of the Blocks World

To define the interpreter resultlist for blocks world plans, we must choose
data structures to represent blocks world states and actions. Since we want to express
general theorems, we need predicates on states, actions and plans. The predicate
on states must enable us to prove various state constraints, properties true of all
states, needed for verifying solutions to various problems. As mentioned earlier,
the particular choice of data structures to represent states influences the number of
state constraints that we must explicitly assert when defining the predicate on states.
We illustrate this aspect by trying out two different representations of blocks world
states. Our first representation of blocks world states is as a list of terms that stand
for primitive relations between blocks in a state such as On(A, B), Ontable(D) and
Clear(C'). This representation has been used in Al programs written in PLANNER
[118] and Prolog [58], and is used currently by many existing planning programs [113].
The representation turns out to be inconvenient for specifying the predicate on the
set of possible states because it forces us to specify a number of state constraints
explicitly. By choosing a different representation that allows state constraints to
be directly deduced from the semantics of Lisp data structures a more tractable
formalization is obtained.

2.1.1 A First Attempt

In many contemporary planners [73, 94], states are represented by a list of
terms that stand for primitive relations between blocks such as On(A, B), Ontable(D)
and Clear(C'). Let us see what it takes to define a predicate on blocks world states
using this representation. We may represent a blocks world state in Lisp as a list of
pairs of litatoms. All litatoms other than ’table and ’clear stand for blocks. The
litatom ’table stands for the table. If a pair cons(’clear, z) belongs to state s,

38

then z is clear in s. If a litatom pair cons (z, y), where z and y are distinct from
’clear, belongs to a state s, then z is on top of y in s. An example of a state is
’((clear . a) (a. c) (c . table) (clear . b) (b . table)). In this state there
are blocks ’a, ’b and ’c such that ’a is clear and on top of ’c which is on the table,
and ’b is on the table and clear.

Now, let us try to define a predicate on states using this representation.
For this we need the following predicate on blocks.

DEFINITION:
blockp (z) = (litatom (z) A (z # ’table) A (z # ’clear))

For a list of litatom pairs to be a legal blocks world state, it must satisfy
the following constraints. The litatom ’clear should not occur as the cdr of any
pair in the list and the litatom ’table should not occur as the car of any pair in
the list. Further, the car of no pair belonging to a state should be equal to its cdr.
These constraints may be expressed as follows using the predicate pairset.

DEFINITION:
pairset (s)
= if s ~ nil thent
else litatom (caar (s))
A litatom (cdar (s))
(caar (s) # *table)

(cdar (

(caar (s

s) # ’clear)
cdar (s))
dr (s)) endif

A)
A)
A)
A pairset (c

This rules out states such as > ((clear . clear) (table . a)). But we
must further ensure that every block (that exists in a state) belongs to exactly one
stack. That is, no block can be immediately above or below more than one object.
This constraint can be met by ensuring that every block occurs as a car in exactly
one litatom pair in a state and that every block occurs as a cdr in exactly one litatom
pair in a state. Our definition of pairset ensures that a block cannot be the car and
the cdr of the same litatom pair. The remaining constraints can be specified using
the following predicates.

DEFINITION:
check-block (z, s)
= if s ~ nil thent
elseif z = cdar(s) then f
else check-block (z, cdr (s)) endif

39

DEFINITION:
no-two-blocks-on-top-of-block (s)
= if s ~ nil thent
else ((— blockp (cdar (s))) V check-block (cdar (s), cdr (s)))
A no-two-blocks-on-top-of-block (cdr (s)) endif

DEFINITION:
block-not-on-two-blocks ()
= if s ~ nil thent
else ((— blockp (caar (s))) V (= assoc (caar (s), cdr (s))))
A block-not-on-two-blocks (cdr (s)) endif

The above definitions rule out states such as >((a . table) (a . c)),
and >((a . b) (c . b)) but still don’t get the job done. Lists in which there are
“hanging” chains of blocks that do not rest on the table such as *((a . b) (b .
c)) are not covered by the above predicates. Stating these constraints would require
still additional predicates which do not appear to be definable concisely. It is worth
noting that, with the chosen representation, it takes a lot of effort even to figure out
what extra constraints are needed in addition to the effort needed to express them
succinctly as Lisp programs.

2.1.2 Owur Representation

On the other hand, we may represent a blocks world state as a set of stacks
where each stack is a finite, non-empty sequence of distinct blocks. The stacks in
a state are pairwise disjoint. The first block of a stack is clear and the last block
is on the table. We represent blocks as litatoms and stacks as sequences of distinct
litatoms. Thus, the blocks world state given in the figure on the next page in which
there are two stacks, one with blocks ’a, ’b and ’c and the other with blocks ’d
and ’e is represented by STATEL.

DEFINITION: STATEL =°((a b c) (d e))

The predicates blockp and stackp respectively recognize blocks and stacks.
It turns out to be convenient from a theorem proving standpoint to force the cdr of
the last block in a stack to be nil rather than allow it to be equal to any non-list
such as numbers or other litatoms.

DEFINITION: blockp (z) = litatom (z)

Figure 2.1: A blocks world state

40

41

DEFINITION:
stackp (/)
= if [~ nil then f
elseif cdr (/) = nil then blockp (car ({))
else blockp (car (1))
A (car () & cdr (1))
A stackp (cdr (1)) endif

The predicate disjoint checks if the two given lists are disjoint and
disjointlist checks if a given list sl is disjoint with every list in /1.

DEFINITION:
disjoint ({1, [2)
= if [/ ~ nil then t
else (car (l1) ¢ 12) A disjoint (cdr (I1), I2) endif

DEFINITION:
disjointlist (s1, I1)
= if [/ ~ nil then t
else disjoint (s1, car (1)) A disjointlist (s, cdr (11)) endif

We can now define a blocks world state as a set of stacks. Once again we
force the cdr of the last element to be nil.

DEFINITION:
bw-statep (z)
= if z >~ nil
then if z = nil then t
else fendif
else stackp (car (z))
A disjointlist (car (z), cdr (z))
A bw-statep (cdr (z)) endif

The following theorem tests the above definition on sTATE].

THEOREM: blocks-world-examplel
bw-statep (STATEL)

Notice that many of the constraints that we had to provide explicitly using
our earlier representation can now be proved as theorems using properties of Lisp
data structures. For instance, it is clear from our Lisp representation that there is

42

at most one block immediately above and immediately below every block in a state
simply because there is at most one element immediately preceding and immediately
succeeding a member of a list. Similarly, we can prove using properties of lists that
there are no “hanging” chains of blocks because we know that every finite, non-
empty list has a last element which is defined to be on the table. Thus, a “good”
representation of states is one that allows us to prove state constraints using the
available axioms about Lisp data structures.

Since we have all possible states as data structures, we may now define
any partial recursive function or predicate on states as a Lisp program. Below we
define predicates on, ontable and clear. A block is on the table in a state if there
is a stack in the state of which it is the last element. The predicate bottomp checks
if b is the last element in st.

DEFINITION:

bottomp (b, st)

= if st ~ nil then f
elseif cdr (st) ~ nil then b = car (st)
else bottomp (b, cdr (st)) endif

The function find-stack-of-block returns the stack to which a given
block belongs. If there is no such stack it returns f. Thus, this predicate can also be
used to assert the existence of blocks in a state.

DEFINITION:
find-stack-of-block (b, s)
= if s ~ nil then f
elseif b € car(s) then car(s)
else find-stack-of-block (b, cdr (s)) endif

The following examples show how find-stack-of-block may be used.
The first example shows that the function returns the stack in which block ’c is
present in STATE]l and the second example shows that block ’g does not exist in
STATEL.

THEOREM: find-stack-examplel
find-stack-of-block (’c, sTaTEl) = *(a b <)

THEOREM: find-stack-example2
- find-stack-of-block (’g, sSTATE])

Now we can define ontable as follows.

43

DEFINITION:
ontable (b, s) = bottomp (b, find-stack-of-block (b, s))

A block b1 is on top of another block b2 in a state s if there is a stack
in s in which b7 and b2 occur consecutively. We define on in terms of consecp, a
predicate that checks if two blocks occur consecutively in a stack.

DEFINITION:

consecp (b1, b2, st)

= 1if st ~ nil then f
elseif cdr (st) ~ nil then f
elseif car (st) = b1 then b2 = cadr (st)
else consecp (b1, b2, cdr (st)) endif

DEFINITION:
on (b1, b2, s) = consecp (b1, b2, find-stack-of-block (b1, s))

A block is clear in a state if there is a stack in the state of which it is the

topmost block.
DEFINITION: clear (b, s) = assoc (b, s)

Let us now define predicates on actions and plans. Actions are terms in the
logic that are interpreted by resultlist. Below we give constructors and predicates

for the move and unstack actions.
DEFINITION: move (b1, b2) = list (*move, b1, b2)
DEFINITION: unstack (b) = list (’unstack, b)
DEFINITION: movep (z) = (car (z) = ’move)
DEFINITION: unstackp (z) = (car (z) = ’unstack)

Thus, ’ (move a b) is a term that stands for the action of moving block
’a to the top of block b and ’(unstack c) is a term that stands for the action of
unstacking block ’c. The same action may be executed in many different states with
different effects. For instance, ’ (move a b) is legal in a state where ’a and ’b are
clear but is illegal otherwise.

The following predicate on plans is needed to express theorems that talk

about existence of plans.

44

DEFINITION: actionp (z) = (movep (z) V unstackp (z))

DEFINITION:
planp (z)
= if r ~nil thent

else actionp (car (z)) A planp (cdr (z)) endif
Here is a simple example of a plan.

DEFINITION:
PLAN] = ’ ((unstack a) (move b a) (move c b))

THEOREM: planp-examplel
planp (PLAN1)

Having defined predicates on states, actions and plans we are ready to
define the function resultlist which computes the state got as a result of executing
a list of actions (plan) in a given state. Resultlist calls the function result which
takes an action @ and a state s as input and returns the state got as a result of
executing a in s. Result simulates an action and computes the next state by calling
Lisp programs res-move and res-unstack that specify the move and unstack actions
respectively.

Res-move accepts as input blocks b7 and b2 and a state s. It checks if
the preconditions for moving b1 to the top of b2 are satisfied in s and if so, calls
exec-move to compute the new state. If not, it returns an error state, a list whose
car is ’failed. Notice that such an error state is distinct from all legal states
since the car of every legal state is a stack and all stacks are non-empty lists. As
preconditions, we require that b7 be distinct from b2 and that b7 and b2 be clear in
s. The complete effects of a successful move action are specified using exec-move.
Exec-move accepts b7, b2 and s as input and returns the state got as a result of
moving bl to the top of b2 in s. All possible distinct circumstances in which the
move action may be executed are taken care of by doing a case analysis on s. To
move bl to the top of b2 in state s, exec-move deletes the stacks containing b1 and
b2 from s and then conses the stack got by adding b1 to the top of b2’s stack. It
returns the list of stacks [so obtained as the new state if b7 is on the table in s.
Otherwise the new state is got by consing the stack containing the rest of the blocks
of b1’s stack onto [.

The function delete deletes the first occurrence of an element in a list.

DEFINITION:
delete (z, {)

45

= if [>~ nil then [
elseif z = car (/) then cdr (I)
else cons (car (1), delete (z, cdr (1))) endif

DEFINITION:
exec-move (b1, b2, s)
= if cdr (assoc (b1, s)) ~ nil

then cons (cons (b1, assoc (b2, s)),

delete (assoc (b1, s), delete (assoc (b2, s), s)))
else cons (cons (b1, assoc (b2, s)),
cons (cdr (assoc (b1, s)),
delete (assoc (b1, s), delete (assoc (b2, s), s)))) endif

DEFINITION:

res-move (b1, b2, s)

= if (b1 = b2) V (- clear (b1, s)) V (= clear (b2, s))
then list (*failed, ’res-move, s)
else exec-move (b1, b2, s) endif

Similarly res-unstack returns an error state whose car is >failed if the
preconditions for unstacking a block are not satisfied. Otherwise, it calls exec-unstack
to carry out the effects of the unstack action.

DEFINITION:

exec-unstack (b, s)

= if cdr (assoc (b, s)) ~ nil then cons (list (b), delete (assoc (b, s), s))
else cons (cdr (assoc (b, s)),

cons (list (b), delete (assoc (b, s), s))) endif

DEFINITION:

res-unstack (b,)

= if = clear (b, s) then list (’failed, ’unstack, s)
else exec-unstack (b, s) endif

The function result accepts an action ¢ and a state s as input and behaves
as follows. If s is an error state it is returned. Otherwise, the state got as a result of
executing a in s is computed by calling res-move or res-unstack.

DEFINITION:

result (a, s)

= if car(s) = *failed then s
elseif movep (a) then res-move (cadr (a), caddr (a), s)
else res-unstack (cadr (a), s) endif

46

Resultlist computes the state got as a result of executing a plan [in s.

DEFINITION:
resultlist ({, s)
= if [~ nil then s
else resultlist (cdr (1), result (car (1), s)) endif

Here are a few examples that show how result works. We use STATEL
and PLAN1 defined earlier. The first two examples show how legal move and unstack
actions are executed and the next two show that error states are returned when the
preconditions of actions are not met in the given state.

THEOREM: legal-move-example
result (move (’a, ’d), sTATELl) = *((a d e) (b c))

THEOREM: legal-unstack-example
result (unstack (*a), sTATEL) = > ((b ¢) (a) (d e))

THEOREM: illegal-move-example
result (move (b, ’d), STATE])
= ’(failed res-move ((a b c) (d e)))

THEOREM: illegal-unstack-example
result (unstack (’e), STATE])
= ’(failed unstack ((a b c) (d e)))

The following examples show how resultlist executes legal and illegal
plans. Since the result of executing any action in an error state is the error state, it
is impossible to achieve a legal state using illegal actions.

THEOREM: resultlist-legal
resultlist (PLAN1, sSTATEL) = > ((c b a) (d e))

THEOREM: resultlist-illegal
resultlist (> ((unstack b) (move a c)), STATE])
= ’(failed unstack ((a b c) (d e)))

47

2.2 Examples of Recursive Plans

We are now ready to demonstrate how plans to solve general problems
can be expressed and verified using our formalization. Below we give a number of
examples of plans with tests and recursion. We express such plans as plan generating
Lisp programs that output a sequence of actions as a function of the input state and
other parameters. The examples given below show how more than one plan to solve a
problem can be expressed using our domain theory and how theorems used to verify
a solution to one problem can be used for verifying a solution to another.

2.2.1 How to Clear a Block

Recall the problem of clearing a block mentioned in Chapter 1 in which
the initial condition only specifies that there is a block b that exists in a state s. Our
plan (given in [72]) to clear the block was to unstack repeatedly the blocks above it
one by one until it became clear. We also showed that the same problem could also
be posed as the following requirements specification for which we can use our plan
as an initial program design or prototype.

Write a PASCAL program that would take a blocks world state and
a block as input and produce as output a blocks world state in which the
given block is clear. The output state must have the same set of blocks
as the input state.

To prove that the plan satisfies the above requirements specification, we must prove
that the initial state and final state have the same set of blocks in addition to showing
that the plan clears the block successfully.

The plan to clear a block may be expressed by the following plan generating
program:

DEFINITION:
makeclear-gen (b, s)
= if (- find-stack-of-block (b, s)) V (- bw-statep (s)) then f
elseif b = car (find-stack-of-block (b, s)) then nil
else cons (unstack (car (find-stack-of-block (b, s))),
makeclear-gen (b,
result (unstack (car (find-stack-of-block (b,

s))),
s))) endif

The program produces a sequence of actions that will clear a block b if
it exists in the given state s. The program operates by finding the stack in s to

48

which b belongs. If b is not at the top of its stack, then an action to clear the top
of its stack is generated and consed on to the plan got by executing makeclear-gen
recursively on the state got by simulating the action in s. To make the proof of
termination of the above function relatively straightforward, we have the program
return f (i.e. terminate) when its arguments are not legal. This is harmless since
the program is intended to be used only when the given block b exists in the given
blocks world state s. Viewed as a Lisp program, makeclear-gen is a simple, special-
purpose plan generator that can be “run” on particular arguments to generate an
appropriate sequence of actions. But, because of its status as a function in the
logic, makeclear-gen may also be used to verify mechanically the plan to clear a
block. The following correctness theorem about makeclear-gen states that the plans
generated by it can be used to solve the problem of clearing a block.

THEOREM: makeclear-works1
(bw-statep (s)
A find-stack-of-block (b, s)
A (pl = makeclear-gen (b, s))
A (s = resultlist (p1, s)))
— (bw-statep (s1) A planp (p1) A clear (b, s1))

The above theorem may be read as follows: If b is a block in state s then
makeclear (b, s) is a plan that if executed in s results in a legal state s! in which
b is clear. The theorem itself can be “tested” on concrete data structures. Thus,
we can test that makeclear-gen can clear block ’c in state STATE1 by proving the
following theorem.

THEOREM: makeclear-gen-ex1
((p = makeclear-gen (’c, STATEL)) A (s = resultlist (p, STATEL)))
— (bw-statep (s) A planp (p) A clear (’c, s))

Theorems involving completely specified data structures are proved auto-
matically by the theorem prover. The ability to “test” plans or program designs
in specific situations is particularly useful for rapid prototyping because prototypes
can be subject to acceptance tests [64] using particular scenarios that a customer is
familiar with. This removes errors early in the software life cycle and reduces costs.

We will now explain briefly how the theorem prover was guided interac-
tively to the proof of the theorem make-clear-worksl. Recall that, among functions
not defined using eval$, only terminating functions are admitted as definitions in
the logic. The metric for termination of makeclear-gen is the number of blocks in
the stack containing b in s. It is clear that the metric decreases and is bounded
below since the topmost block from the stack containing b is removed with each
recursive call. The theorem prover cannot “invent” this metric; so it was supplied
by the following definition.

49

DEerFINITION: m3 (b, s) = len (find-stack-of-block (b, s))

There are three things we must prove about makeclear-gen: that it gen-
erates valid plans, that the plans generated return a legal blocks world state when
executed in an initial state, and that the given block is clear in the final state. Prov-
ing that makeclear-gen generates valid plans is done easily by induction and proving
that the plans achieve the goal is also relatively straightforward once makeclear-gen
is itsell admitted as a definition. A major portion of theorem proving effort goes into
showing that the final states got by executing the generated plans are legal blocks
world states. From the definition of bu-statep, it is evident that we must prove that
the final state got by executing a generated plan is a set of stacks and that the stacks
are pairwise disjoint. Since makeclear-gen only generates unstack actions, we need
the following lemma that says that unstacking a clear block in a blocks world state
results in a blocks world state.

THEOREM: unstack-sit1
(bw-statep (s) A clear (b, s)) — bw-statep (result (unstack (b), s))

Some of the lemmas we need for proving the above theorem are the fol-
lowing. Since the effect of unstacking a block is described by deleting and adding
stacks to the input state, we must show that deleting stacks from a state results in
a legal blocks world state, that the new lists of blocks to be added are valid stacks,
and that they are disjoint from the remaining stacks. The following theorem says
that deleting an element in a blocks world state results in a blocks world state.

THEOREM: del-setl
bw-statep (s) — bw-statep (delete (z, s))

The new stacks added are the singleton list with the block b that was
unstacked and the stack containing the rest of blocks in b’s original stack (if any).
The following lemmas were proved to show that the new stacks are disjoint from the
remaining stacks in the original state.

THEOREM: unstackl2
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, 5))))
— disjointlist (cdr (assoc (b, s)), delete (assoc (b, s), s))

THEOREM: disjointlist-single
(bw-statep (s) A clear (b, s))
— disjointlist (list (b), delete (assoc (b, s), s))

50

To prove these, we require a number of facts about the functions disjoint
and disjointlist as shown in Section A.1 of Appendix A.

For proving that the plan meets the requirements specification, we must
prove in addition that the set of blocks in the final state and the set of blocks in the
initial state are equal. To state that two states have the same set of blocks we need
the following two functions. Set-equal ascertains that the two given lists contain
the same elements by deleting the members one by one while set-of-blocks returns
the set of blocks in a state by appending all the stacks together.

DEFINITION:
set-equal (s1, s2)
= if s/ ~nil then s2 ~ nil
else (car(s1) € s2)
A set-equal (cdr (s1), delete (car (s1), s2)) endif

DEFINITION:
set-of-blocks ()
= if s ~ nil then nil
else append (car (s), set-of-blocks (cdr (s))) endif

We can now state that all the plans generated by makeclear-gen preserve
the set of blocks in the initial state.

THEOREM: makclear-gen-preserves-blocks
(bw-statep (s0)

A find-stack-of-block (b, s0)

A (pl = makeclear-gen (b, s0))

A (sl = resultlist (p1, s0)))

— set-equal (set-of-blocks (s0), set-of-blocks (s1))

2.2.2 Other Examples

We would like to show that our specification of the blocks world is adequate
for expressing other general problems and for verifying other solutions to the problem
of clearing a block. Here are some more examples of programming problems and
solutions in the blocks world. All the solutions are, as before, expressed as plan
generating Lisp programs. The proofs of these theorems clearly demonstrate how a
single domain theory may be shared across many problems of a domain.

Consider a plan to invert a tower on top of another. Once again this
requires testing and recursion: move one block after another from one tower to the
top of the other until there are no blocks to be transferred. Invert-genis a program
to generate the required sequence of actions in various states.

51

DEFINITION:
invert-gen (st1, st2, s)
= if st! ~ nil then nil
else cons (move (car (st1), car (st2)),
invert-gen (cdr (st1),
cons (car (st1), st2),
result (move (car (st1), car (st2)), s))) endif

To state that invert-gen generates correct plans for inverting one stack
st1 on top of another stack st2, we must say that the tower got by appending the
reverse of st1 to st2 belongs to the final state. Here is a function to reverse a list
followed by the statement of the theorem that asserts that invert-gen works.

DEFINITION:
reverse ()
= if [~ nil then nil
else append (reverse (cdr (1)), list (car ({))) endif

THEOREM: invert-works2
(bw-statep (s)
(st1 € s)

(
(st1 # st2)

(p! = invert-gen (st1, st2, s))

(s1 = resultlist (p1, s)))

(bw-statep (s1)

A planp (p1)

A (append (reverse (st1), st2) € s1))

I>>>>>

Here is an example to test the above theorem.

THEOREM: invert-gen-ex1
((p1 = invert-gen (’(a b c), *(d e), STATEL))
A (s = resultlist (pI, sTATEL)))
— (bw-statep (sZ) A planp (pI) A (’(c b a d e) € s1))

Below we give two more examples: a plan to put all the blocks in a given
stack on the table and a plan to put all the blocks in all the stacks on the table.
Notice that both of these plans could also be used for clearing a block although they
are less efficient in the number of actions needed than the original plan. Similarly,
the plan to put the blocks in all the towers on the table can be used to put the blocks
in a particular tower on the table.

52

The following program unstack-tower-gen generates plans to put all the
blocks in a stack on the table. It generates the action to unstack the topmost block
in the given stack st and recursively calls itsell with the remaining stack and the
state got as a result of unstacking the topmost block of st.

DEFINITION:
unstack-tower-gen (st, s)
= if st ~ nil then nil
elseif cdr (st) ~ nil then nil
else cons (unstack (car (st)),
unstack-tower-gen (cdr (st),
result (unstack (car (st)), s))) endif

To state that all blocks in a stack st are on the table in a state s, we
introduce the following predicate.

DEFINITION:
ontable-list (st, s)
= if st ~ nil then t
else (find-stack-of-block (car (st), s) = list (car (st)))
A ontable-list (cdr (st), s) endif

That unstack-tower-gen accomplishes the desired goal is stated as fol-
lows.

THEOREM: unstack-tower-works1
(bw-statep (s)
A (st € s)
A (pl = unstack-tower-gen (st, s))
A (s = resultlist (p1, s)))
— (bw-statep (s1) A planp (pI) A ontable-list (st, s1))

The plan to put all the blocks of all the towers on the table is carried out
by a program that unstacks repeatedly a block not on the table in the given state
(returned by the function get-block) until all the blocks are on the table. The
function get-block goes through a blocks world state and returns a block that is
not on the table. If all the blocks are on the table, get-block returns f.

DEFINITION:
get-block (s)
= if s ~ nil then f
elseif — bw-statep (s) then f
elseif cdar (s) ~ nil then get-block (cdr (s))

else caar (s) endif

53

Given below are unstack-all-towers-gen, a program that generates plans
to unstack all the blocks in a state, and a formal statement of its correctness.

DEFINITION:
unstack-all-towers-gen ()
= if get-block (s)
then cons (unstack (get-block (s)),
unstack-all-towers-gen (result (unstack (get-block (s)), s)))
else nil endif

THEOREM: unstack-all-towers-works
(bw-statep (s)
A (pl = unstack-all-towers-gen (s))
A (s = resultlist (p1, s)))
— (bw-statep (s1) A planp (pI) A (= get-block (s1)))

We give some more examples to demonstrate the expressiveness of our plan
representation. However, the rest of the general theorems in this section have not
been checked by the prover. Our plan representation makes it easy to use concepts
such as numbers that may be needed for plan generation. Consider the problem
of building a tower of n blocks given that there are at least n stacks in the initial
state. One plan to do that is to unstack the topmost block of one of the towers and
then move one by one the topmost blocks from n — 1 other towers to the top of the
first block. To keep track of the number of blocks moved, we need arithmetic. The
following is a program to generate the above plan.

DEFINITION:
build-towern (s, n)
= if n ~ 0 then nil
elseif n = 1 then list (unstack (caar (s)))
else append (build-towern (cdr (s), n — 1),
list (move (caar (s), caadr (s)))) endif

Here is an example of a plan generated by build-towern.

THEOREM: build-towern-ex1
build-towern (STATEL, 2) = * ((unstack d) (move a d))

To state the correctness of build-towern, we need a predicate that checks
if there is a tower of height n in a state.

54

DEFINITION:
exists-towern (n, s)
= if s ~ nil then f
elseif len (car (s)) = n then t
else exists-towern (n, cdr (s)) endif

The correctness theorem of build-towern and a concrete example of how
it works are given below.

THEOREM: build-towern-works
(bw-statep (s)
A (len() > n)
A (n#0)
A (pl = build-towern (s, n))
A (sl = resultlist (p1, s)))
— (bw-statep (s1) A planp (pI) A exists-towern (n, s1))

THEOREM: build-towern-ex2
exists-towern (2, resultlist (build-towern (STATEL, 2), STATEL))

Here is a strategy that can tranform any blocks world state s7 to any other
blocks world state s2 with the identical collection of blocks as s7. To change s to
s2, simply put all the blocks in s/ on the table and then build the stacks in s2 one
by one. If we do not have any efliciency restrictions, then we can use this strategy to
solve any problem in the blocks world. Below we state the correctness of a program
that generates actions using the above strategy.

We have already written and proved correct a program unstack-all-towers-gen
that generates plans to put all the blocks that exist in a state on the table. We will
write a program form-state to generate plans to construct all the stacks in a state
s2 when executed in a state in which all the blocks in s2 are on the table.

The following auxiliary function form-tower generates plans to build a
stack st using all the blocks that are on the table.

DEFINITION:
form-tower (st)
= if st ~ nil then nil
elseif cdr (st) ~ nil
then append (form-tower (cdr (st)), list (unstack (car (st))))
else append (form-tower (cdr (st)),
list (move (car (st), cadr (st)))) endif

55

The function form-state forms all the stacks in a state by building one
tower after another using form-tower.

DEFINITION:
form-state (s2)
= if s2 ~ nil then nil
else append (form-tower (car (s2)), form-state (cdr (s2))) endif

Now, the program to transform any initial state s! to any goal state s2
with the same set of blocks can be written as follows.

DEFINITION:
transform (s1, s2) = append (unstack-all-towersl (s1), form-state (s2))

The correctness theorem for the above plan generator can be stated as
follows: If there are two states s/ and s2 with the same set of blocks then executing
the plan generated by transform (s!, s2) in si results in s2.

THEOREM: planner-works

(bw-statep (s1)

A bw-statep (s2)

A set-equal (set-of-blocks (s1), set-of-blocks (s2)))
— (resultlist (transform (s1, s2), s1) = s2)

2.3 Specification of Actions with Side-effects

To further clarify how our method can be used to specify domains involving
actions that produce side-effects, we will specify a variation of the blocks world given
n [28]. The set of states is the same as before. We are allowed only one action, move
a block to the top of another block. This action has the side-effect of moving all the
blocks above the block being moved along with it to the new location. Thus, we are
allowed to move any block in this world even if they have blocks above them, but
when a block is moved, all the blocks over it move along with it. Here is a simple
formalization of this domain and a plan to form a single tower using all the existing
blocks in a state. The formalization also demonstrates how theories can be shared
across domains when small modifications to domain specifications are made. The
definition of the predicate on blocks world states and the theorems about it can be
used without change. Observe that we could also define the new move action as a
plan that is realized in terms of the move and unstack actions of the previous blocks
world. But since we want to demonstrate how atomic actions with side-effects can
be specified, we will model the new move action as a separate atomic action.

56

We will use the same predicate bw-statep on the set of states. Let us call
our new action, move-over. To move over a block z to the top of a block y, we have
the following preconditions: & and y should be on distinct stacks (and must therefore
be distinct) and y must be clear. The effect of the action is to move the stack of
blocks in the stack containing z, from the topmost block upto (and including) z, to
the top of y. The following function returns the list of blocks above a block b in a
stack st.

DEFINITION:
stack-above (b, st)
= if st ~ nil then nil
elseif b = car (st) then list (car (st))
else cons (car (st), stack-above (b, cdr (st))) endif

The following function finds the stack containing a given block z in a state
s and uses stack-above to return the stack of blocks above it.

DEFINITION:
stack-abovel (z, s) = stack-above (z, find-stack-of-block (z, s))

Using these functions, we can define the relation over as follows.

DEFINITION:
over(z, y, s) = ((z # y) A (z € stack-abovel (y, s)))

Thus, z is over y in s if it is one of the blocks in the stack above y in s.
We implement the effects of moving z over y in state s as follows: we delete the
stacks containing z and y from s and add two new stacks, one formed by appending
the stack above z to the stack containing y in s and the other containing the rest (if
any) of blocks in z’s stack. The function stack-below returns the blocks below z in
a stack st.

DEFINITION:

stack-below (z, st)

= if st ~ nil then f
elseif z = car(st) then cdr(st)
else stack-below (z, cdr (st)) endif

The function stack-belowl returns the stack below z in state s.

DEFINITION:
stack-belowl (z, s) = stack-below (z, find-stack-of-block (z, s))

57

Exec-move-over implements the effects of moving over z to the top of y
in s. This function is called by res-move-over only when the preconditions of the
action are satisfied in s. Exec-move-over forms the new set of stacks depending on
whether there are blocks below z in the stack containing z in s.

DEFINITION:
exec-move-over (z, y,)
= if stack-belowl (z, s) ~ nil

then cons (append (stack-abovel (z, s), assoc (y, s)),

delete (find-stack-of-block (z, s), delete (assoc (y, s), s)))
else cons (stack-belowl (z, s),
cons (append (stack-abovel (z, s), assoc (y, s)),
delete (find-stack-of-block (z, s),
delete (assoc (y, s), s)))) endif

Res-move-over returns an error state whose car is *failed if the precon-
ditions of the action are not satisfied.

DEFINITION:
res-move-over (z, y, s)
= 1if (- find-stack-of-block (z, s))
vV (find-stack-of-block (z, s) = assoc (y, s))
V(= clear (y, s))
then list (’failed, ’move-over, z, y, $)
else exec-move-over (z, y, s) endif

Below are a constructor for the action move-over and a predicate for the
action move-overp followed by a predicate on plans that contain only the move-over
action.

DEFINITION: move-over (z, y) = list (’move-over, z, y)
DEFINITION: move-overp (z) = (car (z) = ’move-over)

DEFINITION:
planp-new (z)
= if r ~ nil thent

else move-overp (car (z)) A planp-new (cdr (z)) endif

We have written these definitions so that they can be directly added to
our previous blocks world formalization. Thus, we call the result and resultlist
functions for this blocks world as result-new and resultlist-new.

58

DEFINITION:
result-new (a, s)
= if car(s) = *failed then s

else res-move-over (cadr (a), caddr (a), s) endif

DEFINITION:
resultlist-new ({, s)
= if [~ nil then s
else resultlist-new (cdr (), result-new (car ({), s)) endif

Here are some examples that test our formalization.

THEOREM: new-exl
result-new (move-over (°b, ’d), >((a b c) (d e)))
= ’((c) (abde))

THEOREM: new-ex2
result-new (move-over (’°b, ’e), >((a b c) (d e)))
= ’(failed move-over b e ((a b c) (d e)))

THEOREM: new-ex3
result-new (move-over (’c, ’d), >((a b c) (d e)))
= ((abcde)

THEOREM: new-ex4

resultlist-new (list (move-over (*b, ’d), move-over(’e, ’c)),
"((abc) (de)))

= ((abdec)

The plan generating program to form a single tower out of all the blocks
in a state s in which at least one stack exists is given below. This is followed by a
statement of its correctness. The function last returns the last element of a list.

DEFINITION:

last (1)

= if [~ nil then f
elseif cdr (/) ~ nil then car (/)
else last (cdr (1)) endif

59

DEFINITION:
form-single-tower-gen (s)
= if (- bw-statep(s)) V (s ~ nil) then nil
elseif cdr (s) ~ nil then nil
else cons (move-over (last (car (s)), caadr (s)),
form-single-tower-gen (result-new (move-over (last (car (s)),

caadr (s)),
s))) endif

THEOREM: move-over-plan-works
(bw-statep (s)
A listp (s)
A (pl = form-single-tower-gen (s))
A (sl = resultlist-new (p1, s)))
— (bw-statep (s1) A planp-new (pI) A (cdr (s!) ~ nil))

The list of events to check the above theorem is given in Section A.2 of
Appendix A. The mechanical proof of the above theorem was relatively easy because
the necessary theorems about functions such as disjoint and disjointlist used
in the definition of the predicate on blocks world states, bw-statep, could be reused
from Section A.1. This is the reason why Section A.2 which contains all the new
events for formalizing this blocks world and verifying the plan to form a single tower is
relatively short. The list of events in Section A.2 was loaded into the theorem prover
after loading the sequence of events in Appendix A upto the event named find-stack-
listp in Section A.1. (The rest of events in Section A.l. were not needed for the
proof). Thus, theorems can be shared across domains involving similar concepts
when a class of domains is mechanized in the same logic.

2.4 Conclusion

In this chapter, we used our method of specifying problem domains to
specify some variations of the blocks world. Plans for solving general problems in
the blocks world were specified as plan generating Lisp programs and verified by
proving the plan generating programs correct. We also saw how actions with side-
effects can be specified and how theorems can be shared across problems in the
same domain and across similar problem domains. As mentioned in Chapter 1, this
representation of plans does not allow us to use plans as atomic (complex) actions
in other plans. This defect is remedied in Chapter 5.

Chapter 3

The Mutilated Checkerboard Problem

The bulk of this chapter is devoted to a specification of the n X n muti-
lated checkerboard problem and an interactive mechanical proof, using colors, of the
impossibility of covering a mutilated n X n checkerboard completely with dominoes.
As before, we are interested in specifying the problem domain so that all possible
solutions can be expressed and verified. We regard the n x n mutilated checkerboard
problem as one of the class of general problems that can be posed in the problem do-
main defined by two dimensional space and domino placement actions. We formalize
the well-known parity argument that requires the use of colors of squares as a proof
by mathematical induction on the length of plans executed starting with an empty
board. We have chosen this example for three reasons. First, proofs that show that a
plan or a class of plans does not satisfy a requirements specification seem to be needed
during software development [56]. Therefore, a mechanical system for program de-
velopment must be able to carry out such proofs even when they involve concepts not
directly mentioned in the problem statement. Second, the problem domain—two-
dimensional space and actions that change properties of points in space—is realistic
and of interest in both Al applications such as robot motion planning and program-
ming applications such as graphics. Finally, although the proof has been repeatedly
posed as a challenge for automatic discovery by machines [98, 75, 78, 107], McCarthy
[83] informs us that he knows of “no work on making a computer do it, interactively
or otherwise”.

Apart from the proof, some plans for solving general problems in this do-
main are also given along with theorems that must be proved to verify them. The se-
quence of events to the Boyer-Moore theorem prover for formalizing the checkerboard
problem domain and proving the impossibility of covering a mutilated checkerboard
is included in Appendix B.

3.1 The Mutilated Checkerboard Problem

The mutilated checkerboard problem has been used frequently [98, 75,
78, 107] to demonstrate the limitations of representations used by problem solving
programs and theorem provers. The problem is usually stated for an ordinary 8 x 8
checkerboard as follows [107, 121]:

60

61

An ordinary chess board has had two squares—one at each end of a
diagonal—removed. There is on hand an unlimited supply of dominoes,
each of which is large enough to cover exactly two adjacent squares of the
board. Is it possible to lay the dominoes on the mutilated chess board in
such a manner as to cover it completely?

In the more difficult version of the problem, the squares on the board are assumed
to be indistinguishable by color.

A solution [107] to the problem which researchers have wanted problem
solving programs to discover is the following convincing argument that such a tiling
is impossible.

Let us color the squares alternately white and black (as on the usual
chess board). The two missing squares have the same color. Thus, the
mutilated board has an unequal number of white and black squares. Since
each domino covers exactly one black square and one white square, any
covering by dominoes covers an equal number of white and black squares
and so the desired covering does not exist.

It is fairly clear that the problem can be stated for any n x n board for n > 1 and
that the simple argument solves the problem in every case. Of course, the problem
is easy if the board has an odd number of rows and columns because both the
actual board and the corresponding mutilated one would then have an odd number
of squares. Since placing dominoes on a board results in an even number of squares
being covered, neither a board with an odd number of rows and columns nor the
corresponding mutilated one can be covered completely. However, the argument
using colors holds even in the case when the board has an odd number of rows and
columns because the number of squares of one color in such a board is one greater
than the number of squares of the other color. Thus, removing two squares of the
same color would still make the number of white and black squares on the mutilated
board unequal.

Newell [98] observed that the argument can be formalized as a proof by
induction on the number of domino placement actions done starting with an empty
board assuming that the colors of the squares on the board are given. Using math-
ematical induction, we can exhaustively “test” the infinite number of possible se-
quences of actions and show that none of them can be used to cover a mutilated
n X n board.

One previous attempt to mechanize the checkerboard solution was given
by Wos et al. [121]. However, their effort differs from what we want in two respects.
First, they propose a solution to the 8 x 8 checkerboard problem and not the n x n
problem as in our case. Secondly, they reduce the state space of the problem by
considering a particular order for tiling the board and provide clauses for searching

62

exhaustively this reduced search space by theorem proving. Their proof also does
not involve the use of colors. On the other hand, our goal is to obtain a specification
of the problem domain so that various solutions to this problem and other problems
that arise in this context can be expressed and verified interactively.

3.2 Formalization of the Mutilated Checkerboard Problem

The theorem we would like to express may be informally stated as follows:

There does not exist a sequence of legal domino placement actions that when executed
in a state in which none of the squares of an n X n board, n > 1, are covered will
result in a state in which the board is completely covered.

Our method of formalizing problem domains requires us to define a predi-
cate on states, a predicate on actions, the state transition function result that maps
an action ¢ and a state s to the state got by executing a in s and the interpreter
resultlist that takes as input a sequence of actions [and a state s and returns the
state got by executing [in s. For this we must first choose appropriate data structures
to represent states, including error states, and actions. The states of this problem
domain are partially covered boards of all dimensions, i.e., two dimensional space in
which points may or may not have the property of being covered by a domino and
the actions are the domino placement actions. Once again, there are several ways to
represent the state of a checkerboard. If we “think” Lisp instead of first-order term
representation as in Prolog, a representation of checkerboard states that suggests
itself is a two-dimensional array of squares with a token ’N or ’C in each position
of the array to indicate whether the square in that position is covered or not. The
representation of checkerboard states that we have chosen is simpler. We represent
the states by the list of squares that are currently covered with the squares that
do not belong to the list being those that are not covered. We label the rows and
columns of a checkerboard from 0 to n; so a checkerboard has an even number of
rows if n is odd and vice versa. The square at row numbered z and column numbered
y is represented as cons (z, y), i.e., by its coordinates. With this representation we
merely have to test for membership in a list to check for coveredness of a square
in a state. Notice that this representation of states generalizes the problem domain
to include states in which solitary squares may be covered, i.e., states other than
those in which all covered squares are covered by dominoes. This generalization is
harmless and actually helps simplify the representation.

In the following presentation, we will take n to be the number of the last
row (or column) of a board. As we introduce definitions of Lisp functions, we will
prove theorems that show the result of executing the functions on ground arguments.
Below are predicates squarep and square-listp on squares and lists of squares
respectively.

63

DEFINITION:
squarep (z) = (listp (z) A (car (z) € N) A (cdr (z) € N))

DEFINITION:
square-listp (z)
= if r ~nil thent

else squarep (car (z)) A square-listp (cdr (z)) endif
Board states are defined as lists of squares.
DEFINITION: board-statep (z) = square-listp (z)

Here are some examples of actual board states and some “executions” of
the predicate board-statep.

DEFINITION:
STATEl =°((3 . 4) (3 .5) (4 .86) (4 .T7)

THEOREM: board-state-examplel
board-statep (STATE])

THEOREM: board-state-example2
board-statep (nil)

Having represented states, let us turn to actions. For this, we must repre-
sent dominoes. A domino is represented by a pair of adjacent squares that fall within
a board. The predicate squarenp checks if a given square falls within a board whose
rows and columns are numbered from 0 through n.

DEFINITION:
squarenp (z, n) = (squarep (z) A (car(z) < n) A (cdr(z) < n))

If we take adjacency between the two squares representing a domino to
be the usual symmetric relation, then we end up with two dominoes for every pair
of adjacent squares depending on the ordering of the squares. Considering both
orientations of the same domino would unnecessarily complicate reasoning about the
effects of all possible domino placement actions by adding an extra case. Without
loss of generality, we restrict the car of a domino to be closer to square > (0 . 0) than
its cdr and define the adjacency predicate adjp accordingly. That is, cons (’ (0 .
1),°(0 . 2))is adomino in a board numbered from 0 through 2 or greater whereas
cons (’(0 . 2),°(0 . 1)) is not.

64

DEFINITION:
adjp (s1, s2)
= (((car(s1) = car(s2)) A ((1 4 cdr(s1)) = cdr (s2)))
V' ((edr(s1) = cdr(s2)) A ((1 + car(sl)) = car(s2))))

DEFINITION:
dominop (z, n)
= (squarenp (car (z), n)

A squarenp (cdr (z), n)
A adjp (car (z), cdr (2)))

DEFINITION: DOMINOLl =°((0 . 1) 0 . 2)
DEFINITION: ILLEGAL-DOMINO = *((0 . 2) 0 . 1)

THEOREM: adjacency-examplel
adjp (car (pomINO1), cdr (DOMINO1))

THEOREM: adjacency-example2
= adjp (car (ILLEGAL-DOMINO), cdr (ILLEGAL-DOMINO))

THEOREM: dominop-examplel
— dominop (ILLEGAL-DOMINO, 3)

THEOREM: dominop-example2
— dominop (DOMINO1, 1)

THEOREM: dominop-example3
dominop (DoMINO1, 2)

We model the action of placing a domino on a board whose rows and
columns are numbered from 0 through n by a list whose second element is a domino.

DEFINITION: placep (z, n) = dominop (cadr (z), n)

Here is a constructor for actions that uses the litatom ’place as the car
of actions for readability.

DEFINITION: place (z) = list (*place, z)

65

We are ready to define the transition function result. In formalizing the
effects of domino placement actions, we must take into account the preconditions
that disallow us from placing a domino on a square that is already covered. We
ensure that illegal actions are disallowed by making the function result return “error
states” of the form list (*failed, ...) whenever preconditions of an action are not
satisfied in a state. Notice that error states are distinct from board states: there is
no board state whose car is *failed since ’failed is not a pair. We also ensure
that the result of doing an action in an error state is an error state. This makes it
impossible to bring about a legal board state by doing illegal actions or any mixture
of legal and illegal actions.

The function res-place checks the preconditions for placing a domino on
a board and simulates the effects of placing a domino by adding the squares covered
by the domino to the given board state. The function result ensures that the result
of doing an action in an error state is the error state.

DEFINITION:
res-place (z, s)
= if (car(z) € 5) V (cdr(z) € s)
then list (*failed, ’place, z, s)
else cons (car (z), cons (cdr (), s)) endif

DEFINITION:

result (a, s)

= if car(s) = *failed then s
else res-place (cadr (a), s) endif

The following examples show how result adds the squares on which a
domino is placed to a board state and how it disallows placement of a domino on
squares already covered by returning an error state. Placing DOMINO1 is a legal
action on an 8 X 8 board but an illegal action on a 2 x 2 board, i.e., a board in
which the rows and columns are numbered from 0 through 1.

DEFINITION: ACTION1 = place (DOMINO1)

THEOREM: placep-examplel
placep (ACTION1, 7)

THEOREM: placep-example2
- placep (AcTION], 1)

The following examples show that result disallows placement of a domino
on top of an existing domino.

66

THEOREM: result-examplel
result (ACTION1, STATEL)

= (0 . 1)
(0. 2
(3 . 4
(3. 5)
(4 . 6
4 . 7))

DEFINITION: STATE2 = result (ACTION1, STATE])

THEOREM: error-state-examplel
result (ACTION1, STATE2)
= ’(failed place

((o . 1) 0.2

(o . 1)
0.2
(3 . 4)
(3 . 5)
(4 . 6)
4 .7

Execution of an action in an error state results in the same error state.

THEOREM: error-state-example2
result (ACTION1, result (ACTION1, STATE2))
= ’(failed place

((o0 . 1) 0.2

(o . 1)
0.2
(3 . 4)
(3 . 5)
(4 . 6)
4 . 7N

Plans are represented as lists of actions. The Lisp program place-planp
recognizes those plans that can be executed on a board whose last row/column has
the label n. The function resultlist returns the state got by executing a plan in a
given state.

DEFINITION:
place-planp (z, n)
= if zr ~nil thent

else placep (car (z), n) A place-planp (cdr (z), n) endif

67

DEFINITION:
resultlist ({, s)
= if [~ nil then s
else resultlist (cdr (1), result (car (1), s)) endif

Here are some examples of plans and how they change the state of the
board. Notice that for a plan to be successful every one of the actions in the sequence
must result in a legal state when executed.

DEFINITION: BAD-PLAN = list (ACTION1, ACTION1)

DEFINITION: ACTION2 = place (*((4 . 1) 4 . 2))

DEFINITION: GOOD-PLAN = list (ACTION1, ACTION2)

THEOREM: plan-ex1
place-planp (GOOD-PLAN, 7)

THEOREM: plan-ex2
place-planp (BAD-PLAN, 7)

THEOREM: plan-ex3
resultlist (GOOD-PLAN, STATE])

= (4. 1D
4 . 2
o . 1D
(0.2
(3 . 4)
(3. 5)
(4 . 6
4 . 7))

THEOREM: plan-ex4
resultlist (BAD-PLAN, STATE])
= ’(failed place

(o . 1)o .2

(o . 1)
(0. 2)
(3. 4)
(3 . 5)
(4 . 6)

4 . 7))

68

This completes the representation of the problem domain. To express
the main theorem, we need predicates to recognize initial states and goal states.
Empty boards of all dimensions are represented as nil. We define the predicate
all-covered-except-cornerp to recognize goal states by checking if all squares of a
mutilated board numbered from 0 through n are covered in a given state. We generate
all squares of the mutilated board and then define all-covered-except-cornerp
to check for set equality with the generated set of squares. The function make-row
returns a list of all squares in row m from column 0 through column n.

DEFINITION:
make-row (m, n)
= if n ~ 0 then list (cons (m, 0))
else append (make-row (m, n — 1), list (cons (m, n))) endif

The list of squares in the sixth row, i.e., the row numbered 5, of an 8 x 8
board is given by the following theorem.

THEOREM: row)h
make-row (5, 7)

= (6 . 0)
(5 . 1)
(5 . 2)
(5 . 3
(6 . 4)
(6 . 5)
(5 . 6)
(5 . 7))

The function make-all-rows returns a list of all squares in a board whose
rows and columns are numbered from 0 through m and 0 through n respectively.

DEFINITION:
make-all-rows (m, n)
= if m ~ 0 then make-row (0, n)
else append (make-all-rows (m — 1, n), make-row (m, n)) endif

Here is a list of squares of a 2 x 2 board.

THEOREM: twobytwo
make-all-rows (1, 1) = (0 . 0) (0 . 1) (1 . 0) (1 . 1))

69

To get the set of squares of a mutilated board numbered from 0 through

n, we delete the squares > (0 .

0) and cons (n, n) from the set of all squares of the

original board. The function delete removes only the first occurrence of an element

in a list.

DEFINITION:
delete (z, {)

= if | ~ nil then [
elseif z = car (/) then cdr(I)
else cons (car (1), delete (z, cdr (1))) endif

DEFINITION:

mutilated-board (n)

= delete (cons (n, n), delete (* (0 .

Examples of mutilated 2 x 2 and 8 x 8 boards are given below.

THEOREM: mutboard?2

mutilated-board (1) = *((0 .

THEOREM: mutboard?

mutilated-board (7)
(0.
(0 .
1.
(2.
(2.
3.
4 .
(4 .
(5 .
(5 .
(6 .
(7 .
(7 .

= (0 .
(0 .
(1.
(2 .
(2 .
(3.
(3.
4 .
(5 .
(5 .
(6 .
(7 .
(7 .

1)
6)
3)
0)
5)
2)
7)
4)
1)
6)
3)
0)
5)

2)
7)
4)
1)
6)
3)
0)
5)
2)
7)
4)
1)
6))

(o .
(1.
(1.
(2 .
(2 .
(3 .
4 .
(4 .
(5 .
(6 .
(6 .
(7 .

0), make-all-rows (n, n)))

(o .
(1.
(1.
(2 .
(3.
(3.
4 .
(5 .
(5 .
(6 .
(6 .

1) (1. 0))
3) (0. 4)
0. n
5) (1 . 6)
2) (2 . 3)
7) (3 . 0)
4) (3 . 5)
D@ . 2
6) (4 . 7)
3) (5 . 4)
0) (6 . 1)
5) (6 . 6)
2) (7 . 3)

(7 .

5)
2)
7)
4)
1)
6)
3)
0)
5)
2)
7)
4)

Now, all-covered-except-cornerp can be defined to check a state for

set equality with the set of squares of a mutilated board. The function set-equal

checks for set equality by deleting common members of the given lists.

70

DEFINITION:
set-equal (11, [2)
= if [/ ~ nil then [2 ~ nil
else (car (I1) € 12)
A set-equal (cdr (11), delete (car (11), 12)) endif

DEFINITION:
all-covered-except-cornerp (z, n) = set-equal (z, mutilated-board (n))

We can now state that there does not exist a sequence of legal domino
placement actions that when executed on an empty mutilated n X n (n > 1) board
will result in a state in which the board is completely covered.

THEOREM: tough-nut
(place-planp (p, n)
A (n>0)
A (sl = resultlist (p, nil))
A board-statep (s1))
— (= all-covered-except-cornerp (s1, n))

The formal statement may be read as follows: If p is a plan for placing
dominoes on a board numbered from 0 through n and sl is the board state (not
an error state) got by executing p on the empty board then all the squares of the
board except the corner squares will not be covered in s1. Since all the variables are
universally quantified from the outside, this says that there is no plan that can cover
a mutilated board completely.

3.3 Proving the Theorem

If the above statement of the main theorem is provided as input to the
theorem prover, can it prove it automatically using the impossibility argument in-
volving the colors of squares? If not, how much assistance does it need from the user
to find the proof? These are the questions we wish to discuss in this section. As it
happens, the heuristics of the theorem prover are far, far too weak for it to find the
proof by itself. The theorem prover requires considerable guidance from the user by
way of definitions of new concepts and intermediate lemmas required for the proof.
The main reasons for this are its inability to generate definitions of new concepts
like colors, the lack of built-in arithmetic necessary for the proof and, most of all,
its inability to choose a suitable generalization of a theorem that might be easier to
prove by mathematical induction. However, once the necessary steps are supplied,
the entire proof is checked reasonably efficiently by the theorem prover. It is worth
noting that user guidance in the form of lemmas and definitions can never result in

71

a proof of a non-theorem. That is, this form of user guidance is safe since the user
cannot introduce facts that are not already provable.

We want the theorem prover to prove the main theorem as a consequence
of the following two lemmas:

1. In the state in which all squares of a mutilated n X n board are covered
the number of covered white squares is less than the number of covered black squares.

2. If the number of covered white and black squares is equal in a state s of
a n X n board and a sequence of legal domino placement actions is executed in s then
the number of covered white and black squares would be equal in the resulting state.

The theorem prover cannot get started on the proof because it does not
“know” the concept of colors of squares. Colors are not provided as part of the
problem statement and squares are simply pairs of numbers that give their position
on the checkerboard. Thus, the lemmas cannot even be stated let alone proved. The
theorem prover must somehow manufacture colors from the problem representation.
Observe that the colors of the squares can be constructed from their coordinates. A
square is white if its coordinates sum up to an even number and is black otherwise.
The theorem prover has no heuristics for automatically generating new definitions.
So we added the following definitions of predicates on white and black squares.

DEFINITION:
whitep (z) = (((car (z) + cdr (z)) mod 2) = 0)

DEFINITION:
blackp (z) = (((car (z) + cdr (z)) mod 2) = 1)

The lemmas are stated in terms of the number of black and white squares
that are covered in a state. Therefore we need additional functions to compute
the number of covered white and black squares in a state to express the lemmas.
The functions nwhite and nblack compute the number of covered black and white
squares in a state by going through the list of squares in a state and checking the
sum of their coordinates.

DEFINITION:

nwhite (z)

= if z ~ nil then 0
elseif whitep (car (z)) then 1 4 nwhite (cdr (z))
else nwhite (cdr (z)) endif

DEFINITION:
nblack (z)

= if z ~ nil then 0
elseif blackp (car (z)) then 1 4 nblack (cdr (z))
else nblack (cdr (z)) endif

Using these definitions we can now state the main lemmas as follows.

1. In the state in which all squares of a mutilated n X n board are covered
the number of covered white squares is less than the number of covered black squares.

THEOREM: unequal3
((n > 0) A board-statep (z) A all-covered-except-cornerp (z, n))
— (nwhite (z) < nblack (z))

2. If the number of covered white and black squares is equal in a state s of
a n X n board and a sequence of legal domino placement actions is execuled in s then
the number of covered white and black squares would be equal in the resulting state.

THEOREM: bcequall
(board-statep (s)
A (nwhite (s) = nblack (s))
A place-planp (p, n)
A board-statep (resultlist (p, s)))
— (nwhite (resultlist (p, s)) = nblack (resultlist (p, s)))

To understand the difficulty of carrying out a mechanical proof of the
checkerboard solution, let us see what it takes to get the theorem prover to prove
lemma 1. We may divide the proof into two parts, the proof of the lemma for boards
with an odd number of rows and columns (given by lemma unequall below) and the
proof of the lemma unequal3 for boards with an even number of rows and columns
(given by lemma unequal2).

THEOREM: unequall

(evenp (n)

A (n>0)

A board-statep (z)

A all-covered-except-cornerp (z, n))
— (nwhite (z) < nblack (z))

THEOREM: unequal2
(oddp (n) A board-statep (z) A all-covered-except-cornerp (z, n))
— (nwhite (z) < nblack (z))

73

We shall discuss the difficulty of proving lemma unequal2 alone since it is a
typical case. At first glance, it looks like the lemma may be proved by induction on n.
But it is unclear (to us! and more so to the theorem prover) how the induction step
can be carried out. However, it is clear that we can prove the lemma by first proving
the following theorem that the number of black and white squares in an ordinary
board with an even number of rows and columns (i.e. one in which the rows and
columns are numbered from 0 to an odd number) are equal and then proving that
deleting the corner squares makes the number of white squares less than the number
of black squares because the corner squares are white.

THEOREM: eq-bw-board
oddp (n)

— (nwhite (make-all-rows (n, n)) = nblack (make-all-rows (n, n)))

Can the theorem prover find the proof of the above lemma? It is clear to
us that the above theorem can be proved easily as a consequence of the following
more general lemma that says that the number of black and white squares are equal
in any board with an even number of columns irrespective of the number of rows
in the board. The theorem prover cannot make such a generalization of a proposed
conjecture; thus this generalized lemma given below must once again be proposed as
an intermediate step by the user.

THEOREM: eq-bw-boardl
oddp (n)

— (nwhite (make-all-rows (m, n)) = nblack (make-all-rows (m, n)))

The proof of this theorem is obvious because the number of white squares
is equal to the number of black squares in every row of a board with an even number
of columns. The total number of white and black squares in such a board are equal
because they are equal in every row. Unfortunately, the theorem prover’s heuristics
are inadequate for it to determine this and so these facts must once again be supplied
as lemmas to be proved. The lemma below says that the number of black and white
squares in every row of a board is equal if there are an even number of columns.

THEOREM: equal-bw-rowl
oddp (n) — (nwhite (make-row (m, n)) = nblack (make-row (m, n)))

This lemma can be proved by induction on n. The base case for n = 1 is
shown below.

THEOREM: equal-bw-row-base(
nwhite (make-row (m, 1)) = nblack (make-row (m, 1))

74

When n = 1, make-row (m, 1) returns a list with the two squares of row
m viz. cons(m, 0) and cons (m, 1). The number of white squares is equal to the
number of black squares in this row because if the first square is white the second one
would be black and vice versa. This follows from basic number theory since adding
1 to an odd number results in an even number and vice versa. Therefore, in any
row of a checkerboard, a black square succeeds a white square and vice versa. The
theorem prover cannot prove the above lemma by itself even when proposed by the
user for various reasons. Because, the arguments of make-row include variables, the
theorem prover’s heuristics direct it to not expand the term but instead try induction
on m. It cannot induct on m because make-row is defined recursively on its second
argument. Thus, the proof fails forcing the user to direct it to expand the term by
introducing the following lemma.

THEOREM: 11
make-row (m, 1) = list (cons (m, 0), cons (m, 1))

The theorem prover’s built-in number theory axioms and its heuristics are
not sufficient for proving the basic facts about odd and even numbers needed for the
proof. Both the necessary facts about numbers and facts about black squares being
adjacent to white squares in a row have to be formulated as lemmas and supplied
by the user. The following lemmas say that odd numbers succeed even numbers and
that even numbers succeed odd numbers.

THEOREM: t1
((n mod 2) =0) = (((1+ n) mod 2) = 1)

THEOREM: t4
((n mod 2) = 1) = (((1+ n) mod 2) = 0)

The square next to a black square in a row is white.

THEOREM: sq-wb2
blackp (cons (m, n)) — whitep (cons (m, 1 + n))

A square next to a white square in a row is black.

THEOREM: sg-wbl
whitep (cons (m, n)) — blackp (cons (m, 1 + n))

Even more basic number theory facts are needed for proving some of the
above lemmas such as the following.

75

THEOREM: t3
(#>2) = (14 (2 - 2)) = (1+2) - 2))

The hypothesis z > 2 is needed because subtraction is defined on natural
numbers and not integers.

THEOREM: plusl
(m+ (1+n)) =1+ (m+n)

To prove the induction step of lemma eq-bw-rowl, many facts about ap-
pending lists of squares are needed. For instance, we need to prove that the number
of white/black squares in a list got by appending two lists of squares is equal to the
sum of the number of white/black squares in the individual lists.

We shall stop our exposition at this point since we have a clear picture of
the detailed level at which the theorem prover needs guidance from the user. For the
rest of the proof, the reader is referred to the complete proof given in Appendix B.

3.4 Some Plans for Tiling Boards

Here are some simple plans to tile checkerboards and theorems that must
be proved to verify them. The statements of the theorems and the examples on
which they were tested are given in Section B.1. The proofs, however, haven’t been
carried out mechanically.

Consider a plan to cover a row numbered m completely with dominoes
given that the row is empty in the initial state and that it has an even number of
columns. This is a simple but ubiquitous problem. For instance, it can take the form
of a program for filling or erasing a line on the screen. The simple plan to do this is
a loop: place one tile after another on the row until it becomes fully covered. Using
our method of expressing such program-like plans by plan generating programs, the
plan to place tiles on a row from the first to the last column is given by £ill-row.

DEFINITION:
fill-row (m, n)
= if n ~ 0 then nil
elseif n = 1 then list (place (cons (cons (m, 0), cons (m, 1))))
else append (fill-row (m, n — 2),
list (place (cons (cons (m, n — 1), cons (m, n))))) endif

To state the correctness of £ill-row for verifying the above plan, we need
the predicates empty and covered that respectively check if the first n columns of
row m are completely empty and completely covered.

DEFINITION:
empty (m, n, s)
= if n ~ 0 then cons(m, 0) ¢ s
else (cons(m, n) ¢ s) A empty (m, n — 1, s) endif

DEFINITION:
covered (m, n, s)
= if n ~ 0 then cons(m, 0) € s
else (cons(m, n) € s) A covered (m, n — 1, s) endif

The correctness theorem for fill-row along with an example are given
below.

THEOREM: fill-row-ex0

fill-row (2, 3)

= ’((place ((2 . 0) 2 . 1))
(place ((2 . 2) 2 . 3)))

THEOREM: fill-row-ex1
((s0 =1 . 2) (1 .3))
A (p1 = fill-row (2, 3))
A (sl = resultlist (p1, s0)))
— (covered (2, 3, s1) A place-planp (p1, 3) A board-statep (s1))

THEOREM: fill-row-works
(board-statep (s0)
A oddp (n)
A (m e N)
A empty (m, n, s0)
A (p1 = fill-row (m, n))
A (s1 = resultlist (p1, s0)))
— (covered (m, n, s1) A place-planp (p1, n) A board-statep (s1))

Another plan that arises in many contexts is the one to cover an m X n area
completely. Fill-board is a plan generating program that covers a board whose rows
are numbered from 0 to m and whose columns are numbered from 0 to n completely
with dominoes. It uses £ill-row to fill one row of the board after another until the
board is completely covered. Its definition and a formal statement of its correctness
are given below along with an example.

DEFINITION:
fill-board (m, n)
= if m ~ 0 then fill-row (0, n)
else append (fill-board (m — 1, n), fill-row (m, n)) endif

THEOREM: fill-board-ex0
fill-board (2, 3)

= ’((place ((0 . 0) 0 . 1))
(place ((0 . 2) 0 . 3))
(place ((1 . 0) 1 . 1))
(place ((1 . 2) 1 . 3))
(place ((2 . 0) 2 . 1))
(place ((2 . 2) 2 . 3)))

THEOREM: fill-board-ex1
set-equal (make-all-rows (2, 3), resultlist (fill-board (2, 3), nil))

THEOREM: fill-board-works
(oddp (n) A (m € N))
— set-equal (make-all-rows (m, n), resultlist (fill-board (m, n), nil))

Chapter 4

Formalizing Plan Constraints

So far we have only dealt with problems that prescribed two constraints
to restrict the space of possible solutions, an initial condition and a goal condition.
In fact, most work in commonsense reasoning [86, 61, 35] and imperative program
synthesis [105, 65, 70, 72] deals only with such problems. However, as explained in
Chapter 1, problems that specify many more constraints on solutions arise in many
contexts particularly during program development. The additional constraints in a
problem specification may be categorized as follows:

1. Time requirements. When constructing programs, on most occasions we require
not just some solution to a problem but an efficient solution. For instance, to
clear a block, one can use one of many possible solutions such as a plan that
unstacks all towers or a plan that unstacks all blocks of the stack containing the
block to be cleared. Typically, we want an efficient solution and sometimes the
fastest or best solution. For the problem of clearing a block, we know that the
plan specified by makeclear-gen is optimal in the number of actions needed.
If all actions are assumed to take unit time, then the time taken to execute
a plan is given by the number of actions in the plan. If distinct actions take
different amounts of time, perhaps due to differences in their implementations,
then the time taken by a plan depends on the actual actions chosen. In general,
we may have costs associated with various types of actions and a problem may
require finding a least cost solution.

2. Constraints on intermediate states and arbitrary sequences of intermediate
states. Call the sequence of states generated by the execution of a plan p
in state s the history or ezecution sequence generated by p in s. In addition to
specifying a goal condition, a problem may specify properties that intermediate
states brought about by the execution of a plan must satisfy. For instance, to
minimize the number of new stacks created during the execution of a plan to
clear a block b, we may try for a plan that satisfies the additional constraint
that none of the stacks other than the one containing b be disturbed. That is,
all the “other” stacks, the ones not containing b, must be present in every state
in the execution sequence of any solution. A stronger constraint is to require
that the number of stacks that exist in any state during the execution of a

78

solution must be no more than 1 + the number of stacks in the initial state.
However, restrictions on execution sequences may also be combined with timing
constraints. In general, a problem may specify various goals to be maintained
during various sub-sequences of states or intervals in the history generated by
a plan. For example, we may require a plan to clear a block b within 5 units
of time and then keep b clear during the next 3 units.

3. Constraints on the actions in a plan. Sometimes restrictions on the kinds
of actions allowed in a solution can be indirectly specified as constraints on
states and vice versa. This is because actions result in a change in state and
therefore constraints on what actions must be done can be indirectly specified as
constraints on what state changes should or shouldn’t take place and vice versa.
For instance, the condition that none of the “other” stacks be disturbed while
clearing a block can be enforced by restricting plans to contain the following
kinds of actions: move actions that do not involve moving a block from or to
the top of any of the “other” stacks and unstack actions that do not move the
top of any of the “other” stacks with more than one block. Just as the above
constraint is most naturally expressed in terms of execution sequences, so also
are there conditions that are most naturally expressed as restrictions on the
actions in a plan. Examples of such constraints are restrictions on the order in
which actions are done and restrictions on the number of times a type of action
occurs in a plan. For instance, we may stipulate that the plan to clear a block
must contain a minimum number of unstack actions, or that every unstack
action in it must be followed by one or more move actions. Restrictions on
the number of times an action is done may also be specified: the block being
cleared must be moved no more than n times or that a particular action must
be executed for 5 units (i.e. 5 times in sequence).

4. Constraints requiring actions or action sequences to be executed whenever cer-
tain properties are satisfied by intermediate states. We could have constraints
that combine the characteristics of the above 3 items. A problem may require
that certain actions must or must not be executed in an intermediate state
depending on the properties satisfied by the state. A simple example is the re-
quirement that the plan to clear a block b must unstack b as soon as it becomes
clear.

In this chapter, we will show that these constraints can be expressed as
Lisp predicates on plans. To verify that a solution satisfies the given constraints, all
we have to do is to prove that the output of plan generating programs satisfy the
predicates corresponding to the constraints for all inputs. Our examples are problems
from the blocks world such as the ones given above. We provide solutions to such
problems and state theorems that must be proved to verify the solutions using our
mechanized formalization. The theorems mentioned in this chapter have been tested
on particular data but their mechanical proofs have not been carried out.

80

4.1 Related Work

While some planning systems deal with problems involving time and other
forms of constraints, relatively little work in Al addresses general problems with
arbitrary constraints. Vere [114] describes a planning system that accepts problems
in propositional STRIPS [113] as input and generates a “partially ordered network
of activities” as output. Fox [32] describes an expert system to plan and schedule
tasks required for manufacturing products. More recently, Penberthy and Weld [103]
describe a planner based on propositional STRIPS to generate plans that satisfy
some temporal constraints. The main disadvantage of these systems is that general
problems such as the problem of clearing a block cannot be specified as input. Some
temporal logics have also been proposed in Al [3, 89, 87] but it is unclear how effective
they are in practice.

Constraints on execution sequences generated by the actions of an agent
also arise when specifying the behavior of reactive systems [44, 67]. A reactive system
is one whose role is to maintain an ongoing, usually non-terminating, interaction with
its environment. Examples of such systems are digital watches, vending machines,
and microwave ovens. Most reactive systems involve concurrent actions. Temporal
logic [67, 66, 26] based on modal logic has often been advocated as a formalism for
specifying the behavior of reactive systems. In a temporal logic, explicit mention
of states is avoided, i.e., there are no terms that stand for states. Instead tem-
poral operators are used to describe properties of states that are reachable from a
given state. At present, mechanization of temporal logic has mostly been confined
to propositional temporal logic [26]. Propositional temporal logic is suitable for ver-
ifying properties of finite state systems [15] but not for specifying general problems.
One other disadvantage of temporal logic is the inability to express time durations.

4.2 Our Approach

In this section, we describe how various constraints on solutions may be
expressed as Lisp predicates on plans in the logic.

To express time requirements, we simply define a Lisp function from plans
to plan durations (natural numbers) in the logic. Any restriction on plan duration
may then be expressed as a Lisp predicate on plans that computes the duration of
a given plan and checks if the duration satisfies the desired properties. If actions
take unit time, then the length of a plan gives the amount of time taken by a plan.
Otherwise Lisp functions that compute the time taken by a plan by doing a case
analysis on the actions in the plan must be defined. Any proposed solution to a
given problem must be proved to satisfy the Lisp predicates specifying the given
temporal constraints in addition to proving that the plan brings about a goal state.

Constraints on actions belonging to a plan can also be specified as Lisp
predicates on plans. Arbitrary predicates on plans can be defined by Lisp programs

81

that go through a given plan and return t or f depending on whether or not the
individual actions that occur in the plan are of the right kind.

Constraints on histories generated by plans can be specified as predicates
on histories. Given a state s and a plan p, the execution sequence generated by p in s
is represented as a list of states starting with s and ending with resultlist (p, s). We
define a program make-hist that takes a state s and a plan p as input and returns
the history generated by p in s as output. Predicates on histories are specified by
Lisp programs that check if the states belonging to a given history satisfy the desired
properties. To express constraints on histories generated by plans, we simply define
a predicate that computes the history generated by a given plan in a state and checks
if it satisfies the desired properties. Constraints on actions belonging to plans that
depend upon the history generated may also be checked by Lisp programs that take
both plans and histories as arguments.

Since the additional constraints in a problem translate into additional pred-
icates to be satisfied by a proposed solution, no changes to our representation of plans
in the logic need be made. We merely have to prove that plans generated by programs
defined in the logic satisfy the predicates corresponding to the various constraints
specified in a problem.

In the rest of the chapter, we give examples of problems with constraints
and plans that solve them and state theorems that must be proved to verify the
plans. The statements of the theorems and the examples on which they were tested
are given in Section A.3. The mechanical proofs of the theorems were not carried
out.

4.3 Time

Suppose our problem is to find an optimal solution (in the number of
actions needed) to the problem of clearing a block. We know that our program
makeclear-gen specifies an optimal solution since any plan to solve the problem
must move all the blocks on top of the block being cleared at least once. This is
stated using our formalization of the blocks world given in Appendix A as follows.

THEOREM: c4-thl

(bw-statep (s)

find-stack-of-block (b, s)

planp (p)

(s1 = resultlist (p, s))

bw-statep (s1)

clear (b, s1))

(len (makeclear-gen (b, s)) < len (p))

I>>>>>

i

82

To prove the theorem we must show that the number of blocks above the
block being cleared is decreased by at most one by any action in the blocks world
and that makeclear-gen generates exactly as many actions as the number of blocks
above b.

Here is an example of how we might prove optimality even when move and
unstack actions take different amounts of time. Suppose we want to prove that the
plan specified by makeclear-gen is optimal when move actions take more time than
unstack actions. To express the theorem, we first define a function plan-duration
that computes the time taken by a plan using the times taken by the move and
unstack actions.

DEFINITION:
plan-duration (p, move-time, unstack-time)
= if p ~ nil then 0
elseif movep (car (p))
then move-time + plan-duration (cdr (p), move-time, unstack-time)
else unstack-time + plan-duration (cdr (p),
move-time,
unstack-time) endif

The following theorem shows how plan-duration works.

THEOREM: plan-durl
plan-duration (’ ((unstack a) (move b c¢) (move a b)), 2, 1)
= 5

Below we state that the plan specified by makeclear-gen is optimal in the
time taken if the time to unstack blocks (unstack-time) is less than the time to move
blocks (move-time).

THEOREM: c4-th2

(bw-statep (s)

find-stack-of-block (b, s)
planp (p)

(s1 = resultlist (p, s))
bw-statep (s1)

clear (b, s1)

(unstack-time < move-time))

I>>>>>>

(plan-duration (makeclear-gen (b, s), move-time, unstack-time)
< plan-duration (p, move-time, unstack-time))

83

The important point here is that the function to compute plan durations
may be specified as a Lisp program that may take any number of parameters. Thus,
more complicated functions for computing plan durations can be easily formalized.
Sometimes it is even possible to prove the complexity of an algorithm for a particular
class of problems. Forinstance, we can prove that the number of actions in makeclear-
gen (b, s) is proportional to the number of blocks in the stack containing b in s. That
is, makeclear-gen is O(n), where n is the number of blocks of the stack containing

bin s.

THEOREM: c4-coml
(bw-statep (s) A find-stack-of-block (b, s))
— (len (makeclear-gen (b, s)) < len (find-stack-of-block (b, s)))

4.4 Constraints on Execution Sequences

Suppose we want a plan to clear a block b without disturbing any of the
stacks that do not contain b. We can state this as a constraint on execution sequences
by insisting that all the stacks other than the one containing b belong to every state
in the execution sequence of a plan. Below we show how this can be done. The
function make-hist constructs the history got by executing a plan p in state s.

DEFINITION:
make-hist (s, p)
= if p ~ nil then cons (s, nil)
else cons (s, make-hist (result (car (p), s), cdr (p))) endif

Here is an example of what make-hist produces. Consider the blocks
world state STATE]L in which there are two stacks, one with blocks ’a, ’b and ’c and
the other with blocks ’d and ’e.

DEFINITION: STATEL =°’((a b c) (d e))

The plan to clear block ’c in STATEl generated by makeclear-gen is
> ((unstack a) (unstack b)).

THEOREM: makeclear-ex2
makeclear-gen (’c, STATE]l) = ’ ((unstack a) (unstack b))

The history generated by this plan when executed in STATE] is given below.

84

THEOREM: hist-ex1
make-hist (STATE1, makeclear-gen (’c, STATEL))
= "(((abc) (de))

((b c) (a) (d e))

((c) (®) (a) (d e)))

The function other-stacks returns the list of stacks in a state s that do
not contain the block b.

DEFINITION:
other-stacks (b, s) = delete (find-stack-of-block (b, s), s)

THEOREM: other-stacks-ex1
other-stacks (*c, sTATEL) = *((d e))

To ensure that none of the other stacks are disturbed during the execution
of a plan, we define check-other-stacks that takes a history h and a list of stacks
[as arguments and checks if every state in h contains every stack in [.

DEFINITION:
subset (s1, s2)
= if s/ ~nil thent
else (car(s1) € s2) A subset (cdr (s1), s2) endif

DEFINITION:
check-other-stacks (I, h)
= if h ~nil thent
else subset (, car (h)) A check-other-stacks ({, cdr (k)) endif

We can use check-other-stacks to express the constraint that none of
the states other than the one containing ’c in sTATE] is disturbed in the history
generated by executing makeclear-gen (’c, STATEL) in STATE]L as follows.

THEOREM: check-other-ex1
check-other-stacks (other-stacks (’c, STATEL),
make-hist (STATE1, makeclear-gen (’c, STATEL)))

More generally, we can state that if a block b exists in state s, then the plan
makeclear-gen (b, s) does not disturb the stacks in s that do not contain b during

execution.

85

THEOREM: c4-th3
(bw-statep (s)
A find-stack-of-block (b, s)
A (p = makeclear-gen (b, s)))
— check-other-stacks (other-stacks (b, s), make-hist (s, p))

A problem may also stipulate goals that require that certain conditions
be maintained for some interval of time. Suppose we want a plan that would bring
about some interval (sequence of states) I of duration > n in the future of the initial
state such that b is clear in every state in /. We can achieve this goal by clearing
b and then executing the action unstack (b) n times in succession. The function
unstackn generates a sequence of n unstack (b) actions.

DEFINITION:
unstackn (b, n)
= if n ~ 0 then nil
else cons (unstack (b), unstackn (b, n — 1)) endif

Make-clear-intn is the composite plan for achieving the goal of keeping
b clear for at least n units of time after b becomes clear.

DEFINITION:
make-clear-intn (b, n, s) = append (makeclear-gen (b, s), unstackn (b, n))

For example, make-clear-intn generates the following plan to keep ’c
clear for 2 units of time in the future of STATEL.

THEOREM: clear-intn-ex1
make-clear-intn (¢, 2, STATE])
= ’((unstack a)

(unstack b)

(unstack c)

(unstack c))

The predicate check-clearn checks if block b is clear for at least n units
of time, i.e., in the the first n+1 states, of the history A.

DEFINITION:
check-clearn (b, h, n)
= if h ~ nil then f
elseif n ~ 0 then clear (b, car (h))
else clear (b, car (h)) A check-clearn (b, cdr (h), n — 1) endif

86

The function exist-clear—intn checks if there is a subsequence of length
n in the history A in which the block b is clear.

DEFINITION:
exist-clear-intn (b, h, n)
= if h ~ nil then f
else check-clearn (b, h, n) V exist-clear-intn (b, cdr (h), n) endif

The following theorems test the behavior of exist-clear-intn.

THEOREM: hist-ex2
make-hist (STATE1, make-clear-intn (’c, 2, STATEL))
= ’(((@abc) (de))

((b c) (a) (d e))

((c) (b) (a) (d e))

((c) (b) (a) (d e))

((c) (®) (a) (d e)))

DEFINITION:
H1 = make-hist (STATE1, make-clear-intn (’c, 2, STATEL))

THEOREM: ex-exl
exist-clear-intn (’c, H1, 2)

We can state the general theorem that make-clear-intn (b, n, s) achieves

the goal of keeping b clear for an interval of n units of time in the future of the initial
state s as follows.

THEOREM: clear-int-th1
(bw-statep (s)
A find-stack-of-block (b, s)
A (n e N)
A (p = make-clear-intn (b, n, s))
A (h = make-hist (s, p)))

— exist-clear-intn (b, h, n)

87

4.5 Constraints on Actions

Suppose we want to clear a block b without moving it. Then, we must
check if the plan generated as a solution to the problem does not move b. This can
be specified as a predicate to be satisfied by plans generated to solve the problem.
Observe that the first argument of the move and unstack actions is the object that
is moved. Therefore, all we have to do is to check that the first argument of all the
actions in a plan is not equal to b. More generally, we can define a function that
computes the number of times a particular block is moved when executing a plan.
Using this function, any constraints on the number of times a block is moved can be
expressed.

DEFINITION:

number-of-times-moved (p, b)

= if p ~ nil then 0
elseif cadar (p) = b then 1+ number-of-times-moved (cdr (p), b)
else number-of-times-moved (cdr (p), b) endif

THEOREM: number-ex1
number-of-times-moved (’ ((unstack a) (unstack b)), ’c) =0

THEOREM: number-ex2
number-of-times-moved (’ ((unstack a) (unstack b)), ’a) =1

We can state that the plan specified by makeclear-gen does not move the
block being cleared as follows.

THEOREM: ch4-th)
(bw-statep (s) A find-stack-of-block (b, s))

— (number-of-times-moved (makeclear-gen (b, s), b) = 0)

Here is an example of a constraint on the order in which actions occur in a
plan. We can check if every unstack action in a plan p is followed by a move action
using the following predicate.

DEFINITION:
move-follows-unstackp (p)
= if (p ~nil) V (cdr(p) ~ nil) then t
elseif unstackp (car (p))
then movep (cadr (p)) A move-follows-unstackp (cddr (p))

else move-follows-unstackp (cdr (p)) endif

88

Clearly this constraint is not satisfied by the plan specified by makeclear-gen.

THEOREM: move-follows-ex1
— move-follows-unstackp (makeclear-gen (’c, STATEL))

THEOREM: move-follows-ex2
move-follows-unstackp (’ ((move a b) (unstack c) (move b c)))

THEOREM: ch4-th6
(bw-statep (s) A find-stack-of-block (b, s))

— (= move-follows-unstackp (makeclear-gen (b, s)))

Our final example involves checking both the execution sequence generated
by a plan as well as the actions composing a plan. This is needed if we require a
plan to clear a block b that unstacks & as soon as it becomes clear. The predicate
check-both takes a history h, a block b and a plan p as arguments and checks if an
unstack action is executed in the state in which b becomes clear.

DEFINITION:
check-both (k, p, b)
= if h ~ nil then f
elseif clear (b, car (h)) then car(p) = unstack (b)
else check-both (cdr (h), cdr (p), b) endif

Here is a simple example to test check-both.

DEFINITION:
P2 = append (makeclear-gen (’c, STATEL), list (unstack (*c)))

DEFINITION: H2 = make-hist (STATEL, P2)

THEOREM: check-both-ex1
check-both (H2, P2, *c)

THEOREM: ch4-th7

(bw-statep (s)
A find-stack-of-block (b, s)
A (p = append (makeclear-gen (b, s), list (unstack (9))))
A (h = make-hist (s, p)))

— check-both (&, p, b)

Chapter 5

A General Framework

In the preceding chapters, we illustrated how general problems and problem
domains such as the blocks world can be specified by writing interpreters in the Boyer-
Moore logic. We also showed how plan generating programs, programs that produce
a sequence of actions depending on the initial state and other parameters given as
input, can be used to express and verify mechanically solutions to general problems.
While our approach does overcome some of the drawbacks of the existing methods
such as the need for a large number of explicit frame axioms and the inability to
specify actions with side-effects, it does suffer from the following disadvantages:

1. Right now, each problem domain is formalized by inventing a new “program-
ming language” depending on the data structures chosen to represent the states
and actions of the system. By choosing a uniform representation for actions
and states over all problem domains, i.e., by developing a single programming
language or machine for all problem domains and formalizing its semantics, we
gain a number of important advantages. First, theorems proved about states
and actions can be re-used across domains. Thus, it would be possible to build
a library with basic oft-used actions (programs) and state data structures (data
types) formalized and made available for problem solving. Since solutions to
distinct problems are programs (plans) of the same machine, we might be able
to use solutions of problems solved in the past as subprograms (sub-plans)
when solving a new problem. This is particularly important from the stand-
point of program development. Secondly, the addition of new actions to an
existing formalization can be done without any change to the interpreter. For
instance, when we wanted to add a new action move-over to our blocks world
formalization in Chapter 2, we changed our programming language and were
therefore forced to re-define the interpreter for the new machine. This can be
avoided if we use a single programming language for specifying all domains.

2. So far, plans only consist of primitive actions. It would desirable if we could
include plans such as the plan for clearing a block as atomic complex actions
in larger plans much the way procedures are combined in an imperative pro-
gramming language. For this, we need terms in the logic for representing such

89

90

complex actions. The ability to “compose” plans like procedures will let us de-
scribe large, complex plans succinctly. This would be particularly useful when
solutions to problems are used across problem domains as contemplated above.

3. So far, we have assumed that all the effects of all actions in a domain are given.
Sometimes, it may be necessary to specify partial actions' wherein the effects
of actions on only some aspects of the state may be given. In such a case, it
would not be possible to define an interpreter for the system as we have been
doing since actions cannot be specified by programs.

In this chapter, we present solutions to overcome these disadvantages. Our
first step is to represent primitive actions by data structures that stand for the names
of the functions that specify them. Thus, if the action of moving block z to the top of
block y is specified by the function res-move (z, y, s), then the action is represented
by a data structure that stands for As. res-move (z, y, s) as in [76]. Such terms are
called fluents by McCarthy [76, 86]. The data structures that represent such lambda
expressions are chosen so that result can evaluate lambda expressions on particular
states using the Lisp interpreter eval$ available as a function in the logic. For
instance, the action of moving ’a to the top of ’b specified by the function res-move
in Chapter 2 is now represented by the data structure ’ (res-move ’a ’b) that
stands for As. res-move (’a, ’b, s). To execute the action ’ (res-move ’a ’b) in a
state s0, result constructs the term corresponding to the description or gquotation
of the term res-move (’a, ’b, s0) and evaluates it using eval$ to obtain the value of
res-move (’a, ’b, s0). Such quotations of function calls to action specifications are
already available in the logic because the meta-theory of the Boyer-Moore logic is
formalized as part of the logic, i.e., for every term in the logic there exists a term that
is its syntactic description or quotation. Notice that we do not represent the bound
“lambda variable” explicitly in the representation of actions. Instead we adopt the
convention that the last argument of a function that specifies an action is the initial
state argument.

This device of representing actions as fluents can be used for representing
both primitive and complex actions. For instance, suppose the input-output behavior
of the plan given by the plan generator makeclear-gen in Chapter 2 is specified by
a function res-makeclear which takes a block b and a state s as parameters and
returns the state got by executing the plan generated by makeclear-gen in s. Then
the complex action corresponding to the plan given by makeclear-gen can once again
be represented as As. res-makeclear (b, s). Since result and resultlist can once again
be used to execute such actions in various states by lambda evaluation, we may allow

!Sometimes the phrase “partial action” is used to talk about actions that cannot be executed at
all times. We will, however, use the phrase to describe an action whose effects on a state can only
be given by a partially specified function.

91

complex actions to be included in plans. Thus, with our new representation, a plan
in a domain is a sequence of actions where each action may be either a primitive
action or a complex action.

Because all actions of all domains are represented in the same way, we
now have a single machine or “programming language” whose states and actions
encompass those of every other problem domain. The set of states of this general
machine is given by the set of Lisp data structures and the set of actions is given
by those data structures that can be interpreted as lambda expressions that are
names of action specifications. Plans, sequences of actions, may be thought of as
programs of this machine and the interpreter resultlist may be thought of specifying
the operational semantics. We represent error states of this machine by lists whose
car is *failed.

We propose to tackle the problem of specifying partial actions in the Boyer-
Moore logic by specifying them using axioms introduced via the CONSTRAIN event [8§].
The CONSTRAIN event allows us to add an axiom involving new function symbols using
as “witnesses” or “models” previously defined functions. Thus, it is possible to use
a subset of theorems about a completely defined Lisp program (action specification)
to constrain a new function symbol that specifies an action partially. CONSTRAIN also
guarantees consistency of axioms added. Naturally, actions specified partially cannot
be executed on concrete data structures. It so happens that actions specified via
CONSTRAIN cannot be evaluated by the interpreter eval$ because function symbols
introduced via CONSTRAIN do not have any “code” associated with them. Thus,
such actions cannot be viewed as part of the programming language of our general
machine. In the last section, we propose a simple way to augment the CONSTRAIN
facility that might allow even partially specified actions to be evaluated by eval$.

5.1 The General Framework

We will first describe briefly how the syntactic forms of terms in the logic
are encoded by other terms, their quotations, and explain how eval$ works. Then
we will present our general framework.

5.1.1 Definition of eval$

For a fuller description of the concepts presented in this section, the reader
must consult [10]. The quotations of terms in the logic are formed as follows. Vari-
ables like z and function symbols like fn are encoded by the corresponding litatoms
such as ’x and ’fn. Quotations of terms that are function applications are given by
a list whose car is the quotation of the function symbol and whose cdr is a list of
quotations of the individual arguments. For example, the quotation of z + y is the
term list (’plus, ’x, ’y) which is abbreviated as ’ (plus x y). The quotation of z +

92

(y + z) is list (’plus, ’x, ’ (plus y z)) abbreviated as ’ (plus x (plus y z)). Quo-
tations of a special class of terms T'1 called explicit value terms are also represented
by list(’quote,7'1). Roughly speaking, explicit value terms correspond to the Lisp
data structures of the logic. Thus, another quotation of cons(’a, cons(’b, nil)) is
list (’quote, cons (’a, cons (’b, nil))).

In the definition of eval$ given below, the function apply$ is used. Rather
than giving the exact definition of apply$, we will merely explain intuitively what
it computes.

DEFINITION:
eval$ (flg, z, a)
= if flg = ’list
then if z ~ nil then nil
else cons (eval$ (t, car (z), a), eval$ (’list, cdr (z), a)) endif
elseif litatom (z) then cdr (assoc (z, a))
elseif z ~ nil then z
elseif car (z) = ’quote then cadr (z)
else apply$ (car (z), eval$ (’1ist, cdr (z), a)) endif

Eval$ takes three arguments, flg, z and a. If flg equals *1list, eval$
interprets z as a list of quotations, otherwise it processes z as a quotation of a
particular term. The argument a is an “environment” or association list that assigns
values to quoted variables, i.e., litatoms. Essentially, eval$ “unquotes” a quoted
term (or list of terms) z and returns its value (or list of values) using the values of
the variables specified by a. For instance, given t, > (plus x y) and an environment
((x . 2) (y . 3)) as arguments, eval$ would evaluate z to 2 and y to 3 and use
apply$ to apply the definition of plus to list (2, 3) to get 5. Apply$ takes a litatom
that is a quotation of a function symbol frn and a list of values args as arguments
and returns the value got by applying the definition of fn to the arguments given by
args. The following simple examples show how eval$ and apply$ work on concrete
data.

THEOREM: ch5-ex1
eval$ (*list, list (°x, ’y), *((x . 2) (y . 3))) ="(2 3)

THEOREM: chb-ex?2
apply$ (’plus, (2 3)) =5

THEOREM: chb-ex3
eval$ (t, > (plus x y),’((x . 2) (y . 3)))=5

93

THEOREM: chb-ex4
eval$ (t, > (plus (plus x y) (plus x y)),’((x . 2) (y . 3)))
= 10

It is important to keep in mind that quotations are also data structures
(terms). Therefore, we can define a function that constructs and returns distinct quo-
tations depending on the arguments passed to it. To understand how we represent
parameterized actions (i.e. parameterized lambda expressions) using “parameter-
ized” quotations and evaluate them using eval$, it is helpful to look at the following
simple example.

DEFINITION:
append-template (z, y)
= list (*append, list (’quote, z), list (’quote, y))

The lambda variable in actions is not represented in the quotation since it
is assumed to be the last argument by convention. Thus, parameterized actions are
represented by quotations such as the one given above. Append-template constructs
distinct quotations depending on the arguments passed to it. The second and third
elements of the list returned are list (’quote, z) and list (’quote, y) rather than z
and y because we do not want z and y to be evaluated by eval$ when a term of the
form append-template (z, y) is passed to it. In other words, we would like eval$ (t,
append-template (’ (ab), > (c d)), nil) to be equal to append (’ (ab), ’ (c d)) whose
value is >(a b ¢ d). Notice, however, that eval$ (t, list (*append, ’(a b), ’(c d)),
nil) would require evaluation of eval§ (t, > (a b), nil) whose value is unpredictable
because it depends on whether a function named a has already been defined or not.

5.1.2 Owur Formal Theory

As explained earlier, actions are represented by data structures that stand
for the names of functions that specify them. Thus, the representation of an action
specified by the Lisp function res-fn(t1,t2,...,tn,s) is As. res-fn(t1,t2,...,tn,s). The
data structure representing this lambda expression is the quotation of the term res-
fn(t1,t2,...,tn). The lambda variable is suppressed in the action data structures
because it is assumed by convention to be the last argument of the function that
specifies the action. Consequently, actions are specified by Lisp programs that take
a state term as their last argument?. This gives us a uniform representation of both
primitive and complex actions of all domains.

21f the specification of an action is independent of the state in which it is executed then we do not
need a redundant state argument. This is because apply$ ignores extra arguments when computing
the value of a function.

94

As an example, recall the function res-move that we defined in Chapter 2
to specify the action of moving a block b1 to the top of another block 2 in a state
s in the blocks world.

DEFINITION:

res-move (b1, b2, s)

= if (b1 = b2) V (- clear (b1, s)) V (= clear (b2, s))
then list (*failed, ’res-move, s)
else exec-move (b1, b2, s) endif

In our general framework, the action move (b1, b2) would be represented
by the term list (’res-move, list (’quote, b1), list (’quote, b2)). In general, if
res-fn(x1,x2,...,xn,s) specifies an action As. res-fn(x1,x2,...,xn,s) then the action
is represented by the term list (’res-fn, list (’quote, 1), list (’quote, z2),...,
list (’quote, zn)).

The function result in our general theory computes the new state got by
executing an action of the form list (*res-£n, list (’quote, z1), list (’quote, z2),. ..,
list (*quote, zn)) in a state s by first constructing a term term equal to list (’res-fn,
list (’quote, 1), list (’quote, z2), ... list (’quote, zn), list (’quote, s)) by append-
ing list (list (> quote, s)) to the given action term. Then, result returns eval$ (t, term,
nil) which evaluates to res-fn(x1,x2,...,xn,s), the state, possibly an error state, got
as a result of executing the given action in s. Thus, result essentially evaluates the
lambda expression given by an action on a state. The definition of result in our
general theory follows.

DEFINITION:
result (a, s)
= if car(s) = *failed then s
else eval$ (t, append (a, list (list (> quote, s))), nil) endif

The following simple example illustrates how result operates.
DEFINITION: STATEl = ’((a b ¢) (d e))
THEOREM: gen-ex1
result (list (*res-move, list (*quote, *b1), list (’quote, *b2)),
STATE])

= res-move (’b1, ’b2, STATE])

Observe that the definition of result takes into account our convention
that the last argument of all functions specifying actions be a state argument. Error

95

states of our machine are lists whose car is the litatom ’failed. It follows from the
definition of result that the execution of any action in an error state results in the
error state. That is, once the machine is in an error state it stays that way.

To prevent the user from having to wade through quotations representing
action terms, we provide functions to construct, analyze and recognize actions. The
function make-action constructs an action term when given as input, a litatom such
as ’res-move that is the quotation of a function symbol and a list of the action’s
arguments. The auxiliary function make-arglist returns a list of quoted terms
corresponding to the arguments of an action.

DEFINITION:
make-arglist (al)
= if al ~ nil then nil
else cons (list (> quote, car (al)), make-arglist (cdr (al))) endif

DEFINITION:
make-action (type, arglist) = cons (type, make-arglist (arglist))

For instance, the constructor for the move and the unstack actions of the
blocks world can be easily defined using make-action without worrying about quo-
tations.

DEFINITION:
move (b1, b2) = make-action (’res-move, list (b1, b2))

DEFINITION:
unstack (b) = make-action (’ res-unstack, list (b))

In short, make-action constructs parameterized lambda expressions cor-
responding to actions.

Similarly, we provide a predicate check-action that can be used to rec-
ognize actions. Check-action takes an action term @ and a litatom that is the
quotation of a function symbol at and checks if a is a lambda expression formed us-
ing the function at. We do not check if the arguments of a are well-formed because
they are taken care of by the preconditions of the action.

DEFINITION: check-action (a, at) = (car (a) = at)
The predicates on move and unstack actions can be defined as follows.

DEFINITION: movep (z) = check-action (z, ’res-move)

96

DEFINITION: unstackp (z) = check-action (z, ’res-unstack)

To obtain the nth argument of an action we may use the following function
argn. Argn takes into account that all arguments 2 of an action are represented as
list (*quote, z). Thus, argn may be used to define predicates on actions that depend
on the values of arguments without worrying about the underlying representation.

The function nth returns the nth value in a list whose elements are num-
bered starting with 0.

DEFINITION:
nth (n, 1)
= if n ~ 0 then car ()
else nth (n — 1, cdr (1)) endif

DEFINITION: argn (n, a) = cadr (nth (n, a))

THEOREM: gen-ex2
argn (1, move (’a, ’b)) = ’a

Plans are once again represented as sequences of actions and the interpreter
resultlist for the general machine is defined as before.

DEFINITION:
resultlist ({, s)
= if [~ nil then s
else resultlist (cdr (1), result (car (1), s)) endif

Plans may include both primitive and complex actions. In the next section,
we explain how we represent complex actions as terms in the logic so that they may
be used just like atomic actions in other plans.

We can use lambda expressions to also represent other kinds of fluents
such as propositional fluents that are predicates on states as in [76, 72] and define
the celebrated holds predicate [59, 61] in the same way we defined result. For
instance, corresponding to predicates find-stack-of-block and on from Chapter
2, we can form fluent terms As. find-stack-of-block (b, s) and As. on (bl b2 s). To
understand the representation of these fluents as data structures, recall the definitions
of find-stack-of-block and on.

DEFINITION:
find-stack-of-block (b, s)
= if s ~ nil then f
elseif b € car(s) then car(s)
else find-stack-of-block (b, cdr (s)) endif

97

DEFINITION:
on (b1, b2, s) = consecp (b1, b2, find-stack-of-block (b1, s))

The definitions of make-fluent and holds defined below mirror those of
make-action and result.

DEFINITION:
make-fluent (type, arglist) = cons (type, make-arglist (arglist))

DEFINITION:
holds (z, s) = eval$ (t, append (z, list (list (*quote, 5))), nil)

Here are a few examples to illustrate how the holds predicate works.

DEFINITION:
on-fluent (b1, b2) = make-fluent (*on, list (b1, b2))

DEFINITION:
find-stack-fluent (b)
= make-fluent (’find-stack-of-block, list (b))

THEOREM: holds-ex1
holds (on-fluent (’b, ’c), STATEL)

In the Appendix C, we have given the definitions of the general theory
followed by a formalization of the blocks world done using the general framework.
The new blocks world formalization differs from the formalization in Appendix A only
in the definitions of move, unstack, movep and unstackp. Of course, the definitions
of result and resultlist are borrowed from the general theory.

A word about mechanical theorem proving in this general framework. Me-
chanical theorem proving is known to be very difficult in the presence of quotations
and eval$. However, one way to substantially reduce the theorem proving effort is
to prove theorems that can be used as rewrite rules to eliminate the occurrence of
terms with eval$ once and for all. In our theory, eval$ occurs only in the definition
of result. (We have not proved general theorems using holds.) Thus, we could
prove the following theorems about result flagging them as rewrite rules and then
disable the definition of result so that terms with eval$ do not occur when proving
other theorems.

THEOREM: resultl
(bw-statep (s)
A ((— clear (b1, s)) vV (b1 = b2) V (— clear (b2, 5))))
— (result (move (b1, b2), s) = list (*failed, ’res-move, s))

98

THEOREM: resultd

(bw-statep (s)

A clear (b1, s)

A clear (b2, s)

A (b1 #b2)

A (cdr (assoc (b1, s)) ~ nil))

— (result (move (b1, b2), s)

= cons (cons (b1, assoc (b2, s)),
delete (assoc (b1, s), delete (assoc (b2, s), 5))))

THEOREM: result6

(bw-statep (s)
clear (b1, s)
clear (b2, s)

(b1 # b2)
listp (cdr (assoc (b1, s))))

(result (move (b1, b2), s)

= cons (cons (b1, assoc (b2, s)),

I>>>>

cons (cdr (assoc (b1, s)),

delete (assoc (b1, s), delete (assoc (b2, s), s)))))

THEOREM: result2
(bw-statep (s) A (= clear (b, s)))
— (result (unstack (b), s) = list (*failed, ’unstack, s))

THEOREM: result3
(bw-statep (s) A clear (b, s) A (cdr (assoc (b, s)) ~ nil))
— (result (unstack (b), s) = cons (list (b), delete (assoc (b, s), 5)))

THEOREM: result4
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, 5))))
— (result (unstack (b), s)
= cons (cdr (assoc (b, s)), cons (list (b), delete (assoc (b, s), s))))

Because these theorems were also the first thing we proved using the blocks
world formalization in Appendix A, we could “load” the sequence of events in Sec-
tion A.1 without change after loading the events for formalizing the blocks world
within the general theory given in Appendix C. That is, the theorem prover verified
the same sequence of theorems without any change using the new blocks world the-
ory. In an analogous manner, we could re-define the checkerboard domain as part of
our general framework.

99

5.2 Representing Complex Actions

As observed earlier, complex actions—actions corresponding to plans such
as the plan for clearing a block hitherto specified by plan generating programs—can
also be represented by lambda expressions that stand for the Lisp functions that give
their input-output specification. The function res-makeclear given below specifies
the input-output behavior of the complex action of clearing a block corresponding
to the plan given by makeclear-gen. Since we have verified the makeclear-gen
program, we can use it to express res-makeclear as follows.

DEFINITION:
makeclear-gen (b, s)
= if (- find-stack-of-block (b, s)) V (- bw-statep (s)) then f
elseif b = car (find-stack-of-block (b, s)) then nil
else cons (unstack (car (find-stack-of-block (b, s))),
makeclear-gen (b,
result (unstack (car (find-stack-of-block (b,

s)));
s))) endif

DEFINITION:
res-makeclear (b, s) = resultlist (makeclear-gen (b, s), s)

In other words, the specification of the complex action is got by “com-
posing” the specifications of the primitive actions. The lambda expression As. res-
makeclear (b, s) can be represented using make-action as follows.

DEFINITION:
makeclear (b) = make-action (’res-makeclear, list (b))

The following example shows that result may be used to do the lambda
evaluation even with the complex action makeclear.

THEOREM: complex-action-ex1
result (makeclear (*b), sTATEL) = >((b ¢) (a) (d e))

It should be evident that we can use lambda expressions to represent re-
cursively complex actions corresponding to plans that involve other complex actions.
This would help us describe large complex plans succinctly. For instance, a plan to
clear a list of blocks using the action makeclear can be generated by the following
plan generator.

100

DEFINITION:
makeclear-list-gen (/, s)
= if [~ nil then nil
else cons (makeclear (car (1)),
makeclear-list-gen (cdr (1),
result (makeclear (car (1)), s))) endif

This plan clears a list of blocks by clearing them one after the other using
makeclear. For instance, the plan to clear the list of blocks *(a b ¢) in STATEL
using makeclear-list-gen and the state got as a result of executing this plan in
STATE] are shown below.

THEOREM: complex-action-ex2

makeclear-list-gen (> (a b ¢), STATE])

= ’((res-makeclear ’a)
(res-makeclear ’b)
(res-makeclear ’c))

THEOREM: complex-action-ex3
resultlist (makeclear-list-gen (> (a b ¢), STATEL), STATE])
= 2((c) (b) (a) (d e))

We can form the complex action corresponding to the plan makeclear-list-gen
once again using make-action. But first we need a specification of this action.

DEFINITION:
res-makeclear-list (I, s) = resultlist (makeclear-list-gen (I, s), s)

DEFINITION:
makeclear-list (/) = make-action (’res-makeclear-list, list (/))

The following shows that the result of executing this action in STATE]1 is the
same as the result of executing the plan generated by the program makeclear-list-gen.

THEOREM: complex-action-ex4
result (makeclear-list (> (a b ¢)), STATEL)
= 2((c) (b) (a) (d e))

101

5.3 Specifying Partial Actions

Sometimes we may have to make do with a partial specification of actions if
the effects of actions on all aspects of the state of the system are not given in advance.
Still, it may be possible to solve problems using the given incomplete information.
For example, suppose all we know about a blocks world is the following. There are
two actions: one to clear any block in any state and another to paint any block with
any color in any state. While we are given that painting a clear block leaves the block
clear, we are not given whether clearing a block changes its color or not. Suppose
the problem is to achieve a state in which a block is both black and clear. A correct
solution to the problem is to clear the given block first and then paint it black. We
cannot make the assumption that clearing a block does not change its color because
it would then allow us to prove that we can paint a block first and then clear it
to achieve a state in which a block is both clear and black, a clearly unacceptable
solution. Thus, while we can make the assumption that those aspects of the system
state specified in a problem describe the state completely, there are circumstances
in which we may have to use a partial specification of actions to solve a problem. It
is perhaps for this reason that it is sometimes argued that specification languages
for programs must not be executable [46]. When actions are partially specified, they
cannot be modeled as programs. Therefore, it would not be possible for us to define
an interpreter for the system and reason about it as we have been doing so far.

Fortunately, we do not need a different logic for dealing with partial actions.
The CONSTRAIN event [8] of Nqthm allows us to add axioms that constrain function
symbols without completely characterizing them. To ensure consistency, we are
required to provide an already defined “witness” function that satisfies the proposed
axiom about a new function symbol. The defined “witness” function is a model of the
new function symbol. In [8], the intuition behind the CONSTRAIN event is explained
as follows:

Intuitively, a good way to think about a CONSTRAIN event is to imagine
defining a new function symbol, proving a theorem about that function
symbol, and then forgetting about the defining equation while remember-
ing the theorem....It turns out that this check guarantees consistencys,. ..

We may specify partial actions using CONSTRAIN by first defining a program that
completely specifies the action as we have been doing so far and then use it as a
“witness” for the partially specified action. We may use (a conjunction) of as many
theorems about the complete program as are necessary for characterizing the partial
action. To formalize the above blocks world example, we can first define a Lisp
program that clears blocks without changing its colors, prove the theorem that it
clears blocks and use it to characterize a new function symbol that specifies the
partial action. This would enable us to verify the given solution without letting us
verify spurious ones.

102

Of course, actions specified partially cannot be executed on concrete data
structures. It so happens that actions specified via CONSTRAIN cannot be evaluated
by the interpreter eval$, i.e., we cannot represent actions by lambda expressions
as before and do lambda evaluation using eval$ to get the appropriate “function
call” to the action specification. This is because eval$ evaluates functions defined as
Lisp programs whereas CONSTRAIN introduces non-executable function symbols which
do not have any “code” associated with them. This means that actions partially
specified using CONSTRAIN cannot be viewed as part of the “programming language”
for plans. One way to get around this problem may be to augment the CONSTRAIN
event so that a user can declare some of the newly introduced function symbols as
SUBRPs, primitive function symbols [10, page 134]. If functions specifying partial
actions are introduced as SUBRPs and SUBRP axioms [10, page 134] corresponding
to these function symbols are added to the logic by the CONSTRAIN event then we
could perform lambda evaluation of partially specified actions using eval$ because
APPLY-SUBR would then return the desired term. For example, suppose that the
function symbol ’foo that takes one argument (a state argument) is used to specify
an action partially using CONSTRAIN. Then the SUBRP axiom corresponding to ’foo
is

(subrp (’foo) = t) A (apply-subr (’foo, [) = foo (car ()))

Chapter 6

Mechanizing Modifications to Domain Specifications

In the previous chapters, we presented a mechanized formal theory for
specifying problem domains and verifying plans. While our formal theory is general
enough to model a wide range of problem domains, it does not address one other
issue in software development viz. program modification, the changes that must
be made to a program, perhaps many years after it is written, due to changes to
its specification. By providing a single mechanized framework as we have done
in which various problem domains and proofs of plans can be carried out and in
which both actions and their specifications can be composed to form larger units,
we have an automated reasoning system that can keep track of previous design
histories. This helps reduce the amount of work needed to change a design when
changes to specifications are made because as much previous work as possible can be
reused. However, even when there are reusable design histories available, the burden
of figuring out what to redesign and what to reuse rests with the human designer.
Some work on building automated systems that can take into account changes to
problem specifications and programs is currently underway [96, 97, 106], particularly
in the area of requirements acquisition [51].

The idea of constructing a program that can accept as input declara-
tive facts that describe modifications to domain specifications so that the necessary
changes to specifications are carried out automatically by the program is being pur-
sued by many researchers in artificial intelligence [76, 79, 77, 81]. For this we need
a formalism in which not only all possible domains but also facts describing changes
to a domain specification can be expressed. Non-monotonic reasoning [38] has been
found necessary for dealing with this problem in Al but has proven extremely diffi-
cult to formalize [84]. Gelfond and Lifschitz [35] identified a simple class of domains,
a class of finite state systems, which they describe using a language called A for
testing various approaches to formalizing non-monotonic reasoning. In this chapter,
we show how the problem of domain modification and the needed “non-monotonic”
reasoning may be mechanized in the Boyer-Moore logic, a first-order logic, by includ-
ing domains as terms in the language. We illustrate our approach by formalizing the
class of domains that can be specified in A.

103

104

6.1 The Problem

The ideas behind the problem of specification modification and the need
for non-monotonic reasoning are best illustrated using the class of domains that can
be described in \A. The domains have the following properties:

1. The states of the system are given by the propositional values of a finite number
of boolean variables or fluents.

2. Actions are not parameterized and are assumed to be executable in all states.
However the actual effect of an action when executed in a state may depend
on the fluents that are true in the state.

The language A is used for describing such domains concisely. Each domain is
specified by a set of fluents, a set of actions, a set of propositions that specify the
effects of actions (e-propositions) and a set of propositions that specify the values of
fluents in various situations (v-propositions).

As an example, consider the following Switch Domain described in A. It
consists of fluents Light! and Light2, an action Switchl and the following proposi-

tions.
initially —Light1,
initially —Light2,
Switchl causes Lightl.

The first two lines are v-propositions and the last line is an e-proposition. According
to the semantics of A, there are 4 states of the Switch Domain depending on the
truth values of Light1 and Light2. There is one action Switchl which causes Lightl
to become true when executed in any state. Since the semantics of A incorporates
the default rule known as the “commonsense law of inertia” [61, 36] that an action
does not affect a fluent unless otherwise mentioned in a domain description, the
execution of Swilchl in any state is assumed by default to leave the value of Light2
unchanged. Thus, the Switch Domain specifies a simple finite state machine whose
states are given by the boolean values of the fluents Lightl and Light2 at various
times and whose transitions are given by the actions of the domain viz. Swiitchl.
In addition, the actual values of the fluents in various states starting with an initial
state may be specified in a domain description in A using v-propositions. Roughly
speaking, these v-propositions play the role of constraints of Chapter 4. The above
domain description says that both Light! and Light2 are false in the initial state.

One form of domain modification that has been frequently considered in
formal Al is addition of new information to a domain. For instance, we could modify
the Switch Domain to the following Extended Switch Domain by adding the following
e-proposition:

Switchl causes Light2.

105

Naturally, this defines a different finite state system and, in general, all facts that
are true about the original domain need not remain true about the new domain.
For instance, we know that if Switch! is executed in a state in which Light2 is
false, then Light2 will remain false in the Switch Domain but become true in the
Extended Switch Domain. The current approach to express domain modifications
is by adding formulas that describe a change to a domain to an existing first-order
formalization of the domain. However, simply adding formulas describing the new e-
proposition to a formalization of the Switch Domain would not give us a formalization
of the Extended Switch Domain in classical first-order logic because first-order logic
is monotonic: if a formula p can be proved by deduction from a set of formulas I" then
p can also be proved from ['U{g¢}. Thus, it is felt that a non-monotonic formalism—
usually first-order logic augmented by non-monotonic rules such as circumscription
[77, 80, 61]—is needed to express changes to domain specifications, as the following
quotation from Gelfond and Lifschitz [35] indicates.

The entailment relation of A is nonmonotonic, in the sense that adding
an e-proposition to a domain description D may nonmonotonically change
the set of propositions entailed by D. (This cannot happen when a v-
proposition is added.) For this reason, a modular translation from A
into another declarative language (that is, a translation that processes
propositions one by one) can be reasonably adequate only if this other
language is nonmonotonic also.

In a circumscription based formalism similar to [4], (a relevant part of) the
Switch Domain may be formalized as follows.

—mnoninertial(p, a) — (holds(p, s) = holds(p, result(a,s)))

noninertial(Lightl, Switchl)

holds(Lightl, result(Switchl, s))

Here variables p, s, and a are universally quantified from the outside over
fluents, situations and actions respectively. Circumscription is a rule that is used
to minimize the extension of certain predicates common to all domains. By adding
facts about these “control” predicates to an existing theory, we can “switch” from a
theory of one domain to a theory of another. In the above formalization, the control
predicate is moninertial which says whether or not an action affects a fluent. The
first axiom, sometimes called the “commonsense law of inertia”, says that if an action
a does not affect a fluent p, then the value of p after « is executed in any situation s

106

is the same as the value of p in s. We explicitly assert that Switchl affects Lightl
and specily the effects of Switchl on all fluents that it affects. Since noninertial is
minimized via circumscription, —noninertial(Light2, Switchl) is provable from the
above formulas. Thus, we can prove:

holds(Light2, s) = holds(Light2, result(Switchl, s))

To obtain the formalization of the Extended Switch Domain without chang-
ing the existing axioms, we simply add the following axioms. These clearly invalidate
the above inference.

noninertial(Light2, Switchl)
holds(Light2, result(Switchl, s))

Thus, we have succeeded in suppressing some of the inferences that are
not true in the new domain, i.e., in formalizing non-monotonic reasoning. But as
McCarthy [84] explains “the most obvious and apparently natural axiomatizations
tend to have unintended models”. At present, the formalization of non-monotonic
reasoning is a subject of continuing research [84].

6.2 Our Approach

Our approach to mechanize the “non-monotonic” reasoning needed for
dealing with modifications to domain specifications in classical first-order logic is to
include all possible domains as terms in the logic. This allows us to express directly in
first-order logic that “Switchl does not affect Light2 when executed in any state of
the SwitchDomain” and that “Switchl causes Light2 to become true when executed
in any state in the FztendedSwitchDomarn” without the two facts “interfering”
with each other and causing a contradiction to be derived. Here SwitchDomain and
EaxtendedSwitchDomain are terms (data structures) in the logic that represent the
Switch Domain and the Extended Switch Domain respectively. This is somewhat
similar to the device of introducing explicit state terms that allowed us to express in
first-order logic facts that may be true in one situation and false in another without
them interfering with each other and resulting in a contradiction. Previously we had
only formalized all possible states and all possible actions of all possible domains
but we did not explicitly represent the information regarding either the possible
domains or the information about which states and actions belonged to a domain.
This information was available to the human user who used it to manually construct
the formalization of any given domain from the available formalization of the states
and actions of the domain. By including all possible domains as terms in the logic, we
can give a program the knowledge about the possible domains and the information

107

about what happens when an action is executed in a particular state of a particular
domain. Thus, the inclusion of domains as terms in the logic amounts to formalizing
the meta-theory used by designers of non-monotonic rules to prove their soundness
and completeness.

Once all possible domains are available as terms, we want to express for-
mally the information about what states and actions belong to a domain and what
happens when an action is executed in a state of a domain. As before, the set of
states of a domain and the set of actions of a domain can be formalized by writing
suitable Lisp predicates. To express theorems about the effects of executing an action
in a state of a domain, we define the functions result and resultlist with an extra
domain parameter. So we have terms such as result (’switchl, s, SWITCH-DOM2)
which stands for the state got as a result of executing Switchl in state s of the
Switch Domain. We may then prove theorems such as the following:

THEOREM: I-th3
(switch-dom2-statep (s) A holds (> (Light2 . 0), s))
— holds (’ (1ight2 . 1), result (’switchi, s, SWITCH-DOM2))

The above theorem says that if Light2 (represented by ’1light2) is false
in any state of the Extended Switch Domain (swiTcH-DOM2) then it will become
true when Switchl (’switchl) is executed.

Observe that our approach is independent of whether the domains are de-
scribed in A or in some other language; all we need is a representation of domains in
Lisp that would allow us to define the result function. We must choose our represen-
tation so that small changes to a domain specification are expressed fairly easily in
the logic. We therefore represent domains by the list of e-propositions contained in
their description in A. Thus, SWITCH-DOM2 in the theorem I-th2 given above is a list
of e-propositions (represented in Lisp) of the Extended Switch Domain. To compute
the next state produced by the execution of an action « in a state s of domain D,
result goes through the list of effect propositions in D, obtains a list of e-propositions
that mention a, and computes the next state based on the effects of a specified by
those e-propositions. Thus, the “commonsense law of inertia” is expressed in Lisp
as part of the definition of result. As mentioned in Chapter 1, this approach has a
number of advantages. In particular, we can now define plan generating Lisp pro-
grams that generate distinct solutions to a problem depending on the domain passed
to it as a parameter. Such a program essentially provides an automatic solution to
the problem of program modification: when the domain specification is changed, the
solution corresponding to the new domain can be immediately generated by passing
the new domain as a parameter to the plan generating program.

The rest of the chapter is organized as follows. In Section 6.3, we reproduce
almost verbatim the rigorous definition of the syntax and semantics of A along with

108

the examples in [35]. These examples have been used by researchers in commonsense
reasoning as tests or counterexamples to non-monotonic formalisms at various times.
In Section 6.4, we describe our formalization of the class of domains that can be
specified in A. In Section 6.5, we formalize the examples given in 6.3 and state
theorems about the effects of executing sequences of actions in various domains. We
show how the needed “non-monotonic” reasoning is formalized in our theory using the
Switch Domain example described above. Section 6.6 deals with a class of theorems
motivated by [104] about properties true of all states of a domain reachable from an
initial state. Section 6.7 describes a plan generating program that outputs distinct
solutions depending on the domain passed to it as a parameter. The mechanical
proofs of the theorems mentioned in this chapter were carried out automatically by
the theorem prover without any assistance from the user. The list of events given
to the theorem prover for mechanizing A is in Appendix D. The theorems proved
about the examples in Section 6.3 and the events for verifying the plan generating
program in Section 6.7 are given in Sections D.1 and D.2 of Appendix D.

6.3 The Language A

A description of an action domain in the language A consists of “proposi-
tions” of two kinds. A “v-proposition” specifies the value of a fluent in a particular
situation—either in the initial situation, or after performing a sequence of actions.
An “e-proposition” describes the effect of an action on a fluent.

We begin with two disjoint nonempty sets of symbols, called fluent names
and action names. A fluent expression is a fluent name possibly preceded by —. A
v-proposition is an expression of the form

F after Ay;...; A, (6.1)

where F'is a fluent expression, and As,...,A,, (m > 0) are action names. If m = 0,
we will write (6.1) as
initially F.

An e-proposition is an expression of the form
A causes F if P, ..., P, (6.2)

where A is an action name, and each of F, P, ..., P, (n > 0) is a fluent expression.
About this proposition we say that it describes the effect of A on F, and that
Py, ..., P, are its preconditions. If n = 0, we will drop if and write simply

A causes F.

A proposition is a v-proposition or an e-proposition. A domain description,
or simply domain, is a set of propositions (not necessarily finite). Lifschitz (private

109

communication) adds that “strictly speaking, a domain description includes, in addi-
tion to its value and effect propositions, the lists of its fluent names and of its action
names.”

Example 1. The Fragile Object domain, motivated by an example from [108], has
the fluent names Holding, Fragile and Broken, and the action Drop. It consists of
two e-propositions:

Drop causes = Holding if Holding,
Drop causes Broken if Holding, Fragile.

Example 2. The Yale Shooting domain, motivated by the example from [43], is
defined as follows. The fluent names are Loaded and Alive; the action names are
Load, Shool and Wait. The domain is characterized by the propositions

initially —Loaded,

initially Alive,

Load causes Loaded,

Shoot causes —Alive if Loaded,

Shoot causes —Loaded.

Example 3. The Murder Mystery domain, motivated by an example from [4], is
obtained from the Yale Shooting domain by substituting

—Alive after Shoot; Wail (6.3)
for the proposition initially —Loaded.

Example 4. The Stolen Car domain, motivated by an example from [55], has
one fluent name Stolen and one action name Wait, and is characterized by two
propositions:

initially —Stolen,

Stolen after Wail; Wait; Wait.

The Stolen Car domain shows that inconsistent constraints may be spec-
ified about a domain. An adequate formalization must allow us to prove that the
given information is inconsistent whenever possible.

To describe the semantics of A, we will define what the “models” of a
domain description are, and when a v-proposition is “entailed” by a domain descrip-
tion.

A stateis a set of fluent names. Given a fluent name F and a state o, we
say that F holds in ¢ if F' € o; =F holds in ¢ if F ¢ 0. A transition function is a
mapping ¢ of the set of pairs (A, 0), where A is an action name and o is a state,

110

into the set of states. A structure is a pair (oo, ®), where g is a state (the initial
state of the structure), and @ is a transition function.

For any structure M and any action names Ay, ..., A,,, by MAt-34n we
denote the state

(A, (A1, ..., ®(A1, 00)...),

where @ is the transition function of M, and o is the initial state of M. We say that
a v-proposition of the form given by (6.1) above is true in a structure M if F holds
in the state MAt#4m and that it is false otherwise. In particular, a proposition of
the form initially £ is true in M iff F' holds in the initial state of M.

A structure (og,®) is a model of a domain description D if every v-
proposition from D is true in (o, ®), and, for every action name A, every fluent
name F, and every state o, the following conditions are satisfied:

(i) if D includes an e-proposition describing the effect of A on F whose preconditions

hold in o, then F € ®(A,0);

(ii) if D includes an e-proposition describing the effect of A on —F whose precondi-

tions hold in o, then F' ¢ ®(A,0);
(iii) if D does not include such e-propositions, then F' € ®(A, o) iff F € 0.
It is clear that there can be at most one transition function @ satisfying
conditions (i)—(iii). Consequently, different models of the same domain description

can differ only by their initial states. For instance, the Fragile Object domain (Ex-
ample 1) has 8 models, whose initial states are the subsets of

{Holding, Fragile, Broken};

in each model, the transition function is defined by the equation

_ [o\ {Holding} U {Broken}, if Holding, Fragile € o,
®(Drop, o) = { o\ {Holding}, otherwise.

A domain description is consistent if it has a model, and complete if it
has exactly one model. The Fragile Object domain is consistent, but incomplete.
The Yale Shooting domain (Example 2) is complete; its only model is defined by the

equations
oo = {Alive},
®(Load, o) = o U { Loaded},
®(Shoot, o) = {0 \ {Loaded, Alive}, if Load‘ed € o,
g, otherwise,

(
¢(Wait, o) = 0.

111

The Murder Mystery domain (Example 3) is complete also; it has the same transition
function as Yale Shooting, and the initial state {Loaded, Alive}. The Stolen Car
domain (Example 4) is inconsistent.

A v-proposition is entailed by a domain description D if it is true in every
model of D. For instance, Yale Shooting entails
—Alive after Load; Wait; Shoot.
Murder Mystery entails, among others, the propositions
initially Loaded
and
- Alive after Wait; Shoot.

Note that the last proposition differs from (6.3) by the order in which the two actions
are executed. This example illustrates the possibility of reasoning about alternative
“possible futures” of the initial situation.

6.4 Our Formalization

We restrict ourselves to the class of domains® that can be described in A
by a finite number of propositions. To formalize the semantics of A, we need to
represent all possible states of all domains, all possible sequences of actions of all
domains and all possible domains, i.e., finite sets of e-propositions as terms in the
logic. We represent fluents and actions as litatoms.

DEFINITION: fluentp (z) = litatom (z)

DEFINITION: actionp (z) = litatom (z)

A state is represented as a list of pairs of the form cons(fluent,value)
where value is either 0 or 1. A fluent is true or false in a state depending on whether
it is paired with 1 or 0. The predicate valuep checks if its argument is either 0 or
1, the predicate fvlistp checks if its argument is a list of fluent-value pairs and

a-statep is a predicate on all possible states of all possible domains.

DEFINITION: valuep (z) = ((z = 0) V (z = 1))

YA clarification about terminology. We will use the word “domain” to refer to problem domains
as we have been doing so far in this dissertation. When we want to refer to a description of a
domain in .4, we will explicitly say so. In other words, domains are semantic entities which may be
represented in many ways one of which is as a domain description in .A.

112

DEFINITION:
fvlistp (s)
= if s ~ nil thent
else fluentp (caar (s))
A valuep (cdar (s))
A fvlistp (cdr (s)) endif

DEFINITION: a-statep (z) = fvlistp (z)

While a-statep can be used to prove general properties about states of
all domains, the following predicate d-statep may be used to define a predicate on
the states on any particular domain. It uses the predicate has-fluents to check if
all the fluents in the given fluent list [occur in given state s.

DEFINITION:
has-fluents ({, s)
= if [~ nil then t
else assoc (car (), s) A has-fluents (cdr (1), s) endif

DEFINITION:
d-statep (I, s) = (a-statep (s) A has-fluents (I, s))

Here is an example of a state in the Fragile Object domain in which the
fluents Holding and Fragile are true and Broken is false.

DEFINITION:
STATEl = ’((holding . 1) (fragile . 1) (broken . 0))

THEOREM: state-examplel
a-statep (STATE1)

We allow more than one pair with the same car in a state but take into
account only the first pair in the list in which a fluent occurs when evaluating the
truth value of the fluent. This representation of states simplifies the formalization
and makes it easier to carry out mechanical proofs. Below we give another state
STATE2 that is equivalent to STATE1 defined above. The fluent ’broken is false in
STATE2 because we only consider the value associated with the first pair in the list
whose car is ’broken.

113

DEFINITION:

STATE2

= ’((holding . 1)
(fragile . 1)
(broken . 0)
(broken . 1))

THEOREM: state-example2
a-statep (STATE2)

The predicate frag-statep defined below recognizes the states of the Frag-
ile Object Domain.

DEFINITION:
frag-statep (s) = d-statep (° (holding broken fragile), s)

THEOREM: state-example3
frag-statep (STATEL) A frag-statep (STATE2)

We define a predicate holds that takes a fluent expression (a fluent-value
pair) and a state as arguments and checks if the fluent expression is true in the state.
Since we allow a fluent to occur as the car of more than one fluent-value pair in a
state, holds checks the first pair in the given state whose car is equal to the car of
the given fluent expression using the built-in function assoc. Thus, =Broken holds
in both sSTATEL and STATE2 defined earlier.

DEFINITION: holds (fexp, s) = (assoc (car (fezp), s) = fexp)

THEOREM: holds-examplel
holds (’ (broken . 0), STATEL)

THEOREM: holds-example2
holds (’ (broken . 0), STATE2)

Holds-all checks if all the fluent expressions in the given list z hold in
state s.

DEFINITION:
holds-all (z, s)
= if z ~nil then't
else (assoc (caar (z), s) = car(z)) A holds-all (cdr (z), s) endif

114

Domains are represented as lists of e-propositions that occur in their de-
scription in A. We represent an e-proposition as a list whose car is an action, cadr is
an effect which is a fluent expression and the rest are fluent expressions corresponding
to preconditions. Thus, an e-proposition is a list whose car is an action and whose
cdr is a list of fluent-value pairs.

DEFINITION:
e-prop (z) = (actionp (car (z)) A fvlistp (cdr (z)))

For instance, the e-proposition:

Drop causes Broken if Holding, Fragile.

is represented as shown in the theorem below.

THEOREM: eprop-examplel
e-prop (’ (drop (broken . 1) (holding . 1) (fragile . 1)))

The predicate domainp recognizes a list of e-propositions.

DEFINITION:
domainp (z)
= if z ~nil thent

else e-prop (car (z)) A domainp (cdr (z)) endif
The example below shows a representation of the Fragile Object domain.

DEFINITION:
FO-DOMAIN
= ?((drop (holding . 0) (holding . 1))
(drop (broken . 1) (holding . 1) (fragile . 1)))

THEOREM: domainp-examplel
domainp (FO-DOMAIN)

The interpreter resultlist takes a list of actions [, a state s and a domain
dom as arguments and returns the state got by executing ! in s according to the
transition function specified by dom. The interpretation of effect propositions is
done by the function compute-effects. Compute-effects returns a list containing
all fluent-value pairs made true by executing an action « in the given state s according
to the given set of effect propositions dom. The “common sense law of inertia” is
expressed using this function. The function goes through the list of effect propositions
given by dom and returns a list of all fluent expressions P such that there exists an
effect proposition e describing the effect of @« on P in dom and the preconditions
specified in e hold in s.

115

DEFINITION:

compute-effects (a, s, dom)

= if dom ~ nil then nil
elseif (a = caar (dom)) A holds-all (cddar (dom), s)
then cons (cadar (dom), compute-effects (a, s, cdr (dom)))
else compute-effects (a, s, cdr (dom)) endif

Here are some theorems that show how compute-effects operates. The
list of effects of executing ’drop in STATEL includes —H olding and Broken since the
preconditions of both the effect propositions of the Fragile Object Domain hold in
STATE]L.

THEOREM: compute-effectsl
compute-effects (’drop, STATE], FO-DOMAIN)
= ?((holding . 0) (broken . 1))

However, the effect of >drop in STATE3 defined below is just =Holding.

DEFINITION:
STATE3 = ’((holding . 1) (broken . 0) (fragile . 0))

THEOREM: compute-effects2
compute-effects (’drop, STATE3, FO-DOMAIN) = ’ ((holding . 0))

The function result returns the state got by executing an action « in s
according to the transition function specified by dom. The effects of the action in s
computed by compute-effects are appended in front of s because we only look at
the first occurrence of a fluent in a state to determine its truth value.

DEFINITION:
result (a, s, dom) = append (compute-effects (a, s, dom), s)

THEOREM: result-examplel
result (>drop, STATE1, FO-DOMAIN)
— ’((holding . 0)

(broken . 1)

(holding . 1)

(fragile . 1)

(broken . 0))

116

THEOREM: result-example2
result (’drop, STATE3, FO-DOMAIN)
— ’((holding . 0)

(holding . 1)

(broken . 0)

(fragile . 0))

Notice that we do not allow an inconsistent set of effect propositions to
occur in a domain. If a list of e-propositions that contained both

A causes P

and
A causes P

is given as an argument to result, then the execution of the action will make either P
or =P true depending on the order in which the propositions appear in the list. This
is not a limitation because we are only interested in representing the class of possible
domains and there is no domain corresponding to an inconsistent set of propositions.
Recall that we are only using the syntax of A to represent domains as terms in the
logic.

The interpreter resultlist and an example of its output on concrete data
are given below. When ’drop is executed in STATEL it has the effect of making
Holding false and Broken true. But when it is executed again it has no effect since
the preconditions of none of the effect propositions in the domain are true in the new
state.

DEFINITION:
resultlist ({, s, dom)
= if [~ nil then s
else resultlist (cdr (1), result (car (1), s, dom), dom) endif

THEOREM: resultlist-examplel
resultlist (> (drop drop), STATEl, FO-DOMAIN)
— ’((holding . 0)

(broken . 1)

(holding . 1)

(fragile . 1)

(broken . 0))

117

6.5 Examples

We are now ready to formalize the example domains given in Section 6.3
and prove whether or not a sequence of actions brings about a goal state when
executed in an initial state of a domain. The theorems given below were proved
completely automatically by the theorem prover. These theorems are distinctly sim-
pler than the theorems shown in the previous chapters because they have been used
so far for testing non-monotonic formalisms.

From the description of the Fragile Object Domain, the following theorems
similar to those given in [108] about the effects of the drop action follow. Below we
state the theorem that if Holding, Fragile and —Broken are true in state s in
the Fragile Object Domain, then executing Drop in s results in a state in which
- Holding, Fragile and Broken are true.

DEerFINITION: holding (s) = holds (? (holding . 1), s)
DEFINITION: fragile (s) = holds (’ (fragile . 1), s)
DEFINITION: broken (s) = holds (° (broken . 1), s)

DEFINITION:
frag-statep (s) = d-statep (’ (holding broken fragile), s)

THEOREM: frag-thl
(frag-statep (s0)
A holding (s0)
A fragile (s0)
A (= broken (s0))
A (sl = result (*drop, s0, FO-DOMAIN)))
— ((= holding (s1)) A fragile (s1) A broken (s1))

Here is another example from the Fragile Object Domain. If Holding and
—Broken are true in s0 of the Fragile Object Domain then —Holding will be true
on executing Drop in s0.

THEOREM: frag-th2
(frag-statep (s0) A holding (s0) A (= broken (s0)))
— (= holding (result (’drop, s0, FO-DOMAIN)))

The set of effect propositions in the Yale Shooting Domain is defined below
and is followed by the usual theorem about the death of Fred.

118

DEFINITION:

YALE-DOMAIN

= ’((load (loaded . 1))
(shoot (alive . 0) (loaded . 1))
(shoot (loaded . 0)))

The following theorem says that if —Loaded and Alive hold in s0 then
—Alive will be true in the state got by executing the sequence of actions, ’(load
wait shoot), in s0.

DEFINITION:
yale-statep (s) = d-statep (* (alive loaded), s)

THEOREM: yspl
(yale-statep (s0)
A holds (? (loaded . 0), s0)
A holds (? (alive . 1), s0))
— holds (’ (alive . 0),
resultlist (> (load wait shoot), s, YALE-DOMAIN))

The following theorem says that shooting will unload the gun in any state
of the Yale Shooting Domain.

THEOREM: ysp2
yale-statep (s0)
— (= holds (* (loaded . 1), result (*shoot, s0, YALE-DOMAIN)))

The Murder Mystery example requires reasoning about the past. The
problem is to deduce that the gun was loaded in the initial state given that Fred was
alive in the initial state and not alive after Shoot and Wait.

THEOREM: mml
(yale-statep (s0)
A holds (? (alive . 1), s0)
A holds (? (alive . 0),
resultlist (? (shoot wait), s, YALE-DOMAIN)))
— holds (’ (loaded . 1), s0)

The v-proposition
- Alive after Wait; Shoot.

is stated as follows.

119

THEOREM: mm2
(yale-statep (s0)
A holds (? (alive . 1), s0)
A holds (? (alive . 0),
resultlist (? (shoot wait), s, YALE-DOMAIN)))
— holds (’ (alive . 0),
resultlist (* (wait shoot), s0, YALE-DOMAIN))

The Stolen Car domain description in Section 6.3. gives inconsistent infor-
mation because it is specified that a car not stolen in the initial state gets stolen after
Wait is executed thrice in succession. The following theorem says that the Stolen
Car Domain is inconsistent.

DEFINITION: stolen (s) = holds (> (stolen . 1), s)

THEOREM: st2

((— stolen (s0))

A stolen (resultlist (’ (wait wait wait), s0, nil)))
— f

We now show examples that involve modifications to domains. Our first
modification does not lead to “non-monotonic” reasoning. Below we show that we
can add the e-proposition

Shoot causes —Alive if VeryNervous.

to the Yale Shooting Domain and prove the theorem that if the victim is very nervous
in the initial situation then he will die after shoot occurs.

DEFINITION:

YALE-DOMAIN1

= ’((load (loaded . 1))
(shoot (alive . 0) (loaded . 1))
(shoot (loaded . 0))
(shoot (alive . 0) (verynervous . 1)))

THEOREM: ysp3
holds (’ (verynervous . 1), s)
— holds (’ (alive . 0), result (*shoot, s, YALE-DOMAIN1))

120

As described earlier, even when a modification to a domain results in “non-
monotonic” reasoning, it can be dealt with easily in our theory. This is because all
possible domains are represented as terms in the logic. Thus, theorems about various
domains can co-exist in the theory without contradicting each other. Moreover,
our representation of the domains, allows us to describe modifications to domains
conveniently. The theorem that Light2 remains false after Switch1 is executed in the
Switch Domain (swiTcH-pDOM1) is stated as follows.

DEFINITION:
SWITCH-DOM1 = ’ ((switchl (1ightl . 1)))

THEOREM: l-thl
holds (> (1ight2 . 0), s)
— holds (’ (1ight2 . 0), result (’switchi, s, SWITCH-DOM1))

If the Switch Domain is extended with the e-proposition:
Switchl causes Light?2

the theorem that Switchl will make Light2 true can be proved about this Extended
Switch Domain named SWITCH-DOM?2.

DEFINITION:
SWITCH-DOM?2
= ((switchl (lightl . 1)) (switchl (light2 . 1)))

THEOREM: l-th2
holds (> (1ight2 . 0), s)
— holds (’ (1ight2 . 1), result (’switchi, s, SWITCH-DOM2))

We can also express the above theorem without explicitly constructing the
Extended Switch Domain. That is, we can say that “Switchl makes Light2 true in
the domain got by adding the new e-proposition to the Switch Domain”.

THEOREM: l-th4
holds (? (1ight2 . 0), s)
— holds (? (1ight2 . 1),
result (*switchi,
87
cons (’ (switchl (light2 . 1)), SWITCH-DOMI1)))

121

6.6 Proving Properties of States

Reiter [104] motivates the need to prove that certain properties are true
in all states of a domain accessible from the initial state. Such theorems are typical
of many domains. In fact, we have already proved a fair number of them in the pre-
ceding chapters. Below we prove a few typical examples similar to those discussed in
the literature. As we have seen before, the proofs of such properties require math-
ematical induction. Lifschitz (private communication) observed that most of these
theorems assumed the following general form: Executing any sequence of actions
whose elements belong to V (where V is some set of actions) in the initial situation
leads to a situation in which F holds (where I’ is some fluent expression). Below we
define two predicates klp and always-holds and show how this class of theorems
can be expressed in our formal theory. When the actions in V are exactly the actions
of a domain, then this amounts to proving that F' is true in all states reachable from
the initial state of the domain.

The predicate klp (“Kleene predicate”) checks if a given plan p consists
only of actions in the set aset, i.e., p € aset*. (Here % is the Kleene * used to
construct the set of all sequences of symbols in the action set).

DEFINITION:
klp (p, aset)
= if p ~ nil then p = nil
else (car(p) € aset) A klp (cdr (p), aset) endif

The predicate always-holds checks if the fluent expression fezp is true
in the state got as a result of executing the plan p in sl whenever p € aset*. The
semantics of actions are governed by the set of effect propositions dom passed as a
parameter.

DEFINITION:
always-holds (fezp, p, aset, s1, dom)
= (klp (p, aset) — holds (fexp, resultlist (p, s1, dom)))

Here are some examples. The following theorem says that if Fred is dead
in a situation then he cannot be revived by any action in the Yale Shooting Domain.

THEOREM: fred-dead2
holds (’ (alive . 0), si)
— always-holds (’ (alive . 0),
p7
’(load wait shoot),
sl,
YALE-DOMAIN)

122

If an object is broken in a situation then it cannot be repaired using the
actions of the Fragile Object Domain.

THEOREM: always-broken
holds (* (broken . 1), s)
— always-holds (’ (broken . 1), p, > (drop), s, FO-DOMAIN)

McCarthy [82] describes how non-monotonic reasoning might be required
if a system must take into account a previously unknown action to infer that a
previously unachievable goal can now be achieved using the new action. A similar
circumstance can be recreated if we add the following e-proposition to the Fragile
Object Domain.
Repair causes - Broken

With the additional action Repair it can be shown that a broken object can be
repaired whereas previously it couldn’t be. The revised Fragile Object Domain and
the theorem that a broken object can be repaired in any situation using the new
information are given below.

DEFINITION:

FO-DOMAIN1

= ’((drop (holding . 0) (holding . 1))
(drop (broken . 1) (holding . 1) (fragile . 1))
(repair (broken . 0)))

THEOREM: tryl
holds (* (broken . 1), s)
— holds (’ (broken . 0), result (’repair, s, FO-DOMAIN1))

6.7 Verifying Plans Common to a Class of Domains

In this section, we show how we can express and verify solutions to prob-
lems common to a class of domains using our formalization. As before, we express
plans by writing plan generating programs and proving them correct. Because we
have a representation in Lisp of all possible domains under consideration, a plan gen-
erating program may take an extra domain parameter and generate plans depending
on the domain passed to it to solve problems common to a class of domains. Such
a program automatically takes into account changes to a plan needed as a result of
changes to a domain specification. When a domain is changed, we simply need to
pass the new domain as the argument to the plan generating program instead of the
old to get the new solution. We can prove that the plan generating program works
for all domains in the class by quantifying over domains.

123

The plan generating program we have chosen as our example is a general
purpose “planning” program for the class of domains that can be described in A.
The problem (or class of problems) it solves is the problem of transforming any
initial state to any goal state. This problem is common to all domains. However,
a problem given by initial condition and goal may be solvable in some domains and
not in others. The planner accepts an initial state s, a domain, a goal (a list of fluent
expressions) and a number n indicating the length of the plan needed to solve the
problem of transforming s into a state that satisfies the goal as input, and outputs
either a sequence of actions of length n that can do the job or fif no such plan exists.
Our “planner” goes through the given domain and constructs a list of actions that
occur in the domain. It then constructs a list of all possible sequences of those actions
of length n and checks if any of the members of the list solve the given problem. If
s0, it returns the first such solution, otherwise it returns f. The Lisp program is a
straightforward breadth-first planner that generates solutions to problems depending
on the domain passed to it as an argument and by itself is uninteresting. In fact,
a major portion of research in planning in Al is concerned with the construction of
more efficient planners of this sort [113, 2]. However, because it is a function in a
logic and because we have all possible domains as terms in the logic, it can be proved
correct once and used to generate solutions to problems when a domain is modified.
Below we state the theorem that the breadth first planner can be used to solve any
problem in any domain whenever the problem has a solution.

The function collect-actions gathers a list of all actions actlist occur-
ring in the e-propositions of the given domain dom.

DEFINITION:
collect-actions (dom)
= if dom ~ nil then nil
else cons (caar (dom), collect-actions (cdr (dom))) endif

The list of all possible sequences of length n of the actions in actlist re-
turned by collect-actions is constructed by the function form-all-plans. Form-all-plans
uses two auxiliary functions. Add-action-to-plan takes a plan p and actlist as input
and returns a list of plans got by consing each member of actlist onto p.

DEFINITION:
add-action-to-plan (p, actlist)
= if actlist ~ nil then nil
else cons (cons (car (actlist), p),
add-action-to-plan (p, cdr (actlist))) endif

Form-longer-plans takes a list of plans of length k, plist, and a list of
actions actlist as input and returns a list of plans of length k 4+ 1 got by consing
every member of actlist onto every member of plist using add-action-to-plan.

124

DEFINITION:
form-longer-plans (plist, actlist)
= if plist ~ nil then nil
else append (add-action-to-plan (car (plist), actlist),
form-longer-plans (cdr (plist), actlist)) endif

Form-all-plans is defined as follows.

DEFINITION:
form-all-plans (actlist, n)
= if n ~ 0 then list (nil)
else form-longer-plans (form-all-plans (actlist, n — 1),
actlist) endif

Once all possible plans using the actions of a domain are available, we
must test them and return a solution if one is available. Get-plan does this.

DEFINITION:

get-plan (plist, dom, goal, s)

= if plist ~ nil then f
elseif holds-all (goal, resultlist (car (plist), s, dom))
then car (plist)
else get-plan (cdr (plist), dom, goal, s) endif

Find-plan is the brute-force planner that would generate a plan of length
n to solve a problem depending on the domain passed to it.

DEFINITION:
find-plan (s, dom, goal, n)
= get-plan (form-all-plans (collect-actions (dom), n), dom, goal, s)

The following theorem says that if there is a plan p in domain z to trans-
form an initial state s0 to a state that satisfies the goal goal, then find-plan (z, goal,
len (p)) is one such plan.

THEOREM: planner-complete
(domainp (z)
klp (p, collect-actions (z))
a-statep (s0)
fvlistp (goal)
holds-all (goal, resultlist (p, s0, z)))
holds-all (goal, resultlist (find-plan (s0, z, goal, len (p)), s0,))

I>>>>

Chapter 7

Conclusion

The main contribution of this dissertation is a single mechanized theory for
specifying problem domains and verifying program-like plans, a single programming
language-like representation of plans common to all domains and a method of mod-
eling domains conveniently within our framework. A problem domain specifies the
set of possible states of a physical system and a set of actions that can be executed
sequentially to change state. A problem specifies, in addition, an initial condition
and a goal condition. A solution is a plan which resembles an imperative program
for transforming any initial state of the domain to a goal state. A number of systems
ranging from conventional von Neumann machines to robots can be viewed as prob-
lem domains. The main application we envisage for the mechanized theory presented
in this dissertation is software development, be it software for robots or sequential,
imperative programs to be run on computers. At various stages of the software life
cycle, a program design is expressed as a set of primitive actions and a strategy to
combine them, using constructs for conditional execution, iteration and procedure
composition, into a program that satisfies a given problem specification. At present,
there is considerable emphasis on verifying that a program meets its specification
as early as possible in the software life cycle preferably well before the program is
coded in a specific programming language. Our mechanized theory is suitable for
expressing program designs as plans at various stages of software development and
for verifying whether or not such a plan solves the problem under consideration. Our
emphasis in this dissertation, though, has been on verifying plans with respect to
the requirements specification, the specification of programs in terms of objects of
the physical world rather in terms of data structures of a programming language.

There are a number of advantages to our approach. Our method of specify-
ing problem domains and verifying plans does not suffer from many of the limitations
of current approaches such as the need for stating explicitly a large number of sepa-
rate frame axioms and state constraints necessary for reasoning about actions with
side-effects. Our plan representation has the expressive power of a programming lan-
guage in that we can express solutions that involve sequencing, conditional execution,
iteration and composition of actions. Our formalization also allows us to verify me-
chanically many other properties of plans such as efficiency requirements. Because
both specifications and plans are executable they can be tested a la programs.

125

126

In addition, the dissertation addresses the problem of program modifica-
tion, the problem of making changes to a plan efficiently when changes are made to
the domain specification. Because we have a single mechanized framework for devel-
oping programs, we can minimize the work required for redesigning and proving a
plan correct when a domain specification is modified by making use of as much of the
previous development effort (subplans, specifications, proofs, etc.) as possible. Our
approach to dealing with incremental changes to domain specifications is to represent
domains as objects in the logic so that solutions to problems common to a class of
domains can be expressed and proved correct. Since such solutions are parameterized
by domains, the solution to a changed domain can be produced automatically. We
show that by choosing a suitable representation for domains, small modifications to
domains can be expressed in the logic itself.

7.1 Future Work

There are many directions in which the work described here can be ex-
tended. One route is to apply the theory to the task of mechanizing larger, more
realistic problem domains than those given in the dissertation. Another is to carry
out a complete top-down, stepwise development of a sizable program. A third is
to try and obtain similar mechanizations of more complicated classes of problem
domains such as those in which the actions of the environment must be taken into
account or in which concurrent actions are allowed. Yet another thing that we would
like to do is to explore applications where partial actions may be needed and figure
out how eval$ can be made to work on functions introduced via CONSTRAIN. We
hope that the mechanized theory presented here would be useful for tackling these
problems.

Appendix A

Formalization of the Blocks World

This file describes a formalization of the blocks world described in Chapter
1 using our method of modeling domains. There are two actions: move a block to
the top of another block and unstack a block, i.e., move it to the table. We define a
predicate on the states of the world, a predicate on the possible actions, a transition
function result that maps a state and an action into the resulting state and an
interpreter resultlist that takes a state and a plan and returns the state got after
executing the plan.

DEFINITION:
nth (n, 1)
= if n ~ 0 then car ()
else nth (n — 1, cdr (!)) endif

DEFINITION:
len (1)
= if [~ nil then 0
else 1 + len (cdr () endif

A block is a litatom.
DEFINITION: blockp (z) = litatom (z)

A stack is a non-empty list of distinct blocks with the first block clear and
the last block on the table. We insist that the cdr of the last element be equal to
NIL.

DEFINITION:
stackp (/)
= if [~ nil then f
elseif cdr (I) = nil then blockp (car ({))
else blockp (car ({)) A (car (I) & cdr ({)) A stackp (cdr ({)) endif

127

128

Two lists are disjoint if they do not have common members.

DEFINITION:
disjoint (11, 12)
= if l1 ~ nil then t
else (car (1) ¢ [2) A disjoint (cdr ({1), [2) endif

A given list is disjoint from each of the members of the given list of lists.

DEFINITION:
disjointlist (s1, I1)
= if I/ ~ nil then t
else disjoint (s, car ({1)) A disjointlist (s, cdr (/1)) endif

A state is a set of stacks possibly empty. No two stacks have any blocks
in common, i.e., they are pairwise disjoint. Once again we insist that the cdr of the
last element in the list be NIL.

DEFINITION:
bw-statep (z)
= if z ~nil
then if z = nil then t
else f endif
else stackp (car (z))
A disjointlist (car (z), cdr (z))
A bw-statep (cdr (z)) endif

Here are the predicates and functions on blocks world states.

The predicate ontable. A block is on the table provided it is last on the
list of some stack.

Bottomp checks if a block is the bottom block of a given stack.

DEFINITION:

bottomp (b, st)

= if st ~ nil then f
elseif cdr (st) ~ nil then b = car (st)
else bottomp (b, cdr (st)) endif

Find the stack to which a block belongs. This can also be used to assert
that a block exists.

129

DEFINITION:
find-stack-of-block (b, s)
= if s ~ nil then f
elseif b € car(s) then car(s)

else find-stack-of-block (b, cdr (s)) endif
DEFINITION: ontable (b, s) = bottomp (b, find-stack-of-block (b, s))

A block is on top of another block if they appear in sequence in a tower.

The function consecp checks if the given blocks appear in succession in the
list of blocks constituting the stack.

DEFINITION:

consecp (b1, b2, st)

= if st ~ nil then f
elseif cdr (st) ~ nil then f
elseif car (st) = b1 then b2 = cadr (st)
else consecp (b1, b2, cdr (st)) endif

DEFINITION:
on (b1, b2, s) = consecp (b1, b2, find-stack-of-block (b1, s))

A block is clear if it is the topmost block of a tower.
DEFINITION: clear (b, s) = assoc (b, s)

Let us go on to actions. We have two actions, move and unstack. The
actions are represented as list (’move, z, y) and list (*unstack, z) where x and y are
litatoms that stand for blocks.

We define constructors for the actions as follows:
DEFINITION: move (b1, b2) = list (*move, b1, b2)
DEFINITION: unstack (b) = list (’unstack, b)

We want to define a predicate for plans - sequences of actions. For this we
need a predicate for actions.

DEFINITION: movep (z) = (car (z) = *move)

130

DEFINITION: unstackp (z) = (car (z) = ’unstack)

A plan in the blocks world is a sequence of either move or unstack actions.
We allow empty plans.

DEFINITION: actionp (z) = (movep (z) V unstackp (z))

DEFINITION:
planp (z)
= if z ~ nil then t

else actionp (car (z)) A planp (cdr (z)) endif

Specifications of actions. Here are the functions res-move and res-unstack
that specify the input-output behavior of the move and unstack actions. These are
called by the result function. exec-move is called by res-move if the preconditions of
move are satisfied. It deletes the stacks in which bl and b2 are in s. Then it forms
the new stacks and adds them on depending on whether there are blocks under bl
in s.

DEFINITION:
delete (z, [)
= if [~ nil then /
elseif z = car () then cdr (I)
else cons (car (1), delete (z, cdr (1)) endif

DEFINITION:
exec-move (b1, b2, s)
= if cdr (assoc (b1, s)) ~ nil

then cons (cons (b1, assoc (b2, s)),

delete (assoc (b1, s), delete (assoc (b2, s), 5)))
else cons (cons (b1, assoc (b2, s)),
cons (cdr (assoc (b1, s)),
delete (assoc (b1, s), delete (assoc (b2, s), 5)))) endif

Res-move returns an error state when the preconditions of move are not
satisfied. Otherwise it calls exec-move. Thus it fully specifies the move action.

DEFINITION:

res-move (b1, b2, s)

= if (b1 = b2) V (= clear (b1, s)) V (= clear (b2, s))
then list (*failed, ’res-move, s)
else exec-move (b1, b2, s) endif

131

Similary exec-unstack returns the state got by unstacking b in s when its
preconditions are satisfied.

DEFINITION:

exec-unstack (b, s)

= if cdr (assoc (b, s)) ~ nil then cons (list (b), delete (assoc (b, s), s))
else cons (cdr (assoc (b, s)), cons (list (b), delete (assoc (b, s), s))) endif

Res-unstack calls exec-unstack when its preconditions are satisfied. Oth-
erwise it returns an error state.

DEFINITION:

res-unstack (b, s)

= if — clear (b, s) then list (’failed, ’unstack, s)
else exec-unstack (b, s) endif

The function result behaves as follows. If the given state is an error state
then it returns it. Otherwise it executes the given action on the given state depending
on the action by calling either res-move or res-unstack.

DEFINITION:

result (a, $)

= if car(s) = *failed then s
elseif movep (a) then res-move (cadr (a), caddr (a), s)
else res-unstack (cadr (a), s) endif

Resultlist executes a list of actions or plan | in the state s and returns the
resulting state.

DEFINITION:
resultlist ({, s)
= if [~ nil then s
else resultlist (cdr (1), result (car (1), s)) endif

A.1 Verification of Blocks World Plans

We will first prove that the result of executing legal move and unstack
actions in a blocks world state is a legal blocks world state since the proof is quite
intricate. Then we will prove that plans achieve goals.

Some rewrite rules for result.

132

THEOREM: resultl
(bw-statep (s) A ((— clear (b1, s)) V (b1 = b2) V (— clear (b2, s))))
— (result (move (b1, b2), s) = list (*failed, ’res-move, s))

THEOREM: resultb

(bw-statep (s)

A clear (b1, s)

A clear (b2, s)

A (b1 # b2)

A (cdr (assoc (b1, s)) ~ nil))

— (result (move (b1, b2), s)

= cons (cons (b1, assoc (b2, s)),
delete (assoc (b1, s), delete (assoc (b2, s), s))))

THEOREM: result6
(bw-statep (s)
A clear (b1, s)
A clear (b2, s)
A (b1 # b2)
A listp (cdr (assoc (b1, s))))
— (result (move (b1, b2), s)
= cons (cons (b1, assoc (b2, s)),
cons (cdr (assoc (b1, s)),

delete (assoc (b1, s), delete (assoc (b2, s), 5)))))
The value of result for an unstack action.

THEOREM: result2
(bw-statep (s) A (= clear (b, s)))
— (result (unstack (b), s) = list (*failed, ’unstack, s))

THEOREM: result3
(bw-statep (s) A clear (b, s) A (cdr (assoc (b, s)) ~ nil))
— (result (unstack (b), s) = cons (list (b), delete (assoc (b, s), 5)))

THEOREM: result4
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, s))))
— (result (unstack (b), s)
= cons (cdr (assoc (b, s)), cons (list (b), delete (assoc (b, s), 5))))

133

Now we can disable the definitions of result, unstack and move since we
have all the info as rewrite rules.

EVENT: Disable result.

EVENT: Disable unstack.

EVENT: Disable move.

We want to prove that if the preconditions are satisfied then the result of
doing a move or unstack action is always a blocks world state. The new blocks world
state is formed by deleting stacks and adding new stacks to the state. Therefore, we
want to prove that deleting two stacks from a set results in a set.

If s1 is disjoint with all the stacks in 11 then it is disjoint with all the stacks
got by deleting x from 11.

THEOREM: disj2
disjointlist (s1, 1) — disjointlist (s, delete (z, 1))

Deleting a member from a set of stacks leaves it as a set of stacks.

THEOREM: del-setl
bw-statep (s) — bw-statep (delete (z, s))

Deleting the stacks on which bl and b2 are results in a set of stacks.

THEOREM: set-del-b1-b2
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— bw-statep (delete (assoc (b1, s), delete (assoc (b2, s), s)))

Now we want to prove that adding the new stacks results in a set of stacks.

First we establish that the lists to be added are stacks. Then we prove that
they are disjoint from the rest of the stacks in the state got by deleting the original
stacks.

THEOREM: assoc-stackl
(bw-statep (s) A assoc (b, s)) — stackp (assoc (b, s))

The cdr of a stack is a stack provided it is not empty.

134

THEOREM: stackp-cdrxl
(stackp (st) A listp (cdr (st))) — stackp (cdr (st))

THEOREM: litatom-stackl
(bw-statep (s) A (= litatom (b))) — (= assoc (b, s))

We want to prove that moving a block from st1 to the top of st2 results in
a stack provided st1 is disjoint from st2. We do so by proving the following lemma.
If there are two distinct stacks st1 and st2 in a state s and there is a block b in stl
then b is not in st2.

Disjointlist means disjoint with every member in the list.

THEOREM: disjoint-mem1
(disjoint (s1, z) A (z € s1)) — (z & 2)

THEOREM: disjointlist-mem1
(disjointlist (s1,) A (s2 €) A (z € s1)) = (z & s2)

THEOREM: bexl

(bw-statep (s)
A (stl € s)

THEOREM: assoc-carl
assoc (z, [) — (car (assoc(z, [)) = z)

Establish that bl and b2 are on distinct stacks.
THEOREM: exec-movell
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))

— (assoc (b1, s) # assoc (b2, s))

THEOREM: clear-stackp
(bw-statep (s) A clear (b, s)) — (assoc (b, s) € s)

Seems to have trouble proving assoc (b, s) is a listp.

135

THEOREM: stack-list1
(bw-statep (s) A clear (b, s)) — listp (assoc (b, s))

THEOREM: exec-movel2
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— (b1 ¢ assoc (b2, s))

We can now establish that the new constructs are stacks.

THEOREM: new-stackl
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— stackp (cons (b1, assoc (b2, s)))

Now we want to prove that the new stacks are disjoint with the remaining
stacks. We prove this by showing that: (a) If a stack is disjointlist with 11 then its
cdr is disjointlist with it. (b) If two stacks are disjointlist with 11 then the stack
formed by moving the top of one to the top of another is also disjointlist with 11.

If stacks st1 and st2 are disjoint with a stack st3 then the stack formed by
moving the top of st1 to the top of st2 is also disjoint with st3.

THEOREM: disj-consl
(stackp (st1)
A stackp (st2)
A stackp (st3)
A disjoint (st1, st3)
A disjoint (st2, st3))
— disjoint (cons (car (st1), st2), st3)

If there are two stacks that are disjoint with a list of stacks s then the stack
formed by moving the top of one to the top of another is also disjointlist with s.

THEOREM: disjointlist-cons
(stackp (st1)
A stackp (st2)
bw-statep (s)
disjointlist (st1, s)
disjointlist (st2, s))
disjointlist (cons (car (st1), st2), s)

>

If a stack stl is disjoint with another stack st2 then its cdr is also disjoint
with it.

136

THEOREM: disjoint-cdrl
(stackp (st1) A stackp (st2) A disjoint (st1, st2))
— disjoint (cdr (st1), st2)

If a stack stl is disjointlist with 11 then its cdr is also disjointlist with 11.

THEOREM: disjointlist-cdr
(stackp (st1) A bw-statep ({1) A disjointlist (st1, I1))
— disjointlist (cdr (st1), I1)

Basically we want to prove that a stack is disjoint from the rest of the
members of a set of stacks: a key lemma.

The following are lemmas needed to prove that disjoint commutes.

THEOREM: disjoint-nlistp
(s2 ~ nil) — disjoint (s1, s2)

THEOREM: disjoint-cdr
(car (s1) ¢ s2) — (disjoint (s2, cdr (s1)) = disjoint (s2, s1))

Disjoint commutes.

THEOREM: disjoint-comm
disjoint (s, s2) = disjoint (s2, s1)

Lemma: If a stack is deleted from a set of stacks then it is disjointlist with
the remaining stacks.

THEOREM: del-disjointlist2
(bw-statep (s) A (st € s)) — disjointlist (s¢, delete (s¢, s))

THEOREM: set-del3
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— (st1 € delete (st2, s))

Now we can prove that the stacks containing bl and b2 are disjointlist
with the set of stacks got by deleting them.

THEOREM: exec-movel5
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— disjointlist (assoc (b1, s), delete (assoc (b1, s), delete (assoc (b2, s), s)))

137

THEOREM: exec-movel6

(bw-statep (s)

clear (b1, s)

clear (b2, s)

(b1 # b2)

listp (cdr (assoc (b1, s))))
disjointlist (cdr (assoc (b1, s)),

delete (assoc (b1, s), delete (assoc (b2, s), 5)))

I>>>>

We can prove one case when the rest of the stacks containing b1 is empty.
When we add two stacks we must prove that the two are disjoint. These are formed
from two existing stacks which we prove are disjoint.

The stacks on which two distinct clear blocks rest are disjoint.

THEOREM: set-disjoint1
(bw-statep (s1) A (st1 € s1) A (st2 € s1) A (stl # st2))
— disjoint (st1, st2)

THEOREM: dist-stacks2
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— disjoint (assoc (b1, s), assoc (b2, s))

If two stacks stl and st2 are disjoint then the stacks got by moving the
top of st1 to the top of st2 are also disjoint.

THEOREM: disjoint-movel
(stackp (st1) A stackp (st2) A disjoint (st1, st2))
— disjoint (cons (car (st1), st2), cdr (st1))

THEOREM: disjoint-move2
(stackp (st1) A stackp (st2) A disjoint (st1, st2))
— disjoint (cdr (st1), cons (car (st1), st2))

THEOREM: exec-movel4
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— disjoint (cdr (assoc (b1, s)), cons (b1, assoc (b2, s)))

The stack formed by bl on top of the stack assoc (b2, s) is disjoint with
the remaining stacks.

138

THEOREM: exec-movel3
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— disjointlist (cons (b1, assoc (b2, s)),
delete (assoc (b1, s), delete (assoc (b2, s), s)))

If there is a state s in which there are distinct blocks b1l and b2 that are
clear then moving block bl to the top of b2 in s results in a blocks world state.

THEOREM: move(l
(bw-statep (s)
A clear (b1, s)
A clear (b2, s)
A (cdr (assoc (b1, s)) ~ nil)
A (b1 # b2))
— bw-statep (result (move (b1, b2), s))

THEOREM: move(2
(bw-statep (s)

clear (b1, s)

clear (b2, s)

listp (cdr (assoc (b1, s)))
(b1 # b2)

bw-statep (result (move (b1, 82), s))

I>>>>

THEOREM: move-sitl
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— bw-statep (result (move (b1, b2), s))

We want to prove that unstack also results in a valid blocks world state.

THEOREM: unstackll
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, s))))
— (b & cdr (assoc (b, s)))

THEOREM: unstackl2
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, s))))
— disjointlist (cdr (assoc (b, s)), delete (assoc (b, s), s))

We want to prove that if a stack is disjointlist with s then the stack formed
by its car is also disjointlist with s. We prove the general theorem that if a stack is
disjointlist with s then its subsets are also disjointlist with s.

139

DEFINITION:
subset (s1, s2)
= if s1 ~ nil then t
else (car(s1) € s2) A subset (cdr (s1), s2) endif

If a stack st1 is disjoint with a stack st2 then a subset of stl is also disjoint
with st2.

THEOREM: disj-subset
(stackp (st1) A stackp (st2) A subset (st3, st1) A disjoint (st1, st2))
— disjoint (st3, st2)

If there is a stack st that is disjoint with a set of stacks s then every subset
of st is also disjoint with s.

THEOREM: disjointlist-subset
(stackp (st1) A disjointlist (st, s) A bw-statep (s) A subset (st2, st1))
— disjointlist (st2, s)

THEOREM: disjointlist-single
(bw-statep (s) A clear (b, s))
— disjointlist (list (b), delete (assoc (b, s), s))

If a clear block is unstacked in a state then it results in a state.

THEOREM: unstack01
(bw-statep (s) A clear (b, s) A (cdr (assoc (b, s)) ~ nil))
— bw-statep (result (unstack (d), s))

THEOREM: unstack02
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, s))))
— bw-statep (result (unstack (d), s))

THEOREM: unstack-sitl
(bw-statep (s) A clear (b, s)) — bw-statep (result (unstack (b), s))

Having proved that the move and the unstack actions result in legal blocks
world states, we turn our attention to verifying plans. Plans are expressed by plan
generating Lisp programs and proved correct.

Example 1 : Plan to clear a block. The following lemmas are needed to
establish admissibility of makeclear-gen. The measure len (find-stack-of-block (b, s))
decreases with every recursive call.

THEOREM: mem-find0
(bw-statep (s) A find-stack-of-block (b, s))
— (find-stack-of-block (b, s) € s)

THEOREM: mem-find6
(bw-statep (s) A find-stack-of-block (b, s))
— (b € find-stack-of-block (b, s))

THEOREM: find-mem-cdr

(bw-statep (s)

A find-stack-of-block (b, s)

A (b # car (find-stack-of-block (b, s))))
— (b € cdr (find-stack-of-block (b, s)))

140

Here is a theorem about the effect of unstack that we need. If I unstack

the top of a non-empty stack in a state then the cdr of the stack is a member of the

resulting state.

THEOREM: clear-carl

(bw-statep (s) A (st € s)) — assoc (car (st), s)

THEOREM: disjoint-carl

(stackp (st1) A stackp (st2) A disjoint (st1, st2))

— (car (stl) # car (st2))

THEOREM: state-stackp

(bw-statep (s) A (= stackp (st))) — (st € s)

THEOREM: not-eq-carl

(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))

— (car (stl) # car (st2))

THEOREM: not-eq-car2

(bw-statep (s) A (st € s) A (st # car (s))) — (car(st) # caar (s))

THEOREM: state-cdrl

(listp (s) A bw-statep (s)) — bw-statep (cdr (s))

This is an important lemma. This states that if there is a stack st in s

then trying to find the stack whose car is the top of st will result in st.

141

THEOREM: assoc-car2
(bw-statep (s) A (st € s)) — (assoc (car (st), s) = st)

THEOREM: result?
(bw-statep (s) A (st € s) A listp (cdr (st)))
— (result (unstack (car (st)), s)
= cons (cdr (st), cons (list (car (st)), delete (st, s))))

THEOREM: unstack-effl
(bw-statep (s) A (st € s) A listp (cdr (st)))
— (cdr (st) € result (unstack (car (st)), s))

EvENT: Disable bw-statep.

Proving find-assocl

THEOREM: disjointlist-mem2
(disjointlist (s1,) A (s2 € I) A (z € s2)) = (z & s1)

THEOREM: find-stack3
(bw-statep (s) A (st € s) A (b € st))
— (find-stack-of-block (b, s) = st)

If a block is clear then find-stack returns the same stack as does assoc.
This is because we know b belongs to assoc (b, s) and by mem-find3 it follows.

THEOREM: clear-mem1
(bw-statep (s) A clear (b, s)) — (b € assoc (b, s))

THEOREM: find-assocl
(bw-statep (s) A clear (b, s)) — (find-stack-of-block (b, s) = assoc (b, s))

THEOREM: find5
(bw-statep (s)
A find-stack-of-block (b, s)
A (b # car (find-stack-of-block (b, s))))
— (find-stack-of-block (b,
result (unstack (car (find-stack-of-block (b, s))), s))
= cdr (find-stack-of-block (b, s)))

142

THEOREM: find-stack-listp
(bw-statep (s) A find-stack-of-block (b, s))
— listp (find-stack-of-block (b, s))

DEeFINITION: m3 (b, s) = len (find-stack-of-block (b, s))
Plan to clear a block by unstacking one by one the blocks on top of it.

DEFINITION:
makeclear-gen (b, s)
= if (- find-stack-of-block (b, s)) V (= bw-statep (s)) then f
elseif b = car (find-stack-of-block (b, s)) then nil
else cons (unstack (car (find-stack-of-block (b, s))),
makeclear-gen (b,
result (unstack (car (find-stack-of-block (b,

s)));
s))) endif

Proving that plans generated by makeclear-gen achieve the desired goal.

THEOREM: mke-11

(bw-statep (s)

A find-stack-of-block (b, s)

A (car (find-stack-of-block (b, s)) = b))
— assoc (b,)

THEOREM: mke-12
(bw-statep (s)
A find-stack-of-block (b, s)
A (b # car (find-stack-of-block (b, s))))
— find-stack-of-block (b, result (unstack (car (find-stack-of-block (b, s))), s))

THEOREM: makeclear-works
(bw-statep (s) A find-stack-of-block (b, s))
— clear (b, resultlist (makeclear-gen (b, s), s))

Makeclear-gen generates valid plans.

THEOREM: make-clear-is-a-plan
planp (makeclear-gen (b, s))

Makeclear-gen results in a legal blocks world state.

143

THEOREM: makeclear-bwstate
(bw-statep (s) A find-stack-of-block (b, s))
— bw-statep (resultlist (makeclear-gen (b, s), s))

THEOREM: makeclear-worksl
(bw-statep (s)
A find-stack-of-block (b, s)
A (pl = makeclear-gen (b, s))
A (sl = resultlist (p1, s)))
— (bw-statep (s1) A planp (pI) A clear (b, s1))

We would also like to prove that makeclear-gen preserves the set of blocks
that exist in its initial state. The proof of this was not carried out. But the following
definitions of set-equal and set-of-blocks were used in the statement of the theorem
given in the dissertation.

DEFINITION:
set-equal (s1, s2)
= if s/ ~ nil then s2 ~ nil
else (car (s1) € s2) A set-equal (cdr (s1), delete (car (s1), s2)) endif

DEFINITION:
set-of-blocks ()
= if s ~ nil then nil
else append (car (s), set-of-blocks (cdr (s))) endif

Example 2 - Plan to invert one tower on top of another. Invert-gen is a
plan generator to invert one tower over the top of another.

DEFINITION:
invert-gen (st1, st2, s)
= if st/ ~ nil then nil
else cons (move (car (st1), car (st2)),
invert-gen (cdr (st1),
cons (car (st1), st2),
result (move (car (st1), car (st2)), s))) endif

DEFINITION:
reverse (/)
= if [~ nil then nil
else append (reverse (cdr (1)), list (car (1))) endif

THEOREM: mem-cadrl
z € cons (y, cons(z, 2))

THEOREM: mem-carl
z € cons(z, y)

THEOREM: result9
(bw-statep (s)
A (stl € s)
A (st2 € s)
A listp (edr (st1))
A (st # st2))
— (result (move (car (st1), car (st2)), s)
= cons (cons (car (st1), st2),
cons (cdr (st1), delete (st1, delete (st2, s)))))

THEOREM: result10
(bw-statep (s)

stl # st2))
result (move (car (st1), car (st2)), s)
= cons (cons (car (st1), st2), delete (st1, delete (st2, s))))

A
A (cdr (st1) ~ nil)
A
=

THEOREM: move-effl
(bw-statep (s)
A (st1 € s)
A (st2 € s)
A listp (edr (st1))
A (st1 # st2))
— (cdr (st1) € result (move (car (st1), car (st2)), s))

THEOREM: move-eff21
(bw-statep (s)

stl # st2))

(

(cdr (st1) ~ nil)

(

(cons (car (st1), st2) € result (move (car (st1), car (st2)), s))

144

145

THEOREM: move-eff22
(bw-statep (s)
A (st1 € s)
A (st2 € s)
A listp (edr (st1))
A (st # st2))
— (cons (car (st1), st2) € result (move (car (st1), car (st2)), s))

THEOREM: move-eff2
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— (cons (car (st1), st2) € result (move (car (st1), car (st2)), s))

EvENT: Disable disjoint-comm.

EvENT: Disable disjoint-cdr.

THEOREM: not-eq-13
(listp (st1) A listp (st2) A disjoint (st1, st2))
— (cdr (st1) # cons (car (st1), st2))

THEOREM: not-eq-st1-st2
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— (cdr (st1) # cons (car (st1), st2))

THEOREM: bw-statel
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— bw-statep (result (move (car (st1), car (st2)), s))

THEOREM: append-assocl
append (append (z, y), z) = append (z, append (y, 2))

THEOREM: invert-worksl
(bw-statep (s)
A (st1 € s)

146

DEFINITION:
£6 (st1, st2, s)
= if st/ ~nil then t
elseif cdr (st1) ~ nil then t
else 6 (cdr (st1),
cons (car (st1), st2),
result (move (car (st1), car (st2)), s)) endif

THEOREM: invert-works
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— (append (reverse (st1), st2) € resultlist (invert-gen (st1, st2, s), s))

Invert-gen generates valid plans.

THEOREM: invert-isa-plan
planp (invert-gen (st1, st2, s))

Invert-gen plans results in a valid blocks world state.

THEOREM: bw-state2
(bw-statep (s)
A (cons(z, z) € s)
A (cons (v, w) € s)
A (cons(z, z) # cons (v, w)))
— bw-statep (result (move (z, v), s))

THEOREM: invert-resultsin-state
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— bw-statep (resultlist (invert-gen (st1, st2, s), s))

Invert-gen works.

THEOREM: invert-works2
(bw-statep (s)
A (stl € s)

A
A (st # st2)

A (pl = invert-gen (st1, st2, s))

A (sl = resultlist (p1, s)))

— (bw-statep (sZ) A planp (pI) A (append (reverse (st1), st2) € s1))

Example 3. Plan to unstack all the blocks in a given tower.

147

DEFINITION:
unstack-tower-gen (st, s)
= if st ~ nil then nil
elseif cdr (st) ~ nil then nil
else cons (unstack (car (st)),
unstack-tower-gen (cdr (st), result (unstack (car (st)), s))) endif

The following checks if all blocks of stack st are on the table and clear in
the state s.

DEFINITION:
ontable-list (st, s)
= if st ~ nil then t
else (find-stack-of-block (car (st), s) = list (car (st)))
A ontable-list (cdr (st), s) endif

The following events prove unstack-tower-gen works.

THEOREM: result8
(bw-statep (s) A (st € s) A (cdr (st) ~ nil))
— (result (unstack (car (st)), s) = cons (list (car (st)), delete (st, s)))

Unstack stack st2 leaves stack st1 undisturbed.

THEOREM: unstack-eff41
(bw-statep (s)

A (st1 € s)

A (st2 € s)

A (cdr (st2) ~ nil)

A (stl # st2))

— (st1 € result (unstack (car (st2)), s))
THEOREM: unstack-eff42

(bw-statep (s)

A (st1 € s)

A (st2 € s)

A listp (cdr (st2))

A (st # st2))

— (st1 € result (unstack (car (st2)), s))

THEOREM: unstack-eff4
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— (st1 € result (unstack (car (st2)), s))

THEOREM: unstack-eff6
(bw-statep (s) A (st € s))
— (list (car (st)) € result (unstack (car (st)), s))

DEFINITION:
3 (st, s)
= if st ~ nil then t
elseif cdr (st) ~ nil then t
else f3 (cdr (st), result (unstack (car (st)), s)) endif

THEOREM: unstack-tower-eff5

(bw-statep (s) A (st1 € s) A (b & st1) A (list (b) € 5))

— (find-stack-of-block (b, resultlist (unstack-tower-gen (st1, s), s))
= list (b))

THEOREM: mem-cdr3
(bw-statep (s) A (st € s)) — (car(st) ¢ cdr (st))

THEOREM: unstack-tower-works
(bw-statep (s) A (st € s))
— ontable-list (st, resultlist (unstack-tower-gen (st, s), s))

THEOREM: unstack-tower-isa-plan
planp (unstack-tower-gen (st, s))

THEOREM: unstack-tower-eff51
(bw-statep (s) A (st € s) A listp (cdr (st)))
— (find-stack-of-block (car (st),
resultlist (unstack-tower-gen (cdr (st),
result (unstack (car (st)),
S))7
result (unstack (car (st)), s)))
= list (car (st)))

THEOREM: unstack-tower-state
(bw-statep (s) A (st € s))
— bw-statep (resultlist (unstack-tower-gen (st, s), s))

Unstack-tower-gen works.

148

149

THEOREM: unstack-tower-works1
(bw-statep (s)
A (st €s)
A (pl = unstack-tower-gen (st, s))
A (sl = resultlist (p1, s)))
— (bw-statep (s1) A planp (pI) A ontable-list (st, s1))

EvVENT: Enable bw-statep.
EvVENT: Enable disjoint-comm.
EvVENT: Enable disjoint-cdr.

Example 4. Plan to unstack all towers so that all the blocks are on the
table and clear.

The function get-block goes through a blocks world state and returns a
block that is not on the table. Otherwise it returns F. Thus, if get-block returns F
all the blocks in the state are on the table and (hence) clear.

DEFINITION:
get-block (s)
= if s ~ nil then f
elseif — bw-statep (s) then f
elseif cdar (s) ~ nil then get-block (cdr (s))

else caar (s) endif

Unstack-all-towers-gen is a plan to unstack all the blocks in a state so that
they are on the table. We want to prove that it will terminate, i.e., we must prove
that get-block (s) will eventually become false. We use the difference in the number
of blocks and the number of singletons in a state as a metric.

DEFINITION:
number-of-blocks (s)
= if s ~ nil then 0

else len (car (s)) 4+ number-of-blocks (cdr (s)) endif

DEFINITION:

number-of-singletons (s)

= if s ~ nil then 0
elseif cdar (s) = nil then 1 4+ number-of-singletons (cdr (s))
else number-of-singletons (cdr (s)) endif

150

DEFINITION:
ml (s) = (number-of-blocks (s) — number-of-singletons (s))

To establish admissibility we must prove that the number of blocks in a
state remains unchanged after an unstack operation.

THEOREM: gbl
get-block (s) — assoc (get-block (s), s)

THEOREM: gh2
get-block (s) — listp (cdr (assoc (get-block (s), 5)))

THEOREM: result-get-block
get-block (s)
— (result (unstack (get-block (s)), s)
= cons (cdr (assoc (get-block (s), s)),
cons (list (get-block (s)), delete (assoc (get-block (s), s), 5))))

THEOREM: numl

((st € s) A listp (cdr (st)))

— ((len (cdr(st)) + 1 + number-of-blocks (delete (st, s)))
= number-of-blocks (s))

THEOREM: mem-assocl
assoc (z, y) — (assoc (z, y) € y)

THEOREM: unstack-leaves-numblocks-unchanged

get-block (s)

— (number-of-blocks (result (unstack (get-block (s)), s))
= number-of-blocks (s))

THEOREM: num?2
((st € s) A listp (cdr (st)))
— (number-of-singletons (delete (s¢, s)) = number-of-singletons (s))

THEOREM: unstack-increases-num-singletons
get-block (s)
— (number-of-singletons (s)
< number-of-singletons (result (unstack (get-block (s)), s)))

THEOREM: num3l
((y1 < y2) A (y2 < z2) A (21 = 22))
= (22 — y2) < (x1 — y1)) = t)

THEOREM: nsing-leq-nblocks
(number-of-singletons (s) < number-of-blocks (s)) = t

THEOREM: nsing-less-than-nblocks
get-block (s) — (number-of-singletons (s) < number-of-blocks (s))

THEOREM: adml
get-block (s) — (m1 (result (unstack (get-block (s)), s)) < ml(s))

EVENT: Disable m1.

EvENT: Disable result-get-block.

DEFINITION:
unstack-all-towers-gen ()
= if get-block (s)
then cons (unstack (get-block (s)),
unstack-all-towers-gen (result (unstack (get-block (s)), s)))
else nil endif

All the towers in a state can be unstacked.

THEOREM: unstackalll
bw-statep (s) — (- get-block (resultlist (unstack-all-towers-gen (s), s)))

The resulting state is a blocks world state.

THEOREM: get-block-litatom
(bw-statep (s) A get-block (s)) — litatom (get-block (s))

THEOREM: unstackall2
bw-statep (s) — bw-statep (resultlist (unstack-all-towers-gen (s), s))

unstack-all-towers-gen generates plans.

THEOREM: unstackall3
planp (unstack-all-towers-gen (s))

151

152

Unstack-all-towers-gen works.
THEOREM: unstack-all-towers-works
(bw-statep (s)
A (p! = unstack-all-towers-gen (s))
A (sl = resultlist (p1, s)))
— (bw-statep (s1) A planp (pI) A (= get-block (s1)))

Here are examples from Chapter 2 of theorems on concrete data. I have
also included statements of theorems that were not verified.

Example of a blocks world state.
DEFINITION: STATEl = ?((a b ¢c) (d e))

THEOREM: blocks-world-examplel
bw-statep (STATEL)

Find-stack-of-block examples.

THEOREM: find-stack-examplel
find-stack-of-block (’c, sTATE1l) = *(a b c)

THEOREM: find-stack-example2
= find-stack-of-block (g, STATE1)

Plan example.

DEFINITION:
PLAN]1 = ’((unstack a) (move b a) (move c b))

THEOREM: planp-examplel
planp (PLANT)

Examples of moving and unstacking blocks both legal and illegal.

THEOREM: legal-move-example
result (move (*a, ’d), sTATEL) = *((a d e) (b c))

THEOREM: legal-unstack-example
result (unstack (*a), sTaTEL) = > ((b ¢) (a) (d e))

153

THEOREM: illegal-move-example
result (move (*b, *d), STATE])
= ’(failed res-move ((a b c) (d e)))

THEOREM: illegal-unstack-example
result (unstack (*e), STATE]1) = ’(failed unstack ((a b c) (d e)))

Resultlist examples

THEOREM: resultlist-legal
resultlist (PLAN1, sTATEL) = *((c b a) (d e))

THEOREM: resultlist-illegal
resultlist (* ((unstack b) (move a c)), STATE])
= ’(failed unstack ((a b c) (d e)))

Makeclear example on a concrete state. There exists a sequence of actions
to clear block 'C in statel.

THEOREM: makeclear-gen-ex1
((p = makeclear-gen (’c, STATEL)) A (s = resultlist (p, STATEL)))
— (bw-statep (s) A planp (p) A clear (’c, s))

THEOREM: invert-gen-ex1
((p! = invert-gen (’(a b c), *(d e), STATEL))
A (sl = resultlist (p1, sSTATEL)))
— (bw-statep (s1) A planp (pI) A (°’(c b a d e) € s1))

An example with arithmetic. Given a state in which there are at least n
stacks, show that we can achieve a state in which there is a stack of height n.

The plan to form the stack is to use the topmost blocks of all the towers.

DEFINITION:
build-towern (s, n)
= if n ~ 0 then nil
elseif n = 1 then list (unstack (caar (s)))
else append (build-towern (cdr (s), n — 1),
list (move (caar (s), caadr (s)))) endif

154

DEFINITION:
exists-towern (n, s)
= if s ~ nil then f
elseif len (car (s)) = n then t
else exists-towern (n, cdr (s)) endif

Testing build-towern on a concrete example.

THEOREM: build-towern-ex1
build-towern (STATEL, 2) = ’ ((unstack d) (move a d))

THEOREM: build-towern-ex2
exists-towern (2, resultlist (build-towern (STATEL, 2), STATEL))

The strategy to go from any blocks world state to any other.

Form-tower returns the sequence of actions that will form the stack from
a state in which all the blocks in the stack are on the table.

DEFINITION:
form-tower (st)
= if (st >~ nil) V (cdr (st) ~ nil) then nil
else append (form-tower (cdr (st)), list (move (car (st), cadr (st)))) endif

Form state s2 from s1. Form-state works by forming all the towers in the
state. The initial state s1 has all the blocks on the table.

DEFINITION:
form-state (s2)
= if s2 ~ nil then nil
else append (form-tower (car (s2)), form-state (cdr (s2))) endif

DEFINITION:
transform (s7, s2) = append (unstack-all-towers-gen (s1), form-state (s2))

The following theorems were not checked by the theorem prover.

THEOREM: makclear-gen-preserves-blocks
(bw-statep (s0)

A find-stack-of-block (b, s0)

A (pl = makeclear-gen (b, s0))

A (sl = resultlist (p1, s0)))

— set-equal (set-of-blocks (s0), set-of-blocks (s1))

155

THEOREM: build-towern-works
(bw-statep (s)

A (len() > n)

A (n#0)

A (pl = build-towern (s, n))

A (sl = resultlist (p1, s)))

— (bw-statep (s1) A planp (pI) A exists-towern (n, s1))
THEOREM: planner-works

(bw-statep (s1)

A bw-statep (s2)

A set-equal (set-of-blocks (s1), set-of-blocks (s2)))

— (resultlist (transform (s1, s2), s1) = s2)

A.2 Blocks World with Side-Effects

The following sequence of events formalizes the blocks world in which there
is a single move action that has the side-effect of moving all the blocks on top of the
block being moved along with it. We use the blocks world formalization to verify
mechanically a plan generating program that forms a single tower out of all the blocks
in the initial state. We loaded this sequence of events after we loaded the events in
appendix A upto the event called find-stack-listp in Section A.1. These contain the
necessary properties of states needed for this proof. To obtain those events, I did a
(ubt m3) after loading the above events before loading this file.

The following function returns the list of blocks in a stack above a given
block starting at the top and ending with the block.

DEFINITION:
stack-above (b, st)
= if st ~ nil then nil
elseif b = car(st) then list (car (st))
else cons (car (st), stack-above (b, cdr (st))) endif

DEFINITION:
stack-abovel (z, s) = stack-above (z, find-stack-of-block (z, s))

We can say x is over y in s if x belongs to the stack above y in s.

DEFINITION:
over (z, y, s) = ((z # y) A (z € stack-abovel (y, s)))

Need another function stack-below.

156

DEFINITION:

stack-below (z, st)

= if st ~ nil then f
elseif z = car (st) then cdr (st)
else stack-below (z, cdr (st)) endif

DEFINITION:
stack-belowl (z, s) = stack-below (z, find-stack-of-block (z, s))

Exec-move-over implements the effects of the move over action.

DEFINITION:
exec-move-over (z, y,)
= if stack-belowl (z, s) ~ nil
then cons (append (stack-abovel (z, s), assoc (y, s)),
delete (find-stack-of-block (z, s), delete (assoc (y, s), s)))
else cons (stack-belowl (z, s),
cons (append (stack-abovel (z, s), assoc (y, s)),
delete (find-stack-of-block (z, s),
delete (assoc (y, s), s)))) endif

To move x over y, y must be clear and y and x should be on distinct stacks.
x and y must exist.

DEFINITION:
res-move-over (z, y, s)
= if (- find-stack-of-block (z, s))
V (find-stack-of-block (z, s) = assoc (y, s))
V (= clear (y, s)) then list (*failed, move-over, z, y, $)
else exec-move-over (z, y, s) endif

Constructor for the action move-over.
DEFINITION: move-over (z, y) = list (’move-over, z, y)
DEFINITION: move-overp (z) = (car (z) = ’move-over)

A new result function.

DEFINITION:
result-new (a, s)

= if car(s) = *failed then s
else res-move-over (cadr (a), caddr (a), s) endif

157

The state got from s as a result of doing a list of actions.

DEFINITION:
resultlist-new (I, s)
= if [~ nil then s

else resultlist-new (cdr (1), result-new (car (1), s)) endif

We want to show that there is a plan to form a single tower. Move the
last block of the first tower to the top of the second tower and so on until there is
exactly one tower.

DEFINITION:

last (1)

= if [~ nil then f
elseif cdr (I) ~ nil then car ({)
else last (cdr (1)) endif

EvENT: Disable disjoint-comm.

EvENT: Disable disjoint-cdr.

EvENT: Disable bw-statep.

To get the following function admitted we need the following lemmas.

THEOREM: mem-last]l
stackp (st) — (last (st) € st)

THEOREM: single-12
stackp (st) — (stack-below (last (st), st) = nil)

THEOREM: single-13
stackp (st) — (stack-above (last (st), st) = st)

THEOREM: result-newl
(bw-statep (s)
A find-stack-of-block (z, s)
A (find-stack-of-block (z, s) # assoc(y, s))
A clear (y, s)
A (stack-belowl (z, s) ~ nil))
— (result-new (move-over (z, y), s)
= cons (append (stack-abovel (z, s), assoc (y, 5)),

delete (find-stack-of-block (z, s), delete (assoc (y, s), s))))

EVENT: Disable result-new.

EVENT: Disable move-over.

158

The following are dumb lemmas that I am proving so that the theorem

prover can find them easily.

THEOREM: 15
(bw-statep (s) A listp (cdr (s)))
— (find-stack-of-block (last (car (s)), s) = car (s))

THEOREM: 16
(bw-statep (s) A listp (cdr (s))) — (car(s) # cadr (s))

THEOREM: 17
(bw-statep (s) A listp (cdr (s)))
— (stack-below (last (car (s)), car (s)) = nil)

THEOREM: 18
(bw-statep (s) A listp (cdr (s)))
— (stack-above (last (car (s)), car (s)) = car (s))

THEOREM: 19
listp (cdr (s)) — (delete (car (s), delete (cadr (s), s)) = cddr (s))

THEOREM: single-11

(bw-statep (s) A listp (cdr (s)))

— (result-new (move-over (last (car (s)), caadr (s)), s)
= cons (append (car (s), cadr (s)), cddr (s)))

Plan to form single tower. Measure is the number of stacks in s.

DEFINITION:
form-single-tower-gen (s)
= if (- bw-statep (s)) V (s ~ nil) then nil
elseif cdr (s) ~ nil then nil
else cons (move-over (last (car (s)), caadr (s)),
form-single-tower-gen (result-new (move-over (last (car (s)),

caadr (s)),
s))) endif

159

DEFINITION:
planp-new (z)
= if z ~ nil then t

else move-overp (car (z)) A planp-new (cdr (z)) endif
Some examples.

THEOREM: new-ex1
result-new (move-over (’b, ’d), *((a b c) (d e)))

= ((c) (abde))

THEOREM: new-ex2
result-new (move-over (’b, ’e), *((a b c) (d e)))
= ’(failed move-over b e ((a b c) (d e)))

THEOREM: new-ex3
result-new (move-over (’c, ’d), ’((a b c) (de)))=’((abc de))

THEOREM: new-ex4

resultlist-new (list (move-over (’b, *d), move-over(’e, ’c)),
"((a b c) (de)))

= ’((abdec))

THEOREM: mem-appl
(z € y) = ((z € append (y, 2)) = (z € z))

THEOREM: stackp-append
(stackp (st1) A stackp (st2) A disjoint (st1, st2))
— stackp (append (st1, st2))

THEOREM: disjoint-append
(disjoint (z, y) A disjoint (z, y)) — disjoint (append (z, 2), y)

THEOREM: disjointlist-append
(stackp (z) A disjointlist (z, cons (v, w)) A bw-statep (cons (v, w)))
— disjointlist (append (z, v), w)

THEOREM: bwsl
(bw-statep (s) A listp (cdr (s)))
— bw-statep (result-new (move-over (last (car (s)), caadr (s)), s))

form-single-tower-gen forms a single tower.

THEOREM: move-over-thl
(bw-statep (s) A listp (s))
— (cdr (resultlist-new (form-single-tower-gen (s), s)) ~ nil)

form-single-tower-gen generates valid plans.

THEOREM: isa-planl
planp-new (form-single-tower-gen (s))

form-single-tower-gen results in a blocks world state.

THEOREM: move-over-bwsl
(bw-statep (s) A listp (s))
— bw-statep (resultlist-new (form-single-tower-gen (s), s))

form-single-tower-gen works.

THEOREM: move-over-plan-works
(bw-statep (s)
A listp (s)
A (p1 = form-single-tower-gen (s))
A (sl = resultlist-new (p1, s)))
— (bw-statep (s1) A planp-new (p1) A (cdr(s!) ~ nil))

A.3 Formalizing Plan Constraints

160

Here are examples and theorems mentioned in Chapter 4. The definitions
were checked by the theorem prover. We first provide the definitions and theorems

that can be proved automatically. Then we give the statements of the theorems that

have not been checked.

Compute plan duration of p given the duration of move and unstack ac-

tions.

DEFINITION:
plan-duration (p, move-time, unstack-time)
= if p ~ nil then 0

elseif movep (car (p))

then move-time + plan-duration (cdr (p), move-time, unstack-time)

else unstack-time + plan-duration (cdr (p),
move-time,
unstack-time) endif

161

Test plan-duration.

THEOREM: plan-durl
plan-duration (> ((unstack a) (move b c) (move a b)), 2,1) =5

Make-hist constructs the history generated by p in s.

DEFINITION:
make-hist (s, p)
= if p ~ nil then cons (s, nil)
else cons (s, make-hist (result (car (p), s), cdr (p))) endif

Here is an example of what make-hist produces.

THEOREM: makeclear-ex2
makeclear-gen (’c, STATE]1) = ’ ((unstack a) (unstack b))

THEOREM: hist-ex1
make-hist (STATEL, makeclear-gen (’c, STATEL))
= '(((abc) (de))

((b c) (a) (d e))

((c) (B (a) (d e)))

The function other-stacks returns the list of stacks in a state s that do not
contain the block b.

DEFINITION:
other-stacks (b, s) = delete (find-stack-of-block (b, s), s)

THEOREM: other-stacks-ex1
other-stacks (’c, sTATEL) = *((d e))

Check-other-stacks takes a history h and a list of stacks 1 as arguments
and checks if every state in h is a superset of 1.

DEFINITION:
check-other-stacks (, h)
= if h >~ nil then t
else subset (I, car (h)) A check-other-stacks (I, cdr (h)) endif

162

THEOREM: check-other-ex1
check-other-stacks (other-stacks (> ¢, STATEL),
make-hist (STATE1, makeclear-gen (’c, STATEL)))

Suppose we want a plan to clear a block and then keep it clear for n units of
time. We can achieve this goal by clearing b and then executing the action (unstack
b) n times in succession. The function unstackn generates a sequence of n actions of
unstacking a block b.

DEFINITION:
unstackn (b, n)
= if n ~ 0 then nil

else cons (unstack (b), unstackn (b, n — 1)) endif

Make-clear-intn is the composite plan for achieving the goal of keeping b
clear for at least n units of time after b becomes clear.

DEFINITION:
make-clear-intn (b, n, s) = append (makeclear-gen (b, s), unstackn (b, n))

THEOREM: clear-intn-ex1
make-clear-intn (’c, 2, STATE])
= ’((unstack a) (unstack b) (unstack c) (unstack c))

The predicate check-clearn checks if block b is clear for at least n units of
time, i.e., in the the first n+1 states, of the history h.

DEFINITION:
check-clearn (b, h, n)
= if h >~ nil then f
elseif n ~ 0 then clear (b, car (h))
else clear (b, car (h)) A check-clearn (b, cdr (k), n — 1) endif

The function exist-clear-state returns the subsequence of the history h
starting with the earliest state in which b is clear in h to the end of h. If such a
sequence does not exist in h then exist-clear-state returns F.

DEFINITION:
exist-clear-intn (b, h, n)
= if h >~ nil then f
else check-clearn (b, h, n) V exist-clear-intn (b, cdr (h), n) endif

163

THEOREM: hist-ex2
make-hist (STATEL, make-clear-intn (’c, 2, STATEL))
= "(((@bc) (de))

((b c) (a) (de))

((c) (®) (a) (d e))

((c) (®) (a) (d e))

((c) (b) (a) (d e)))

DEFINITION:
H1 = make-hist (STATE], make-clear-intn (’c, 2, STATEL))

THEOREM: ex-ex1
exist-clear-intn (*c, H1, 2)

Prove that the block being cleared is not moved.

DEFINITION:

number-of-times-moved (p, b)

= if p ~ nil then 0
elseif cadar (p) = b then 1 + number-of-times-moved (cdr (p), b)
else number-of-times-moved (cdr (p), b) endif

THEOREM: number-ex1
number-of-times-moved (’ ((unstack a) (unstack b)), ’c) =0

THEOREM: number-ex2
number-of-times-moved (’ ((unstack a) (unstack b)), ’a) =1

Check if every unstack action is immediately followed by a move action in
a plan.

DEFINITION:

move-follows-unstackp (p)

= if (p ~ nil) V (cdr (p) ~ nil) then t
elseif unstackp (car (p))
then movep (cadr (p)) A move-follows-unstackp (cddr (p))
else move-follows-unstackp (cdr (p)) endif

THEOREM: move-follows-ex1
— move-follows-unstackp (makeclear-gen (’c, STATEL))

164

THEOREM: move-follows-ex2
move-follows-unstackp (’ ((move a b) (unstack c) (move b c)))

Check-both checks if the history generated by p clears b and that an (un-
stack b) action is executed in the state in which b becomes clear.

DEFINITION:
check-both (h, p, b)
= if A ~ nil then f
elseif clear (b, car (h)) then car(p) = unstack (b)
else check-both (cdr (h), cdr (p), b) endif

DEFINITION:
P2 = append (makeclear-gen (’c, STATEL), list (unstack (°c)))

DEFINITION: H2 = make-hist (STATEL, P2)

THEOREM: check-both-ex1
check-both (H2, P2, ’c)

The following have not been checked. The makeclear-gen program gener- T
ates an optimal plan to clear a block.

THEOREM: c4-thl

(bw-statep (s)

find-stack-of-block (b, s)

planp (p)

(s1 = resultlist (p, s))

bw-statep (s1)

clear (b, s1))

(len (makeclear-gen (b, s)) < len (p))

I>>>>>

Makeclear-gen generates optimal plans even when move actions take more
time than unstack actions.

THEOREM: c4-th2
(bw-statep (s)
A find-stack-of-block (b, s)
planp (p)
(s1 = resultlist (p, s))
bw-statep (s1)
clear (b, s1)
(unstack-time < move-time))

I>>>>>

(plan-duration (makeclear-gen (b, s), move-time, unstack-time)
< plan-duration (p, move-time, unstack-time))

165

Complexity of makeclear-gen - O(n) where n is the number of blocks in
stack containing b in s.

THEOREM: c4-coml
(bw-statep (s) A find-stack-of-block (b, s))
— (len (makeclear-gen (b, s)) < len (find-stack-of-block (b, s)))

If a block b exists in a state s then the plan makeclear-gen (b, s) does not
disturb the stacks in s that do not contain b during execution.

THEOREM: c4-th3
(bw-statep (s) A find-stack-of-block (b, s) A (p = makeclear-gen (b, s)))
— check-other-stacks (other-stacks (b, s), make-hist (s, p))

make-clear-intn (b, n, s) achieves the goal of keeping b clear for an interval
of n units of time in the future of the initial state s.

THEOREM: clear-int-th1
(bw-statep (s)
A find-stack-of-block (b, s)
A (n €N)
A (p = make-clear-intn (b, n, s))
A (h = make-hist (s, p)))
— exist-clear-intn (b, A, n)

We can state that the plan specified by makeclear-gen does not move the
block being cleared as follows.

THEOREM: ch4-th5
(bw-statep (s) A find-stack-of-block (b, s))
— (number-of-times-moved (makeclear-gen (b, s), b) = 0)

In plans generated by makeclear-gen every unstack action is not immedi-
ately followed by a move action.

THEOREM: ch4-th6

(bw-statep (s) A find-stack-of-block (b, s))
— (= move-follows-unstackp (makeclear-gen (b, s)))

Stating that a plan to unstack a block as soon as it becomes clear works.

166

THEOREM: ch4-th7

(bw-statep (s)
A find-stack-of-block (b, s)
A (p = append (makeclear-gen (b, s), list (unstack ())))
A (h = make-hist (s, p)))

— check-both (h, p, b)

Appendix B

The Mutilated Checkerboard Problem

Here is a formalization of the mutilated checker board problem using Bob’s
representation. I later learnt that Herb Simon uses a similar trick in discussing a
solution to a ”Cube-brick problem”. Our formalization allows us to prove by induc-
tion that every sequence of domino placements leads to a state in which the number
of covered black and white squares are equal whereas in the mutilated board the
number of black and white squares are not equal and hence cannot be covered. An
interesting feature is the definition of the color predicates in terms of the represen-
tation of the squares. White squares are those whose coordinates sum up to an even
number and black squares are those whose coordinates sum upto an odd number.
We prove the theorem for a nxn board using mathematical induction.

REPRESENTATION:

We assume that the squares are labeled with coordinates with (0,0) being
the upper left hand corner and (n,n) being the diagonally opposite square. Thus,
there are n+1 rows and columns in the board. If n=7, we are talking about the
usual 8x8 checkerboard with the rows and columns numbered from 0 through 7.
More generally, when n is odd, the number of rows and columns is even and vice
versa. We use [0..m,0..n] as our notation for a board whose rows are numbered from
0 through m and whose and columns are numbered from 0 through n.

A square is represented by a pair cons (z, y) where x and y are its coordi-
nates.

DEFINITION:
squarep (z) = (listp (z) A (car(z) € N) A (cdr (z) € N))

A domino is a pair of adjacent squares.

Two squares are adjacent if one of their coordinates is the same and the
other coordinate differs by one. Our predicate is true provided the sum of the
coordinates of the first argument is less than that of the second argument. Thus, our
definition is asymmetric but this will do - there is no loss of generality.

DEFINITION:

167

168

adjp (s1, s2)
= (((car(s1) = car(s2)) A ((1 4 cdr (s1)) = cdr (s2)))
V' ((cdr(s1) = edr(s2)) A ((1 4 car(sl)) = car(s2))))

A square x in a [0..n,0..n] board is a pair of coordinates each less than or
equal to n.

DEFINITION:
squarenp (z, n) = (squarep (z) A (car(z) < n) A (cdr(z) < n))

Dominos are those that necessarily fall within the board.

DEFINITION:
dominop (z, n)
= (squarenp (car (z), n) A squarenp (cdr (z), n) A adjp (car (z), cdr (z)))

DEFINITION:
square-listp (z)
= if 2 >~ nil then t
else squarep (car (z)) A square-listp (cdr (z)) endif

A board state is a list of covered squares.
DEFINITION: board-statep (z) = square-listp (z)

Having defined the set of all possible states of all possible checkerboards let
us move on to actions. There is exactly one action: place a domino. Preconditions:
The squares of the domino should not be already covered. We don’t have to check if
the dominos fall within the board because the dominop definition takes care of it.

The state got as a result of placing a domino x on a board in state s is given
by the following function. If the preconditions of the action are not satisfied then
it returns a non-board-statep whose car is *failed. This "error” state is retained
when other actions are performed. Thus, a legal domino placement action is one
that results in a board state.

DEFINITION:

res-place (z, s)

= if (car(z) € s) V (cdr (z) € s) then list (*failed, ’place, z, s)
else cons (car (z), cons (cdr (z), s)) endif

169

DEFINITION:

result (a, $)

= if car(s) = *failed then s
else res-place (cadr (a), s) endif

The state got from s as a result of doing a list of actions.

DEFINITION:
resultlist ({, s)
= if [~ nil then s
else resultlist (cdr (1), result (car (1), s)) endif

A constructor for the action place a domino.
DEFINITION: place (z) = list (*place, z)

A predicate for placing a domino. Sufficient for the cadr to be a domino.
DEFINITION: placep (z, n) = dominop (cadr (z), n)

DEFINITION:
place-planp (z, n)
= if 2 >~ nil then t
else placep (car (z), n) A place-planp (cdr (z), n) endif

To express the theorem, we need a predicate for the state with all squares
covered except the corner squares (0,0) and (n,n). We write functions to generate
the set of all squares on the board and then assert that the set minus the two squares
is the set of covered squares in the desired state.

Make the set of all squares in the mth row from columns 0 through n.

DEFINITION:
make-row (m, n)
= if n ~ 0 then list (cons (m, 0))
else append (make-row (m, n — 1), list (cons (m, n))) endif

Make the set of squares in rows 0 through m and columns 0 through n.

DEFINITION:
make-all-rows (m, n)
= if m ~ 0 then make-row (0, n)
else append (make-all-rows (m — 1, n), make-row (m, n)) endif

170

Delete first occurrence of x in 1.

DEFINITION:
delete (z, {)
= if [~ nil then [
elseif z = car (I) then cdr (I)
else cons (car (1), delete (z, cdr (1)) endif

A mutilated [0..n,0..n] board includes all squares in rows 0 through n except
the squares (0 . 0) and ’(n . n).

DEFINITION:
mutilated-board (n)
= delete (cons (n, n), delete (* (0 . 0), make-all-rows (n, n)))

DEFINITION:
set-equal ({1, (2)
= if [/ ~ nil then [2 ~ nil
else (car (1) € 12) A set-equal (cdr (I1), delete (car (11), 12)) endif

A state in which all squares of the mutilated [0..n,0..n] board are covered
is given by the following predicate.

DEFINITION:
all-covered-except-cornerp (z, n) = set-equal (z, mutilated-board (n))

A white square is one whose coordinates add up to an even number. Oth-
erwise it is a black square.

DEFINITION: oddp (z) = ((z mod 2) = 1)

DEerFINITION: whitep (z) = (((car (z) + cdr (z)) mod 2) = 0)

DErFINITION: blackp (z) = (((car(z) + cdr (z)) mod 2) = 1)
Functions to compute the number of white and black squares.

DEFINITION:

nwhite (z)

= if £ ~ nil then 0

elseif whitep (car (z)) then 1 4 nwhite (cdr (z))
else nwhite (cdr (z)) endif

171

DEFINITION:

nblack (z)

= if 2 ~ nil then 0
elseif blackp (car (z)) then 1 + nblack (cdr (z))
else nblack (cdr (z)) endif

THE PROOF.

What is the impossibility argument? In the desired state the number
of covered white squares is not equal to number of covered black squares. Every
placement operation covers exactly one white square and one black square. Thus,
all states reachable starting with a state in which there are no dominos on the board
have an equal number of covered white and black squares. Ergo the desired state is
unachievable.

First we show that make-all-rows (n, n) constructs the set of all squares of
a [0..n,0..n] board has an equal number of white and black squares when n is odd.
When n is even, the number of white squares = number of black squares + 1. We
will do this by induction on n. For this we will prove by induction that if n is odd
the number of white squares is equal to the number of black squares.

Some number theory.

THEOREM: t3
(z22) = ((1+(z-2)=(0+1z)-2)

Odd numbers succeed even numbers.

THEOREM: t1
((n mod 2) =0) = (((1 + n) mod 2) = 1)

THEOREM: plusl
(m+ (1+n)=(1+(m+n)

If a square is white then the square got by adding one to its second coor-
dinate (i.e. one adjacent to it is black).

THEOREM: sq-wbl
whitep (cons (m, n)) — blackp (cons (m, 1 + n))

Even numbers succeed odd numbers.

THEOREM: t4
((n mod 2) = 1) = (((1 + n) mod 2) = 0)

172
The square next to a black square is white.

THEOREM: sq-wb2
blackp (cons (m, n)) — whitep (cons (m, 1 + n))

THEOREM: odd-evenl
((n mod 2) # 0) = ((n mod 2) = 1)

To prove that the number of white squares equals the number of black
squares in a row when n is odd. Base case: n = 1. If there are 2 columns nblack =
nwhite in a row.

THEOREM: 11
make-row (m, 1) = list (cons (m, 0), cons (m, 1))

THEOREM: equal-bw-row-base(
nwhite (make-row (m, 1)) = nblack (make-row (m, 1))

THEOREM: t5
((y mod 2) # 1) = (1 +) mod 2) = 1)

THEOREM: append-assoc
append (append (/1, [2), I3) = append ({1, append ({2, [3))

THEOREM: t6
(n>2)
— (make-row (m, n)
= append (make-row (m, n — 2), list (cons (m, n — 1), cons (m, n))))

The number of white/black squares got when we append two lists is the
sum of the number of white/black squares of the individual lists.

THEOREM: nwhite-appendl
nwhite (append ({1, [2)) = (nwhite ({1) + nwhite (12))

THEOREM: nblack-appendl
nblack (append (1, [2)) = (nblack ({1) + nblack (12))

In each row of a chess board [0..m,0..n] where n is odd the number of black
squares is equal to the number of white squares.

173

THEOREM: equal-bw-rowl
oddp (n) — (nwhite (make-row (m, n)) = nblack (make-row (m, n)))

In an entire [0..m,0..n] board, n odd, there are an equal number of white
and black squares.

THEOREM: eq-bw-boardl
oddp (n) — (nwhite (make-all-rows (m, n)) = nblack (make-all-rows (m, n)))

Instantiating m as n in the above we get the following.

THEOREM: eq-bw-board
oddp (n) — (nwhite (make-all-rows (n, n)) = nblack (make-all-rows (n, n)))

If the number of rows and the number of columns are odd then the number
of white squares is 1 + number of black squares.

DEFINITION: evenp (z) = ((z mod 2) = 0)

The number of white squares of an even numbered row with an odd number
of columns is equal to the number of black squares + 1.

THEOREM: zero-ident
(m + 0) = fix(m)

THEOREM: white-one-plus-black
(evenp (m) A evenp (n))
— (nwhite (make-row (m, n)) = (1 4 nblack (make-row (m, n))))

THEOREM: black-one-plus-white
(oddp (m) A evenp (n))
— (nblack (make-row (m, n)) = (1 4+ nwhite (make-row (m, n))))

THEOREM: 113
make-all-rows (1, n) = append (make-row (0, n), make-row (1, n))

THEOREM: 114
evenp (n) — (nwhite (make-all-rows (1, n)) = nblack (make-all-rows (1, n)))

THEOREM: base2
(nwhite (make-row (0, n)) 4+ nwhite (make-row (1, n)))
= (nblack (make-row (0, n)) + nblack (make-row (1, n)))

174

THEOREM: 115
(m > 0)
— ((nwhite (make-row (m — 1, n)) 4+ nwhite (make-row (m, n)))
= (nblack (make-row (m — 1, n)) + nblack (make-row (m, n))))

THEOREM: t61
(m > 2)
— (make-all-rows (m, n)
= append (make-all-rows (m — 2, n),
append (make-row (m — 1, n), make-row (m, n))))

In a [0..m,0..n] checkerboard in which m is odd, the number of black squares
is equal to the number of white squares.

THEOREM: 116
(z1 + yl + z1) = (z1 + y2 + 22))
= ((y1 + 21) = (y2 + 22))

THEOREM: eq-bw-board2
oddp (m) — (nwhite (make-all-rows (m, n)) = nblack (make-all-rows (m, n)))

If the number of rows and columns of a checkerboard is odd then the
number of white squares in the board is 1 greater than the number of black squares.

DEFINITION:

f1(z)

= ifz ~0 then t
else f1(z — 1) endif

THEOREM: 117
(evenp (m) A (m > 0)) = (((m — 1) mod 2) = 1)

THEOREM: white-one-plus-black?2
(evenp (m) A evenp (n))
— (nwhite (make-all-rows (m, n)) = (1 + nblack (make-all-rows (m, n))))

Having established that the number of white squares is equal to the number
of black sqaures in a board with an even number of rows and columns and that the
number of white squares is 1 greater than the number of black squares in a board
with an odd number of rows and columns, we would like to show that in a mutilated
nxn board the number of white squares is less than the number of black squares.

175

THEOREM: t7
(n € N) — (cons (m, n) € make-row (m, n))

THEOREM: t8
(z € 12) = (z € append (1, 12))

THEOREM: ml
((n € N) A (m € N)) — (cons (m, n) € make-all-rows (m, n))

If we delete a white square from a list then the number of white squares
in the new list is less than that in the old list.

THEOREM: white-delete
((z € 1) A whitep (z)) — (nwhite (delete (z, [)) < nwhite (1))

The (n,n) square is white.

THEOREM: whitel
whitep (cons (n, n))

Deleting a white square does not change the number of black squares.

THEOREM: black-samel
whitep (z) — (nblack (delete (z, {)) = nblack ())

Deleting *(0 . 0) and cons(n, n) does not change the number of black
squares in a list since both of them are white.

THEOREM: black-dell
nblack (delete (cons (n, n), delete (* (0 . 0), z))) = nblack (z)

THEOREM: mut-12
oddp (n) — (n # 0)

THEOREM: mem-dell
((zel)N(z#y) — (z € delete (y, 1))

THEOREM: m2
»(0 . 0) € make-all-rows (m, n)

176

THEOREM: mut-11
oddp (n) — (cons (n, n) € delete (* (0 . 0), make-all-rows (n, n)))

In a mutilated board with an even number of rows and columns the number
of white squares is less than the number of black squares.

THEOREM: mutl
(oddp (n) A (z = mutilated-board (n))) — (nwhite (z) < nblack (z))

In a mutilated board with an odd number of rows and columns greater
than 1, the number of white squares is less than the number of black squares.

THEOREM: mut2
(evenp (n) A (z = mutilated-board (n)) A (n > 0))
— (nwhite (z) < nblack (z))

In any mutilated board the number of white squares is less than the number
of black squares.

THEOREM: mut3
((z = mutilated-board (n)) A (n > 0)) — (nwhite (z) < nblack (z))

Just to show what a mutilated board looks like for n = 7.

THEOREM: mutboard7

mutilated-board (7)

= (0. 1) .2)(.3 .4 (O.5)
(o .8)O.7)@ .0 . 1.2
1.3 .40 .50.86)0.7
Q@.00@e.nee.22.32.49
(2 .58)@.86)2.7)@ .0 (EG.1
(3.2)(3.3)(3.4)(.5) (1 .6#6)
B .7HDH@.00@.1E.2E@.3
4.4 .5 ¢@.86)¢&.7TG.o0
(5 .1)GB.2)(B.3)GB .4 (G .5
(5 .6)B .7)B.0)B.1)EB.2)
(6 .3)(6.4)(6 .5)(B .6)(B.T
7 .0@ . @ .2 .30 .4
(7 . 85) (T . 86))

177

Since we have defined all-covered-except-cornerp as a predicate that checks
if all squares of a board except the corner squares are covered, we want to show that
in all such states the number of white squares is less than the number of black squares.

Deleting a non-white element from a list of white squares does not alter
the number of white squares.

THEOREM: white-samel
(= whitep (z)) — (nwhite (delete (z, [)) = nwhite ())

THEOREM: white-dell
((z € 1) A whitep (z)) — (nwhite ({) = (1 4+ nwhite (delete (z,))))

If two sets of squares are equal then the number of white/black squares in
them are equal.

THEOREM: nwhite-eql
set-equal (11, [2) — (nwhite (1) = nwhite (12))

THEOREM: black-same?2
(= blackp (z)) — (nblack (delete (z, 1)) = nblack (1))

THEOREM: black-del2
((z € 1) A blackp (z)) — (nblack (I) = (1 + nblack (delete (z, [))))

THEOREM: nblack-eql
set-equal (1, [2) — (nblack ({1) = nblack (12))

If all the squares except the corner ones are covered in a board state then
the number of white squares covered is less than the number of covered black squares.

For odd boards.

THEOREM: unequall

(evenp (n)

A (n>0)

A board-statep (z)

A all-covered-except-cornerp (z, n))
— (nwhite (z) < nblack (z))

For even boards.

178

THEOREM: unequal2
(oddp (n) A board-statep (z) A all-covered-except-cornerp (z, n))
— (nwhite (z) < nblack (z))

For all boards.

THEOREM: unequal3
((n > 0) A board-statep (z) A all-covered-except-cornerp (z, n))
— (nwhite (z) < nblack (z))

Now we want to show that the number of covered white squares is equal
to the number of covered black squares in every state that arises starting with an
initial state when there are no dominos on the board.

If the sum of two numbers is even then adding one to one of the numbers
will make the sum odd and vice versa.

THEOREM: t10
(L4 w)+2)=0+ (w+2)

THEOREM: tl1
(+1+y) =010+ (z+y)

A domino covers exactly one white square and one black square.

THEOREM: domino-whitel
dominop (z, n)
— (nwhite (cons (car (z), cons (cdr (), y))) = (1 4+ nwhite (y)))

THEOREM: domino-blackl
dominop (z, n)

— (nblack (cons (car (z), cons (cdr (), y))) = (1 + nblack (y)))

If I place a domino on a board state to achieve a new board state then
that board state will have the two squares under the domino covered.

THEOREM: place-dom1
(board-statep (s) A placep (a, n) A board-statep (result (a, s)))
— (result (@, s) = cons (caadr (a), cons (cdadr (a), s)))

If the number of covered black and white squares in a state are equal then
they remain the same after a legal domino placement.

179

THEOREM: bw-equal2
(board-statep (s)
A (nwhite (s) = nblack (s))
A placep (a, n)
A board-statep (result (a, s)))
— (nwhite (result (a, s)) = nblack (result (a, s)))

We need the following lemmas to prove that: If the number of covered white
and black squares are equal then they will remain the same after every sequence of
actions or plan of placing dominos.

We must prove that executing a plan in an error state results in the error
state.

THEOREM: failed-statel
(car (s) = ’failed) — (car (resultlist (p, s)) = ’failed)

THEOREM: res2
(board-statep (s) A placep (a, n) A (= board-statep (result (a, s))))
— (car (result (a, s)) = *failed)

THEOREM: sl
(car (s) = ’failed) — (- board-statep (s))

THEOREM: res3
(board-statep (s)
A place-planp (p, n)

A listp (p)
A board-statep (resultlist (p, s)))

— board-statep (result (car (p), s))
The following function is for forcing the prover to do the induction 1 want.

DEFINITION:
foo (s, p)
= if p ~ nil then nil
else foo (result (car (p), s), cdr (p)) endif

If the number of covered white and black squares is equal in a state and
a sequence of legal domino placement operations is executed then the number of
covered white and black squares would be equal in the resulting state.

180

THEOREM: bcequall
(board-statep (s)
A (nwhite (s) = nblack (s))
A place-planp (p, n)
A board-statep (resultlist (p, s)))
— (nwhite (resultlist (p, s)) = nblack (resultlist (p, s)))

Starting with an initial state s of an [0..n,0..n] board, n greater than 0, in
which there are no covered squares there is no sequence of actions that will result in
a state in which all the squares except (0,0) and (n,n) are covered.

THEOREM: tough-nut

(place-planp (p, n)

A (n>0)

A (sl = resultlist (p, nil))

A board-statep (s1))

— (= all-covered-except-cornerp (s1, n))

Examples that test theorems.

DEFINITION:
STATEl =°((3 . 4) (3 .5) (4 .6) (4.7))

THEOREM: board-state-examplel
board-statep (STATE1)

THEOREM: board-state-example2
board-statep (nil)

DEFINITION: DOMINOL =2((0 . 1) 0 . 2)
DEFINITION: ILLEGAL-DOMINO = *((0 . 2) 0 . 1)

THEOREM: adjacency-examplel
adjp (car (pomINO1), cdr (DOMINO1))

THEOREM: adjacency-example2
= adjp (car (ILLEGAL-DOMINO), cdr (ILLEGAL-DOMINO))

THEOREM: dominop-examplel
— dominop (ILLEGAL-DOMINO, 3)

THEOREM: dominop-example2
= dominop (DoMINO1, 1)

THEOREM: dominop-example3
dominop (DOMINO1, 2)

DEFINITION: ACTION1 = place (DOMINO1)

THEOREM: placep-examplel
placep (ACTION1, 7)

THEOREM: placep-example2
- placep (AcTION1, 1)

THEOREM: result-examplel
result (ACTION1, STATEL)

= (0 .1) (0.2) (3.4) (3.5) (4.6 (4.

DEFINITION: STATE2 = result (ACTION1, STATE])

THEOREM: error-state-examplel

result (ACTION1, STATE2)

= ’(failed place
((o.1)0.2)

((0.1) (0 .2)(3.4)(8.5) @ .6) (4.

THEOREM: error-state-example2
result (ACTION1, result (ACTION1, STATE2))
= ’(failed place

(o . 1) 0.2

((0.1) (0.2) (3.4)(8.5) “.6) (4.

DEFINITION: BAD-PLAN = list (ACTION1, ACTION1)
DEFINITION: ACTION2 = place (*((4 . 1) 4 . 2))
DEFINITION: GOOD-PLAN = list (ACTION1, ACTION2)

THEOREM: plan-ex1
place-planp (GOOD-PLAN, 7)

7))

7))

7))

181

182

THEOREM: plan-ex2
place-planp (BAD-PLAN, 7)

THEOREM: plan-ex3
resultlist (GOOD-PLAN, STATE])

= (4 . 1D
4 .2
o .1
0 .2
3.4
(3.5
4 . 6
4 . 7))

THEOREM: plan-ex4
resultlist (BAD-PLAN, STATE])
= ’(failed place
(0. 1)0 .2
(0. 1) (0.2)(3.4)(3.5) (4.6 (4.T7N)N

THEOREM: row)
make-row (5, 7)

= (5 . 0)
(6 . 1)
(6 . 2)
(6 . 3)
(6 . 4)
(6 . 5)
(6 . 6)
(56 . 7))

THEOREM: twobytwo
make-all-rows (1, 1) = *((0 . 0) (0 . 1) (1 . 0) (1 . 1))

THEOREM: mutboard2
mutilated-board (1) = >((0 . 1) (1 . 0))

B.1 Some Plans for Tiling Boards

Plans to fill a row and fill a board. The definitions were admitted, the
examples proved automatically by the prover but the general theorems were not

checked.

183

DEFINITION:
fill-row (m, n)
= if n ~ 0 then nil
elseif n = 1 then list (place (cons (cons (m, 0), cons (m, 1))))
else append (fill-row (m, n — 2),
list (place (cons (cons (m, n — 1), cons (m, n))))) endif

Check if columns 0 thru n of row m is not covered.

DEFINITION:
empty (m, n, s)
= if n ~ 0 then cons(m,0) ¢ s
else (cons(m, n) € s) A empty (m, n — 1, s) endif

Check if columns 0 thru n of row m is covered.

DEFINITION:
covered (m, n,)
= if n ~ 0 then cons(m, 0) € s
else (cons(m, n) € s) A covered (m, n — 1, s) endif

An example of what fill-row does.

THEOREM: fill-row-ex0
fill-row (2, 3)
= ’((place ((2 . 0) 2 . 1)) (place ((2 . 2) 2 . 3)))

THEOREM: fill-row-ex1
((s0=7(1 . 2) (1. 3))
A (p1 = fill-row (2, 3))
A (s1 = resultlist (p1, s0)))
— (covered (2, 3, s1) A place-planp (pI, 3) A board-statep (s1))

Plan generator for filling rows 0 to m and columns 0 to n.

DEFINITION:
fill-board (m, n)
= if m ~ 0 then fill-row (0, n)
else append (fill-board (m — 1, n), fill-row (m, n)) endif

184

THEOREM: fill-board-ex0
fill-board (2, 3)

= ?((place ((0 . 0) O . 1))
(place ((0 . 2) 0 . 3))
(place ((1 . 0) 1 . 1))
(place ((1 . 2) 1 . 3))
(place ((2 . 0) 2 . 1))
(place ((2 . 2) 2 . 3)))

THEOREM: fill-board-ex1
set-equal (make-all-rows (2, 3), resultlist (fill-board (2, 3), nil))

Unchecked theorems.

THEOREM: fill-row-works

(board-statep (s0)

oddp (n)

(m € N)

empty (m, n, s0)

(p1 = fill-row (m, n))

(s1 = resultlist (p1, s0)))

(covered (m, n, s1) A place-planp (pI, n) A board-statep (s1))

I>>>>>

THEOREM: fill-board-works
(oddp (n) A (m € N))
— set-equal (make-all-rows (m, n), resultlist (fill-board (m, n), nil))

Appendix C

A General Framework

GENERAL THEORY FOR MODELING VARIOUS DOMAINS. We have
a single machine whose set of states and set of actions are a superset of those of any
other domain. Thus, every domain can be thought of as being enacted in this general
machine.

The modeling conventions are:

1. States can be modeled by any data structure other than (list 'failed ...)
This error state is used to handle the execution of actions whose preconditions are
not satisfied.

2. The effects of actions are specified by a program that can take any
arguments with the initial state as the last argument. The action is represented by
the lambda expression that stands for the function that specifies it. Actions (lambda
expressions) are represented so that they can be evaluated in a given state using the
Lisp interpreter eval$.

E.g. (defn res-move (x y s) ... compute new state ..)
(defn move (x y) (make-action 'res-move (list x y)))
The action term is: (list 'move (list 'quote x) (list ’quote y)) formed so that result
can call the Lisp interpreter eval$ on (move x y) to get (res-move x y s).

DEFINITION:
nth (n, 1)
= if n ~ 0 then car ()
else nth (n — 1, cdr (1)) endif

DEFINITION:
len (1)
= if [~ nil then 0
else 1 + len (cdr (1)) endif

To obtain the nth argument of an action we may use the following function
since they are represented as (list 'quote x).

DEFINITION: argn (n, a) = cadr (nth (n, a))

185

186

Check if a is an action that is specified by the function whose symbol is at.
DErFINITION: check-action (a, at) = (car (a) = at)
Constructor for actions (lambda expressions).

DEFINITION:
make-arglist (al)
= if al ~ nil then nil
else cons (list (*quote, car (al)), make-arglist (cdr (al))) endif

DEFINITION:
make-action (type, arglist) = cons (type, make-arglist (arglist))

Definition of result

DEFINITION:
result (a, $)
= if car(s) = *failed then s
else eval$ (t, append (a, list (list (*quote, s))), nil) endif

The state got from s as a result of doing a list of actions.

DEFINITION:
resultlist ({, s)
= if [~ nil then s
else resultlist (cdr (1), result (car (1), s)) endif

We define holds the same way we defined result. Like make action we have
a make-fluent.

DEFINITION:
make-fluent (type, arglist) = cons (type, make-arglist (arglist))

DEFINITION:
holds (z, s) = eval$ (t, append (z, list (list (> quote, s))), nil)

END OF GENERAL THEORY

187

C.1 Blocks World within the General Theory

Here is a formalization of the blocks world as part of the general framework.
This differs from our previous blocks world formalization only in the definitions of
move, unstack, movep and unstackp. Of course, the definitions of result and resultlist
are borrowed from the general theory.

A block is a litatom.
DEFINITION: blockp (z) = litatom (z)

A stack is a non-empty list of distinct blocks with the first block clear and
the last block on the table.

DEFINITION:
stackp (/)
= if [~ nil then f
elseif cdr (I) = nil then blockp (car (/))
else blockp (car ({)) A (car ({) € cdr ({)) A stackp (cdr ({)) endif

Two lists are disjoint if they do not have common members.

DEFINITION:
disjoint (11, 12)
= if I/ ~ nil then t
else (car (1) ¢ [2) A disjoint (cdr ({1), [2) endif

A given list is disjoint from each of the members of the given list of lists.

DEFINITION:
disjointlist (s1, {1)
= if Il ~ nil then t
else disjoint (s, car (11)) A disjointlist (s, cdr (/1)) endif

A state is a set of stacks possibly empty. No two stacks have any blocks
in common, i.e., they are pairwise disjoint.

DEFINITION:
bw-statep (z)
= if z ~nil
then if z = nil then t
else f endif
else stackp (car (z))
A disjointlist (car (z), cdr (z))
A bw-statep (cdr (z)) endif

188

Here are the predicates on blocks world states.

The predicate ontable. A block is on the table provided it is last on the
list of some stack.

We define a function bottomp that checks if a block is the bottom of a
given stack.

DEFINITION:

bottomp (b, st)

= if st ~ nil then f
elseif cdr (st) ~ nil then b = car (st)
else bottomp (b, cdr (st)) endif

Find the stack to which a block belongs. This can also be used to assert
that a block exists.

DEFINITION:
find-stack-of-block (b, s)
= if s ~ nil then f
elseif b € car(s) then car(s)
else find-stack-of-block (b, cdr (s)) endif

DEFINITION: ontable (b, s) = bottomp (b, find-stack-of-block (b, s))

A block is on top of another block if they appear in sequence in a tower.

The function consecp checks if the given blocks appear in succession in the
list of blocks constituting the stack.

DEFINITION:

consecp (b1, b2, st)

= if st ~ nil then f
elseif cdr (st) ~ nil then f
elseif car (st) = b1 then b2 = cadr(st)
else consecp (b1, b2, cdr (st)) endif

DEFINITION:
on (b1, b2, s) = consecp (b1, b2, find-stack-of-block (b1, s))

A block is clear if it is the topmost block of a tower.

DEFINITION: clear (b, s) = assoc (b, s)

189

Let us go on to actions. We have two actions, move and unstack. Ac-
tions are lambda expressions whose representation is constructed using make-action.
Action terms are recognized using check-action of the general theory.

Constructor for the move action.

DEFINITION: move (b1, b2) = make-action (’res-move, list (b1, 52))
Recognizer for the move action.

DEFINITION: movep (z) = check-action (z, ’res-move)
Constructor for unstack.

DEFINITION: unstack (b) = make-action (’ res-unstack, list (b))
Recognizer for unstack.

DEFINITION: unstackp (z) = check-action (z, ’res-unstack)

A plan in the blocks world is a sequence of either move or unstack actions.
We allow empty plans.

DEFINITION: actionp (z) = (movep (z) V unstackp (z))

DEFINITION:
planp (z)
= if £ ~ nil then t

else actionp (car (z)) A planp (cdr (z)) endif

The specifications of the move and unstack actions are given by res-move
and res-unstack as before.

DEFINITION:
delete (z, {)
= if [~ nil then [
elseif z = car (I) then cdr (I)
else cons (car (1), delete (z, cdr (1)) endif

190

DEFINITION:
exec-move (b1, b2, s)
= if cdr (assoc (b1, s)) ~ nil

then cons (cons (b1, assoc (b2, s)),

delete (assoc (b1, s), delete (assoc (b2, s), 5)))
else cons (cons (b1, assoc (b2, s)),
cons (cdr (assoc (b1, s)),
delete (assoc (b1, s), delete (assoc (b2, s), s)))) endif

DEFINITION:

res-move (b1, b2, s)

= if (b1 = b2) V (— clear (b1, s)) V (= clear (b2, s))
then list (*failed, ’res-move, s)
else exec-move (b1, b2, s) endif

DEFINITION:

exec-unstack (b, s)

= if cdr (assoc (b, s)) ~ nil then cons (list (b), delete (assoc (b, s), s))
else cons (cdr (assoc (b, s)), cons (list (b), delete (assoc (b, s), s))) endif

DEFINITION:

res-unstack (b, s)

= if — clear (b, s) then list (’failed, ’unstack, s)
else exec-unstack (b, s) endif

The following is the same sequence of events that we used to prove the
correctness of the plan generating program makeclear-gen with the stand-alone for-
malization of the blocks world.

We will first prove that the result of executing legal move and unstack
actions in a blocks world state is a legal blocks world state since the proof is quite
intricate. Then we will prove that plans achieve goals.

Some rewrite rules for result.

THEOREM: resultl
(bw-statep (s) A ((— clear (b1, s)) V (b1 = b2) V (— clear (b2, s))))
— (result (move (b1, b2), s) = list (*failed, ’res-move, s))

THEOREM: result
(bw-statep (s)
A clear (b1, s)
A clear (b2, s)

A (b1 # b2)
A (cdr (assoc (b1, s)) ~ nil))
— (result (move (b1, b2), s)
= cons (cons (b1, assoc (b2, s)),
delete (assoc (b1, s), delete (assoc (b2, s), s))))

THEOREM: result6
(bw-statep (s)
A clear (b1, s)
A clear (b2, s)
A (b1 # b2)
A listp (cdr (assoc (b1, s))))
— (result (move (b1, b2), s)
= cons (cons (b1, assoc (b2, s)),
cons (cdr (assoc (b1, s)),

delete (assoc (b1, s), delete (assoc (b2, s), 5)))))
The value of result for an unstack action.

THEOREM: result2
(bw-statep (s) A (= clear (b, s)))
— (result (unstack (b), s) = list (*failed, ’unstack, s))

THEOREM: result3
(bw-statep (s) A clear (b, s) A (cdr (assoc (b, s)) ~ nil))
— (result (unstack (b), s) = cons (list (b), delete (assoc (b, s), 5)))

THEOREM: result4
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, s))))
— (result (unstack (b), s)
= cons (cdr (assoc (b, s)), cons (list (b), delete (assoc (b, s), 5))))

191

Now we can disable the definitions of result, unstack and move since we

have all the info as rewrite rules.

EVENT: Disable result.

EVENT: Disable unstack.

EVENT: Disable move.

192

We want to prove that if the preconditions are satisfied then the result of
doing a move or unstack action is always a blocks world state. The new blocks world
state is formed by deleting stacks and adding new stacks to the state. Therefore, we
want to prove that deleting two stacks from a set results in a set.

If s1 is disjoint with all the stacks in 11 then it is disjoint with all the stacks
got by deleting x from 11.

THEOREM: disj2
disjointlist (s1, 1) — disjointlist (s, delete (z, 1))

Deleting a member from a set of stacks leaves it as a set of stacks.

THEOREM: del-setl
bw-statep (s) — bw-statep (delete (z, s))

Deleting the stacks on which bl and b2 are results in a set of stacks.

THEOREM: set-del-b1-b2
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— bw-statep (delete (assoc (b1, s), delete (assoc (b2, s), s)))

Now we want to prove that adding the new stacks results in a set of stacks.

First we establish that the lists to be added are stacks. Then we prove that
they are disjoint from the rest of the stacks in the state got by deleting the original
stacks.

THEOREM: assoc-stackl
(bw-statep (s) A assoc (b, s)) — stackp (assoc (b, s))

The cdr of a stack is a stack provided it is not empty.

THEOREM: stackp-cdrxl
(stackp (st) A listp (cdr (st))) — stackp (cdr (st))

THEOREM: litatom-stackl
(bw-statep (s) A (= litatom (b))) — (= assoc (b, s))

We want to prove that moving a block from st1 to the top of st2 results in
a stack provided stl is disjoint from st2. We do so by proving the following lemma.
If there are two distinct stacks st1 and st2 in a state s and there is a block b in stl
then b is not in st2.

Disjointlist means disjoint with every member in the list.

193

THEOREM: disjoint-mem1
(disjoint (s1, z) A (z € s1)) — (z & 2)

THEOREM: disjointlist-mem1
(disjointlist (s1, 1) A (s2 € [) A (z € s1)) = (z & s2)

THEOREM: bexl
(bw-statep (s)
A (stl € s)

sl2 € s)

(
(st1 # st2)
(
(

THEOREM: assoc-carl
assoc (z, [) — (car (assoc(z, [)) = z)

Establish that bl and b2 are on distinct stacks.
THEOREM: exec-movell
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))

— (assoc (b1, s) # assoc (b2, s))

THEOREM: clear-stackp
(bw-statep (s) A clear (b, s)) — (assoc (b, s) € s)

Seems to have trouble proving assoc (b, s) is a listp.

THEOREM: stack-list1
(bw-statep (s) A clear (b, s)) — listp (assoc (b, s))

THEOREM: exec-movel2
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— (b1 ¢ assoc (b2, s))

We can now establish that the new constructs are stacks.
THEOREM: new-stackl

(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— stackp (cons (b1, assoc (b2, s)))

194

Now we want to prove that the new stacks are disjoint with the remaining
stacks. We prove this by showing that: (a) If a stack is disjointlist with 11 then its
cdr is disjointlist with it. (b) If two stacks are disjointlist with 11 then the stack
formed by moving the top of one to the top of another is also disjointlist with 11.

If stacks st1 and st2 are disjoint with a stack st3 then the stack formed by
moving the top of st1 to the top of st2 is also disjoint with st3.

THEOREM: disj-consl

(stackp (st1)

stackp (st2)

stackp (st3)

disjoint (st1, st3)

disjoint (st2, st3))

disjoint (cons (car (st1), st2), st3)

I>>>>

If there are two stacks that are disjoint with a list of stacks s then the stack
formed by moving the top of one to the top of another is also disjointlist with s.

THEOREM: disjointlist-cons

(stackp (st1)

stackp (st2)

bw-statep (s)

disjointlist (st1, s)

disjointlist (st2, s))

disjointlist (cons (car (st1), st2), s)

I>s>>>

If a stack stl is disjoint with another stack st2 then its cdr is also disjoint
with it.

THEOREM: disjoint-cdrl
(stackp (st1) A stackp (st2) A disjoint (st1, st2))
— disjoint (cdr (st1), st2)

If a stack stl is disjointlist with 11 then its cdr is also disjointlist with 11.

THEOREM: disjointlist-cdr
(stackp (st1) A bw-statep ({1) A disjointlist (st1, I1))
— disjointlist (cdr (st1), I1)

Basically we want to prove that a stack is disjoint from the rest of the
members of a set of stacks: a key lemma.

The following are lemmas needed to prove that disjoint commutes.

195

THEOREM: disjoint-nlistp
(s2 ~ nil) — disjoint (s1, s2)

THEOREM: disjoint-cdr
(car (s1) ¢ s2) — (disjoint (s2, cdr (s1)) = disjoint (s2, s1))

Disjoint commutes.

THEOREM: disjoint-comm
disjoint (s, s2) = disjoint (s2, s1)

Lemma: If a stack is deleted from a set of stacks then it is disjointlist with
the remaining stacks.

THEOREM: del-disjointlist2
(bw-statep (s) A (st € s)) — disjointlist (s¢, delete (st, s))

THEOREM: set-del3
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— (st1 € delete (st2, s))

Now we can prove that the stacks containing bl and b2 are disjointlist
with the set of stacks got by deleting them.

THEOREM: exec-movel5
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— disjointlist (assoc (b1, s), delete (assoc (b1, s), delete (assoc (b2, s), s)))

THEOREM: exec-movel6

(bw-statep (s)

clear (b1, s)

clear (b2, s)

(b1 # b2)

listp (cdr (assoc (b1, s))))
disjointlist (cdr (assoc (b1, s)),

delete (assoc (b1, s), delete (assoc (b2, s), 5)))

I>>>>

We can prove one case when the rest of the stacks containing b1 is empty.
When we add two stacks we must prove that the two are disjoint. These are formed
from two existing stacks which we prove are disjoint.

The stacks on which two distinct clear blocks rest are disjoint.

196

THEOREM: set-disjoint1
(bw-statep (s1) A (st1 € s1) A (st2 € s1) A (stl # st2))
— disjoint (st1, st2)

THEOREM: dist-stacks2
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— disjoint (assoc (b1, s), assoc (b2, s))

If two stacks stl and st2 are disjoint then the stacks got by moving the
top of st1 to the top of st2 are also disjoint.

THEOREM: disjoint-movel
(stackp (st1) A stackp (st2) A disjoint (st1, st2))
— disjoint (cons (car (st1), st2), cdr (st1))

THEOREM: disjoint-move2
(stackp (st1) A stackp (st2) A disjoint (st1, st2))
— disjoint (cdr (st1), cons (car (st1), st2))

THEOREM: exec-movel4
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— disjoint (cdr (assoc (b1, s)), cons (b1, assoc (b2, s)))

The stack formed by bl on top of the stack assoc (b2, s) is disjoint with
the remaining stacks.

THEOREM: exec-movel3
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— disjointlist (cons (b1, assoc (b2, s)),
delete (assoc (b1, s), delete (assoc (b2, s), 5)))

If there is a state s in which there are distinct blocks b1l and b2 that are
clear then moving block bl to the top of b2 in s results in a blocks world state.

THEOREM: move(l
(bw-statep (s)

clear (b1, s)

clear (b2, s)

(cdr (assoc (b1, s)) ~ nil)
(b1 # b2)

bw-statep (result (move (b1, 82), s))

I>>>>

197

THEOREM: move(2
(bw-statep (s)
clear (b1, s)
clear (b2, s)
listp (cdr (assoc (b1, s)))
(b1 # b2)
bw-statep (result (move (b1, b2), s))

I>>>>

THEOREM: move-sitl
(bw-statep (s) A clear (b1, s) A clear (b2, s) A (b1 # b2))
— bw-statep (result (move (b1, b2), s))

We want to prove that unstack also results in a valid blocks world state.

THEOREM: unstackll
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, s))))
— (b ¢ cdr (assoc (b, s)))

THEOREM: unstackl2
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, s))))
— disjointlist (cdr (assoc (b, s)), delete (assoc (b, s), s))

We want to prove that if a stack is disjointlist with s then the stack formed
by its car is also disjointlist with s. We prove the general theorem that if a stack is
disjointlist with s then its subsets are also disjointlist with s.

DEFINITION:
subset (s1, s2)
= if s1 ~ nil then t
else (car(s!) € s2) A subset (cdr (s1), s2) endif

If a stack st1 is disjoint with a stack st2 then a subset of st1 is also disjoint
with st2.

THEOREM: disj-subset
(stackp (st1) A stackp (st2) A subset (st3, st1) A disjoint (st1, st2))
— disjoint (st3, st2)

If there is a stack st that is disjoint with a set of stacks s then every subset
of st is also disjoint with s.

198

THEOREM: disjointlist-subset
(stackp (st1) A disjointlist (st, s) A bw-statep (s) A subset (st2, st1))
— disjointlist (st2, s)

THEOREM: disjointlist-single
(bw-statep (s) A clear (b, s))
— disjointlist (list (b), delete (assoc (b, s), s))

If a clear block is unstacked in a state then it results in a state.

THEOREM: unstack01
(bw-statep (s) A clear (b, s) A (cdr (assoc (b, s)) ~ nil))
— bw-statep (result (unstack (d), s))

THEOREM: unstack02
(bw-statep (s) A clear (b, s) A listp (cdr (assoc (b, s))))
— bw-statep (result (unstack (d), s))

THEOREM: unstack-sitl
(bw-statep (s) A clear (b, s)) — bw-statep (result (unstack (b), s))

Having proved that the move and the unstack actions result in legal blocks
world states, we turn our attention to verifying plans. Plans are expressed by plan
generating Lisp programs and proved correct.

Example 1 : Plan to clear a block. The following lemmas are needed to
establish admissibility of makeclear-gen. The measure len (find-stack-of-block (b, s))
decreases with every recursive call.

THEOREM: mem-find0
(bw-statep (s) A find-stack-of-block (b, s))
— (find-stack-of-block (b, s) € s)

THEOREM: mem-find6
(bw-statep (s) A find-stack-of-block (b, s))
— (b € find-stack-of-block (b, s))

THEOREM: find-mem-cdr

(bw-statep (s)

A find-stack-of-block (b, s)

A (b # car (find-stack-of-block (b, s))))
— (b € cdr (find-stack-of-block (b, s)))

199

Here is a theorem about the effect of unstack that we need. If I unstack
the top of a non-empty stack in a state then the cdr of the stack is a member of the
resulting state.

THEOREM: clear-carl
(bw-statep (s) A (st € s)) — assoc (car (st), s)

THEOREM: disjoint-carl
(stackp (st1) A stackp (st2) A disjoint (st1, st2))
— (car (stl1) # car (st2))

THEOREM: state-stackp
(bw-statep (s) A (= stackp (st))) — (st € s)

THEOREM: not-eq-carl
(bw-statep (s) A (stl € s) A (st2 € s) A (stl # st2))
— (car (stl) # car(st2))

THEOREM: not-eq-car2
(bw-statep (s) A (st € s) A (st # car (s))) — (car(st) # caar (s))

THEOREM: state-cdrl
(listp (s) A bw-statep (s)) — bw-statep (cdr (s))

This is an important lemma. This states that if there is a stack st in s
then trying to find the stack whose car is the top of st will result in st.

THEOREM: assoc-car2
(bw-statep (s) A (st € s)) — (assoc (car (st), s) = st)

THEOREM: result?
(bw-statep (s) A (st € s) A listp (cdr (st)))
— (result (unstack (car (st)), s)
= cons (cdr (st), cons (list (car (st)), delete (st, s))))

THEOREM: unstack-effl
(bw-statep (s) A (st € s) A listp (cdr (st)))
— (cdr (st) € result (unstack (car (st)), s))

EvENT: Disable bw-statep.

Proving find-assocl

200

THEOREM: disjointlist-mem2
(disjointlist (s1, 1) A (s2 € I) A (z € s2)) = (¢ & s1)

THEOREM: find-stack3
(bw-statep (s) A (st € s) A (b € st))
— (find-stack-of-block (b, s) = st)

If a block is clear then find-stack returns the same stack as does assoc.
This is because we know b belongs to assoc (b, s) and by mem-find3 it follows.

THEOREM: clear-mem1
(bw-statep (s) A clear (b, s)) — (b € assoc (b, s))

THEOREM: find-assocl
(bw-statep (s) A clear (b, s)) — (find-stack-of-block (b, s) = assoc (b, s))

THEOREM: find5
(bw-statep (s)
A find-stack-of-block (b, s)
A (b # car (find-stack-of-block (b, s))))
— (find-stack-of-block (b,
result (unstack (car (find-stack-of-block (b, s))), s))
= cdr (find-stack-of-block (b, s)))

THEOREM: find-stack-listp
(bw-statep (s) A find-stack-of-block (b, s))
— listp (find-stack-of-block (b, s))

DEerFINITION: m3 (b, s) = len (find-stack-of-block (b, s))
Plan to clear a block by unstacking one by one the blocks on top of it.

DEFINITION:
makeclear-gen (b, s)
= if (= find-stack-of-block (b, s)) V (= bw-statep (s)) then f
elseif b = car (find-stack-of-block (b, s)) then nil
else cons (unstack (car (find-stack-of-block (b, s))),
makeclear-gen (b,
result (unstack (car (find-stack-of-block (b,

s)));
s))) endif

201

Proving that plans generated by makeclear-gen achieve the desired goal.

THEOREM: mke-11

(bw-statep (s)

A find-stack-of-block (b, s)

A (car (find-stack-of-block (b, s)) = b))
— assoc (b,)

THEOREM: mke-12
(bw-statep (s)
A find-stack-of-block (b, s)
A (b # car (find-stack-of-block (b, s))))
— find-stack-of-block (b, result (unstack (car (find-stack-of-block (b, s))), s))

THEOREM: makeclear-works
(bw-statep (s) A find-stack-of-block (b, s))
— clear (b, resultlist (makeclear-gen (b, s), s))

Makeclear-gen generates valid plans.

THEOREM: make-clear-is-a-plan
planp (makeclear-gen (b, s))

Makeclear-gen results in a legal blocks world state.

THEOREM: makeclear-bwstate
(bw-statep (s) A find-stack-of-block (b, s))
— bw-statep (resultlist (makeclear-gen (b, s), s))

THEOREM: makeclear-worksl
(bw-statep (s)
A find-stack-of-block (b, s)
A (pl = makeclear-gen (b, s))
A (sl = resultlist (p1, s)))
— (bw-statep (s) A planp (p1) A clear (b, s1))

Examples of theorems on concrete data and definitions used to express
theorems that were not verified.

THEOREM: ch5-ex1
eval$ (’list, list (’x, ’y), ((x . 2) (y . 3)))= (2 3)

202

THEOREM: ch5-ex2
apply$ (’plus, ’(2 3)) =5

THEOREM: chb-ex3
eval$ (t, > (plus x y), ’((x . 2) (y . 3)))=5

THEOREM: chb-ex4
eval$ (t, > (plus (plus x y) (plus x y)), ((x . 2) (y . 3)))
= 10

DEFINITION:
append-template (z, y) = list (> append, list (’quote, z), list (’quote, y))

DEFINITION: STATEL = ’((a b ¢) (d e))
THEOREM: gen-ex1
result (list (*res-move, list (’quote, *b1), list (’quote, *b2)), STATEL)

= res-move (’bl, *b2, STATE])

THEOREM: gen-ex2
argn (1, move(’a, ’b)) = ’a

DEFINITION: on-fluent (b1, b2) = make-fluent (’on, list (b1, 52))

DEFINITION:
find-stack-fluent (o) = make-fluent (*find-stack-of-block, list (b))

THEOREM: holds-ex1
holds (on-fluent (’b, ’c), STATEL)

DEFINITION:
res-makeclear (b, s) = resultlist (makeclear-gen (b, s),)

DEFINITION:
makeclear (b) = make-action (’res-makeclear, list (b))

THEOREM: complex-action-ex1
result (makeclear (’b), sTATEL) = > ((b ¢) (a) (d e))

203

DEFINITION:
makeclear-list-gen (/, s)
= if [~ nil then nil
else cons (makeclear (car (1)),
makeclear-list-gen (cdr (1), result (makeclear (car (1)), s))) endif

THEOREM: complex-action-ex2

makeclear-list-gen (* (a b c), STATEL)

= ’((res-makeclear ’a)
(res-makeclear ’b)
(res-makeclear ’c))

THEOREM: complex-action-ex3
resultlist (makeclear-list-gen (* (a b c), STATEL), STATE])
= 2((c) (b) (a) (d e))

DEFINITION:
res-makeclear-list (I, s) = resultlist (makeclear-list-gen (I, s), s)

DEFINITION:
makeclear-list (/) = make-action (’res-makeclear-list, list (/))

THEOREM: complex-action-ex4
result (makeclear-list (* (a b ¢)), STATEL) = *((c) (b) (a) (d e))

Appendix D

Mechanization of A

If we include domains as terms in the logic, then we can express facts
describing the effects of actions in various domains without them interfering with
each other. This obviates the need for non-monotonic reasoning. We define the
interpreter resultlist with an extra domain parameter. The interpreter takes three
arguments: a state which is an alist of fluent-value pairs where a value is 1 or 0, a
domain represented as a set of e-propositions of A and a sequence of actions to be
executed. It executes an action in a state according to the state transition function
specified by the domain. Thus, the commonsense law of inertia is expressed as part
of the definition of the result function.

Fluents.

DErFINITION: fluentp (z) = litatom (z)
Actions.

DEFINITION: actionp (z) = litatom (z)

A state is represented as list of fluent-value pairs. We represent values by
0 (false) or 1 (true). We assume that the first occurrence of a fluent in the state list
gives its value so that we don’t have to worry about duplicates in the list.

DEFINITION: valuep (z) = ((z =0) V (z = 1))

DEFINITION:
fvlistp (s)
= if s ~ nil then t
else fluentp (caar (s)) A valuep (cdar (s)) A fvlistp (cdr (s)) endif

A-statep is a predicate on any state of any domain.

DEFINITION: a-statep (z) = fvlistp (z)

204

205

D-statep is a predicate on the states of a domain if the list of fluents of the
domain is passed to it. has-fluents checks if every fluent in the fluent list occurs in
the state.

DEFINITION:
has-fluents ({, s)
= if [~ nil then t
else assoc (car ({), s) A has-fluents (cdr (1), s) endif

DEFINITION: d-statep (I, s) = (a-statep (s) A has-fluents (I, s))

To represent domains, we must represent e-propositions. An e-proposition
is represented as a list whose car is an action name, cadr is an effect which is a fluent
expression and the rest are fluent expressions corresponding to its preconditions.
Action names and fluent names are represented by litatoms and fluent expressions
are fluent-value pairs. Thus, an e-prop is a list whose car is an action and whose cdr
is an fvlist.

DEFINITION: e-prop (z) = (actionp (car (z)) A fvlistp (cdr (z)))
A domain is a list of e-propositions.

DEFINITION:
domainp (z)
= if z ~ nil then t

else e-prop (car (z)) A domainp (cdr (z)) endif

The function result executes a given action according to the domain passed
as a parameter. Go through the domain; whenever you find a rule about the given
action then check if its preconditions are true in the given state and if so collect the
fluent that is its effect.

To check preconditions we need holds and holds-all. Holds takes a fluent
expression and a state and checks if it holds. Naturally it only looks at the first pair
whose car matches the fluent in the given fluent expression.

DEFINITION: holds (fexp, s) = (assoc (car (fezp), s) = fexp)

Holds-all takes a list of fluent expressions and returns T if ALL of them
hold and F otherwise.

206

DEFINITION:
holds-all (z, s)
= if 2 >~ nil then t
else (assoc (caar (z), s) = car(z)) A holds-all (cdr (z), s) endif

Compute-effects takes a state, an action and a domain and returns the list
of pairs that are its effect when executed in the state. It implements the common
sense law of inertia.

DEFINITION:

compute-effects (a, s, dom)

= if dom ~ nil then nil
elseif (a = caar (dom)) A holds-all (cddar (dom), s)
then cons (cadar (dom), compute-effects (a, s, cdr (dom)))
else compute-effects (a, s, cdr (dom)) endif

The result of executing an action in a state depends on the current domain.

DEFINITION:
result (a, s, dom) = append (compute-effects (a, s, dom), s)

The interpreter.

DEFINITION:
resultlist ({, s, dom)
= if [~ nil then s
else resultlist (cdr (1), result (car (), s, dom), dom) endif

D.1 Theorems about A Domains
Some theorems about domains that can be described in A.

Example 1: The fragile object domain of A.

DEFINITION:
FO-DOMAIN
= ’((drop (holding . 0) (holding . 1))
(drop (broken . 1) (holding . 1) (fragile . 1)))

If Holding, Fragile and not Broken are true in a state s0 of the Fragile
Object Domain and Drop is executed in s0 then not Holding, Fragile and Broken
become true.

207

DEFINITION: holding (s) = holds (? (holding . 1), s)
DEFINITION: fragile (s) = holds (’ (fragile . 1), s)
DEFINITION: broken (s) = holds (’ (broken . 1), s)

DEFINITION:
frag-statep (s) = d-statep (> (holding broken fragile), s)

THEOREM: frag-thl
(frag-statep (s0)
A holding (s0)
A fragile (s0)
A (= broken (s0))
A (sl = result (’drop, s0, FO-DOMAIN)))
— ((— holding (s1)) A fragile (s1) A broken (s1))

Stated using resultlist.

THEOREM: frag-thla

(frag-statep (s0)

A holding (s0)

A fragile (s0)

A (= broken (s0))

A (s1 = resultlist (> (drop), s0, FO-DOMAIN)))
— ((— holding (s1)) A fragile (s1) A broken (s1))

If Holding and Not Broken are true in a state sO of the Fragile Object
Domain and Drop is executed in s0 then not Holding becomes true.

THEOREM: frag-th2

(frag-statep (s0) A holding (s0) A (- broken (s0)))

— (= holding (result (’drop, s0, FO-DOMAIN)))
THEOREM: frag-th2a

(frag-statep (s0) A holding (s0) A (= broken (s0)))

— (= holding (resultlist (> (drop), s0, FO-DOMAIN)))

Example 2: Yale Shooting domain.

DEFINITION: yale-statep (s) = d-statep (’ (alive loaded), s)

208

DEFINITION:

YALE-DOMAIN

= ’((load (loaded . 1))
(shoot (alive . 0) (loaded . 1))
(shoot (loaded . 0)))

If the gun is not loaded and Fred is alive initially then Fred will be dead
in the state got after executing load, wait and shoot.

THEOREM: yspl
(yale-statep (s0)
A holds (* (loaded . 0), s0)
A holds (° (alive . 1), s0))
— holds (? (alive . 0),
resultlist (’ (load wait shoot), s0, YALE-DOMAIN))

Shooting will unload the gun in any Yale Shooting state.

THEOREM: ysp2
yale-statep (s0)
— (= holds (’ (1oaded . 1), result (’shoot, s, YALE-DOMAIN)))

Example 3: The Murder Mystery Domain. It is the same as the Yale
domain except for v-propositions. Reasoning about the past. If Fred is alive in the
initial state and is dead after shooting and waiting then the gun was loaded in the

initial state.

THEOREM: mm1

(yale-statep (s0)

A holds (° (alive . 1), s0)

A holds (> (alive . 0), resultlist (> (shoot wait), s0, YALE-DOMAIN)))
— holds (’ (loaded . 1), s0)

Another inference: NOT ALIVE AFTER WAIT; SHOOT.

THEOREM: mm?2

(yale-statep (s0)

A holds (° (alive . 1), s0)

A holds (> (alive . 0), resultlist (> (shoot wait), s0, YALE-DOMAIN)))
— holds (* (alive . 0), resultlist (’ (wait shoot), s0, YALE-DOMAIN))

209

Example 4: Stolen Car domain. There are no actions explicitly specified.
Prove that the given information is inconsistent.

DEFINITION: stolen (s) = holds (> (stolen . 1), s)

THEOREM: st2
((— stolen (s0)) A stolen (resultlist (’ (wait wait wait), s0, nil)))
— f

Other extensions. Similar e-propositions are no problem at all. Let us add
SHOOT CAUSES NOT ALIVE IF VERYNERVOUS to the Yale domain and prove

the theorem that if the victim is very nervous then he will die after shoot occurs.

DEFINITION:

YALE-DOMAIN1

= ’((load (loaded . 1))
(shoot (alive . 0) (loaded . 1))
(shoot (loaded . 0))
(shoot (alive . 0) (verymervous . 1)))

THEOREM: ysp3
holds (’ (verynervous . 1), s)
— holds (’ (alive . 0), result (’shoot, s, YALE-DOMAIN1))

”Non-monotonicity” is also not a problem. Consider this simple example.
Suppose we have fluents Lightl and Light2 and the e-prop Switchl causes Lightl.
Then we can prove the theorem that if Light2 is off then it will remain off after
Switchl. After we add the e-prop SWITCH1 CAUSES LIGHT2 we can prove the
theorem that Switchl turns on Light?2.

DEFINITION: sWITCH-DOM1 = ’((switchl (lightl . 1)))

THEOREM: l-thl
holds (* (1ight2 . 0), s)
— holds (> (1ight2 . 0), result (’switchl, s, SWITCH-DOM1))

DEFINITION:
SWITCH-DOM?2
= ?((switchl (light1l . 1)) (switchl (light2 . 1)))

210

THEOREM: 1-th2
holds (> (1ight2 . 0), s)
— holds (> (1ight2 . 1), result (’switchl, s, SWITCH-DOM?2))

DEFINITION:
switch-dom2-statep (s) = d-statep (> (Light1 light2), s)

THEOREM: I-th3
(switch-dom2-statep (s) A holds (? (1ight2 . 0), s))
— holds (> (1ight2 . 1), result (’switchl, s, SWITCH-DOM?2))

We can even express the above theorem without explicitly constructing the
new domain.

THEOREM: 1-th4
holds (? (1ight2 . 0), s)
— holds (*(light2 . 1),
result (’switchi,
87
cons (’ (switchl (light2 . 1)), SWITCH-DOM1)))

Proving properties of states. The following predicate says that p is a plan
whose actions belong to the set of actions aset.

DEFINITION:
klp (p, aset)
= if p ~ nil then p = nil
else (car (p) € aset) A klp (cdr (p), aset) endif

Always-holds is an operator that says that the fluent expression fexp holds
in every state got by executing plan p in sl according to the set of e-propositions
dom provided p is a plan consisting of actions in aset.

DEFINITION:
always-holds (fezp, p, aset, s1, dom)
= (klp (p, aset) — holds (fexp, resultlist (p, s1, dom)))

If Fred is dead in a situation then there is no Yale Shooting action that
can revive him.

211

THEOREM: fred-dead?2
holds (° (alive . 0), si)
— always-holds (’ (alive . 0),
p?
’(load wait shoot),
sl,
YALE-DOMAIN)

Reiter’s example. If an object is broken then it cannot be fixed by dropping
it.

THEOREM: always-broken
holds (> (broken . 1), s)
— always-holds (’ (broken . 1), p, ’(drop), s, FO-DOMAIN)

McCarthy’s example. Addition of a new action can achieve a goal previ-
ously unachievable. Add repair that simply makes broken false.

DEFINITION:

FO-DOMAIN1

= ’((drop (holding . 0) (holding . 1))
(drop (broken . 1) (holding . 1) (fragile . 1))
(repair (broken . 0)))

Now we can prove that a broken object can be repaired.

THEOREM: tryl
holds (’ (broken . 1), s)
— holds (’ (broken . 0), result (’repair, s, FO-DOMAIN1))

D.2 Verification of a Planner for A Domains

The following sequence of events verifies a general purpose planner for
domains that can be described in A. This shows how solutions to problems that arise
in a class of domains can be expressed and verified.

”planning program” that generates a sequence

Here is a general purpose
of actions of length n to transform an initial state to a goal state depending on the
domain passed to it as a parameter. Thus, the solution generated by the program is
applicable to a class of domains. An action such as wait is not needed for generating

a plan because any goal that can be achieved with it may be achieved without it.

212

DEFINITION:
len (1)
= if [~ nil then 0
else 1 + len (cdr (1)) endif

DEFINITION:
collect-actions (dom)
= if dom ~ nil then nil
else cons (caar (dom), collect-actions (cdr (dom))) endif

Function to form all plans of length n from a given list of actions actlist.
Given a plan p the following function returns the set of plans got by tagging on each
action in the action list actlist to the beginning of p.

DEFINITION:
add-action-to-plan (p, actlist)
= if actlist ~ nil then nil
else cons (cons (car (actlist), p),
add-action-to-plan (p, cdr (actlist))) endif

Given a list of all plans of length n-1 form a list of all plans of length n
that can be got by tagging on actions in actlist at the beginning.

DEFINITION:
form-longer-plans (plist, actlist)
= if plist ~ nil then nil
else append (add-action-to-plan (car (plist), actlist),
form-longer-plans (cdr (plist), actlist)) endif

Return a list of all plans of length n given the list of actions actlist

DEFINITION:
form-all-plans (actlist, n)
= if n ~ 0 then list (nil)
else form-longer-plans (form-all-plans (actlist, n — 1), actlist) endif

A planner - a function that finds a plan of length n to achieve a goal given
as a list of fluent expressions when executed in an initial state s. If there is none
return F. The algorithm used here is brute-force search - form all plans of length n
from the given set of e-propositions dom. Return the first one that satisfies the goal.

Get-plan either returns a plan in plist that satisfies the goal if executed in
the initial state or returns F if none of them satisfy it.

213

DEFINITION:

get-plan (plist, dom, goal, s)

= 1if plist ~ nil then f
elseif holds-all (goal, resultlist (car (plist), s, dom)) then car (plist)
else get-plan (cdr (plist), dom, goal, s) endif

DEFINITION:
find-plan (s, dom, goal, n)
= get-plan (form-all-plans (collect-actions (dom), n), dom, goal, s)

We want to prove the ”completeness” of the planner, i.e., if there is a plan
to achieve a goal then the planner would find it.

If there is a plan p consisting of actions of domain dom then p is a member
of form-all-plans of length p using the actions in dom.

THEOREM: add-actionl
(a € actlist) — (cons (a, p) € add-action-to-plan (p, actlist))

THEOREM: app-mem
(z € 11) = (2 € append (I1, (2))

THEOREM: form-longerl
((a € actlist) A (p € plist))
— (cons (a, p) € form-longer-plans (plist, actlist))

THEOREM: 11
klp (p, z) — (p € form-all-plans (z, len (p)))

THEOREM: get-planl
((p € plist) A holds-all (goal, resultlist (p, s, dom)))
— holds-all (goal, resultlist (get-plan (plist, dom, goal, s), s, dom))

THEOREM: planner-complete
(domainp (z)
klp (p, collect-actions (z))
a-statep (s0)
fvlistp (goal)
holds-all (goal, resultlist (p, s0, z)))
holds-all (goal, resultlist (find-plan (s0, z, goal, len (p)), s0,))

I>>>>

Here are the examples given in Chapter 6.

Examples of states with duplicate occurrence of fluents.

214

DEFINITION:
STATEl = ’((holding . 1) (fragile . 1) (broken . 0))

THEOREM: state-examplel
a-statep (STATE1)

DEFINITION:

STATEZ2

— ’((holding . 1)
(fragile . 1)
(broken . 0)
(broken . 1))

THEOREM: state-example2
a-statep (STATE2)

THEOREM: state-example3
frag-statep (STATEL) A frag-statep (STATE2)

THEOREM: eprop-examplel
e-prop (’ (drop (broken . 1) (holding . 1) (fragile . 1)))

A representation of a domain.

THEOREM: domainp-examplel
domainp (FO-DOMAIN)

Holds examples to show it checks only the first pair.

THEOREM: holds-examplel
holds (> (broken . 0), STATEL)

THEOREM: holds-example2
holds (> (broken . 0), STATE2)

Examples of compute-effects. The effect of drop when holding and fragile
are both true is not holding and broken whereas if it just not holding if fragile is
false.

THEOREM: compute-effectsl
compute-effects (’drop, STATE1, FO-DOMAIN)
= ’((holding . 0) (broken . 1))

THEOREM: compute-effects3
compute-effects (’drop, STATE2, FO-DOMAIN)
= ’((holding . 0) (broken . 1))

DEFINITION:
STATE3 = ’((holding . 1) (broken . 0) (fragile . 0))

THEOREM: compute-effects2
compute-effects (’drop, STATE3, FO-DOMAIN) = ’ ((holding . 0))

Result examples.

THEOREM: result-examplel
result (*drop, STATE1, FO-DOMAIN)

= ’((holding . 0)
(broken . 1)
(holding . 1)
(fragile . 1)
(broken . 0))

THEOREM: result-example3
result (’drop, STATE2, FO-DOMAIN)

— ’((holding . 0)
(broken . 1)
(holding . 1)
(fragile . 1)
(broken . 0)
(broken . 1))

THEOREM: result-example2
result (’drop, STATE3, FO-DOMAIN)

— ((holding . 0)
(holding . 1)
(broken . 0)
(fragile . 0))

Resultlist examples.

THEOREM: resultlist-examplel

resultlist (* (drop drop), STATEl, FO-DOMAIN)
= ?’((holding .

0)

215

216

(broken . 1)
(holding . 1)
(fragile . 1)
(broken . 0))

THEOREM: resultlist-example2
resultlist (* (drop drop), STATE2, FO-DOMAIN)
= ?’((holding . 0)

(broken . 1)

(holding . 1)

(fragile . 1)

(broken . 0)

(broken . 1))

BIBLIOGRAPHY

[1] W. W. Agresti, editor. New Paradigms for Software Development. IEEE Com-
puter Society Press, 1986.

[2] James Allen, James Hendler, and Austin Tate, editors. Readings in Planning.
Morgan-Kaufmann, San Mateo, CA, 1990.

[3] James F. Allen. Towards a general theory of action and lime, pages 464-479.
In Allen et al. [2], 1990.

[4] Andrew Baker. Nonmonotonic reasoning in the framework of situation calcu-
lus. Artificial Intelligence, 49:5-23, 1991.

[5] William Bevier, Warren Hunt, J Strother Moore, and William Young. Special
issue on system verification. Journal of Automated Reasoning, 5(4), 1989.

[6] D. Bjorner, C. A. R. Hoare, and H. Langmaack, editors. VDM’90: VDM and
7 — Formal Methods in Software Development, volume 428 of Lecture Noles
in Compuler Science. Springer-Verlag, Berlin, 1990.

[7] A. Borgida, J. Mylopoulos, and R. Reiter. “...And Nothing Else Changes”: The
frame problem in procedure specifications. In Proc. Fifteenth Int’l Conf. on
Software Engineering, 1993.

[8] Robert S. Boyer, David M. Goldschlag, Matt Kaufmann, and J. Strother
Moore. Functional instantiation in first-order logic. In Vladimir Lifschitz, ed-
itor, Artificial Intelligence and Mathemaltical Theory of Computation: Papers
in Honor of John McCarthy, pages 7-26. Academic Press, 1991.

[9] Robert S. Boyer and J Strother Moore. A Computational Logic. Academic
Press, New York, 1979.

[10] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook.
Academic Press, 1988.

[11] Robert S. Boyer and Yuan Yu. Automated correctness proofs of machine code
programs for a commercial microprocessor. In Proceedings of the Fleventh
Conference on Automated Deduction. LNCS 607, Springer-Verlag, 1992.

[12] Robert S. Boyer and Yuan Yu. A formal specification of some user mode
instructions for the Motorola 68020. Technical Report TR-92-04, Computer
Sciences Department, University of Texas at Austin, 1992.

217

218

[13] R. Brachman and H. Levesque, editors. Readings in Knowledge Representation.
Morgan Kaufmann Publishers, Inc., San Mateo, Calif., 1985.

[14] R. M. Burstall and J. A. Goguen. An Informal Introduction to Specifications
using CLEAR, pages 363-390. In Gehani and McGettrick [34], 1986.

[15] E.M. Clark, M. C. Browne, E. A. Emerson, and A. P. Sistla. Using temporal
logic for automatic verification of finite state systems. In K. R. Apt, editor,
Logics and Models of Concurrent Systems, pages 3—-26. Springer-Verlag Berlin
Heidelberg, 1985.

[16] B Cohen. Justification of formal methods for system specification. Software
Engineering Journal, pages 26-35, January 1989.

[17] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Devel-
opment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[18] D. Good, et al. Report on the language GYPSY version 2.0. Technical Report
ICSCA-CMP-10, Institute for Computing Science and Computer Applications,
University of Texas at Austin, 1978.

[19] O-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming.
Academic Press, Orlando, Fla., 1972.

[20] A. M. Davis. Software Requirements: Analysis and Specification. Prentice
Hall, Englewood Cliffs, NJ, 1990.

[21] J. De Kleer. An Assumption-based TMS, pages 280-298. In Ginsberg [38§],
1987.

[22] E. W. Dijkstra. Notes on Structured Programming, pages 1-82. In [19], 1972.

[23] E. W. Dijkstra. Why correctness must be a mathematical concern. In R. S.
Boyer and J S. Moore, editors, The Correctness Problem in Computer Science.
Academic Press, London, 1981.

[24] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[25] J. Doyle. A truth maintenance system, pages 259-279. In Ginsberg [38], 1987.

[26] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theorelical Computer Science, volume B. North-Holland Publishing
Company,Amsterdam, 1990.

[27] H Enderton. A Mathematical Introduction To Logic. Academic Press, Inc.,
Orlando, FL, 1972.

219

[28] S Fahlman. A planning system for robot construction tasks. Artificial Intelli-
gence, 5:1-49, 1974.

[29] R. E. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing generalized
robot plans. Artificial Intelligence, 3(4):251-288, 1972.

[30] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[31] Art Flatau. A Verified Implementation of an Applicative Language with Dy-
namic Storage Allocation. PhD thesis, University of Texas at Austin, 1992.

[32] Mark S. Fox and Stephen F. Smith. A Knowledge-based System for Factory
Scheduling, pages 336-360. In Allen et al. [2], 1990.

[33] S. J. Garland, J. V. Guttag, and J. J. Horning. Debugging Larch Shared
Language specifications. IEFE Transactions on Software Engineering, pages
1044-1057, September 1990.

[34] N. Gehani and A.D. McGettrick, editors. Software Specification Techniques.
Addison-Wesley, 1986.

[35] Michael Gelfond and Vladimir Lifschitz. Representing actions in extended logic
programming. In Krzysztof Apt, editor, Proc. Joint Int’l Conf. and Symp. on
Logic Programming, pages 559-573, 1992.

[36] Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov. What are the lim-
itations of the situation calculus? In Robert Boyer, editor, Automated Rea-
soning: Essays in Honor of Woody Bledsoe, pages 167-179. Kluwer Academic,
Dordrecht, 1991.

[37] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelli-
gence. Morgan Kaufmann, Los Altos, CA, 1987.

[38] Mathew L. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan-
Kaufmann, Los Altos, CA, 1987.

[39] David Gries. The Science of Programming. Springer-Verlag, Berlin, 1981.

[40] J. V. Guttag and J. J. Horning. Formal Specification as a Design Tool, pages
187-209. In Gehani and McGettrick [34], 1986.

[41] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in five easy pieces. Tech-
nical Report 5, DEC Systems Research Center, July 1985.

[42] S. Hanks and D. McDermont. Default reasoning, nonmonotonic logics and the
frame problem. In Proc. AAAI-86, volume 1, pages 328-333, 1986.

220

[43] Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projec-
tion. Artificial Intelligence, 33(3):379-412, 1987.

[44] D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt,
editor, Logics and Models of Concurrent Systems, pages 477-498. Springer-
Verlag Berlin Heidelberg, 1985.

[45] David Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1979.

[46] 1. J. Hayes and C. B. Jones. Specifications are not (necessarily) executable.
Software Engineering Journal, pages 330-338, November 1989.

[47] P. J Hayes. A logic of actions. In D Michie and B Meltzer, editors, Machine
Intelligence, volume 6, pages 495-520. Wiley, New York, 1971.

[48] Pat Hayes, January 1993. In the Second Symposium on Logical Formalizations
of Commonsense Reasoning.

[49] C. A. R. Hoare. Notes on Data Structuring, pages 83-174. In [19], 1972.

[50] J. R. Hobbs and R. C. Moore, editors. Formal Theories of the Commonsense
World. Ablex, Norwood, NJ, 1985.

[51] IEEE. Proceedings of the Fifth International Workshop on Software Specifica-
tion and Design, 1989.

[52] C. B. Jones and P. A. Lindsay. A support system for formal reasoning: Re-
quirements and status. In R. Bloomfield, L. Marshall, and R. Jones, editors,
VDM’88: VDM — The Way Ahead, Lecture Notes in Computer Science, pages
139-152. Springer-Verlag, Berlin, 1988.

[53] C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore. Mural: A Formal Devel-
opment Support System. Springer-Verlag, London, U.K., 1991.

[54] Cliff B. Jones. Software Development: A Rigorous Approach. Prentice-Hall
International, Inc., London, 1980.

[55] Henry Kautz. The logic of persistence. In Proc. of AAAI-86, pages 401-405,
1986.

[56] R. A. Kemmerer. Testing formal specifications to detect design errors. IFEFE
Transactions on Software Engineering, pages 32-43, January 1985.

[57] A. Klausner and T. E. Konchan. Rapid Prototyping and Requirements Specifi-
cation Using PDS, pages 441-454. In Gehani and McGettrick [34], 1986.

[58] F. Kluzniak and S. Szpakowicz. FExtract from Prolog for Programmers, pages
140-153. In Allen et al. [2], 1990.

221

[59] R. A. Kowalski. Logic for Problem Solving. North-Holland, New York, 1979.

[60] C. Lafontaine, Y. Ledru, and P.-Y. Schobbens. An experiment in formal soft-
ware development. Communications of the ACM, 34(5):62-71, 1991.

[61] V. Lifschitz. Formal theories of action. In The Frame Problem in Artificial
Intelligence: Proceedings of the 1987 Workshop, Los Angeles, CA, 1987.

[62] T. A. Linden. Representing Software Designs as Partially Developed Plans,
pages 603-626. In Lowry and McCartney [65], 1991.

[63] B. H. Liskov and V. Berzins. An Appraisal of Program Specifications, pages
3-25. In Gehani and McGettrick [34], 1986.

[64] B.H. Liskov and J.V. Guttag. Abstraction and Specification in Program Devel-
opment. MIT press, Cambridge, MA, 1986.

[65] Michael R. Lowry and Robert D. McCartney, editors. Automating Software
Design. AAAT Press, Menlo Park, CA, 1991.

[66] Z. Manna and A. Pnueli. Verification of concurrent programs: the temporal
framework. In R. S. Boyer and J S. Moore, editors, The Correctness Problem
in Computer Science. Academic Press, London, 1981.

[67] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, New York, 1992.

[68] Z. Manna and R. Waldinger. Studies in Automatic Programming Logic. North-
Holland, New York, 1977.

[69] Z. Manna and R. Waldinger. How to clear a block: plan formation in situa-
tional logic. In Proceedings of the Fighth Conference on Automated Deduction.
LNCS 230, Springer-Verlag, 1986.

[70] Z. Manna and R. Waldinger. The deductive synthesis of Imperative LISP
programs. In Proc. of AAAI-87, pages 155-160, 1987.

[71] Z. Manna and R. Waldinger. Fundamentals of deductive program synthesis.
Technical Report STAN-CS-92-1404, Department of Computer Science, Stan-
ford University, January 1992.

[72] Zohar Manna and Richard Waldinger. How to clear a block: A theory of plans.
Journal of Automated Reasoning, 3:343-377, 1987.

[73] D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proc. of
AAAI-91, pages 634-639, 1991.

[74] John McCarthy. Open problems in the epistemology of common sense. In the
collection of papers given in his Al course at UT, Austin, Fall 1987.

222

[75] John McCarthy. A tough nut for proof procedures. Stanford University A.I.
memo no. 16, 1964.

[76] John McCarthy. Programs with Common Sense, chapter 7. In Minsky [91],
1968.

[77] John McCarthy. Circumscription—a form of non-monotonic reasoning. Artifi-
cial Intelligence, 13(1-2):27-39, 1980.

[78] John McCarthy. Invited commentary. In Jorg Siekmann and Graham Wright-
son, editors, Automation of Reasoning 2: Classical Papers on Compulalional
Logic 1967-1970, pages 157-158. Springer Verlag, Berlin Heidelberg, 1983.

[79] John McCarthy. Epistemological Problems of Artificial Intelligence, pages 23—
30. In Brachman and Levesque [13], 1985.

[80] John McCarthy. Applications of circumscription to non-monotonic reasoning.
Artificial Intelligence, 28(1):89-116, 1986.

[81] John McCarthy. Generality in artificial intelligence. In Robert L. Ashenhurst,
editor, ACM Turing Award Lectures: The First Twenly Years. ACM Press,
New York, New York, 1987.

[82] John McCarthy. Overcoming an unexpected obstacle. 1992.
[83] John McCarthy, March 1993. Personal communication.

[84] John McCarthy. History of circumscription. Artificial Intelligence, 59:23-26,
1993.

[85] John McCarthy. Notes on formalizing context. In Working Papers of the Sec-
ond Symposium on Logical Formalizalions of Commonsense Reasoning, 1993.

[86] John McCarthy and P. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In D. Michie and B. Meltzer, editors, Machine
Intelligence, volume 4. Edinburgh University Press, Edinburgh, Scotland, 1969.

[87] Drew McDermont. Reasoning about plans, pages 269-318. In Hobbs and Moore
[50], 1985.

[88] Drew McDermott. A critique of pure reason. Computational Intelligence,
3:151-160, 1987.

[89] Drew McDermott. A Temporal Logic for Reasoning about Processes and Plans,
pages 436-463. In Allen et al. [2], 1990.

[90] Drew McDermott. Robot planning. Al Magazine, 13(2):55-79, 1992.

223

[91] M. Minsky, editor. Semantic Information Processing. MIT Press, Cambridge,
MA, 1968.

[92] M. Minsky. A framework for representing knowledge. In Brachman and
Levesque [13], pages 245-262.

[93] M. Minsky. The Society of Mind. Simon and Schuster, Inc., New York, 1985.

[94] Steve Minton, Craig A. Knoblock, Daniel R. Kuokka, Yolanda Gil, Robert L.
Joseph, and Jaime G. Carbonell. Prodigy 2.0: The manual and tutorial. Tech-
nical Report CMU-CS-89-146, School of Computer Science, Carnegie Mellon
University, May 1989.

[95] J Strother Moore. Piton: A verified assembly-level language. Technical Report
CLI-22, Computational Logic, Inc., Austin, Tx, June 1988.

[96] M. Moriconi. A Designer/Verifier Assistant, pages 335-350. In Rich and
Waters [105], 1986.

[97] M. Moriconi and T. C. Winkler. Approximate reasoning about the semantic
effects of program changes. IFFFE Transactions on Software Engineering, pages
980-992, September 1990.

[98] A. Newell. Limitations of the current stock of ideas about problem-solving. In
Proceedings of a Conference on Flectronic Information Handling, pages 195—
208, 1965.

[99] A. Newell and H. A. Simon. Human Problem Solving. Prentice-Hall, 1972.

[100] N. J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-
Hill, New York, 1971.

[101] E. P. D. Pednault. Toward a mathematical theory of plan synthesis. PhD
thesis, Stanford University, Department of Electrical Engineering, 1986.

[102] E. P. D. Pednault. Synthesizing plans that contain actions with context-
dependent effects. Computational Intelligence, 4:356-372, 1988.

[103] J. Scott Penberthy and Daniel S. Weld. Temporal planning with constraints.
In Proceedings of the Spring Symposium on Planning, Stanford, CA., 1993.

[104] R. Reiter. Proving properties of states in the situation calculus. Artificial
Intelligence, 1992.

[105] Charles Rich and Richard C. Waters, editors. Readings in Artificial Intelligence
and Software Fngineering. Morgan-Kaufmann, Los Altos, CA, 1986.

[106] Charles Rich and Richard C. Waters. The Programmer’s Apprentice. ACM
Press, Reading, MA, 1990.

224

[107] J. A. Robinson. Formal and informal proofs. In Robert Boyer, editor, Auto-
mated Reasoning: Essays in Honor of Woody Bledsoe, pages 267-282. Kluwer
Academic, Dordrecht, 1991.

[108] Lenhart Schubert. Monotonic solution of the frame problem in the situation
calculus: an efficient method for worlds with fully specified actions. In H.E.
Kyburg, R. Loui, and G. Carlson, editors, Knowledge Representation and De-
feasible Reasoning, pages 23-67. Kluwer, 1990.

[109] Douglas R. Smith. KIDS—A Knowledge-Based Software Development System,
pages 483-514. In Lowry and McCartney [65], 1991.

[110] J. M. Spivey. Understanding Z. Cambridge University Press, Cambridge, 1988.

111] Werner Stephan and Susanne Biundo. A new logical framework for deductive
g
planning. In Proc. of IJCAI-93.

[112] G. J. Sussman. A Computational Model of Skill Acquisition. American Else-
vier, New York, 1975.

[113] Austin Tate, James Hendler, and Mark Drummond. A review of Al planning
techniques. In James Allen, James Hendler, and Austin Tate, editors, Readings
in Planning, pages 26-50. Morgan Kaufmann, San Mate, CA, 1990.

[114] Steven A. Vere. Planning in Time: Windows and Durations for Activities and
Goals, pages 297-318. In Allen et al. [2], 1990.

[115] R. J. Waldinger. Achieving several goals simultaneously. In B. L. Webber and
N. J. Nilsson, editors, Readings in Artificial Intelligence. Morgan Kaufmann,
Los Altos, CA, 1981.

[116] Richard Waldinger. The bomb in the toilet. Computational Intelligence, 3:220—
221, 1987.

[117] Jeanette M. Wing. A specifier’s introduction to formal methods. IEEFE Com-
puter, Septermber 1990.

[118] T. Winograd. A procedural model of language understanding. In R. Schank
and K. Colby, editors, Computer Models of Thought and Language. W. H.
Freeman, San Francisco, 1973.

[119] T. Winograd. Frame Representations and the Declarative/Procedural Contro-
versy, pages 357-370. In Brachman and Levesque [13], 1985.

[120] J. C. P. Woodcock. Structuring specifications in Z. Software Engineering
Journal, pages 51-66, January 1989.

225

[121] Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated Reasoning:
Introduction and Applications. Prentice Hall, Inc., 1984.

[122] W. D. Young. A Mechanically Verified Code Generator. Journal of Automated
Reasoning, 5(4), 1989.

a-statep, 163, 164, 181, 294, 306, 307

actionl, 95-97, 260, 261

action2, 97, 261

actionp, 63, 162, 165, 189, 272, 293,
294

add-action-to-plan, 179, 304, 305

add-actionl, 305

adjacency-examplel, 93, 260

adjacency-example2, 93, 260

adjp, 92, 93, 242, 260

adml, 219

Index

all-covered-except-cornerp, 101, 102, 104,

105, 245, 255, 259
always-broken, 176, 302
always-holds, 176, 302
app-mem, 305
append-assoc, 248
append-assocl, 211
append-template, 136, 290
argn, 140, 267, 291
assoc-carl, 195, 277
assoc-car2, 204, 286
assoc-stackl, 194, 276

bad-plan, 97, 98, 261, 262
base2, 250

beequall, 105, 258

bex1, 195, 277

black-dell, 253

black-del2, 255
black-one-plus-white, 250
black-samel, 252

black-same2, 255

blackp, 103, 104, 108, 246248, 255
block-not-on-two-blocks, 56
blockp, 55-57, 59, 185, 186, 269
blocks-world-examplel, 60, 220
board-state-examplel, 92, 259
board-state-example2, 92, 259

226

board-statep, 91, 92, 102, 104, 105, 111,
243, 255-259, 264, 265

bottomp, 60, 61, 187, 188, 270, 271

broken, 170, 297, 298

build-towern, 77, 222-224

build-towern-ex1, 77, 223

build-towern-ex2, 78, 223

build-towern-works, 78, 224

bw-equal2, 257

bw-statel, 211

bw-state2, 212

bw-statep, 35, 36, 59, 60, 68-72, 74-76,
78,79, 85, 120, 121, 123, 125,
127-129, 143-145, 187, 192-
200, 202-207, 209-212, 214-
216, 220, 222, 224, 228, 229,
231, 232, 237-240, 269, 270,
274-290

bwsl, 231

c4-coml, 121, 238

c4-thl, 118, 237

c4-th2, 120, 238

c4-th3, 123, 239

ch4-thb, 127, 239

ch4-th6, 128, 239

ch4-th7, 129, 240

chb-ex1, 135, 290

chb-ex2, 135, 290

chb-ex3, 135, 290

chb-ex4, 135, 290

check-action, 139, 140, 267, 272

check-block, 56

check-both, 128, 129, 237, 240

check-both-ex1, 128, 237

check-clearn, 124, 125, 235

check-other-ex1, 123, 234

check-other-stacks, 122, 123, 234, 239

clear, 36, 62, 65, 69-71, 82, 119, 120,
124, 128, 137, 143, 144, 188,

190-196, 198-202, 207, 222, 226,
228, 235, 237, 238, 271, 273~
276, 281, 282, 284, 285, 287,
289, 290
clear-carl, 203, 286
clear-int-th1, 125, 239
clear-intn-ex1, 124, 235
clear-mem1, 205, 287
clear-stackp, 195, 278
collect-actions, 179-181, 304-306
complex-action-ex1, 145, 291
complex-action-ex2, 146, 291
complex-action-ex3, 146, 292
complex-action-ex4, 147, 292
compute-effects, 166, 167, 296, 308
compute-effectsl, 167, 308
compute-effects2, 167, 308
compute-effects3, 308
consecp, 62, 141, 188, 271
covered, 110, 111, 263-265

d-statep, 163, 164, 170, 171, 294, 297,
298, 301

del-disjointlist2, 198, 280

del-setl, 71, 194, 276

delete, 64, 65, 71, 72, 82, 100, 101, 122,
143, 144, 189, 190, 192-194,
198-202, 204, 208, 209, 213,
218, 226, 228, 229, 233, 245,
252, 253, 255, 272-276, 280,
281, 283, 284, 287

disj-consl1, 196, 279

disj-subset, 202, 284

disj2, 193, 276

disjoint, 59, 186, 195-200, 202, 204,
210, 231, 269, 277, 279-282,
284, 286

disjoint-append, 231

disjoint-carl, 204, 286

disjoint-cdr, 198, 280

disjoint-cdrl, 197, 279

disjoint-comm, 198, 280

disjoint-mem1, 195, 277

227

disjoint-movel, 199, 282

disjoint-move2, 199, 282

disjoint-nlistp, 197, 280

disjointlist, 59, 71, 186, 187, 193, 195,
197-202, 205, 231, 269, 270,
276, 277, 279-284, 287

disjointlist-append, 231

disjointlist-cdr, 197, 280

disjointlist-cons, 197, 279

disjointlist-mem1, 195, 277

disjointlist-mem?2, 205, 287

disjointlist-single, 71, 202, 284

disjointlist-subset, 202, 284

dist-stacks2, 199, 281

domainp, 166, 181, 295, 306, 307

domainp-examplel, 166, 307

domino-blackl, 257

domino-whitel, 256

dominol, 93, 95, 259, 260

dominop, 93, 94, 242, 244, 256, 257,
260

dominop-examplel, 93, 260

dominop-example2, 93, 260

dominop-example3, 93, 260

e-prop, 165, 166, 294, 295, 307
empty, 110, 111, 263, 265
eprop-examplel, 165, 307
eq-bw-board, 106, 249
eq-bw-board1, 106, 249
eq-bw-board2, 251
equal-bw-row-base0, 107, 248
equal-bw-row1, 107, 249
error-state-examplel, 96, 261
error-state-example2, 96, 261
eval$, 134

evenp, 48, 105, 249-251, 253, 255
ex-ex1, 125, 236

exec-move, 64, 65, 137, 190, 273
exec-move-over, 82, 83, 226
exec-movell, 195, 278
exec-movel2, 196, 278
exec-movel3, 200, 282

exec-moveld, 200, 282

exec-moveld, 198, 281

exec-movel6, 198, 281

exec-unstack, 65, 190, 191, 273
exist-clear-intn, 125, 126, 235, 236, 239
exists-towern, 77, 78, 222-224

exp, 48

1, 251

3, 214

f6, 211

failed-statel, 257

fill-board, 111, 112, 264, 265

fill-board-ex0, 112, 264

fill-board-ex1, 112, 264

fill-board-works, 112, 265

fill-row, 109-111, 263-265

fill-row-ex0, 110, 264

fill-row-ex1, 111, 264

fill-row-works, 111, 265

find-assocl, 205, 287

find-mem-cdr, 203, 285

find-plan, 180, 181, 305, 306

find-stack-examplel, 61, 220

find-stack-example2, 61, 221

find-stack-fluent, 142, 291

find-stack-listp, 206, 288

find-stack-of-block, 35, 36, 61, 62, 68—
70, 72, 75, 81, 82, 118, 120-
123, 126-129, 141, 145, 187,
188, 203, 205-207, 213, 215,
220, 221, 224-226, 228, 229,
233, 237-240, 270, 271, 285,
287-290

find-stack3, 205, 287

find5, 205, 288

fluentp, 162, 293, 294

fn-name, 49

fo-domain, 166-170, 176, 296298, 302,
307-309

fo-domainl, 177, 303

foo, 149, 258

form-all-plans, 180, 304-306

228

form-longer-plans, 179, 180, 304, 306
form-longerl, 306
form-single-tower-gen, 85, 230-232
form-state, 79, 223, 224
form-tower, 79, 223

frag-statep, 164, 170, 297, 298, 307
frag-thl, 170, 297

frag-thla, 297

frag-th2, 170, 298

frag-th2a, 298

fragile, 170, 297

fred-dead2, 176, 302

fvlistp, 162, 163, 165, 181, 294, 306

gbl, 217

gb2, 217

gen-ex1, 138, 290
gen-ex2, 140, 291
get-block, 76, 216-220
get-block-litatom, 219
get-plan, 180, 305, 306
get-planl, 306
good-plan, 97, 98, 261

h1, 125, 236

h2, 128, 237

has-fluents, 163, 294

hist-ex1, 122, 233

hist-ex2, 125, 235

holding, 170, 297, 298

holds, 42, 141, 142, 156, 164, 165, 170—
177, 268, 291, 295, 297-303,

307
holds-all, 165, 167, 180, 181, 295, 296,
305, 306

holds-ex1, 142, 291
holds-examplel, 164, 307
holds-example2, 165, 307

illegal-domino, 93, 259, 260
illegal-move-example, 66, 221
illegal-unstack-example, 67, 221
invert-gen, 73, 74, 208, 211, 212, 222

invert-gen-ex1, 74, 222
invert-isa-plan, 212
invert-resultsin-state, 212
invert-works, 212
invert-works1, 211
invert-works2, 74, 212
isa-planl, 231

klp, 175, 176, 181, 306

I-th1, 174, 300

I-th2, 42, 174, 301

-th3, 156, 301

I-th4, 175, 301

11, 107, 248, 306

113, 250

114, 250

115, 250

116, 251

117, 251

15, 229

16, 229

17, 229

18, 229

19, 229

last, 84, 85, 227-231

legal-move-example, 66, 221

legal-unstack-example, 66, 221

lemma-name, 49

len, 70, 78, 119, 121, 180, 181, 185,
203, 206, 217, 218, 223, 224,
238, 267, 285, 288, 303, 306

litatom-stackl, 194, 277

ml, 217, 219, 252

m2, 253

m3, 70, 206, 288

makclear-gen-preserves-blocks, 72, 224

make-action, 139, 145, 146, 267, 271,
272, 291, 292

make-all-rows, 99, 100, 106, 112, 244~
246, 249-253, 262, 264, 265

make-arglist, 139, 141, 268

229

make-clear-intn, 124-126, 234-236, 239

make-clear-is-a-plan, 207, 289

make-fluent, 141, 142, 268, 291

make-hist, 121-123, 125, 126, 128, 129,
233-237, 239, 240

make-row, 99, 107, 244, 248-252, 262

makeclear, 69, 145, 146, 291

makeclear-bwstate, 207, 289

makeclear-ex2, 121, 233

makeclear-gen, 35, 36, 39, 68, 69, 72,
119, 120, 122-124, 127-129, 144,
145, 206, 207, 222, 224, 233,
234, 237-240, 288-291

makeclear-gen-ex1, 69, 222

makeclear-list, 146, 147, 292

makeclear-list-gen, 146, 291, 292

makeclear-works, 207, 289

makeclear-worksl, 36, 69, 207, 289

mem-appl, 230

mem-assocl, 218

mem-cadrl, 208

mem-carl, 209

mem-cdr3, 215

mem-dell, 253

mem-find0, 203, 285

mem-find6, 203, 285

mem-lastl, 228

mke-11, 206, 289

mke-12, 206, 289

mml, 172, 299

mm?2, 172, 299

move, 62, 66, 73, 77, 79, 137, 139, 140,
143, 188, 192, 200, 201, 208-
212, 221-223, 271, 274, 283,
291

move-eff1, 209

move-efl2, 210

move-eff21, 210

move-eff22, 210

move-follows-ex1, 127, 237

move-follows-ex2, 127, 237

move-follows-unstackp, 127, 128, 236,
239

move-over, 83-85, 226, 228-231

move-over-bwsl, 231

move-over-plan-works, 85, 232

move-over-th1l, 231

move-overp, 83, 227, 230

move-sitl, 201, 283

moveQl, 200, 282

move02, 200, 283

movep, 34, 62, 63, 66, 119, 127, 140,
189, 191, 232, 236, 272

mut-11, 253

mut-12, 253

mutl, 253

mut2, 253

mut3, 254

mutboard2, 100, 262

mutboard7, 100, 254

mutilated checkerboard problem, 88

mutilated-board, 100, 101, 245, 253,
254, 262

nblack, 104-107, 246, 248-259
nblack-append1, 249
nblack-eql, 255

new-ex1, 84, 230

new-ex2, 84, 230

new-ex3, 84, 230

new-ex4, 84, 230
new-stackl, 196, 278
no-two-blocks-on-top-of-block, 56
not-eq-carl, 204, 286
not-eq-car2, 204, 286
not-eq-13, 210
not-eq-st1-st2, 211
nsing-leq-nblocks, 219
nsing-less-than-nblocks, 219
nth, 140, 185, 266, 267
numl, 218

num?2, 218

num3l, 218

number-ex1, 126, 236
number-ex2, 126, 236
number-of-blocks, 217, 219

230

number-of-singletons, 217-219

number-of-times-moved, 126, 127, 236,
239

nwhite, 104-107, 246, 248-259

nwhite-appendl, 249

nwhite-eql, 255

odd-evenl, 248

oddp, 105-107, 111, 112, 246, 249-251,
253, 256, 265

on, 62, 141, 188, 271

on-fluent, 142, 291

ontable, 61, 188, 271

ontable-list, 75, 213, 215, 216

other-stacks, 122, 123, 233, 234, 239

other-stacks-ex1, 122, 233

over, 81, 225

p2, 128, 237

place, 94, 95, 97, 110, 244, 260, 261,
263

place-dom1, 257

place-planp, 97,102, 105, 111, 244, 258,
259, 261, 264, 265

placep, 94, 95, 97, 244, 257, 258, 260

placep-examplel, 95, 260

placep-example2, 95, 260

plan-durl, 119, 233

plan-duration, 119, 120, 232, 233, 238

plan-ex1, 97, 261

plan-ex2, 97, 261

plan-ex3, 98, 261

plan-ex4, 98, 262

planl, 63, 66, 67, 221

planner-complete, 181, 306

planner-works, 79, 224

planp, 36, 63, 69, 70, 74-76, 78, 118,
120, 189, 207, 212, 213, 215,
216, 220-222, 224, 238, 272,
289, 290

planp-examplel, 63, 221

planp-new, 83, 85, 230-232

plusl, 109, 247

res-makeclear, 38, 39, 132, 145, 291

res-makeclear-list, 146, 292

res-move, 33, 34, 37, 38, 65, 66, 131,
137, 138, 190, 191, 273, 290

res-move-over, 82, 83, 226, 227

res-place, 94, 95, 243

res-unstack, 34, 65, 66, 191, 273

res2, 258

res3, 258

result, 36, 38, 42, 66-68, 71, 73, 75, 76,
95-97, 121, 138, 140, 143-147,

156, 167-171, 173175, 177, 191

193, 200-202, 204-215, 217-
219, 221, 233, 243, 257, 258
260, 261, 268, 274, 275, 283—

285, 287-292, 296-301, 303, 308,

309

result-examplel, 95, 168, 260, 308

result-example2, 168, 309

result-example3, 309

result-get-block, 217

result-new, 83-85, 227-231

result-newl, 228

resultl, 143, 192, 274

result10, 209

result2, 143, 193, 275

result3, 144, 193, 275

result4, 144, 193, 275

resulth, 143, 192, 274

result6, 143, 192, 274

result7, 204, 287

result8, 213

result9, 209

resultlist, 34, 36, 39, 66, 67, 69, 72, 74—
76, 78, 80, 97, 98, 102, 105,
111, 112, 117, 118, 120, 140,
145, 146, 169, 171-173, 176,
180, 181, 191, 207, 211-213,
215, 216, 219-224, 238, 243,
257-259, 261, 262, 264, 265,

268, 289-292, 296-300, 302, 305,

306, 309
resultlist-examplel, 169, 309

231

resultlist-example2, 309
resultlist-illegal, 67, 222
resultlist-legal, 67, 221
resultlist-new, 83-85, 227, 230-232
reverse, 73, 74, 208, 212, 213
row), 99, 262

sl, 258

set-del-b1-b2, 194, 276

set-del3, 198, 280

set-disjoint1, 199, 281

set-equal, 72, 80, 101, 112, 208, 224,
245, 255, 264, 265

set-of-blocks, 72, 80, 208, 224

single-11, 229

single-12, 228

single-13, 228

sq-wbl, 108, 247

sq-wb2, 108, 248

square-listp, 91, 242, 243

squarenp, 92, 93, 242

squarep, 91, 92, 242

st2, 173, 300

stack-above, 81, 225, 228, 229

stack-abovel, 81, 82, 225, 226, 228

stack-below, 81, 82, 225, 226, 228, 229

stack-belowl, 82, 226, 228

stack-list1, 196, 278

stackp, 57, 59, 186, 187, 194, 196, 197,
199, 202, 204, 228, 231, 269,
270, 276, 278-280, 282, 284,
286

stackp-append, 231

stackp-cdrx1, 194, 276

state-cdrl, 204, 286

state-examplel, 163, 306

state-example2, 164, 307

state-example3, 164, 307

state-stackp, 204, 286

statel, 57, 60, 61, 66, 67, 69, 74, 77, 78,
92, 95, 96, 98, 121-125, 127,
128, 138, 142, 145-147, 163,

164, 167-169, 220-223, 234-
237, 259-262, 290-292, 306—
309
state2, 96, 163, 165, 260, 261, 307-309
state3, 167, 168, 308, 309
stolen, 173, 299, 300
subset, 122, 201, 202, 234, 284
switch-dom1, 42, 174, 175, 300, 301
switch-dom2, 42, 156, 174, 301
switch-dom2-statep, 156, 301

t1, 108, 247

t10, 256

t11, 256

t3, 108, 247

t4, 108, 247

th, 248

16, 248

t61, 250

17, 252

18, 252
tough-nut, 102, 259
transform, 79, 80, 224
tryl, 177, 303
twobytwo, 100, 262

unequall, 105, 255

unequal2, 105, 256

unequal3, 104, 256

unstack, 35, 36, 62, 6668, 71, 7577,
79, 123, 124, 128, 129, 139,
143-145, 188, 193, 202, 204-
207, 213-215,217-219, 221, 222,
234, 237, 240, 272, 275, 284,
285, 287289

unstack-all-towers-gen, 76, 219, 220, 224

unstack-all-towers-works, 76, 220

unstack-all-towers1, 79

unstack-eff1, 204, 287

unstack-eff4, 214

unstack-eff41, 214

unstack-eff42, 214

unstack-eff6, 214

232

unstack-increases-num-singleton
s, 218

unstack-leaves-numblocks-unchan
ged, 218

unstack-sit1, 71, 202, 285

unstack-tower-eff5, 215

unstack-tower-eff51, 215

unstack-tower-gen, 75, 213, 216

unstack-tower-isa-plan, 215

unstack-tower-state, 215

unstack-tower-works, 215

unstack-tower-worksl, 75, 216

unstack01, 202, 284

unstack02, 202, 285

unstackalll, 219

unstackall2, 220

unstackall3, 220

unstackll, 201, 283

unstackl2, 71, 201, 283

unstackn, 123, 124, 234

unstackp, 62, 63, 127, 140, 189, 236,

272

valuep, 162, 293, 294

white-dell, 255

white-delete, 252

white-one-plus-black, 250

white-one-plus-black2, 251

white-samel, 255

whitel, 252

whitep, 103, 104, 108, 246-248, 252,
255

vale-domain, 171, 172, 176, 298, 299,
302

yale-domainl, 173, 300

yale-statep, 171, 172, 298, 299

yspl, 171, 298

ysp2, 171, 299

ysp3, 173, 300

zero-ident, 250

VITA

Sakthikumar Subramanian was born to Rajalakshmi and Ramamurthi
Subramanian on March 6, 1962 in Pudukottai, Tamil Nadu, India. He received his
B.Tech in Electrical Engineering from the Indian Institute of Technology, Madras,
India, in 1983 and M.S. in Computer Science from the University of Tennessee,
Knoxville, in 1984. He joined the Ph.D. program in Computer Science at the Uni-
versity of Texas, Austin, in 1985 where he was employed as a teaching assistant
and research scientist at various times. He also served as a part-time lecturer at the
Southwest Texas State University in Fall, 1992. He is married to Sandhya Sundaresan

and has a son, Amrit.

Permanent address: 7205 Hart Ln # 3019
Austin, Texas 78731

This dissertation was typeset! with INTRX by the author.

1IATEX document preparation system was developed by Leslie Lamport as a special version of
Donald Knuth’s TEX program for computer typesetting. TEX is a trademark of the American
Mathematical Society. The INTEX macro package for The University of Texas at Austin dissertation
format was written by Khe-Sing The.

