TOWARDS MECHANICAL
METAMATHEMATICS

N. Shankar

Technical Report 43 December 1984

Institute for Computing Science
2100 Main Building
The University of Texas at Austin
Austin, Texas 78712
(512) 471-1901

Abstract

Metamathematics is a source of many interesting theorems and difficult proofs. This paper reports the
results of an experiment to use the Boyer-Moore theorem prover to proof-check theorems in metamathematics.
We describe a First Order Logic due to Shoenfield and outline some of the theorems that the prover was able to
prove about thislogic. These include the tautology theorem which states that every tautology has a proof. Such
proofs can be used to add new proof procedures to a proof-checking program in a sound and efficient manner.

But formalized mathematics cannot in practice be written down in full We shall therefore very quickly
abandon formalized mathematics.

N. Bourbaki [bourbaki]

1. Introduction

A formal system or a formal logic consists of axioms from which theorems are derived by repeated
application of certain mechanical rules of inference. The derivations of theorems from the axioms are termed
formal proofs. Many formal systems have been developed, mainly as a result of the increased attention paid to
mathematical rigor in the 19th century. Formal logics provide us with the clearest definition of a valid
mathematical argument. Another advantage of formal proofs is that they can be mechanically checked using
programs known as automatic proof-checkers. In spite of this few mathematicians use formal proofs in
everyday mathematical reasoning. One major reason for this is that the basic proof-steps allowed by most
formal logics do not include many of the steps routinely used in informal mathematical reasoning and therefore
constructing formal proofs becomes a long and tedious process. The question as to whether formal
mathematical reasoning is practically possible has engendered numerous debates and one view of this is
provided by the Bourbaki remark above. To get around the difficulty of writing formal proofs, considerable
effort has been devoted to showing that many of the proof-steps used in informa mathematical reasoning are
formalizable in some formal logic. This has led to a mathematical study of formal systems, termed
metamathematics or mathematical logic [kleene, shoenfield]. In metamathematics, mathematical techniques
such as induction are used to prove that a given proof-step is formalizable in a logic by showing that each
application of that proof-step is reducible to some series of applications of the rules and axioms of that logic. A
new proof-step which is formalizable in the given formal logic is termed a derived inference rule in the logic.
This approach can also be applied to automatic proof-checkers to extend them to check new proof-steps. Thus,
one may start with a simple proof-checker which checks only formal proofs. Its correctness can be established
by careful inspection. It can then be extended by adding frequently used patterns of proof as new proof-steps.
Before we do this, we must establish that the new proof-step is a derived inference rule. If this is so, the
extension is said to preserve soundness. The purpose of this paper is to demonstrate the effective use of an
automatic theorem prover in proving the soundness of significant extensions to a formal logic. This ability to
make sound extensions to a proof-checker has been termed metatheoretic extensibility [Davis].

There have been two approaches to building extensible proof-checkers. The first approach involves the use
of the proof-checker to prove the soundness of new extensions to itself. This approach has been used by
Weyhrauch in FOL [FOL] and by Boyer and Moore [meta]. This approach, as exemplified by the FOL system,
has two drawbacks:

1. Proofs of soundness of extensions are difficult and are tedious to carry out on a simple proof-
checker.

2. The FOL system requires the user to supply the executable code to be added to the proof-checker
corresponding the extension that has been proved sound. Human error can creep in at this point.

In the second approach to extensibility, one avoids proving the soundness of new extensions by expanding
out the corresponding forma proof each time a new proof step is used. The expanded proof can be
automatically generated by a executing a program which ostensibly constructs the correct formal proof to justify
the use of that proof-step. The expanded proof is then checked with the original proof-checker. This approach
has been used in Edinburgh LCF [LCF] and by Brown [brown2]. The drawbacks of the LCF system are:

1. Checking the formal proof each time a new proof step is used is time-consuming.

2. The expanded proof corresponding to each application of a new proof-step is provided by a
user-supplied program. While there are ways to ensure that a proof thus generated is aways a
correct proof, it might not be the proof that justifies the use of the new proof-step. This would
mean that there was an error in the program which constructed the formal proof. Locating and

fixing errors in such programs may not always be easy.

The approach discussed in this paper avoids the second drawback of the LCF system by mechanically
proving that the expanded proof constructed by the program is always the correct one. Once we have proved
this, we need never expand out the proof since it is sufficient to know that such a proof exists, thus avoiding the
first drawback of the LCF system. Our approach is therefore quite similar to the FOL approach. Both the
drawbacks of the FOL approach are also avoided by the use of the Boyer-Moore theorem prover [Boyer], a
powerful prover for LISP functions. This is done by representing the proof-checker as a function in the
Boyer-Moore logic and then proving the soundness of the extensions using the Boyer-Moore theorem prover.
This approach has the following advantages’:

1. The Boyer-Moore theorem prover proves properties of Lisp functions and makes powerful use of
induction. This makesit easy to express theorems about formal systems aswell as verify them.

2. The theorem prover trandates its functions into correct, efficient and executable LISP thus
avoiding the second drawback of the FOL system [meta]. This alows us to extract usable code
from the theorems that we have proven and actually construct working proof-checkers.

3. Once we have proved the soundness of a derived proof step, we need never examine the formal
derivation for each application of the proof step, but nevertheless retain the ability to do so.

A drawback of this approach is that it requires one to trust the soundness of the Boyer-Moore theorem
prover. Since the prover has been widely used and is well-tested and documented, there is good reason to
believe that it is in fact sound. Another drawback is that the person carrying out these extensions and their
proofs must be knowledgeable about mathematics as well as the use of the theorem prover. This applies to the
previous approaches as well.

The main result of this report is a metatheoretic formalization of Shoenfield's First Order Logic
[shoenfield] in the Boyer-Moore theorem prover and a mechanical proof of the Tautology Theorem for the
above logic using the Boyer-Moore theorem prover. The Tautology Theorem is a significant result in
metamathematics and was first proven by Emil Post in his doctoral dissertation [post]. A tautology isaBoolean
expression whose truth-table evaluation under any assignment of T or F to the atomic expressions always yields
T, given the usua interpretation of the logical connectives. Our version of the Tautology Theorem states that
every tautology has a proof in the above-mentioned logic. This theorem justifies one of the most commonly
used rules of inference in informal mathematical arguments. It also proves the propositional completeness of
the formal logic.

Proofs in metamathematics involve two levels of reasoning. The proof itself is carried out at the meta-level
using a meta-language. The systems of logic whose properties we wish to prove, constitute the object-level.
When referring to objects at the object-level, we prefix the word ‘formal’ and to those at the meta-level, we add
the prefix ‘meta’. Thus we refer to, ‘a formal variable’ as opposed to a ‘meta-variable’. In most textbooks,
meta-level reasoning is done informally and the language used is some natural language, e.g. English, German.
In the mechanical proofs we describe below, the meta-level reasoning is done formally using the Boyer-Moore
theorem prover and the metalanguage is pure-LISP. To further complicate matters, we also need an informal
meta-language, English, to informally describe the proof. We will adopt the convention of using italicised
letters for the object language, bold-face letters for special objects in the informa meta-language and
UPPER- CASE letters for the formal meta-language pure-LI1SP.

1These comparisons are somewhat unfair since the aims of the FOL and LCF systems are slightly different from those of the project
described in this paper. FOL isintended as an experiment to study the checking of proofsin various formal theories where the metatheory
is itself formally expressed in First Order Logic. LCF is intended as a realistic interactive proof-checker for properties of programs, in
which it is possible to build theories and experiment with various proof strategies. The project described in this paper is aimed at
investigating the efficacy of the Boyer-Moore theorem prover in proving difficult theorems in proof-theoretic metamathematics.

To familiarize the reader with the LISP notation used in the proofs, Section 2 contains a brief overview of
the Boyer-Moore Theorem Prover and the Boyer-Moore Logic. Section 3 introduces the formal system, a First
Order Logic due to Shoenfield (termed SFOL below). Section 4 is an outline of the informal proof of the
tautology theorem. Section 5 isthe longest section in the paper and covers the main result. In it we describe the
proof-checker which checks proofs in SFOL and show how this proof-checker was extended in a significant
way by outlining the mechanical proof of the tautology theorem. In Section 6, we draw severa conclusions
about the mechanical proofs. The Appendix contains the entire sequence of events leading to the proof of the
tautology theorem.

2. TheBoyer-Moore Theorem Prover

This section contains a brief overview of the Boyer-Moore theorem prover and its logic. Readers familiar
with the theorem prover may skip this section. A thorough survey of the prover can be found in Boyer and
Moore's A Computational Logic [Boyer].

2.1 Thelogic

The language of the Boyer-Moore theorem prover is a quantifier-free first order logic with equality. It
employs a Lisp-style prefix notation so that (FN X1 X2 . . . Xn) denotes the result of applying the
function FN to the values of the arguments X1, X2, . . ., Xn. The basic theory includes

axiomatizations of literal atoms, natural numbers, and lists.

Constants in the logic are functions with no arguments. The logical constants in the logic are (TRUE) and
(FALSE) , abbreviated as T and F respectively. The 3-place function | F is the only primitive logical
connective. (I F X Y Z) isaxiomatized to return Z if Xisequal to F, and Y otherwise. Thus, (I F X Y 2)
can be informally read as: If X then Y, else Z. Other logical connectives, such as OR, NOT, AND and
| MPLI ES can be defined interms of | F.

Equality is represented by the dyadic function EQUAL. (EQUAL X Y) isaxiomatized to return T if X and
Y identical, and F, otherwise. Note that functions which return only T or F play the role of predicates. The
theory includes the axiom of reflexivity of equality and an equality axiom for functions.

An assertion p in thelogic is atheorem if and only if it can be proven that no instance of p isequal to F.

The Shell Principle allows the user to add axioms about inductively constructed objects. Lists are
axiomatized by adding a shell with a recognizer, the one argument function LI STP; a constructor, the two
argument function CONS; two destructors, the one argument functions CAR, and the one argument function
CDR; and a bottom object, (NI L) . This results in the creation of axioms for lists which are similar to Peano’s
axioms for natural numbers.

To provide some intuition, we show the results of evaluating the above functions. (CONS X Y) returns a
list whose first element is X and the remainder of thelistisY,eg. (CONS ' (1 2) ' (3 4 5)) returnsthe
liss "((1 2) 3 4 5). Also, (CAR "((1 2) 3 4 5)) reuns '(1 2), and
(CDR "((1 2) 3 4 5)) returns’ (3 4 5). Nested sequences of CARs and CDRs are abbreviated, e.g.
(CADDR X) abbreviates (CAR (CDR (CDR X))). (LISTP "(1 2)) isTand (LISTP NL) isF.
(NLI STP X) abbreviates(NOT (LI STP X)).

The Principle of Definition is used to admit definitions of new functions as axioms. A function definition is
accepted if it is recursively or non-recursively defined in terms of previously defined functions and there is

some well-founded ordering, i.e. a partia ordering in which there are no infinite decreasing chains, on some
measure of the arguments which decreases with every recursive call. The two-argument function LESSP,
which is the standard ordering predicate on natural numbers, is the most commonly used well-founded ordering.
Every evauation of the functions admitted under this principle is guaranteed to terminate. This ensures that no
new inconsistency isintroduced by the addition of the new axiom.

The rules of inference in the Boyer-Moore logic consist of:

1. A Principle of Noetherian Induction: This allows the prover to formulate an induction that is
justified by the well-founded orderings created under the principle of definition.

2. Ingtantiation: If pisatheorem, soisany instance p’ of p that is got by replacing every occurrence
of some variablein p by the same term.

2.2 The Theorem Prover

The heuristics or techniques that the theorem prover employs to prove theorems support the use of
induction. These heuristics include: Boolean simplification, tautol ogy-checking, use of rewrite rules, a decision
procedure for linear arithmetic, elimination of undesirable function symbols, generalization, careful type-
checking, elimination of irrelevant hypotheses and induction.

The theorem prover is fully automatic, in the sense that once a purported lemma has been typed in, the user
may not interfere with the mechanical proof. The user can however ‘‘train’’ the prover by proving an
appropriate sequence of lemmas which can then be used as rewrite rules. In this manner, the theorem prover
can be used as a high-level proof-checker.

The prover also has a simple hint facility by which the user can disable function definitions, suggest
instances of lemmas to be used, and also suggest the induction to be employed. A nice feature of the prover is
that it generates a cogent commentary on the proof being attempted. A careful examination of this commentary
makes it easy to locate and correct mistakes in the statement of the proposed theorem.

The Boyer-Moore theorem prover has been used to prove theorems in Number theory, Recursive Function
Theory and in Program Verification.

This concludes the discussion of the metatheory, the Boyer-Maoore logic. Other details will be provided
along the way.

3. TheFormal Theory: Shoenfield’sFirst Order Logic

The formal logic whose properties we wish to establish is Shoenfield' s First Order Logic (SFOL). It hasthe
advantage of being widely known and it is relatively simple and spare. In the following paragraphs, we provide
a very brief description of SFOL, which is fully described Chapter 2 of Shoenfield’s Mathematical Logic

[shoenfield].

3.1 TheLanguage

The language of SFOL will be described by listing the symbols and the rules of syntax for forming
expressions. The symbols in the language include, variables: xy, . . ., X, . .; function symbols: f,, ..., f; and
predicate symbols: Py, ..., P, Each function and predicate symbol has an arity associated with it. Thereisa
specia dyadic predicate symbol =, representing equality. The logic also contains the logical operators, #-# and
#[#, representing logical-not and | ogical-or respectively, and in existential quantifier [1

Expressions are formed by combining these symbols according to certain rules. A termis either avariable
or an n-ary function symbol followed by n terms. An atomic formula is an n-ary predicate symbol followed by
nterms. A formula is either an atomic formula; of the form #-#A, where A is aformula; of the form ##AB,
where A and B are formulas; or of the form (XA, where x isavariable and A isaformula.

We note certain assumptions regarding the use of meta-variables. The meta-variables x, vy, z, range over
formal variables; f, g, h, range over function symbols; p, q, r, range over predicate symbols; a, b, ¢, range over
terms; and A, B, C, etc. range over formulas. From this point on, no specific variable, function or predicate
symbolswill appear in the text and meta-variables will be used to represent them.

An elementary formula is either an atomic formula or a formula of the form CXA. The definitions of free
and bound occurrences of a variable in a formula are well-known and will be omitted. A, [a] denotes the result
of replacing every free occurrence of x in A by a. A term a is substitutible for x in A, if and only if for each
variabley in a, no sub-formula of A of the form CyB contains an occurrence of x whichisfreein A. All use of
A,[a] is restricted to when a is substitutible for x in A. To increase readability, #T#AB will be replaced by
A #[# B, and =ab by a = b. All operators will be assumed as being right-associative and parentheses will be
introduced where needed. A # - # B isan abbreviation for #-#A ## B.

3.2 The Axioms

An axiomis one of the following:
1. A propositional axiom: Any formula of the form, #-#A ## A.

2. A substitution axiom: Any formulaof the form, A [a]# - #[XA.
3. Anidentity axiom: A formulaof the form, x = x.
4. An equality axiom for functions: A formula of the form,
(X=y#-# B HX =Y #o# X X =Ty)).
5. An equality axiom for predicates: Any formula of the form,
(X=y#-# B HX =Y #oH DX Xy H DY Y-)

3.3 TheRulesof Inference

Thefive rules of inference in SFOL are:
1. Expansion Rule: Infer B #1# A from A.

2. Contraction Rule: Infer A from A ## A.

3. Associative Rule: Infer (A ## B) #3# C from A #0# (B #[# C).

4, Cut Rule: Infer B #0# C from A #0# B and #-#A ## C.

5. #~#-Introduction Rule: If x isnot freein B, infer XA #-# B from A #- #B.

A first order theory may contain additional non-logical axioms e.g. axioms for natural numbers, but the
language, logical axioms and the rules of inference remain as described above. This concludes the description
of the formal theory SFOL.

4. Thelnformal Proof of the Tautology Theorem

In this section, we informally discuss the proof of the tautology theorem for SFOL. For this proof, we need
only pay attention to the propositional part of the logic. This would mean that we need not attach any specific
interpretation to quantified formulas or atomic formulas. Therefore, elementary formulas will be treated as
propositional atoms (atoms, for short). Boolean formulas are constructed by combining atoms using the
operators #-# and ##. It should be clear that any formula can be construed as a Boolean formula.

The proof consists of the following parts:
1. Definition of logical truth for Boolean formulas.

2. Definition of atautol ogy-checker.

3. The proof of a useful lemma which states that if one can prove the disjunction of a list of
formulas, one can prove the disjunction of any list of formulas which contains them.

4. The proof of the tautology theorem.

Logical truth is defined by the use of a truth-table. Given a Boolean formula, a truth assignment for that
formula is a mapping from the set of propositional atomsto T, F. The truth-table method for determining the
truth values of a given Boolean formulais fairly well-known and we shall not go into its details. A tautology is
defined as a Boolean formula whose truth value is T under al truth assignments. A tautology-checker is an
algorithm that checks if a given Boolean formula is a tautology or not. We shall define one such tautology-
checker. This tautology-checker works only on formulae of the form, A, #0# . . . #(# A, where each A, is
termed a digunct. Note that rearranging the disjuncts does not change the truth value, and that any formula A
can be expressed in this form by simply setting A; to be A and n = 1. The recursive definition of the
tautology-checker TC(A) is, asfollows:

Base: (each A, is either an atom or the negation of an atom)

If some Aj is the negation of some A;, TC(A)=T.
Otherwise, TC(A)=F.

Recursive cases: (Some A, is neither an atom nor the negation of an atom)

{Since the digjuncts can be rearranged without affecting the truth value, we can assume that A, is such an A;.
If thisisthe case, then A, is either of the form B #[1# C, the form #-#(B #(# C), or the form #-##-#B}
If A isof theform B #0# C: TC(A) = TC(B ## C ## . . . #HA).
If Ajisof theform#-#B ## C). TC(A) =TCH-#B ##.. . ## A) and TCH-#C #H . . . #HA).
If A;isof theform #-##-#B. TC(A) =TC(B##.. . ##A).

Two things must be noted in the above definition of atautol ogy-checker:

1. The sum of the number of logical operators in the A; decreases with each recursive call and
therefore the algorithm always terminates.

2. In each recursive call, the truth value (with respect to any fixed truth assignment) of the formula
recursed upon is the same as the truth value of the original formula. To show that the above
tautol ogy-checker is correct, we need to prove that TC(A) =T if and only if A isatautology. We
can conclude that if TC(A)=T then A is atautology, by carrying out an inductive proof based on
the recursion used in the tautology-checker. Showing that if A is atautology, then TC(A)=T isa
little more difficult. The proof involves following the same induction to construct a truth
assignment which makes the truth value of A equal to F, if TC(A) =F.

Now, we state the main theorem. @z(*)A denotes ‘A isatheoremin SFOL’.

Tautology Theorem: If A isatautology, then @z(*)A.

4.1 The Proof

We now describe an informal sketch of the proof of the Tautology Theorem, but omit most of the details.
This sketch should serve as a useful guide to the mechanical proof presented in the following section.

Since A is atautology if and only if A ## A is a tautology, and we can derive A from A ## A by the
Contraction Rule, we can restrict our attention to formulas of the form A, #[# . . . #{# A, wheren > 1. We
now state without proof, a key lemmawhich is extremely useful in the proof.

A Lemmaondisguncts: If A,,..., A, aredl contained among B,,. . ., B, and if @z(")A, #[#. . #H A,
then @z(')B, ##. . ## B,

We turn our attention now to the proof of the Tautology Theorem. The proof is by an induction that is
identical to the recursion displayed by the tautology-checker. Since, we have argued that the tautol ogy-checker
defined earlier is correct, we need only show that if the tautology-checker accepts a formula A of the form
A, #OH. . #OH A, (Wheren is atleast 2) as being atautology, then we can construct a proof of itin SFOL. First,
let us assume that the given formulais atautology. Then the following cases arise:

1. All A, are atoms or negations of atoms: By the definition of the tautology-checker, some Aj
must be the negation of some A;. Then, @z(')Aj ## A, (Propositional Axiom) from which we
get @z(')A by applying the lemma on diguncts.

2. Some A, is of the form B #{# C: By rearranging the disiuncts using the Lemma on digjuncts, we
can ensure that i=1. We have @z(‘)B #[# C #(# A, ##. . ## A, by the Induction hypothesis
and the definition of the tautology-checker. From this we derive @z(*)A by an application of the
Associativity Rule.

3.A; isof the form #-# B #(# C. Again, by examining the tautology-checker, we get, by the
Induction Hypothesis: @z(y#-#B #H A, #H . H#HH A, ad @z
()H-#HC #1# A, #H. . ## A, We do not prove the lemma which alows us to derive @z(‘)A
from these two formulas in the present discussion.

4. A, is of the form #-##-#B: By the definition of the tautology-checker and the Induction
Hypothesis, we have @z(*)B #[# A, #[#. . #[# A . The proof of the lemma which then allows
usto derive @z(')A is also omitted from this discussion.

5. The Mechanical Proofs

In this section, we cover some of the highlights of the mechanical proof. The entire mechanical proof of the
Tautology Theorem using the Boyer-Moore theorem prover consists of approximately 200 events (definitions or
lemmas). These arelisted in their entirety in the Appendix. Many of these definitions and lemmas in the proof
will be described in English. In some important cases, we will display the pure LISP version so that the careful
reader can check whether these correspond exactly to the definitions and theorems in sections 3 and 4. We
remind the reader that aterm of theform (FN X1 . . . Xn), denotesthe application of function FN to the
n arguments, X1 to Xn. The proof can roughly be divided into the following parts:

1. The definition of a proof-checker for SFOL.

2. The proof of the lemma on disjuncts.
3. The definition of the tautol ogy-checker.
4. The proof of the Tautology Theorem.

5. The proof of correctness of the tautology-checker.

5.1 Defining the Proof-checker

In this section we present the important definitions in the description of the SFOL proof-checker. The
proof-checker corresponds closely to the formal theory described earlier. The basic Boyer-Moore prover
contains only heuristics and contains no facts about lists or numbers[Boyer]. The axioms for literal atoms,

natural numbers and lists are loaded in by the event:
1. (BOOT- STRAP)

We describe in English, the recognizers that were defined for the various classes of symbols.
(VARI ABLE X): Xisavariableiff itisapair of the symbol ’ X, and an index number.

(FUNCTI ON FN) : FNis afunction symbol iff it is a triple of the symbol * F, an index nhumber and an
arity number.

(PREDI CATE PR): PRisapredicate symbol iff it is atriple of the symbol * P, an index number and an
arity number or the equality symbol * EQUAL.

The | NDEX of a symbal returns its subscript, and DEGREE returns the arity of a function or predicate
symbol. The use of these metatheoretic definitions will be clarified in the descriptions that follow. The
symbols #-#, ##, = and Oare represented by ' NOT,’ OR, ' EQUAL and’ FORSOVE respectively.

The definition of TERMP displayed below is used to recognize EXP as either being aterm, if FLG = T, or
as being alist of terms of length COUNT, otherwise. The use of the flag FL G obviates the need for two mutually
recursive definitions and will be used in other definitions as well. Informally, the definition asserts that EXP is
aterm if and only if EXP is non-empty and is either avariable, or a function symbol followed by alist of terms
whose length is equal to the arity of the function symbol. In the case when FLG#£# T (FLGis usudly set to
" LI ST in this case), EXP is a list of non-zero COUNT terms iff its first element is a term and the rest of the
elements form alist of COUNT- 1 terms.

40. Definition.
(TERVP EXP FLG COUNT)

(IF (EQUAL FLG T)
(1 F (NLI STP EXP)
F

(OR (VAR ABLE EXP)
(AND (FUNCTI ON (CAR EXP))
(TERVP (CDR EXP)
'LIST
(DEGREE (CAR EXP))))))
(IF (OR (NLI STP EXP) (ZEROP COUNT))
(AND (EQUAL EXP NIL) (ZEROP COUNT))
(AND (TERMP (CAR EXP) T 0)
(TERWP (CDR EXP)
"LIST
(SUBL COUNT)))))

The next definition displayed below captures the notion of a formulalist of formulas. (ATOWP EXP)
indicates that EXP is an atomic formula, i.e. a predicate symbol followed by alist of terms, of length equal to its
arity. If FLG=T, EXPisaformulaiff EXP isan atomic formula; or is’ NOT followed by one formulg; or * OR
followed by two formulas; or * FORSOVE followed by avariable and aformula. If FLG#£# T, then either EXP
isan empty list of formulas and COUNT is zero, or COUNT is non-zero and EXP consists of a formula followed
by COUNT- 1 formulas. Note that the argument COUNT isirrelevant in the FLG= T case and hence we adopt
the convention of setting it to zero.

45. Definition.
(FORMULA EXP FLG COUNT)

(IF (EQUAL FLG T)
(1 F (NLI STP EXP)
F
(OR (ATOVP EXP)
(AND (EQUAL (CAR EXP) ' NOT)
(FORMULA (CDR EXP) ' LIST 1))
(AND (EQUAL (CAR EXP) ' OR)
(FORMULA (CDR EXP) ' LI ST 2))
(AND (EQUAL (CAR EXP) ' FORSOME)
(VARI ABLE (CADR EXP))
(FORMULA (CDDR EXP) ' LIST 1))))
(IF (OR (NLI STP EXP) (ZEROP COUNT))
(AND (EQUAL EXP NIL) (ZEROP COUNT))
(AND (FORMULA (CAR EXP) T 0)
(FORMULA (CDR EXP)
"LIST
(SUBL COUNT)))))

Some other important definitions are:

(COLLECT- FREE EXP FLG): which returns a list of all and only those variables that have free
occurrences in EXP, with FLGused as before.

(COVERI NG EXP VAR FLG : whichreturnsalist of bound variablesin EXP such that for each of these
variables, say y, there is some sub-expression of EXP of the form CyA, such that EXP contains a free occurrence
of the variable VAR.

(FREE- FOR EXP VAR TERM FLGQ : which checks if TERMis substitutible for VAR in EXP, i.e. if
(COVERI NG EXP VAR FLG) and (COLLECT- FREE TERM T) have an empty intersection.

Now we introduce abbreviations for certain operationsin the formal logic:
30. Definition.

(F-EQUAL X Y)
(LI'ST "EQUAL X YY)
31. Definition.
(F-NOT X)
(LI'ST " NOT X)
32. Definition.
(FFOR XY)
(LIST "OR XY)
33. Definition.
(FORSOVE X YY)
(LI ST ' FORSOME X YY)
34. Definition.
(F-AND X YY)

(F-&OT (F-OR (F-NOT X) (F-NOT Y)))

10

35. Definition.
(F-IMPLIES X YY)

(F-_O? (F-NOT X) 'Y)

Substitution of a term TERMfor a free variable VAR in an expression EXP is one of the most important
operations in any formal system. It is aso the easiest to get wrong. The recursive definition below is fairly
subtle and requires careful study. The casesin the definition can be explained as follows:

If EXP is empty, return EXP itself.
If FLG=T, thefollowing cases arise:
1. EXPisavariable and (EXP = VAR): Return TERM

2. EXPisavariable and (EXP #£# VAR): Return EXP.
3. EXP isof theform XA, VAR = x: Return EXP.

4. EXP isof theform (XA, VAR #£# x: Return [XA’, where A’ isthe result of substituting TERMfor
VARINA.

5. EXPisof the formuu, . .. u,, where u is either a predicate symbol, function symbol, or logical
operator of arity n: Returnuu,’ ... u,’, where u;" is the result of substituting TERMfor VAR in

6. Otherwise: The expression is not well-formed and SUBST returns EXP itself.

In the case when FLG#£# T, EXP is alist of expressions and we perform the substitution on each member
of EXP.
46. Definition.
(SUBST EXP VAR TERM FLG

(1 F (LI STP EXP)
(IF (EQUAL FLG T)
(1 F (VAR ABLE EXP)
(I F (EQUAL EXP VAR) TERM EXP)
(1 F (AND (QUANTI FI ER (CAR EXP))
(LI STP (CDR EXP)))
(I F (EQUAL (CADR EXP) VAR)
EXP
(CONS (CAR EXP)
(CONS (CADR EXP)
(SUBST (CDDR EXP) VAR TERM ' LIST))))
(IF (OR (FUNC- PRED (CAR EXP))
(EQUAL (CAR EXP) ' NOT)
(EQUAL (CAR EXP) ' OR))
(CONS (CAR EXP)
(SUBST (CDR EXP) VAR TERM ' LI ST))
EXP)))
(CONS (SUBST (CAR EXP) VAR TERM T)
(SUBST (CDR EXP) VAR TERM ' LIST)))
EXP)

We now describe the SFOL proof-checker. We omit the definitions of several functions used to construct
axioms and formal proofs corresponding to the rules and axioms of SFOL. Function names with the suffix
PROOF construct formal proofs and will be called proof-constructors. The data-structure by which we
represent formal proofsisa4-tuple. Thefirst element, (CAR PF), of this 4-tuple indicates the type of the final
inference step; the second element is a sequence of hints (HI NT1 PF), (HI NT2 PF), (HI NT3 PF),

11

and (HI NT4 PF); the third eement is the conclusion of the proof and the fourth element,
(SUB- PROOF PF) is asub-proof or alist of sub-proofs leading to the final step. The function (CONC PF
FLG) returns the conclusion/list of conclusions given a proof/list of proofs PF and a flag FLG. The skeletal
control structure of the proof-checker will be presented before presenting the code for individual cases. (PRF
PF) checks if PF is a correct formal proof. The comments within curly brackets in the skeletal code of the
proof-checker indicate code to be presented later. Informally, if PF is empty, PRF returns F since it cannot
prove anything. Otherwise, it checks if the first element of PF is either * AXI OMor ' RULE corresponding to
the cases when PF is the proof of alogical axiom, or involves an application of an inference rule in the final

step, respectively. If it is none of the above, PRF returns F.
74. Definition.
(PRF PF)

(I F (NLI STP PF)
F

(I F (EQUAL (CAR PF) ' AXIOM
{code for checking proofs of axions}
(1F (EQUAL (CAR PF) ' RULE)
{code for checking proofs in which an inference
rule is used to derive the concl usion}

F))

5.1-A TheLogical Axiom Case

We present a similar skeletal control structure for the * AXI OM case of the proof-checker PRF. In this
section of the code, PRF checks the first member of the list of hints which form the second element of PF, i.e.
(HINT1 PF), to see if it is one of 'PROP-AXIOM ' SUBST-AXIOM ' | DENT- AXI OM
" EQUAL- AXI OML, or ' EQUAL- AXI OM2. These correspond to the five types of axioms listed in Section 3.

(I'F (EQUAL (HI NT1 PF) ' PROP-AXI OM
{code for checking proofs of propositional axions}
(I'F (EQUAL (HI NT1 PF) ’SUBST-AXI OV
{code for checking proofs of substitution axi ons}
(I F (EQUAL (HI NT1 PF) | DENT-AXI OM
{code for checking proofs of identity axions}
(I'F (EQUAL (HI NT1 PF) ' EQUAL- AXI OML)
{code for checking proofs of equality
axi ons for functions}
(I'F (EQUAL (HI NT1 PF) ' EQUAL- AXI OWR)
{code for checking proofs of equality
axi ons for predicates}

F)))))

Now we fill in the code corresponding to each type of logical axiom. The terms (H NT2 PF),
(HI NT3 PF) and (H NT4 PF) will be referred to as the first, second and third hints, respectively. To check
if PF isthe proof of apropositional axiom, i.e. aformulaof the form #-#A #[# A, PRF checks if the first hint
A ((HINT2 PF)) is a formula and if PF is equa to (PROP- AXI Ot PROOF (HI NT2 PF)), where
PROP- AXI OM PROCF constructs the required formal proof.

(AND (FORMULA (HINT2 PF) T 0)
(EQUAL PF
(PROP- AXI OM PROOF (HI NT2 PF))))

To check a given proof of a Substitution axiom three hints, (HINT2 PF), (HINT3 PF) and
(HI NT4 PF) below, are used. The code below checks if the first hint is a formula, the second hint is a

12

variable, and if the third hint isaterm. The fourth clause checks if the term is substituble for the variable in the
formula using the function FREE- FOR. The final clause checks if PF is the appropriate formal proof of a
Substitution axiom given the above three hints.
(AND (FORMULA (HINT2 PF) T 0)
(VARI ABLE (HI NT3 PF))
(TERVP (HINT4 PF) T 0)
(FREE- FOR (HI NT2 PF)
(HI NT3 PF)
(H NT4 PF)
T
(EQUAL PF
(SUBST- AXI OM PROOF (HI NT2 PF)
(H NT3 PF)
(HINT4 PF))))

The code for the Identity axiom case checks if the first hint is a variable, say x, and checks if PF is the

correct formal proof for the formulax = x.
(AND (VARI ABLE (HI NT2 PF))
(EQUAL PF
(1 DENT- AXI OM PROOF (HI NT2 PF))))

The first hint in a given proof of an Equality axiom for functionsis a function symbol, the second and third
hints are two lists of variables of equal length. The function VARLI ST checks if the first argument is alist of
variables of length given by the second argument. Then PRF checks if PF is the appropriate proof with respect
to the above three hints.

(AND (FUNCTI ON (HI NT2 PF))
(VAR- LI ST (H NT3 PF)
(DEGREE (HINT2 PF)))
(VAR- LI ST (HI NT4 PF)
(DEGREE (HINT2 PF)))
(EQUAL PF
(EQUAL- AXI OML- PROOF (HI NT2 PF)
(HI NT3 PF)
(HINT4 PF))))

The given proof of an Equality axioms for predicates is checked similarly. The only difference is that it
now checksif thefirst hint is a predicate symbol.
(AND (PREDI CATE (HI NT2 PF))
(VAR- LI ST (HI NT3 PF)
(DEGREE (HI NT2 PF)))
(VAR-LI ST (HI NT4 PF)
(DEGREE (H NT2 PF)))
(EQUAL PF
(EQUAL- AXI OVR- PROOF (HI NT2 PF)
(H NT3 PF)
(HINT4 PF))))

This concludes the description of the’ AXI OMcase of the definition of the SFOL proof-checker.

13

5.1-B Thelnference Rules

The second group of cases dedls with the inference rules of SFOL viz. Expansion, Contraction,
Associativity, Cut and Fintroduction. The rule that is used to derive the conclusion is supplied as
(HINT1 PF). The control skeleton used to branch on this hint is similar to the one used to check proofs of
axioms and is displayed below.

(I'F (EQUAL (HI NT1 PF) ' EXPAN)
{code for checki ng Expansi on step}
(1F (EQUAL (HINT1 PF) ' CONTRAC)
{code for checking Contraction step}
(I'F (EQUAL (HI NT1 PF) ' ASSCC)
{code for checking Associativity step}
(I'F (EQUAL (HI NT1 PF) ’CUT)
{code for checking Cut step}
(I'F (EQUAL (HINT1 PF) ’'E-1NTRO
{code for checking FIntroduction step}

F)))))

Now we deal with the code for each individual case. A part of the checking is done within the proof-
constructor functions and those details will not appear in the description below. Since an expression appearing
as a proper part of a proven formula is also a formula and in such cases, we do not explicitly check if the
expression isaformula

To check an application of an Expansion step i.e. a derivation of A #[1# B from B, A and B are supplied as
the two hints. Then the code checks if A is a formula, if PF is the appropriate proof of A ## B, and if
(SUB- PROOF PF) isaproof of A.

(AND (FORMULA (HI NT2 PF) T 0)
(EQUAL PF
(EXPAN- PROCF (HI NT2 PF)
(H NT3 PF)
(SUB- PROOF PF)))
(EQUAL (CONC (SUB-PROOF PF) T)
(HI NT3 PF))
(PRF (SUB- PROOF PF)))

In order to check an application of a Contraction step, i.e. a derivation of A from A #[# A, the only hint
supplied is A. We then check if PF is a properly constructed proof and if (SUB- PROOF PF) is a correct
proof of A ## A.

(AND (EQUAL PF
(CONTRAC- PROOF (HI NT2 PF)
(SUB- PROOF PF)))
(EQUAL (CONC (SUB- PROOF PF) T)
(F-OR (HINT2 PF) (H NT2 PF)))
(PRF (SUB- PROOF PF)))

The Associative rule is used to derive (A ## B) #0# C from A ## (B ## C) and A, B, and C are the
three hints used in checking this. The code below checks if PF is a properly constructed proof using this
inference step, and if (SUB- PROOF PF) isacorrect proof of A #(1# (B #(1# C).

14

(AND (EQUAL PF
(ASSOC- PROOF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF)
(SUB- PROCF PF)))
(EQUAL (CONC (SUB- PROCF PF) T)
(F-OR (H NT2 PF)
(F-OR (H NT3 PF) (HI NT4 PF))))
(PRF (SUB- PROOF PF)))

The Cut rule is employed to derive B ## C from A #0# B and #-#A #(# B. Thethree hintsused are A, B
and C. The code checks if PF is the appropriate proof and if (CAR (SUB- PROOF PF)) and
(CADR (SUB- PROCF PF)) arethe correct proofs of A #1# B and #-#A #[1# B, respectively.

(AND (EQUAL PF
(CUT- PROOF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF)
(CAR (SUB- PROOF PF))
(CADR (SUB- PROCF PF))))
(EQUAL (CONC (SUB- PROOF PF) ' LI ST)
(LIST (F-OR (HINT2 PF) (H NT3 PF))
(F-OR (F-NOT (HINT2 PF)) (H NT4 PF))))
(PRF (CAR (SUB- PROOF PF)))
(PRF (CADR (SUB- PROOF PF))))

The three hints used in checking the CHntroduction step in a proof are x, A, and B. The code checksif x isa
variable, and if PF is a correctly constructed proof of (XA #-# B, where x is not a member of the list of

variables appearing freein B and (SUB- PROOF PF) isacorrect proof of A #-#B.
(AND (VARI ABLE (HI NT2 PF))

(EQUAL PF
(FORSOME- | NTRO- PROOF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF)

(SUB- PROCF PF)))
(NOT (MEMBER (H NT2 PF)
(COLLECT- FREE (HI NT4 PF) T)))
(EQUAL (CONC (SUB- PROOF PF) T)
(F-1MPLIES (HI NT3 PF) (HI NT4 PF)))
(PRF (SUB- PROOF PF)))

This completes the description of our implementation of a proof-checker for SFOL. The function PROVES
defined below is a more usable form of the proof-checker.
78. Definition.
(PROVES PF EXP)

(ANE) (EQUAL (CONC PF T) EXP)
(FORMULA EXP T 0)
(PRF PF))

PROVES checks if PRF is a valid proof of EXP. This definition also presents a good example of
‘“*cheating’’ in aproof. By ‘‘cheating’’ we mean the avoidance of theorem proving in favor of computation. If
we had proved that the conclusion of a valid formal proof is always a formula, the FORMULA clause in the
definition of PROVES would have been unnecessary. This turns out not to matter since the body of PRF is

15

replaced by a group of rewrite rules in which the redundant use of FORMULA is avoided. Thus, the ‘‘cheating’’
here turns out to be a prudent decision.

This concludes the description of the SFOL proof-checker as defined to the Boyer-Moore theorem prover.

5.2 Stepsto the Proof of the Tautology Theorem

In this section, we list some of the important lemmas involved in the proof of the Tautology Theorem. We
also provide a glimpse of the approach that we have adopted in interacting with the prover. Thisisworth noting
since the success of a mechanical proof effort depends quite heavily on the approach used. Immediately after
defining the proof-checker, we replaced its definition by a series of rewrite rules. This is because the definition
of PRF islong and this causes a great deal of garbage generation/collection during the proof. In most of the
lemmas that we prove, only asmall part of the definition of the proof-checker isrelevant. We provide only one
simple example of a rewrite rule that captures one case of the definition of PRF, the one dealing with
propositional axioms. The other cases are similar. The lemma PROP- AXI OM PROVES attempts to rewrite
any term in a proof of the form (PROVES (PROP- AXI OM PROOF expressi on) conclusion) toT,
if expr essi on isaformulaand concl usi on is a propositional axiom involving expr essi on. Thus, if
PROP- AXI OM PROCF had been used in a proof, this lemma would be invoked in the course of checking that
proof. It isimportant to note that once we have this lemma, the actual definition of PROP- AXI OM PROCF is
no longer useful. The definition of this proof-constructor is disabled so that the prover does not expand an

occurrence of PROP- AXI Ovt PROCK into its definition during the proof of a theorem.
81. Theorem PROP-AXI OM PROVES (rewrite):
(I MPLIES (AND (FORMULA EXP T 0)
(EQUAL CONCL (F-OR (F-NOT EXP) EXP)))
(PROVES (PROP- AXI OM PROOF EXP) CONCL))

At this point in the proof, al the primitive proof-constructors such as PROP- AXI OM PROOF and the
definitions of PRF and PROVES are disabled.

Now, we give the first example of the proof of soundness of a derived inference rule. This is the
Commutative Rule for logical-or. Thisrule alows usto infer B #3# A from a proof of A ## B. Thefirst step
in the proof is to define a proof-constructor COMMUT- PROOF corresponding to thisrule.

103. Definition.
(COMWT- PROOF A B PF)

(CUT- PROOF A B A PF
(PROP- AXI OM PROCF A))

COVMUT- PROCF provides the formal justification for each application of the Commutative rule and thisis
given by the following lemma.
104. Theorem COVMJT- PROOF- PROVES (rewite):
(I MPLI ES (AND (PROVES PF (F-OR A B))
(FORMULA (FFOR AB) T 0)
(EQUAL CONCL (F-OR B A)))
(PROVES (COMMUT- PROOF A B PF) CONCL))

Now, the definition of COVMUT- PROCF is disabled as was done in the case of PROP- AXI OM PROCF.

The next important step is the proof of the previously mentioned lemma on diguncts. The proof of this
lemma is an extremely difficult one and the reader is urged to read the informal exposition from Shoenfield's
Mathematical Logic [shoenfield]. The mechanical proof of this lemma proceeds at roughly the same level of

16

detail as the informal proof in Shoenfield’s book. The lemma on disuncts is an extremely useful derived
inference rule. The lenma states: If A,, . . ., A, are al contained among By, . . ., B, then we can infer
B, ##. . ## B, from aproof of A, ##. . ## A . The proof is by strong induction on m with base cases
for[m=1] and [m =2]. First, we list some of the definitions used in the proof.

(MAKE- DI SJUNCT FLI ST): Given a list of formulas FLI ST, MAKE- DI SJUNCT constructs the
formula representing their digunction.

(ML- PROOF EXP FLI ST PF): Thisisthe proof constructor in the [m = 1] case. If PF is a proof of
EXP and EXP isamember of FLI ST, then ML- PROOF constructs a proof of (MAKE- DI SJUNCT FLI ST) .

(FORM LI ST FLI ST) : FORM LI ST checksif FLI ST isalist of formulas.

(M2- PROOF EXP1 EXP2 FLI ST PF): M2- PROCF is the proof-constructor in the [m = 2] case and
constructs a proof of (MAKE- DI SJUNCT FLI ST) , where EXP1 and EXP2 are members of FLI ST and PF is
aproof of (F- OR EXP1 EXP2).

(M PROCF FLI ST1 FLI ST2 PF): M PROOF constructs a proof of (MAKE- DI SJUNCT FLI ST2),
where the list of formulas FLI ST1 is contained in the list of formulas FLI ST2 and PF is a proof of
(MAKE- DI SJUNCT FLI ST1).

The lemma ML- PROOF- PROVESL displayed below, expresses the [m = 1] case of the proof.
122. Theorem ML- PROOF- PROVES1 (rewite):
(1 MPLI ES (AND (FORMULA (MAKE- DI SJUNCT FLIST) T 0)
(MEMBER EXP FLI ST)
(PROVES PF EXP))
(PROVES (ML- PROOF EXP FLI ST PF)
(MAKE- DI SJUNCT FLI ST)))
H nt: Disable FORMIULA

The [m = 2] case of the proof is expressed by the lemma M2- PROOF- PROVES below. EXP1 and EXP2
are the two diguncts that appear in FLI ST.
137. Theorem M- PROOF- PROVES (rewite):
(1 MPLIES (AND (FORMULA (MAKE- DI SJUNCT FLIST) T 0)
(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(MEMBER EXP1 FLI ST)
(MEMBER EXP2 FLI ST)
(PROVES PF (F-OR EXPl EXP2)))
(PROVES (M2- PROOF EXP1 EXP2 FLI ST PF)
(MAKE- DI SJUNCT FLI ST)))
Hi nt: D sable FORMJLA

Finally, M PROOF- PROVES expresses the lemma on disjuncts. If FLI ST1 isalist of diguncts that are
contained in FLI ST2, and we have a proof of the disunction of the disuncts in FLI ST1, then M PROOF
constructs a proof of the disunction of the diguncts in FLI ST2. Note that the induction to be employed is
supplied as a hint to the theorem prover.

17

150. Theorem M PROOF-PROVES (rewrite):
(I MPLIES (AND (FORM LI ST FLI ST1)
(LI STP FLI ST1)
(FORM LI ST FLI ST2)
(LI STP FLI ST2)
(SUBSET FLI ST1 FLI ST2)
(PROVES PF (MAKE- DI SJUNCT FLI ST1)))
(PROVES (M PROCF FLI ST1 FLI ST2 PF)
(MAKE- DI SJUNCT FLI ST2)))
H nt: Induct as for (M PROOF FLIST1 FLI ST2 PF).

The remainder of the description of the mechanical proof includes the definition of the tautology checker,
the proof of the Tautology Theorem and the proof of the correctness of the tautology checker.

5.3 Defining the Tautology-checker

The tautology-checker we define below is an implementation of the one described in Section Four.
However, for efficiency reasons the tautology-checker below does not flatten out the entire given formula into
digunction of atoms or negations of atoms. Instead, it maintains a list of atoms and negations of atoms
accumulated so far, and if this list ever contains an atom and its negation, we claim that the given formulais a
tautology. A small amount of effort was expended in proving the admissibility of the tautology-checker in
accordance with the Principle of Definition. The steps in the proof of admissibility will be omitted. As before,
we describe the preliminary definitions in English and provide skeletal descriptions of the tautology-checker
before going into the details. First, we define predicates which serve as recognizers for the various classes of
formulas.

(PROP- ATOVWP EXP) checksif EXP isan atom or the negation of an atom.
(OR- TYPE EXP) checksif EXP isof theform A #1# B.

(NOR- TYPE EXP) checksif EXP is of the form #-#(A ## B).

(DBLE- NEG TYPE EXP) checksif EXP isof theform @z(::)A.

The function (LI ST- COUNT FLI ST) computes the measure based on which the tautology-checker is
admitted. It takes asinput alist and returns the sum of the sizes of all the elements. The size of each element is
one more than the number of CONSes appearing init.

(NEG LI ST EXP FLI ST) checks if either EXP is the negation of some member of FLI ST or if some
member of FLI ST is the negation of EXP.

Next, we examine the definition of the tautology-checker TAUTOLOGYPL in detail. As in the case of the
SFOL proof-checker, the pure-LISP definition will be annotated in English. The function TAUTOLOGYP1
takes two arguments, FLI ST and AUXLI ST. As mentioned earlier, if A isthe formula being checked, A must
be of the form A, #[# . . . #{# A, and FLI ST isthelist A;,. . ., A,. AUXLI ST is an auxiliary argument that
accumulates the atoms and negations of atoms encountered during the recursion of the tautology-checker.
AUXLI ST will have to be initially bound to NI L when invoking TAUTOLOGYP1. The control skeleton of
TAUTOLOGYP1 is displayed below. If the FLI ST is empty, we return F. Otherwise we check if the first
element of FLI ST is of one of the types. PROP- ATOWP, OR- TYPE, NOR- TYPE, or DBLE- NEG TYPE,
and branch off accordingly. Later on, we present a lemma which states that any formula must fall into one of
the above types.

18

176. Definition.
(TAUTOLOGYP1 FLI ST AUXLI ST)

(I'F (NLI STP FLI ST)
F
(1 F (PROP- ATOVP (CAR FLI ST))
{code for case when the first element of FLIST
is an atomor the negation of an atonj
(IF (OR-TYPE (CAR FLI ST))
{code for case when the first element of FLIST is
of OR-TYPE}
(I'F (NOR-TYPE (CAR FLI ST))
{code for case when the first element of FLIST
is of NOR- TYPE}
(1'F (DBLE- NEG TYPE (CAR FLI ST))
{code for case when the first element of FLIST
i s of DBLE-NEG TYPE}
F))))
Hi nt: Consider the well-founded rel ati on LESSP
and the neasure (LI ST-COUNT FLI ST)

We now turn to the individual cases of the above definition. The function (ARGL EXP) returns B when
given an expression EXP of the form #-#B or of the form B #-# C and in the latter case, (ARG EXP)
returns C. If the first element of FLI ST is either an atom or the negation of an atom, TAUTOLOGYP1 first
checks if its negation appears in AUXLI ST and return T if that is the case. Otherwise, we add the first element
of FLI ST to the AUXLI ST and recurse on the rest of the FLI ST.

(OR (NEG LI ST (CAR FLI ST) AUXLI ST)
(TAUTOLOGYP1 (CDR FLI ST)
(CONS (CAR FLI ST) AUXLI ST)))

When the first element of FLI ST is of OR- TYPE i.e. of the form B ## C, we add B and C to the rest of
the FLI ST and recurse with the AUXLI ST unchanged.
(TAUTOLOGYP1 (CONS (ARGL (CAR FLIST))
(CONS (AR& (CAR FLIST)) (CDR FLIST)))
AUXLI ST)

If the first element of FLI ST is of the form #-#(B ## C), then TAUTOLOGYP1 is called twice, once with
#-#B added to the rest of FLI ST and another time with #-#C added to the rest of FLI ST.
(AND (TAUTOLOGYP1 (CONS (F-NOT (ARGL (ARGL (CAR FLIST))))
(CDR FLI ST))
AUXLI ST)
(TAUTOLOGYP1 (CONS (F-NOT (AR& (ARGL (CAR FLIST))))
(CDR FLI ST))
AUXLI ST))

The only remaining possibility is that the first element could be of the form @z(::)B in which case B is
added to therest of FLI ST and arecursive call is made.
(TAUTOLOGYP1 (CONS (ARGL (ARGL (CAR FLIST)))
(CDR FLI ST))
AUXLI ST)

This concludes the description of the tautol ogy-checker for SFOL.

19

5.4 The Proof of the Tautology Theorem

In this section, we sketch some of the events leading to the proof of the statement that all tautologies have
formal proofs within SFOL. The major task in the proof is to define the proof-constructor function which
constructs formal proofs for those formulas on which the tautology-checker returns T. More accurately, the
proof-constructor constructs a proof of (MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST)), where
APPEND concatenates two lists, and MAKE- DI SJUNCT returns the digunction of a list of formulas. The
case-structure and recursion scheme employed by the proof-constructor TAUT- PROOF1 are identical to those
of TAUTOLOGYPL1. The control skeleton of TAUT- PROOF1 is displayed below.

232. Definition.
(TAUT- PROOF1 FLI ST AUXLI ST)

(1'F (NLI STP FLI ST)
NI L
(1 F (PROP- ATOWP (CAR FLI ST))
{proof-constructor for PROP-ATOW case}
(IF (ORTYPE (CAR FLI ST))
{proof-constructor for OR-TYPE case}
(1'F (NOR-TYPE (CAR FLI ST))
{proof-constructor for NOR TYPE case}
(1 F (DBLE- NEG TYPE (CAR FLI ST))
{proof-constructor for DBLE-NEG TYPE case}
NIL)))))
Hi nt: Consider the well-founded rel ati on LESSP
and the neasure (LI ST-COUNT FLI ST)

The body of TAUT- PROOF1 makes calls to severa other proof-constructors and we omit several lemmas
which state that these functions construct the appropriate proofs.

In the PROP- ATOWP case, two possibilities arise depending on whether
(NEG- LI ST (CAR FLI ST) AUXLI ST) isT or not. If itisT, then PROP- ATOM PROOF1 constructs the
appropriate proof. If it isnot T, then we recurse as in TAUTOLOGYP1 and PROP- ATOM PROOF2 uses the
proof constructed by the recursive call to construct the required final proof.

(I'F (NEG LI ST (CAR FLI ST) AUXLI ST)
(PROP- ATOM PROCOF1 FLI ST AUXLI ST)
(PROP- ATOMt PROOF2 FLI ST AUXLI ST
(TAUT- PROOF1 (CDR FLI ST)
(CONS (CAR FLI ST) AUXLIST))))

In the OR- TYPE case, OR- TYPE- PROOF constructs the proof of the disunction of the formulasin FLI ST
and AUXLI ST using the proof generated by the recursive call to TAUT- PROOF1.
(OR- TYPE- PROOF

(ARGL (CAR FLI ST))

(AR&R (CAR FLI ST))

(APPEND (CDR FLI ST) AUXLI ST)

(TAUT- PROOF1 (CONS (ARGL (CAR FLIST))

(CONS (AR& (CAR FLIST)) (CDR FLIST)))
AUXLI ST))

NOR- TYPE- PROCF constructs the proof in the NOR- TYPE case but this time there are two recursive cals
to TAUT- PROCF1 asisalso the casein TAUTOLOGYPL.

20

(NOR- TYPE- PROOF
(ARGL (ARGL (CAR FLIST)))
(ARG2 (ARGL (CAR FLIST)))
(APPEND (CDR FLI ST) AUXLI ST)
(TAUT- PROOF1 (CONS (F-NOT (ARGL (ARGL (CAR FLIST))))
(CDR FLI ST))
AUXLI ST)
(TAUT- PROOF1 (CONS (F-NOT (ARG (ARGL (CAR FLIST))))
(CDR FLI ST))
AUXLI ST))

Finally, in the DBLE- NEG TYPE case, DBLE- NEG- TYPE- PROCF is used to construct the required proof
from the proof generated by the recursive call to TAUT- PROOF1.
(DBLE- NEG- TYPE- PROOF

(ARGL (ARGL (CAR FLI ST)))

(APPEND (CDR FLI ST) AUXLI ST)

(TAUT- PROOF1 (CONS (ARGL (ARGL (CAR FLIST)))

(CDR FLI ST))
AUXLI ST))

We now state the theorem which asserts that TAUT- PROOF1 constructs a correct proof of
(MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST)) if (TAUTOLOGYP1 FLI ST AUXLI ST) isT and
both FLI ST and AUXLI ST are lists of formulas. (FORM LI ST FLI ST) checks if FLI ST is a (possibly

empty) list of formulas.
233. Theorem TAUT-THML (rewrite):
(I MPLI ES (AND (FORM LI ST FLI ST)
(FORMt LI ST AUXLI ST)
(TAUTOLOGYP1 FLI ST AUXLI ST))
(PROVES (TAUT- PROOF1 FLI ST AUXLI ST)
(MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))))
Hints: D sable NEG LI ST-REDUC and FORMULA
I nduct as for (TAUTOLOGYP1 FLI ST AUXLI ST).

The theorem TAUT- THML captures the statement of the Tautology Theorem when AUXLI ST is instantiated
with NI L.

5.5 TheProof of the Correctness of the Tautology-checker

The final part of the proof consists in showing that tautology-checker TAUTOLOGYPL1 corresponds to the
truth-table definition of a tautology. Boyer and Moore [Boyer] have carried out a similar proof of the
correctness of atautology-checker for IF-expressions. To prove the correctness of the above tautol ogy-checker,
we need to:

1. Define the notion of the logical truth of aformula by defining a function which evaluates the truth
value of aformulawith respect to a given truth assignment.

2. Using the above function, show that if TAUTOLOGYP1 asserts a given formulato be a tautology,
then the truth value of that formula under any truth assignment isalways T.

3. Prove that if TAUTOLOGYP1 claims that the given formula is not a tautology, a falsifying truth
assignment exists, i.e. an assignment under which the truth value of the given formulaisF.

The function EVAL below evaluates the truth value of the formula EXP with respect to the truth assignment
ALI ST and returns T or F accordingly. (ELEM FORM EXP) checks if EXP is an atom. EVAL works as
follows:

21

If EXP isan atom;
Return T if EXP isamember of ALI ST and F otherwise.
If EXP isof the form #-#A:
Return the negation of the truth value of A on ALI ST.
If EXP isof theform A ## B:
Return T if atleast one of A or B evaluatesto T on
ALI ST and F otherwise.
If it is none of the above, EXP is not well-formed.

237. Definition.
(EVAL EXP ALI ST)

(1 F (NLI STP EXP)
F

(1 F (ELEM FORM EXP)
(MEMBER EXP ALI ST)
(1 F (EQUAL (CAR EXP) ' NOT)
(NOT (EVAL (CADR EXP) ALIST))
(1 F (EQUAL (CAR EXP) ' OR)
(OR (EVAL (CADR EXP) ALI ST)
(EVAL (CADDR EXP) ALIST))
F))))

Having defined EVAL, we can state and prove the other two statements in the proof of correctness of
TAUTOLOGYP1. The theorem TAUT- EVAL states that if (TAUTOLOGYP1 FLI ST AUXLI ST) is T, then
EVAL on (MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST)) returnsT onany ALI ST.

257. Theorem TAUT-EVAL (rewite):
(I MPLI ES (TAUTOLOGYP1 FLI ST AUXLI ST)
(EVAL (MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))
ALI ST))
H nts: Disable EVAL, EVAL- MAKE- DI SJUNCT, ELEM FORM
PROP- ATOWP, OR-TYPE, NOR-TYPE, DBLE- NEG TYPE,
APPEND, and NEG LI ST- REDUC
I nduct as for (TAUTOLOGYP1 FLI ST AUXLI ST).

Note that it is only in the proof of the statement that all non-TAUTOLOGYP1s are falsifiable do we need to
prove that every formula is of one of the types. PROP-ATOWP, OR-TYPE, NOR-TYPE or
DBLE- NEG- TYPE. Thisis stated below as FORMULA- CASESL.

271. Theorem FORMJLA- CASESL:
(I MPLIES (FORMULA EXP T 0)
(OR (PROP- ATOVP EXP)
(OR- TYPE EXP)
(NOR- TYPE EXP)
(DBLE- NEG- TYPE EXP)))

(FALSI FY- TAUT FLI ST AUXLI ST) constructs the truth assignment which fasifies
(MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST)) when (TAUTOLOGYP1 FLI ST AUXLI ST) isF
and its definition is similar to that of TAUTOLOGYP1. We state this as NON- TAUT- FAL SE below. We restrict
AUXLI ST to being alist of propositional atoms whose disjunction is not by itself a tautology, but since we are
only interested in the instance when the AUXLI ST is N L, this turns out not to matter.
(FALSI FY AUXLI ST) returns the truth assignment which falsifies (MAKE- DI SJUNCT AUXLI ST) when
AUXLI ST isalist of propositional atoms.

22

281. Theorem NOT- TAUT- FALSE (rewite):
(I MPLI ES (AND (FORM: LI ST FLI ST)
(PROP- ATOWP- LI ST AUXLI ST)
(NOT (EVAL (MAKE- DI SJUNCT AUXLI ST)
(FALSI FY AUXLI ST)))
(NOT (TAUTOLOGYP1 FLI ST AUXLI ST)))
(NOT (EVAL (MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))
(FALSI FY- TAUT FLI ST AUXLIST))))
H nts: Induct as for (FALSIFY-TAUT FLI ST AUXLI ST).
Di sabl e NEG LI ST, EVAL- MAKE- DI SJUNCT, NEG LI ST- REDUC,
PROP- ATOVP- REDUC, FORMULA, FALSIFY, APPEND, and
NOR- TYPE

Finally, we replace AUXLI ST by NI L and derive more readable versions of the above theorems.
282. Definition.
(TAUTCLOGYP FLI ST)

(TAUTOLOGYP1 FLI ST NIL)

283. Definition.
(TAUT- PROCF FLI ST)

(TAUT- PROOF1 FLI ST NIL)

286. Theorem TAUTOLOGY- THEOREM (rewrite):
(1 MPLI ES (AND (FORM LI ST FLI ST)
(TAUTOLOGYP FLI ST)
(EQUAL CONCL (MAKE- DI SJUNCT FLI ST)))
(PROVES (TAUT- PROOF FLI ST) CONCL))
Hi nt: Disable TAUT- PROOF1, TAUTOLOGYP1, FORMULA, and
NOT- FALSI FY- TAUT

288. Theorem TAUTOLOd ES- ARE-TRUE (rewrite):
(1 MPLI ES (AND (FORM LI ST FLI ST)
(TAUTOLOGYP FLI ST))
(EVAL (MAKE- DI SJUNCT FLI ST) ALI ST))
Hi nt: Disable FORMJLA, TAUTOLOGYP1, and NOT- FALSI FY- TAUT

290. Theorem TRUTHS- ARE- TAUTOLOGQ ES (rewite):
(I MPLI ES (AND (FORM: LI ST FLI ST)
(NOT (TAUTOLOGYP FLI ST)))
(NOT (EVAL (MAKE- DI SJUNCT FLI ST)
(FALSI FY-TAUT FLIST NIL))))
Hi nt: Disable TAUTOLOGYP1, NOT-FALSI FY- TAUT, and FORMJLA

5.6 A Post-Script

The main motivation for proving the Tautology Theorem was that it could then be applied to simplify some
of the formal deduction steps in the metatheorems that were to follow. As it turned out, it was not directly
usable since all our applications involve the use of meta-variables, i.e. variables in the Boyer-Moore logic, and
the tautology-checker can only handle SFOL expressions. For instance, if we want to show that
(F-OR (F-NOT A) A) isatautology for any formula A, we cannot directly apply the tautology-checker
without instantiating A. The Tautology Theorem was rendered useful by the contrapositive version of
TRUTHS- ARE- TAUTOLOAJ ES displayed below as EVAL- TAUTOLOGYP. Since EVAL translates formal
disiunctions and negations into disunctions and negations in the Boyer-Moore logic, we can use it to translate

23

tautol ogies containing meta-variables into statements which are tautologously true in the Boyer-Moore Logic.
Now, in order to establish (TAUTOLOGYP FLI ST), the theorem prover tries to prove that

(EVAL (MAKE- DI SJUNCT FLI ST) (FALSI FY-TAUT FLI ST NI L)) istautologously true.
318. Theorem EVAL- TAUTOLOGYP (rewite):
(I MPLIES (AND (FORMt LI ST FLI ST)
(EVAL (MAKE- DI SJUNCT FLI ST)
(FALSI FY- TAUT FLIST NIL)))
(TAUTOLOGYP FLI ST))
Hi nts: Disable TAUTOLOGYP, FORM LI ST, and FALSI FY- TAUT
Consi der:
TRUTHS- ARE- TAUTOLOG ES
Enabl e TRUTHS- ARE- TAUTOLCA ES

6. Conclusions

This paper describes a project aimed at mechanizing proofs in metamathematics using the Boyer-Moore
Theorem Prover [Boyer, meta]. To this end, a proof-checker for Shoenfield's First Order Logic (SFOL)
[shoenfield] was defined as a function in the Boyer-Moore logic. The theorem prover was then used to prove
the tautology theorem for SFOL. The success of this proof effort leads us to believe that a significant part of
proof-theoretic metamathematics can be mechanically proof-checked using the Boyer-Moore theorem prover.
These mechanical proofs aso demonstrate a method for making sound extensions to automatic proof-checkers.
Such proofs make it possible to write correct formal proofs without laying out in tedious detail, al of the steps
involved. This leadsto asignificant speed-up? in the automatic checking of proofs and at the same time makes
it more convenient for a human to construct proofs that will be automatically checked.

The proof was done by first writing up alist of events before attempting the mechanical proofs. This took
about 4 weeks. It took about 3 or 4 weeks to complete a mechanical proof of the Tautology theorem. Only a
few changes were made to the original outline of the proof. Since then, some revisions have been made to the
statements of a few of the definitions and lemmas involved. The proofs were done on a Symbolics 3600 Lisp
Machine.

Was the mechanical proof significantly more difficult than the informal proof? Both of these have been
described in a fair amount of detail so that the reader can independently judge the level of difficulty involved.
For the most part, the theorem prover was given the same information as one would glean from a careful
reading of Shoenfield’'s Mathematical Logic. The use of linguistic devices such as typed meta-variables,
ellipses, and the use of the phrase ‘‘of the form’, lent brevity to the informal proof. The version of the
Boyer-Moore theorem prover used in this proof had no corresponding devices. In this case, the task of going
from an informal proof to a mechanical proof is comparable in difficulty to the task of going from a carefully
stated program specification to an executable program satisfying those specifications. Both tasks involve
capturing certain notions using only the data-structures and constructs provided by the theorem proving system
or programming language. While no mistakes were found in Shoenfield' s outline of the proof, a few small gaps
were found in the exposition. The clarity and detail in Shoenfield’s outline were of immense help in the
formulation of the mechanical proof outline.

2Some preliminary experiments were carried out in which the performance of the tautology-checker on some small tautologies and
non-tautol ogies was compared to the performance of the SFOL proof-checker on the corresponding generated proofs. The difference in the
respective timings was remarkable. On an example on which the tautology-checker took 0.1 secs, it took 12 minutes to generate and check
the formal proof. A 7000-fold difference! Such experimental results should be taken with alot of salt since the proof-checker is not a very
efficient one and a smaller fraction of the time spent in garbage collection gets included in the smaller execution time. On simpler
examples, the ratios of the two times ranged from 1:100 to 1:600.

24

The only other mechanical proof of a metamathematical theorem of comparable difficulty is Paulson’s proof
of the correctness of a Unification algorithm using Cambridge L CF [paulson]. Since a considerable part of that
proof effort was spent making changes to the LCF system, a proper comparison is not possible.

Acknowledgements

Bob Boyer and J Moore have been a steady source of advice and encouragement. It was at their suggestion
that | embarked on this project to prove theorems in metamathematics using their theorem prover. The fact that
they were around to do any trouble-shooting and make suggestions had a great deal to do with the success of the
proof. | am aso indebted to Dr. Norman Martin for educating me in the ways of formal logic. Dr. Woody
Bledsoe was responsible for my initiation into mechanical theorem proving and has made several constructive
suggestions. | became aware of the work in metatheoretic extensibility through conversations with Bill Y oung.
Gael Buckley read drafts of this paper and made numerous corrections and suggestions. Mike Gordon, Larry
Paulson and Alan Bundy made severa illuminating comments and suggestions. During the period when this
work was carried out, | was supported by a University of Texas graduate fellowship for which | am grateful. |
also wish to thank SERC UK for sponsoring my visits to the University of Cambridge and the University of
Edinburgh.

1 ThelList of Definitionsand Lemmas

1. (BOOT- STRAP)

2. Definition.
(FUNCTI ON FN)

(AND (EQUAL FN
(LIST ' F (CADR FN) (CADDR FN)))
(NUVBERP (CADR FN))
(NUVBERP (CADDR FN)))

3. Definition.
(VARI ABLE X)
(ANE) (EQUAL X (LIST ' X (CADR X)))
(NUMBERP (CADR X)))
4. Definition.
(PREDI CATE P)

(OR (AND (EQUAL P
(LIST ' P (CADR P) (CADDR P)))
(NUVBERP (CADR P))
(NUVBERP (CADDR P)))

(EQUAL P " EQUAL))

5. Definition.

(DEGREE FN)

(1 F_(EQUAL FN ' EQUAL) 2 (CADDR FN))
6. Definition.

(1 NDEX FN)

(CADR EN)
7. Definition.

(FUNC- PRED X)

(O?_(FUNCTI ON X) (PREDI CATE X))
8. Definition.

(V%

(LIST " X (FIX X))

25

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.
21.
22.

23.

Theorem NUMBERP-FI X (rewite):
(NUMBERP (FI X X))

Theorem VARI ABLE-V (rewite):
(VARI ABLE (V X))

Definition.

(FN X'Y)

(LIéT "F(FIXX) (FIXY))
Definition.

(P XY)

(LIéT "P (FIX X)) (FIXY))

Theorem FUNCTION-FN (rewrite):
(FUNCTION (FN X Y))

Theorem PREDI CATE-P (rewite):
(PREDI CATE (P X Y))

Definition.

(QUANTI FI ER X)

(EQUAL X ' FORSOME)

Definition.

(UNION X Y)

(IF_(LISTPX)
(I F (MEMBER (CAR X) V)
(UNI ON (CDR X)

(CONS (CAR X) (UNION (CDR X) Y)))

Y)
Di sabl e VARI ABLE.

Di sabl e QUANTI FI ER.

Theorem PREDI CATE-F-EQUAL (rewrite):

(PREDI CATE ' EQUAL)
Di sabl e FUNCTI ON.
Di sabl e PREDI CATE.
Definition.
(APPEND X)

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y)

Definition.
(DELETE X)

(1E (LISTP V)
(IF (EQUAL X (CAR Y))
(DELETE X (CDR Y))

(CONS (CAR Y) (DELETE X (CDR Y))))

Y)

26

24. Theorem NOT- VEMBER- DELETE (rewrite):
(NOr (MEMBER X (DELETE X Y)))

25. Definition.
(COLLECT- FREE EXP FLG

(1 F (LI STP EXP)
(IF (EQUAL FLG T)
(1 F (VAR ABLE EXP)
(CONS EXP NI L)
(I F (AND (QUANTI FI ER (CAR EXP))
(LI STP (CDR EXP)))
(DELETE (CADR EXP)
(COLLECT- FREE (CDDR EXP) ' LIST))
(I F (OR (FUNC- PRED (CAR EXP))
(EQUAL (CAR EXP) ' NOT)
(EQUAL (CAR EXP) ' OR))
(COLLECT- FREE (CDR EXP) ' LI ST)
NIL)))
(APPEND (COLLECT- FREE (CAR EXP) T)
(COLLECT- FREE (CDR EXP) ' LIST)))
NI L)

26. Definition.
(SENTENCE EXP)

(EQUAL (COLLECT-FREE EXP T) NIL)

27. Definition.
(COVERI NG EXP VAR FLG

(IE (LISTP EXP)
(IF (EQUAL FLG T)
(1 F (VAR ABLE EXP)
NI L
(1 F (AND (QUANTI FI ER (CAR EXP))
(LI STP (CDR EXP)))
(1 F (EQUAL (CADR EXP) VAR)
NI L
(1 F (MEMBER VAR
(COLLECT- FREE (CDDR EXP) ' LI ST))
(CONS (CADR EXP)
(COVERI NG (CDDR EXP) VAR ' LI ST))
NIL))
(I F (OR (FUNC- PRED (CAR EXP))
(EQUAL (CAR EXP) ' NOT)
(EQUAL (CAR EXP) ' OR))
(COVERI NG (CDR EXP) VAR ’ LI ST)
NIL)))
(APPEND (COVERI NG (CAR EXP) VAR T)
(COVERI NG (CDR EXP) VAR ' LIST)))
NI L)

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Definition.
(NI'L- 1 NTERSECT X Y)

(IF_(LISTPX)
(AND (NOT (MEMBER (CAR X) Y))
(NI L- 1 NTERSECT (CDR X) Y))
L))

Definition.
(FREE- FOR EXP VAR TERM FLG

(NI'L- I NTERSECT (COVERI NG EXP VAR FLG

(COLLECT- FREE TERM T))

Definition.
(F-EQUAL X Y)
(LIST "EQUAL X YY)
Definition.
(F-NOT X)

(LI' ST " NOT X)
Definition.
(FFOR XY

(LIST "OR X Y)
Definition.
(FORSOME X YY)
(LI ST ' FORSOMVE X YY)
Definition.
(F-AND X YY)

(F-NOT (F-OR (F-NOT X) (F-NOT Y)))
Definition.
(F-IMPLIES X Y)
(F-FOR (F-NOT X) V)
Definition.

(FORALL VAR EXP)
(F-NOT (FORSOVE VAR (F-NOT EXP)))
Definition.

(F-IFF XY)

(F-AND (F-1MPLIES X)
S Y X)

(F-1 MPLI E)

38.

39.

40.

41.

42.

43.

44,

Definition.
(VAR-LI ST LI ST N)

(I F (ZEROP N)
(EQUAL LI ST NIL)
(AND (VAR ABLE (CAR LIST))
(VAR-LI ST (CDR LI ST) (SUBL N))))

Definition.
(VAR-SET LIST N)

(I F (ZEROP N)
(EQUAL LI ST NIL)
(AND (VAR ABLE (CAR LI ST))
(NOT (MEMBER (CAR LI ST) (CDR LIST)))
(VAR- SET (CDR LI ST) (SUBL N))))

Definition.
(TERVP EXP FLG COUNT)

(IF (EQUAL FLG T)
(1 F (NLI STP EXP)
F
(OR (VARI ABLE EXP)
(AND (FUNCTI ON (CAR EXP))
(TERVP (CDR EXP)
"LIST
(DEGREE (CAR EXP))))))
(IF (OR (NLI STP EXP) (ZEROP COUNT))
(AND (EQUAL EXP NIL) (ZEROP COUNT))
(AND (TERVP (CAR EXP) T 0)
(TERVP (CDR EXP)
"LIST
(SUBL COUNT)))))

Definition.
(ARGL X)
(CADR X)
Definition.
(ARKR X)
(CADDR X)
Definition.
(ATOVWP EXP)

(AND (PREDI CATE (CAR EXP))
(TERVP (CDR EXP)
"LIST
(DEGREE (CAR EXP))))

Di sabl e ATOVWP.

29

45.

46.

47.

Definition.
(FORMULA EXP FLG COUNT)

(IF (EQUAL FLG T)
(1 F (NLI STP EXP)
F
(OR (ATOVP EXP)
(AND (EQUAL (CAR EXP) ' NOT)
(FORMULA (CDR EXP) ' LIST 1))
(AND (EQUAL (CAR EXP) ' OR)
(FORMULA (CDR EXP) ' LI ST 2))
(AND (EQUAL (CAR EXP) ' FORSOME)
(VARI ABLE (CADR EXP))
(FORMULA (CDDR EXP) ' LIST 1))))
(IF (OR (NLI STP EXP) (ZEROP COUNT))
(AND (EQUAL EXP NIL) (ZEROP COUNT))
(AND (FORMULA (CAR EXP) T 0)
(FORMULA (CDR EXP)
"LIST
(SUBL COUNT)))))

Definition.
(SUBST EXP VAR TERM FLG)

(I F (LI STP EXP)
(IF (EQUAL FLG T)
(I F (VAR ABLE EXP)
(I F (EQUAL EXP VAR) TERM EXP)
(I F (AND (QUANTI FI ER (CAR EXP))
(LI STP (CDR EXP)))
(I F (EQUAL (CADR EXP) VAR)
EXP
(CONS (CAR EXP)
(CONS (CADR EXP)
(SUBST (CDDR EXP) VAR TERM'LIST))))
(IF (OR (FUNC- PRED (CAR EXP))
(EQUAL (CAR EXP) ' NOT)
(EQUAL (CAR EXP) ' OR))
(CONS (CAR EXP)
(SUBST (CDR EXP) VAR TERM ' LI ST))
EXP)))
(CONS (SUBST (CAR EXP) VAR TERM T)
(SUBST (CDR EXP) VAR TERM' LI ST)))
EXP)

Definition.
(NEG EXP1 EXP2)

(OR (EQUAL EXP1 (F-NOT EXP2))
(EQUAL EXP2 (F-NOT EXP1)))

30

48.

49,

50.

51.

52.

53.

54.

55.

Definition.
(CONC PF FLGQ

(1 F_(NLI STP PF)

NI L
(IF (EQUAL FLG T)
(CADDR PF)
(CONS (CONC (CAR PF) T)
(CONC (CDR PF) '"LIST))))
Definition.
(SUBSET X YY)

(1E (LISTP X)
(AND (MEMBER (CAR X))
(SUBSET (CDR X) Y))
L))

Definition.
(SET-EQUAL X YY)

(ANE) (SUBSET X Y) (SUBSET Y X))

Definition.
(PROP- AXI OM EXP)

(F-OR (F-NOT EXP) EXP)

Definition.
(SUBST- AXI OM EXP VAR TERM

(F-1MPLIES (SUBST EXP VAR TERM T)
(FORSOMVE VAR EXP))

Definition.
(1 DENT- AXI OM VAR)

(F- EQUAL VAR VAR)

Definition.
(PAl REQUALS VARS1 VARS2 EXP)

(I F (LI STP VARSL)
(F-1 MPLI ES (F- EQUAL (CAR VARS1) (CAR VARS2))
(PAl REQUALS (CDR VARS1)
(CDR VARS2)
EXP))
EXP)

Definition.
(EQUAL- AXI OV2 VARS1 VARS2 PR)

(PAI REQUALS VARS1 VARS2
(F-1 MPLI ES (CONS PR VARS1)
(CONS PR VARS2)))

31

56.

57.

58.

59.

60.

61.

62.

63.

Definition.
(ASSUVE EXP LI ST FLG

(I F (LI STP LIST)
(IF (AND (EQUAL (CAAAR LIST) FLG
(EQUAL EXP (CADAR LI ST)))
(CDR LI ST)
(ASSUME EXP (CDR LI ST) FLO))
F)

Definition.
(PROP- AXI OVt PROOF EXP)

(LI ST * AXI OM
(LI ST * PROP- AXI OM EXP)
(PROP- AXI OM EXP))

Definition.
(SUBST- AXI OM PROOF EXP VAR TERM)

(LI ST * AXI OM
(LI ST ’ SUBST- AXI OM EXP VAR TERM)
(SUBST- AXI OM EXP VAR TERM))

Definition.
(1 DENT- AXI OM PROOF VAR)

(LI ST * AXI OM
(LI ST ’ | DENT- AXI OM VAR)
(F- EQUAL VAR VAR))

Definition.
(EQUAL- AXI OML VARS1 VARS2 FN)

(PAl REQUALS VARS1 VARS2
(F- EQUAL (CONS FN VARS1)
(CONS FN VARS2)))

Definition.
(EQUAL- AXI OML- PROOF FN VARS1 VARS2)

(LI ST ' AXI OM
(LI ST * EQUAL- AXI OML FN VARS1 VARS2)
(EQUAL- AXI OML VARS1 VARS2 FN))

Definition.
(EQUAL- AXI OMR- PROOF PR VARS1 VARS2)

(LI ST " AXI OM
(LI ST " EQUAL- AXI OM2 PR VARS1 VARS2)
(EQUAL- AXI OV VARS1 VARS? PR))
Definition.
(EXPAN- PROOF A B PF)

(LI'ST * RULE

(LI ST * EXPAN A B)
(F-OR A B)

PF)

32

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

33

Definition.
(CONTRAC- PROOF A PF)

(LI'ST " RULE (LI ST ' CONTRAC A) A PF)
Definition.
(ASSOC- PROCF A B C PF)

(LI ST * RULE
(LI ST ' ASSCC A B C)
(F-OR (F-OR A B) O

PF)
Definition.
(CUT- PROOF A B C PF1 PF2)
(LI'ST ' RULE
(LIST "CUT A B QO
(FFOR B ©
(LI ST PF1 PF2))
Definition.

(FORSOME- | NTRO- PROOF VAR A B PF)

(LI ST ’ RULE
(LI ST * E-1 NTRO VAR A B)
(F-1MPLI ES (FORSOVE VAR A) B)
PF)

Enabl e ATOVP.
Definition.
(H NT1 PF)

(CAADR PF)
Definition.
(HI NT2 PF)

(CADADR PF)
Definition.
(H NT3 PF)

(CADDADR PF)
Definition.
(HI NT4 PF)

(CADDDADR PF)
Definition.

(SUB- PROOF PF)

(CADDDR PF)

74. Definition.
(PRF PF)

(IF
(NLI STP PF)
F
(IF
(EQUAL (CAR PF) ' AXI OV)
(I F (EQUAL (HI NT1 PF) ' PROP-AXI OV)
(AND (FORMULA (HI NT2 PF) T 0)
(EQUAL PF
(PROP- AXI OM PROCF (HINT2 PF))))
(1 F (EQUAL (HINT1 PF) ' SUBST- AXI OV)
(AND (FORMULA (HI NT2 PF) T 0)
(VARI ABLE (HI NT3 PF))
(TERVP (HI NT4 PF) T 0)
(FREE- FOR (HI NT2' PF)
(H NT3 PF)
(H NT4 PF)
T
(EQUAL PF
(SUBST- AXI OM PROCF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF))))
(IF (EQUAL (HI NT1 PF) | DENT- AXI OV)
(AND (VARI ABLE (HI NT2 PF))
(EQUAL PF
(1 DENT- AXI OM PROCF (HI NT2 PF))))
(IF (EQUAL (HINT1 PF) ' EQUAL- AXI OML)
(AND (FUNCTI ON (HI NT2 PF))
(VAR- LI ST (HI NT3 PF)
(DEGREE (HI NT2 PF)))
(VAR- LI ST (HI NT4 PF)
(DEGREE (HI NT2 PF)))
(EQUAL PF
(EQUAL- AXI OML- PROOF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF))))
(IF (EQUAL (HINT1 PF) ' EQUAL- AXI OMR)
(AND (PREDI CATE (HI NT2 PF))
(VAR- LI ST (HI NT3 PF)
(DEGREE (HI NT2 PF)))
(VAR- LI ST (HI NT4 PF)
(DEGREE (HI NT2 PF)))
(EQUAL PF
(EQUAL- AXI OVR- PROOF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF))))

F)))))
(IF

(EQUAL (CAR PF) ' RULE)
(I F (EQUAL (HINT1 PF) ' EXPAN)
(AND (FORMULA (HINT2 PF) T 0)
(EQUAL PF
(EXPAN- PROOF (HI NT2 PF)
(H NT3 PF)
(SUB- PROCF PF)))

35

(EQUAL (CONC (SUB- PROOF PF) T)
(H NT3 PF))
(PRF (SUB- PROOF PF)))
(IF (EQUAL (HINT1 PF) ’ CONTRAC)
(AND (EQUAL PF
(CONTRAC- PROOF (HI NT2 PF)
(SUB- PROCF PF)))
(EQUAL (CONC (SUB- PROCF PF) T)
(F-OR (H NT2 PF) (HI NT2 PF)))
(PRF (SUB- PROOF PF)))
(IF (EQUAL (HI NT1 PF) ’ ASSCC)
(AND (EQUAL PF
(ASSOC- PROCF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF)
(SUB- PROCF PF)))
(EQUAL (CONC (SUB- PROOF PF) T)
(F-OR (H NT2 PF)
(F-OR (H NT3 PF) (HI NT4 PF))))
(PRF (SUB- PROOF PF)))
(IF (EQUAL (HINT1 PF) ' CUT)
(AND (EQUAL PF
(CUT- PROOF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF)
(CAR (SUB- PROCF PF))
(CADR (SUB- PROOF PF))))
(EQUAL (CONC (SUB- PROCF PF) ' LI ST)
(LI ST (F-OR (H NT2 PF) (HI NT3 PF))
(F-OR (F-NOT (HI NT2 PF)) (H NT4
(PRF (CAR (SUB- PROCF PF)))
(PRF (CADR (SUB- PROOF PF))))
(IF (EQUAL (HI NT1 PF) ' E-INTRO)
(AND (VARI ABLE (HI NT2 PF))

(EQUAL PF
(FORSOME- | NTRO- PROOF (HI NT2 PF)
(H NT3 PF)
(H NT4 PF)

(SUB- PROCF P
(NOT (MEMBER (H NT2 PF)
(COLLECT- FREE (HI NT4 PF) T)
(EQUAL (CONC (SUB- PROOF PF) T)
(F-1 MPLI ES (HI NT3 PF) (HI NT4 PF))
(PRF (SUB- PROOF PF)))
F))))
F))

75. Theorem FORMJLA- OR-REDUC (rewrite):
(EQUAL (FORMULA (LIST "OR AB) T 0)
(AND (FORMULA AT 0) (FORMULA B T 0)))

76. Theorem FORMJULA- NOT-REDUC (rewrite):
(EQUAL (FORMULA (LIST "NOT A) T 0)
(FORMULA AT 0))

77. Theorem FORMJLA- FORSOVE- REDUC (rewite):
(EQUAL (FORMULA (LIST 'FORSOME X A) T 0)
(AND (VARI ABLE X) (FORMULA A T 0)))

78.

79.

80.

81.

82.

83.

84.

85.

36

Definition.
(PROVES PF EXP)

(AND (EQUAL (CONC PE T) EXP)
(FORMULA EXP T 0)
(PRF PF))

Theorem PROVES-1S-FORMULA (rewite):
(1 MPLI ES (PROVES PF EXP)
(FORMULA EXP T 0))

Theorem PROVES-I|S- FORMULA- AGAIN (rewite):
(1 MPLIES (NOT (FORMULA EXP T 0))

(NOT (PROVES PF EXP)))
Hint: Disable FORMILA

Theorem PROP- AXI OM PROVES (rewite):
(I MPLIES (AND (FORMULA EXP T 0)
(EQUAL CONCL (F-OR (F-NOT EXP) EXP)))
(PROVES (PROP- AXI OM PROCF EXP) CONCL))

Theorem SUBST- AXI OM PROVES (rewrite):
(1 MPLI ES (AND (FORMULA CONCL T 0)
(VARl ABLE VAR)
(TERVP TERM T 0)
(FREE- FOR EXP VAR TERM T)
(EQUAL CONCL
(SUBST- AXI OM EXP VAR TERM)))
(PROVES (SUBST- AXI O\t PROOF EXP VAR TERM)
CONCL))
H nt: Disable FREE-FOR

Theorem EQUAL- AXI OML- PROVES (rewrite):
(1 MPLI ES (AND (FUNCTI ON FN)
(VAR- LI ST VARS1 (DEGREE FN))
(VAR- LI ST VARS2 (DEGREE FN))
(FORMULA CONCL T 0)
(EQUAL CONCL
(EQUAL- AXI OML VARS1 VARS2 FN)))
(PROVES (EQUAL- AXI OML- PROOF FN VARS1 VARS2)
CONCL))

Theorem EQUAL- AXI OMR- PROVES (rewrite):
(1 MPLI ES (AND (PREDI CATE PR)
(VAR- LI ST VARS1 (DEGREE PR))
(VAR- LI ST VARS2 (DEGREE PR))
(FORMULA CONCL T 0)
(EQUAL CONCL
(EQUAL- AXI OV2 VARS1 VARS2 PR)))
(PROVES (EQUAL- AXI OM2- PROOF PR VARS1 VARS2)
CONCL))

Theorem | DENT- AXI O PROVES (rewite):
(1 MPLI ES (AND (VARI ABLE VAR)
(EQUAL CONCL (| DENT- AXI OM VAR))
(FORMULA CONCL T 0))
(PROVES (/| DENT- AXI OM PROOF VAR)
CONCL))

86.

87.

88.

89.

90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.

37

Theorem EXPAN- PROOF- PROVES (rewite):
(I MPLIES (AND (FORMULA A T 0)
(PROVES PF B)
(EQUAL CONCL (F-OR A B)))
(PROVES (EXPAN- PROOF A B PF) CONCL))

Theorem CONTRAC- PROOF- PROVES (rewite):
(I MPLIES (PROVES PF (F-OR A A))
(PROVES (CONTRAC- PROOF A PF) A))

Theorem ASSOC- PROOF- PROVES (rewite):
(1 MPLI ES (AND (PROVES PF (F-OR A (F-OR B Q)))
(EQUAL CONCL (F-OR (FF-OR A B) Q))
(PROVES (ASSOC- PROOF A B C PF) CONCL))

Theorem CUT- PROOF- PROVES (rewrite):
(I MPLI ES (AND (PROVES PFl1 (F-OR A B))
(PROVES PF2 (F-OR (F-NOT A) O)
(EQUAL CONCL (F-OR B Q)))
(PROVES (CUT-PROOF A B C PF1 PF2)
CONCL))

Di sabl e PROP- AXI OM PROCF.

Di sabl e SUBST- AXI OM PROOF.
Di sabl e EQUAL- AXI OML- PROOF.
Di sabl e EQUAL- AXI OVR- PROCF.
Di sabl e | DENT- AXI OM PROCF.
Di sabl e EXPAN- PROOF.

Di sabl e CONTRAC- PROCF.

Di sabl e ASSOC- PROOF.

Di sabl e CUT- PROCF.

Theorem FORSOME- | NTRO- PROVES (rewite):
(1 MPLI ES (AND (PROVES PF (F-1MPLIES A B))

(NOT (MEMBER VAR (COLLECT-FREE B T)))

(VARI ABLE VAR)

(EQUAL A- PRI ME

(F-1 MPLI ES (FORSOVE VAR A) B)))
(PROVES (FORSQVE- | NTRO- PROOF VAR A B PF)
A- PRI ME))

Hint: Disable COLLECT- FREE and FORMULA

Di sabl e FORSOVE- | NTRO- PROOF.
Di sabl e PRF.

Di sabl e PROVES.

Definition.

(COMWIT- PROOF A B PF)

(CUT- PROOF A B A PF
(PROP- AXI OM PROCF A))

104.

105.
106.

107.

108.
109.

110.

Theorem COVMJT- PROOF- PROVES (rewrite):
(I MPLI ES (AND (PROVES PF (F-OR A B))
(FORMULA (FF-OR A B) T 0)
(EQUAL CONCL (F-OR B A)))
(PROVES (COVMUJT- PROOF A B PF) CONCL))

Di sabl e COVMJT- PROCF.

Definition.
(DETACH PROOF A B PF1 PF2)

(CONTRAC- PROOF B
(CUT-PROCF A B B
(COMMUT- PROOF B A
(EXPAN- PROOF B A PF1))
PF2))

Theorem DETACH PROCF- PROVESL (rewrite):
(I MPLI ES (AND (PROVES PF1 A)
(PROVES PF2 (F-1MPLIES A B))
(FORMULA B T 0))
(PROVES (DETACH PROOF A B PF1 PF2) B))
Hint: Disable FORMILA

Di sabl e DETACH PROCF.

Definition.
(PROVES- LI ST PFLI ST EXPLI ST)

(I F (NLI STP EXPLI ST)
(EQUAL PFLIST NIL)
(AND (PROVES (CAR PFLI ST) (CAR EXPLI ST))
(PROVES- LI ST (CDR PFLI ST)
(CDR EXPLI ST))))

Definition.
(LI ST-1 MPLI ES LI ST CONC)

(1 E (NLI STP LI ST)
CONC
(I F (NLI STP (CDR LI ST))
(F-1MPLIES (CAR LI ST) CONC)
(F-1MPLIES (CAR LI ST)
(LI ST-1MPLI ES (CDR LI ST) CONC))))

38

39

111. Definition.
(LI ST- DETACH PROOF ALI ST B PFLI ST PF2)

(1 F (NLI STP ALI ST)
PF2
(1 F (NLI STP (CDR ALI ST))
(DETACH PROOF (CAR ALI ST)
B
(CAR PFLI ST)
PF2)
(LI ST- DETACH PROOF (CDR ALI ST)
B
(CDR PFLI ST)
(DETACH PROOF (CAR ALI ST)
(LI ST-1 MPLI ES (CDR ALI ST) B)
(CAR PFLI ST)
PF2))))

112. Theorem DETACH LI ST-I MPLIES (rewite):
(I MPLIES (AND (LIST ©
(PROVES PF A)
(PROVES PF2
(LIST-IMPLIES (CONS A C) B))
(FORMULA A T 0)
(FORMULA (LIST-IMPLIES C B) T 0))
(PROVES (DETACH PROOF A
(LI ST-1 MPLIES C B)
PF PF2)
(LIST-IMPLIES C B)))

113. Theorem FORMULA- LI ST-1MPLI ES:
(1 MPLI ES (AND (FORMULA (LI ST-1MPLIES ALIST B) T 0)
(LI STP ALI ST))
(FORMULA (LI ST-1MPLI ES (CDR ALI ST) B)
T 0))

114. Theorem DETACH RULE-CORR (rewite):
(1 MPLI ES (AND (PROVES- LI ST PFLI ST ALI ST)
(PROVES PF2 (LIST-1MPLIES ALI ST B))
(FORMULA B T 0))
(PROVES (LI ST- DETACH PROCF ALI ST B PFLI ST PF2)
B))
Hints: Induct as for (LIST-DETACH PROOF ALI ST B PFLI ST PF2).
Consi der:
DETACH- LI ST-1 MPLIES wi th
{A<- (CAR ALI ST), C<-(CDR ALIST), PF<-(CAR PFLIST)}
FORMULA- LI ST- | MPLI ES
Enabl e DETACH LI ST-1 MPLI ES and FORMULA- LI ST-1 MPLI ES

115. Disabl e LI ST- DETACH PROCF.
116. Disabl e DETACH LI ST-1 MPLI ES.

117. Definition.
(RT- EXPAN- PROOF A B PF)

(COMMUT- PROOF B A
(EXPAN- PROCF B A PF))

118.

119.
120.

121.

122.

123.
124,

Theorem RT- EXPAN- PROOF- PROVES (rewrite):
(I MPLI ES (AND (PROVES PF A)
(FORMULA B T 0)
(EQUAL CONCL (F-OR A B)))
(PROVES (RT- EXPAN- PROCF A B PF)
CONCL))

Di sabl e RT- EXPAN- PROCF.

Definition.
(MAKE- DI SJUNCT FLI ST)

(IF_(NLI STP FLI ST)
NI L
(I'F (NLI STP (CDR FLI ST))
(CAR FLI ST)
(F-OR (CAR FLI ST)
(MAKE- DI SJUNCT (CDR FLIST)))))

Definition.
(ML- PROOF EXP FLI ST PF)

(IF (NLI STP FLIST)
NI L
(1F (NLISTP (CDR FLIST))
PF
(1F (EQUAL EXP (CAR FLIST))
(RT- EXPAN- PROOF (CAR FLI ST)
(MAKE- DI STUNCT (CDR FLI ST))
PF)
(EXPAN- PROOF (CAR FLI ST)
(MAKE- DI STUNCT (CDR FLI ST))
(ML- PROOF EXP (CDR FLIST) PF)))))

Theorem ML- PROOF- PROVESL (rewrite):
(I MPLIES (AND (FORMULA (MAKE- DI SJUNCT FLIST) T 0)
(MEMBER EXP FLI ST)
(PROVES PF EXP))
(PROVES (ML- PROOF EXP FLI ST PF)
(MAKE- DI SJUNCT FLI ST)))
Hi nt: Disable FORMULA

Di sabl e ML- PROCF.

Definition.
(RT- ASSOC- PROOF A B C PF)

(COMMUT- PROOF
(F-OR B C)
A
(ASSOC- PROOF B C A
(COMWWUT- PROCF (F-OR C A)
B
(ASSOC- PROCF C A B
(COMMUT- PROOF (F-OR A B) C PF)))))

40

125.

126.
127.

128.

129.
130.

Theorem RT- ASSCC- PROOF- PROVES (rewrite):
(I MPLIES (AND (PROVES PF (F-OR (FF-OR A B) O))
(FORMULA A T 0)
(FORMULA B T 0)
(FORMULA C T 0)
(EQUAL CONCL (FF-OR A (F-OR B Q))))
(PROVES (RT- ASSOC- PROOF A B C PF)

CONCL))
Di sabl e RT- ASSOC- PROCF.
Definition.
(1 NSERT- PROOF A B C PF)

(COWLT- PROCE (F- R A Q)
B

(ASSCC-PROCF A C B
(EXPAN- PROOF A

(F-OR C B)
(COMMUT- PROCF B C PF))))

Theorem | NSERT- PROOF- PROVES (rewrite):
(I MPLIES (AND (PROVES PF (F-OR B Q)
(FORMULA A T 0)
(FORMULA B T 0)
(FORMULA C T 0)
(EQUAL CONCL (FF-OR B (FFOR A Q)))
B

(PROVES (| NSERT- PROOF A

CONCL))
Di sabl e | NSERT- PROCF.
Definition.

C PF)

(M2- PROOF- STEP EXP1 EXP2 FLI ST PF)

(I'F (NLI STP FLIST)
NI L
(IF (N

(I

(I

LI STP (CDR FLI ST))
F (EQUAL EXP2 (CAR FLIST)) PF NIL)
F (EQUAL EXP2 (CAR FLIST))

(RT- ASSOC- PROOF EXP1 EXP2
(MAKE- DI SJUNCT (CDR FLI ST))

(RT- EXPAN- PROOF (F- OR EXP1 EXP2)
(MAKE- DI SIUNCT (CDR FLI ST))
PF))

(1 NSERT- PROOF (CAR FLI ST)

EXP1

(MAKE- DI SIUNCT (CDR FLI ST))

(M2- PROOF- STEP EXP1 EXP2
(CDR FLI ST)

PF)))))

42

131. Theorem M- PROOF- STEP- PROVES (rewrite):
(I MPLI ES (AND (FORMULA (MAKE- DI SJUNCT FLIST) T 0)
(MEMBER EXP2 FLI ST)
(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(PROVES PF (F-OR EXP1 EXP2)))
(PROVES (M2- PROOF- STEP EXP1 EXP2 FLI ST PF)
(F-OR EXP1 (MAKE- DI SJUNCT FLIST))))
Hint: Disable FORMILA

132. Theorem M- PROOF- STEP- PROVES1 (rewite):
(1 MPLI ES (AND (FORMULA (MAKE- DI SJUNCT FLIST) T 0)
(MEMBER EXP2 FLI ST)
(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(PROVES PF (F-OR EXPl EXP2))
(EQUAL CONCL
(F-OR EXP1 (MAKE- DI SJUNCT FLIST))))
(PROVES (M2- PROOF- STEP EXP1 EXP2 FLI ST PF)
CONCL))
H nts: Consider:
M2- PROOF- STEP- PROVES
Enabl e M2- PROOF- STEP- PROVES

133. Disabl e M2- PROOF- STEP.
134. D sabl e M2- PROOF- STEP- PROVES.

135. Definition.
(M2- PROOF EXP1 EXP2 FLI ST PF)

(1 F (NLI STP FLI ST)
NI L
(1 F (EQUAL EXP1 EXP2)
(ML- PROOF EXP1 FLI ST
(CONTRAC- PROOF EXP1 PF))
(IF (EQUAL EXP1 (CAR FLIST))
(M2- PROOF- STEP EXP1 EXP2
(CDR FLI ST)
PF)
(I F (EQUAL EXP2 (CAR FLI ST))
(M2- PROOF- STEP EXP2 EXP1
(CDR FLI ST)
(COMMUT- PROOF EXP1 EXP2 PF))
(EXPAN- PROCF (CAR FLI ST)
(MAKE- DI SJTUNCT (CDR FLI ST))
(M2- PROOF EXP1 EXP2
(CDR FLI ST)

PF))))))

136.

137.

138.

139.
140.

43

Theorem ML- PROOF- PROVES (rewite):
(I MPLIES (AND (FORMULA (MAKE- DI SJUNCT FLIST) T 0)
(MEMBER EXP FLI ST)
(PROVES PF EXP)
(EQUAL CONCL (MAKE- DI SJUNCT FLIST)))
(PROVES (ML- PROOF EXP FLI ST PF)
CONCL))
Hi nts: Consider:
ML- PROCF- PROVES1
Enabl e ML- PROOF- PROVES1

Theorem M2- PROOF- PROVES (rewite):
(1 MPLI ES (AND (FORMULA (MAKE- DI SJUNCT FLIST) T 0)
(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(MEMBER EXP1 FLI ST)
(MEMBER EXP2 FLI ST)
(PROVES PF (F-OR EXP1 EXP2)))
(PROVES (MR- PROOF EXP1 EXP2 FLI ST PF)
(MAKE- DI SJUNCT FLI ST)))
H nt: Disable FORMULA

Theorem M2- PROOF- PROVESL (rewrite):
(1 MPLIES (AND (FORMULA (MAKE- DI SJUNCT FLIST) T 0)
(FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(MEMBER EXP1 FLI ST)
(MEMBER EXP2 FLI ST)
(PROVES PF (F-OR EXP1 EXP2))
(EQUAL CONCL (MAKE- DI SJUNCT FLI ST)))
(PROVES (M2- PROOF EXP1 EXP2 FLI ST PF)
CONCL))
Hi nts: Consider:
M2- PROCF- PROVES
Enabl e M2- PROOF- PROVES

Di sabl e M2- PROCF.
Di sabl e M2- PROOF- PROVES.

141. Definition.
(M3- PROOF EXP1 EXP2 FLI ST2 PF)

(CONTRAC- PROOF
(MAKE- DI SJUNCT FLI ST2)
(CONTRAC- PROOF
(F- OR (MAKE- DI SJTUNCT FLI ST2)
(MAKE- DI SIUNCT FLI ST2))
(M2- PROOF
(F- OR (MAKE- DI SJTUNCT FLI ST2)
(MAKE- DI SIUNCT FLI ST2))
EXP1
(CONS (F- OR (MAKE- DI SIUNCT FLI ST2)
(MAKE- DI SIUNCT FLI ST2))
(CONS (MAKE- DI SJTUNCT FLI ST2) FLI ST2))
(ASSOC- PROOF
(MAKE- DI SJUNCT FLI ST2)
(MAKE- DI SJUNCT FLI ST2)
EXP1
(COMMUT- PROOF (F- OR (MAKE- DI SJTUNCT FLI ST2) EXP1)
(MAKE- DI SJUNCT FLI ST2)
(M2- PROOF (F- OR (MAKE- DI SJUNCT FLI ST2) EXP1)

EXP2

(CONS (F-OR (MAKE- DI SJUNCT FLI ST2) EXP1)
FLI ST2)

(ASSOC- PROOF (MAKE- DI SJUNCT FLI ST2)

EXP1 EXP2
(COMMUT- PROOF (F- OR EXP1 EXP2)
(MAKE- DI SJUNCT FLI ST2)

PF))))))))

142. Definition.
(M PROCF FLI ST1 FLI ST2 PF)

(1 F (NLI STP FLI ST1)
NI L
(I'F (NLI STP (CDR FLI ST1))
(ML- PROOF (CAR FLI ST1) FLIST2 PF)
(I'F (NLI STP (CDDR FLI ST1))
(M2- PROOF (CAR FLI ST1)

(CADR FLI ST1)
FLI ST2 PF)

(MB- PROOF (CAR FLI ST1)
(CADR FLI ST1)

FLI ST2
(M PROOF (CONS (F-OR (CAR FLI ST1) (CADR FLIST1))
(CDDR FLI ST1))
(CONS (F-OR (CAR FLI ST1) (CADR FLI ST1))
FLI ST2)
(ASSOC- PROOF (CAR FLI ST1)
(CADR FLI ST1)
(MAKE- DI SJUNCT (CDDR FLI ST1))
PF))))))
Hi nt: Consider the well-founded rel ati on LESSP
and the nmeasure (LENGTH FLI ST1)

143.

144.

145.

146.

147.
148.

149.
150.

151.

Theorem SUBSET-CONS (rewite):
(I MPLI ES (SUBSET X V)
(SUBSET X (CONS Z V)))

Definition.
(FORM LI ST FLI ST)

(IE (LISTP FLIST)
(AND (FORMULA (CAR FLIST) T 0)
(FORM LI ST (CDR FLI ST)))
L))

Theorem FORM.I ST- FORMULA- MAKE-DI SJ (rewrite):
(I MPLIES (AND (FORM LI ST FLI ST) (LI STP FLI ST))

(FORMULA (MAKE- DI SJUNCT FLIST) T 0))
Hint: Disable FORMIULA

Theorem MB- PROOF- PROVES (rewite):
(I MPLI ES (AND (FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(FORM LI ST FLI ST2)
(PROVES PF
(MAKE- DI SJUNCT (CONS (F-OR EXP1 EXP2) FLIST2)))
(MEMBER EXP1 FLI ST2)
(MEMBER EXP2 FLI ST2))
(PROVES (MB- PROOF EXP1 EXP2 FLI ST2 PF)
(MAKE- DI SJUNCT FLI ST2)))

Di sabl e M3- PROCF.

Theorem M3- PROOF- PROVESL (rewrite):
(I MPLIES (AND (FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(FORM LI ST FLI ST2)
(PROVES PF
(MAKE- DI SJTUNCT (CONS (F- OR EXP1 EXP2) FLIST2)))
(MEMBER EXP1 FLI ST2)
(MEMBER EXP2 FLI ST2)
(EQUAL CONCL (MAKE- DI SJUNCT FLI ST2)))
(PROVES (M3- PROOF EXP1 EXP2 FLI ST2 PF)
CONCL))
H nts: Consider:
MB- PROOF- PROVES
Enabl e MB- PROOF- PROVES

Di sabl e M3- PROOF- PROVES.

Theorem M PROOF- PROVES (rewite):
(1 MPLI ES (AND (FORM LI ST FLI ST1)
(LI STP FLI ST1)
(FORM LI ST FLI ST2)
(LI STP FLI ST2)
(SUBSET FLI ST1 FLI ST2)
(PROVES PF (MAKE- DI SJUNCT FLI ST1)))
(PROVES (M PROCF FLI ST1 FLI ST2 PF)
(MAKE- DI SJUNCT FLI ST2)))
H nt: Induct as for (M PROOF FLIST1 FLIST2 PF).

Di sabl e M PROCF.

45

152.

153.

154.

155.
156.

157.

158.

159.

160.
161.

162.

46

Theorem M PROOF- PROVESL (rewite):
(I MPLIES (AND (FORM LI ST FLI ST1)
(FORM LI ST FLI ST2)
(SUBSET FLI ST1 FLI ST2)
(PROVES PF (MAKE- DI SJUNCT FLI ST1))
(EQUAL CONCL (MAKE- DI SJUNCT FLI ST2)))
(PROVES (M PROCOF FLI ST1 FLI ST2 PF)
CONCL))
H nts: Consider:
M PROOF- PROVES
Enabl e M PROOF- PROVES

Definition.
(OR- TYPE EXP)

(EQUAL EXP
(F-OR (CADR EXP) (CADDR EXP)))

Definition.
(NOR- TYPE EXP)

(EQ_JAL EXP
(F-NOT (F-OR (CADADR EXP) (CADDADR EXP))))

Di sabl e ATOWP.

Definition.
(ELEM FORM EXP)

(CR_(ATC]\/P EXP)
(EQUAL EXP
(FORSOME (CADR EXP) (CADDR EXP))))

Definition.
(NEG ELEM FORM EXP)

(ANE) (EQUAL EXP (F-NOT (CADR EXP)))
(ELEM FORM (ARGL EXP)))

Definition.
(PROP- ATOVP EXP)

(OR (ELEM FORM EXP)
(NEG- ELEM FORM EXP))

Definition.
(DBLE- NEG TYPE EXP)

(EQUAL EXP
(F-NOT (F-NOT (CADADR EXP))))

Enabl e ATOWP.
Theorem DBLE- NEG NOT- PROP- ATOWP (rewrite):

(I MPLI ES (DBLE- NEG TYPE EXP)
(NOT (PROP- ATOVP EXP)))

Theorem OR- TYPE- NOT- PROP- ATOMP (rewrite):
(1 MPLI ES (OR- TYPE EXP)
(NOT (PROP- ATOVP EXP)))

163.

164.

165.

166.

167.

168.

169.

170.

171.
172.
173.
174.
175.

Theorem NOR- TYPE- NOT- PROP- ATOWP (rewrite):
(1 MPLI ES (NOR- TYPE EXP)
(NOT (PROP- ATOWP EXP)))

Definition.
(LI ST- COUNT LI ST)

(1 F (NLI STP LI ST)
0

(PLUS (ADDL (COUNT (CAR LIST)))
(LI ST- COUNT (CDR LIST))))

Definition.
(NEG LI ST EXP LI ST)

(1 F (NLI STP LI ST)
F

(OR (NEG EXP (CAR LI ST))
(NEG LI ST EXP (CDR LI ST))))

Theorem LESSP-LI ST-COUNT (rewrite):
(1 MPLI ES (LI STP FLI ST)
(LESSP (LI ST-COUNT (CDR FLI ST))
(LI ST-COUNT FLI ST)))

Theorem OR-TYPE-LI ST-COUNT (rewite):
(I MPLIES (AND (OR-TYPE (CAR FLI ST))
(LI STP FLI ST))
(LESSP (LI ST- COUNT (CONS (CADAR FLI ST)
(CONS (CADDAR FLI ST) (CDR FLIST))))
(LI ST-COUNT FLI ST)))

Theorem NOR- TYPE- LI ST-COUNT1 (rewite):
(1 MPLI ES (AND (LI STP FLI ST)
(NOR- TYPE (CAR FLI ST)))
(LESSP (LI ST-COUNT (CONS (LIST *NOT (CADADAR FLI ST))
(CDR FLIST)))
(LI ST-COUNT FLI ST)))

Theorem NOR- TYPE- LI ST-COUNT2 (rewite):
(1 MPLI ES (AND (LI STP FLI ST)
(NOR-TYPE (CAR FLIST)))
(LESSP (LI ST-COUNT (CONS (LIST ' NOT (CADDADAR FLI ST))
(CDR FLIST)))
(LI ST- COUNT FLI ST)))

Theorem DBLE- NEG LI ST-COUNT (rewrite):
(1 MPLI ES (AND (LI STP FLI ST)
(DBLE- NEG TYPE (CAR FLI ST)))
(LESSP (LI ST- COUNT (CONS (CADADAR FLI ST) (CDR FLIST)))
(LI ST-COUNT FLI ST)))

Di sabl e PROP- ATOVP.

Di sabl e OR- TYPE.

Di sabl e NOR- TYPE.

Di sabl e DBLE- NEG TYPE.
Di sabl e LI ST- COUNT.

47

48

176. Definition.
(TAUTOLOGYP1 FLI ST AUXLI ST)

(1'F (NLI STP FLI ST)
F
(1 F (PROP- ATOVP (CAR FLI ST))
(OR (NEG LI ST (CAR FLI ST) AUXLI ST)
(TAUTOLOGYP1 (CDR FLI ST)
(CONS (CAR FLI ST) AUXLI ST)))
(IF (OR-TYPE (CAR FLI ST))
(TAUTOLOGYP1 (CONS (ARGL (CAR FLIST))
(CONS (AR® (CAR FLIST)) (CDR FLIST)))
AUXLI ST)
(I'F (NOR-TYPE (CAR FLI ST))
(AND (TAUTOLOGYP1 (CONS (F-NOT (ARGL (ARGL (CAR FLIST))))
(CDR FLI ST))
AUXLI ST)
(TAUTOLOGYP1 (CONS (F-NOT (AR& (ARGL (CAR FLIST))))
(CDR FLI ST))
AUXLI ST))
(1 F (DBLE- NEG TYPE (CAR FLI ST))
(TAUTOLOGYP1 (CONS (ARGL (ARGL (CAR FLIST)))
(CDR FLI ST))
AUXLI ST)
F))))
Hint: Consider the well-founded rel ati on LESSP
and the nmeasure (LI ST-COUNT FLI ST)

177. Theorem FORM LI ST-APPEND (rewite):
(I MPLIES (AND (FORM LI ST X) (FORM LI ST Y))
(FORM LI ST (APPEND X Y)))
Hints: Induct as for (APPEND X Y).
Di sabl e FORMULA

178. Definition.
(NEG PROOF EXP1 EXP2)

(I F (EQUAL EXP1 (F-NOT EXP2))
(PROP- AXI OMt PROOF EXP2)
(COMMUT- PROOF EXP2 EXP1
(PROP- AXI OM PROOF EXP1)))

179. Theorem NEG PROOF- PROVES (rewrite):
(I MPLI ES (AND (FORMULA EXP1 T 0)
(FORMULA EXP2 T 0)
(NEG EXP1 EXP2)
(EQUAL CONCL (F-OR EXP1 EXP2)))
(PROVES (NEG PROOF EXP1 EXP2) CONCL))

180. Disabl e NEG PROCF.

181. Theorem NEG LIST-REDUC (rewrite):
(EQUAL (NEG LI ST EXP FLI ST)
(OR (MEMBER (F-NOT EXP) FLI ST)
(AND (EQUAL EXP (F-NOT (CADR EXP)))
(MEMBER (CADR EXP) FLIST))))

182.

183.

184.
185.

186.

187.

188.

189.

190.

Definition.
(NEG LI ST- PROOF EXP FLI ST)

(I F (MEMBER (F-NOT EXP) FLI ST)
(M2- PROOF EXP
(F- NOT EXP)
(CONS EXP FLI ST)
(NEG- PROOF EXP (F-NOT EXP)))
(MR- PROOF EXP
(CADR EXP)
(CONS EXP FLI ST)
(NEG- PROOF EXP (CADR EXP))))

Theorem NEG LI ST- PROOF- PROVES (rewrite):
(I MPLI ES (AND (FORMULA EXP T 0)

(FORM LI ST FLI ST)

(NEG LI ST EXP FLI ST)

(EQUAL CONCL

(MAKE- DI SJUNCT (CONS EXP FLIST))))
(PROVES (NEG- LI ST- PROCF EXP FLI ST)
CONCL))

H nt: Disable NEG LIST

Di sabl e NEG LI ST- PROCF.

Theorem SUBSET-IDENT (rewite):
(SUBSET X X)

Theorem SUBSET-CAR (rewite):
(SUBSET X (CONS Y X))

Theorem SUBSET- APPEND (rewrite):
(SUBSET (CONS EXP LI ST2)
(APPEND (CONS EXP LI ST1) LIST2))

Theorem NLI STP-NEG LI ST (rewite):
(I MPLI ES (NLI STP LI ST)
(NOT (NEG LI ST EXP LI ST)))

Definition.
(PROP- ATOM PROCF1 FLI ST1 FLI ST2)

(M PROOF (CONS (CAR FLI ST1) FLIST2)
(APPEND FLI ST1 FLI ST2)
(NEG- LI ST- PROOF (CAR FLI ST1) FLIST2))

Theorem PROP- ATOMt PROOF1- PROVES (rewite):
(1 MPLI ES (AND (FORM LI ST FLI ST1)

(LI STP FLI ST1)

(FORM LI ST FLI ST2)

(NEG LI ST (CAR FLI ST1) FLIST2)

(EQUAL CONCL

(MAKE- DI SJUNCT (APPEND FLI ST1 FLIST2))))
(PROVES (PROP- ATOVt PROOF1 FLI ST1 FLI ST2)
CONCL))
Hints: D sable NEG LI ST- REDUC
Consi der:

49

SUBSET- APPEND wi t h { EXP<- (CAR FLI ST1), LI ST1<-(CDR FLIST1), LI ST2<-FLIST2}

191.

Enabl e SUBSET- APPEND
Di sabl e PROP- ATOM PROOF1.

192.

193.

194.

195.

196.
197.

198.

199.

Theorem SUBSET- APPEND- CAR (rewrite):
(SUBSET (APPEND LI ST1 (CONS EXP LI ST2))
(APPEND (CONS EXP LI ST1) LIST2))

Theorem FORM LI ST- APPEND- CAR (rewrite):
(1 MPLI ES (AND (FORM LI ST (CONS EXP LI ST1))
(FORM LI ST LI ST2))
(FORM LI ST (APPEND LI ST1 (CONS EXP LI ST2))))

Definition.
(PROP- ATOMt PROOF2 FLI ST1 FLI ST2 PF)

(M PROOF (APPEND (CDR FLI ST1)
(CONS (CAR FLIST1) FLIST2))
(APPEND FLI ST1 FLI ST2)
PF)

Theorem PROP- ATOM PROOF2- PROVES (rewrite):
(1 MPLI ES (AND (FORM LI ST FLI ST1)
(LI STP FLI ST1)
(FORM LI ST FLI ST2)
(PROVES PF
(MAKE- DI SJUNCT (APPEND (CDR FLI ST1)
(CONS (CAR FLI ST1) FLIST2))))
(EQUAL CONCL
(MAKE- DI SJUNCT (APPEND FLI ST1 FLI ST2))))
(PROVES (PROP- ATOM PROOF2 FLI ST1 FLI ST2 PF)
CONCL))
Hints: Consider:
SUBSET- APPEND- CAR Wi t h
{LI ST1<- (CDR FLI ST1), EXP<-(CAR FLI ST1), LI ST2<-FLI ST2}
Enabl e SUBSET- APPEND- CAR

Di sabl e PROP- ATOM PROOF2.

Definition.
(CANCEL- PROOF A B PF1 PF2)

(CONTRAC- PROOF B
(CUT- PROOF A B B PF2
(RT- EXPAN- PROOF (F-NOT A) B PF1)))

Theorem CANCEL- PROOF- PROVES (rewite):
(I MPLIES (AND (PROVES PF1 (F-NOT A))
(PROVES PF2 (F-OR A B))
(FORMULA A T 0)
(FORMULA B T 0))
(PROVES (CANCEL- PROOF A B PF1 PF2) B))

Di sabl e CANCEL- PROCF.

50

200. Definition.
(NLI STP- NOR- TYPE- PROOF A B PF1 PF2)

(CANCEL- PROOF B
(F-NOT (F-OR A B))
PF2
(CANCEL- PROOF A
(F-OR B (F-NOT (F-OR A B)))
PF1
(M PROOF (LI ST (F-NOT (F-OR A B)) A B)
(LIST A B (F-NOT (F-OR A B)))
(PROP- AXI OM PROCF (F-OR A B)))))

201. Theorem NLI STP- NOR TYPE- PROOF- PROVES (rewrite):
(1 MPLI ES (AND (FORMULA A T 0)
(FORMULA B T 0)
(PROVES PF1 (F-NOT A))
(PROVES PF2 (F-NOT B))
(EQUAL CONCL (F-NOT (F-OR A B))))
(PROVES (NLI STP- NOR- TYPE- PROOF A B PF1 PF2)
CONCL))

202. Definition.
(LI STP- NOR- TYPE- PROOF A B C PF1 PF2)

(M PROOF
(LI ST (F-NOT (F-OR
(LI ST (F-NOT (F-OR
(RT- ASSOC- PROOF
(F-NOT (F-OR A B))
cCcC
(CUT- PROCF B
(F-OR (F-NOT (F-CR A B)) O
C
(RT- ASSOC- PROCF B
(F-NOT (F-OR A B))

0

> >
oo

C

(CUT- PROCF A
(F-OR B (F-NOT (F-OR A B)))
C

(M PROOF (LI ST (F-NOT (F-OR A B)) A B)
(LIST A B (F-NOT (F-OR A B)))
(PROP- AXI OMt PROOF (F-OR A B)))
PF1))
PF2)))

203. Theorem LI STP- NOR TYPE- PROOF- PROVES (rewrite):

(I MPLI ES (AND (FORMULA A T 0)
(FORMULA B T 0)
(FORMULA C T 0)
(PROVES PF1 (F-OR (F-NOT A) 0))
(PROVES PF2 (F-OR (F-NOT B) O))
(EQUAL CONCL

(F-OR (F-NOT (F-OR A B)) Q)))
(PROVES (LI STP- NOR- TYPE- PROOF A B C PF1 PF2)
CONCL))

204. D sabl e M PROOF- PROVES.

51

52

205. Di sabl e NLI STP- NOR- TYPE- PROCF.
206. Di sabl e LI STP- NOR- TYPE- PROCF.

207. Definition.
(NOR- TYPE- PROOF A B CLI ST PF1 PF2)

(I'FE (NLI STP CLI ST)
(NLI STP- NOR- TYPE- PROCF A B PF1 PF2)
(LI STP- NOR- TYPE- PROCF A B
(MAKE- DI SJTUNCT CLI ST)
PF1 PF2))

208. Enabl e NOR- TYPE.

209. Theorem NOR- TYPE- PROOF- PROVES (rewite):
(1 MPLI ES (AND (NOR- TYPE EXP)
(FORMULA EXP T 0)
(FORM LI ST CLI ST)
(PROVES PF1
(MAKE- DI SJUNCT (CONS (F-NOT (CADADR EXP)) CLIST)))
(PROVES PF2
(MAKE- DI SJUNCT (CONS (F- NOT (CADDADR EXP)) CLIST)))
(EQUAL CONCL
(MAKE- DI SJUNCT (CONS EXP CLIST))))
(PROVES (NOR- TYPE- PROOF (CADADR EXP)
(CADDADR EXP)
CLI ST PF1 PF2)
CONCL))

210. Definition.
(NLI STP- DBLE- NEG- PROOF A PF)

(CONTRAC- PROOF (F-NOT (F-NOT A))
(CUT- PROCF A
(F-NOT (F-NOT A))
(F-NOT (F-NOT A))
(RT- EXPAN- PROOF A
(F-NOT (F-NOT A))
PF)
(COMWIT- PROOF (F- NOT (F-NOT A))
(F-NOT A
(PROP- AXI OM PROCF (F-NOT A)))))

211. Disabl e NOR- TYPE- PROCF.

212. Theorem NLI STP- DBLE- NEG PROOF- PROVES (rewite):
(I MPLIES (AND (FORMULA A T 0)
(PROVES PF A)
(EQUAL CONCL (F-NOT (F-NOT A))))
(PROVES (NLI STP- DBLE- NEG- PROOF A PF)
CONCL))

213. Disabl e NLI STP- DBLE- NEG PROOF.

214,

215.

216.
217.

218.
219.

220.

221.

Definition.
(LI STP- DBLE- NEG PROOF A C PF)

(COMMUT- PROCF C
(F-NOT (F-NOT A))
(CUT- PROCF A C
(F-NOT (F-NOT A))
PF
(COMMUT- PROCF (F- NOT (F-NOT A))
(F-NOT A)
(PROP- AXI OVt PROOF (F-NOT A)))))

Theorem LI STP- DBLE- NEG PROOF- PROVES (rewrite):
(I MPLIES (AND (FORMULA A T 0)

(FORMULA C T 0)

(PROVES PF (F-OR A Q)

(EQUAL CONCL

(F-OR (F-NOT (F-NOT A) O))
(PROVES (LI STP- DBLE- NEG- PROOF A C PF)
CONCL))

Di sabl e LI STP- DBLE- NEG PROOF.

Definition.
(DBLE- NEG- TYPE- PROOF A CLI ST PF)

(1 F (NLI STP CLI ST)
(NLI STP- DBLE- NEG- PROOF A PF)
(LI STP- DBLE- NEG- PROOF A
(MAKE- DI SJTUNCT CLI ST)
PF))

Enabl e DBLE- NEG TYPE.

Theorem DBLE- NEG TYPE- PROOF- PROVES (rewite):
(I MPLI ES (AND (DBLE- NEG TYPE EXP)
(FORMULA EXP T 0)
(FORM LI ST CLI ST)
(PROVES PF
(MAKE- DI SJUNCT (CONS (CADADR EXP) CLIST)))
(EQUAL CONCL
(MAKE- DI SJUNCT (CONS EXP CLIST))))
(PROVES (DBLE- NEG TYPE- PROCF (CADADR EXP)
CLI ST PF)
CONCL))

Definition.
(OR-TYPE- PROOF A B CLI ST PF)

(1 F (NLI STP CLI ST)
PF
(ASSOC- PROCF A B
(MAKE- DI SJUNCT CLI ST)
PF))

Enabl e OR- TYPE.

53

222.

223.
224,

225.

226.

227.

228.
229.
230.
231.

Theorem OR- TYPE- PROOF- PROVES (rewrite):
(1 MPLI ES
(AND
(OR-TYPE (CAR FLI ST1))
(FORM LI ST FLI ST1)
(LI STP FLI ST1)
(FORM LI ST FLI ST2)
(PROVES PF
(MAKE- DI SJUNCT (APPEND (CONS (CADAR FLI ST1)
(CONS (CADDAR FLI ST1) (CDR FLI ST1))
FLI ST2)))
(EQUAL CONCL
(MAKE- DI SJUNCT (APPEND FLI ST1 FLI ST2))))
(PROVES (OR- TYPE- PROOF (CADAR FLI ST1)
(CADDAR FLI ST1)
(APPEND (CDR FLI ST1) FLI ST2)
PF)
CONCL))

Di sabl e OR- TYPE- PROCF.

Theorem OR-TYPE-FORMLIST (rewite):
(I MPLI ES (AND (OR-TYPE (CAR FLI ST))
(FORM LI ST FLI ST)
(LI STP FLI ST))
(FORM LI ST (CONS (CADAR FLI ST)
(CONS (CADDAR FLI ST) (CDR FLIST)))))

Theorem NOR-TYPE- FORM LI ST (rewite):
(1 MPLI ES (AND (NOR- TYPE (CAR FLIST))
(FORM LI ST FLI ST)
(LI STP FLIST))
(FORM LI ST (CONS (LI ST ' NOT (CADADAR FLI ST))
(CDR FLIST))))

Theorem NOR-TYPE- FORM LI ST2 (rewite):
(I MPLIES (AND (NOR-TYPE (CAR FLI ST))
(FORM LI ST FLI ST)
(LI STP FLI ST))
(FORM LI ST (CONS (LI ST ' NOT (CADDADAR FLI ST))
(CDR FLIST))))

Theorem DBLE- NEG TYPE- FORM LI ST (rewite):
(1 MPLI ES (AND (DBLE- NEG TYPE (CAR FLI ST))
(FORM LI ST FLI ST)
(LI STP FLI ST))
(FORM LI ST (CONS (CADADAR FLI ST) (CDR FLIST))))

Di sabl e OR- TYPE.

Di sabl e NOR- TYPE.

Di sabl e DBLE- NEG TYPE.

Di sabl e DBLE- NEG TYPE- PROOF.

55

232. Definition.
(TAUT- PROOF1 FLI ST AUXLI ST)

(IF
(NLI STP FLI ST)
NI L
(IF
(PROP- ATOVP (CAR FLI ST))
(I'F (NEG LI ST (CAR FLI ST) AUXLI ST)
(PROP- ATOVt PROOF1 FLI ST AUXLI ST)
(PROP- ATOMt PROOF2 FLI ST AUXLI ST
(TAUT- PROOF1 (CDR FLI ST)
(CONS (CAR FLI ST) AUXLI ST))))
(IF
(OR-TYPE (CAR FLI ST))
(OR- TYPE- PROOF (ARGL (CAR FLI ST))
(AR& (CAR FLI ST))
(APPEND (CDR FLI ST) AUXLI ST)
(TAUT- PROOF1 (CONS (ARGL (CAR FLI ST))
(CONS (AR&R (CAR FLIST)) (CDR FLIST)))
AUXLI ST))
(I'F (NOR-TYPE (CAR FLIST))
(NOR- TYPE- PROOF (ARGL (ARGL (CAR FLIST)))
(ARR (ARGL (CAR FLIST)))
(APPEND (CDR FLI ST) AUXLI ST)
(TAUT- PROOF1 (CONS (F-NOT (ARGL (ARGL (CAR FLIST)))
(CDR FLI ST))
AUXLI ST)
(TAUT- PROOF1 (CONS (F-NOT (AR& (ARGL (CAR FLIST)))
(CDR FLI ST))
AUXLI ST))
(1 F (DBLE- NEG TYPE (CAR FLI ST))
(DBLE- NEG TYPE- PROOF (ARGL (ARGL (CAR FLI ST)))
(APPEND (CDR FLI ST) AUXLI ST)
(TAUT- PROOF1 (CONS (ARGL (ARGL (CAR FLI ST)
(CDR FLI ST))
AUXLI ST))
NIL)))))
Hint: Consider the well-founded rel ati on LESSP
and the measure (LI ST-COUNT FLI ST)

233. Theorem TAUT-THML (rewrite):

(I MPLI ES (AND (FORM LI ST FLI ST)

(FORM LI ST AUXLI ST)

(TAUTOLOGYP1 FLI ST AUXLI ST))

(PROVES (TAUT- PROOF1 FLI ST AUXLI ST)
(MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))))
Hi nts: Disable NEG LI ST-REDUC and FORMULA
I nduct as for (TAUTOLOGYP1 FLI ST AUXLI ST).

234. Disabl e TAUT- PROOF1.

235. Theorem TAUT-THWR (rewrite):
(I MPLI ES (AND (FORM LI ST FLI ST)
(FORM LI ST AUXLI ST)
(TAUTOLOGYP1 FLI ST AUXLI ST)
(EQUAL CONCL
(MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))))
(PROVES (TAUT- PROOF1 FLI ST AUXLI ST)
CONCL))
Hi nts: Consider:
TAUT- THML wi t h { CONCL<- (MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))}
Enabl e TAUT- THML

236. Theorem LI STP-ELEM FORM (rewite):
(1 MPLI ES (NLI STP EXP)
(NOT (ELEM FORM EXP)))

237. Definition.
(EVAL EXP ALI ST)

(I F (NLI STP EXP)
F

(I F (ELEM FORM EXP)
(MEMBER EXP ALI ST)
(I F (EQUAL (CAR EXP) ' NOT)
(NOT (EVAL (CADR EXP) ALIST))
(IF (EQUAL (CAR EXP) ' OR)
(OR (EVAL (CADR EXP) ALI ST)
(EVAL (CADDR EXP) ALIST))

F)))

238. Theorem ELEM FORM EVAL (rewrite):
(1 MPLI ES (ELEM FORM EXP)
(EQUAL (EVAL EXP ALI ST)
(MEMBER EXP ALI ST)))

239. Theorem NLISTP-EVAL (rewite):
(1 MPLI ES (NLI STP EXP)
(NOT (EVAL EXP ALIST)))

240. Theorem NOT-EVAL (rewite):
(I MPLI ES (AND (LI STP EXP)
(EQUAL (CAR EXP) ' NOT))
(EQUAL (EVAL EXP ALI ST)
(NOT (EVAL (CADR EXP) ALIST))))

241. Theorem OREVAL (rewite):
(I MPLI ES (AND (LI STP EXP)
(EQUAL (CAR EXP) 'OR))
(EQUAL (EVAL EXP ALI ST)
(OR (EVAL (CADR EXP) ALI ST)
(EVAL (CADDR EXP) ALIST))))

242. Theorem MEMBER-EVAL (rewite):
(I MPLI ES (AND (MEMBER EXP FLI ST)
(EVAL EXP ALI ST))
(EVAL (MAKE- DI SJUNCT FLI ST) ALI ST))

243. Theorem EVAL-ELEM FORM (rewite):
(I MPLI ES (AND (ELEM FORM EXP)
(MEMBER EXP LI ST)
(MEMBER EXP ALI ST)
(EQUAL CONCL (MAKE- DI SJUNCT LI ST)))
(EVAL CONCL ALI ST))
Hints: Induct as for (NMEMBER EXP LI ST).
Di sabl e EVAL and ELEM FORM

244. Enable OR TYPE

245. Enabl e NOR- TYPE.

246. Enabl e DBLE- NEG TYPE.
247. Enabl e PROP- ATOWP.

248. Theorem NMEMBER- APPEND (rewrite):
(EQUAL (MEMBER EXP (APPEND FLI ST1 FLI ST2))
(OR (MEMBER EXP FLI ST1)
(MEMBER EXP FLI ST2)))

249. Theorem EVAL-NEG ELEM FORM (rewite):
(1 MPLI ES (AND (MEMBER EXP LI ST)
(MEMBER (F- NOT EXP) LI ST)
(EQUAL CONCL (MAKE- DI SJUNCT LI ST)))
(EVAL CONCL ALI ST))
Hi nt: Disable ELEM FORM and EVAL

250. Theorem EVAL- MAKE- DI SJUNCT (rewite):
(EQUAL (EVAL (MAKE- DI SJUNCT (APPEND LI ST1 LI ST2))
ALI ST)
(OR (EVAL (MAKE- DI SJUNCT LI ST1) ALIST)
(EVAL (MAKE- DI SJUNCT LI ST2) ALIST)))

251. Theorem NEG LIST-EVAL (rewite):
(I MPLIES (AND (LI STP FLI ST1)
(NEG LI ST (CAR FLI ST1) FLI ST2)
(EQUAL CONCL
(MAKE- DI SJUNCT (APPEND FLI ST1 FLI ST2))))
(EVAL CONCL ALI ST))

252. Theorem EVAL- PROP- ATOWP (rewite):
0. (I MPLI ES (AND (LI STP FLI ST1)
(EVAL (MAKE- DI SJUNCT (APPEND (CDR FLI ST1)
(CONS (CAR FLI ST1) FLIST2)))
ALI ST))
(EVAL (MAKE- DI SJUNCT (APPEND FLI ST1 FLI ST2))
ALI ST))
Hnt: Induct as for (APPEND FLI ST FLI ST2).

253. Disabl e EVAL.

57

58

254. Theorem EVAL-OR-TYPE (rewrite):
(I MPLI ES
(AND (LI STP FLI ST1)
(OR-TYPE (CAR FLIST1)))
(EQUAL
(EVAL (MAKE- DI SJUNCT (APPEND FLI ST1 FLI ST2))
ALI ST)
(EVAL (MAKE- DI SJUNCT (APPEND (CONS (CADAR FLI ST1)
(CONS (CADDAR FLI ST1) (CDR FLIST1)))
FLI ST2))
ALI ST)))

255. Theorem EVAL-NOR-TYPE (rewite):
(1 MPLI ES
(AND (LI STP FLI ST1)
(NOR-TYPE (CAR FLI ST1)))
(EQUAL (EVAL (MAKE- DI SJUNCT (APPEND FLI ST1 FLI ST2))
ALI ST)
(AND (EVAL (MAKE- DI SJUNCT (APPEND (CONS (F- NOT (CADADAR FLI ST1))
(CDR FLI ST1))
FLI ST2))
ALI ST)
(EVAL (MAKE- DI SJUNCT (APPEND (CONS (F- NOT (CADDADAR FLI ST1))
(CDR FLI ST1))
FLI ST2))
ALI ST))))

256. Theorem EVAL-DBLE-NEG TYPE (rewite):
(1 MPLI ES
(AND (LI STP FLI ST1)
(DBLE- NEG TYPE (CAR FLI ST1)))
(EQUAL (EVAL (MAKE- DI SJUNCT (APPEND FLI ST1 FLI ST2))

ALI ST)
(EVAL (MAKE- DI STUNCT (APPEND (CONS (CADADAR FLI ST1) (CDR FLI ST1))
FLI ST2))
ALI ST)))

257. Theorem TAUT-EVAL (rewrite):
(1 MPLI ES (TAUTOLOGYP1 FLI ST AUXLI ST)
(EVAL (MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))
ALI ST))
H nts: Disable EVAL, EVAL- MAKE- DI SJUNCT, ELEM FORM PROP- ATOWP, OR-TY
NOR- TYPE, DBLE- NEG TYPE, APPEND, and NEG LI ST- REDUC
I nduct as for (TAUTOLOGYP1 FLI ST AUXLI ST).

258. Theorem NOT- EVAL- PROP- ATOWP (rewite):

(1 MPLIES (AND (LI STP FLI ST1)

(NOT (EVAL (MAKE- DI SJUNCT (APPEND (CDR FLI ST1)

(CONS (CAR FLI ST1) FLI ST2))
ALI ST)))
(NOT (EVAL (MAKE- DI SJUNCT (APPEND FLI ST1 FLI ST2))
ALI ST)))

H nt: Induct as for (APPEND FLI ST1 FLI ST2).

59

259. Theorem PROP-ATOVP- REDUC (rewrite):
(EQUAL (PROP- ATOVP EXP)
(OR (ELEM FORM EXP)
(AND (EQUAL EXP (F-NOT (CADR EXP)))
(ELEM FORM (CADR EXP)))))
Hint: Disable ELEM FORM

260. Disabl e ELEM FORM
261. Di sabl e PROP- ATOWP.

262. Definition.
(PROP- ATOWP- LI ST LI ST)

(I F (NLI STP LI ST)
T

(AND (PROP- ATOVP (CAR LI ST))
(PROP- ATOWP- LI ST (CDR LI ST))))

263. Definition.
(FALSI FY LI ST)

(I'F (NLI STP LI ST)
NI L
(I F (EQUAL (CAR LIST)
(F- NOT (CADAR LI ST)))
(CONS (CADAR LI ST)
(FALSI FY (CDR LIST)))
(FALSI FY (CDR LIST))))

264. Theorem FALSI FY-STEP (rewrite):
(1 MPLI ES (NOT (MEMBER (F- NOT EXP) AUXLI ST))
(NOT (MEMBER EXP (FALSIFY AUXLI ST))))

265. Theorem PROP- ATOVWP- AUXLI ST (rewite):
(1 MPLI ES (AND (PROP- ATOWP EXP)
(NOT (NEG- LI ST EXP AUXLI ST))
(PROP- ATOVP- LI ST AUXLI ST))
(NOT (EVAL EXP
(FALSI FY (CONS EXP AUXLIST)))))
H nt: Disable FORMILA and ELEM FORM

266. Theorem PROP- ATOWP- AUXLI ST2 (rewite):
(I MPLI ES (AND (NOT (NEG LI ST EXP AUXLI ST))
(PROP- ATOVP- LI ST AUXLI ST)
(PROP- ATOVP EXP)
(NOT (EVAL (MAKE- DI SJUNCT AUXLI ST)
(FALSI FY ALIST))))
(NOT (EVAL (MAKE- DI SJUNCT AUXLI ST)
(FALSI FY (CONS EXP ALIST)))))
H nts: Disable FORMJLA- NOT- REDUC, ELEM FORM FORMULA, PROP- ATOWP, and
NEG LI ST- REDUC
I nduct as for (MAKE-DI SJUNCT AUXLI ST).

267.

268.
269.
270.
271.

272.
273.
274.
275.
276.
277.

Theorem

PROP- ATOVP- FALSI FY (rewite):

(1 MPLI ES (AND (PROP- ATOWP EXP)

(NOT (NEG LI ST EXP AUXLI ST))
(PROP- ATOVP- LI ST AUXLI ST)
(NOT (EVAL (MAKE- DI SIUNCT AUXLI ST)
(FALSI FY AUXLI ST))))
(NOT (EVAL (MAKE- DI SJUNCT (CONS EXP AUXLI ST))
(FALSI FY (CONS EXP AUXLI ST)))))

60

Hint: Disable ELEM FORM PROP- ATOVP, PROP- ATOWP- REDUC, PROP- ATOMP-LI S

NEG LI ST- REDUC, NEG LI ST, FORMULA, and FALSI FY

Enabl e PROP- ATOVP.
Enabl e ELEM FORM
Di sabl e ATOWP.

Theor em

FORMULA- CASESL.:

(I MPLI ES (FORMULA EXP T 0)

(OR (PROP- ATOWP EXP)
(OR- TYPE EXP)
(NOR- TYPE EXP)
(DBLE- NEG- TYPE EXP)))

Enabl e ATOWP.

Di sabl e
Di sabl e
Di sabl e
Di sabl e

Theorem

PROP- ATOWP.
OR- TYPE.
NCR- TYPE.
DBLE- NEG- TYPE.
FORMULA- CASES (rewite):

(1 MPLI ES (AND (NOT (DBLE- NEG TYPE EXP))

Hi nts:

(NOT (NOR- TYPE EXP))
(NOT (OR-TYPE EXP))
(NOT (PROP- ATOVWP EXP)))
(NOT (FORMULA EXP T 0)))
Di sabl e FORMJLA and PROP- ATOVP- REDUC
Consi der :
FORMULA- CASES1
Enabl e FORMJLA- CASES1

61

278. Definition.
(FALSI FY- TAUT FLI ST AUXLI ST)

(1 F (NLI STP FLI ST)
(FALSI FY AUXLI ST)
(1 F (PROP- ATOVP (CAR FLI ST))
(1 F (NEG LI ST (CAR FLI ST) AUXLI ST)
F
(FALSI FY- TAUT (CDR FLI ST)
(CONS (CAR FLIST) AUXLIST)))
(I F (OR-TYPE (CAR FLI ST))
(FALSI FY- TAUT (CONS (CADAR FLI ST)
(CONS (CADDAR FLI ST) (CDR FLIST)))
AUXLI ST)
(1 F (NOR-TYPE (CAR FLI ST))
(1 F (FALSI FY- TAUT (CONS (F-NOT (CADDADAR FLI ST))
(CDR FLI ST))
AUXLI ST)
(FALSI FY- TAUT (CONS (F- NOT (CADDADAR FLI ST))
(CDR FLI ST))
AUXLI ST)
(FALSI FY- TAUT (CONS (F- NOT (CADADAR FLI ST))
(CDR FLI ST))
AUXLI ST))
(I F (DBLE- NEG TYPE (CAR FLI ST))
(FALSI FY- TAUT (CONS (CADADAR FLI ST) (CDR FLI ST))
AUXLI ST)
NIL)))))

Hi nt: Consider the well-founded rel ati on LESSP
and the neasure (LI ST-COUNT FLI ST)

279. Theorem APPEND- NLI STP (rewite):
(1 MPLI ES (NLI STP X)
(EQUAL (APPEND X Y) Y))

280. Theorem NOT- FALSI FY- TAUT (rewite):
(EQUAL (TAUTOLOGYP1 FLI ST AUXLI ST)
(NOT (FALSI FY- TAUT FLI ST AUXLI ST)))
Hnts: Induct as for (TAUTOLOGYP1l FLI ST AUXLI ST).
Di sabl e NEG LI ST, NEG LI ST- REDUC, FORMJULA, and PROP- ATOVP- REDU

281. Theorem NOT- TAUT- FALSE (rewite):

(I MPLI ES (AND (FORM: LI ST FLI ST)

(PROP- ATOWP- LI ST AUXLI ST)

(NOT (EVAL (MAKE- DI SJUNCT AUXLI ST)

(FALSI FY AUXLI ST)))
(NOT (TAUTOLOGYP1 FLI ST AUXLI ST)))
(NOT (EVAL (MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))
(FALSI FY- TAUT FLI ST AUXLIST))))
Hi nts: Induct as for (FALSIFY-TAUT FLI ST AUXLI ST).
Di sabl e NEG LI ST, EVAL- MAKE- DI SJUNCT, NEG LI ST- REDUC,
PROP- ATOVP- REDUC, FORMULA, FALSIFY, APPEND, and NOR-TYP

282. Definition.
(TAUTOLOGYP FLI ST)

(TAUTOLOGYP1 FLI ST NIL)

283.

284.
285.

286.

62

Definition.
(TAUT- PROCF FLI ST)

(TAUT- PROOF1 FLI ST NIL)
Enabl e APPEND.

Theorem FORM LI ST-APPEND-NIL (rewite):
(EQUAL (MAKE- DI SJUNCT (APPEND FLI ST NIL))
(MAKE- DI SJUNCT FLI ST))

Theorem TAUTOLOGY- THEOREM (rewrite):
(1 MPLI ES (AND (FORM LI ST FLI ST)
(TAUTOLOGYP FLI ST)
(EQUAL CONCL (MAKE- DI SJUNCT FLI ST)))
(PROVES (TAUT- PROOF FLI ST) CONCL))

H nt: Disable TAUT- PROOF1, TAUTOLOGYP1, FORMULA, and NOT- FALSI FY- TAUT

287.

288.

289.

290.

291.
292.
293.
294,
295.
296.
297.

Theorem TAUT-EVAL2 (rewite):
(I MPLI ES (AND (TAUTOLOGYP1 FLI ST AUXLI ST)
(EQUAL CONCL
(MAKE- DI SJUNCT (APPEND FLI ST AUXLIST))))
(EVAL CONCL ALI ST))
Hint: Disable TAUTOLOGYP1 and NOT- FALSI FY- TAUT

Theorem TAUTOLOG ES- ARE- TRUE (rewrite):
(I MPLI ES (AND (FORM: LI ST FLI ST)
(TAUTOLOGYP FLI ST))
(EVAL (MAKE- DI SJUNCT FLI ST) ALI ST))
Hint: Disable FORMJLA, TAUTOLOGYP1l, and NOT- FALSI FY- TAUT

Theorem NOT- TAUT- FALSI FY2 (rewite):
(I MPLI ES (AND (FORM LI ST FLI ST)

(PROP- ATOVP- LI ST AUXLI ST)

(NOT (EVAL (MAKE- DI SJUNCT AUXLI ST)

(FALSI FY AUXLI ST)))
(NOT (TAUTOLOGYP1 FLI ST AUXLI ST))
(EQUAL CONCL
(MAKE- DI SJUNCT (APPEND FLI ST AUXLI ST))))
(NOT (EVAL CONCL
(FALSI FY- TAUT FLI ST AUXLIST))))

Hi nt: Disable TAUTOLOGYP1, NOT- FALSI FY- TAUT, and FORMULA

Theorem TRUTHS- ARE- TAUTOLOGQ ES (rewite):
(I MPLI ES (AND (FORM: LI ST FLI ST)
(NOT (TAUTOLOGYP FLI ST)))
(NOT (EVAL (MAKE- DI SJUNCT FLI ST)
(FALSI FY-TAUT FLIST NIL))))
Hi nt: Disable TAUTOLOGYP1, NOT-FALSI FY- TAUT, and FORMJLA

Di sabl e TRUTHS- ARE- TAUTOLOG ES.
Di sabl e NOT- TAUT- FALSI FY2.

Di sabl e TAUTOLOd ES- ARE- TRUE.

Di sabl e TAUT- EVAL2.

Di sabl e FORM LI ST- APPEND- NI L.

Di sabl e TAUT- PROOF.

Di sabl e NOT- TAUT- FALSE.

298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.

Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e
Di sabl e

Theorem

NOT- FALSI FY- TAUT.
APPEND- NLI STP.
FALSI FY- TAUT.
FORMULA- CASES.
FORMULA- CASESL.
PROP- ATOVP- FALSI FY.
PROP- ATOMP- AUXLI ST.
PROP- ATOWP- LI ST.
FALSI FY- STEP.
FALSI FY.
NOT- EVAL- PROP- ATOVP.
TAUT- EVAL.
EVAL- DBLE- NEG TYPE.
EVAL- NOR- TYPE.
EVAL- OR- TYPE.
EVAL- PROP- ATOVP.
NEG LI ST- EVAL.
EVAL- NEG ELEM FORM
ELEM FORM EVAL.
EVAL.

EVAL- TAUTOLOGYP (rewite):

(I MPLI ES (AND (FORM LI ST FLI ST)

Hi nts:

(EVAL (MAKE- DI SJUNCT FLI ST)
(FALSI FY-TAUT FLIST NIL)))
(TAUTOLOGYP FLI ST))
Di sabl e TAUTOLOGYP, FORM LI ST, and FALSI FY- TAUT
Consi der :
TRUTHS- ARE- TAUTOLOG ES
Enabl e TRUTHS- ARE- TAUTOLOG ES

63

Refer ences

Table of Contents

LIntrodUCtiono e 1
2. The Boyer-Moore Theorem Provert 3
2. TRELOGIC « o v vttt et e e e e e e e e e e 3
2.2. The TheOrem PrOVEr e e e e et e e e e 4
3. The Formal Theory: Shoenfield’sFirst Order Logicoviiiiinn.. 4
3. ThE LaANQUAGE ot ittt et it ettt e e e 4

B 2. TRE AXIOMS . . ettt e e e e e e e 5
3.3. TheRUIES Of INfEIENCEot e e e e e 5
4. The Informal Proof of the Tautology Theorem 6
AL TRE PIOOf .. 7
5. TheMechanical Proofs e 7
5.1. Defining the Proof-checker 8
5.1-A. TheLogical AXIOM Case i vttt e et ettt e 11
5.1-B. ThelnferenCe RUIES oot e 13

5.2. Stepsto the Proof of the Tautology Theorem i 15
5.3. Defining the Tautology-checker i e e e 17
5.4. The Proof of the Tautology Theorem i i 19
5.5. The Proof of the Correctness of the Tautology-checker o iii.t. 20
BB, A POSE- SO Pt . . ottt e 22
6. CONCIUSIONS . . . oot e e e e 23
1. TheList of Definitionsand LemMmast 25

