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The use of mathematical logic for modeling and reasoning about hardware
designs promises assurance of circuit correctness beyond what is available from
current state-of-practice techniques. The development and use of formal tech-
niques in hardware design is spreading [5, 13, 16, 19, 20, 25, 28, 36, 45]. This
approach to circuit validation is known generally as hardware verification. Cir-
cuits with the complexity of microprocessors [5, 30, 35, 46] have been given
mathematical specifications, and their designs have been proved to implement
their specifications. Yet, the transfer of hardware verification techniques to
commercial engineering practice has been hampered by such factors as the use
of non-standard notations, inaccessibility of the tools, and the significant math-
ematical sophistication required to use these approaches. In addition, formal
techniques have been directed at only selected aspects of the design process. Im-
portant hardware characteristics such as testability and I/O behavior have been
largely neglected by the formal hardware modeling and verification community.

We have attempted to address some of these issues by considering the formal
specification, verification, and physical implementation of the FM9001 micropro-
cessor. The FM9001 is a general-purpose 32-bit microprocessor whose gate-level
netlist design implementation was developed using a theorem-proving environ-
ment in conjunction with a traditional CAD system. The behavioral specifica-
tion for the FM9001, the definition of the hardware description language (HDL)
used to represent the design of the FM9001, the simulator for the HDL, and the
verification of the FM9001 were all carried out using the Boyer-Moore theorem-
proving system Nqthm [9]. The FM9001 netlist was mechanically translated to
LSI Logic’s Netlist Description Language and implemented by LSI Logic, Inc.,
as a CMOS gate-array. Rigorous testing has not uncovered any situation where
the manufactured device fails to meet its specification. The FM9001 also serves
as the target for the verified assembler, Piton [42], which in turn serves as the
target of the verified u-Gypsy compiler [49]. This document presents the details
of the FM9001 development, its specification, and its verification.



1 RESULTS

We believe that a significant result of the FM9001 microprocessor study is that
we have shown it is possible to formally model a microprocessor at several levels
of abstraction and then prove that these different levels are formally related. The
FM9001 was formally modeled at four levels of abstraction as shown in Figure 1.

e A high-level behavioral (user-level) model that operates as an instruction
interpreter for FM9001 programs;

e A Boolean (two-valued) model that “mirrors” the intermediate, register-
transfer model,;

e An intermediate, (four-valued) register-transfer model that links the low-
and high-level specifications for verification purposes; and

e A complete gate-level (netlist) model presented in the DUAL-EVAL HDL.

The high-level and the register-transfer models are captured as executable Nqthm
logic functions. The semantics for the gate-level implementation, which is de-
scribed by an Nqthm constant, is given by our hardware description language
simulator, DUAL-EVAL. Even though we often prove that parts of the register-
transfer level are equivalent to the “Boolean level”, we do not have a complete
Boolean level; this is an artifact of our verification approach. The gate-level
model includes all of the logic required to physically construct the FM9001,
including the test logic. To have LSI Logic manufacture the FM9001, we trans-
lated only the DUAL-EVAL netlist into LSI Logic’s Network Description Language
(NDL) and provided the test vectors required by LSI Logic, Inc.

The implementation of the FM9001 is described as a DUAL-EVAL netlist con-
taining a reference for every primitive gate, latch, register, I/O buffer, and wire
that is required for the FM9001 implementation. Both the syntax and the se-
mantics of this netlist have been mechanically checked: the netlist is well-formed
and it has been proven to implement the FM9001 specification. We have a for-
mal definition of acceptable netlists; that is, we have a predicate that identifies
well-formed netlists.

The proof of correctness of the FM9001 gate-level design consists of three
major lemmas. First, we have shown that the FM9001 can be forced to a known
state, i.e., reset, by a suitable sequence of inputs. This proof is carried out using
the gate-level models; the concept of resetting the machine does not appear at
the behavioral level of the instruction interpreter. Second, we show that given a
set of initial conditions, the gate-level model correctly implements the high-level
specification. This proof involves both time and data abstractions to link the
clock-cycle based semantics of the gate-level FM9001 model with the high-level
instruction interpreter. Finally, we show that the state at the end of the reset
sequence satisfies the initial conditions for the previous lemma. This sequence
of results provides the formal basis for believing that behavior specified by the
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instruction interpreter is implemented by the gate-level design. Of course, any
physical flaws could invalidate everything. We did, during the design of the
FM9001, make provisions for thoroughly testing the manufactured devices.

Physically, the FM9001 is a general-purpose CMOS 32-bit microprocessor
implemented as a gate array. The FM9001 features a two-address program-
ming architecture, five addressing modes, multi-processor bus capability, and
extensive arithmetic flag support. Instructions require, assuming fast enough
external memory, from five to 17 cycles to execute; typical instructions require
five to nine clock cycles to execute. At 25 MHz the FM9001 only requires 70
mA of power exclusive of I/O drivers; the static design allows the clock rate to
be reduced for lower power consumption. All internal flip-flops are connected by
a scan chain for testing purposes, except for the register-file latches which have
dedicated test signals. We have been testing the FM9001 chips for three years,
and we have never found a case where the behavior of FM9001 chips deviates
from its specifications.

The proof of correctness of the FM9001 microprocessor model was mechani-
cally checked by the Ngthm theorem prover. Our FM9001 proof script contains
2957 entries that expand into 4851 theorem-prover events. The total time re-
quired for Nqthm to check the proof of the FM9001’s implementation with
respect to its specification is about 24 hours on a Sun Microsystems 3/60. The
statement of the three correctness lemmas takes almost 10,000 lines to “pret-
typrint”.

Prettyprinted

Lines
User-level semantics of FM9001 915
Statement of correctness lemmas 197
Semantics of HDL 3459
FM9001 implementation description 3479
Existential witness for the clock 1942
Total: 9992

Given the size of the formula that we needed to manipulate, we considered it
necessary to have mechanical assistance. Our choice of the Nqthm system was
based in our belief that it could successfully discharge the rather large proof
obligations we faced during our effort.

To get a rough measure of the size of the FM9001 proof, J Moore modified
the theorem prover to count its smallest step. By adopting a suitable collection
of derived inference rules, a formal proof can be constructed with one line for
each step. Among our one-step rules are instantiation, modus ponens, general-
ized equality substitution, tautology recognition, and cross-multiplication and
addition of inequalities.

The sum of the proof steps in all the formal proofs done for FM9001 is
6,100,315. That is, more than six million lines of formal proof were “virtually



constructed.” It would be easy to increase this number by reducing the size
of our proof steps. For example, the cost of substitution-of-equals-for-equals in
HOL [27] is not constant (it is one in our count of proof steps) but is proportional
to the depth at which the target occurrence is found. Similarly, we recognize
very large IF expressions as tautologies but charge only one step. We have
expressions containing more than 50 IF expressions through which there are
more than 10° branches—but because the branches were pruned dynamically,
the theorem prover did not have to explore them all.

The definition of the FM9001 architecture, its design, the definition of the
DUAL-EVAL netlist simulator, the verification of the three lemmas mentioned
above, generation of the test vectors, and the conversion of the FM9001 DUAL-EVAL
netlist to LSI Logic’s NDL, required about three man-years of effort. About an
additional six months of effort was devoted to testing the manufactured FM9001.
The time required to document this effort is not included in the estimates just
given.

2 HISTORY OF THE PROJECT

The FM9001 effort began in earnest in November 1989 when two of us (Brock
and Hunt) defined a simulator, which we called DUAL-EVAL, for a language that
was general enough to represent the design of a microprocessor along with its
memory system. Representing circuits as data was a turning point in our efforts
at hardware specification. Previously Hunt [30, 31] had represented hardware
with functions in the Boyer-Moore logic. We had also investigated representing
circuits as predicates [10], in the tradition of the HOL hardware verification
community [17]. Although both of these approaches were successfully used
in significant hardware verification examples, neither approach permits direct,
formal operations on the circuit descriptions.

Immediately prior to the definition of the DUAL-EVAL simulator and lan-
guage recognizer we had defined several different hardware description languages
which differed in representational power. For example, the language/simulator
HEVAL [11] was restricted to combinational logic circuits only. We also defined
WAVE-EVAL, which worked similarly to an event-driven simulator. WAVE-EVAL
was more general than DUAL-EVAL, but we considered its semantics too difficult
to use given the size of our task. Once we had defined DUAL-EVAL, we developed
techniques to simplify the specification and verification of circuits described in
the DUAL-EVAL language, at least until we had automated the process sufficiently
to verify the FM9001 design. In actuality, the evolving FM9001 design was a
“technology driver” for the development of the DUAL-EVAL language.

Another part of the HDL development was the evolution of its language
recognizer. At first, the recognizer checked for proper syntax and absence of
combinational circuit loops; however, over time the recognizer was extended to
check for loading and fanout violations, timing properties, restrictions on names,



and a host of other properties. We used feedback from the LSI Logic toolset
to restrict the class of circuits we admitted by changing the circuit recognizer
to disallow any problem encountered. Later, we produced a much nicer circuit
recognizer that produced error messages; the original recognizer only returned
true or false. Another facet of the design process was ensuring that circuits
could be tested. We implemented a parallel stuck-at fault simulator that was
used during our design process and the creation of test vectors. Often during the
design of the FM9001 logic, we would first check the testability of the circuit
before we went to the effort to verify its correctness. We also used the fault
simulator to identify redundant logic.

The FM9001 netlist, along with the necessary test vectors and signal pad
assignments, was passed off to LSI Logic, Inc., at the end of July of 1991. We
received FM9001 microprocessor chips some six weeks later. After receiving
the chip, we built a very simple test jig that allowed any single instruction to
executed repeatedly so we could observe the pin-level timing of the chip. In 1992,
we built a single-board computer using the FM9001 microprocessor; this board
had two serial ports and a monitor program. This board was constructed in
such a way that all of the FM9001 microprocessor signals could be attached to a
logic analyzer. We executed programs by downloading them from a workstation,
and then observed the behavior of the FM9001 on our logic analyzer. We ran
numerous programs to check to see if the manufactured part worked as we
expected it to [1].

We were still limited from checking the complete functionality of the FM9001
because, for instance, this single-board computer did not have a complete 232
word memory. In 1993, we obtained a Tektronics chip tester. By early 1994,
we had interfaced the FM9001 to the chip tester; we then proceeded to test the
FM9001 in all operational modes. We are able to generate random, pin-level
inputs and check that the operation of the FM9001 chip perfectly matched what
was predicted by the DUAL-EVAL simulator.! This testing has been completely
automated and has been ongoing for some time now. At this point, we have
found no unexpected operational differences.

The FM9001 behavioral and design specifications, the hardware description
language and its semantics, the large majority of the FM9001 correctness proof,
and the preparation of the FM9001 for fabrication were performed entirely by
Bishop Brock and Warren Hunt. Matt Kaufmann proved the ALU interpreta-
tion lemmas and assisted with proving the reset properties. Ann Siebert did
much of the work on our recognizer for well-formed circuit descriptions that
produces simple error messages, and Ken Albin built the FM9001 single-board
computer.

IThere are two dedicated test pins for the level-sensitive register file that cannot be ran-
domly set; we knew this prior to our testing. Also, the clock and power inputs cannot be
randomly changed — the power supply must be stable and the clock input must be a suitable
square wave.



3 INSTRUCTION SET

We now present a short, informal description of the instruction set of the proces-
sor, and the pinout of the actual chip. All of our formal specifications represent
varying degrees of abstraction about the behavior of the physical device. This
preliminary introduction of the FM9001 is a foundation on which to build the
formal specifications and proofs.

The FM9001 is a general-purpose 32-bit microprocessor featuring a two-
address programming architecture with five addressing modes, 16 general-purpose
32-bit registers, 15 arithmetic and logical operations, extensive arithmetic flag
support, and a memory interface that supports multiple processors. Figure 2
shows the two FM9001 instruction formats, a two-address instruction and an im-
mediate datum instruction. The two formats only differ in the origin of operand
A. In the immediate datum case the nine-bit datum in the instruction word is
sign-extended to 32-bits. Otherwise, operand A is selected in the same manner
as operand B. Except for the immediate datum mode, operand A and operand
B are selected by any of the following modes: register direct, register indirect,
register indirect with pre-increment, and register indirect with post-increment.
Thus, operand A has five addressing modes and operand B has four, and every
addressing mode for both operand A and B works with every instruction. Ex-
cept for the immediate addressing mode for operand A there is no provision for
data sizes other than 32-bit words.

One of the general-purpose registers is used as the program counter, and the
choice of the PC is programmable externally. The number of the register used
as the PC is read from dedicated pins during reset and hold operations on the
FM9001. The PC number can be neither read nor written by any instruction.
This feature provides a very primitive interrupt facility: The processor can be
halted by a hold request, the PC number changed, and then processing resumed
on a different instruction stream. Since branching instructions and certain types
of immediate data instructions depend on knowledge of which register is being
used as the PC, programs written for the FM9001 will depend on assumptions
about the hardware and execution environment of the FM9001. Generally, we
select register 15 as the program counter.

The 15 different arithmetic and logical instructions are listed in Figure 2,
as are the conditions that determine if the computed result is to be stored.
Each instruction also contains four bits that determine individually whether
the arithmetic flags carry, overflow, zero, and negative, are updated.? During
instruction execution the PC is incremented by 1 before the calculation of the
effective address of the A operand, and all side effects to the A operand register
(pre-decrement or post-increment) are completed before the computation of the
effective address of the B operand.

2This feature was added to the FM8502 processor to simplify the proofs of correctness of
the PITON interpreter [42]. We retained this feature in the FM9001.



TWO-ADDRESS MODE

31 2827 2423

2019181716151413

10 9

8

6543 0

UNUSED OP-CODE

STORE-CC |C|V

Z MODEB REGB

0

UNUSED MODEA REGA

IMMEDIATE DATUM MODE

31 2827 2423 2019181716151413 109 8 0
BEEERRRERE R BERRRER
UNUSED | OP-CODE | STORE-CC |C |V Z MODEB REGB 1 IMMEDIATE
AR N IR AR
MODE OPERAND DESCRIPTION
00 Rn Register Direct
01 (Rn) Register Indirect
10 -(Rn) Register Indirect Pre-decrement
11 (Rn)+ Register Indirect Post-increment
OP-CODE MNEMONIC OPERATION STORE-CC MNEMONIC CONDITION
0000 MOVE b< a 0000 cc ~C
0001 INC b< a+1 0001 CS C
0010 ADDC b< a+b+c 0010 VC ~V
0011 ADD b<-b+a 0011 VS \%
0100 NEG b<0-a 0100 PL ~N
0101 DEC b< a-1 0101 Ml N
0110 SUBB b < b-a-c 0110 NE ~Z
0111 SUB b<-b-a 0111 EQ A
1000 ROR b < ca>1 1000 HI ~C&~Z
1001 ASR b < a>1 1001 LS Cl|z
1010 LSR b < a>>1 1010 GE (N& V)| (~N & ~V)
1011 XOR b <- bXORa 1011 LT (N&~V)|(~-N & V)
1100 OR b <- bORa 1100 GT (N&V&~2)|(-N& ~V & ~2)
1101 AND b <- bANDa 1101 LE ZIN& ~V)|(-N & V)
1110 NOT b <- NOT a 1110 T True
1111 M15 b<a 1111 F False

Figure 2: FM9001 Instruction Word Format



Some simple examples will help clarify some of the features of the architec-
ture and instruction set. Since the results of any instruction may be condition-
ally stored, and the register used as the PC is always valid as a destination,
there are no differences between control and data operations. For example a
“Jump” instruction can be encoded as an unconditional MOVE (i.e., STORE-
CC = 1110) of the target address to the PC. A conditional jump is obtained
simply by encoding a condition other than “True” in the STORE-CC field of
the instruction. For example “Jump if Carry clear” is encoded as a MOVE
instruction where the target address is the PC, with STORE-CC = 0000. Non-
storing instructions (i.e., STORE-CC = 1111) can be used to side effect the
flags without destroying the destination. For example, a “Compare” can be
effected by a non-storing SUB that sets the condition codes (WOP-CODE =
0111, CVNZ=1111, STORE-CC=1111).

The FM9001 specification was derived from the FM8502 specification [31].
There are several important differences.

e The FM8&502 reserves register 15 for the PC. The PC is hardware selectable
in the FM9001.

e The FM9001 has the ability to conditionally store every result. Only
conditional moves were permitted in the FM8502.

e The FM9001 performs the post-increment operations as each operand is
fetched. The FMS8502 post-increment operations were done after both
operands were fetched and the result was stored.

e The FM9001 has an immediate data mode for operand A; the FM8502
did not have this feature.

The ALU operations remain the same as do the fetch-execute cycle. We did
this to ensure that the Piton assembler [44] for the FM8502 could be easily
transported to the FM9001.

4 SIGNAL GROUPS

A pictorial diagram of the FM9001 signal groups appears as Figure 3. The
implementation of the FM9001 microprocessor does not include a memory; some
of the signals are used to interface to an external memory. Likewise, there are
signals devoted to testing the FM9001. Not all signals are relevant to all the
levels of formal specification. For example, the power and ground pins VSS
and VDD never appear in any of our specifications; we always assume that
the power is turned on! All of the other signals appear in our netlist-level
specification, although the clock input CLK is given special treatment. The
high-level specification of the FM9001 does not include any signals, it is a self-
contained specification that includes the memory.
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Figure 3: Signal Groups of the FM9001

The following is a brief description of each signal or signal group that is
important for the normal operation of the FM9001. These descriptions should
in no way be construed as complete or formal specifications. For signal groups
the number of signals appears in square brackets, e.g., FLAGS[4].

ADDRESS [32] The 32-bit tri-state address bus. It can be set to float while
HDACK- is asserted.

CLK The clock input.

DATA [32] The tri-state 32-bit bidirectional data bus. The FM9001 drives
the bus only during memory-write operations; otherwise, the FM9001 sets
the bus to float.

DTACK- Active low, synchronous memory data acknowledgment.

HDACK- Active low, synchronous hold acknowledgment. The processor
acknowledges a hold request by asserting HDACK-, disabling the bus
drivers on the ADDRESS and DATA pins, and cycles in a no-op state
until HOLD- is deasserted. The processor loads the PC register number
during each cycle that HDACK- is asserted; therefore, the PC register
can be changed.

HOLD- Active low, synchronous hold request. When HOLD- is asserted, and
if it remains asserted until acknowledged by HDACK—, the processor will
halt at the end of the execution of the current instruction. Whenever the
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processor is halted (i.e., HDACK- is asserted), the DATA, ADDRESS,
STROBE-, and RW- pins are set to float.

PC-REG-IN [4] The number of the register to be used as the program
counter. These pins are read only during reset and hold operations.

RESET- Active low, synchronous reset. RESET— must be asserted for one
full clock cycle. After one clock cycle, the FM9001 will enter a reset
state, and remain there as long as RESET- is asserted. When RESET—
is deasserted, the processor begins a short reset sequence which clears
all registers and loads the PC register number. As long as HOLD- or
RESET- are not asserted during the reset sequence, instruction execution
will begin at memory address 0 after the reset sequence.

RW- Memory read/write control, low to write, set to float while HDACK- is
asserted.

STROBE- Active low memory strobe, set to float while HDACK- is asserted.

The following pins are used for test purposes, and allow the processor to be
controlled during testing, as well as provide glimpses of the internal state of the
FM9001 internal state during normal operation.

CNTL-STATE [5] These pins provide an encoding of the current internal
state of the processor.

DISABLE-REGFILE—- Active low, register file test pin.
TEST-REGFILE— Active low, register file test pin.

FLAGS [4] The arithmetic flags carry, overflow, zero, and negative, are made
available for thorough testing.

I-REG [4] The four high-order bits of the instruction register. Note that these
bits are unused in the FM9001 instruction word.

PO A parametric test output required by LSI Logic, Inc.

TE Active low test enable. When TE is active, the processor is in test mode,
and all of the internal latches are connected in a serial scan chain with
input TT and output TO.

TT Serial scan input for scan test mode.

TIMING The signal corresponding to the longest combinational path in the
device, used to test the speed of the FM9001. In particular, this signal is
connected to the ZERO output of the ALU.

TO Serial scan output during test mode.

11



There are a large number of power and ground connections. Providing many
such connections ensures the FM9001 of the necessary power and provides a
large number of AC grounds, thus helping to quiet the noise associated with
rapidly changing signal values.

VDD [9] These commonly connected signals should all be connected to +5
volts.

'VSS [14] These commonly connected signals should all be connected to the
power-supply ground. Signal values are measured relative this signal

group.

Figure 4 is a pictorial drawing of pinout for the FM9001.

12
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