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Abstract
We describe a proof by a computer program of the unsolvability of the halting problem. The halting

problem is posed in a constructive, formal language. The computational paradigm formalized is Pure
LISP, not Turing machines. The machine was led to the proof by the authors, who suggested certain
function definitions and stated certain intermediate lemmas. The machine checked that every suggested
definition was admissible and the machine proved the main theorem and every lemma. We believe this is
the first instance of a machine checking that a given problem is not solvable by machine.

Key words: automatic theorem-proving, interpreters, LISP, program verification, recursive unsolvability,
termination.

1. Summary
Our current theorem-proving system, a descendant of systems described in [1] and [2], has proved that

no computer program can decide whether a given program halts on a given input. To lead the theorem-
prover to the proof, we suggested nine definitions and ten lemmas; our input to the theorem-prover is
presented in section 6. To our knowledge, this is the first mechanically checked proof of the recursive
unsolvability of any problem.

The model of computation used in our statement of the halting problem, described in section 2, is Pure
LISP, not Turing machines. The unsolvability theorem is proved in a constructive logic like those of
Skolem [7] and Goodstein [4], a logic that does not provide for bound variables ranging over infinite
domains. The logic is briefly sketched in the appendix.

In section 3 we present a constructive statement of the unsolvability of the halting problem. Sections 4
and 5 contain an informal version of the proof.

The proof is an example of program verification via interpretive semantics.

We ask the reader, before he continues, to imagine a machine checkable proof of the unsolvability of
the halting problem complete in every detail. For example, if the Turing machine approach is adopted,
then, among many other details, one must contemplate the Godelization of Turing machines necessary to
pass one machine as an argument to another.

2. The LISP Interpreter
The programming language used in our statement of the halting problem is a version of Pure LISP [5].

We present our version by defining the logical function EVAL, which takes four arguments:
1. an S-expression to be evaluated,

12. a variable alist assigning values to variable symbols,

3. a function alist assigning definitions to nonprimitive function symbols, and

4. a natural number, indicating the maximum depth of function calls.
EVAL returns either the value of the S-expression in the given environment or else it returns the object
(BTM).

1An alist is a list of pairs.
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(BTM) is an object in the logic, axiomatized as an element of a "new" type using the shell principle.
(BTM) is recognized by the function BTMP, which returns true or false according to whether its argument
is (BTM). Furthermore, (BTM) is not equal to true, false, or any number, literal atom, or CONS. Thus (IF
(BTM) 1 2) = 1. The reader is cautioned against thinking that a logical term involving (BTM) is necessarily
(BTM).

That EVAL permits the computation of all partial recursive functions from the nonnegative integers to
the nonnegative integers, and is consequently "universal", is easy to see for those with experience in
LISP programming. In particular, we can write an alist of function definitions tmi defining a LISP program,
’TMI, which acts as a Turing Machine interpreter when applied to (1) a tree of numbers suitably encoding
a Turing Machine and (2) an input integer. Let us call tm* the "suitable encoding" of Turning machine tm.
Then we obtain the following theorem for all Turing Machines tm and all nonnegative integers j and n:

tm halts on input n with answer j

if and only if

for some integer k,
(EVAL (LIST ’TMI tm* n) NIL tmi k) = j.

We describe EVAL in the next three subsections. In the first we present EVAL formally. In the second
(page 4) we paraphrase the formal definition in English. In the third (page 5) we give some example
S-expressions and the values assigned by EVAL. These subsections may be read in any order.

2.1. Formal Description of EVAL
Formally, EVAL is defined to satisfy the equation below. The formal logic used is sketched in the

appendix. The functions GET, EVLIST, SUBRP, APPLY.SUBR, and PAIRLIST, used in the equation, are
discussed informally below and defined formally in section 6.
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(EVAL X VA FA N)
=

(IF (NLISTP X)
(IF (NUMBERP X)

X
(IF (EQUAL X ’T)

T
(IF (EQUAL X ’F)

F
(IF (EQUAL X NIL)

NIL
(GET X VA)))))

(IF (EQUAL (CAR X) ’QUOTE)
(CADR X)

(IF (EQUAL (CAR X) ’IF)
(IF (EQUAL (EVAL (CADR X) VA FA N)

(BTM))
(BTM)
(IF (EVAL (CADR X) VA FA N)

(EVAL (CADDR X) VA FA N)
(EVAL (CADDDR X) VA FA N)))

(IF (EQUAL (EVLIST (CDR X) VA FA N)
(BTM))

(BTM)
(IF (SUBRP (CAR X))

(APPLY.SUBR (CAR X)
(EVLIST (CDR X) VA FA N))

(IF (EQUAL (GET (CAR X) FA)
(BTM))

(BTM)
(IF (ZEROP N)

(BTM)
(EVAL (CADR (GET (CAR X) FA))

(PAIRLIST (CAR (GET (CAR X) FA))
(EVLIST (CDR X) VA FA N))

FA
(SUB1 N))))))))).

The function GET takes two arguments. The second is understood to be an alist. GET looks up its first
argument in the alist and returns the associated value if one is found. Otherwise, GET returns (BTM).

(EVLIST L VA FA N) treats L as a list of S-expressions, x , ..., x , and returns the list of their values1 k

(LIST (EVAL x VA FA N) ... (EVAL x VA FA N)).1 k

However, should any x evaluate to (BTM), EVLIST returns (BTM).i

Strictly speaking, our logic prohibits the definition of mutually recursive functions such as EVAL and
EVLIST. The actual definitions of EVAL and EVLIST, which are presented in section 6, are preceded by
the definition of a function EV which has five arguments, the first being used as a flag. Then (EVAL X VA
FA N) is defined to be (EV ’AL X VA FA N) and (EVLIST X VA FA N) is defined to be (EV ’LIST X VA FA
N). The admissibility of EV under the principle of definition follows from the observation that in each
recursion either the last argument decreases or it stays even and the size of the second argument
decreases.
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(SUBRP X) returns true or false according to whether X is a member of ’(ZERO TRUE FALSE ADD1
SUB1 NUMBERP CONS CAR CDR LISTP PACK UNPACK LITATOM EQUAL LIST). These are the
primitives, other than ’IF and ’QUOTE, interpreted by EVAL.

APPLY.SUBR takes two arguments, the name of a primitive and a list of arguments, and returns the
result of "applying" the primitive to the arguments. For example, (APPLY.SUBR ’CONS L) is (CONS
(CAR L) (CADR L)) and (APPLY.SUBR ’LIST L) is L. For the purposes of the unsolvability proof obtained
here it is necessary that CONS and LIST be among the primitives recognized by SUBRP and interpreted
as above by APPLY.SUBR. Within these restrictions, arbitrary other names could be recognized by
SUBRP and interpreted by APPLY.SUBR.

Finally, PAIRLIST takes two arguments. It pairs successive elements from the first with those from the
second until the first list is empty. PAIRLIST returns the list of such pairs. Thus, (PAIRLIST ’(A B C) ’(1 2
3)) is ’((A . 1) (B . 2) (C . 3)).

2.2. An English Paraphrase of EVAL
To determine the value of an S-expression, X, under the variable alist VA, function alist FA, and

maximum function call depth N, EVAL uses the following rules:

If X is not a list,
then
if X is a number, its value is X;
if X is the atom ’T, its value is true;
if X is the atom ’F, its value is false;
if X is the atom ’NIL, its value is ’NIL;
otherwise, X is treated as a variable symbol and

its value is found by looking it up in VA.

Otherwise, X is a list. Let fn be the first element of X
and let x , ..., x be the remaining elements, which1 n
we will call the "actual expressions."

If fn is ’QUOTE, the value of X is x .1

If fn is ’IF, the value of X is (BTM) if the value of x1
is (BTM) and otherwise the value of X is either the value of
x or of x , according to whether the value of x is3 2 1
false. Thus, our conditional is a 3-place IF that tests against
false instead of an n-place COND that tests against NIL.

Otherwise, evaluate the actuals of X, x , ..., x ,1 n
under the current VA, FA, and N. If any actual evaluates to
(BTM), the value of X is (BTM).

If fn is a primitive function name, the value of X is obtained
by applying the appropriate primitive function to the evaluated
actuals.

Otherwise, look for a definition of fn on FA.
If no definition is found, the value of X is (BTM).
If a definition is found, it consists of two parts,
a list, called the formals of fn, and an s-expression,
called the body of fn.
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If the maximum function call depth, N, is 0 (or not a
natural number), the value of X is (BTM)

Otherwise, form a new variable alist by pairing the formals
of fn with the evaluated actuals. The value of X is then
the value of the body of fn under the new variable alist,
the current function alist, FA, and maximum function call
depth N-1.

2.3. Examples of EVAL
We now illustrate the programming language defined by EVAL. We do so by displaying some simple

theorems about EVAL which show the values of various s-expressions in various environments.

Let v be the following variable alist, in which ’A has the value ’(1 2 3) and ’B has the value ’(A B C D):

v. ’((A . (1 2 3)) (B . (A B C D))).

Let w be the following variable alist, in which ’A has the value 0 and ’B has the value ’(A B C D):

w. ’((A . 0) (B . (A B C D))).

Let f be the following function alist, defining the program APP:

f. ’((APP (X Y)
(IF (EQUAL X NIL)

Y
(CONS (CAR X)

(APP (CDR X) Y))))).

Then the following equalities are theorems:

1. (EVAL 5 v f N) = 5.

2. (EVAL ’A v f N) = ’(1 2 3).

3. (EVAL ’(QUOTE (E . 3)) v f N) = ’(E . 3).

4. (EVAL ’(IF A T F) v f N) = T.

5. (EVAL ’(CONS 7 NIL) v f N) = ’(7).

6. (EVAL ’(IF X 1 2) v f N) = (BTM).

7. (EVAL ’(APP A B) v f N) = (IF (LESSP N 4)
(BTM)
’(1 2 3 A B C D)).

8. (EVAL ’(APP A B) w f N) = (BTM).

A proof of Theorem 4 depends on the fact that ’(1 2 3) is not F and that the value of the literal atom ’T
is T. Theorem 6 may be proved from the observation that ’X is not given a value by the variable alist v.
Theorem 7 informs us that under variable alist v and function alist f, ’(APP A B) evaluates to (BTM) if the
maximum function call depth is less than 4, and evaluates to ’(1 2 3 A B C D) for all other depths. On the
other hand, Theorem 8 informs us that under the variable alist w, ’(APP A B) evaluates to (BTM) for all
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function call depths. A proof of Theorem 8 may be constructed from the observations that the value of ’A
in w is 0, 0 is not NIL, and the CDR of 0 is 0.

3. The Halting Problem
Given an expression X it is not usually meaningful to ask whether it halts. One must consider whether

it halts when evaluated under a particular variable alist and function alist.

When we say "the evaluation of X under VA and FA halts" we mean that there exists an n such that
(EVAL X VA FA n) is not (BTM). Similarly, to say "the evaluation of X under VA and FA does not halt"
means no such n exists, i.e., for all n (EVAL X VA FA n) is (BTM). We have seen that ’(APP A B) under
the variable alist

’((A . (1 2 3))
(B . (A B C D)))

halts, while under the variable alist:

’((A . 0)
(B . (A B C D)))

it does not halt.

To solve the halting problem, we desire a function alist containing a definition of a program named
’HALTS and its subroutines. ’HALTS must have the following properties. As input ’HALTS must take
three arguments, an expression, x, and two alists, va and fa. Given a sufficient function call depth, the
evaluation of a call of ’HALTS on such arguments must return either T or F. If the answer is T then the
evaluation of x under va and fa should halt. If the answer is F then the evaluation of x under va and fa
should not halt.

Let us now be more formal. Suppose we have in mind some function call depth N and some function
alist FA on which ’HALTS is purportedly defined. Observe that

H. (EVAL (LIST ’HALTS
(LIST ’QUOTE x)
(LIST ’QUOTE va)
(LIST ’QUOTE fa))

NIL FA N)

is the value of ’HALTS when applied to some x, va, and fa (with function call depth N). If H is equal to F
we will say that "’HALTS reports that x, va, and fa does not halt" and if H is equal to T we will say that
"’HALTS reports that x, va, and fa does halt".

We want to prove that for every function alist FA and function call depth N, there exist x, va, and fa on
which ’HALTS reports incorrectly. That is,

• if ’HALTS reports that x, va, and fa does not halt, i.e., H=F, then there exists a k such that
(EVAL x va fa k) /= (BTM); and

• if ’HALTS reports that x, va, and fa halts, i.e., H=T, then for all K, (EVAL x va fa K) = (BTM).

Since ours is a constructive logic we must express this without the existential quantification over x, va,
fa, and k. In particular, we must exhibit for any FA and N the required x, va, fa, and k. We therefore seek
to express x, va, fa, and k as functions of FA and N. It suffices to define x, va, and fa as functions of FA
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only and k as a function of N only. Given definitions of x, va, fa, and k, our statement of the unsolvability
of the halting problem is:

HP. (IMPLIES
(EQUAL H (EVAL (LIST ’HALTS

(LIST ’QUOTE (x FA))
(LIST ’QUOTE (va FA))
(LIST ’QUOTE (fa FA)))

NIL FA N))
(AND
(IMPLIES

(EQUAL H F)
(NOT (BTMP (EVAL (x FA) (va FA) (fa FA) (k N)))))

(IMPLIES
(EQUAL H T)
(BTMP (EVAL (x FA) (va FA) (fa FA) K))))).

4. Definitions of x, va, fa, k
The functions x, va, fa, and k must be defined by the user of our theorem-prover before the

unsolvability result can be posed to the theorem-prover. These definitions are the key to the unsolvability
proof.

The intuitive idea behind the definition of x, va, and fa is: x should use ’HALTS to ask, of itself, "Does
this program terminate?" and then either infinitely recur or not, in opposition to the answer supplied by
’HALTS. Therefore when x is evaluated under va and fa it must reconstruct x, va, and fa and call ’HALTS
on those objects.

Let us attempt to meet these constraints by first considering the following list of two definitions:

’((CIRC (A)
(IF (HALTS (QUOTE (CIRC A))

(LIST (CONS (QUOTE A)
A))

A)
(LOOP)
T))

(LOOP NIL (LOOP))).

Let fa be defined to append this list to the front of FA, the function alist that purportedly solves the
halting problem. Let x be defined to return the expression ’(CIRC A), and let va return the singleton alist
in which A is bound to fa (i.e., we pass as the argument to ’CIRC the definition of ’CIRC and its
subroutines). The reader should confirm that if EVAL is applied to (x FA), (va FA), and (fa FA), the results
of evaluating the arguments to ’HALTS inside ’CIRC are (x FA), (va FA), and (fa FA), as desired.

It remains to define k. If, with function call depth N, ’HALTS reports that (x FA) does not halt under (va
FA) and (fa FA), we must exhibit a function call depth k sufficient for (x FA) to halt. Given our previous
choices it is clear that k should be N+1.

Some readers could now "prove" HP. But HP is not a theorem, and a careful attempt to prove HP
uncovers a technical flaw in our definitions. Consider what happens when ’HALTS is called inside ’CIRC.
After the actuals are evaluated they are bound to the formals of ’HALTS and the resulting alist is used as
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the variable alist in the evaluation of the body of ’HALTS. But the function alist used is that containing
’CIRC, ’LOOP, and the definition of ’HALTS and its subroutines. How do we know that the evaluation of
the body of ’HALTS will not be affected by the presence of our definitions for ’CIRC and ’LOOP? The
answer is: we don’t. Suppose the definition of ’HALTS on FA uses a subroutine named ’CIRC defined
differently from above. Then our attempt to define ’CIRC will either overwrite the old definition of ’CIRC
(causing ’HALTS to behave differently) or will be ignored (causing ’CIRC to behave differently) depending
on whether we add our definition of ’CIRC to the front or the back of the function alist containing ’HALTS.
A similar problem arises for ’LOOP.

However, here a lemma about EVAL can help us.

Lemma 1. Suppose that FN is a function name that does not occur as a program name in the
expression X and does not occur in the body of any function defined in a function alist FA. Let FA1 be FA
with one additional definition on it, namely that of the function FN. Then (EVAL X VA FA1 N) is (EVAL X
VA FA N).

Lemma 1 holds even if the result is (BTM). The proof is by induction on X and N. The actual version of
this lemma proved in section 6 is a generalization concerning the function EV.

Thus, instead of choosing ’CIRC and ’LOOP as the names of our programs we should choose "new"
names, names constructed from the given FA so as to be guaranteed not to occur in the body of ’HALTS
or in any definition in FA. Since there is no requirement in our programming language that program
names be atoms, it suffices to choose, in place of the name ’CIRC, the object (CONS FA 0), and, in place
of ’LOOP, the object (CONS FA 1). It is straightforward to show that these names do not occur in FA.

Formal definitions of x, va, fa, and k are given in section 6. Note that 5 of the 10 lemmas in that section
were stated to establish that the definitions of ’CIRC and ’LOOP do not interfere with the evaluation of
’HALT.

5. The Proof
We now prove HP. We use the following abbreviations:

x. (x FA)
va. (va FA)
fa. (fa FA)
k. (k N)
circ. (CONS FA 0)
loop. (CONS FA 1)
body. (CADR (GET ’HALTS FA))
formals. (CAR (GET ’HALTS FA)).

Recall that H is:

H. (EVAL (LIST ’HALTS (LIST ’QUOTE x)
(LIST ’QUOTE va)
(LIST ’QUOTE fa))

NIL FA N).

Observe that H is equal to:
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H’. (EVAL body
(PAIRLIST formals

(LIST x va fa))
FA
(SUB1 N)),

unless N is 0 or ’HALTS is not defined on FA, in which case H is (BTM). Since we must consider only the
two cases H=F and H=T, we conclude N is not 0, ’HALTS is defined on FA, and H is H’.

Case 1. H=F. We must show that (EVAL x va fa k) /= (BTM). By expanding the definition of EVAL and
the code for circ

(EVAL x va fa k)
=

(IF (BTMP h)
(BTM)
(IF h

(EVAL (LIST loop) va fa N)
(EVAL ’T va fa N))),

where h is:

h. (EVAL body
(PAIRLIST formals

(LIST x va fa))
fa
(SUB1 N)).

By two applications of Lemma 1 (one to remove the circ entry from fa and the next to remove the loop
entry from fa) we get h=H’=H=F. Thus, (EVAL x va fa k) = (EVAL ’T va fa N) = T /= (BTM).

Case 2. H=T. We must show that (EVAL x va fa K) = (BTM). If K is less than 1, then (EVAL x va fa K)
is (BTM). If K is 1 then the call of ’HALTS in the body of circ returns (BTM) so (EVAL x va fa K) is (BTM).
Otherwise:

(EVAL x va fa K)
=

(IF (BTMP h)
(BTM)
(IF h

(EVAL (LIST loop) va fa (SUB1 K))
(EVAL ’T va fa (SUB1 K)))),

where h is:

h. (EVAL body
(PAIRLIST formals

(LIST x va fa))
fa
(SUB1 (SUB1 K))).

By two applications of Lemma 1 we conclude that h=h’:

h’. (EVAL body
(PAIRLIST formals

(LIST x va fa))
FA
(SUB1 (SUB1 K)))
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Observe that in h’ we have function call depth K-2 while in H’ we have N-1. However, the following
lemma establishes that h’=H’ or else (BTMP h’):

Lemma 2. If both (EVAL X VA FA N) and (EVAL X VA FA K) are non-BTM they are equal. The proof
is by simultaneous induction on X, N, and K.

Thus, h=h’=H’=H=T and hence (EVAL x va fa K) = (EVAL (LIST loop) va fa (SUB1 K)). However,
Lemma 3, below, establishes that the latter EVAL is equal to (BTM).

Lemma 3. If fn is not a primitive function symbol and the body of fn on FA is (LIST fn), then (EVAL
(LIST fn) VA FA N) is (BTM). The proof is by induction on N.

Thus, the unsolvability of the halting problem has been proved.

6. Input to the Theorem-Prover
We here present and annotate the commands typed to the theorem-prover which lead to the proof of

the unsolvability of the halting problem. The theorem-prover responds to each theorem below with a
proof and to each definition with a justification under the principle of definition.

The theorem-prover took 75 minutes of cpu time (running block compiled INTERLISP on a DEC 2060)
to produce the proofs. Of this, 7 minutes were spent in garbage collection and 2 minutes were spent
printing out the proofs.

6.1. The Definition of EVAL and Its Subroutines

1. Shell Definition.
Add the shell BTM of no arguments with
recognizer BTMP.

2. Definition.
(GET X ALIST)

=
(IF (NLISTP ALIST)

(BTM)
(IF (EQUAL X (CAAR ALIST))

(CDAR ALIST)
(GET X (CDR ALIST))))

3. Definition.
(PAIRLIST X Y)

=
(IF (NLISTP X)

NIL
(CONS (CONS (CAR X) (CAR Y))

(PAIRLIST (CDR X) (CDR Y))))
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4. Definition.
(SUBRP FN)

=
(MEMBER FN

’(ZERO TRUE FALSE ADD1 SUB1 NUMBERP CONS CAR
CDR LISTP PACK UNPACK LITATOM EQUAL LIST))

5. Definition.
(APPLY.SUBR FN LST)

=
(IF (EQUAL FN ’ZERO) (ZERO)
(IF (EQUAL FN ’TRUE) (TRUE)
(IF (EQUAL FN ’FALSE) (FALSE)
(IF (EQUAL FN ’ADD1) (ADD1 (CAR LST))
(IF (EQUAL FN ’SUB1) (SUB1 (CAR LST))
(IF (EQUAL FN ’NUMBERP) (NUMBERP (CAR LST))
(IF (EQUAL FN ’CONS) (CONS (CAR LST) (CADR LST))
(IF (EQUAL FN ’LIST) LST
(IF (EQUAL FN ’CAR) (CAAR LST)
(IF (EQUAL FN ’CDR) (CDAR LST)
(IF (EQUAL FN ’LISTP) (LISTP (CAR LST))
(IF (EQUAL FN ’PACK) (PACK (CAR LST))
(IF (EQUAL FN ’UNPACK) (UNPACK (CAR LST))
(IF (EQUAL FN ’LITATOM) (LITATOM (CAR LST))
(IF (EQUAL FN ’EQUAL) (EQUAL (CAR LST) (CADR LST))

0)))))))))))))))
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6. Definition.
(EV FLG X VA FA N)

=
(IF (EQUAL FLG ’AL)

(IF (NLISTP X)
(IF (NUMBERP X) X
(IF (EQUAL X ’T) T
(IF (EQUAL X ’F) F
(IF (EQUAL X NIL) NIL

(GET X VA)))))
(IF (EQUAL (CAR X) ’QUOTE)

(CADR X)
(IF (EQUAL (CAR X) ’IF)

(IF (BTMP (EV ’AL (CADR X) VA FA N))
(BTM)
(IF (EV ’AL (CADR X) VA FA N)

(EV ’AL (CADDR X) VA FA N)
(EV ’AL (CADDDR X) VA FA N)))

(IF (BTMP (EV ’LIST (CDR X) VA FA N))
(BTM)

(IF (SUBRP (CAR X))
(APPLY.SUBR (CAR X)

(EV ’LIST (CDR X) VA FA N))
(IF (BTMP (GET (CAR X) FA))

(BTM)
(IF (ZEROP N)

(BTM)
(EV ’AL

(CADR (GET (CAR X) FA))
(PAIRLIST (CAR (GET (CAR X) FA))

(EV ’LIST (CDR X) VA FA N))
FA
(SUB1 N)))))))))

(IF (LISTP X)
(IF (BTMP (EV ’AL (CAR X) VA FA N))

(BTM)
(IF (BTMP (EV ’LIST (CDR X) VA FA N))

(BTM)
(CONS (EV ’AL (CAR X) VA FA N)

(EV ’LIST (CDR X) VA FA N))))
NIL))

Hint. Consider the lexicographic order induced by
LESSP and LESSP on (LIST N (COUNT X)).

7. Definition.
(EVAL X VA FA N)

=
(EV ’AL X VA FA N)

8. Definition.
(EVLIST X VA FA N)

=
(EV ’LIST X VA FA N)
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6.2. The Definitions of x, va, fa, and k
We first define APPEND (so we can concatenate the definitions of ’CIRC and ’LOOP onto FA) and

SUBLIS (so we can substitute new names for ’CIRC and ’LOOP).

9. Definition.
(APPEND X Y)

=
(IF (NLISTP X)

Y
(CONS (CAR X) (APPEND (CDR X) Y)))

10. Definition.
(ASSOC VAR ALIST)

=
(IF (NLISTP ALIST)

F
(IF (EQUAL VAR (CAAR ALIST))

(CAR ALIST)
(ASSOC VAR (CDR ALIST))))

11. Definition.
(SUBLIS ALIST X)

=
(IF (NLISTP X)

(IF (ASSOC X ALIST)
(CDR (ASSOC X ALIST))
X)

(CONS (SUBLIS ALIST (CAR X))
(SUBLIS ALIST (CDR X))))

12. Definition.
(x FA)

=
(SUBLIS (LIST (CONS ’CIRC (CONS FA 0)))

(QUOTE (CIRC A)))

13. Definition.
(fa FA)

=
(APPEND (SUBLIS (LIST (CONS ’CIRC (CONS FA 0))

(CONS ’LOOP (CONS FA 1)))
’((CIRC (A)

(IF (HALTS (QUOTE (CIRC A))
(LIST (CONS (QUOTE A) A))
A)

(LOOP)
T))

(LOOP NIL (LOOP))))
FA)

14. Definition.
(va FA)

=
(LIST (CONS ’A (fa FA)))
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15. Definition.
(k N)

=
(ADD1 N)

6.3. Lemma 1

16. Definition.
(OCCUR X Y)

=
(IF (EQUAL X Y)

T
(IF (NLISTP Y)

F
(OR (OCCUR X (CAR Y))

(OCCUR X (CDR Y)))))

17. Definition.
(OCCUR.IN.DEFNS X LST)

=
(IF (NLISTP LST)

F
(OR (OCCUR X (CADDR (CAR LST)))

(OCCUR.IN.DEFNS X (CDR LST))))

18. Theorem. OCCUR.OCCUR.IN.DEFNS:
(IMPLIES (AND (NOT (OCCUR.IN.DEFNS FN FA))

(NOT (BTMP (GET X FA))))
(NOT (OCCUR FN (CADR (GET X FA)))))

19. Theorem. LEMMA1:
(IMPLIES (AND (NOT (OCCUR FN X))

(NOT (OCCUR.IN.DEFNS FN FA)))
(EQUAL (EV FLG X VA

(CONS (CONS FN DEF) FA)
N)

(EV FLG X VA FA N)))

We state the straightforward lemmas establishing that our chosen replacements for ’CIRC and ’LOOP
are indeed "new." We then have the system prove as, Corollary 1, that the evaluation of the body of
’HALTS under fa is the same as under FA. This is the sole use we make of Lemma 1, but if we do not
have the system prove this Corollary and then forget Lemma 1 it wastes time trying to use Lemma 1
frequently.

20. Theorem. COUNT.OCCUR:
(IMPLIES (LESSP (COUNT Y) (COUNT NAME))

(NOT (OCCUR NAME Y)))

21. Theorem. COUNT.GET:
(LESSP (COUNT (CADR (GET FN FA)))

(ADD1 (COUNT FA)))
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22. Theorem. COUNT.OCCUR.IN.DEFNS:
(IMPLIES (LESSP (COUNT FA) (COUNT NAME))

(NOT (OCCUR.IN.DEFNS NAME FA)))

23. Theorem. COROLLARY1:
(EQUAL (EV ’AL

(CADR (GET ’HALTS FA))
VA
(CONS (CONS (CONS FA 0) DEF0)

(CONS (LIST (CONS FA 1)
NIL
(LIST (CONS FA 1)))

FA))
N)

(EV ’AL
(CADR (GET ’HALTS FA))
VA FA N))

24. Disable LEMMA1.

6.4. Lemma 2

25. Theorem. LEMMA2:
(IMPLIES (AND (NOT (BTMP (EV FLG X VA FA N)))

(NOT (BTMP (EV FLG X VA FA K))))
(EQUAL (EV FLG X VA FA N)

(EV FLG X VA FA K)))

Lemma 2 in its most general form is not useful to the
theorem-prover as a rewrite rule. Consequently, we
state Corollary 2 -- the only version of Lemma 2 we will
subsequently need -- and tell the theorem-prover to prove it
by using Lemma 2.

26. Theorem. COROLLARY2:
(IMPLIES (EQUAL (EV FLG X VA FA N) T)

(EV FLG X VA FA K))
Hint: Use LEMMA2.

6.5. Lemma 3

27. Theorem. LEMMA3:
(IMPLIES (AND (LISTP X)

(LISTP (CAR X))
(NLISTP (CDR X))
(LISTP (GET (CAR X) FA))
(EQUAL (CAR (GET (CAR X) FA)) NIL)
(EQUAL (CADR (GET (CAR X) FA)) X))

(BTMP (EV ’AL X VA FA N)))
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6.6. A Lemma to Expand EVAL on CIRC
We state a lemma that can be regarded as a command to expand the definition of EVAL when it is

applied to ’(CIRC A). The system’s heuristics for expanding recursive functions fail to see the merit of
converting a question about the relatively simple expression ’(CIRC A) to a question about the more
complex body of ’CIRC.

28. Theorem. EXPAND.CIRC:
(IMPLIES

(AND (NOT (BTMP VAL))
(NOT (BTMP (GET (CONS FN 0) FA))))

(EQUAL (EV ’AL
(CONS (CONS FN 0) (QUOTE (A)))
(LIST (CONS ’A VAL))
FA J)

(IF (ZEROP J)
(BTM)
(EV ’AL

(CADR (GET (CONS FN 0) FA))
(PAIRLIST (CAR (GET (CONS FN 0) FA))

(EV ’LIST
(QUOTE (A))
(LIST (CONS ’A VAL))
FA J))

FA
(SUB1 J)))))

6.7. The Unsolvability of the Halting Problem

29. Theorem. UNSOLVABILITY.OF.THE.HALTING.PROBLEM:
(IMPLIES
(EQUAL H (EVAL (LIST ’HALTS

(LIST ’QUOTE (x FA))
(LIST ’QUOTE (va FA))
(LIST ’QUOTE (fa FA)))

NIL FA N))
(AND
(IMPLIES

(EQUAL H F)
(NOT (BTMP (EVAL (x FA) (va FA) (fa FA) (k N)))))

(IMPLIES
(EQUAL H T)
(BTMP (EVAL (x FA) (va FA) (fa FA) K))))).

7. Discussion
One might ask what was learned by applying an existing theorem-prover to a well-known theorem?

We learned several things from the exercise.

First, the halting problem can be stated in an entirely constructive logic. This was not immediately
apparent either to us or to many of our colleagues, who often reacted to the announcement of this result
by asking "How did you state that in your logic?"
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Second, it is well known that mutual recursion can be eliminated by the trick of defining a single
function that has an extra "flag" argument; however, this exercise demonstrated to us the practical
advantages to formal, mechanical proof that accrue by taking this approach.

Suppose that explicit mutual recursion is permitted, so that EVAL is defined in terms of EVAL and
EVLIST and EVLIST is defined in terms of EVLIST and EVAL. Consider the proof of Lemma 2, which
was informally stated "if both (EVAL X VA FA N) and (EVAL X VA FA K) are non-BTM they are equal."
To prove this by induction one seems to need an induction hypothesis concerning EVLIST. To permit
such a hypothesis one must first invent a stronger conjecture to prove (one concerning both EVAL and
EVLIST). Furthermore, the induction mechanism must instantiate it in the right way so that induction
hypotheses about EVLIST are applicable to goals arising from EVAL, and vice versa. Such an induction
mechanism would be substantially more complicated than our current one.

Because of our system’s prohibition against mutual recursion, we defined (EV FLG X VA FA N) so that
(EVAL X VA FA N) is (EV ’AL X VA FA N) and (EVLIST X VA FA N) is (EV ’LIST X VA FA N). We believe
that the definition of EV is as perspicuous as the alternatives. Furthermore, with EV it is natural to state
truly general theorems about both EVAL and EVLIST. For example, our formal statement of Lemma 2 is
that if both (EV FLG X VA FA N) and (EV FLG X VA FA K) are non-BTM they are equal -- a statement
that simultaneously applies to EVAL and EVLIST. Finally, our existing induction mechanism properly
provides hypotheses about EVAL and EVLIST by choosing the appropriate instantiations for FLG.
Because of the exercise reported here, we believe it would be a waste of time to mechanize any less
general handling of mutual recursion.

The third and last example of the value of this exercise concerns a weakness it exposed in the
induction mechanism we described in [1]. The weakness caused the system to select an inappropriate
induction argument and was initially overcome by using a proof checking command to tell the system the
correct induction. After further study of the alternative induction schemes, we made a minor modification
to the induction heuristic so that it would produce the desired induction. The modified theorem-prover
was then used to reprocess some 1100 theorems and definitions in our standard benchmark, to make
sure that the new heuristic permitted the discovery of all of the proofs previously claimed for the system.
(The standard benchmark now includes the invertibility of the RSA public key encryption algorithm [6, 3].)

While the modification we made to the induction principle was minor, the need for the modification was
not recognized by us before. Indeed, it is notable that the system has coped with thousands of induction
arguments without uncovering the problem before. The reason the problem arose here is that EV is by
far the most complicated recursive function the system has studied. We are encouraged that our
previously formulated heuristic techniques have coped so well with such a function.

The rest of this section is devoted to a description of the trouble we encountered with our induction
mechanism and the modification we made. As described in [1], our theorem-prover’s heuristic for
inventing an induction argument is based on its analysis of the recursive definitions of the functions in the
conjecture to be proved. For example, since (PAIRLIST A B) is defined in terms of (PAIRLIST (CDR A)
(CDR B)), an occurrence of (PAIRLIST A B) in the conjecture to be proved suggests CDR-induction on
both A and B. Thus, the induction hypothesis contains (PAIRLIST (CDR A) (CDR B)) where (PAIRLIST A
B) appears in the conclusion. By replacing (PAIRLIST A B) by its recursive definition, the system tries to
reduce the terms in the conclusion to their counterparts in the hypothesis.
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After obtaining the suggested inductions, the theorem-prover manipulates these schemes in an attempt
to generate an induction argument suitable for the conjecture as a whole. For example, suppose both
(PAIRLIST A B) and (PAIRLIST C B) appear in the conjecture and imagine that we do the induction
suggested by the former. Then, (PAIRLIST C (CDR B)) appears in the induction hypothesis where
(PAIRLIST C B) appears in the conclusion. Neither replacing (PAIRLIST C B) by its definition nor leaving
(PAIRLIST C B) alone produces the desired formula in which the terms in the conclusion match their
counterparts in the hypothesis.

As described on page 193 of [1], the system tries to resolve such conflicts by "merging" the inductions
suggested by (PAIRLIST A B) and (PAIRLIST C B) to produce a simultaneous CDR-induction on A, B,
and C. The heuristic described in ACL merges two inductions when they share changed variables and
agree on all the changed variables. We insisted that the two agree on all shared variables so that the
resulting induction could be justified (as an induction on a well-founded relation) in the same way as one
of the two input inductions.

However, now consider Lemma 2. It contains both the terms (EV FLG X VA FA N) and (EV FLG X VA
FA K). The induction suggested by the first changes FLG, X, VA, and N. The induction suggested by the
second changes FLG, X, VA, and K. We expected the system to merge these two inductions. But the
merging heuristic of [1] will not do so, because the two disagree on how VA should be instantiated when
the case analysis leads to the call of a user-defined function: in one induction the new variable alist is
constructed from the values of the actuals with stack depth N while in the other induction the stack depth
is K.

But the induction suggested by (EV FLG X VA FA N) is justified by the well-founded lexicographic
relation on pairs constructed from N and the size of X. In the parlance of [1], {X N} is a measured subset
for (EV FLG X VA FA N). Similarly, {X K} is a measured subset for (EV FLG X VA FA K). A merge is
sound if it produces an induction that has the same case analysis as one of the inputs and, in every case,
agrees with the input induction on its measured subset. In the above example, we see we can choose
any instantiation of VA without effecting the soundness of the resulting induction. We therefore altered
the merging heuristic so that, in addition to the merges permitted by [1], we now merge if the two
inductions agree on the (nonempty) intersection of their measured subsets.

8. Chronology
Our first mechanical proof of the unsolvability of the halting problem was different from the one

described here because we formalized the theorem in terms of "computation traces" instead of with
EVAL. In addition, our approach to the quantification problem was different: we instructed the theorem-
prover to assume, as an axiom, a formula that claimed that ’HALTS solves the halting problem for all
programs and then we used the theorem-prover to prove that T=F. The proof was obtained in March,
1982. It took us four days to guide, command, and cajole the theorem-prover to this first proof of the
unsolvability result. Users less familiar with the system’s heuristics might still be trying to get the proof
through.

In May, 1982 we defined EVAL and stated the problem as seen here. However, where ’LOOP is called
now in the definition of ’CIRC we originally called ’CIRC recursively on A. The proof that this recursion did
not terminate was somewhat more complicated than the proof that ’LOOP does not terminate.
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In June, 1982, after presenting the proof at the General Electric sponsored Whitney Symposium on
Computer/Information Science and Technology, we saw the simplification that would result from
introducing ’LOOP. In addition, we changed the theorem-prover for the first time in connection with this
problem, by modifying the induction heuristic as sketched above.

Our initial attempts to define the trouble-making program ’CIRC were incorrect. It is easy to imagine
that the evaluation of x under va and fa involves asking whether x under va and fa halts. It is harder to
find definitions of x, va, and fa that correctly ask the question; in particular, it is difficult to reconstruct the
calling environment of x in x. In addition, the unsolvability problem involves several different levels of
QUOTE -- a notoriously difficult construct. Several of our initial hand proofs were erroneous (although all
were meant to be formalizations of the sketch presented here) and the errors were uncovered by our
initial attempts at mechanical proof.

Appendix A. An Informal Sketch of the Formal Theory
We use the prefix syntax of Church to write down terms. For example, we write (PLUS X Y) where

others might write PLUS(X,Y) or X+Y.

Our logic is a quantifier free, first-order logic obtained from the propositional calculus with equality and
function symbols by adding (a) axioms for certain basic function symbols, (b) a rule of inference permitting
proof by induction on lexicographic combinations of well-founded relations, (c) a principle of definition
permitting the introduction of total recursive functions, and (d) the "shell principle" permitting the
introduction of axioms specifying "new" types of inductively defined objects.

The basic function symbols are TRUE, FALSE, IF, and EQUAL. The first two are function symbols of
no arguments and return distinct constants which are abbreviated T and F respectively. IF is a function
symbol of three arguments and is axiomatized so that (IF X Y Z) is Z if X is F and is Y otherwise. EQUAL
is a function symbol of two arguments and is axiomatized so that (EQUAL X Y) is T if X is Y and is F
otherwise.

Using the principle of definition we introduce the functions AND, OR, NOT, and IMPLIES in terms of IF.
For example, (NOT P) = (IF P F T).

Using the shell principle we axiomatize several commonly used inductively constructed types. Among
them are:

1. Natural numbers. A natural number is either the constant (ZERO) or is constructed from
another natural number with the "constructor" function ADD1. The function NUMBERP
"recognizes" natural numbers in the sense that (NUMBERP X) is axiomatized to be T or F
according to whether X is a natural number. The function SUB1 is the "accessor" for ADD1
in the sense that if I is a natural number then (SUB1 (ADD1 I)) = I. SUB1 returns (ZERO) on
(ZERO) and on non-NUMBERP objects.

2. Ordered pairs. An ordered pair is constructed from any two objects by the constructor
function CONS. LISTP recognizes ordered pairs. CAR and CDR are the accessors for
CONS: (CAR (CONS X Y)) = X and (CDR (CONS X Y)) = Y. CAR and CDR are
axiomatized to return (ZERO) on non-LISTP objects.

3. Literal atoms. A literal atom is constructed from any object by the constructor PACK.
LITATOM recognizes literal atoms. UNPACK is the accessor for PACK. UNPACK returns
(ZERO) on non-LITATOMs.
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Each shell class is disjoint from the others. For example, it is an axiom that if X is a NUMBERP then X
is not a LISTP or a LITATOM.

With the introduction of each shell class we obtain a well-founded relation permitting proof by induction
and the definition of recursive functions under our principle of definition.

We define LESSP recursively so that if I and J are NUMBERPs (LESSP I J) is T or F according to
whether I is strictly less than J.

The function COUNT assigns a numeric size to each object composed of NUMBERPs, LISTPs, and
LITATOMs. The size of a composite object is larger than the sum of the sizes of its components. For
example, (COUNT (CONS X Y)) = 1+(COUNT X)+(COUNT Y).

A precise description of our theory is given by the combination of Chapter III of [1] and Section 3 of [2].

We now briefly discuss our notational conventions.

0 is an abbreviation of (ZERO); the positive decimal integer n is an abbreviation of the nest of n ADD1’s
around a 0.

Nests of CARs and CDRs are abbreviated with function symbols of the form C...A...D...R, e.g.,
(CADAR X) is an abbreviation of (CAR (CDR (CAR X))).

We provide a convention for abbreviating some of our LITATOM constants. If wrd is a sequence of
2ASCII characters satisfying the syntactic rules for a symbol in our logic and the ASCII codes for the

successive characters in wrd are c , ..., c , then ’wrd is an abbreviation for1 n

(PACK (CONS c ... (CONS c 0)...)).1 n

Thus, ’ABC is an abbreviation of (PACK (CONS 65 (CONS 66 (CONS 67 0)))). ’NIL is further abbreviated
NIL.

(LIST x x ... x ) is an abbreviation for (CONS x (LIST x ... x )). (LIST) is an abbreviation of NIL.1 2 n 1 2 n

Finally, we provide a convention for abbreviating certain LISTP constants. For example, (LIST (CONS
’A 2) (CONS ’B 0)) may be abbreviated ’((A . 2) (B . 0)). We so abbreviate any object constructed entirely
by repeated CONSes from natural numbers and those LITATOMs admitting the abbreviation convention
noted above. If x is such an object we abbreviate x by a single quote mark (’) followed by the "pname" of
x as defined below. If x is a NUMBERP abbreviated by n, its pname is n. If x is a LITATOM abbreviated
by ’wrd, its pname is wrd. Otherwise, x is a LISTP. Let x , x , ..., x be the CARs of x and of its1 2 n
successive LISTP CDRs. Let fin be the nth CDR of x (i.e., the first non-LISTP in the CDR chain). If fin is
NIL then the pname of x is an open parenthesis followed by the pname of x , a space (or arbitrary amount1
of white space), the pname of x , a space, ... the pname of x , and a close parenthesis. If fin is non-NIL2 n
then the pname of x is as it would be had fin been NIL except that immediately before the close
parenthesis there should be inserted a space, a dot, a space, and the pname of fin.

2Roughly speaking a symbol is a string of upper or lower case alphanumeric or sign characters beginning with an alphabetic or
sign character other than +, -, or dot. However, see page 133 of [2] for the precise definition.
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