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Abstract

Metamathematics is a source of many interesting theorems and difficult proofs. This paper reports the
results of an experiment to use the Boyer-Moore theorem prover to proof-check theorems in metamathematics.
We describe a First Order Logic due to Shoenfield and outline some of the theorems that the prover was able to
prove about this logic. These include the tautology theorem which states that every tautology has a proof. Such
proofs can be used to add new proof procedures to a proof-checking program in a sound and efficient manner.
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But formalized mathematics cannot in practice be written down in full . . . . We shall therefore very quickly
abandon formalized mathematics.

N. Bourbaki [bourbaki]

1. Introduction

A formal system or a formal logic consists of axioms from which theorems are derived by repeated
application of certain mechanical rules of inference. The derivations of theorems from the axioms are termed
formal proofs. Many formal systems have been developed, mainly as a result of the increased attention paid to
mathematical rigor in the 19th century. Formal logics provide us with the clearest definition of a valid
mathematical argument. Another advantage of formal proofs is that they can be mechanically checked using
programs known as automatic proof-checkers. In spite of this few mathematicians use formal proofs in
everyday mathematical reasoning. One major reason for this is that the basic proof-steps allowed by most
formal logics do not include many of the steps routinely used in informal mathematical reasoning and therefore
constructing formal proofs becomes a long and tedious process. The question as to whether formal
mathematical reasoning is practically possible has engendered numerous debates and one view of this is
provided by the Bourbaki remark above. To get around the difficulty of writing formal proofs, considerable
effort has been devoted to showing that many of the proof-steps used in informal mathematical reasoning are
formalizable in some formal logic. This has led to a mathematical study of formal systems, termed
metamathematics or mathematical logic [kleene, shoenfield]. In metamathematics, mathematical techniques
such as induction are used to prove that a given proof-step is formalizable in a logic by showing that each
application of that proof-step is reducible to some series of applications of the rules and axioms of that logic. A
new proof-step which is formalizable in the given formal logic is termed a derived inference rule in the logic.
This approach can also be applied to automatic proof-checkers to extend them to check new proof-steps. Thus,
one may start with a simple proof-checker which checks only formal proofs. Its correctness can be established
by careful inspection. It can then be extended by adding frequently used patterns of proof as new proof-steps.
Before we do this, we must establish that the new proof-step is a derived inference rule. If this is so, the
extension is said to preserve soundness. The purpose of this paper is to demonstrate the effective use of an
automatic theorem prover in proving the soundness of significant extensions to a formal logic. This ability to
make sound extensions to a proof-checker has been termed metatheoretic extensibility [Davis].

There have been two approaches to building extensible proof-checkers. The first approach involves the use
of the proof-checker to prove the soundness of new extensions to itself. This approach has been used by
Weyhrauch in FOL [FOL] and by Boyer and Moore [meta]. This approach, as exemplified by the FOL system,
has two drawbacks:

1. Proofs of soundness of extensions are difficult and are tedious to carry out on a simple proof-
checker.

2. The FOL system requires the user to supply the executable code to be added to the proof-checker
corresponding the extension that has been proved sound. Human error can creep in at this point.

In the second approach to extensibility, one avoids proving the soundness of new extensions by expanding
out the corresponding formal proof each time a new proof step is used. The expanded proof can be
automatically generated by a executing a program which ostensibly constructs the correct formal proof to justify
the use of that proof-step. The expanded proof is then checked with the original proof-checker. This approach
has been used in Edinburgh LCF [LCF] and by Brown [brown2]. The drawbacks of the LCF system are:

1. Checking the formal proof each time a new proof step is used is time-consuming.

2. The expanded proof corresponding to each application of a new proof-step is provided by a
user-supplied program. While there are ways to ensure that a proof thus generated is always a
correct proof, it might not be the proof that justifies the use of the new proof-step. This would
mean that there was an error in the program which constructed the formal proof. Locating and
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fixing errors in such programs may not always be easy.

The approach discussed in this paper avoids the second drawback of the LCF system by mechanically
proving that the expanded proof constructed by the program is always the correct one. Once we have proved
this, we need never expand out the proof since it is sufficient to know that such a proof exists, thus avoiding the
first drawback of the LCF system. Our approach is therefore quite similar to the FOL approach. Both the
drawbacks of the FOL approach are also avoided by the use of the Boyer-Moore theorem prover [Boyer], a
powerful prover for LISP functions. This is done by representing the proof-checker as a function in the
Boyer-Moore logic and then proving the soundness of the extensions using the Boyer-Moore theorem prover.

1This approach has the following advantages :
1. The Boyer-Moore theorem prover proves properties of Lisp functions and makes powerful use of

induction. This makes it easy to express theorems about formal systems as well as verify them.

2. The theorem prover translates its functions into correct, efficient and executable LISP thus
avoiding the second drawback of the FOL system [meta]. This allows us to extract usable code
from the theorems that we have proven and actually construct working proof-checkers.

3. Once we have proved the soundness of a derived proof step, we need never examine the formal
derivation for each application of the proof step, but nevertheless retain the ability to do so.

A drawback of this approach is that it requires one to trust the soundness of the Boyer-Moore theorem
prover. Since the prover has been widely used and is well-tested and documented, there is good reason to
believe that it is in fact sound. Another drawback is that the person carrying out these extensions and their
proofs must be knowledgeable about mathematics as well as the use of the theorem prover. This applies to the
previous approaches as well.

The main result of this report is a metatheoretic formalization of Shoenfield’s First Order Logic
[shoenfield] in the Boyer-Moore theorem prover and a mechanical proof of the Tautology Theorem for the

above logic using the Boyer-Moore theorem prover. The Tautology Theorem is a significant result in
metamathematics and was first proven by Emil Post in his doctoral dissertation [post]. A tautology is a Boolean
expression whose truth-table evaluation under any assignment of T or F to the atomic expressions always yields
T, given the usual interpretation of the logical connectives. Our version of the Tautology Theorem states that
every tautology has a proof in the above-mentioned logic. This theorem justifies one of the most commonly
used rules of inference in informal mathematical arguments. It also proves the propositional completeness of
the formal logic.

Proofs in metamathematics involve two levels of reasoning. The proof itself is carried out at the meta-level
using a meta-language. The systems of logic whose properties we wish to prove, constitute the object-level.
When referring to objects at the object-level, we prefix the word ‘formal’ and to those at the meta-level, we add
the prefix ‘meta’. Thus we refer to, ‘a formal variable’ as opposed to a ‘meta-variable’. In most textbooks,
meta-level reasoning is done informally and the language used is some natural language, e.g. English, German.
In the mechanical proofs we describe below, the meta-level reasoning is done formally using the Boyer-Moore
theorem prover and the metalanguage is pure-LISP. To further complicate matters, we also need an informal
meta-language, English, to informally describe the proof. We will adopt the convention of using italicised
letters for the object language, bold-face letters for special objects in the informal meta-language and
UPPER-CASE letters for the formal meta-language pure-LISP.

1These comparisons are somewhat unfair since the aims of the FOL and LCF systems are slightly different from those of the project
described in this paper. FOL is intended as an experiment to study the checking of proofs in various formal theories where the metatheory
is itself formally expressed in First Order Logic. LCF is intended as a realistic interactive proof-checker for properties of programs, in
which it is possible to build theories and experiment with various proof strategies. The project described in this paper is aimed at
investigating the efficacy of the Boyer-Moore theorem prover in proving difficult theorems in proof-theoretic metamathematics.
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To familiarize the reader with the LISP notation used in the proofs, Section 2 contains a brief overview of
the Boyer-Moore Theorem Prover and the Boyer-Moore Logic. Section 3 introduces the formal system, a First
Order Logic due to Shoenfield (termed SFOL below). Section 4 is an outline of the informal proof of the
tautology theorem. Section 5 is the longest section in the paper and covers the main result. In it we describe the
proof-checker which checks proofs in SFOL and show how this proof-checker was extended in a significant
way by outlining the mechanical proof of the tautology theorem. In Section 6, we draw several conclusions
about the mechanical proofs. The Appendix contains the entire sequence of events leading to the proof of the
tautology theorem.

2. The Boyer-Moore Theorem Prover

This section contains a brief overview of the Boyer-Moore theorem prover and its logic. Readers familiar
with the theorem prover may skip this section. A thorough survey of the prover can be found in Boyer and
Moore’s A Computational Logic [Boyer].

2.1 The Logic

The language of the Boyer-Moore theorem prover is a quantifier-free first order logic with equality. It
employs a Lisp-style prefix notation so that (FN X1 X2 . . . Xn) denotes the result of applying the
function FN to the values of the arguments X1, X2, . . ., Xn. The basic theory includes
axiomatizations of literal atoms, natural numbers, and lists.

Constants in the logic are functions with no arguments. The logical constants in the logic are (TRUE) and
(FALSE), abbreviated as T and F respectively. The 3-place function IF is the only primitive logical
connective. (IF X Y Z) is axiomatized to return Z if X is equal to F, and Y otherwise. Thus, (IF X Y Z)
can be informally read as: If X then Y, else Z. Other logical connectives, such as OR, NOT, AND and
IMPLIES can be defined in terms of IF.

Equality is represented by the dyadic function EQUAL. (EQUAL X Y) is axiomatized to return T if X and
Y identical, and F, otherwise. Note that functions which return only T or F play the role of predicates. The
theory includes the axiom of reflexivity of equality and an equality axiom for functions.

An assertion p in the logic is a theorem if and only if it can be proven that no instance of p is equal to F.

The Shell Principle allows the user to add axioms about inductively constructed objects. Lists are
axiomatized by adding a shell with a recognizer, the one argument function LISTP; a constructor, the two
argument function CONS; two destructors, the one argument functions CAR, and the one argument function
CDR; and a bottom object, (NIL). This results in the creation of axioms for lists which are similar to Peano’s
axioms for natural numbers.

To provide some intuition, we show the results of evaluating the above functions. (CONS X Y) returns a
list whose first element is X and the remainder of the list is Y, e.g. (CONS ’(1 2) ’(3 4 5)) returns the
list ’((1 2) 3 4 5). Also, (CAR ’((1 2) 3 4 5)) returns ’(1 2), and
(CDR ’((1 2) 3 4 5)) returns ’(3 4 5). Nested sequences of CARs and CDRs are abbreviated, e.g.
(CADDR X) abbreviates (CAR (CDR (CDR X))). (LISTP ’(1 2)) is T and (LISTP NIL) is F.
(NLISTP X) abbreviates (NOT (LISTP X)).

The Principle of Definition is used to admit definitions of new functions as axioms. A function definition is
accepted if it is recursively or non-recursively defined in terms of previously defined functions and there is
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some well-founded ordering, i.e. a partial ordering in which there are no infinite decreasing chains, on some
measure of the arguments which decreases with every recursive call. The two-argument function LESSP,
which is the standard ordering predicate on natural numbers, is the most commonly used well-founded ordering.
Every evaluation of the functions admitted under this principle is guaranteed to terminate. This ensures that no
new inconsistency is introduced by the addition of the new axiom.

The rules of inference in the Boyer-Moore logic consist of:
1. A Principle of Noetherian Induction: This allows the prover to formulate an induction that is

justified by the well-founded orderings created under the principle of definition.

2. Instantiation: If p is a theorem, so is any instance p’ of p that is got by replacing every occurrence
of some variable in p by the same term.

2.2 The Theorem Prover

The heuristics or techniques that the theorem prover employs to prove theorems support the use of
induction. These heuristics include: Boolean simplification, tautology-checking, use of rewrite rules, a decision
procedure for linear arithmetic, elimination of undesirable function symbols, generalization, careful type-
checking, elimination of irrelevant hypotheses and induction.

The theorem prover is fully automatic, in the sense that once a purported lemma has been typed in, the user
may not interfere with the mechanical proof. The user can however ‘‘train’’ the prover by proving an
appropriate sequence of lemmas which can then be used as rewrite rules. In this manner, the theorem prover
can be used as a high-level proof-checker.

The prover also has a simple hint facility by which the user can disable function definitions, suggest
instances of lemmas to be used, and also suggest the induction to be employed. A nice feature of the prover is
that it generates a cogent commentary on the proof being attempted. A careful examination of this commentary
makes it easy to locate and correct mistakes in the statement of the proposed theorem.

The Boyer-Moore theorem prover has been used to prove theorems in Number theory, Recursive Function
Theory and in Program Verification.

This concludes the discussion of the metatheory, the Boyer-Moore logic. Other details will be provided
along the way.

3. The Formal Theory: Shoenfield’s First Order Logic

The formal logic whose properties we wish to establish is Shoenfield’s First Order Logic (SFOL). It has the
advantage of being widely known and it is relatively simple and spare. In the following paragraphs, we provide
a very brief description of SFOL, which is fully described Chapter 2 of Shoenfield’s Mathematical Logic
[shoenfield].

3.1 The Language

The language of SFOL will be described by listing the symbols and the rules of syntax for forming
expressions. The symbols in the language include, variables: x , . . ., x , . .; function symbols: f , . . ., f ; and1 i 1 n
predicate symbols: P , . . ., P . Each function and predicate symbol has an arity associated with it. There is a1 m
special dyadic predicate symbol =, representing equality. The logic also contains the logical operators, #¬# and
#∨#, representing logical-not and logical-or respectively, and in existential quantifier ∃.
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Expressions are formed by combining these symbols according to certain rules. A term is either a variable
or an n-ary function symbol followed by n terms. An atomic formula is an n-ary predicate symbol followed by
n terms. A formula is either an atomic formula; of the form #¬#A, where A is a formula; of the form #∨#AB,
where A and B are formulas; or of the form ∃xA, where x is a variable and A is a formula.

We note certain assumptions regarding the use of meta-variables. The meta-variables x, y, z, range over
formal variables; f, g, h, range over function symbols; p, q, r, range over predicate symbols; a, b, c, range over
terms; and A, B, C, etc. range over formulas. From this point on, no specific variable, function or predicate
symbols will appear in the text and meta-variables will be used to represent them.

An elementary formula is either an atomic formula or a formula of the form ∃xA. The definitions of free
and bound occurrences of a variable in a formula are well-known and will be omitted. A [a] denotes the resultx
of replacing every free occurrence of x in A by a. A term a is substitutible for x in A, if and only if for each
variable y in a, no sub-formula of A of the form ∃yB contains an occurrence of x which is free in A. All use of
A [a] is restricted to when a is substitutible for x in A. To increase readability, #∨#AB will be replaced byx
A #∨# B, and =ab by a = b. All operators will be assumed as being right-associative and parentheses will be
introduced where needed. A #→# B is an abbreviation for #¬#A #∨# B.

3.2 The Axioms

An axiom is one of the following:

1. A propositional axiom: Any formula of the form, #¬#A #∨# A.

2. A substitution axiom: Any formula of the form, A [a]#→#∃xA.x

3. An identity axiom: A formula of the form, x = x.

4. An equality axiom for functions: A formula of the form,

(x =y #→#. . .#→#(x =y #→# fx . . .x = fy . . .y ). . .).1 1 n n 1 n 1 n

5. An equality axiom for predicates: Any formula of the form,

(x =y #→#. . .#→#(x =y #→# px . . .x #→# py . . .y ). . .).1 1 n n 1 n 1 n

3.3 The Rules of Inference

The five rules of inference in SFOL are:

1. Expansion Rule: Infer B #∨# A from A.

2. Contraction Rule: Infer A from A #∨# A.

3. Associative Rule: Infer (A #∨# B) #∨# C from A #∨# (B #∨# C).

4. Cut Rule: Infer B #∨# C from A #∨# B and #¬#A #∨# C.

5. #¬#-Introduction Rule: If x is not free in B, infer ∃xA #→# B from A #→# B.

A first order theory may contain additional non-logical axioms e.g. axioms for natural numbers, but the
language, logical axioms and the rules of inference remain as described above. This concludes the description
of the formal theory SFOL.
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4. The Informal Proof of the Tautology Theorem

In this section, we informally discuss the proof of the tautology theorem for SFOL. For this proof, we need
only pay attention to the propositional part of the logic. This would mean that we need not attach any specific
interpretation to quantified formulas or atomic formulas. Therefore, elementary formulas will be treated as
propositional atoms (atoms, for short). Boolean formulas are constructed by combining atoms using the
operators #¬# and #∨#. It should be clear that any formula can be construed as a Boolean formula.

The proof consists of the following parts:
1. Definition of logical truth for Boolean formulas.

2. Definition of a tautology-checker.

3. The proof of a useful lemma which states that if one can prove the disjunction of a list of
formulas, one can prove the disjunction of any list of formulas which contains them.

4. The proof of the tautology theorem.

Logical truth is defined by the use of a truth-table. Given a Boolean formula, a truth assignment for that
formula is a mapping from the set of propositional atoms to T, F. The truth-table method for determining the
truth values of a given Boolean formula is fairly well-known and we shall not go into its details. A tautology is
defined as a Boolean formula whose truth value is T under all truth assignments. A tautology-checker is an
algorithm that checks if a given Boolean formula is a tautology or not. We shall define one such tautology-
checker. This tautology-checker works only on formulae of the form, A #∨# . . . #∨# A where each A is1 n i
termed a disjunct. Note that rearranging the disjuncts does not change the truth value, and that any formula A
can be expressed in this form by simply setting A to be A and n = 1. The recursive definition of the1
tautology-checker TC(A) is, as follows:

Base: (each A is either an atom or the negation of an atom)i

If some A is the negation of some A , TC(A)=T.j i
Otherwise, TC(A)=F.

Recursive cases: (Some A is neither an atom nor the negation of an atom)i

{Since the disjuncts can be rearranged without affecting the truth value, we can assume that A is such an A .1 i
If this is the case, then A is either of the form B #∨# C, the form #¬#(B #∨# C), or the form #¬##¬#B}1

If A is of the form B #∨# C: TC(A) = TC(B #∨# C #∨# . . . #∨# A ).1 n
If A is of the form #¬#(B #∨# C): TC(A) = TC(#¬#B #∨# . . . #∨# A ) and TC(#¬#C #∨# . . . #∨# A ).1 n n
If A is of the form #¬##¬#B: TC(A) = TC(B #∨# . . . #∨# A ).1 n

Two things must be noted in the above definition of a tautology-checker:
1. The sum of the number of logical operators in the A decreases with each recursive call andi

therefore the algorithm always terminates.

2. In each recursive call, the truth value (with respect to any fixed truth assignment) of the formula
recursed upon is the same as the truth value of the original formula. To show that the above
tautology-checker is correct, we need to prove that TC(A) = T if and only if A is a tautology. We
can conclude that if TC(A)=T then A is a tautology, by carrying out an inductive proof based on
the recursion used in the tautology-checker. Showing that if A is a tautology, then TC(A)=T is a
little more difficult. The proof involves following the same induction to construct a truth
assignment which makes the truth value of A equal to F, if TC(A) = F.

Now, we state the main theorem. @z(‘)A denotes ‘A is a theorem in SFOL’.

Tautology Theorem: If A is a tautology, then @z(‘)A.
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4.1 The Proof

We now describe an informal sketch of the proof of the Tautology Theorem, but omit most of the details.
This sketch should serve as a useful guide to the mechanical proof presented in the following section.

Since A is a tautology if and only if A #∨# A is a tautology, and we can derive A from A #∨# A by the
Contraction Rule, we can restrict our attention to formulas of the form A #∨# . . . #∨# A , where n > 1. We1 n
now state without proof, a key lemma which is extremely useful in the proof.

A Lemma on disjuncts: If A ,. . ., A are all contained among B ,. . ., B , and if @z(‘)A #∨#. . .#∨# A ,1 m 1 n 1 m
then @z(‘)B #∨#. . .#∨# B .1 n

We turn our attention now to the proof of the Tautology Theorem. The proof is by an induction that is
identical to the recursion displayed by the tautology-checker. Since, we have argued that the tautology-checker
defined earlier is correct, we need only show that if the tautology-checker accepts a formula A of the form
A #∨#. . .#∨# A (where n is atleast 2) as being a tautology, then we can construct a proof of it in SFOL. First,1 n
let us assume that the given formula is a tautology. Then the following cases arise:

1. All A are atoms or negations of atoms: By the definition of the tautology-checker, some Ai j
must be the negation of some A . Then, @z(‘)A #∨# A (Propositional Axiom) from which wei j i
get @z(‘)A by applying the lemma on disjuncts.

2. Some A is of the form B #∨# C: By rearranging the disjuncts using the Lemma on disjuncts, wei
can ensure that i=1. We have @z(‘)B #∨# C #∨# A #∨#. . .#∨# A by the Induction hypothesis2 n
and the definition of the tautology-checker. From this we derive @z(‘)A by an application of the
Associativity Rule.

3. A is of the form #¬# B #∨# C: Again, by examining the tautology-checker, we get, by the1
Induction Hypothesis: @z(‘)#¬#B #∨# A #∨#. . .#∨# A and @z2 n
(‘)#¬#C #∨# A #∨#. . .#∨# A . We do not prove the lemma which allows us to derive @z(‘)A2 n
from these two formulas in the present discussion.

4. A is of the form #¬##¬#B: By the definition of the tautology-checker and the Induction1
Hypothesis, we have @z(‘)B #∨# A #∨#. . .#∨# A . The proof of the lemma which then allows2 n
us to derive @z(‘)A is also omitted from this discussion.

5. The Mechanical Proofs

In this section, we cover some of the highlights of the mechanical proof. The entire mechanical proof of the
Tautology Theorem using the Boyer-Moore theorem prover consists of approximately 200 events (definitions or
lemmas). These are listed in their entirety in the Appendix. Many of these definitions and lemmas in the proof
will be described in English. In some important cases, we will display the pure LISP version so that the careful
reader can check whether these correspond exactly to the definitions and theorems in sections 3 and 4. We
remind the reader that a term of the form (FN X1 . . . Xn), denotes the application of function FN to the
n arguments, X1 to Xn. The proof can roughly be divided into the following parts:

1. The definition of a proof-checker for SFOL.

2. The proof of the lemma on disjuncts.

3. The definition of the tautology-checker.

4. The proof of the Tautology Theorem.

5. The proof of correctness of the tautology-checker.
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5.1 Defining the Proof-checker

In this section we present the important definitions in the description of the SFOL proof-checker. The
proof-checker corresponds closely to the formal theory described earlier. The basic Boyer-Moore prover
contains only heuristics and contains no facts about lists or numbers [Boyer]. The axioms for literal atoms,
natural numbers and lists are loaded in by the event:
1. (BOOT-STRAP)

We describe in English, the recognizers that were defined for the various classes of symbols.

(VARIABLE X): X is a variable iff it is a pair of the symbol ’X, and an index number.

(FUNCTION FN): FN is a function symbol iff it is a triple of the symbol ’F, an index number and an
arity number.

(PREDICATE PR): PR is a predicate symbol iff it is a triple of the symbol ’P, an index number and an
arity number or the equality symbol ’EQUAL.

The INDEX of a symbol returns its subscript, and DEGREE returns the arity of a function or predicate
symbol. The use of these metatheoretic definitions will be clarified in the descriptions that follow. The
symbols #¬#, #∨#, = and ∃ are represented by ’NOT, ’OR, ’EQUAL and ’FORSOME respectively.

The definition of TERMP displayed below is used to recognize EXP as either being a term, if FLG = T, or
as being a list of terms of length COUNT, otherwise. The use of the flag FLG obviates the need for two mutually
recursive definitions and will be used in other definitions as well. Informally, the definition asserts that EXP is
a term if and only if EXP is non-empty and is either a variable, or a function symbol followed by a list of terms
whose length is equal to the arity of the function symbol. In the case when FLG #≠# T (FLG is usually set to
’LIST in this case), EXP is a list of non-zero COUNT terms iff its first element is a term and the rest of the
elements form a list of COUNT-1 terms.
40. Definition.

(TERMP EXP FLG COUNT)
=

(IF (EQUAL FLG T)
(IF (NLISTP EXP)

F
(OR (VARIABLE EXP)

(AND (FUNCTION (CAR EXP))
(TERMP (CDR EXP)

’LIST
(DEGREE (CAR EXP))))))

(IF (OR (NLISTP EXP) (ZEROP COUNT))
(AND (EQUAL EXP NIL) (ZEROP COUNT))
(AND (TERMP (CAR EXP) T 0)

(TERMP (CDR EXP)
’LIST
(SUB1 COUNT)))))

The next definition displayed below captures the notion of a formula/list of formulas. (ATOMP EXP)
indicates that EXP is an atomic formula, i.e. a predicate symbol followed by a list of terms, of length equal to its
arity. If FLG = T, EXP is a formula iff EXP is an atomic formula; or is ’NOT followed by one formula; or ’OR
followed by two formulas; or ’FORSOME followed by a variable and a formula. If FLG #≠# T, then either EXP
is an empty list of formulas and COUNT is zero, or COUNT is non-zero and EXP consists of a formula followed
by COUNT-1 formulas. Note that the argument COUNT is irrelevant in the FLG = T case and hence we adopt
the convention of setting it to zero.
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45. Definition.
(FORMULA EXP FLG COUNT)

=
(IF (EQUAL FLG T)

(IF (NLISTP EXP)
F
(OR (ATOMP EXP)

(AND (EQUAL (CAR EXP) ’NOT)
(FORMULA (CDR EXP) ’LIST 1))

(AND (EQUAL (CAR EXP) ’OR)
(FORMULA (CDR EXP) ’LIST 2))

(AND (EQUAL (CAR EXP) ’FORSOME)
(VARIABLE (CADR EXP))
(FORMULA (CDDR EXP) ’LIST 1))))

(IF (OR (NLISTP EXP) (ZEROP COUNT))
(AND (EQUAL EXP NIL) (ZEROP COUNT))
(AND (FORMULA (CAR EXP) T 0)

(FORMULA (CDR EXP)
’LIST
(SUB1 COUNT)))))

Some other important definitions are:

(COLLECT-FREE EXP FLG): which returns a list of all and only those variables that have free
occurrences in EXP, with FLG used as before.

(COVERING EXP VAR FLG): which returns a list of bound variables in EXP such that for each of these
variables, say y, there is some sub-expression of EXP of the form ∃yA, such that EXP contains a free occurrence
of the variable VAR.

(FREE-FOR EXP VAR TERM FLG): which checks if TERM is substitutible for VAR in EXP, i.e. if
(COVERING EXP VAR FLG) and (COLLECT-FREE TERM T) have an empty intersection.

Now we introduce abbreviations for certain operations in the formal logic:
30. Definition.

(F-EQUAL X Y)
=

(LIST ’EQUAL X Y)

31. Definition.
(F-NOT X)

=
(LIST ’NOT X)

32. Definition.
(F-OR X Y)

=
(LIST ’OR X Y)

33. Definition.
(FORSOME X Y)

=
(LIST ’FORSOME X Y)

34. Definition.
(F-AND X Y)

=
(F-NOT (F-OR (F-NOT X) (F-NOT Y)))
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35. Definition.
(F-IMPLIES X Y)

=
(F-OR (F-NOT X) Y)

Substitution of a term TERM for a free variable VAR in an expression EXP is one of the most important
operations in any formal system. It is also the easiest to get wrong. The recursive definition below is fairly
subtle and requires careful study. The cases in the definition can be explained as follows:
If EXP is empty, return EXP itself.
If FLG = T, the following cases arise:

1. EXP is a variable and (EXP = VAR): Return TERM.

2. EXP is a variable and (EXP #≠# VAR): Return EXP.

3. EXP is of the form ∃xA, VAR = x: Return EXP.

4. EXP is of the form ∃xA, VAR #≠# x: Return ∃xA’, where A’ is the result of substituting TERM for
VAR in A.

5. EXP is of the form uu . . . u , where u is either a predicate symbol, function symbol, or logical1 n
operator of arity n: Return uu ’ . . . u ’, where u ’ is the result of substituting TERM for VAR in1 n i
u .i

6. Otherwise: The expression is not well-formed and SUBST returns EXP itself.

In the case when FLG #≠# T, EXP is a list of expressions and we perform the substitution on each member
of EXP.
46. Definition.

(SUBST EXP VAR TERM FLG)
=

(IF (LISTP EXP)
(IF (EQUAL FLG T)

(IF (VARIABLE EXP)
(IF (EQUAL EXP VAR) TERM EXP)
(IF (AND (QUANTIFIER (CAR EXP))

(LISTP (CDR EXP)))
(IF (EQUAL (CADR EXP) VAR)

EXP
(CONS (CAR EXP)

(CONS (CADR EXP)
(SUBST (CDDR EXP) VAR TERM ’LIST))))

(IF (OR (FUNC-PRED (CAR EXP))
(EQUAL (CAR EXP) ’NOT)
(EQUAL (CAR EXP) ’OR))

(CONS (CAR EXP)
(SUBST (CDR EXP) VAR TERM ’LIST))

EXP)))
(CONS (SUBST (CAR EXP) VAR TERM T)

(SUBST (CDR EXP) VAR TERM ’LIST)))
EXP)

We now describe the SFOL proof-checker. We omit the definitions of several functions used to construct
axioms and formal proofs corresponding to the rules and axioms of SFOL. Function names with the suffix
PROOF construct formal proofs and will be called proof-constructors. The data-structure by which we
represent formal proofs is a 4-tuple. The first element, (CAR PF), of this 4-tuple indicates the type of the final
inference step; the second element is a sequence of hints (HINT1 PF), (HINT2 PF), (HINT3 PF),
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and (HINT4 PF); the third element is the conclusion of the proof and the fourth element,
(SUB-PROOF PF) is a sub-proof or a list of sub-proofs leading to the final step. The function (CONC PF
FLG) returns the conclusion/list of conclusions given a proof/list of proofs PF and a flag FLG. The skeletal
control structure of the proof-checker will be presented before presenting the code for individual cases. (PRF
PF) checks if PF is a correct formal proof. The comments within curly brackets in the skeletal code of the
proof-checker indicate code to be presented later. Informally, if PF is empty, PRF returns F since it cannot
prove anything. Otherwise, it checks if the first element of PF is either ’AXIOM or ’RULE corresponding to
the cases when PF is the proof of a logical axiom, or involves an application of an inference rule in the final
step, respectively. If it is none of the above, PRF returns F.
74. Definition.

(PRF PF)
=

(IF (NLISTP PF)
F
(IF (EQUAL (CAR PF) ’AXIOM)

{code for checking proofs of axioms}
(IF (EQUAL (CAR PF) ’RULE)

{code for checking proofs in which an inference
rule is used to derive the conclusion}

F)))

5.1-A The Logical Axiom Case

We present a similar skeletal control structure for the ’AXIOM case of the proof-checker PRF. In this
section of the code, PRF checks the first member of the list of hints which form the second element of PF, i.e.
(HINT1 PF), to see if it is one of ’PROP-AXIOM, ’SUBST-AXIOM, ’IDENT-AXIOM,
’EQUAL-AXIOM1, or ’EQUAL-AXIOM2. These correspond to the five types of axioms listed in Section 3.

(IF (EQUAL (HINT1 PF) ’PROP-AXIOM)
{code for checking proofs of propositional axioms}
(IF (EQUAL (HINT1 PF) ’SUBST-AXIOM)

{code for checking proofs of substitution axioms}
(IF (EQUAL (HINT1 PF) ’IDENT-AXIOM)

{code for checking proofs of identity axioms}
(IF (EQUAL (HINT1 PF) ’EQUAL-AXIOM1)

{code for checking proofs of equality
axioms for functions}
(IF (EQUAL (HINT1 PF) ’EQUAL-AXIOM2)

{code for checking proofs of equality
axioms for predicates}
F)))))

Now we fill in the code corresponding to each type of logical axiom. The terms (HINT2 PF),
(HINT3 PF) and (HINT4 PF) will be referred to as the first, second and third hints, respectively. To check
if PF is the proof of a propositional axiom, i.e. a formula of the form #¬#A #∨# A, PRF checks if the first hint
A ((HINT2 PF)) is a formula and if PF is equal to (PROP-AXIOM-PROOF (HINT2 PF)), where
PROP-AXIOM-PROOF constructs the required formal proof.

(AND (FORMULA (HINT2 PF) T 0)
(EQUAL PF

(PROP-AXIOM-PROOF (HINT2 PF))))

To check a given proof of a Substitution axiom three hints, (HINT2 PF), (HINT3 PF) and
(HINT4 PF) below, are used. The code below checks if the first hint is a formula, the second hint is a
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variable, and if the third hint is a term. The fourth clause checks if the term is substituble for the variable in the
formula using the function FREE-FOR. The final clause checks if PF is the appropriate formal proof of a
Substitution axiom given the above three hints.

(AND (FORMULA (HINT2 PF) T 0)
(VARIABLE (HINT3 PF))
(TERMP (HINT4 PF) T 0)
(FREE-FOR (HINT2 PF)

(HINT3 PF)
(HINT4 PF)
T)

(EQUAL PF
(SUBST-AXIOM-PROOF (HINT2 PF)

(HINT3 PF)
(HINT4 PF))))

The code for the Identity axiom case checks if the first hint is a variable, say x, and checks if PF is the
correct formal proof for the formula x = x.

(AND (VARIABLE (HINT2 PF))
(EQUAL PF

(IDENT-AXIOM-PROOF (HINT2 PF))))

The first hint in a given proof of an Equality axiom for functions is a function symbol, the second and third
hints are two lists of variables of equal length. The function VARLIST checks if the first argument is a list of
variables of length given by the second argument. Then PRF checks if PF is the appropriate proof with respect
to the above three hints.

(AND (FUNCTION (HINT2 PF))
(VAR-LIST (HINT3 PF)

(DEGREE (HINT2 PF)))
(VAR-LIST (HINT4 PF)

(DEGREE (HINT2 PF)))
(EQUAL PF

(EQUAL-AXIOM1-PROOF (HINT2 PF)
(HINT3 PF)
(HINT4 PF))))

The given proof of an Equality axioms for predicates is checked similarly. The only difference is that it
now checks if the first hint is a predicate symbol.

(AND (PREDICATE (HINT2 PF))
(VAR-LIST (HINT3 PF)

(DEGREE (HINT2 PF)))
(VAR-LIST (HINT4 PF)

(DEGREE (HINT2 PF)))
(EQUAL PF

(EQUAL-AXIOM2-PROOF (HINT2 PF)
(HINT3 PF)
(HINT4 PF))))

This concludes the description of the ’AXIOM case of the definition of the SFOL proof-checker.
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5.1-B The Inference Rules

The second group of cases deals with the inference rules of SFOL viz. Expansion, Contraction,
Associativity, Cut and ∃-Introduction. The rule that is used to derive the conclusion is supplied as
(HINT1 PF). The control skeleton used to branch on this hint is similar to the one used to check proofs of
axioms and is displayed below.

(IF (EQUAL (HINT1 PF) ’EXPAN)
{code for checking Expansion step}
(IF (EQUAL (HINT1 PF) ’CONTRAC)

{code for checking Contraction step}
(IF (EQUAL (HINT1 PF) ’ASSOC)

{code for checking Associativity step}
(IF (EQUAL (HINT1 PF) ’CUT)

{code for checking Cut step}
(IF (EQUAL (HINT1 PF) ’E-INTRO)

{code for checking ∃-Introduction step}
F)))))

Now we deal with the code for each individual case. A part of the checking is done within the proof-
constructor functions and those details will not appear in the description below. Since an expression appearing
as a proper part of a proven formula is also a formula and in such cases, we do not explicitly check if the
expression is a formula.

To check an application of an Expansion step i.e. a derivation of A #∨# B from B, A and B are supplied as
the two hints. Then the code checks if A is a formula, if PF is the appropriate proof of A #∨# B, and if
(SUB-PROOF PF) is a proof of A.

(AND (FORMULA (HINT2 PF) T 0)
(EQUAL PF

(EXPAN-PROOF (HINT2 PF)
(HINT3 PF)
(SUB-PROOF PF)))

(EQUAL (CONC (SUB-PROOF PF) T)
(HINT3 PF))

(PRF (SUB-PROOF PF)))

In order to check an application of a Contraction step, i.e. a derivation of A from A #∨# A, the only hint
supplied is A. We then check if PF is a properly constructed proof and if (SUB-PROOF PF) is a correct
proof of A #∨# A.

(AND (EQUAL PF
(CONTRAC-PROOF (HINT2 PF)

(SUB-PROOF PF)))
(EQUAL (CONC (SUB-PROOF PF) T)

(F-OR (HINT2 PF) (HINT2 PF)))
(PRF (SUB-PROOF PF)))

The Associative rule is used to derive (A #∨# B) #∨# C from A #∨# (B #∨# C) and A, B, and C are the
three hints used in checking this. The code below checks if PF is a properly constructed proof using this
inference step, and if (SUB-PROOF PF) is a correct proof of A #∨# (B #∨# C).
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(AND (EQUAL PF
(ASSOC-PROOF (HINT2 PF)

(HINT3 PF)
(HINT4 PF)
(SUB-PROOF PF)))

(EQUAL (CONC (SUB-PROOF PF) T)
(F-OR (HINT2 PF)

(F-OR (HINT3 PF) (HINT4 PF))))
(PRF (SUB-PROOF PF)))

The Cut rule is employed to derive B #∨# C from A #∨# B and #¬#A #∨# B. The three hints used are A, B
and C. The code checks if PF is the appropriate proof and if (CAR (SUB-PROOF PF)) and
(CADR (SUB-PROOF PF)) are the correct proofs of A #∨# B and #¬#A #∨# B, respectively.

(AND (EQUAL PF
(CUT-PROOF (HINT2 PF)

(HINT3 PF)
(HINT4 PF)
(CAR (SUB-PROOF PF))
(CADR (SUB-PROOF PF))))

(EQUAL (CONC (SUB-PROOF PF) ’LIST)
(LIST (F-OR (HINT2 PF) (HINT3 PF))

(F-OR (F-NOT (HINT2 PF)) (HINT4 PF))))
(PRF (CAR (SUB-PROOF PF)))
(PRF (CADR (SUB-PROOF PF))))

The three hints used in checking the ∃-Introduction step in a proof are x, A, and B. The code checks if x is a
variable, and if PF is a correctly constructed proof of ∃xA #→# B, where x is not a member of the list of
variables appearing free in B and (SUB-PROOF PF) is a correct proof of A #→# B.

(AND (VARIABLE (HINT2 PF))
(EQUAL PF

(FORSOME-INTRO-PROOF (HINT2 PF)
(HINT3 PF)
(HINT4 PF)
(SUB-PROOF PF)))

(NOT (MEMBER (HINT2 PF)
(COLLECT-FREE (HINT4 PF) T)))

(EQUAL (CONC (SUB-PROOF PF) T)
(F-IMPLIES (HINT3 PF) (HINT4 PF)))

(PRF (SUB-PROOF PF)))

This completes the description of our implementation of a proof-checker for SFOL. The function PROVES
defined below is a more usable form of the proof-checker.
78. Definition.

(PROVES PF EXP)
=

(AND (EQUAL (CONC PF T) EXP)
(FORMULA EXP T 0)
(PRF PF))

PROVES checks if PRF is a valid proof of EXP. This definition also presents a good example of
‘‘cheating’’ in a proof. By ‘‘cheating’’ we mean the avoidance of theorem proving in favor of computation. If
we had proved that the conclusion of a valid formal proof is always a formula, the FORMULA clause in the
definition of PROVES would have been unnecessary. This turns out not to matter since the body of PRF is



15

replaced by a group of rewrite rules in which the redundant use of FORMULA is avoided. Thus, the ‘‘cheating’’
here turns out to be a prudent decision.

This concludes the description of the SFOL proof-checker as defined to the Boyer-Moore theorem prover.

5.2 Steps to the Proof of the Tautology Theorem

In this section, we list some of the important lemmas involved in the proof of the Tautology Theorem. We
also provide a glimpse of the approach that we have adopted in interacting with the prover. This is worth noting
since the success of a mechanical proof effort depends quite heavily on the approach used. Immediately after
defining the proof-checker, we replaced its definition by a series of rewrite rules. This is because the definition
of PRF is long and this causes a great deal of garbage generation/collection during the proof. In most of the
lemmas that we prove, only a small part of the definition of the proof-checker is relevant. We provide only one
simple example of a rewrite rule that captures one case of the definition of PRF, the one dealing with
propositional axioms. The other cases are similar. The lemma PROP-AXIOM-PROVES attempts to rewrite
any term in a proof of the form (PROVES (PROP-AXIOM-PROOF expression) conclusion) to T,
if expression is a formula and conclusion is a propositional axiom involving expression. Thus, if
PROP-AXIOM-PROOF had been used in a proof, this lemma would be invoked in the course of checking that
proof. It is important to note that once we have this lemma, the actual definition of PROP-AXIOM-PROOF is
no longer useful. The definition of this proof-constructor is disabled so that the prover does not expand an
occurrence of PROP-AXIOM-PROOF into its definition during the proof of a theorem.
81. Theorem. PROP-AXIOM-PROVES (rewrite):

(IMPLIES (AND (FORMULA EXP T 0)
(EQUAL CONCL (F-OR (F-NOT EXP) EXP)))

(PROVES (PROP-AXIOM-PROOF EXP) CONCL))

At this point in the proof, all the primitive proof-constructors such as PROP-AXIOM-PROOF and the
definitions of PRF and PROVES are disabled.

Now, we give the first example of the proof of soundness of a derived inference rule. This is the
Commutative Rule for logical-or. This rule allows us to infer B #∨# A from a proof of A #∨# B. The first step
in the proof is to define a proof-constructor COMMUT-PROOF corresponding to this rule.
103. Definition.

(COMMUT-PROOF A B PF)
=

(CUT-PROOF A B A PF
(PROP-AXIOM-PROOF A))

COMMUT-PROOF provides the formal justification for each application of the Commutative rule and this is
given by the following lemma.
104. Theorem. COMMUT-PROOF-PROVES (rewrite):

(IMPLIES (AND (PROVES PF (F-OR A B))
(FORMULA (F-OR A B) T 0)
(EQUAL CONCL (F-OR B A)))

(PROVES (COMMUT-PROOF A B PF) CONCL))

Now, the definition of COMMUT-PROOF is disabled as was done in the case of PROP-AXIOM-PROOF.

The next important step is the proof of the previously mentioned lemma on disjuncts. The proof of this
lemma is an extremely difficult one and the reader is urged to read the informal exposition from Shoenfield’s
Mathematical Logic [shoenfield]. The mechanical proof of this lemma proceeds at roughly the same level of



16

detail as the informal proof in Shoenfield’s book. The lemma on disjuncts is an extremely useful derived
inference rule. The lemma states: If A , . . ., A are all contained among B , . . ., B , then we can infer1 m 1 n
B #∨#. . .#∨# B from a proof of A #∨#. . .#∨# A . The proof is by strong induction on m with base cases1 n 1 m
for [m = 1] and [m = 2]. First, we list some of the definitions used in the proof.

(MAKE-DISJUNCT FLIST): Given a list of formulas FLIST, MAKE-DISJUNCT constructs the
formula representing their disjunction.

(M1-PROOF EXP FLIST PF): This is the proof constructor in the [m = 1] case. If PF is a proof of
EXP and EXP is a member of FLIST, then M1-PROOF constructs a proof of (MAKE-DISJUNCT FLIST).

(FORM-LIST FLIST): FORM-LIST checks if FLIST is a list of formulas.

(M2-PROOF EXP1 EXP2 FLIST PF): M2-PROOF is the proof-constructor in the [m = 2] case and
constructs a proof of (MAKE-DISJUNCT FLIST), where EXP1 and EXP2 are members of FLIST and PF is
a proof of (F-OR EXP1 EXP2).

(M-PROOF FLIST1 FLIST2 PF): M-PROOF constructs a proof of (MAKE-DISJUNCT FLIST2),
where the list of formulas FLIST1 is contained in the list of formulas FLIST2 and PF is a proof of
(MAKE-DISJUNCT FLIST1).

The lemma M1-PROOF-PROVES1 displayed below, expresses the [m = 1] case of the proof.
122. Theorem. M1-PROOF-PROVES1 (rewrite):

(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0)
(MEMBER EXP FLIST)
(PROVES PF EXP))

(PROVES (M1-PROOF EXP FLIST PF)
(MAKE-DISJUNCT FLIST)))

Hint: Disable FORMULA

The [m = 2] case of the proof is expressed by the lemma M2-PROOF-PROVES below. EXP1 and EXP2
are the two disjuncts that appear in FLIST.
137. Theorem. M2-PROOF-PROVES (rewrite):

(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0)
(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(MEMBER EXP1 FLIST)
(MEMBER EXP2 FLIST)
(PROVES PF (F-OR EXP1 EXP2)))

(PROVES (M2-PROOF EXP1 EXP2 FLIST PF)
(MAKE-DISJUNCT FLIST)))

Hint: Disable FORMULA

Finally, M-PROOF-PROVES expresses the lemma on disjuncts. If FLIST1 is a list of disjuncts that are
contained in FLIST2, and we have a proof of the disjunction of the disjuncts in FLIST1, then M-PROOF
constructs a proof of the disjunction of the disjuncts in FLIST2. Note that the induction to be employed is
supplied as a hint to the theorem prover.
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150. Theorem. M-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORM-LIST FLIST1)

(LISTP FLIST1)
(FORM-LIST FLIST2)
(LISTP FLIST2)
(SUBSET FLIST1 FLIST2)
(PROVES PF (MAKE-DISJUNCT FLIST1)))

(PROVES (M-PROOF FLIST1 FLIST2 PF)
(MAKE-DISJUNCT FLIST2)))

Hint: Induct as for (M-PROOF FLIST1 FLIST2 PF).

The remainder of the description of the mechanical proof includes the definition of the tautology checker,
the proof of the Tautology Theorem and the proof of the correctness of the tautology checker.

5.3 Defining the Tautology-checker

The tautology-checker we define below is an implementation of the one described in Section Four.
However, for efficiency reasons the tautology-checker below does not flatten out the entire given formula into
disjunction of atoms or negations of atoms. Instead, it maintains a list of atoms and negations of atoms
accumulated so far, and if this list ever contains an atom and its negation, we claim that the given formula is a
tautology. A small amount of effort was expended in proving the admissibility of the tautology-checker in
accordance with the Principle of Definition. The steps in the proof of admissibility will be omitted. As before,
we describe the preliminary definitions in English and provide skeletal descriptions of the tautology-checker
before going into the details. First, we define predicates which serve as recognizers for the various classes of
formulas.

(PROP-ATOMP EXP) checks if EXP is an atom or the negation of an atom.

(OR-TYPE EXP) checks if EXP is of the form A #∨# B.

(NOR-TYPE EXP) checks if EXP is of the form #¬#(A #∨# B).

(DBLE-NEG-TYPE EXP) checks if EXP is of the form @z(::)A.

The function (LIST-COUNT FLIST) computes the measure based on which the tautology-checker is
admitted. It takes as input a list and returns the sum of the sizes of all the elements. The size of each element is
one more than the number of CONSes appearing in it.

(NEG-LIST EXP FLIST) checks if either EXP is the negation of some member of FLIST or if some
member of FLIST is the negation of EXP.

Next, we examine the definition of the tautology-checker TAUTOLOGYP1 in detail. As in the case of the
SFOL proof-checker, the pure-LISP definition will be annotated in English. The function TAUTOLOGYP1
takes two arguments, FLIST and AUXLIST. As mentioned earlier, if A is the formula being checked, A must
be of the form A #∨# . . . #∨# A , and FLIST is the list A ,. . ., A . AUXLIST is an auxiliary argument that1 n 1 n
accumulates the atoms and negations of atoms encountered during the recursion of the tautology-checker.
AUXLIST will have to be initially bound to NIL when invoking TAUTOLOGYP1. The control skeleton of
TAUTOLOGYP1 is displayed below. If the FLIST is empty, we return F. Otherwise we check if the first
element of FLIST is of one of the types: PROP-ATOMP, OR-TYPE, NOR-TYPE, or DBLE-NEG-TYPE,
and branch off accordingly. Later on, we present a lemma which states that any formula must fall into one of
the above types.
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176. Definition.
(TAUTOLOGYP1 FLIST AUXLIST)

=
(IF (NLISTP FLIST)

F
(IF (PROP-ATOMP (CAR FLIST))

{code for case when the first element of FLIST
is an atom or the negation of an atom}
(IF (OR-TYPE (CAR FLIST))

{code for case when the first element of FLIST is
of OR-TYPE}
(IF (NOR-TYPE (CAR FLIST))

{code for case when the first element of FLIST
is of NOR-TYPE}
(IF (DBLE-NEG-TYPE (CAR FLIST))

{code for case when the first element of FLIST
is of DBLE-NEG-TYPE}
F)))))

Hint: Consider the well-founded relation LESSP
and the measure (LIST-COUNT FLIST)

We now turn to the individual cases of the above definition. The function (ARG1 EXP) returns B when
given an expression EXP of the form #¬#B or of the form B #¬# C and in the latter case, (ARG2 EXP)
returns C. If the first element of FLIST is either an atom or the negation of an atom, TAUTOLOGYP1 first
checks if its negation appears in AUXLIST and return T if that is the case. Otherwise, we add the first element
of FLIST to the AUXLIST and recurse on the rest of the FLIST.

(OR (NEG-LIST (CAR FLIST) AUXLIST)
(TAUTOLOGYP1 (CDR FLIST)

(CONS (CAR FLIST) AUXLIST)))

When the first element of FLIST is of OR-TYPE i.e. of the form B #∨# C, we add B and C to the rest of
the FLIST and recurse with the AUXLIST unchanged.

(TAUTOLOGYP1 (CONS (ARG1 (CAR FLIST))
(CONS (ARG2 (CAR FLIST)) (CDR FLIST)))

AUXLIST)

If the first element of FLIST is of the form #¬#(B #∨# C), then TAUTOLOGYP1 is called twice, once with
#¬#B added to the rest of FLIST and another time with #¬#C added to the rest of FLIST.

(AND (TAUTOLOGYP1 (CONS (F-NOT (ARG1 (ARG1 (CAR FLIST))))
(CDR FLIST))

AUXLIST)
(TAUTOLOGYP1 (CONS (F-NOT (ARG2 (ARG1 (CAR FLIST))))

(CDR FLIST))
AUXLIST))

The only remaining possibility is that the first element could be of the form @z(::)B in which case B is
added to the rest of FLIST and a recursive call is made.

(TAUTOLOGYP1 (CONS (ARG1 (ARG1 (CAR FLIST)))
(CDR FLIST))

AUXLIST)

This concludes the description of the tautology-checker for SFOL.
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5.4 The Proof of the Tautology Theorem

In this section, we sketch some of the events leading to the proof of the statement that all tautologies have
formal proofs within SFOL. The major task in the proof is to define the proof-constructor function which
constructs formal proofs for those formulas on which the tautology-checker returns T. More accurately, the
proof-constructor constructs a proof of (MAKE-DISJUNCT (APPEND FLIST AUXLIST)), where
APPEND concatenates two lists, and MAKE-DISJUNCT returns the disjunction of a list of formulas. The
case-structure and recursion scheme employed by the proof-constructor TAUT-PROOF1 are identical to those
of TAUTOLOGYP1. The control skeleton of TAUT-PROOF1 is displayed below.
232. Definition.

(TAUT-PROOF1 FLIST AUXLIST)
=

(IF (NLISTP FLIST)
NIL
(IF (PROP-ATOMP (CAR FLIST))

{proof-constructor for PROP-ATOMP case}
(IF (OR-TYPE (CAR FLIST))

{proof-constructor for OR-TYPE case}
(IF (NOR-TYPE (CAR FLIST))

{proof-constructor for NOR-TYPE case}
(IF (DBLE-NEG-TYPE (CAR FLIST))

{proof-constructor for DBLE-NEG-TYPE case}
NIL)))))

Hint: Consider the well-founded relation LESSP
and the measure (LIST-COUNT FLIST)

The body of TAUT-PROOF1 makes calls to several other proof-constructors and we omit several lemmas
which state that these functions construct the appropriate proofs.

In the PROP-ATOMP case, two possibilities arise depending on whether
(NEG-LIST (CAR FLIST) AUXLIST) is T or not. If it is T, then PROP-ATOM-PROOF1 constructs the
appropriate proof. If it is not T, then we recurse as in TAUTOLOGYP1 and PROP-ATOM-PROOF2 uses the
proof constructed by the recursive call to construct the required final proof.

(IF (NEG-LIST (CAR FLIST) AUXLIST)
(PROP-ATOM-PROOF1 FLIST AUXLIST)
(PROP-ATOM-PROOF2 FLIST AUXLIST

(TAUT-PROOF1 (CDR FLIST)
(CONS (CAR FLIST) AUXLIST))))

In the OR-TYPE case, OR-TYPE-PROOF constructs the proof of the disjunction of the formulas in FLIST
and AUXLIST using the proof generated by the recursive call to TAUT-PROOF1.

(OR-TYPE-PROOF
(ARG1 (CAR FLIST))
(ARG2 (CAR FLIST))
(APPEND (CDR FLIST) AUXLIST)
(TAUT-PROOF1 (CONS (ARG1 (CAR FLIST))

(CONS (ARG2 (CAR FLIST)) (CDR FLIST)))
AUXLIST))

NOR-TYPE-PROOF constructs the proof in the NOR-TYPE case but this time there are two recursive calls
to TAUT-PROOF1 as is also the case in TAUTOLOGYP1.
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(NOR-TYPE-PROOF
(ARG1 (ARG1 (CAR FLIST)))
(ARG2 (ARG1 (CAR FLIST)))
(APPEND (CDR FLIST) AUXLIST)
(TAUT-PROOF1 (CONS (F-NOT (ARG1 (ARG1 (CAR FLIST))))

(CDR FLIST))
AUXLIST)

(TAUT-PROOF1 (CONS (F-NOT (ARG2 (ARG1 (CAR FLIST))))
(CDR FLIST))

AUXLIST))

Finally, in the DBLE-NEG-TYPE case, DBLE-NEG-TYPE-PROOF is used to construct the required proof
from the proof generated by the recursive call to TAUT-PROOF1.

(DBLE-NEG-TYPE-PROOF
(ARG1 (ARG1 (CAR FLIST)))
(APPEND (CDR FLIST) AUXLIST)
(TAUT-PROOF1 (CONS (ARG1 (ARG1 (CAR FLIST)))

(CDR FLIST))
AUXLIST))

We now state the theorem which asserts that TAUT-PROOF1 constructs a correct proof of
(MAKE-DISJUNCT (APPEND FLIST AUXLIST)) if (TAUTOLOGYP1 FLIST AUXLIST) is T and
both FLIST and AUXLIST are lists of formulas. (FORM-LIST FLIST) checks if FLIST is a (possibly
empty) list of formulas.
233. Theorem. TAUT-THM1 (rewrite):

(IMPLIES (AND (FORM-LIST FLIST)
(FORM-LIST AUXLIST)
(TAUTOLOGYP1 FLIST AUXLIST))

(PROVES (TAUT-PROOF1 FLIST AUXLIST)
(MAKE-DISJUNCT (APPEND FLIST AUXLIST))))

Hints: Disable NEG-LIST-REDUC and FORMULA
Induct as for (TAUTOLOGYP1 FLIST AUXLIST).

The theorem TAUT-THM1 captures the statement of the Tautology Theorem when AUXLIST is instantiated
with NIL.

5.5 The Proof of the Correctness of the Tautology-checker

The final part of the proof consists in showing that tautology-checker TAUTOLOGYP1 corresponds to the
truth-table definition of a tautology. Boyer and Moore [Boyer] have carried out a similar proof of the
correctness of a tautology-checker for IF-expressions. To prove the correctness of the above tautology-checker,
we need to:

1. Define the notion of the logical truth of a formula by defining a function which evaluates the truth
value of a formula with respect to a given truth assignment.

2. Using the above function, show that if TAUTOLOGYP1 asserts a given formula to be a tautology,
then the truth value of that formula under any truth assignment is always T.

3. Prove that if TAUTOLOGYP1 claims that the given formula is not a tautology, a falsifying truth
assignment exists, i.e. an assignment under which the truth value of the given formula is F.

The function EVAL below evaluates the truth value of the formula EXP with respect to the truth assignment
ALIST and returns T or F accordingly. (ELEM-FORM EXP) checks if EXP is an atom. EVAL works as
follows:



21

If EXP is an atom:
Return T if EXP is a member of ALIST and F otherwise.

If EXP is of the form #¬#A:
Return the negation of the truth value of A on ALIST.

If EXP is of the form A #∨# B:
Return T if atleast one of A or B evaluates to T on
ALIST and F otherwise.

If it is none of the above, EXP is not well-formed.
237. Definition.

(EVAL EXP ALIST)
=

(IF (NLISTP EXP)
F
(IF (ELEM-FORM EXP)

(MEMBER EXP ALIST)
(IF (EQUAL (CAR EXP) ’NOT)

(NOT (EVAL (CADR EXP) ALIST))
(IF (EQUAL (CAR EXP) ’OR)

(OR (EVAL (CADR EXP) ALIST)
(EVAL (CADDR EXP) ALIST))

F))))

Having defined EVAL, we can state and prove the other two statements in the proof of correctness of
TAUTOLOGYP1. The theorem TAUT-EVAL states that if (TAUTOLOGYP1 FLIST AUXLIST) is T, then
EVAL on (MAKE-DISJUNCT (APPEND FLIST AUXLIST)) returns T on any ALIST.
257. Theorem. TAUT-EVAL (rewrite):

(IMPLIES (TAUTOLOGYP1 FLIST AUXLIST)
(EVAL (MAKE-DISJUNCT (APPEND FLIST AUXLIST))

ALIST))
Hints: Disable EVAL, EVAL-MAKE-DISJUNCT, ELEM-FORM,

PROP-ATOMP, OR-TYPE, NOR-TYPE, DBLE-NEG-TYPE,
APPEND, and NEG-LIST-REDUC

Induct as for (TAUTOLOGYP1 FLIST AUXLIST).

Note that it is only in the proof of the statement that all non-TAUTOLOGYP1s are falsifiable do we need to
prove that every formula is of one of the types: PROP-ATOMP, OR-TYPE, NOR-TYPE or
DBLE-NEG-TYPE. This is stated below as FORMULA-CASES1.
271. Theorem. FORMULA-CASES1:

(IMPLIES (FORMULA EXP T 0)
(OR (PROP-ATOMP EXP)

(OR-TYPE EXP)
(NOR-TYPE EXP)
(DBLE-NEG-TYPE EXP)))

(FALSIFY-TAUT FLIST AUXLIST) constructs the truth assignment which falsifies
(MAKE-DISJUNCT (APPEND FLIST AUXLIST)) when (TAUTOLOGYP1 FLIST AUXLIST) is F
and its definition is similar to that of TAUTOLOGYP1. We state this as NON-TAUT-FALSE below. We restrict
AUXLIST to being a list of propositional atoms whose disjunction is not by itself a tautology, but since we are
only interested in the instance when the AUXLIST is NIL, this turns out not to matter.
(FALSIFY AUXLIST) returns the truth assignment which falsifies (MAKE-DISJUNCT AUXLIST) when
AUXLIST is a list of propositional atoms.
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281. Theorem. NOT-TAUT-FALSE (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(PROP-ATOMP-LIST AUXLIST)
(NOT (EVAL (MAKE-DISJUNCT AUXLIST)

(FALSIFY AUXLIST)))
(NOT (TAUTOLOGYP1 FLIST AUXLIST)))

(NOT (EVAL (MAKE-DISJUNCT (APPEND FLIST AUXLIST))
(FALSIFY-TAUT FLIST AUXLIST))))

Hints: Induct as for (FALSIFY-TAUT FLIST AUXLIST).
Disable NEG-LIST, EVAL-MAKE-DISJUNCT, NEG-LIST-REDUC,

PROP-ATOMP-REDUC, FORMULA, FALSIFY, APPEND, and
NOR-TYPE

Finally, we replace AUXLIST by NIL and derive more readable versions of the above theorems.
282. Definition.

(TAUTOLOGYP FLIST)
=

(TAUTOLOGYP1 FLIST NIL)

283. Definition.
(TAUT-PROOF FLIST)

=
(TAUT-PROOF1 FLIST NIL)

286. Theorem. TAUTOLOGY-THEOREM (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(TAUTOLOGYP FLIST)
(EQUAL CONCL (MAKE-DISJUNCT FLIST)))

(PROVES (TAUT-PROOF FLIST) CONCL))
Hint: Disable TAUT-PROOF1, TAUTOLOGYP1, FORMULA, and

NOT-FALSIFY-TAUT

288. Theorem. TAUTOLOGIES-ARE-TRUE (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(TAUTOLOGYP FLIST))
(EVAL (MAKE-DISJUNCT FLIST) ALIST))

Hint: Disable FORMULA, TAUTOLOGYP1, and NOT-FALSIFY-TAUT

290. Theorem. TRUTHS-ARE-TAUTOLOGIES (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(NOT (TAUTOLOGYP FLIST)))
(NOT (EVAL (MAKE-DISJUNCT FLIST)

(FALSIFY-TAUT FLIST NIL))))
Hint: Disable TAUTOLOGYP1, NOT-FALSIFY-TAUT, and FORMULA

5.6 A Post-Script

The main motivation for proving the Tautology Theorem was that it could then be applied to simplify some
of the formal deduction steps in the metatheorems that were to follow. As it turned out, it was not directly
usable since all our applications involve the use of meta-variables, i.e. variables in the Boyer-Moore logic, and
the tautology-checker can only handle SFOL expressions. For instance, if we want to show that
(F-OR (F-NOT A) A) is a tautology for any formula A, we cannot directly apply the tautology-checker
without instantiating A. The Tautology Theorem was rendered useful by the contrapositive version of
TRUTHS-ARE-TAUTOLOGIES displayed below as EVAL-TAUTOLOGYP. Since EVAL translates formal
disjunctions and negations into disjunctions and negations in the Boyer-Moore logic, we can use it to translate
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tautologies containing meta-variables into statements which are tautologously true in the Boyer-Moore Logic.
Now, in order to establish (TAUTOLOGYP FLIST), the theorem prover tries to prove that
(EVAL (MAKE-DISJUNCT FLIST) (FALSIFY-TAUT FLIST NIL)) is tautologously true.
318. Theorem. EVAL-TAUTOLOGYP (rewrite):

(IMPLIES (AND (FORM-LIST FLIST)
(EVAL (MAKE-DISJUNCT FLIST)

(FALSIFY-TAUT FLIST NIL)))
(TAUTOLOGYP FLIST))

Hints: Disable TAUTOLOGYP, FORM-LIST, and FALSIFY-TAUT
Consider:
TRUTHS-ARE-TAUTOLOGIES
Enable TRUTHS-ARE-TAUTOLOGIES

6. Conclusions

This paper describes a project aimed at mechanizing proofs in metamathematics using the Boyer-Moore
Theorem Prover [Boyer, meta]. To this end, a proof-checker for Shoenfield’s First Order Logic (SFOL)
[shoenfield] was defined as a function in the Boyer-Moore logic. The theorem prover was then used to prove
the tautology theorem for SFOL. The success of this proof effort leads us to believe that a significant part of
proof-theoretic metamathematics can be mechanically proof-checked using the Boyer-Moore theorem prover.
These mechanical proofs also demonstrate a method for making sound extensions to automatic proof-checkers.
Such proofs make it possible to write correct formal proofs without laying out in tedious detail, all of the steps

2involved. This leads to a significant speed-up in the automatic checking of proofs and at the same time makes
it more convenient for a human to construct proofs that will be automatically checked.

The proof was done by first writing up a list of events before attempting the mechanical proofs. This took
about 4 weeks. It took about 3 or 4 weeks to complete a mechanical proof of the Tautology theorem. Only a
few changes were made to the original outline of the proof. Since then, some revisions have been made to the
statements of a few of the definitions and lemmas involved. The proofs were done on a Symbolics 3600 Lisp
Machine.

Was the mechanical proof significantly more difficult than the informal proof? Both of these have been
described in a fair amount of detail so that the reader can independently judge the level of difficulty involved.
For the most part, the theorem prover was given the same information as one would glean from a careful
reading of Shoenfield’s Mathematical Logic. The use of linguistic devices such as typed meta-variables,
ellipses, and the use of the phrase ‘‘of the form’’, lent brevity to the informal proof. The version of the
Boyer-Moore theorem prover used in this proof had no corresponding devices. In this case, the task of going
from an informal proof to a mechanical proof is comparable in difficulty to the task of going from a carefully
stated program specification to an executable program satisfying those specifications. Both tasks involve
capturing certain notions using only the data-structures and constructs provided by the theorem proving system
or programming language. While no mistakes were found in Shoenfield’s outline of the proof, a few small gaps
were found in the exposition. The clarity and detail in Shoenfield’s outline were of immense help in the
formulation of the mechanical proof outline.

2Some preliminary experiments were carried out in which the performance of the tautology-checker on some small tautologies and
non-tautologies was compared to the performance of the SFOL proof-checker on the corresponding generated proofs. The difference in the
respective timings was remarkable. On an example on which the tautology-checker took 0.1 secs, it took 12 minutes to generate and check
the formal proof. A 7000-fold difference! Such experimental results should be taken with a lot of salt since the proof-checker is not a very
efficient one and a smaller fraction of the time spent in garbage collection gets included in the smaller execution time. On simpler
examples, the ratios of the two times ranged from 1:100 to 1:600.
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The only other mechanical proof of a metamathematical theorem of comparable difficulty is Paulson’s proof
of the correctness of a Unification algorithm using Cambridge LCF [paulson]. Since a considerable part of that
proof effort was spent making changes to the LCF system, a proper comparison is not possible.
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1 The List of Definitions and Lemmas

1. (BOOT-STRAP)

2. Definition.
(FUNCTION FN)

=
(AND (EQUAL FN

(LIST ’F (CADR FN) (CADDR FN)))
(NUMBERP (CADR FN))
(NUMBERP (CADDR FN)))

3. Definition.
(VARIABLE X)

=
(AND (EQUAL X (LIST ’X (CADR X)))

(NUMBERP (CADR X)))

4. Definition.
(PREDICATE P)

=
(OR (AND (EQUAL P

(LIST ’P (CADR P) (CADDR P)))
(NUMBERP (CADR P))
(NUMBERP (CADDR P)))

(EQUAL P ’EQUAL))

5. Definition.
(DEGREE FN)

=
(IF (EQUAL FN ’EQUAL) 2 (CADDR FN))

6. Definition.
(INDEX FN)

=
(CADR FN)

7. Definition.
(FUNC-PRED X)

=
(OR (FUNCTION X) (PREDICATE X))

8. Definition.
(V X)

=
(LIST ’X (FIX X))
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9. Theorem. NUMBERP-FIX (rewrite):
(NUMBERP (FIX X))

10. Theorem. VARIABLE-V (rewrite):
(VARIABLE (V X))

11. Definition.
(FN X Y)

=
(LIST ’F (FIX X) (FIX Y))

12. Definition.
(P X Y)

=
(LIST ’P (FIX X) (FIX Y))

13. Theorem. FUNCTION-FN (rewrite):
(FUNCTION (FN X Y))

14. Theorem. PREDICATE-P (rewrite):
(PREDICATE (P X Y))

15. Definition.
(QUANTIFIER X)

=
(EQUAL X ’FORSOME)

16. Definition.
(UNION X Y)

=
(IF (LISTP X)

(IF (MEMBER (CAR X) Y)
(UNION (CDR X) Y)
(CONS (CAR X) (UNION (CDR X) Y)))

Y)

17. Disable VARIABLE.

18. Disable QUANTIFIER.

19. Theorem. PREDICATE-F-EQUAL (rewrite):
(PREDICATE ’EQUAL)

20. Disable FUNCTION.

21. Disable PREDICATE.

22. Definition.
(APPEND X Y)

=
(IF (LISTP X)

(CONS (CAR X) (APPEND (CDR X) Y))
Y)

23. Definition.
(DELETE X Y)

=
(IF (LISTP Y)

(IF (EQUAL X (CAR Y))
(DELETE X (CDR Y))
(CONS (CAR Y) (DELETE X (CDR Y))))

Y)
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24. Theorem. NOT-MEMBER-DELETE (rewrite):
(NOT (MEMBER X (DELETE X Y)))

25. Definition.
(COLLECT-FREE EXP FLG)

=
(IF (LISTP EXP)

(IF (EQUAL FLG T)
(IF (VARIABLE EXP)

(CONS EXP NIL)
(IF (AND (QUANTIFIER (CAR EXP))

(LISTP (CDR EXP)))
(DELETE (CADR EXP)

(COLLECT-FREE (CDDR EXP) ’LIST))
(IF (OR (FUNC-PRED (CAR EXP))

(EQUAL (CAR EXP) ’NOT)
(EQUAL (CAR EXP) ’OR))

(COLLECT-FREE (CDR EXP) ’LIST)
NIL)))

(APPEND (COLLECT-FREE (CAR EXP) T)
(COLLECT-FREE (CDR EXP) ’LIST)))

NIL)

26. Definition.
(SENTENCE EXP)

=
(EQUAL (COLLECT-FREE EXP T) NIL)

27. Definition.
(COVERING EXP VAR FLG)

=
(IF (LISTP EXP)

(IF (EQUAL FLG T)
(IF (VARIABLE EXP)

NIL
(IF (AND (QUANTIFIER (CAR EXP))

(LISTP (CDR EXP)))
(IF (EQUAL (CADR EXP) VAR)

NIL
(IF (MEMBER VAR

(COLLECT-FREE (CDDR EXP) ’LIST))
(CONS (CADR EXP)

(COVERING (CDDR EXP) VAR ’LIST))
NIL))

(IF (OR (FUNC-PRED (CAR EXP))
(EQUAL (CAR EXP) ’NOT)
(EQUAL (CAR EXP) ’OR))

(COVERING (CDR EXP) VAR ’LIST)
NIL)))

(APPEND (COVERING (CAR EXP) VAR T)
(COVERING (CDR EXP) VAR ’LIST)))

NIL)
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28. Definition.
(NIL-INTERSECT X Y)

=
(IF (LISTP X)

(AND (NOT (MEMBER (CAR X) Y))
(NIL-INTERSECT (CDR X) Y))

T)

29. Definition.
(FREE-FOR EXP VAR TERM FLG)

=
(NIL-INTERSECT (COVERING EXP VAR FLG)

(COLLECT-FREE TERM T))

30. Definition.
(F-EQUAL X Y)

=
(LIST ’EQUAL X Y)

31. Definition.
(F-NOT X)

=
(LIST ’NOT X)

32. Definition.
(F-OR X Y)

=
(LIST ’OR X Y)

33. Definition.
(FORSOME X Y)

=
(LIST ’FORSOME X Y)

34. Definition.
(F-AND X Y)

=
(F-NOT (F-OR (F-NOT X) (F-NOT Y)))

35. Definition.
(F-IMPLIES X Y)

=
(F-OR (F-NOT X) Y)

36. Definition.
(FORALL VAR EXP)

=
(F-NOT (FORSOME VAR (F-NOT EXP)))

37. Definition.
(F-IFF X Y)

=
(F-AND (F-IMPLIES X Y)

(F-IMPLIES Y X))
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38. Definition.
(VAR-LIST LIST N)

=
(IF (ZEROP N)

(EQUAL LIST NIL)
(AND (VARIABLE (CAR LIST))

(VAR-LIST (CDR LIST) (SUB1 N))))

39. Definition.
(VAR-SET LIST N)

=
(IF (ZEROP N)

(EQUAL LIST NIL)
(AND (VARIABLE (CAR LIST))

(NOT (MEMBER (CAR LIST) (CDR LIST)))
(VAR-SET (CDR LIST) (SUB1 N))))

40. Definition.
(TERMP EXP FLG COUNT)

=
(IF (EQUAL FLG T)

(IF (NLISTP EXP)
F
(OR (VARIABLE EXP)

(AND (FUNCTION (CAR EXP))
(TERMP (CDR EXP)

’LIST
(DEGREE (CAR EXP))))))

(IF (OR (NLISTP EXP) (ZEROP COUNT))
(AND (EQUAL EXP NIL) (ZEROP COUNT))
(AND (TERMP (CAR EXP) T 0)

(TERMP (CDR EXP)
’LIST
(SUB1 COUNT)))))

41. Definition.
(ARG1 X)

=
(CADR X)

42. Definition.
(ARG2 X)

=
(CADDR X)

43. Definition.
(ATOMP EXP)

=
(AND (PREDICATE (CAR EXP))

(TERMP (CDR EXP)
’LIST
(DEGREE (CAR EXP))))

44. Disable ATOMP.
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45. Definition.
(FORMULA EXP FLG COUNT)

=
(IF (EQUAL FLG T)

(IF (NLISTP EXP)
F
(OR (ATOMP EXP)

(AND (EQUAL (CAR EXP) ’NOT)
(FORMULA (CDR EXP) ’LIST 1))

(AND (EQUAL (CAR EXP) ’OR)
(FORMULA (CDR EXP) ’LIST 2))

(AND (EQUAL (CAR EXP) ’FORSOME)
(VARIABLE (CADR EXP))
(FORMULA (CDDR EXP) ’LIST 1))))

(IF (OR (NLISTP EXP) (ZEROP COUNT))
(AND (EQUAL EXP NIL) (ZEROP COUNT))
(AND (FORMULA (CAR EXP) T 0)

(FORMULA (CDR EXP)
’LIST
(SUB1 COUNT)))))

46. Definition.
(SUBST EXP VAR TERM FLG)

=
(IF (LISTP EXP)

(IF (EQUAL FLG T)
(IF (VARIABLE EXP)

(IF (EQUAL EXP VAR) TERM EXP)
(IF (AND (QUANTIFIER (CAR EXP))

(LISTP (CDR EXP)))
(IF (EQUAL (CADR EXP) VAR)

EXP
(CONS (CAR EXP)

(CONS (CADR EXP)
(SUBST (CDDR EXP) VAR TERM ’LIST))))

(IF (OR (FUNC-PRED (CAR EXP))
(EQUAL (CAR EXP) ’NOT)
(EQUAL (CAR EXP) ’OR))

(CONS (CAR EXP)
(SUBST (CDR EXP) VAR TERM ’LIST))

EXP)))
(CONS (SUBST (CAR EXP) VAR TERM T)

(SUBST (CDR EXP) VAR TERM ’LIST)))
EXP)

47. Definition.
(NEG EXP1 EXP2)

=
(OR (EQUAL EXP1 (F-NOT EXP2))

(EQUAL EXP2 (F-NOT EXP1)))
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48. Definition.
(CONC PF FLG)

=
(IF (NLISTP PF)

NIL
(IF (EQUAL FLG T)

(CADDR PF)
(CONS (CONC (CAR PF) T)

(CONC (CDR PF) ’LIST))))

49. Definition.
(SUBSET X Y)

=
(IF (LISTP X)

(AND (MEMBER (CAR X) Y)
(SUBSET (CDR X) Y))

T)

50. Definition.
(SET-EQUAL X Y)

=
(AND (SUBSET X Y) (SUBSET Y X))

51. Definition.
(PROP-AXIOM EXP)

=
(F-OR (F-NOT EXP) EXP)

52. Definition.
(SUBST-AXIOM EXP VAR TERM)

=
(F-IMPLIES (SUBST EXP VAR TERM T)

(FORSOME VAR EXP))

53. Definition.
(IDENT-AXIOM VAR)

=
(F-EQUAL VAR VAR)

54. Definition.
(PAIREQUALS VARS1 VARS2 EXP)

=
(IF (LISTP VARS1)

(F-IMPLIES (F-EQUAL (CAR VARS1) (CAR VARS2))
(PAIREQUALS (CDR VARS1)

(CDR VARS2)
EXP))

EXP)

55. Definition.
(EQUAL-AXIOM2 VARS1 VARS2 PR)

=
(PAIREQUALS VARS1 VARS2

(F-IMPLIES (CONS PR VARS1)
(CONS PR VARS2)))
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56. Definition.
(ASSUME EXP LIST FLG)

=
(IF (LISTP LIST)

(IF (AND (EQUAL (CAAAR LIST) FLG)
(EQUAL EXP (CADAR LIST)))

(CDR LIST)
(ASSUME EXP (CDR LIST) FLG))

F)

57. Definition.
(PROP-AXIOM-PROOF EXP)

=
(LIST ’AXIOM

(LIST ’PROP-AXIOM EXP)
(PROP-AXIOM EXP))

58. Definition.
(SUBST-AXIOM-PROOF EXP VAR TERM)

=
(LIST ’AXIOM

(LIST ’SUBST-AXIOM EXP VAR TERM)
(SUBST-AXIOM EXP VAR TERM))

59. Definition.
(IDENT-AXIOM-PROOF VAR)

=
(LIST ’AXIOM

(LIST ’IDENT-AXIOM VAR)
(F-EQUAL VAR VAR))

60. Definition.
(EQUAL-AXIOM1 VARS1 VARS2 FN)

=
(PAIREQUALS VARS1 VARS2

(F-EQUAL (CONS FN VARS1)
(CONS FN VARS2)))

61. Definition.
(EQUAL-AXIOM1-PROOF FN VARS1 VARS2)

=
(LIST ’AXIOM

(LIST ’EQUAL-AXIOM1 FN VARS1 VARS2)
(EQUAL-AXIOM1 VARS1 VARS2 FN))

62. Definition.
(EQUAL-AXIOM2-PROOF PR VARS1 VARS2)

=
(LIST ’AXIOM

(LIST ’EQUAL-AXIOM2 PR VARS1 VARS2)
(EQUAL-AXIOM2 VARS1 VARS2 PR))

63. Definition.
(EXPAN-PROOF A B PF)

=
(LIST ’RULE

(LIST ’EXPAN A B)
(F-OR A B)
PF)
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64. Definition.
(CONTRAC-PROOF A PF)

=
(LIST ’RULE (LIST ’CONTRAC A) A PF)

65. Definition.
(ASSOC-PROOF A B C PF)

=
(LIST ’RULE

(LIST ’ASSOC A B C)
(F-OR (F-OR A B) C)
PF)

66. Definition.
(CUT-PROOF A B C PF1 PF2)

=
(LIST ’RULE

(LIST ’CUT A B C)
(F-OR B C)
(LIST PF1 PF2))

67. Definition.
(FORSOME-INTRO-PROOF VAR A B PF)

=
(LIST ’RULE

(LIST ’E-INTRO VAR A B)
(F-IMPLIES (FORSOME VAR A) B)
PF)

68. Enable ATOMP.

69. Definition.
(HINT1 PF)

=
(CAADR PF)

70. Definition.
(HINT2 PF)

=
(CADADR PF)

71. Definition.
(HINT3 PF)

=
(CADDADR PF)

72. Definition.
(HINT4 PF)

=
(CADDDADR PF)

73. Definition.
(SUB-PROOF PF)

=
(CADDDR PF)
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74. Definition.
(PRF PF)

=
(IF
(NLISTP PF)
F
(IF
(EQUAL (CAR PF) ’AXIOM)
(IF (EQUAL (HINT1 PF) ’PROP-AXIOM)

(AND (FORMULA (HINT2 PF) T 0)
(EQUAL PF

(PROP-AXIOM-PROOF (HINT2 PF))))
(IF (EQUAL (HINT1 PF) ’SUBST-AXIOM)

(AND (FORMULA (HINT2 PF) T 0)
(VARIABLE (HINT3 PF))
(TERMP (HINT4 PF) T 0)
(FREE-FOR (HINT2 PF)

(HINT3 PF)
(HINT4 PF)
T)

(EQUAL PF
(SUBST-AXIOM-PROOF (HINT2 PF)

(HINT3 PF)
(HINT4 PF))))

(IF (EQUAL (HINT1 PF) ’IDENT-AXIOM)
(AND (VARIABLE (HINT2 PF))

(EQUAL PF
(IDENT-AXIOM-PROOF (HINT2 PF))))

(IF (EQUAL (HINT1 PF) ’EQUAL-AXIOM1)
(AND (FUNCTION (HINT2 PF))

(VAR-LIST (HINT3 PF)
(DEGREE (HINT2 PF)))

(VAR-LIST (HINT4 PF)
(DEGREE (HINT2 PF)))

(EQUAL PF
(EQUAL-AXIOM1-PROOF (HINT2 PF)

(HINT3 PF)
(HINT4 PF))))

(IF (EQUAL (HINT1 PF) ’EQUAL-AXIOM2)
(AND (PREDICATE (HINT2 PF))

(VAR-LIST (HINT3 PF)
(DEGREE (HINT2 PF)))

(VAR-LIST (HINT4 PF)
(DEGREE (HINT2 PF)))

(EQUAL PF
(EQUAL-AXIOM2-PROOF (HINT2 PF)

(HINT3 PF)
(HINT4 PF))))

F)))))
(IF

(EQUAL (CAR PF) ’RULE)
(IF (EQUAL (HINT1 PF) ’EXPAN)

(AND (FORMULA (HINT2 PF) T 0)
(EQUAL PF

(EXPAN-PROOF (HINT2 PF)
(HINT3 PF)
(SUB-PROOF PF)))
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(EQUAL (CONC (SUB-PROOF PF) T)
(HINT3 PF))

(PRF (SUB-PROOF PF)))
(IF (EQUAL (HINT1 PF) ’CONTRAC)

(AND (EQUAL PF
(CONTRAC-PROOF (HINT2 PF)

(SUB-PROOF PF)))
(EQUAL (CONC (SUB-PROOF PF) T)

(F-OR (HINT2 PF) (HINT2 PF)))
(PRF (SUB-PROOF PF)))

(IF (EQUAL (HINT1 PF) ’ASSOC)
(AND (EQUAL PF

(ASSOC-PROOF (HINT2 PF)
(HINT3 PF)
(HINT4 PF)
(SUB-PROOF PF)))

(EQUAL (CONC (SUB-PROOF PF) T)
(F-OR (HINT2 PF)

(F-OR (HINT3 PF) (HINT4 PF))))
(PRF (SUB-PROOF PF)))

(IF (EQUAL (HINT1 PF) ’CUT)
(AND (EQUAL PF

(CUT-PROOF (HINT2 PF)
(HINT3 PF)
(HINT4 PF)
(CAR (SUB-PROOF PF))
(CADR (SUB-PROOF PF))))

(EQUAL (CONC (SUB-PROOF PF) ’LIST)
(LIST (F-OR (HINT2 PF) (HINT3 PF))

(F-OR (F-NOT (HINT2 PF)) (HINT4
(PRF (CAR (SUB-PROOF PF)))
(PRF (CADR (SUB-PROOF PF))))

(IF (EQUAL (HINT1 PF) ’E-INTRO)
(AND (VARIABLE (HINT2 PF))

(EQUAL PF
(FORSOME-INTRO-PROOF (HINT2 PF)

(HINT3 PF)
(HINT4 PF)
(SUB-PROOF P

(NOT (MEMBER (HINT2 PF)
(COLLECT-FREE (HINT4 PF) T)

(EQUAL (CONC (SUB-PROOF PF) T)
(F-IMPLIES (HINT3 PF) (HINT4 PF))

(PRF (SUB-PROOF PF)))
F)))))

F)))

75. Theorem. FORMULA-OR-REDUC (rewrite):
(EQUAL (FORMULA (LIST ’OR A B) T 0)

(AND (FORMULA A T 0) (FORMULA B T 0)))

76. Theorem. FORMULA-NOT-REDUC (rewrite):
(EQUAL (FORMULA (LIST ’NOT A) T 0)

(FORMULA A T 0))

77. Theorem. FORMULA-FORSOME-REDUC (rewrite):
(EQUAL (FORMULA (LIST ’FORSOME X A) T 0)

(AND (VARIABLE X) (FORMULA A T 0)))
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78. Definition.
(PROVES PF EXP)

=
(AND (EQUAL (CONC PF T) EXP)

(FORMULA EXP T 0)
(PRF PF))

79. Theorem. PROVES-IS-FORMULA (rewrite):
(IMPLIES (PROVES PF EXP)

(FORMULA EXP T 0))

80. Theorem. PROVES-IS-FORMULA-AGAIN (rewrite):
(IMPLIES (NOT (FORMULA EXP T 0))

(NOT (PROVES PF EXP)))
Hint: Disable FORMULA

81. Theorem. PROP-AXIOM-PROVES (rewrite):
(IMPLIES (AND (FORMULA EXP T 0)

(EQUAL CONCL (F-OR (F-NOT EXP) EXP)))
(PROVES (PROP-AXIOM-PROOF EXP) CONCL))

82. Theorem. SUBST-AXIOM-PROVES (rewrite):
(IMPLIES (AND (FORMULA CONCL T 0)

(VARIABLE VAR)
(TERMP TERM T 0)
(FREE-FOR EXP VAR TERM T)
(EQUAL CONCL

(SUBST-AXIOM EXP VAR TERM)))
(PROVES (SUBST-AXIOM-PROOF EXP VAR TERM)

CONCL))
Hint: Disable FREE-FOR

83. Theorem. EQUAL-AXIOM1-PROVES (rewrite):
(IMPLIES (AND (FUNCTION FN)

(VAR-LIST VARS1 (DEGREE FN))
(VAR-LIST VARS2 (DEGREE FN))
(FORMULA CONCL T 0)
(EQUAL CONCL

(EQUAL-AXIOM1 VARS1 VARS2 FN)))
(PROVES (EQUAL-AXIOM1-PROOF FN VARS1 VARS2)

CONCL))

84. Theorem. EQUAL-AXIOM2-PROVES (rewrite):
(IMPLIES (AND (PREDICATE PR)

(VAR-LIST VARS1 (DEGREE PR))
(VAR-LIST VARS2 (DEGREE PR))
(FORMULA CONCL T 0)
(EQUAL CONCL

(EQUAL-AXIOM2 VARS1 VARS2 PR)))
(PROVES (EQUAL-AXIOM2-PROOF PR VARS1 VARS2)

CONCL))

85. Theorem. IDENT-AXIOM-PROVES (rewrite):
(IMPLIES (AND (VARIABLE VAR)

(EQUAL CONCL (IDENT-AXIOM VAR))
(FORMULA CONCL T 0))

(PROVES (IDENT-AXIOM-PROOF VAR)
CONCL))
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86. Theorem. EXPAN-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA A T 0)

(PROVES PF B)
(EQUAL CONCL (F-OR A B)))

(PROVES (EXPAN-PROOF A B PF) CONCL))

87. Theorem. CONTRAC-PROOF-PROVES (rewrite):
(IMPLIES (PROVES PF (F-OR A A))

(PROVES (CONTRAC-PROOF A PF) A))

88. Theorem. ASSOC-PROOF-PROVES (rewrite):
(IMPLIES (AND (PROVES PF (F-OR A (F-OR B C)))

(EQUAL CONCL (F-OR (F-OR A B) C)))
(PROVES (ASSOC-PROOF A B C PF) CONCL))

89. Theorem. CUT-PROOF-PROVES (rewrite):
(IMPLIES (AND (PROVES PF1 (F-OR A B))

(PROVES PF2 (F-OR (F-NOT A) C))
(EQUAL CONCL (F-OR B C)))

(PROVES (CUT-PROOF A B C PF1 PF2)
CONCL))

90. Disable PROP-AXIOM-PROOF.

91. Disable SUBST-AXIOM-PROOF.

92. Disable EQUAL-AXIOM1-PROOF.

93. Disable EQUAL-AXIOM2-PROOF.

94. Disable IDENT-AXIOM-PROOF.

95. Disable EXPAN-PROOF.

96. Disable CONTRAC-PROOF.

97. Disable ASSOC-PROOF.

98. Disable CUT-PROOF.

99. Theorem. FORSOME-INTRO-PROVES (rewrite):
(IMPLIES (AND (PROVES PF (F-IMPLIES A B))

(NOT (MEMBER VAR (COLLECT-FREE B T)))
(VARIABLE VAR)
(EQUAL A-PRIME

(F-IMPLIES (FORSOME VAR A) B)))
(PROVES (FORSOME-INTRO-PROOF VAR A B PF)

A-PRIME))
Hint: Disable COLLECT-FREE and FORMULA

100. Disable FORSOME-INTRO-PROOF.

101. Disable PRF.

102. Disable PROVES.

103. Definition.
(COMMUT-PROOF A B PF)

=
(CUT-PROOF A B A PF

(PROP-AXIOM-PROOF A))
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104. Theorem. COMMUT-PROOF-PROVES (rewrite):
(IMPLIES (AND (PROVES PF (F-OR A B))

(FORMULA (F-OR A B) T 0)
(EQUAL CONCL (F-OR B A)))

(PROVES (COMMUT-PROOF A B PF) CONCL))

105. Disable COMMUT-PROOF.

106. Definition.
(DETACH-PROOF A B PF1 PF2)

=
(CONTRAC-PROOF B

(CUT-PROOF A B B
(COMMUT-PROOF B A

(EXPAN-PROOF B A PF1))
PF2))

107. Theorem. DETACH-PROOF-PROVES1 (rewrite):
(IMPLIES (AND (PROVES PF1 A)

(PROVES PF2 (F-IMPLIES A B))
(FORMULA B T 0))

(PROVES (DETACH-PROOF A B PF1 PF2) B))
Hint: Disable FORMULA

108. Disable DETACH-PROOF.

109. Definition.
(PROVES-LIST PFLIST EXPLIST)

=
(IF (NLISTP EXPLIST)

(EQUAL PFLIST NIL)
(AND (PROVES (CAR PFLIST) (CAR EXPLIST))

(PROVES-LIST (CDR PFLIST)
(CDR EXPLIST))))

110. Definition.
(LIST-IMPLIES LIST CONC)

=
(IF (NLISTP LIST)

CONC
(IF (NLISTP (CDR LIST))

(F-IMPLIES (CAR LIST) CONC)
(F-IMPLIES (CAR LIST)

(LIST-IMPLIES (CDR LIST) CONC))))
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111. Definition.
(LIST-DETACH-PROOF ALIST B PFLIST PF2)

=
(IF (NLISTP ALIST)

PF2
(IF (NLISTP (CDR ALIST))

(DETACH-PROOF (CAR ALIST)
B
(CAR PFLIST)
PF2)

(LIST-DETACH-PROOF (CDR ALIST)
B
(CDR PFLIST)
(DETACH-PROOF (CAR ALIST)

(LIST-IMPLIES (CDR ALIST) B)
(CAR PFLIST)
PF2))))

112. Theorem. DETACH-LIST-IMPLIES (rewrite):
(IMPLIES (AND (LIST C)

(PROVES PF A)
(PROVES PF2

(LIST-IMPLIES (CONS A C) B))
(FORMULA A T 0)
(FORMULA (LIST-IMPLIES C B) T 0))

(PROVES (DETACH-PROOF A
(LIST-IMPLIES C B)
PF PF2)

(LIST-IMPLIES C B)))

113. Theorem. FORMULA-LIST-IMPLIES:
(IMPLIES (AND (FORMULA (LIST-IMPLIES ALIST B) T 0)

(LISTP ALIST))
(FORMULA (LIST-IMPLIES (CDR ALIST) B)

T 0))

114. Theorem. DETACH-RULE-CORR (rewrite):
(IMPLIES (AND (PROVES-LIST PFLIST ALIST)

(PROVES PF2 (LIST-IMPLIES ALIST B))
(FORMULA B T 0))

(PROVES (LIST-DETACH-PROOF ALIST B PFLIST PF2)
B))

Hints: Induct as for (LIST-DETACH-PROOF ALIST B PFLIST PF2).
Consider:
DETACH-LIST-IMPLIES with
{A<-(CAR ALIST), C<-(CDR ALIST), PF<-(CAR PFLIST)}

FORMULA-LIST-IMPLIES
Enable DETACH-LIST-IMPLIES and FORMULA-LIST-IMPLIES

115. Disable LIST-DETACH-PROOF.

116. Disable DETACH-LIST-IMPLIES.

117. Definition.
(RT-EXPAN-PROOF A B PF)

=
(COMMUT-PROOF B A

(EXPAN-PROOF B A PF))
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118. Theorem. RT-EXPAN-PROOF-PROVES (rewrite):
(IMPLIES (AND (PROVES PF A)

(FORMULA B T 0)
(EQUAL CONCL (F-OR A B)))

(PROVES (RT-EXPAN-PROOF A B PF)
CONCL))

119. Disable RT-EXPAN-PROOF.

120. Definition.
(MAKE-DISJUNCT FLIST)

=
(IF (NLISTP FLIST)

NIL
(IF (NLISTP (CDR FLIST))

(CAR FLIST)
(F-OR (CAR FLIST)

(MAKE-DISJUNCT (CDR FLIST)))))

121. Definition.
(M1-PROOF EXP FLIST PF)

=
(IF (NLISTP FLIST)

NIL
(IF (NLISTP (CDR FLIST))

PF
(IF (EQUAL EXP (CAR FLIST))

(RT-EXPAN-PROOF (CAR FLIST)
(MAKE-DISJUNCT (CDR FLIST))
PF)

(EXPAN-PROOF (CAR FLIST)
(MAKE-DISJUNCT (CDR FLIST))
(M1-PROOF EXP (CDR FLIST) PF)))))

122. Theorem. M1-PROOF-PROVES1 (rewrite):
(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0)

(MEMBER EXP FLIST)
(PROVES PF EXP))

(PROVES (M1-PROOF EXP FLIST PF)
(MAKE-DISJUNCT FLIST)))

Hint: Disable FORMULA

123. Disable M1-PROOF.

124. Definition.
(RT-ASSOC-PROOF A B C PF)

=
(COMMUT-PROOF

(F-OR B C)
A
(ASSOC-PROOF B C A

(COMMUT-PROOF (F-OR C A)
B

(ASSOC-PROOF C A B
(COMMUT-PROOF (F-OR A B) C PF)))))
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125. Theorem. RT-ASSOC-PROOF-PROVES (rewrite):
(IMPLIES (AND (PROVES PF (F-OR (F-OR A B) C))

(FORMULA A T 0)
(FORMULA B T 0)
(FORMULA C T 0)
(EQUAL CONCL (F-OR A (F-OR B C))))

(PROVES (RT-ASSOC-PROOF A B C PF)
CONCL))

126. Disable RT-ASSOC-PROOF.

127. Definition.
(INSERT-PROOF A B C PF)

=
(COMMUT-PROOF (F-OR A C)

B
(ASSOC-PROOF A C B

(EXPAN-PROOF A
(F-OR C B)
(COMMUT-PROOF B C PF))))

128. Theorem. INSERT-PROOF-PROVES (rewrite):
(IMPLIES (AND (PROVES PF (F-OR B C))

(FORMULA A T 0)
(FORMULA B T 0)
(FORMULA C T 0)
(EQUAL CONCL (F-OR B (F-OR A C))))

(PROVES (INSERT-PROOF A B C PF)
CONCL))

129. Disable INSERT-PROOF.

130. Definition.
(M2-PROOF-STEP EXP1 EXP2 FLIST PF)

=
(IF (NLISTP FLIST)

NIL
(IF (NLISTP (CDR FLIST))

(IF (EQUAL EXP2 (CAR FLIST)) PF NIL)
(IF (EQUAL EXP2 (CAR FLIST))

(RT-ASSOC-PROOF EXP1 EXP2
(MAKE-DISJUNCT (CDR FLIST))

(RT-EXPAN-PROOF (F-OR EXP1 EXP2)
(MAKE-DISJUNCT (CDR FLIST))
PF))

(INSERT-PROOF (CAR FLIST)
EXP1
(MAKE-DISJUNCT (CDR FLIST))
(M2-PROOF-STEP EXP1 EXP2

(CDR FLIST)
PF)))))
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131. Theorem. M2-PROOF-STEP-PROVES (rewrite):
(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0)

(MEMBER EXP2 FLIST)
(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(PROVES PF (F-OR EXP1 EXP2)))

(PROVES (M2-PROOF-STEP EXP1 EXP2 FLIST PF)
(F-OR EXP1 (MAKE-DISJUNCT FLIST))))

Hint: Disable FORMULA

132. Theorem. M2-PROOF-STEP-PROVES1 (rewrite):
(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0)

(MEMBER EXP2 FLIST)
(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(PROVES PF (F-OR EXP1 EXP2))
(EQUAL CONCL

(F-OR EXP1 (MAKE-DISJUNCT FLIST))))
(PROVES (M2-PROOF-STEP EXP1 EXP2 FLIST PF)

CONCL))
Hints: Consider:

M2-PROOF-STEP-PROVES
Enable M2-PROOF-STEP-PROVES

133. Disable M2-PROOF-STEP.

134. Disable M2-PROOF-STEP-PROVES.

135. Definition.
(M2-PROOF EXP1 EXP2 FLIST PF)

=
(IF (NLISTP FLIST)

NIL
(IF (EQUAL EXP1 EXP2)

(M1-PROOF EXP1 FLIST
(CONTRAC-PROOF EXP1 PF))

(IF (EQUAL EXP1 (CAR FLIST))
(M2-PROOF-STEP EXP1 EXP2

(CDR FLIST)
PF)

(IF (EQUAL EXP2 (CAR FLIST))
(M2-PROOF-STEP EXP2 EXP1

(CDR FLIST)
(COMMUT-PROOF EXP1 EXP2 PF))

(EXPAN-PROOF (CAR FLIST)
(MAKE-DISJUNCT (CDR FLIST))
(M2-PROOF EXP1 EXP2

(CDR FLIST)
PF))))))
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136. Theorem. M1-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0)

(MEMBER EXP FLIST)
(PROVES PF EXP)
(EQUAL CONCL (MAKE-DISJUNCT FLIST)))

(PROVES (M1-PROOF EXP FLIST PF)
CONCL))

Hints: Consider:
M1-PROOF-PROVES1
Enable M1-PROOF-PROVES1

137. Theorem. M2-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0)

(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(MEMBER EXP1 FLIST)
(MEMBER EXP2 FLIST)
(PROVES PF (F-OR EXP1 EXP2)))

(PROVES (M2-PROOF EXP1 EXP2 FLIST PF)
(MAKE-DISJUNCT FLIST)))

Hint: Disable FORMULA

138. Theorem. M2-PROOF-PROVES1 (rewrite):
(IMPLIES (AND (FORMULA (MAKE-DISJUNCT FLIST) T 0)

(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(MEMBER EXP1 FLIST)
(MEMBER EXP2 FLIST)
(PROVES PF (F-OR EXP1 EXP2))
(EQUAL CONCL (MAKE-DISJUNCT FLIST)))

(PROVES (M2-PROOF EXP1 EXP2 FLIST PF)
CONCL))

Hints: Consider:
M2-PROOF-PROVES
Enable M2-PROOF-PROVES

139. Disable M2-PROOF.

140. Disable M2-PROOF-PROVES.
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141. Definition.
(M3-PROOF EXP1 EXP2 FLIST2 PF)

=
(CONTRAC-PROOF
(MAKE-DISJUNCT FLIST2)
(CONTRAC-PROOF
(F-OR (MAKE-DISJUNCT FLIST2)

(MAKE-DISJUNCT FLIST2))
(M2-PROOF
(F-OR (MAKE-DISJUNCT FLIST2)

(MAKE-DISJUNCT FLIST2))
EXP1
(CONS (F-OR (MAKE-DISJUNCT FLIST2)

(MAKE-DISJUNCT FLIST2))
(CONS (MAKE-DISJUNCT FLIST2) FLIST2))

(ASSOC-PROOF
(MAKE-DISJUNCT FLIST2)
(MAKE-DISJUNCT FLIST2)
EXP1
(COMMUT-PROOF (F-OR (MAKE-DISJUNCT FLIST2) EXP1)

(MAKE-DISJUNCT FLIST2)
(M2-PROOF (F-OR (MAKE-DISJUNCT FLIST2) EXP1)

EXP2
(CONS (F-OR (MAKE-DISJUNCT FLIST2) EXP1)

FLIST2)
(ASSOC-PROOF (MAKE-DISJUNCT FLIST2)

EXP1 EXP2
(COMMUT-PROOF (F-OR EXP1 EXP2)

(MAKE-DISJUNCT FLIST2)
PF))))))))

142. Definition.
(M-PROOF FLIST1 FLIST2 PF)

=
(IF (NLISTP FLIST1)

NIL
(IF (NLISTP (CDR FLIST1))

(M1-PROOF (CAR FLIST1) FLIST2 PF)
(IF (NLISTP (CDDR FLIST1))

(M2-PROOF (CAR FLIST1)
(CADR FLIST1)
FLIST2 PF)

(M3-PROOF (CAR FLIST1)
(CADR FLIST1)
FLIST2

(M-PROOF (CONS (F-OR (CAR FLIST1) (CADR FLIST1))
(CDDR FLIST1))
(CONS (F-OR (CAR FLIST1) (CADR FLIST1))

FLIST2)
(ASSOC-PROOF (CAR FLIST1)

(CADR FLIST1)
(MAKE-DISJUNCT (CDDR FLIST1))
PF))))))

Hint: Consider the well-founded relation LESSP
and the measure (LENGTH FLIST1)
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143. Theorem. SUBSET-CONS (rewrite):
(IMPLIES (SUBSET X Y)

(SUBSET X (CONS Z Y)))

144. Definition.
(FORM-LIST FLIST)

=
(IF (LISTP FLIST)

(AND (FORMULA (CAR FLIST) T 0)
(FORM-LIST (CDR FLIST)))

T)

145. Theorem. FORMLIST-FORMULA-MAKE-DISJ (rewrite):
(IMPLIES (AND (FORM-LIST FLIST) (LISTP FLIST))

(FORMULA (MAKE-DISJUNCT FLIST) T 0))
Hint: Disable FORMULA

146. Theorem. M3-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA EXP1 T 0)

(FORMULA EXP2 T 0)
(FORM-LIST FLIST2)
(PROVES PF

(MAKE-DISJUNCT (CONS (F-OR EXP1 EXP2) FLIST2)))
(MEMBER EXP1 FLIST2)
(MEMBER EXP2 FLIST2))

(PROVES (M3-PROOF EXP1 EXP2 FLIST2 PF)
(MAKE-DISJUNCT FLIST2)))

147. Disable M3-PROOF.

148. Theorem. M3-PROOF-PROVES1 (rewrite):
(IMPLIES (AND (FORMULA EXP1 T 0)

(FORMULA EXP2 T 0)
(FORM-LIST FLIST2)
(PROVES PF

(MAKE-DISJUNCT (CONS (F-OR EXP1 EXP2) FLIST2)))
(MEMBER EXP1 FLIST2)
(MEMBER EXP2 FLIST2)
(EQUAL CONCL (MAKE-DISJUNCT FLIST2)))

(PROVES (M3-PROOF EXP1 EXP2 FLIST2 PF)
CONCL))

Hints: Consider:
M3-PROOF-PROVES
Enable M3-PROOF-PROVES

149. Disable M3-PROOF-PROVES.

150. Theorem. M-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORM-LIST FLIST1)

(LISTP FLIST1)
(FORM-LIST FLIST2)
(LISTP FLIST2)
(SUBSET FLIST1 FLIST2)
(PROVES PF (MAKE-DISJUNCT FLIST1)))

(PROVES (M-PROOF FLIST1 FLIST2 PF)
(MAKE-DISJUNCT FLIST2)))

Hint: Induct as for (M-PROOF FLIST1 FLIST2 PF).

151. Disable M-PROOF.
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152. Theorem. M-PROOF-PROVES1 (rewrite):
(IMPLIES (AND (FORM-LIST FLIST1)

(FORM-LIST FLIST2)
(SUBSET FLIST1 FLIST2)
(PROVES PF (MAKE-DISJUNCT FLIST1))
(EQUAL CONCL (MAKE-DISJUNCT FLIST2)))

(PROVES (M-PROOF FLIST1 FLIST2 PF)
CONCL))

Hints: Consider:
M-PROOF-PROVES
Enable M-PROOF-PROVES

153. Definition.
(OR-TYPE EXP)

=
(EQUAL EXP

(F-OR (CADR EXP) (CADDR EXP)))

154. Definition.
(NOR-TYPE EXP)

=
(EQUAL EXP

(F-NOT (F-OR (CADADR EXP) (CADDADR EXP))))

155. Disable ATOMP.

156. Definition.
(ELEM-FORM EXP)

=
(OR (ATOMP EXP)

(EQUAL EXP
(FORSOME (CADR EXP) (CADDR EXP))))

157. Definition.
(NEG-ELEM-FORM EXP)

=
(AND (EQUAL EXP (F-NOT (CADR EXP)))

(ELEM-FORM (ARG1 EXP)))

158. Definition.
(PROP-ATOMP EXP)

=
(OR (ELEM-FORM EXP)

(NEG-ELEM-FORM EXP))

159. Definition.
(DBLE-NEG-TYPE EXP)

=
(EQUAL EXP

(F-NOT (F-NOT (CADADR EXP))))

160. Enable ATOMP.

161. Theorem. DBLE-NEG-NOT-PROP-ATOMP (rewrite):
(IMPLIES (DBLE-NEG-TYPE EXP)

(NOT (PROP-ATOMP EXP)))

162. Theorem. OR-TYPE-NOT-PROP-ATOMP (rewrite):
(IMPLIES (OR-TYPE EXP)

(NOT (PROP-ATOMP EXP)))
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163. Theorem. NOR-TYPE-NOT-PROP-ATOMP (rewrite):
(IMPLIES (NOR-TYPE EXP)

(NOT (PROP-ATOMP EXP)))

164. Definition.
(LIST-COUNT LIST)

=
(IF (NLISTP LIST)

0
(PLUS (ADD1 (COUNT (CAR LIST)))

(LIST-COUNT (CDR LIST))))

165. Definition.
(NEG-LIST EXP LIST)

=
(IF (NLISTP LIST)

F
(OR (NEG EXP (CAR LIST))

(NEG-LIST EXP (CDR LIST))))

166. Theorem. LESSP-LIST-COUNT (rewrite):
(IMPLIES (LISTP FLIST)

(LESSP (LIST-COUNT (CDR FLIST))
(LIST-COUNT FLIST)))

167. Theorem. OR-TYPE-LIST-COUNT (rewrite):
(IMPLIES (AND (OR-TYPE (CAR FLIST))

(LISTP FLIST))
(LESSP (LIST-COUNT (CONS (CADAR FLIST)

(CONS (CADDAR FLIST) (CDR FLIST))))
(LIST-COUNT FLIST)))

168. Theorem. NOR-TYPE-LIST-COUNT1 (rewrite):
(IMPLIES (AND (LISTP FLIST)

(NOR-TYPE (CAR FLIST)))
(LESSP (LIST-COUNT (CONS (LIST ’NOT (CADADAR FLIST))

(CDR FLIST)))
(LIST-COUNT FLIST)))

169. Theorem. NOR-TYPE-LIST-COUNT2 (rewrite):
(IMPLIES (AND (LISTP FLIST)

(NOR-TYPE (CAR FLIST)))
(LESSP (LIST-COUNT (CONS (LIST ’NOT (CADDADAR FLIST))

(CDR FLIST)))
(LIST-COUNT FLIST)))

170. Theorem. DBLE-NEG-LIST-COUNT (rewrite):
(IMPLIES (AND (LISTP FLIST)

(DBLE-NEG-TYPE (CAR FLIST)))
(LESSP (LIST-COUNT (CONS (CADADAR FLIST) (CDR FLIST)))

(LIST-COUNT FLIST)))

171. Disable PROP-ATOMP.

172. Disable OR-TYPE.

173. Disable NOR-TYPE.

174. Disable DBLE-NEG-TYPE.

175. Disable LIST-COUNT.
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176. Definition.
(TAUTOLOGYP1 FLIST AUXLIST)

=
(IF (NLISTP FLIST)

F
(IF (PROP-ATOMP (CAR FLIST))

(OR (NEG-LIST (CAR FLIST) AUXLIST)
(TAUTOLOGYP1 (CDR FLIST)

(CONS (CAR FLIST) AUXLIST)))
(IF (OR-TYPE (CAR FLIST))

(TAUTOLOGYP1 (CONS (ARG1 (CAR FLIST))
(CONS (ARG2 (CAR FLIST)) (CDR FLIST)))

AUXLIST)
(IF (NOR-TYPE (CAR FLIST))

(AND (TAUTOLOGYP1 (CONS (F-NOT (ARG1 (ARG1 (CAR FLIST))))
(CDR FLIST))

AUXLIST)
(TAUTOLOGYP1 (CONS (F-NOT (ARG2 (ARG1 (CAR FLIST))))

(CDR FLIST))
AUXLIST))

(IF (DBLE-NEG-TYPE (CAR FLIST))
(TAUTOLOGYP1 (CONS (ARG1 (ARG1 (CAR FLIST)))

(CDR FLIST))
AUXLIST)

F)))))
Hint: Consider the well-founded relation LESSP

and the measure (LIST-COUNT FLIST)

177. Theorem. FORM-LIST-APPEND (rewrite):
(IMPLIES (AND (FORM-LIST X) (FORM-LIST Y))

(FORM-LIST (APPEND X Y)))
Hints: Induct as for (APPEND X Y).

Disable FORMULA

178. Definition.
(NEG-PROOF EXP1 EXP2)

=
(IF (EQUAL EXP1 (F-NOT EXP2))

(PROP-AXIOM-PROOF EXP2)
(COMMUT-PROOF EXP2 EXP1

(PROP-AXIOM-PROOF EXP1)))

179. Theorem. NEG-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA EXP1 T 0)

(FORMULA EXP2 T 0)
(NEG EXP1 EXP2)
(EQUAL CONCL (F-OR EXP1 EXP2)))

(PROVES (NEG-PROOF EXP1 EXP2) CONCL))

180. Disable NEG-PROOF.

181. Theorem. NEG-LIST-REDUC (rewrite):
(EQUAL (NEG-LIST EXP FLIST)

(OR (MEMBER (F-NOT EXP) FLIST)
(AND (EQUAL EXP (F-NOT (CADR EXP)))

(MEMBER (CADR EXP) FLIST))))



49

182. Definition.
(NEG-LIST-PROOF EXP FLIST)

=
(IF (MEMBER (F-NOT EXP) FLIST)

(M2-PROOF EXP
(F-NOT EXP)
(CONS EXP FLIST)
(NEG-PROOF EXP (F-NOT EXP)))

(M2-PROOF EXP
(CADR EXP)
(CONS EXP FLIST)
(NEG-PROOF EXP (CADR EXP))))

183. Theorem. NEG-LIST-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA EXP T 0)

(FORM-LIST FLIST)
(NEG-LIST EXP FLIST)
(EQUAL CONCL

(MAKE-DISJUNCT (CONS EXP FLIST))))
(PROVES (NEG-LIST-PROOF EXP FLIST)

CONCL))
Hint: Disable NEG-LIST

184. Disable NEG-LIST-PROOF.

185. Theorem. SUBSET-IDENT (rewrite):
(SUBSET X X)

186. Theorem. SUBSET-CAR (rewrite):
(SUBSET X (CONS Y X))

187. Theorem. SUBSET-APPEND (rewrite):
(SUBSET (CONS EXP LIST2)

(APPEND (CONS EXP LIST1) LIST2))

188. Theorem. NLISTP-NEG-LIST (rewrite):
(IMPLIES (NLISTP LIST)

(NOT (NEG-LIST EXP LIST)))

189. Definition.
(PROP-ATOM-PROOF1 FLIST1 FLIST2)

=
(M-PROOF (CONS (CAR FLIST1) FLIST2)

(APPEND FLIST1 FLIST2)
(NEG-LIST-PROOF (CAR FLIST1) FLIST2))

190. Theorem. PROP-ATOM-PROOF1-PROVES (rewrite):
(IMPLIES (AND (FORM-LIST FLIST1)

(LISTP FLIST1)
(FORM-LIST FLIST2)
(NEG-LIST (CAR FLIST1) FLIST2)
(EQUAL CONCL

(MAKE-DISJUNCT (APPEND FLIST1 FLIST2))))
(PROVES (PROP-ATOM-PROOF1 FLIST1 FLIST2)

CONCL))
Hints: Disable NEG-LIST-REDUC

Consider:
SUBSET-APPEND with {EXP<-(CAR FLIST1), LIST1<-(CDR FLIST1), LIST2<-FLIST2}

Enable SUBSET-APPEND

191. Disable PROP-ATOM-PROOF1.
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192. Theorem. SUBSET-APPEND-CAR (rewrite):
(SUBSET (APPEND LIST1 (CONS EXP LIST2))

(APPEND (CONS EXP LIST1) LIST2))

193. Theorem. FORM-LIST-APPEND-CAR (rewrite):
(IMPLIES (AND (FORM-LIST (CONS EXP LIST1))

(FORM-LIST LIST2))
(FORM-LIST (APPEND LIST1 (CONS EXP LIST2))))

194. Definition.
(PROP-ATOM-PROOF2 FLIST1 FLIST2 PF)

=
(M-PROOF (APPEND (CDR FLIST1)

(CONS (CAR FLIST1) FLIST2))
(APPEND FLIST1 FLIST2)
PF)

195. Theorem. PROP-ATOM-PROOF2-PROVES (rewrite):
(IMPLIES (AND (FORM-LIST FLIST1)

(LISTP FLIST1)
(FORM-LIST FLIST2)
(PROVES PF

(MAKE-DISJUNCT (APPEND (CDR FLIST1)
(CONS (CAR FLIST1) FLIST2))))

(EQUAL CONCL
(MAKE-DISJUNCT (APPEND FLIST1 FLIST2))))

(PROVES (PROP-ATOM-PROOF2 FLIST1 FLIST2 PF)
CONCL))

Hints: Consider:
SUBSET-APPEND-CAR with
{LIST1<-(CDR FLIST1), EXP<-(CAR FLIST1), LIST2<-FLIST2}
Enable SUBSET-APPEND-CAR

196. Disable PROP-ATOM-PROOF2.

197. Definition.
(CANCEL-PROOF A B PF1 PF2)

=
(CONTRAC-PROOF B

(CUT-PROOF A B B PF2
(RT-EXPAN-PROOF (F-NOT A) B PF1)))

198. Theorem. CANCEL-PROOF-PROVES (rewrite):
(IMPLIES (AND (PROVES PF1 (F-NOT A))

(PROVES PF2 (F-OR A B))
(FORMULA A T 0)
(FORMULA B T 0))

(PROVES (CANCEL-PROOF A B PF1 PF2) B))

199. Disable CANCEL-PROOF.
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200. Definition.
(NLISTP-NOR-TYPE-PROOF A B PF1 PF2)

=
(CANCEL-PROOF B

(F-NOT (F-OR A B))
PF2
(CANCEL-PROOF A

(F-OR B (F-NOT (F-OR A B)))
PF1
(M-PROOF (LIST (F-NOT (F-OR A B)) A B)

(LIST A B (F-NOT (F-OR A B)))
(PROP-AXIOM-PROOF (F-OR A B)))))

201. Theorem. NLISTP-NOR-TYPE-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA A T 0)

(FORMULA B T 0)
(PROVES PF1 (F-NOT A))
(PROVES PF2 (F-NOT B))
(EQUAL CONCL (F-NOT (F-OR A B))))

(PROVES (NLISTP-NOR-TYPE-PROOF A B PF1 PF2)
CONCL))

202. Definition.
(LISTP-NOR-TYPE-PROOF A B C PF1 PF2)

=
(M-PROOF
(LIST (F-NOT (F-OR A B)) C C)
(LIST (F-NOT (F-OR A B)) C)
(RT-ASSOC-PROOF
(F-NOT (F-OR A B))
C C
(CUT-PROOF B

(F-OR (F-NOT (F-OR A B)) C)
C
(RT-ASSOC-PROOF B

(F-NOT (F-OR A B))
C
(CUT-PROOF A

(F-OR B (F-NOT (F-OR A B)))
C

(M-PROOF (LIST (F-NOT (F-OR A B)) A B)
(LIST A B (F-NOT (F-OR A B)))
(PROP-AXIOM-PROOF (F-OR A B)))

PF1))
PF2)))

203. Theorem. LISTP-NOR-TYPE-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA A T 0)

(FORMULA B T 0)
(FORMULA C T 0)
(PROVES PF1 (F-OR (F-NOT A) C))
(PROVES PF2 (F-OR (F-NOT B) C))
(EQUAL CONCL

(F-OR (F-NOT (F-OR A B)) C)))
(PROVES (LISTP-NOR-TYPE-PROOF A B C PF1 PF2)

CONCL))

204. Disable M-PROOF-PROVES.
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205. Disable NLISTP-NOR-TYPE-PROOF.

206. Disable LISTP-NOR-TYPE-PROOF.

207. Definition.
(NOR-TYPE-PROOF A B CLIST PF1 PF2)

=
(IF (NLISTP CLIST)

(NLISTP-NOR-TYPE-PROOF A B PF1 PF2)
(LISTP-NOR-TYPE-PROOF A B

(MAKE-DISJUNCT CLIST)
PF1 PF2))

208. Enable NOR-TYPE.

209. Theorem. NOR-TYPE-PROOF-PROVES (rewrite):
(IMPLIES (AND (NOR-TYPE EXP)

(FORMULA EXP T 0)
(FORM-LIST CLIST)
(PROVES PF1

(MAKE-DISJUNCT (CONS (F-NOT (CADADR EXP)) CLIST)))
(PROVES PF2

(MAKE-DISJUNCT (CONS (F-NOT (CADDADR EXP)) CLIST)))
(EQUAL CONCL

(MAKE-DISJUNCT (CONS EXP CLIST))))
(PROVES (NOR-TYPE-PROOF (CADADR EXP)

(CADDADR EXP)
CLIST PF1 PF2)

CONCL))

210. Definition.
(NLISTP-DBLE-NEG-PROOF A PF)

=
(CONTRAC-PROOF (F-NOT (F-NOT A))

(CUT-PROOF A
(F-NOT (F-NOT A))
(F-NOT (F-NOT A))
(RT-EXPAN-PROOF A

(F-NOT (F-NOT A))
PF)

(COMMUT-PROOF (F-NOT (F-NOT A))
(F-NOT A)
(PROP-AXIOM-PROOF (F-NOT A)))))

211. Disable NOR-TYPE-PROOF.

212. Theorem. NLISTP-DBLE-NEG-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA A T 0)

(PROVES PF A)
(EQUAL CONCL (F-NOT (F-NOT A))))

(PROVES (NLISTP-DBLE-NEG-PROOF A PF)
CONCL))

213. Disable NLISTP-DBLE-NEG-PROOF.
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214. Definition.
(LISTP-DBLE-NEG-PROOF A C PF)

=
(COMMUT-PROOF C

(F-NOT (F-NOT A))
(CUT-PROOF A C

(F-NOT (F-NOT A))
PF

(COMMUT-PROOF (F-NOT (F-NOT A))
(F-NOT A)
(PROP-AXIOM-PROOF (F-NOT A)))))

215. Theorem. LISTP-DBLE-NEG-PROOF-PROVES (rewrite):
(IMPLIES (AND (FORMULA A T 0)

(FORMULA C T 0)
(PROVES PF (F-OR A C))
(EQUAL CONCL

(F-OR (F-NOT (F-NOT A)) C)))
(PROVES (LISTP-DBLE-NEG-PROOF A C PF)

CONCL))

216. Disable LISTP-DBLE-NEG-PROOF.

217. Definition.
(DBLE-NEG-TYPE-PROOF A CLIST PF)

=
(IF (NLISTP CLIST)

(NLISTP-DBLE-NEG-PROOF A PF)
(LISTP-DBLE-NEG-PROOF A

(MAKE-DISJUNCT CLIST)
PF))

218. Enable DBLE-NEG-TYPE.

219. Theorem. DBLE-NEG-TYPE-PROOF-PROVES (rewrite):
(IMPLIES (AND (DBLE-NEG-TYPE EXP)

(FORMULA EXP T 0)
(FORM-LIST CLIST)
(PROVES PF

(MAKE-DISJUNCT (CONS (CADADR EXP) CLIST)))
(EQUAL CONCL

(MAKE-DISJUNCT (CONS EXP CLIST))))
(PROVES (DBLE-NEG-TYPE-PROOF (CADADR EXP)

CLIST PF)
CONCL))

220. Definition.
(OR-TYPE-PROOF A B CLIST PF)

=
(IF (NLISTP CLIST)

PF
(ASSOC-PROOF A B

(MAKE-DISJUNCT CLIST)
PF))

221. Enable OR-TYPE.
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222. Theorem. OR-TYPE-PROOF-PROVES (rewrite):
(IMPLIES
(AND

(OR-TYPE (CAR FLIST1))
(FORM-LIST FLIST1)
(LISTP FLIST1)
(FORM-LIST FLIST2)
(PROVES PF

(MAKE-DISJUNCT (APPEND (CONS (CADAR FLIST1)
(CONS (CADDAR FLIST1) (CDR FLIST1))
FLIST2)))

(EQUAL CONCL
(MAKE-DISJUNCT (APPEND FLIST1 FLIST2))))

(PROVES (OR-TYPE-PROOF (CADAR FLIST1)
(CADDAR FLIST1)
(APPEND (CDR FLIST1) FLIST2)
PF)

CONCL))

223. Disable OR-TYPE-PROOF.

224. Theorem. OR-TYPE-FORM-LIST (rewrite):
(IMPLIES (AND (OR-TYPE (CAR FLIST))

(FORM-LIST FLIST)
(LISTP FLIST))

(FORM-LIST (CONS (CADAR FLIST)
(CONS (CADDAR FLIST) (CDR FLIST)))))

225. Theorem. NOR-TYPE-FORM-LIST (rewrite):
(IMPLIES (AND (NOR-TYPE (CAR FLIST))

(FORM-LIST FLIST)
(LISTP FLIST))

(FORM-LIST (CONS (LIST ’NOT (CADADAR FLIST))
(CDR FLIST))))

226. Theorem. NOR-TYPE-FORM-LIST2 (rewrite):
(IMPLIES (AND (NOR-TYPE (CAR FLIST))

(FORM-LIST FLIST)
(LISTP FLIST))

(FORM-LIST (CONS (LIST ’NOT (CADDADAR FLIST))
(CDR FLIST))))

227. Theorem. DBLE-NEG-TYPE-FORM-LIST (rewrite):
(IMPLIES (AND (DBLE-NEG-TYPE (CAR FLIST))

(FORM-LIST FLIST)
(LISTP FLIST))

(FORM-LIST (CONS (CADADAR FLIST) (CDR FLIST))))

228. Disable OR-TYPE.

229. Disable NOR-TYPE.

230. Disable DBLE-NEG-TYPE.

231. Disable DBLE-NEG-TYPE-PROOF.
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232. Definition.
(TAUT-PROOF1 FLIST AUXLIST)

=
(IF
(NLISTP FLIST)
NIL
(IF
(PROP-ATOMP (CAR FLIST))
(IF (NEG-LIST (CAR FLIST) AUXLIST)

(PROP-ATOM-PROOF1 FLIST AUXLIST)
(PROP-ATOM-PROOF2 FLIST AUXLIST

(TAUT-PROOF1 (CDR FLIST)
(CONS (CAR FLIST) AUXLIST))))

(IF
(OR-TYPE (CAR FLIST))
(OR-TYPE-PROOF (ARG1 (CAR FLIST))

(ARG2 (CAR FLIST))
(APPEND (CDR FLIST) AUXLIST)
(TAUT-PROOF1 (CONS (ARG1 (CAR FLIST))

(CONS (ARG2 (CAR FLIST)) (CDR FLIST)))
AUXLIST))

(IF (NOR-TYPE (CAR FLIST))
(NOR-TYPE-PROOF (ARG1 (ARG1 (CAR FLIST)))

(ARG2 (ARG1 (CAR FLIST)))
(APPEND (CDR FLIST) AUXLIST)
(TAUT-PROOF1 (CONS (F-NOT (ARG1 (ARG1 (CAR FLIST)))

(CDR FLIST))
AUXLIST)

(TAUT-PROOF1 (CONS (F-NOT (ARG2 (ARG1 (CAR FLIST)))
(CDR FLIST))

AUXLIST))
(IF (DBLE-NEG-TYPE (CAR FLIST))

(DBLE-NEG-TYPE-PROOF (ARG1 (ARG1 (CAR FLIST)))
(APPEND (CDR FLIST) AUXLIST)
(TAUT-PROOF1 (CONS (ARG1 (ARG1 (CAR FLIST)

(CDR FLIST))
AUXLIST))

NIL)))))
Hint: Consider the well-founded relation LESSP

and the measure (LIST-COUNT FLIST)

233. Theorem. TAUT-THM1 (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(FORM-LIST AUXLIST)
(TAUTOLOGYP1 FLIST AUXLIST))

(PROVES (TAUT-PROOF1 FLIST AUXLIST)
(MAKE-DISJUNCT (APPEND FLIST AUXLIST))))

Hints: Disable NEG-LIST-REDUC and FORMULA
Induct as for (TAUTOLOGYP1 FLIST AUXLIST).

234. Disable TAUT-PROOF1.
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235. Theorem. TAUT-THM2 (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(FORM-LIST AUXLIST)
(TAUTOLOGYP1 FLIST AUXLIST)
(EQUAL CONCL

(MAKE-DISJUNCT (APPEND FLIST AUXLIST))))
(PROVES (TAUT-PROOF1 FLIST AUXLIST)

CONCL))
Hints: Consider:

TAUT-THM1 with {CONCL<-(MAKE-DISJUNCT (APPEND FLIST AUXLIST))}
Enable TAUT-THM1

236. Theorem. LISTP-ELEM-FORM (rewrite):
(IMPLIES (NLISTP EXP)

(NOT (ELEM-FORM EXP)))

237. Definition.
(EVAL EXP ALIST)

=
(IF (NLISTP EXP)

F
(IF (ELEM-FORM EXP)

(MEMBER EXP ALIST)
(IF (EQUAL (CAR EXP) ’NOT)

(NOT (EVAL (CADR EXP) ALIST))
(IF (EQUAL (CAR EXP) ’OR)

(OR (EVAL (CADR EXP) ALIST)
(EVAL (CADDR EXP) ALIST))

F))))

238. Theorem. ELEM-FORM-EVAL (rewrite):
(IMPLIES (ELEM-FORM EXP)

(EQUAL (EVAL EXP ALIST)
(MEMBER EXP ALIST)))

239. Theorem. NLISTP-EVAL (rewrite):
(IMPLIES (NLISTP EXP)

(NOT (EVAL EXP ALIST)))

240. Theorem. NOT-EVAL (rewrite):
(IMPLIES (AND (LISTP EXP)

(EQUAL (CAR EXP) ’NOT))
(EQUAL (EVAL EXP ALIST)

(NOT (EVAL (CADR EXP) ALIST))))

241. Theorem. OR-EVAL (rewrite):
(IMPLIES (AND (LISTP EXP)

(EQUAL (CAR EXP) ’OR))
(EQUAL (EVAL EXP ALIST)

(OR (EVAL (CADR EXP) ALIST)
(EVAL (CADDR EXP) ALIST))))

242. Theorem. MEMBER-EVAL (rewrite):
(IMPLIES (AND (MEMBER EXP FLIST)

(EVAL EXP ALIST))
(EVAL (MAKE-DISJUNCT FLIST) ALIST))
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243. Theorem. EVAL-ELEM-FORM (rewrite):
(IMPLIES (AND (ELEM-FORM EXP)

(MEMBER EXP LIST)
(MEMBER EXP ALIST)
(EQUAL CONCL (MAKE-DISJUNCT LIST)))

(EVAL CONCL ALIST))
Hints: Induct as for (MEMBER EXP LIST).

Disable EVAL and ELEM-FORM

244. Enable OR-TYPE.

245. Enable NOR-TYPE.

246. Enable DBLE-NEG-TYPE.

247. Enable PROP-ATOMP.

248. Theorem. MEMBER-APPEND (rewrite):
(EQUAL (MEMBER EXP (APPEND FLIST1 FLIST2))

(OR (MEMBER EXP FLIST1)
(MEMBER EXP FLIST2)))

249. Theorem. EVAL-NEG-ELEM-FORM (rewrite):
(IMPLIES (AND (MEMBER EXP LIST)

(MEMBER (F-NOT EXP) LIST)
(EQUAL CONCL (MAKE-DISJUNCT LIST)))

(EVAL CONCL ALIST))
Hint: Disable ELEM-FORM and EVAL

250. Theorem. EVAL-MAKE-DISJUNCT (rewrite):
(EQUAL (EVAL (MAKE-DISJUNCT (APPEND LIST1 LIST2))

ALIST)
(OR (EVAL (MAKE-DISJUNCT LIST1) ALIST)

(EVAL (MAKE-DISJUNCT LIST2) ALIST)))

251. Theorem. NEG-LIST-EVAL (rewrite):
(IMPLIES (AND (LISTP FLIST1)

(NEG-LIST (CAR FLIST1) FLIST2)
(EQUAL CONCL

(MAKE-DISJUNCT (APPEND FLIST1 FLIST2))))
(EVAL CONCL ALIST))

252. Theorem. EVAL-PROP-ATOMP (rewrite):
0.(IMPLIES (AND (LISTP FLIST1)

(EVAL (MAKE-DISJUNCT (APPEND (CDR FLIST1)
(CONS (CAR FLIST1) FLIST2)))

ALIST))
(EVAL (MAKE-DISJUNCT (APPEND FLIST1 FLIST2))

ALIST))
Hint: Induct as for (APPEND FLIST FLIST2).

253. Disable EVAL.
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254. Theorem. EVAL-OR-TYPE (rewrite):
(IMPLIES
(AND (LISTP FLIST1)

(OR-TYPE (CAR FLIST1)))
(EQUAL
(EVAL (MAKE-DISJUNCT (APPEND FLIST1 FLIST2))

ALIST)
(EVAL (MAKE-DISJUNCT (APPEND (CONS (CADAR FLIST1)

(CONS (CADDAR FLIST1) (CDR FLIST1)))
FLIST2))

ALIST)))

255. Theorem. EVAL-NOR-TYPE (rewrite):
(IMPLIES

(AND (LISTP FLIST1)
(NOR-TYPE (CAR FLIST1)))

(EQUAL (EVAL (MAKE-DISJUNCT (APPEND FLIST1 FLIST2))
ALIST)

(AND (EVAL (MAKE-DISJUNCT (APPEND (CONS (F-NOT (CADADAR FLIST1))
(CDR FLIST1))

FLIST2))
ALIST)

(EVAL (MAKE-DISJUNCT (APPEND (CONS (F-NOT (CADDADAR FLIST1))
(CDR FLIST1))

FLIST2))
ALIST))))

256. Theorem. EVAL-DBLE-NEG-TYPE (rewrite):
(IMPLIES

(AND (LISTP FLIST1)
(DBLE-NEG-TYPE (CAR FLIST1)))

(EQUAL (EVAL (MAKE-DISJUNCT (APPEND FLIST1 FLIST2))
ALIST)

(EVAL (MAKE-DISJUNCT (APPEND (CONS (CADADAR FLIST1) (CDR FLIST1))
FLIST2))

ALIST)))

257. Theorem. TAUT-EVAL (rewrite):
(IMPLIES (TAUTOLOGYP1 FLIST AUXLIST)

(EVAL (MAKE-DISJUNCT (APPEND FLIST AUXLIST))
ALIST))

Hints: Disable EVAL, EVAL-MAKE-DISJUNCT, ELEM-FORM, PROP-ATOMP, OR-TY
NOR-TYPE, DBLE-NEG-TYPE, APPEND, and NEG-LIST-REDUC

Induct as for (TAUTOLOGYP1 FLIST AUXLIST).

258. Theorem. NOT-EVAL-PROP-ATOMP (rewrite):
(IMPLIES (AND (LISTP FLIST1)

(NOT (EVAL (MAKE-DISJUNCT (APPEND (CDR FLIST1)
(CONS (CAR FLIST1) FLIST2))

ALIST)))
(NOT (EVAL (MAKE-DISJUNCT (APPEND FLIST1 FLIST2))

ALIST)))
Hint: Induct as for (APPEND FLIST1 FLIST2).
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259. Theorem. PROP-ATOMP-REDUC (rewrite):
(EQUAL (PROP-ATOMP EXP)

(OR (ELEM-FORM EXP)
(AND (EQUAL EXP (F-NOT (CADR EXP)))

(ELEM-FORM (CADR EXP)))))
Hint: Disable ELEM-FORM

260. Disable ELEM-FORM.

261. Disable PROP-ATOMP.

262. Definition.
(PROP-ATOMP-LIST LIST)

=
(IF (NLISTP LIST)

T
(AND (PROP-ATOMP (CAR LIST))

(PROP-ATOMP-LIST (CDR LIST))))

263. Definition.
(FALSIFY LIST)

=
(IF (NLISTP LIST)

NIL
(IF (EQUAL (CAR LIST)

(F-NOT (CADAR LIST)))
(CONS (CADAR LIST)

(FALSIFY (CDR LIST)))
(FALSIFY (CDR LIST))))

264. Theorem. FALSIFY-STEP (rewrite):
(IMPLIES (NOT (MEMBER (F-NOT EXP) AUXLIST))

(NOT (MEMBER EXP (FALSIFY AUXLIST))))

265. Theorem. PROP-ATOMP-AUXLIST (rewrite):
(IMPLIES (AND (PROP-ATOMP EXP)

(NOT (NEG-LIST EXP AUXLIST))
(PROP-ATOMP-LIST AUXLIST))

(NOT (EVAL EXP
(FALSIFY (CONS EXP AUXLIST)))))

Hint: Disable FORMULA and ELEM-FORM

266. Theorem. PROP-ATOMP-AUXLIST2 (rewrite):
(IMPLIES (AND (NOT (NEG-LIST EXP AUXLIST))

(PROP-ATOMP-LIST AUXLIST)
(PROP-ATOMP EXP)
(NOT (EVAL (MAKE-DISJUNCT AUXLIST)

(FALSIFY ALIST))))
(NOT (EVAL (MAKE-DISJUNCT AUXLIST)

(FALSIFY (CONS EXP ALIST)))))
Hints: Disable FORMULA-NOT-REDUC, ELEM-FORM, FORMULA, PROP-ATOMP, and

NEG-LIST-REDUC
Induct as for (MAKE-DISJUNCT AUXLIST).
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267. Theorem. PROP-ATOMP-FALSIFY (rewrite):
(IMPLIES (AND (PROP-ATOMP EXP)

(NOT (NEG-LIST EXP AUXLIST))
(PROP-ATOMP-LIST AUXLIST)
(NOT (EVAL (MAKE-DISJUNCT AUXLIST)

(FALSIFY AUXLIST))))
(NOT (EVAL (MAKE-DISJUNCT (CONS EXP AUXLIST))

(FALSIFY (CONS EXP AUXLIST)))))
Hint: Disable ELEM-FORM, PROP-ATOMP, PROP-ATOMP-REDUC, PROP-ATOMP-LIS

NEG-LIST-REDUC, NEG-LIST, FORMULA, and FALSIFY

268. Enable PROP-ATOMP.

269. Enable ELEM-FORM.

270. Disable ATOMP.

271. Theorem. FORMULA-CASES1:
(IMPLIES (FORMULA EXP T 0)

(OR (PROP-ATOMP EXP)
(OR-TYPE EXP)
(NOR-TYPE EXP)
(DBLE-NEG-TYPE EXP)))

272. Enable ATOMP.

273. Disable PROP-ATOMP.

274. Disable OR-TYPE.

275. Disable NOR-TYPE.

276. Disable DBLE-NEG-TYPE.

277. Theorem. FORMULA-CASES (rewrite):
(IMPLIES (AND (NOT (DBLE-NEG-TYPE EXP))

(NOT (NOR-TYPE EXP))
(NOT (OR-TYPE EXP))
(NOT (PROP-ATOMP EXP)))

(NOT (FORMULA EXP T 0)))
Hints: Disable FORMULA and PROP-ATOMP-REDUC

Consider:
FORMULA-CASES1
Enable FORMULA-CASES1
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278. Definition.
(FALSIFY-TAUT FLIST AUXLIST)

=
(IF (NLISTP FLIST)

(FALSIFY AUXLIST)
(IF (PROP-ATOMP (CAR FLIST))

(IF (NEG-LIST (CAR FLIST) AUXLIST)
F
(FALSIFY-TAUT (CDR FLIST)

(CONS (CAR FLIST) AUXLIST)))
(IF (OR-TYPE (CAR FLIST))

(FALSIFY-TAUT (CONS (CADAR FLIST)
(CONS (CADDAR FLIST) (CDR FLIST)))

AUXLIST)
(IF (NOR-TYPE (CAR FLIST))

(IF (FALSIFY-TAUT (CONS (F-NOT (CADDADAR FLIST))
(CDR FLIST))

AUXLIST)
(FALSIFY-TAUT (CONS (F-NOT (CADDADAR FLIST))

(CDR FLIST))
AUXLIST)

(FALSIFY-TAUT (CONS (F-NOT (CADADAR FLIST))
(CDR FLIST))

AUXLIST))
(IF (DBLE-NEG-TYPE (CAR FLIST))

(FALSIFY-TAUT (CONS (CADADAR FLIST) (CDR FLIST))
AUXLIST)

NIL)))))
Hint: Consider the well-founded relation LESSP

and the measure (LIST-COUNT FLIST)

279. Theorem. APPEND-NLISTP (rewrite):
(IMPLIES (NLISTP X)

(EQUAL (APPEND X Y) Y))

280. Theorem. NOT-FALSIFY-TAUT (rewrite):
(EQUAL (TAUTOLOGYP1 FLIST AUXLIST)

(NOT (FALSIFY-TAUT FLIST AUXLIST)))
Hints: Induct as for (TAUTOLOGYP1 FLIST AUXLIST).

Disable NEG-LIST, NEG-LIST-REDUC, FORMULA, and PROP-ATOMP-REDU

281. Theorem. NOT-TAUT-FALSE (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(PROP-ATOMP-LIST AUXLIST)
(NOT (EVAL (MAKE-DISJUNCT AUXLIST)

(FALSIFY AUXLIST)))
(NOT (TAUTOLOGYP1 FLIST AUXLIST)))

(NOT (EVAL (MAKE-DISJUNCT (APPEND FLIST AUXLIST))
(FALSIFY-TAUT FLIST AUXLIST))))

Hints: Induct as for (FALSIFY-TAUT FLIST AUXLIST).
Disable NEG-LIST, EVAL-MAKE-DISJUNCT, NEG-LIST-REDUC,

PROP-ATOMP-REDUC, FORMULA, FALSIFY, APPEND, and NOR-TYP

282. Definition.
(TAUTOLOGYP FLIST)

=
(TAUTOLOGYP1 FLIST NIL)



62

283. Definition.
(TAUT-PROOF FLIST)

=
(TAUT-PROOF1 FLIST NIL)

284. Enable APPEND.

285. Theorem. FORM-LIST-APPEND-NIL (rewrite):
(EQUAL (MAKE-DISJUNCT (APPEND FLIST NIL))

(MAKE-DISJUNCT FLIST))

286. Theorem. TAUTOLOGY-THEOREM (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(TAUTOLOGYP FLIST)
(EQUAL CONCL (MAKE-DISJUNCT FLIST)))

(PROVES (TAUT-PROOF FLIST) CONCL))
Hint: Disable TAUT-PROOF1, TAUTOLOGYP1, FORMULA, and NOT-FALSIFY-TAUT

287. Theorem. TAUT-EVAL2 (rewrite):
(IMPLIES (AND (TAUTOLOGYP1 FLIST AUXLIST)

(EQUAL CONCL
(MAKE-DISJUNCT (APPEND FLIST AUXLIST))))

(EVAL CONCL ALIST))
Hint: Disable TAUTOLOGYP1 and NOT-FALSIFY-TAUT

288. Theorem. TAUTOLOGIES-ARE-TRUE (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(TAUTOLOGYP FLIST))
(EVAL (MAKE-DISJUNCT FLIST) ALIST))

Hint: Disable FORMULA, TAUTOLOGYP1, and NOT-FALSIFY-TAUT

289. Theorem. NOT-TAUT-FALSIFY2 (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(PROP-ATOMP-LIST AUXLIST)
(NOT (EVAL (MAKE-DISJUNCT AUXLIST)

(FALSIFY AUXLIST)))
(NOT (TAUTOLOGYP1 FLIST AUXLIST))
(EQUAL CONCL

(MAKE-DISJUNCT (APPEND FLIST AUXLIST))))
(NOT (EVAL CONCL

(FALSIFY-TAUT FLIST AUXLIST))))
Hint: Disable TAUTOLOGYP1, NOT-FALSIFY-TAUT, and FORMULA

290. Theorem. TRUTHS-ARE-TAUTOLOGIES (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(NOT (TAUTOLOGYP FLIST)))
(NOT (EVAL (MAKE-DISJUNCT FLIST)

(FALSIFY-TAUT FLIST NIL))))
Hint: Disable TAUTOLOGYP1, NOT-FALSIFY-TAUT, and FORMULA

291. Disable TRUTHS-ARE-TAUTOLOGIES.

292. Disable NOT-TAUT-FALSIFY2.

293. Disable TAUTOLOGIES-ARE-TRUE.

294. Disable TAUT-EVAL2.

295. Disable FORM-LIST-APPEND-NIL.

296. Disable TAUT-PROOF.

297. Disable NOT-TAUT-FALSE.
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298. Disable NOT-FALSIFY-TAUT.

299. Disable APPEND-NLISTP.

300. Disable FALSIFY-TAUT.

301. Disable FORMULA-CASES.

302. Disable FORMULA-CASES1.

303. Disable PROP-ATOMP-FALSIFY.

304. Disable PROP-ATOMP-AUXLIST.

305. Disable PROP-ATOMP-LIST.

306. Disable FALSIFY-STEP.

307. Disable FALSIFY.

308. Disable NOT-EVAL-PROP-ATOMP.

309. Disable TAUT-EVAL.

310. Disable EVAL-DBLE-NEG-TYPE.

311. Disable EVAL-NOR-TYPE.

312. Disable EVAL-OR-TYPE.

313. Disable EVAL-PROP-ATOMP.

314. Disable NEG-LIST-EVAL.

315. Disable EVAL-NEG-ELEM-FORM.

316. Disable ELEM-FORM-EVAL.

317. Disable EVAL.

318. Theorem. EVAL-TAUTOLOGYP (rewrite):
(IMPLIES (AND (FORM-LIST FLIST)

(EVAL (MAKE-DISJUNCT FLIST)
(FALSIFY-TAUT FLIST NIL)))

(TAUTOLOGYP FLIST))
Hints: Disable TAUTOLOGYP, FORM-LIST, and FALSIFY-TAUT

Consider:
TRUTHS-ARE-TAUTOLOGIES
Enable TRUTHS-ARE-TAUTOLOGIES
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