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Abstract

The authors describe the use of a mechanical theorem-prover to check the published proof of the
invertibility of the public key encryption algorithm of Rivest, Shamir and Adleman: (M mod n) mod N=M,
provided n is the product of two distinct primes p and q, M<n, and e and d are multiplicative inverses in the ring
of integers modulo (p-1)*(q-1). Among the lemmas proved mechanically and used in the main proof are many
familiar theorems of number theory, including Fermat’s theorem: M mod p=1, when p M. The axioms
underlying the proofs are those of Peano arithmetic and ordered pairs.
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The development of mathematics toward greater precision has led, as is well known, to the formalization of large
tracts of it, so that one can prove any theorem using nothing but a few mechanical rules. -- Godel [11]

But formalized mathematics cannot in practice be written down in full, and therefore we must have confidence
in what might be called the common sense of the mathematician ... We shall therefore very quickly abandon
formalized mathematics ... -- Bourbaki [1]

1. Introduction

A formal mathematical proof is a finite sequence of formulas, each element of which is either an axiom or
the result of applying one of a fixed set of mechanical rules to previous formulas in the sequence. It is thus
possible to write a computer program to check mechanically whether a given sequence is a formal proof.
However, formal proofs are rarely used. Instead, typical proofs in journal articles, textbooks, and day-to-day
mathematical communication use informal notation and leave many of the steps to the reader’s imagination.
Nevertheless, by transcribing the sentences of the proof into a formal notation, it is sometimes possible to use
today’s automatic theorem-provers to fill in the gaps between published steps and thus mechanically check
some published, informal proofs.

In this paper we illustrate this idea by mechanically checking the recently published proof of the invertibility
of the public key encryption algorithm described by Rivest, Shamir, and Adleman [17]. We will briefly explain
the idea of public key encryption to motivate the theorem proved.

In [17] a mathematical function, here called CRYPT, is defined. CRYPT(M,e,n) is the encryption of
message M with key (e,n). The function has the following important properties:

1. It is easy to compute CRYPT(M,e,n).

2. CRYPT is "invertible", i.e., if M is encrypted with key (e,n) and then decrypted with key (d,n) the
result is M. That is, CRYPT(CRYPT(M,e,n),d,n) = M, under suitable conditions on M, n, e and d.

3. Publicly revealing CRYPT and (e,n) does not reveal an easy way to compute (d,n). Public key
encryption thus avoids the problem of distributing keys via secure means. Each user (e.g., a
computer on a network) generates an encryption key and a corresponding decryption key,
publicizes the encryption key to enable others to send private messages, and never distributes the
decryption key.

eThe function defined in [17] is CRYPT(M,e,n) = M mod n; in addition, algorithms are given for
constructing e, d, and n so that CRYPT has the three properties above. The first two properties are proved
in [17]. The third property is not proved; instead the authors of [17] argue that "all the obvious approaches to
breaking our system are at least as difficult as factoring n." Since there is no known algorithm for efficiently
factoring large composites, the security property of CRYPT is obtained by constructing n as the product of two
very large (200 digit) primes.

In this paper we focus on mechanically checking the proofs of the first two properties. A precise statement
of the "invertibility" property is: CRYPT(CRYPT(M,e,n),d,n) = M, if n is the product of two distinct primes p
and q, M<n, and e and d are multiplicative inverses in the ring of integers modulo (p-1)*(q-1). Our mechanical
proof of this theorem requires that we first prove many familiar theorems of number theory, including Fermat’s

p-1theorem: M mod p = 1, when p is a prime and p/|M.
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2. A Sketch of the Theorem-Prover

The theorem-prover we use is the current version of the system described in [2]. The theorem-prover deals
with a quantifier free first order logic providing equality, recursively defined functions, mathematical induction,
and inductively constructed objects such as the natural numbers and finite sequences.

The theorem-prover is a large interactive computer program. The main inputs provided by the user are new
recursive definitions and conjectures to prove.

Before a proposed definition is admitted as a new axiom, certain conditions are mechanically checked to
assure that there exists one and only one function satisfying the definition. The most important condition is that
there exist a measure of the arguments of the function that is decreasing in a well-founded sense in each
recursive call in the definition. The mechanized definitional principle can guess simple measures and well-
founded relations; more complicated ones can be supplied by the user. Once a candidate measure and relation
are found, the mechanical theorem-prover is invoked to prove theorems sufficient to admit the proposed
definition.

Given a conjecture to prove, the theorem-prover orchestrates the application of many proof techniques
under heuristic control. The main proof techniques used are:

• simplification - The system applies axioms, definitions, and previously proved theorems as rewrite
rules to simplify expressions. For example, if f is a defined function, it is sometimes useful to
replace an instance of f(x) by the corresponding instance of the definition of f. To avoid looping
the simplifier contains elaborate heuristics to control the use of recursive definitions. One of the
main heuristics is to expand f(x) to introduce a recursive call provided the arguments to the call
already occur in the conjecture. Axioms and previously proved theorems are also used as rewrite
rules. For example, the theorem

prime(p) -> [p|a*b <-> (p|a v p|b)].

is used to replace instances of p|a*b by (p|a v p|b) whenever the hypothesis prime(p) can be
established by simplification. The simplifier also contains decision procedures for propositional
calculus, equality, and those formulas of rational arithmetic that can be built up from variables,
integers, +, -, =, <, and ~.

• elimination of undesirable function symbols - The system uses axioms and previously proved
lemmas to eliminate certain function symbols from the conjecture being proved. For example, it
is a theorem that for each natural number i and each positive integer j, there exist natural numbers
r<j and q such that i=r+qj. By replacing i with r+qj, the system can transform the expression i
mod j to simply r and i/j to simply q.

• strengthening the conjecture to be proved - It is frequently the case that to prove some theorem by
induction it is necessary to prove a stronger theorem than that initially posed. Our system
contains several heuristics for guessing stronger conjectures to try to prove. One heuristic
involves "using" equality hypotheses by substituting one side for the other elsewhere in the
conjecture and then strengthening the conjecture by throwing away the equality hypothesis.
Another heuristic replaces certain nonvariable expressions in the conjecture by new variables.

i j i*jFor example, consider proving (n ) = n , by induction on j. The induction step is

i j i*j i j+1 i*(j+1)(n ) = n -> (n ) = n .

i i j i+i*jThe conclusion simplifies to n *(n ) = n . The system then applies the first heuristic above,
using and throwing away the equality hypothesis, to obtain the goal

i i*j i+i*jn *n = n .

i k i+kThe second heuristic then produces the goal n *n = n by replacing i*j with the new variable k.
This final goal, a natural lemma about exponentiation, is then proved by a second appeal to
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induction.

• induction - When all else fails, it is useful to try mathematical induction. The selection of an
"appropriate" induction is based on an analysis of the recursive functions mentioned in the
conjecture. For example, since n! is recursively defined in terms of (n-1)!, when n is not 0, the
presence of n! in a conjecture, p(n), suggests a simple induction on n. The base case is p(0). In
the induction step, n is non-0, the inductive hypothesis is p(n-1), and the induction conclusion is
p(n). Observe that the n! in the conclusion can now be expanded by the simplifier and will
produce a term involving (n-1)!, about which we have a hypothesis. Similarly, since we define i
mod j recursively in terms of (i-j) mod j, when 0<j_< i, the occurrence of i mod j in a conjecture
suggests an inductive argument in which we suppose 0<j_< i and take as an inductive hypothesis
the conjecture with i replaced by i-j.

Typically, a conjecture to be proved contains many different recursive functions and they each
suggest different induction schemas. Our induction mechanism contains many heuristics for
combining and choosing between the suggested inductions. That the inductions invented by the
system are valid may be proved by considering the well-foundedness theorems proved when
recursive functions are admitted.

Readers interested in more details of the theorem-prover should see [2], in which the system, as of May,
1978, is described at a level of detail sufficient to permit reproduction of our results. Several chapters of [2] are
devoted to detailed annotated proofs by the system, including its proof of the uniqueness of prime
factorizations. Improvements made to the system since the publication of [2] include the addition of the above
mentioned decision procedures for equalities and simple arithmetic inequalities, the extension of the definitional
principle to include reflexive functions as described in [16], and a metafunction facility permitting the
incorporation of new simplifiers after they have been mechanically proved correct [3].

Finally, we have added a primitive "hint" facility so that the user can tell the theorem-prover how to prove a
theorem when its heuristics lead it down blind alleys. There are two types of hints used in this paper. The first
permits the user to say "use lemma x with instantiation y." The interpretation of this hint is to obtain the lemma
named, instantiate its variables as directed by y, and add the resulting formula as a hypothesis to the conjecture
being proved. The system then applies its usual heuristics. The second type of hint is "induct as suggested by
the recursion in f" where f is a previously admitted recursive function.

The theorem-prover is automatic in the sense that once it begins a proof attempt, no user guidance is
permitted. However, every time it accepts a definition or proves a theorem it stores the definition or theorem
for future use. By presenting the theorem-prover with an appropriate sequence of lemmas to prove, the user can
"lead" it to proofs it would not otherwise discover. Thus, the distinction between a proof checker and an
automatic theorem-prover blurs once the system remembers and uses previously proved facts. An automatic
theorem-prover merely enables the user to leave out some of the routine proof steps. A sufficiently good
automatic theorem-prover might enable the user to check an "informal" proof by presenting to the machine no
more material than one would present to a human colleague.

When we began the encryption proofs we initialized the theorem-prover to the current version of the lemma
library listed in Appendix A of [2]. The library contains several hundred previously proved theorems. Most of
the theorems in this library were irrelevant to the encryption proofs (e.g., there are many theorems about list
processing functions such as REVERSE, FLATTEN, and SORT). However, among the theorems in the library
are many elementary facts about addition, multiplication, and integer division with remainder. The deepest
number theory result in the library is the uniqueness of prime factorizations.
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3. Correctness of CRYPT

eTo show that M mod n is easy to compute -- even when the numbers involved contain hundreds of digits --
Rivest, Shamir and Adleman exhibit an algorithm for computing it in order log (e) steps. Below we define2
CRYPT as a recursive version of their algorithm and prove that it computes the desired function. The notation
e/2 below denotes integer division, i.e., the floor of the rational quotient.

The material contained in boxes in this paper represents material typed by the user and checked by the
theorem-prover. The boxed material very closely resembles traditional "informal" proofs. To make this more
obvious to readers unfamiliar with our formal notation, we have taken the liberty of transcribing the user type-in
into conventional mathematical English. Use of the phrase "Hint:" in boxed material notes those occasions on
which we gave the system explicit hints.

It may not be immediately obvious to the casual reader that each line follows from the previous ones. We
have been careful to give the reader no more or less information than was given the machine and challenge the
reader to do the machine’s job: verify each line of the boxed material.

Box 1

-------------------------------------------------------------------------

We define the encryption algorithm as the recursive function CRYPT:

Definition.
CRYPT(M,e,n)

=
if e is not a natural number or is 0,

then 1;
elseif e is even,

then
2(CRYPT(M,e/2,n)) mod n;

else
2(M * (CRYPT(M,e/2,n) mod n)) mod n.

Lemma. (x*(y mod n)) mod n = (x*y) mod n.

Corollary. (a*(b*(y mod n))) mod n = (a*(b*y)) mod n. (Hint: let x be a*b in the preceding lemma.)

eTheorem. CRYPT(M,e,n) is equal to M mod n, provided n is not 1.

-------------------------------------------------------------------------

In section 6 we give the actual user type-in for the material in Box 1. In order to reinforce in the reader’s
mind the fact that the theorem-prover assents to these claims only after proving them we offer the following
comments.

Before accepting the definition of CRYPT the theorem-prover guesses that e decreases in each recursive call
and then proves it by showing that when e is a non-0 natural number, e/2 is strictly smaller than e.

eCRYPT uses the "binary method" of computing M (see [15]), which is based on the observation:

e/2 2(M ) , if e is even
eM =

e/2 2M*(M ) , if e is odd

However, by doing multiplications modulo n, CRYPT keeps the intermediate results manageably small and
ecomputes M mod n.
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The first lemma above -- i.e., that (x*(y mod n)) mod n is (x*y) mod n -- establishes that the intermediate
emods can be dropped. This lemma is obviously important in establishing that CRYPT computes M mod n.

We brought this fact to the system’s attention before even attempting to have the system prove properties of
CRYPT.

How did the theorem-prover prove (x*(y mod n)) mod n = (x*y) mod n? It first tried simplification, but no
known rewrites could be applied under our heuristics. The system then decided to eliminate (y mod n) by
replacing y with r+nq, where r<n. To permit this, the system case split on whether y is a natural number and n
is a positive integer. The "pathological" cases, where y was not numeric or n was nonpositive, yielded
immediately to simplification. In the case where y was a natural number and n was positive, the system
replaced y with r+nq, where r<n. Thus (y mod n) became r and the left hand side of the conjecture became x*r
mod n. On the right, x*y became x*(r+nq). The simplifier then distributed the multiplication over the addition
(using a previously proved lemma in the library) and obtained (x*r + n*q*x) mod n, which was further rewritten
to x*r mod n by the lemma that i+nj mod n is i mod n. The left and right hand sides were then identical. The
machine spent about 23 seconds of cpu time on the proof in Interlisp-10 on a DEC 2060.

The corollary above, that (a*(b*(y mod n))) mod n is (a*(b*y)) mod n, follows trivially from the previous
line, by letting x be (a*b) and applying the associativity of multiplication. Since this observation is
uninteresting to a human proof checker, the need for it in our mechanical proof exposes a deficiency in our
mechanical theorem-prover. Why is this line needed by the machine? The reason has to do with the order in
which rewrite rules are applied. Consider the term ((a*b)*(y mod n)) mod n. The lemma just proved can be
applied as a rewrite rule from left to right, to eliminate the intermediate mod and produce (a*b)*y mod n, to
which we can then apply associativity to get a*(b*y) mod n. However, if we apply associativity first we obtain

1a*(b*(y mod n)) mod n, and we can no longer use the first lemma from left to right. The second observation
solves this problem.

We did not anticipate the machine’s need for the corollary. Instead, immediately after proving the lemma
ewe thought the machine could prove that CRYPT computes M mod n. We commanded it to do so and watched

its proof attempt on the screen. (Imagine watching a colleague proving the theorem on the blackboard.) We
saw the term (a*(b*(y mod n))) mod n arise and remain "unsimplified" even though we knew it was (a*(b*y))
mod n. At that point we interjected with the corollary.

We now consider the machine’s acceptance of the final theorem in Box 1, the claim that CRYPT computes
the desired function. The first time we submitted the claim we did not include the hypothesis that N/=1, because

ethe hypothesis is not noted by Rivest, Shamir and Adleman, who imply that the algorithm always computes M
mod n. However, the theorem-prover failed to prove the simpler conjecture and exhibited a formula showing

ethat the encryption algorithm does not compute M mod n when e is 0 and n is 1. In practice, n is always larger
than 1, so the additional hypothesis is no burden.

The theorem-prover proved the final claim by induction on e. The base case is that e is not a natural number
or is 0. In the induction step, it supposes e is positive and assumes the conjecture for e/2. Observe that this
induction is precisely the one suggested by the recursion in CRYPT. The proof required about 6 minutes of cpu
time.

1This is the Knuth-Bendix problem in rewrite driven simplification. See [13] for an elegant solution to the problem in certain cases.



7

4. Fermat’s Theorem

The proof of the invertibility of CRYPT in [17] assumes the reader is familiar with elementary number
theory up through Fermat’s theorem. While a production model proof checker for informal proofs would come
factory equipped with a good number theory library, we had no such library when we began the encryption
proofs. We therefore had the system prove the following theorems:

• Many elementary facts about remainder and exponentiation.

• Suppose p and q are distinct primes, a mod p = b mod p, and a mod q = b mod q. Then a mod p*q
2= b mod p*q. Hence, under the additional hypothesis b<p*q, a mod p*q = b.

• Suppose p is a prime and p does not divide M. Then M*x mod p = M*y mod p iff x mod p = y
3mod p. Hence, by letting y be 1, if p is a prime, M*x mod p = M mod p iff either p|M or x mod p

= 1.

• The Pigeon Hole Principle: If L is a sequence of length n, every element of L is a positive integer,
no element occurs twice in L, and every element of L is less than or equal to n, then L is a
permutation of the sequence [n n-1 ... 2 1].

• The following straightforward observations about permutations and the concept of the product of
the elements in a sequence:

• If L1 is a permutation of L2 then the product of the elements in L1 is equal to that of the
elements in L2.

• The product of the elements in [n n-1 ... 2 1] is n!.

• Hence, if L is a permutation of [n n-1 ... 2 1] then the product of the elements in L is n!.

• If p is a prime and n<p, then p does not divide n!.

2Cf. Theorem 53 of Hardy and Wright’s An Introduction to the Theory of Numbers.

3Cf. Theorem 55 of Hardy and Wright.
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We then had the theorem-prover check the proof of Fermat’s theorem in [14].

Box 2

-------------------------------------------------------------------------

Definition. We define S(n,M,p) to be the sequence:

[n*M mod p, (n-1)*M mod p, ..., 1*M mod p].

nLemma 1. The product of the elements in S(n,M,p) mod p is equal to n!*M mod p.

Lemma. If p is a prime that does not divide M and i<j<p, then j*M mod p is not a member of S(i,M,p). (Hint:
induct on i.)

Lemma. If p is a prime that does not divide M and n<p, then no element of S(n,M,p) occurs twice.

Lemma. If p is a prime that does not divide M and n<p, then each element of S(n,M,p) is a positive integer.

Lemma. If p>0, then each element of S(n,M,p) is less than or equal to p-1.

Lemma. S(n,M,p) has n elements.

p-1Fermat’s Theorem. If p is a prime that does not divide M then M mod p = 1.

p-1(Hint: From Lemma 1 we have that the product of the elements in S(p-1,M,p) mod p is (p-1)!*M mod p. But
from the Pigeon Hole Principle we have that S(p-1,M,p) is a permutation of [p-1, ... 2, 1].)

-------------------------------------------------------------------------

To prove Lemma 1 the system inducts on n and uses the previously proved lemma that intermediate mods
can be dropped.

To get the system to prove the next lemma, that j*M mod p is not a member S(i,M,p), we had to instruct it
to induct on i. (If left to its own devices, it chooses here to induct on i and j simultaneously.) The proof is as
follows. The base case, when i=0, is easy because S(0,M,p) is empty. In the induction step we assume that j*M
mod p is not a member of S(i-1,M,p) and must prove that it is not a member of S(i,M,p). But by definition
S(i,M,p) is the sequence consisting of i*M mod p followed by the sequence S(i-1,M,p). The induction
hypothesis establishes that j*M mod p is not an element of the latter. It suffices to prove that j*M mod p /= i*M
mod p. Suppose the contrary. Then j mod p = i mod p, since p/|M. Thus j=i, contradicting i<j.

The remaining lemmas above are proved by similar inductions of the system’s own invention.

p-1The system’s proof of the main theorem is then as follows. The hints lead it to conclude that (p-1)!*M
p-1mod p = (p-1)! mod p. Since p does not divide (p-1)!, we can cancel (p-1)! from both sides and get M mod p

= 1.

5. Invertibility of CRYPT

We now prove that CRYPT(CRYPT(M,e,n),d,n) = M, if n is the product of two distinct primes p and q,
M<n, and e and d are multiplicative inverses in the ring of integers modulo (p-1)*(q-1).
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Box 3

-------------------------------------------------------------------------

k*(p-1)Lemma 2. For all primes p, (M*M ) mod p = M mod p.

Corollary. If p and q are prime, then

k*(p-1)*(q-1)(M*M ) mod p = M mod p
and

k*(p-1)*(q-1)(M*M ) mod q = M mod q.

(Hint: take two instantiations of (2).)

Lemma 3. If p and q are distinct primes, M is a natural number less than p*q, and x mod (p-1)*(q-1) is 1, then
xM mod p*q = M.

RSA Theorem. If p and q are distinct primes, n is p*q, M is a natural number less than n and e*d mod
(p-1)*(q-1) is 1, CRYPT(CRYPT(M,e,n),d,n) = M.

-------------------------------------------------------------------------

k*(p-1The proof of Lemma 2 can be seen by rearranging the exponents and mods so that (M*M )) mod p
p-1 k p-1becomes (M*(M mod p) mod p) mod p. Fermat’s Theorem can then be used to replace M mod p by 1.

The corollary is obvious.

xTo prove Lemma 3 the system first observes that, for some k, x is k*(p-1)*(q-1) + 1. Thus, M mod p*q is
k*(p-1)*(q-1)(M*M ) mod p*q. Now recall the previously mentioned result that if p and q are distinct primes and

k*(p-1)*(q-1)a mod p = b mod p and a mod q = b mod q then a mod p*q = b mod p*q. Letting a be M*M and b be
xM and appealing to the corollary above, the system concludes that M mod p*q is M mod p*q, which, in turn, is

M since M<p*q.

Finally, to prove the RSA Theorem itself, the system appeals to the correctness of CRYPT and the
e dhypothesis that n=p*q to reduce the conclusion to (M mod p*q) mod p*q = M. It then eliminates the

intermediate mod, collects the exponents e and d and appeals to Lemma 3.

6. Sample Input to the Theorem-Prover

To illustrate the sense in which the boxed material is an English transcription of the user supplied type-in to
our theorem-prover, we give below the type-in for the material in Box 1. We use the prefix syntax of Church’s
lambda calculus and McCarthy’s LISP. It would be straightforward to arrange for the system to read and print
according to a more elaborate grammar, but we prefer the simplicity of prefix notation.

Definition.
(CRYPT M E N)
=

(IF (ZEROP E)
1
(IF (EVEN E)

(REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))
N)

(REMAINDER
(TIMES M
(REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))

N))
N)))
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Theorem. TIMES.MOD.1 (rewrite):
(EQUAL (REMAINDER (TIMES X (REMAINDER Y N)) N)

(REMAINDER (TIMES X Y) N))

Theorem. TIMES.MOD.2 (rewrite):
(EQUAL (REMAINDER (TIMES A (TIMES B (REMAINDER Y N)))

N)
(REMAINDER (TIMES A B Y) N))

Hint: Use TIMES.MOD.1 with X replaced by (TIMES A B).

Theorem. CRYPT.CORRECT (rewrite):
(IMPLIES (NOT (EQUAL N 1))

(EQUAL (CRYPT M E N) (REMAINDER (EXP M E) N)))

Readers interested in the complete list of definitions and theorems typed by the user, should see section 8
of [6].

7. Conclusion

We have shown how an existing mechanical theorem-prover was used to check a recently published proof.
Among the other mathematically interesting proofs performed by our theorem-prover are:

• Wilson’s Theorem: if p is a prime then (p-1)! mod p = p-1; [18]

• the termination over the integers of the Takeuchi function [16]:

tak(x,y,z) = if x_<y
then y
else tak(tak(x-1,y,z),

tak(y-1,z,x),
tak(z-1,x,y))

• the soundness and completeness of a decision procedure for propositional calculus [2];

• the existence of nonprimitive recursive functions;

• the Turing completeness of the Pure LISP programming language [8]; and

• the recursive unsolvability of the halting problem for Pure LISP [7].

We take these examples as evidence that proof checking mathematics is not only a theoretical but also a
practical possibility. We doubt that the mechanical theorem-provers of today could be easily used to check
theorems at the frontiers of mathematics. The less ambitious motivation behind much automatic theorem-
proving research -- certainly ours -- is to mechanize the often mundane and tedious proofs arising in connection
with computer programs. For example, our theorem-prover has been used to prove thousands of theorems
related to the correctness of various programs [4, 5], communications protocols [9], and computer security [10].
Because of the high cost of bugs in software, the increasing impact of software due to cheap microprocessors,
and the relatively shallow nature of most program correctness proofs, we expect to see, within the decade,
commercial use of mechanical theorem-provers and formal logic in software development. The construction of
an automatic theorem-prover that can advance the frontiers of mathematics, however, must still await another
Godel or Herbrand.
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8. The Formal Details

We list here all of the user commands typed to lead the theorem-prover from its initial library to the
correctness and invertibility of the RSA algorithm.

8.1 Correctness of CRYPT

This section contains the formalization of the proof in Box 1.

1. Definition.
(CRYPT M E N)

=
(IF
(ZEROP E)
1
(IF
(EVEN E)
(REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))

N)
(REMAINDER
(TIMES M

(REMAINDER (SQUARE (CRYPT M (QUOTIENT E 2) N))
N))

N)))

2. Theorem. TIMES.MOD.1 (rewrite):
(EQUAL (REMAINDER (TIMES X (REMAINDER Y N)) N)

(REMAINDER (TIMES X Y) N))

3. Theorem. TIMES.MOD.2 (rewrite):
(EQUAL (REMAINDER (TIMES A (TIMES B (REMAINDER Y N)))

N)
(REMAINDER (TIMES A B Y) N))

Hint: Consider:
TIMES.MOD.1 with {X/(TIMES A B)}

4. Theorem. CRYPT.CORRECT (rewrite):
(IMPLIES (NOT (EQUAL N 1))

(EQUAL (CRYPT M E N)
(REMAINDER (EXP M E) N)))

8.2 Miscellaneous Theorems

We now lay some ground work used throughout the rest of the proofs. These lemmas represent the
"elementary properties of remainder and exponentiation" mentioned in the informal proofs. The first important

i iresult is event 7, which states that (a mod n) mod n is (a ) mod n.

5. Theorem. TIMES.MOD.3 (rewrite):
(EQUAL (REMAINDER (TIMES (REMAINDER A N) B) N)

(REMAINDER (TIMES A B) N))
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6. Theorem. REMAINDER.EXP/LEMMA (rewrite):
(IMPLIES (EQUAL (REMAINDER Y A)

(REMAINDER Z A))
(EQUAL (EQUAL (REMAINDER (TIMES X Y) A)

(REMAINDER (TIMES X Z) A))
T))

7. Theorem. REMAINDER.EXP (rewrite):
(EQUAL (REMAINDER (EXP (REMAINDER A N) I) N)

(REMAINDER (EXP A I) N))

We now proceed to teach the system several commonly used tricks. The first, event 8, shows the system
i*j jthat m mod n is 1 if m mod n is 1. To prove this obvious fact one must use the rewrite rules EXP.EXP and

REMAINDER.EXP "against the grain" of the directed equality.

8. Theorem. EXP.MOD.IS.1 (rewrite):
(IMPLIES (EQUAL (REMAINDER (EXP M J) P) 1)

(EQUAL (REMAINDER (EXP M (TIMES I J)) P)
1))

Hints: Consider:
EXP.EXP with {I/M, J/J, K/I}
REMAINDER.EXP with {A/(EXP M J), N/P}

We next teach the system the trick of establishing (a mod p)=(b mod p) by considering whether p divides
|a-b|, and vice versa. We define PDIFFERENCE, the absolute value of the integer difference of two naturals, in
terms of our function DIFFERENCE, which returns 0 when the subtrahend is larger than the minuend. We then
prove the necessary theorems about PDIFFERENCE and, then at event 13, we tell the system henceforth not to
expand the definition of PDIFFERENCE.

9. Definition.
(PDIFFERENCE A B)

=
(IF (LESSP A B)

(DIFFERENCE B A)
(DIFFERENCE A B))

10. Theorem. TIMES.DISTRIBUTES.OVER.PDIFFERENCE (rewrite):
(EQUAL (TIMES M (PDIFFERENCE A B))

(PDIFFERENCE (TIMES M A) (TIMES M B)))

11. Theorem. EQUAL.MODS.TRICK.1 (rewrite):
(IMPLIES (EQUAL (REMAINDER (PDIFFERENCE A B) P)

0)
(EQUAL (EQUAL (REMAINDER A P)

(REMAINDER B P))
T))

12. Theorem. EQUAL.MODS.TRICK.2 (rewrite):
(IMPLIES (EQUAL (REMAINDER A P)

(REMAINDER B P))
(EQUAL (REMAINDER (PDIFFERENCE A B) P)

0))
Hint: Disable DIFFERENCE.ELIM

13. Disable PDIFFERENCE
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We conclude this subsection by showing the system one last trick: to prove that (a mod p)=(b mod p), when
p is prime, find an m such that p does not divide m and (m*a mod p)=(m*b mod p).

14. Theorem. PRIME.KEY.TRICK (rewrite):
(IMPLIES (AND (EQUAL (REMAINDER (TIMES M A) P)

(REMAINDER (TIMES M B) P))
(NOT (EQUAL (REMAINDER M P) 0))
(PRIME P))

(EQUAL (EQUAL (REMAINDER A P)
(REMAINDER B P))

T))
Hints: Consider:

PRIME.KEY.REWRITE with {A/M, B/(PDIFFERENCE A B)}
EQUAL.MODS.TRICK.2 with {A/(TIMES M A),

B/(TIMES M B)}

8.3 Theorems 53 and 55

We now prove versions of Theorems 53 and 55 from [12] and observe trivial corollaries of each. Event 15
is used in the proof of event 16, which is used in the proof of Theorem 53.

15. Theorem. PRODUCT.DIVIDES/LEMMA (rewrite):
(IMPLIES (EQUAL (REMAINDER X Z) 0)

(EQUAL (REMAINDER (TIMES Y X) (TIMES Y Z))
0))

16. Theorem. PRODUCT.DIVIDES (rewrite):
(IMPLIES (AND (EQUAL (REMAINDER X P) 0)

(EQUAL (REMAINDER X Q) 0)
(PRIME P)
(PRIME Q)
(NOT (EQUAL P Q)))

(EQUAL (REMAINDER X (TIMES P Q)) 0))

17. Theorem. THM.53.SPECIALIZED.TO.PRIMES:
(IMPLIES (AND (PRIME P)

(PRIME Q)
(NOT (EQUAL P Q))
(EQUAL (REMAINDER A P)

(REMAINDER B P))
(EQUAL (REMAINDER A Q)

(REMAINDER B Q)))
(EQUAL (REMAINDER A (TIMES P Q))

(REMAINDER B (TIMES P Q))))
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18. Theorem. COROLLARY.53 (rewrite):
(IMPLIES (AND (PRIME P)

(PRIME Q)
(NOT (EQUAL P Q))
(EQUAL (REMAINDER A P)

(REMAINDER B P))
(EQUAL (REMAINDER A Q)

(REMAINDER B Q))
(NUMBERP B)
(LESSP B (TIMES P Q)))

(EQUAL (EQUAL (REMAINDER A (TIMES P Q)) B)
T))

Hint: Consider:
THM.53.SPECIALIZED.TO.PRIMES

19. Theorem. THM.55.SPECIALIZED.TO.PRIMES (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0)))
(EQUAL (EQUAL (REMAINDER (TIMES M X) P)

(REMAINDER (TIMES M Y) P))
(EQUAL (REMAINDER X P)

(REMAINDER Y P))))

20. Theorem. COROLLARY.55 (rewrite):
(IMPLIES (PRIME P)

(EQUAL (EQUAL (REMAINDER (TIMES M X) P)
(REMAINDER M P))

(OR (EQUAL (REMAINDER M P) 0)
(EQUAL (REMAINDER X P) 1))))

Hint: Consider:
THM.55.SPECIALIZED.TO.PRIMES with {Y/1}

8.4 The Pigeon Hole Principle

We are now on our way to Fermat’s theorem and must state formally and prove the Pigeon Hole Principle.
The amount of type-in for this theorem is relatively large. The reason is that the theorem is about concepts not
already in the system’s data base and about which the system knows nothing. Thus, we here have to build up a
fair number of facts.

21. Definition.
(ALL.DISTINCT L)

=
(IF (NLISTP L)

T
(AND (NOT (MEMBER (CAR L) (CDR L)))

(ALL.DISTINCT (CDR L))))

22. Definition.
(ALL.LESSEQP L N)

=
(IF (NLISTP L)

T
(AND (LEQ (CAR L) N)

(ALL.LESSEQP (CDR L) N)))



15

23. Definition.
(ALL.NON.ZEROP L)

=
(IF (NLISTP L)

T
(AND (NOT (ZEROP (CAR L)))

(ALL.NON.ZEROP (CDR L))))

24. Definition.
(POSITIVES N)

=
(IF (ZEROP N)

NIL
(CONS N (POSITIVES (SUB1 N))))

25. Theorem. LISTP.POSITIVES (rewrite):
(EQUAL (LISTP (POSITIVES N))

(NOT (ZEROP N)))

26. Theorem. CAR.POSITIVES (rewrite):
(EQUAL (CAR (POSITIVES N))

(IF (ZEROP N) 0 N))

27. Theorem. MEMBER.POSITIVES (rewrite):
(EQUAL (MEMBER X (POSITIVES N))

(IF (ZEROP X) F (LESSP X (ADD1 N))))

28. Theorem. ALL.NON.ZEROP.DELETE (rewrite):
(IMPLIES (ALL.NON.ZEROP L)

(ALL.NON.ZEROP (DELETE X L)))

29. Theorem. ALL.DISTINCT.DELETE (rewrite):
(IMPLIES (ALL.DISTINCT L)

(ALL.DISTINCT (DELETE X L)))

30. Theorem. PIGEON.HOLE.PRINCIPLE/LEMMA.1 (rewrite):
(IMPLIES (AND (ALL.DISTINCT L)

(ALL.LESSEQP L (ADD1 N)))
(ALL.LESSEQP (DELETE (ADD1 N) L) N))

31. Theorem. PIGEON.HOLE.PRINCIPLE/LEMMA.2 (rewrite):
(IMPLIES (AND (NOT (MEMBER (ADD1 N) X))

(ALL.LESSEQP X (ADD1 N)))
(ALL.LESSEQP X N))

32. Theorem. PERM.MEMBER (rewrite):
(IMPLIES (AND (PERM A B) (MEMBER X A))

(MEMBER X B))

The proof of the Pigeon Hole Principle we give employs an induction argument the system does not
automatically construct. To tell it the induction argument we want used, we define a recursive function that
mirrors the induction. The proof of the well-foundedness of the recursion justifies the induction scheme
suggested by the function. Our first mechanical proof of the Pigeon Hole Principle used a machine generated
induction, but required more preliminary work in the form of lemmas about ALL.LESSEQP, DELETE, and
ALL.DISTINCT.
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33. Definition.
(PIGEON.HOLE.INDUCTION L)

=
(IF (LISTP L)

(IF (MEMBER (LENGTH L) L)
(PIGEON.HOLE.INDUCTION (DELETE (LENGTH L) L))
(PIGEON.HOLE.INDUCTION (CDR L)))

T)

34. Theorem. PIGEON.HOLE.PRINCIPLE:
(IMPLIES (AND (ALL.NON.ZEROP L)

(ALL.DISTINCT L)
(ALL.LESSEQP L (LENGTH L)))

(PERM (POSITIVES (LENGTH L)) L))
Hint: Induct as for (PIGEON.HOLE.INDUCTION L).

We conclude this subsection by anticipating our use of the Pigeon Hole Principle by proving some elegant
relations between permutations, products, the positives and the factorial function.

35. Theorem. PERM.TIMES.LIST:
(IMPLIES (PERM L1 L2)

(EQUAL (TIMES.LIST L1)
(TIMES.LIST L2)))

36. Theorem. TIMES.LIST.POSITIVES (rewrite):
(EQUAL (TIMES.LIST (POSITIVES N))

(FACT N))

37. Theorem. TIMES.LIST.EQUAL.FACT (rewrite):
(IMPLIES (PERM (POSITIVES N) L)

(EQUAL (TIMES.LIST L) (FACT N)))
Hint: Consider:

PERM.TIMES.LIST with {L1/(POSITIVES N), L2/L}

38. Theorem. PRIME.FACT (rewrite):
(IMPLIES (AND (PRIME P) (LESSP N P))

(NOT (EQUAL (REMAINDER (FACT N) P) 0)))
Hint: Induct as for (FACT N).

8.5 Fermat’s Theorem

This subsection is the formalization of the proof in Box 2.

39. Definition.
(S N M P)

=
(IF (ZEROP N)

NIL
(CONS (REMAINDER (TIMES M N) P)

(S (SUB1 N) M P)))

40. Theorem. REMAINDER.TIMES.LIST.S:
(EQUAL (REMAINDER (TIMES.LIST (S N M P)) P)

(REMAINDER (TIMES (FACT N) (EXP M N))
P))
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41. Theorem. ALL.DISTINCT.S/LEMMA (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0))
(NUMBERP N1)
(LESSP N2 N1)
(LESSP N1 P))

(NOT (MEMBER (REMAINDER (TIMES M N1) P)
(S N2 M P))))

Hint: Induct as for (S N2 M P).

42. Theorem. ALL.DISTINCT.S (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0))
(LESSP N P))

(ALL.DISTINCT (S N M P)))

43. Theorem. ALL.NON.ZEROP.S (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0))
(LESSP N P))

(ALL.NON.ZEROP (S N M P)))

44. Theorem. ALL.LESSEQP.S (rewrite):
(IMPLIES (NOT (ZEROP P))

(ALL.LESSEQP (S N M P) (SUB1 P)))

45. Theorem. LENGTH.S (rewrite):
(EQUAL (LENGTH (S N M P)) (FIX N))

46. Theorem. FERMAT.THM (rewrite):
(IMPLIES (AND (PRIME P)

(NOT (EQUAL (REMAINDER M P) 0)))
(EQUAL (REMAINDER (EXP M (SUB1 P)) P)

1))
Hints: Consider:

PIGEON.HOLE.PRINCIPLE with {L/(S (SUB1 P) M P)}
REMAINDER.TIMES.LIST.S with {N/(SUB1 P)}

8.6 Invertibility of CRYPT

This subsection is the formalization of the proof in Box 3.

47. Theorem. CRYPT.INVERTS/STEP.1:
(IMPLIES
(PRIME P)
(EQUAL (REMAINDER (TIMES M (EXP M (TIMES K (SUB1 P))))

P)
(REMAINDER M P)))
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48. Theorem. CRYPT.INVERTS/STEP.1A (rewrite):
(IMPLIES
(PRIME P)
(EQUAL
(REMAINDER

(TIMES M
(EXP M (TIMES K (SUB1 P) (SUB1 Q))))

P)
(REMAINDER M P)))

Hint: Consider:
CRYPT.INVERTS/STEP.1 with {K/(TIMES K (SUB1 Q))}

49. Theorem. CRYPT.INVERTS/STEP.1B (rewrite):
(IMPLIES
(PRIME Q)
(EQUAL
(REMAINDER

(TIMES M
(EXP M (TIMES K (SUB1 P) (SUB1 Q))))

Q)
(REMAINDER M Q)))

Hint: Consider:
CRYPT.INVERTS/STEP.1
with {P/Q, K/(TIMES K (SUB1 P))}

50. Theorem. CRYPT.INVERTS/STEP.2 (rewrite):
(IMPLIES

(AND (PRIME P)
(PRIME Q)
(NOT (EQUAL P Q))
(NUMBERP M)
(LESSP M (TIMES P Q))
(EQUAL (REMAINDER ED (TIMES (SUB1 P) (SUB1 Q)))

1))
(EQUAL (REMAINDER (EXP M ED) (TIMES P Q))

M))

51. Theorem. CRYPT.INVERTS:
(IMPLIES

(AND (PRIME P)
(PRIME Q)
(NOT (EQUAL P Q))
(EQUAL N (TIMES P Q))
(NUMBERP M)
(LESSP M N)
(EQUAL (REMAINDER (TIMES E D)

(TIMES (SUB1 P) (SUB1 Q)))
1))

(EQUAL (CRYPT (CRYPT M E N) D N) M))
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