
INTEGRATED METHODS FOR PROTOCOL
SPECIFICATION AND VERIFICATION

Benedetto L. DiVito

Technical Report 24 March 1982

Institute for Computing Science
The University of Texas at Austin

Austin, Texas 78712

1

ABSTRACT

A methodology for the formal specification and deductive verification of protocols is presented. Protocol
modules are modeled as sequential processes and abstract behavioral specifications are given for each.
In concurrent systems such processes are connected by buffers and communicate by passing messages,
as in the Gypsy model of concurrency. Methods similar to those of Gypsy for verifying safety properties
are discussed and illustrated with an example, the data transfer protocol introduced by Stenning. The
methodology is geared toward the use of automated verification technology. A fully mechanical proof of
the example in this paper was obtained using the Boyer-Moore theorem prover.

2

1 Introduction
Recently, the importance of applying formal methods to the problem of communication protocol

design has been recognized. A number of approaches to protocol specification and verification have
been put forth, using a large variety of models and techniques. Surveys of this work are readily
available [Sunshine79, Bochmann80]. Several distinct lines of research have subsequently emerged,
although it is safe to say that we have not yet heard the final word.

In this paper, we report on a new methodology that has been developed to address this problem. It is
based on techniques for verifying systems of concurrent processes that communicate by message
passing. Only verification of safety properties are considered at this time; we hope to consider liveness
properties in the future. Included is a novel method for stating abstract behavioral specifications of
protocol modules. It avoids the highly procedural forms of specification that are in common use today.
Also, a significant aspect of the methodology is the use of mechanical theorem proving tools to actually
carry out the proofs. We view this as important not so much for the obvious advantages of automation
but rather for the elimination of errors that can result from doing tedious proofs by hand.

Overall we would characterize the methodology as being an integration of many tools and techniques
from a diversity of sources. Among them are verification of concurrent and sequential processes,
functional language design, state transition models, decision table techniques, deductive theory building
and mechanical theorem proving. Particularly important is the integration of techniques for modeling
concurrent processes and state transition systems into a unified framework. The manner in which these
ideas have been forged together reflect our belief that an effective methodology is the result of a delicate
balance between theoretical and practical considerations.

Much of this work is based on concepts found in Gypsy [Good77-2a, Good78-2]. The Gypsy
methodology, developed at the University of Texas at Austin, is a highly successful methodology for
specifying, verifying and implementing concurrent programs. An initial attempt at protocol verification was
performed as a straightforward application of the Gypsy methods and automated tools [DiVito81]. With
additional help from the AFFIRM verification system [Musser80, Gerhart80], the experiment was
successfully completed. Nevertheless, several aspects of this approach were somewhat less than
satisfying, most notably the procedural form of specifying protocol behavior. This situation led to the
search for a new methodology that was more suited to the special needs of protocol work. Full details of
the subsequent research are contained in [DiVito82-2]. Only a simplified form of the model is reported in
this paper.

Essentially what was done was to start with some of the better ideas of Gypsy and combine them with
a few additional ones to create a new integrated methodology. Unfortunately, this meant that we could
not make direct use of Gypsy’s automated tools. We did, however, take the opportunity to try other
theorem provers and found that we could make good use of the Boyer-Moore theorem prover [Boyer79].
At the present time we are using fully mechanical theorem proving tools and a partially automated
verification condition generator. Other work is currently done by hand.

The methodology has successfully been applied to a procotol first introduced and analyzed by
Stenning [Stenning76]. Fully mechanical proofs of the verification conditions have been obtained. To
illustrate our concepts we use this protocol as an example throughout the rest of this paper. Hailpern and
Owicki have also analyzed this protocol, presenting proofs of both safety and liveness
properties [Hailpern81]. Our methods for verifying safety properties are similar to theirs. There is also
some similarity between our proofs of concurrency and those reported in [Misra81]. Although it may be
less apparent, our technique for stating behavioral specifications bears some resemblance to the protocol
work being done with AFFIRM [Schwabe81, Thompson81].

2 Process Model
We begin by introducing the concurrent process model that underlies our basic methods. It is based

on the process model of Gypsy. Both our model and the Gypsy model represent pure message passing
systems.

3

Active computing entities are known as sequential processes. Each such process is assumed to be
resident on a single processor and communicates with its environment (other processes) via message
buffers. A message buffer is a finite size queue that connects two sequential processes, one sending to it
and the other receiving from it. No other means of data sharing is allowed; all variables within a process
are strictly local. Note that a buffer may be of size zero, in which case the message passing regime
would be similar to that of Communicating Sequential Process (CSP) models [Hoare78].

We can build hierarchical process models using concurrent processes. A concurrent process consists
of several subprocesses plus a number of local buffers to interconnect them. The subprocesses may
themselves be either sequential or concurrent. Thus a concurrent process may be viewed as a tree
structured object, where the leaves represent sequential processes (executing entities) and the nonleaf
nodes represent concurrent processes.

In order to formally specify and verify process models, we provide a specification language. Within
this language it is possible to give precise and yet reasonably abstract specifications of sequential and
concurrent processes. The language has two distinct subcomponents: a set of language structures for
stating process definitions and a functional sublanguage for performing operations on data objects.
Actually, the functional language component is needed to express both process definitions and assertions
for verification.

We illustrate these concepts with an example protocol. It is essentially the protocol described by
Stenning in [Stenning76]. Readers unfamiliar with it need not be concerned; it will be presented in
piecewise fashion throughout the rest of this paper. The purpose of this protocol is to provide a
unidirectional data transfer service between a pair of user processes. A similar, though bidirectional, data
transfer function would normally be part of a comprehensive transport protocol. Such a transport protocol
would include connection management services as well. However, for the purposes of this paper we will
restrict our attention to the simple data transfer function.

+-----------------+
| |

+-----+ | Transport | +-----+
| |-------->| service |------->| |
+-----+ | | +-----+
source +-----------------+ sink

Figure 1: Transport service, external view.

We model the simple transport service by a single concurrent process as shown in Fig. 1. This
process represents what is sometimes referred to as a protocol machine. In this case it has one input
buffer named "source" and one output buffer named "sink." The transport service simply moves
messages (in sequence) from the source to the sink.

Next we examine the components of this concurrent process. Fig. 2 shows that it is made up of a
sender, a receiver and two medium processes. The sender and receiver are sequential processes (the
transport stations) whereas the transmission media are modeled as (potentially) concurrent processes.
For our purposes the medium processes can be considered independent datagram networks, although in
practice a single datagram network would be employed. Datagram networks have the property that
delivery is unreliable to the extent that packets may be lost, reordered, duplicated or corrupted. It is the
responsibility of the transport protocol to overcome these sources of unreliability. We make the usual
assumption that packets received with checksum errors are filtered out at some lower level and would
appear to be lost by the network. Therefore, the medium processes in our model do not corrupt packets.

There are four internal buffers used to interconnect the subprocesses of the transport service process.
The upper path from sender to receiver is for the transmission of packets and the lower path is for
returning acknowledgments. A packet contains both a user message and a sequence number. An
acknowledgment consists of a sequence number only. Throughout this paper, sequence numbers are

4

+------------------------------------+
| +------+ |
sndr_pkt-->	medium	-->rcvr_pkt	
^			
	+------+		
	v		
+------+ +------+			

+-----+ | | | | re- | | +-----+
| |--->|-->|sender| |ceiver|-->|--->| |
+-----+ | | | | | | +-----+
source | +------+ +------+ | sink

^			
	+------+		
			v
sndr_ack<--	medium	<--rcvr_ack	
+------+			
+------------------------------------+

transport_service

Figure 2: Transport service, internal view.

process transport_service (input source: message;
output sink: message) =

begin
buffers (sndr_pkt, rcvr_pkt: packet;

sndr_ack, rcvr_ack: natural);

cobegin
sender (source, sndr_ack, sndr_pkt);
receiver (rcvr_pkt, sink, rcvr_ack);
medium (sndr_pkt, rcvr_pkt);
medium (rcvr_ack, sndr_ack);

end
end

Figure 3: Transport service process definition.

modeled as unbounded natural numbers.

The transport service process can be given a concurrent process definition, as shown in Fig. 3. This
is the realization of the structure shown in Fig. 2. There are three major parts to a concurrent process
definition.

1. The process header identifies the input and output buffers and the type of objects that flow
through them.

2. The internal buffers are declared together with their element data types.

3. The subprocess structure is introduced by means of a "cobegin" statement. Each
subprocess is "called" by passing buffers as its parameters. These may be either internal
or external buffers.

Note that two separate instances of the medium process are included. For simplicity in the process
model and later in the proof methods, buffers are restricted to the single input, single output case. In
other words, a buffer connects exactly one process output to exactly one process input.

5

The medium process may be partially defined by

process medium (input in_buf: T;
output out_buf: T) = pending

The declaration above contains only a process header and states that the actual definition is pending.
This expresses the fact that we are unconcerned with the internal structure of the medium. All that we
care about at this point is that it has an input buffer and an output buffer of some type T.

Observe from Figures 2 and 3 that there is nothing that distinguishes the form of the sender and
receiver processes from that of the medium processes. We intend the sender and receiver to be
sequential processes but at the external process interface this information is hidden. It is precisely this
characteristic of the model that allows us to easily build hierarchical process structures. We do, however,
provide a way to define sequential processes; it will be described in a later section along with the details
of the sender and the receiver.

We have chosen to use message passing as the sole means of interprocess communication. Calls
on protocol services are being modeled by send and receive primitives. This is a useful abstraction for
service primitives that are actually realized in a multitude of ways within implementations of real protocol
modules. More importantly, the behavior of protocol modules can fruitfully be specified in an event driven
manner, where an event corresponds to the reception of a message from an input buffer. The simplicity
and elegance of this technique is largely due to the use of a straightforward message passing discipline.

3 Specification Language Concepts
Formal specification requires the use of a language for referring to data objects and functions of data

objects. This is the functional language component mentioned earlier. Naturally, a formally defined
semantics is a prerequisite for a language that is to be used in conjunction with automated verification
tools. It is beyond the scope of this paper, however, to give a rigorous definition of our specification
language. Instead, we briefly and informally describe the highlights of the functional language
component. This language serves a dual purpose: it is used both for expressing the definition of a
protocol as well as for expresing assertions about it. We will discuss the basic concepts in this section
and subsequently introduce specific operators as needed.

Many of the basic concepts about data types are drawn from Gypsy. Gypsy, in turn, has incorporated
many ideas from Pascal. We adopt much of the syntactic and semantic flavor of these languages here,
although we emphasize that we are not defining a programming language. Our goal is to develop a
language in which it is possible to express operations on mathematical objects in a nonprocedural way
and to express the kinds of relations among objects that are encountered in assertions.

A primary motivation for the development of this language was the desire to express generic concepts
and properties. This characteristic is viewed as essential for constructing a reuseable theory of a given
problem domain. A sufficiently general concept or property can be used repeatedly for different problems,
or can be instantiated in different ways for the same problem. To this end, two main generic mechanisms
have been incorporated into the language: parameterized data types and functional arguments, that is,
passing names of functions as parameters in a function call. In this paper we will not concern ourselves
much with the former but we will be dealing with the latter insofar as we will introduce several predefined
functions that have functional arguments.

Our universe of discourse consists of typed data objects and functions on those data objects. A data
type may be a simple data type or a structured data type. The simple data types include boolean, integer
(and its subtype natural) and Pascal-like enumeration types. The structured data types are record,
sequence and mapping. Records coincide with the Pascal notion of record; sequences and mappings
are similar to the corresponding types in Gypsy. We will discuss the concepts of sequence and mapping
in some detail, but we rely on the reader’s familiarity with Pascal for an understanding of the other types.

A sequence type may be defined by a type declaration such as

6

type S = sequence of T

where T is the element type. An object of type S is a finite sequence of elements of type T. The basic
operators for constructing sequences are as follows:

[e1, ..., en] explicit construction
[] or null empty sequence
S <: e or S apr e append element right
e :> S or e apl S append element left
S1 @ S2 or S1 join S2 append sequence

We also have several extraction functions on sequences.

first(S) / last(S) first/last element of S
nonfirst(S) / nonlast(S) tail/ head of S

There are additionally some relational operators on sequences, which will be introduced as needed. The
sequence data type plays a central role in the verification methods, as will be seen later.

The mapping data type may be thought of as a generalization of an array with integer subscripts. A
mapping data object consists of a set of ordered pairs that define a correspondence between certain
integers and elements of some type T. Actually, it is convenient to use a sequence representation for
mappings. An object of type

type M = mapping of T

is represented by an object with the structure

sequence of record (dom: natural; rng: T)

Such an object consists of a finite sequence of pairs, each having a domain value and a range value.
This sequence is further constrained to be ordered by the domain values, which are unique natural
numbers. An example of a mapping value would be

M = [[1,a], [2,b], [4,c], [9,d]].

Note that gaps in the domain values may exist.

Since mappings are just a special type of sequence we can make use of the sequence functions to
operate on mappings as sequences of domain-range pairs. In addition, we have provided operators to
perform mapping specific functions. The basic constuctor function for mappings is one which adds a new
domain-range pair to a mapping. This function is given the following syntactic form:

M with ([i] := e)

The value of this construction is a new mapping containing the pair [i,e] at the appropriate place. If a pair
with domain value i already exists, it is replaced by the new one. For the sample mapping shown above
we have

M with ([5] := x) = [[1,a], [2,b], [4,c], [5,x], [9,d]]
M with ([2] := x) = [[1,a], [2,x], [4,c], [9,d]].

To extract objects from a mapping there also are several functions.

M[i] range value for domain value i
domain(M) sequence of domain values
range(M) sequence of range values

Below are some examples of the use of these functions.

M[1] = a M[4] = c
domain(M) = [1, 2, 4, 9]
range(M) = [a, b, c, d]

7

Because of the definition of mapping, the domain function necessarily returns a monotonically increasing
sequence of natural numbers. Additional operators will be discussed in later sections.

Earlier we mentioned the desire to make use of functional arguments to functions. The intention is to
provide certain predefined functions that take both normal data objects and names of functions as
parameters. These functions will typically take a sequence argument and a unary function argument and
apply the function to the elements of the sequence to produce a new object. The simplest example of this
is a function we call "apply," whose effect is

apply (f, S) = [f(S1), ..., f(Sn)].

This function produces a new sequence from S by applying the function f to each element of S. It is
similar to the MAPCAR function of LISP. By providing functions of this sort, we hope to free the user from
having to define his own recursive functions.

All functions described in this paper are predefined operators in our language. The generic features
of these functions are intended to make them reuseable for other problems. Space limitations preclude
our discussing these and other important concepts here. A mechanism for defining functions is also part
of the language. Rules for passing parameters are a necessary part of that mechanism. In the presence
of functional arguments it is particularly important to ensure that user defined functions cannot cause the
resulting theory to be inconsistent. These and other issues are taken up in [DiVito82-2].

We close this section with an example of some of the foregoing concepts drawn from the Stenning
protocol. Referring back to Fig. 2, recall that the objects flowing from the source and those flowing to the
sink are "messages," the exact type of which is not of concern to us. However, the objects transmitted
from the sender to the receiver are "packets," which are defined to have the following type.

type packet = record (mssg: message; seqno: natural)

A packet is a record of two fields: a message field and a sequence number field. A sequence of packets
would then have the type

type pkt_seq = sequence of packet.

It is useful to be able to extract the message fields from a sequence of packets. This is easily done
with the apply function. If S is an object of type pkt_seq, then

apply (".mssg", S)

will produce the sequence of messages extracted from S. Here we use the notation ".mssg" to denote the
function of extracting the message field from a record of type packet.

4 Protocol Specifications
Let us now turn our attention to the problem of specifiying protocol behavior. This is a challenging

problem from the standpoint of devising a method that achieves a suitable level of abstraction while still
allowing us to capture the essential details that define a protocol. An often used technique for protocol
specification is known as the "abstract program approach." This involves giving a procedural specification
by exhibiting a set of procedures in a conventional high level programming language that implement the
protocol modules. We take the position that this technique produces an overly detailed form of
specification. For this reason we have sought a method that yields an intrinsically higher level of
abstraction. The resulting method, termed abstract behavioral specification, can fulfill the needs of
precise definition and analysis, while still serving as a basis for implementation.

Consider a sequential process of the kind described in Section 2. It is possible to give specifications
for such a process by regarding its behavior as being event driven. By this we mean that the life of a
process consists of a continuous series of event processing cycles. Each cycle begins with the
occurrence of an event, then is followed by the processing of that event, and ends when the process goes
back to wait for the next event. Two kinds of events are recognized: the reception of a message from one

8

of the input buffers and an internally generated timeout event. The quiescent state for a process is to be
waiting for a message from one or more of its input buffers.

The event driven view of process behavior leads to the adoption of a state transition paradigm for the
specification of a protocol module. Local state information is assumed to be maintained by the process;
this is collectively referred to as the state vector. Processing of an event causes a transition to occur,
which updates the state vector. Similar models of protocol systems are in common use today. However,
there are some important distinguishing features of our model.

First of all, the state vector is strictly local to a single process; there is no notion of a global state
vector. This preserves the modular character of the specification and proof methods. Since a process
communicates with its external environment through explicit output buffers, we must account for this
interface in the behavioral specification. Accordingly, the actions of event processing are divided into only
two categories.

1. Response. Messages may be sent to the output buffers; this constitutes a modification of
the external environment.

2. Transition. The state vector is updated; this constitutes a modification of the internal
environment.

The exact mechanism used to state a detailed specification, which is based on the use of decision tables,
is the other major distinguishing feature of our method. Before introducing it, we must elaborate on the
overall structure of the sequential process model.

process sender (inputs source: message;
ack_in: natural;

output pkt_out: packet) =
begin

state vector (unack: natural;
next: natural;
queue: mapping of packet;
timing: boolean;
to_time: natural)

initially (0, 0, null, false, 0);

events
next - unack < send_window =>

on receipt of mess from source
handle by source_hdlr;

true =>
on receipt of ack from ack_in

handle by ack_hdlr;
timing =>

after to_time handle by timeout_hdlr;
end;

end;

Figure 4: Sender process.

4.1 Sequential process definitions
Figures 4 and 5 contain process definitions for the sender and receiver processes of the Stenning

protocol example. These represent fairly abstract process definitions, having a common form which may
be regarded as a process schema. There are three major parts to a sequential process definition.

1. The process header identifies the input and output buffers and the types of objects that flow
through them. This is completely analogous to the concurrent process case.

9

process receiver (input pkt_in: packet;
outputs sink: message;

ack_out: natural) =
begin

state vector (next: natural;
queue: mapping of packet)

initially (0, null);

events
true => on receipt of pkt from pkt_in

handle by pkt_hdlr;
end;

end;

Figure 5: Receiver process.

2. The nature of the state vector is revealed by declaring it as a record-like abstract data
object. Its components are named and typed using the abstract types provided in the
specification language. Its initial value is also declared.

3. A list of event processing statements is provided. Each statement corresponds to a
particular class of event, either a message reception or a timeout. Each statement refers to
an event handler, which is a separate language structure refined at the next lower level.

Thus the process schema contains declarations for both data and control. The list of event
processing statements may be thought of as a variation of the guarded command construction, which is
embedded within a nonterminating loop. Each statement begins with a boolean guard that determines
whether the given event is eligible for selection on a given cycle. In this way, it is possible to select a
subset of the input buffers upon which to wait for the next event. Messages arriving to a buffer with a
corresponding false guard will be queued but not received until the guard becomes true. Similarly, a
timeout event with a false guard means that the timer is currently turned off for that event.

From Fig. 4 we see that the sender has a state vector with five components. The interpretation of
these variables is as follows.

unack - sequence number of oldest outstanding message
next - next unused sequence number
queue - retransmission queue
timing - indicates when any messages are outstanding
to_time - absolute timeout time

The quantity (next - unack) is the number of outstanding messages and is used to control whether any
new messages are accepted from the source. The send and receive windows are given by the constants
send_window and rcv_window.

The receiver has two state vector components.

next - sequence number of next expected message
queue - receive queue

The receiver is driven entirely by incoming packets; it does not set itself any timeouts.

4.2 Event handlers
Next we describe how the details of event handling are specified. Each handler will in fact be

represented by a special form of decision table. The decision table will indicate the appropriate response
and transition actions to be performed under various conditions pertinent to the given event. This
technique offers a way to state the specification using a precise and concise notation, while still allowing it

10

to be done in a functional, nonprocedural manner. It also provides the advantages of structuring the
specification in such a way that a limited analysis for consistency and completeness may be performed,
as well as yielding a very straightforward procedure to generate verification conditions.

source_hdlr 1 2
+======================+=====+
| timing | F T |
+======================+=====+
| pkt_out | A A |
+----------------------+-----+
unack	- -
next	B B
queue	C C
timing	T -
to_time	D -
+======================+=====+

Where
A = [[mess, next]]
B = next + 1
C = queue with ([next] := [mess, next])
D = time + delta_t

ack_hdlr 1 2 timeout_hdlr 1
+==================+=====+ +===============+===+
| ack > unack | T T | | --- | |
| ack = next | F T | +===============+===+
| timing | T T | | pkt_out | A |
+==================+=====+ +---------------+---+
| pkt_out | - - | | unack | - |
+------------------+-----+ | next | - |
unack	A A		queue	-
next	- -		timing	-
queue	B C		to_time	B
timing	- F	+===============+===+		
to_time	- -			
+==================+=====+ Where

A = range (queue)
Where B = time + delta_t
A = ack
B = upper (queue, ack)
C = null

Figure 6: Sender event handlers.

pkt_hdlr 1 2 3 4
+================================+=========+
pkt.seqno = next	F - T T
pkt.seqno > next	F T - -
pkt.seqno - next < rcv_window	- T - -
pkt.seqno in domain(queue)	- F - -
(next+1) in domain(queue)	- - F T
+================================+=========+	
sink	- - B D
ack_out	A - C E
+--------------------------------+---------+	
next	- - H J
queue	- G - K
+================================+=========+

Where
A = [next]
B = [pkt.mssg]
C = [next+1]
D = pkt.mssg :> apply (".mssg", range (consec (queue)))
E = [reach(queue)]
G = queue with ([pkt.seqno] := pkt)
H = next + 1
J = reach(queue)
K = upper(queue, reach(queue))

Figure 7: Receiver event handler.

11

Event handler specifications for the sender and receiver processes can be found in Figures 6 and 7.
Each decision table is in a special kind of extended entry format, where expressions are abbreviated by
single letter entries which are defined below the table. For the benefit of the reader who may be
unfamiliar with decision tables, we will discuss the semantics in some detail. Further information on
decision tables can be found in [Metzner77].

Stub Rules
+======================+============+
| | |

Condition | Boolean | T, F, or |
part | expressions | don’t care |

| | |
+======================+============+
| Output | |
| buffers | Response |

Action +----------------------+------------+
part | State | |

| vector | Transition |
| components | |
+======================+============+

Figure 8: General form of event handler decision table.

The general form for our protocol decision tables is depicted in Fig. 8. The rules (columns) of a table
represent alternatives in the way an event is handled. Based on conditions that hold when an event
occurs, one of the rules is selected for execution. The selected rule then dictates the set of actions that
are performed in response to the event.

The conditions under which rules are selected are encoded in the upper part of the table. These rows
contain boolean expressions that refer to the values of the state vector components and the value of the
message just received from the corresponding input buffer (if applicable). A rule is eligible for selection if
the conjuction of conditions satisfies the truth value entries given in the column. If more than one rule is
so eligible, then one is selected nondeterministically. If none is eligible, then no actions are performed; in
other words, the event is ignored. Sometimes this is referred to as an implicit ELSE rule.

Actions to be performed by the selected rule are encoded in the lower part of the table. This part is
split into two subsections: the response part and the transition part. In the response part, one row is
provided for each output buffer of the process. An entry for one of these rows is an expression which
evaluates to a sequence of messages to be sent to the coresponding output buffer. A null entry denotes
the null sequence or no messages sent toward that buffer. In the transition part, there is one row for each
state vector component. An entry here denotes the new value to be assumed by a state vector
component. A null entry indicates that the value remains unchanged. Note that there is no significance
to the relative ordering of rows and columns within a table. It is important to realize that the expressions
refer to the old values of state vector elements; the total effect of a transition is that of a simultaneous
assignment.

We have now outlined the basic technique for specifying the behavior of a sequential process. This
method obviates the need to state such specifications in a highly procedural way. A simple example
protocol does not do justice, however, to the notational power of the decision table. The advantage in
conciseness is much more apparent when the event processing that must be specified is very complex.

Some of the functions in Figures 6 and 7 have yet to be described so we take up that task now. The
function upper(M, i) returns the submapping of M in which the domain values are all greater than or equal
to i. The function lower(M, i) is defined in an analogous manner. Another function for extracting a
submapping is consec(M). It returns the maximal, initial submapping of M such that all of its domain
values are consecutive integers. The next domain value in this sequence (the first missing value) is

12

obtained from the function reach(M).

An informal explanation of the event processing for the sender and receiver of Figures 6 and 7 would
no doubt help clarify the behavioral specifications. When the sender receives a message from the
source, it immediately forms a packet out of it, sends the packet out and saves it on the retransmission
queue. It then updates next and starts a timeout if necessary. The current value of time is obtained from
the implicit variable "time." When a valid acknowledgment arrives, the sender updates unack and deletes
the portion of the queue which is thereby acknowledged. When a timeout occurs, the entire queue is
resent and a new timeout is started. For simplicity, only a single timeout is set at any given time, rather
than one for every outstanding message.

Upon receipt of an incoming packet, the receiver must distinguish several cases based on where the
packet lies in the sequence space. If its sequence number is less than next, then it is an old duplicate
and the current value of next is sent back. If its sequence number is greater than next, but still within the
window, then it is queued if a copy has not already been saved. When a sequence number equal to next
arrives, then as many messages as can legitimately be delivered are sent to the sink. A new value of
next is derived and sent as an acknowledgment, and the queue is updated to delete the messages just
delivered.

4.3 Example of event processing
The foregoing concepts are illustrated below with an example from the incoming packet handler of

Fig. 7. Suppose that the receiver process is currently waiting for message number 6 and has several
other messages already in its receive queue.

next = 6
queue = [[7,[b,7]], [8,[c,8]], [10,[e,10]]]
domain(queue) = [7, 8, 10]

Now suppose that the packet [a,6] arrives through the receiver’s pkt_in buffer. This causes rule 4 of the
decision table to be selected. Some of the functions that must be evaluated then include

consec(queue) = [[7,[b,7]], [8,[c,8]]]
reach(queue) = 9
upper(queue, 9) = [[10,[e,10]]]
range(consec(queue)) = [[b,7], [c,8]]
apply(".mssg", range(consec(queue))) = [b, c]

Thus the response to this incoming packet will be

1. Send [a, b, c] to sink

2. Send [9] to ack_out

and the transition will be

1. Set next to 9

2. Set queue to [[10,[e,10]]]

5 Service Specifications
Up to this point, we have not introduced any concepts explicitly for the purpose of doing verification.

In fact, the techniques described thus far would be useful for protocol specification regardless of whether
we intended to carry out any verification. Nevertheless, we would like very much to extend our formal
machinery to be able to prove properties about the protocols we model. The main property of interest is
some formal statement of the services provided by a protocol.

Our method for expressing a service specification is based on the use of an assertion about the

13

input-output characteristics of a concurrent process. Such an assertion takes an external view of a
process; it only makes use of information that can be gleaned from external observations of the process.
This type of assertion is to be held invariant by a process. Hence it is referred to as an external invariant.

In order to express these assertions we make use of a special mechanism known as a history. This is
an instance of the more general class of auxiliary variables, a well established tool for the verification of
concurrent programs. Our notion of history follows that of [Howard76] and [Good79]. A message history
(or buffer history) records all of the messages received from an input buffer or those sent to an output
buffer during the life of a process. The history itself is a sequence data object. For example, the
transport service process of Fig. 1 would have an input history associated with the buffer "source" and an
output history associated with the buffer "sink." Each of these has the data structure

type msg_history = sequence of message.

Notationally, we follow the simple convention of giving a history the same name as the buffer to which it
applies (as long as there is no ambiguity).

So we are now in a position to state the service specification for the Stenning protocol as a safety
property of the transport process. In words, it is the usual property that the output history is an initial
subsequence of the input history. This is expressed quite simply as

sink initial source

where "initial" is an infix relational operator and sink and source are the history names. In general,
service specifications are stated as a conjunction of relations between histories or expressions involving
histories.

This type of assertion has been referred to as an invariant, but of course it cannot be true at all
instants of time. It is only required to hold when a process is idle, waiting for input. A concurrent process
is idle when all of its subprocesses are idle. Hence the assertion actually holds at a restricted set of
points in time. Note that this notion of invariant assertion is different from both the Gypsy concept of
blockage assertion, which holds when a process is blocked waiting on inputs or outputs, as well as other
forms of invariants that must hold after every separate I/O operation. An advantage of this form of
assertion is that stronger relations between histories can generally be stated since the assertions need
not hold at so many intermediate states.

Stating service specifications in this manner has the advantage that any data delivery property we
wish to prove about a protocol can be expressed directly as its service specification. In contrast, if a state
machine form of specification is used, it is necessary to derive the delivery properties from the
specification as a separate step. On the other hand, connection management features are more difficult
to capture using a history-based specification. With the restricted histories described in this paper it
would not even be possible. However, the more general process model provides a way to specify the
relative order of messages in different histories. This gives us the needed capability, but it remains to be
seen how well it will work in practice.

6 Verification Methods
We have thus far presented a hierarchical model of concurrent processes, techniques for specifying

the behavior of protocol modules, and a method for stating formal service specifications. Now we tie all of
these things together by explaining the verification methods. These are based in part on the verification
techniques developed for Gypsy, where the concepts for modular verification of concurrent processes
were first introduced [Good79]. Other sources of methods include the traditional principles of Floyd-
Hoare inductive assertion techniques.

14

Transport service
[external invariant]

^ ^ ^
| | |

+----------+ | +----------+
| | |

sender medium receiver
[external [external [external
invariant] invariant] invariant]

^ (assumed) ^
| |

sender receiver
[internal [internal
invariant] invariant]

^ ^
| |

sender receiver
[behavioral [behavioral
specification] specification]

Figure 9: Proof structure for Stenning protocol.

6.1 Verifying concurrent processes
In Section 5 the concept of the external invariant of a process was discussed. The only data objects

that may be referenced by such an assertion are the histories of the input/output buffers of the process in
question. No knowledge of the internal structure of a process is used. This is the technique that enables
a modular proof structure to be obtained. When verifying a concurrent process, we only make use of the
external invariants of its subprocesses. The conjunction of these invariants, plus knowledge of the
topology of process interconnection through message buffers, must together imply the external invariant
of the parent process. One level of the concurrent process hierarchy is thereby verified by this procedure.
The overall proof structure is depicted in Fig. 9 for the Stenning protocol example.

+---------+ +---------+
	out_hist +--------+ in_hist			
Process	----------->	buffer	---------->	Process
P	+--------+	Q		
+---------+ +---------+

in_hist initial out_hist

Figure 10: The buffer axiom.

Interconnection topology gives us the "glue" with which to bind the separate subprocess invariants
during a proof. Specifically, we must be able to relate the input history and the output history for each
interconnecting buffer. The designations input history and output history are with respect to the
processes (Fig. 10). The dual convention would be just as valid, but we find it more natural to take a
process-centric view of the world. The basic axiom for buffers is that the input history for a buffer is an
initial subsequence of the corresponding output history. Often this relation can be strengthened to
equality, depending on the behavior of the receiving process. If a process always waits on a particular
buffer when it is idle, then whenever the external invariant holds the buffer must be empty, and therefore
these histories must be equal. Extensions to account for the waiting behavior of processes are included
in the more general model [DiVito82-2].

For the Stenning protocol example, the transport service process would be verified by proving the
verification condition (VC) shown in Fig. 11. External invariants are represented by functions with names
of the form "p_ext." Arguments to these functions consist of the appropriate histories for the input and

15

output buffers of the processes. For interconnecting buffers, input and output histories are designated by
"b_in" and "b_out" for buffer b. Notice that four instances of the buffer axiom are included in this VC. If
an automatic proof system were cognizant of this special relationship between histories, they could be left
out of the VC entirely. In that case, these relationships would be implicitly supplied when they were
needed in the proof. Actually, these relations can all be strengthened to equality for this example, but we
wanted to display the general form. The invariants themselves will be presented in Section 6.3.

sender_ext (source, sndr_ack_in, sndr_pkt_out)
& receiver_ext (rcvr_pkt_in, sink, rcvr_ack_out)
& medium_ext (sndr_pkt_in, rcvr_pkt_out)
& medium_ext (rcvr_ack_in, sndr_ack_out)
& sndr_pkt_in initial sndr_pkt_out
& rcvr_pkt_in initial rcvr_pkt_out
& sndr_ack_in initial sndr_ack_out
& rcvr_ack_in initial rcvr_ack_out

-> transport_service_ext (source, sink)

Figure 11: Concurrent process verification condition.

6.2 Verifying sequential processes
Both concurrent and sequential processes are given an external invariant. As just noted, we prove

that the external invariant of a concurrent process holds by examining its internal structure, namely the
subprocesses that compose it. An analogous procedure is needed for proving that the external invariant
of a sequential process holds. An intermediate assertion is used for this purpose, the internal invariant. It
differs from the external invariant only in the data objects that it may reference. An internal invariant may
refer to the state vector components of a sequential process as well as to its buffer histories. Otherwise,
it is required to hold at precisely the same points in time as the external invariant. This assertion may be
regarded as the analog of the loop invariant in the inductive assertion method for sequential program
verification.

The internal invariant now acts as a bridge between the behavioral specification and the external
invariant, as shown in Fig. 9. This structure gives rise to three kinds of verification conditions.

1. The internal invariant must be shown to imply the external invariant.

2. The internal invariant must be shown to hold with the initial value of the state vector and null
buffer histories.

3. It must be shown that the internal invariant is maintained after an event is processed. This
involves proving that for each event class, and for each decision table rule within that class,
the actions performed will preserve the invariance of the assertion. This must also be
shown for the ELSE rules of the decision tables.

Because of the inherent simplicity of these proof methods, it is easy to design an algorithm that will
generate the proper verification conditions from a suitable representation of the behavioral specifications.
A rough prototype has in fact been implemented.

As an example of the first kind of VC, we have for the receiver process

receiver_int (pkt_in, sink, ack_out, next, queue)
-> receiver_ext (pkt_in, sink, ack_out)

where receiver_int stands for the internal invariant. Similarly,

receiver_int (null, null, null, 0, null)

represents the initialization VC for the receiver.

16

The third kind of verification condition is where most of the work lies. As an illustration of one of these
VCs, consider Fig. 12. This VC corresponds to rule 4 of the receiver’s incoming packet handler,
containing the most complicated processing of this protocol. It has the general form

invariant (H1, ..., Hm, V1, ..., Vn)
& conditions under which event and rule are selected

-> invariant (H1<:p, H2@R2, ..., Hm@Rm, T1, ..., Tn)

where the {Hi} are histories, the {Vi} are state vector components, the {Ri} are response expressions, the
{Ti} are transition expressions and p is the value of the incoming packet. Of course, those histories
belonging to the other input buffers do not change, since only one message can be received during a
single event.

receiver_int (pkt_in, sink, ack_out, next, queue)
& pkt.seqno = next
& (next + 1) in domain(queue)

-> receiver_int (pkt_in <: pkt,
sink @ (pkt.mssg

:> apply(".mssg",
range(consec(queue)))),

ack_out @ [reach(queue)],
reach(queue),
upper (queue, reach(queue)))

Figure 12: One of the receiver’s verification conditions.

6.3 Invariants for the example protocol
Returning to our example protocol, we will present a set of invariants for the various processes. Let

us begin with the external invariants of the medium, sender and receiver processes. The medium
process can be characterized by a very simple assertion. Since it delivers messages with a certain
degree of unreliability, the most that can be said about it is that any message appearing at its output must
have been received from its input. However, nothing can be said about the ordering of messages or the
number of occurrences of a given message that appear at the output. This relationship between histories
is expressed by

msg_out follows msg_in.

Here "follows" is a relational operator on sequences like initial, except that it is a much weaker relation.
The predicate x follows y holds if every element of x appears somewhere in y. If x and y were reduced to
sets by removing duplicates, then the follows relation would be equivalent to the subset relation. When
applied to sequences, though, follows may hold even if x is larger than y.

The external invariant of the sender process is given by

consistent (".seqno", "=", pkt_out)
& source = apply (".mssg",

range (latest (".seqno", pkt_out))).

Here a couple of new functions are encountered that need to be explained. The predicate "consistent" is
used in this case to express the fact that any two packets in the pkt_out history with the same sequence
number field also have the same message field. This fact is needed in the proof of the receiver since it
allows the receiver to treat all packets with the same sequence number interchangeably. More generally,
if f is a unary function of objects of type T, g is a binary predicate on T, and S is a sequence of T, then
consistent(f, g, s) means

for all x, y in S, f(x) = f(y) -> g(x, y).

17

The function "latest" is used to create a mapping object from a sequence. Let S be sequence of T
and f be a unary, integer valued function on T. A call on latest(f, S) first applies f to each element e of S to
create the domain-range pairs [f(e), e] and then creates a mapping out of these by retaining the rightmost
(latest) pair of those with duplicate domain values. For example,

pkt_out = [[a,0], [b,1], [a,0], [c,2]]
latest (".seqno", pkt_out) =

[[0,[a,0]], [1,[b,1]], [2,[c,2]]].

In this way, we can create a value which is an ordered packet stream with all the duplicate entries
removed. By extracting the message fields we recover the original sequence of messages received from
the source.

The external invariant for the receiver is somewhat more complicated.

consistent (".seqno", "=", pkt_in)
-> if 0 in domain (latest (".seqno", pkt_in))

then sink
initial apply (".mssg",

range(consec(latest(".seqno",
pkt_in))))

else sink = null
fi.

The implication reflects the fact that the receiver can only deliver the correct messages if the incoming
packets have the consistency property. Its conclusion gives the relation between input and output
histories, as was done for the sender’s invariant. In this case, the additional complexity results from the
fact that an incoming packet may have arrived at a time when its sequence number fell beyond the
receive window. The receiver would have ignored it but it still would have appeared in the input history.
Hence the messages actually delivered to the sink may lag those that could have been delivered based
on purely logical considerations. Observe that in all of these invariants there is no mention of the
acknowledgment path from receiver to sender. Due to the unboundedness of sequence numbers in our
model of this protocol, sequence numbers are not being reused and hence the proof is independent of the
acknowledgment handling.

consistent (".seqno", "=", pkt_out)
& range(queue) follows pkt_out
& source = apply (".mssg",

range (latest (".seqno", pkt_out)))
& if next = 0

then ptk_out = null
& queue = null

else pkt_out ne null
& last (latest (".seqno", pkt_out)).dom
= next - 1

& highest (apply (".seqno", pkt_out))
= next - 1

& (queue ne null
-> last(queue).dom = next - 1)

fi

Figure 13: Sender’s internal invariant.

We conclude by presenting the internal invariants for the sender and receiver processes of Figures 13
and 14. We make no attempt at annotation; they are shown only to satisfy the reader’s curiosity.

18

consistent (".seqno", "=", pkt_in)
-> (queue

follows upper (latest (".seqno", pkt_in), next + 1)
& next le reach (latest (".seqno", pkt_in))
& if 0 in domain (latest (".seqno", pkt_in))

then next > 0
& sink
= apply (".mssg",

range (lower (latest (".seqno",
pkt_in),

next - 1)))
else next = 0

& sink = null
fi)

Figure 14: Receiver’s internal invariant.

7 Mechanical Proof
One of the major goals for this research was to attempt to apply mechanical theorem proving tools to

the problem of protocol verification. Moreover, this goal has directly influenced the development of parts
of the methodology, primarily the design of the specification language. Although the technology of
automatic theorem proving is still far from being truly automatic, it is felt that the coming years will bring
steady progress so that mechanical proving will become reasonably practical. In the meantime, there is
no denying the benefits of a machine proof in terms of offering an extremely high degree of proof integrity.

In our present work, we have done a fair amount of experimentation with the Boyer-Moore theorem
prover [Boyer79]. A fully mechanical proof of the protocol example in this paper was carried out with this
theorem prover. The prover has been used extensively on program verification problems of various
kinds. It runs as an Interlisp program on DEC 10 and DEC 20 systems. Formulas are expressed in a
notation similar to LISP S-expressions. The prover’s two most important features for our work are its
ability to carry out induction proofs and its ability to search a database of lemmas during a proof. During a
proof there is no direct interaction with the user. A user does interact, albeit indirectly, by causing an
adequate set of lemmas to be proved beforehand.

If we were to try to prove a set of verification conditions from scratch our chances of success would be
very slim indeed. Effective use of the prover requires that we build a theory of our basic concepts that is
sufficiently rich to allow proofs to be of manageable size. The strategy employed to achieve this aim is
outlined below.

• The basic data types and functions of our specification language are realized by shells and
recursive functions in the Boyer-Moore theory. Shells are a form of data typing mechanism
in this theory.

• A set of fundamental properties of these functions is postulated and proved. Most of these
are properties of the sequence and mapping operators, which are usually proved by
induction on the structure of one of the sequence variables. A body of generally useful
lemmas is thereby built up.

• Proofs of the verification conditions are attempted without resorting to the use of induction.
We would like the prover to rely only on the previously proved lemmas and its simplification
heuristics.

• Study of failed proof attempts leads to the conception of additional lemmas which are then
proved and added to the knowledge base. This process continues until all of the verification
conditions have been proved.

This strategy was successfully applied in our proof of the Stenning procotol. All told, there were 14
nontrivial verification conditions to be proved. Their proofs took a total of about 28 minutes of CPU time

19

on a DEC 2060 system with a KL processor. At the time, a database of some 300 lemmas had been
constructed. About 200 of these were left activated for automatic search by the theorem prover.

Having developed this sizeable body of lemmas, we now have the rudiments of a reuseable theory for
the verification of transport protocols. Most of these lemmas have been expressed as fairly general facts
about the predefined operators and consequently may be brought to bear on similar verification problems.
The next protocol we verify will undoubtedly benefit from the existence of this database and a great deal
of duplicate effort can be avoided.

We would like to give the reader a feel for the kind of proofs we are talking about and demonstrate
how the lemmas interact to achieve them. We will take one of the VCs and give an outline of its proof.
The VC we have chosen is the one for the concurrent process, shown in Fig. 11. It states that the
external invariants of the sender, receiver and medium processes together imply the external invariant of
the transport process.

Rather that working with the original VC, let us simplify it somewhat, eliminate irrelevant information
and factor out the trivial cases. This will leave us with the following simpler and more interesting
conjecture.

consistent (".seqno", "=", pkt_out)
& pkt_in follows pkt_out
& 0 in domain (latest (".seqno", pkt_in))
& sink

initial apply (".mssg",
range (consec (latest (".seqno",

pkt_in))))
-> sink

initial apply (".mssg",
range (latest (".seqno", pkt_out)))

We have also done some renaming of the history variables to improve readability.

This conjecture can be proved by the application of five lemmas from our database. These lemmas
are in the form of conditional rewrite rules. When applying such lemmas, the theorem prover makes use
of a technique known as "backchaining." In this procedure, the prover finds a lemma whose conclusion it
would like to use, instantiates the variables of the lemma, and then tries to establish each of the
hypotheses of the lemma. While trying to establish the hypotheses, additional applications of lemmas
may be attempted, requiring even more hypotheses be established. If the backchaining terminates
successfully, then the original lemma may be used to rewrite the conjecture.

Proceeding with our proof, we would first like to try to use the transitivity lemma

x initial y & y initial z
-> x initial z

under the assignment

x = sink
z = apply (".mssg",

range (latest (".seqno", pkt_out)))

Since the last hypothesis of our conjecture will satisfy the first hypothesis of the lemma, assuming we
properly instantiate the free variable y, our conjecture will be proved if we can establish

apply (".mssg",
range (consec (latest(".seqno", pkt_in))))

initial apply (".mssg",
range (latest (".seqno", pkt_out)))

20

Now we may backchain with the lemmas

x initial y
-> apply (f, x) initial apply (f, y)

x initial y
-> range(x) initial range(y)

to yield the new goal

consec (latest (".seqno", pkt_in))
initial latest (".seqno", pkt_out)

Backchaining again with

x follows y & 0 in domain(x)
-> consec(x) initial y

means that all we need to do is establish

latest (".seqno", pkt_in)
follows latest (".seqno", ptk_out)

However, by applying

x follows y & consistent (f, "=", y)
-> latest (f, x) follows latest (f, y)

we will have satisfied all our backchained hypotheses and therefore the original conjecture will have been
proved. To keep the above presentation simple, we ignored the type constraints on the variables of the
lemmas. In actuality, this is additional information that must be established when applying lemmas. The
real theorem prover takes about 30 seconds to find the proof of the original verification condition from
which this example was extracted.

8 Conclusion
We have described a methodology for formally specifying and verifying communication protocols. It is

based on the use of concurrent process models and abstract techniques for specifying protocol behavior.
Techniques for verifying safety properties have been developed based in part on the methods of Gypsy.
The origin of a deductive theory of formal protocol concepts has evolved. The methodology has been
used successfully in a trial application, yielding a fully mechanical proof of the Stenning protocol.
Although the emphasis has been on protocols, it is clear that the methods could be applied to other
problems of distributed systems.

Future work will attempt proofs of more complicated protocols. A prime candidate is the data transfer
function of the DoD’s Transmission Control Protocol (TCP) [Postel80]. This would be primarily an
extension of the example protocol in this paper. Also desirable would be attempts to model connection
management features of protocols. Future development of methods should include several types of
extensions. A way to deal with bounded sequence numbers is an extension that would make the protocol
models more realistic. This would involve placing limits on the degree to which a medium can reorder
packets. Of particular importance is the need to extend the methods to handle verification of liveness
properties. A natural choice would be the use of temporal logic, but this may present a problem for
mechanical proof. Finally, developing a specialized protocol verification system would be a helpful aid in
managing verification activities.

21

I. Collected Specifications for Example
The protocol specifications for the example used in this paper have been collected and reproduced

below.

22

II. Process definitions
process transport_service (input source: message;

output sink: message) =
begin

buffers (sndr_pkt, rcvr_pkt: packet;
sndr_ack, rcvr_ack: natural);

cobegin
sender (source, sndr_ack, sndr_pkt);
receiver (rcvr_pkt, sink, rcvr_ack);
medium (sndr_pkt, rcvr_pkt);
medium (rcvr_ack, sndr_ack);

end
end

process medium (input in_buf: T;
output out_buf: T) = pending

process sender (inputs source: message;
ack_in: natural;

output pkt_out: packet) =
begin

state vector (unack: natural;
next: natural;
queue: mapping of packet;
timing: boolean;
to_time: natural)

initially (0, 0, null, false, 0);

events
next - unack < send_window =>

on receipt of mess from source
handle by source_hdlr;

true =>
on receipt of ack from ack_in

handle by ack_hdlr;
timing =>

after to_time handle by timeout_hdlr;
end;

end;

23

source_hdlr 1 2
+======================+=====+
| timing | F T |
+======================+=====+
| pkt_out | A A |
+----------------------+-----+
unack	- -
next	B B
queue	C C
timing	T -
to_time	D -
+======================+=====+

Where
A = [[mess, next]]
B = next + 1
C = queue with ([next] := [mess, next])
D = time + delta_t

ack_hdlr 1 2 timeout_hdlr 1
+==================+=====+ +===============+===+
| ack > unack | T T | | --- | |
| ack = next | F T | +===============+===+
| timing | T T | | pkt_out | A |
+==================+=====+ +---------------+---+
| pkt_out | - - | | unack | - |
+------------------+-----+ | next | - |
unack	A A		queue	-
next	- -		timing	-
queue	B C		to_time	B
timing	- F	+===============+===+		
to_time	- -			
+==================+=====+ Where

A = range (queue)
Where B = time + delta_t
A = ack
B = upper (queue, ack)
C = null

process receiver (input pkt_in: packet;
outputs sink: message;

ack_out: natural) =
begin

state vector (next: natural;
queue: mapping of packet)

initially (0, null);

events
true => on receipt of pkt from pkt_in

handle by pkt_hdlr;
end;

end;

pkt_hdlr 1 2 3 4

24

+================================+=========+
pkt.seqno = next	F - T T
pkt.seqno > next	F T - -
pkt.seqno - next < rcv_window	- T - -
pkt.seqno in domain(queue)	- F - -
(next+1) in domain(queue)	- - F T
+================================+=========+	
sink	- - B D
ack_out	A - C E
+--------------------------------+---------+	
next	- - H J
queue	- G - K
+================================+=========+

Where
A = [next]
B = [pkt.mssg]
C = [next+1]
D = pkt.mssg :> apply (".mssg", range (consec (queue)))
E = [reach(queue)]
G = queue with ([pkt.seqno] := pkt)
H = next + 1
J = reach(queue)
K = upper(queue, reach(queue))

25

III. External invariants
transport_service:

sink initial source

medium:
s msg_out follows msg_in

sender:

consistent (".seqno", "=", pkt_out)
& source = apply (".mssg",

range (latest (".seqno", pkt_out)))

receiver:

consistent (".seqno", "=", pkt_in)
-> if 0 in domain (latest (".seqno", pkt_in))

then sink
initial apply (".mssg",

range(consec(latest(".seqno",
pkt_in))))

else sink = null
fi

26

IV. Internal invariants
sender:

consistent (".seqno", "=", pkt_out)
& range(queue) follows pkt_out
& source = apply (".mssg",

range (latest (".seqno", pkt_out)))
& if next = 0

then ptk_out = null
& queue = null

else pkt_out ne null
& last (latest (".seqno", pkt_out)).dom
= next - 1

& highest (apply (".seqno", pkt_out))
= next - 1

& (queue ne null
-> last(queue).dom = next - 1)

fi

receiver:

consistent (".seqno", "=", pkt_in)
-> (queue

follows upper (latest (".seqno", pkt_in), next + 1)
& next le reach (latest (".seqno", pkt_in))
& if 0 in domain (latest (".seqno", pkt_in))

then next > 0
& sink
= apply (".mssg",

range (lower (latest (".seqno",
pkt_in),

next - 1)))
else next = 0

& sink = null
fi)

27

V. Summary of Predefined Functions
A glossary of the predefined functions used in this paper is given below.

e apl S Also written e :> S. Appends element e to the left end of sequence S.

apply(f,S) Applies the function f to each element of sequence S, collecting the result into a
new sequence.

S apr e Also written S <: e. Appends element e to the right end of sequence S.

consec(M) Extracts the maximal initial submapping of M such that all its domain values are
consecutive integers.

consistent(f,g,S) A predicate that is true if for every two elements x, y of S, f(x) = f(y) -> g(x,y).

domain(M) Returns the sequence of domain values of mapping M.

first(S) Evaluates to the first element of sequence S, or to a default value if S is null.

S1 follows S2 A relational operator on sequences that holds if every element of S1 is also an
element of S2.

e in S A predicate that is true if e is an element of sequence S.

S1 initial S2 A relational operator on sequences that holds if S1 is an initial segment of S2.

S1 join S2 Also written S1 @ S2. Returns the concatenation of sequences S1 and S2.

last(S) Evaluates to the last element of S, returning a default value if S is null.

latest(f,S) Creates a mapping result from the sequence S by applying function f to each
element e, forming pairs [f(e),e] and collecting the rightmost pair of those with
identical domain values.

lower(M,i) Extracts the submapping of M in which all domain values are less than or equal to
i.

nonfirst(S) Returns the sequence obtained from S by removing the first element.

nonlast(S) Returns the sequence obtained from S by removing the last element.

range(M) Extracts the sequence of range values from mapping M.

reach(M) Computes the integer that is one plus the highest domain value of consec(M).

upper(M,i) Extracts the submapping of M in which all domain values are greater than or equal
to i.

M with ([i]:=e) Produces a new mapping from M by inserting the pair [i,e] at the appropriate
place, replacing any existing pair having the same domain value.

28

References

i

Table of Contents
1 Introduction 2
2 Process Model 2
3 Specification Language Concepts 5
4 Protocol Specifications 7

4.1 Sequential process definitions 8
4.2 Event handlers 9
4.3 Example of event processing 12

5 Service Specifications 12
6 Verification Methods 13

6.1 Verifying concurrent processes 14
6.2 Verifying sequential processes 15
6.3 Invariants for the example protocol 16

7 Mechanical Proof 18
8 Conclusion 20

I. Collected Specifications for Example 21
II. Process definitions 22
III. External invariants 25
IV. Internal invariants 26
V. Summary of Predefined Functions 27

ii

List of Figures
Figure 1: Transport service, external view. 3
Figure 2: Transport service, internal view. 4
Figure 3: Transport service process definition. 4
Figure 4: Sender process. 8
Figure 5: Receiver process. 9
Figure 6: Sender event handlers. 10
Figure 7: Receiver event handler. 10
Figure 8: General form of event handler decision table. 11
Figure 9: Proof structure for Stenning protocol. 14
Figure 10: The buffer axiom. 14
Figure 11: Concurrent process verification condition. 15
Figure 12: One of the receiver’s verification conditions. 16
Figure 13: Sender’s internal invariant. 17
Figure 14: Receiver’s internal invariant. 18

