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Abstract

We discuss the problem of incorporating into a heuristic theorem prover a decision procedure for a fragment
of the logic. An obvious goal when incorporating such a procedure is to reduce the search space explored by
the heuristic component of the system, as would be achieved by eliminating from the system’s data base some
explicitly stated axioms. For example, if a decision procedure for linear inequalities is added, one would hope
to eliminate the explicit consideration of the transitivity axioms. However, the decision procedure must then be
used in all the ways the eliminated axioms might have been. The difficulty of achieving this degree of
integration is more dependent upon the complexity of the heuristic component than upon that of the decision
procedure. The view of the decision procedure as a "black box" is frequently destroyed by the need pass large
amounts of search strategic information back and forth between the two components. Finally, the efficiency of
the decision procedure may be virtually irrelevant; the efficiency of the final system may depend most heavily
on how easy it is to communicate between the two components. This paper is a case study of how we integrated
a linear arithmetic procedure into a heuristic theorem prover. By linear arithmetic here we mean the decidable
subset of number theory dealing with universally quantified formulas composed of the logical connectives, the
identity relation, the Peano "less than" relation, the Peano addition and subtraction functions, Peano constants,
and variables taking on natural values. We describe our system as it originally stood, and then describe
chronologically the evolution of our linear arithmetic procedure and its interface to the heuristic theorem prover.
We also provide a detailed description of our final linear arithmetic procedure and the use we make of it. This
description graphically illustrates the difference between a stand-alone decision procedure and one that is of use
to a more powerful theorem prover.
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1. Introduction

Decision procedures, alone or in cooperation with other decision procedures, are fast and predictable but
often too limited to be of general use. On the other hand, today’s heuristic theorem provers are capable of
producing proofs of fairly deep theorems, but are generally so slow and unpredictable that few users have the
patience and knowledge to use them effectively. It is generally agreed that when practical theorem provers are
finally available they will contain both heuristic components and many decision procedures.

This paper is a case study of how we integrated into a heuristic theorem prover a linear arithmetic procedure
for the natural numbers based on a decision procedure for the rationals. By linear arithmetic here we mean the
decidable subset of number theory dealing with universally quantified formulas composed of the logical
connectives, the identity relation, the Peano "less than" relation, the Peano addition and subtraction functions,
Peano constants, and variables taking on natural values. We built in linear arithmetic primarily to eliminate
from the heuristic theorem prover’s search space the huge number of often irrelevant deductions arising from
such theorems as the transitivity of the "less than" relation.

This paper can be divided up into three distinct phases. The first, represented by sections 2, 3, and 4, argues
that it is necessary to combine decision procedures and heuristic theorem provers. During the first phase we
also give some necessary background material on our heuristic theorem prover and what we mean by "linear
arithmetic procedures." The second phase, sections 5, 6, and 7, describes chronologically our attempts to
incorporate linear arithmetic into our theorem prover. In this phase we cite examples from program verification
applications that show the inadequacy of our early integration strategies and that illustrate and motivate our
final scheme. The third phase of the paper, section 8, gives a precise and detailed description of the current
linear arithmetic procedure and how it is used by the rest of the theorem prover. The final scheme is so
elaborate that reading it in isolation would prompt many readers to ask such questions as "why is it necessary to
know which literals contributed to the deduction?" or "why didn’t the authors use this simpler scheme?"
Despite the tedium of this description we regard section 8 as the high point of the paper because it makes clear
the distinction between a stand-alone decision procedure and one that is useful to a larger system. The last two
sections of the paper give some statistics supporting our contention that the efficiency of the stand-alone
decision procedure is often irrelevant and a summary of our conclusions.

We believe this report will be useful to those designing decision procedures intended for eventual
integration into larger systems. We identify many requirements for such procedures that are not obvious when
the procedures are considered in isolation.

For example, much recent work on linear arithmetic procedures, e.g., that of Nelson and Oppen, [13], and
Shostak, [18], focuses on universally quantified formulas either with no function symbols (other than sum and
difference) or with only uninterpreted function symbols. But interpreted function symbols play a key role in
many theorem proving applications. In particular, they are crucial in what is perhaps the most active
application of mechanical theorem provers today: the verification of properties of computer programs. The
mathematical specification of new programs frequently involves "new" mathematical functions (e.g., "the
number of non-0 elements among the first N elements of A"). Furthermore, these functions very frequently
have important numeric relations to one another (e.g., if N < M then the number of non-0 elements among the
first N elements of A is less than or equal to the number among the first M elements). Unless provision is made
for one’s arithmetic procedure to take into consideration the numeric properties of interpreted symbols, the
heuristic theorem prover must deal explicitly with such explosive theorems as the transitivity of "less than" and
the primary advantage in having an arithmetic decision procedure is lost.

The work reported here deals with interpreted function symbols: our linear arithmetic procedure contains
heuristics for instantiating and using axioms or lemmas about arbitrary function symbols. For example, by
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appealing to the lemma that the minimum element, MIN(A), of a sequence is less than or equal to the maximum
element, MAX(A), our linear arithmetic procedure proves:

L #≤# MIN(A) ∧ 0 < K #→# L < MAX(A)+K.

The use of universally quantified axioms or theorems in the linear procedure is very similar to the admission
of universally quantified hypotheses in the formulas being proved. Thus, our work is similar in spirit to the
recent work of Bledsoe and Hines, [2] in which arbitrary quantification is permitted. However, we make no
completeness claims about our heuristics.
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2. Background

Our theorem prover deals with a quantifier free first-order logic. In addition to modus ponens, instantiation,
and substitution of equals for equals, the logic provides for the axiomatic introduction of new "types" of
inductively constructed objects (e.g., the natural numbers, sequences, graphs), the user definition of new
mathematical functions (e.g., prime, permutation, path), and proof by induction on well-founded relations. The
logic is described precisely in Chapter III of [4].

Our theorem prover as it stood before we incorporated any linear arithmetic is described in Chapters V-XV
of [4]. The theorem prover consists of an ad hoc collection of heuristic proof techniques. The two most
important ones are simplification and the invention of "appropriate" induction arguments. The system also
contains heuristics for eliminating "undesirable" expressions, the use of equality, generalization, and the
elimination of irrelevance.

Because our linear arithmetic procedure interacts with our "simplifier" and term "rewriter," it is necessary to
explain these procedures in more detail.

To prove a formula our system first applies the simplifier to it. The simplifier is a procedure that takes a
formula as input and returns a set of supposedly simpler formulas as output. Under the assumption that the
input formula is false, it is equivalent to the conjunction of the output formulas. Since we are trying to prove
the formula it is permitted to assume its negation. If the simplifier returns the empty set of formulas we have
succeeded in proving the input formula. If the simplifier returns a singleton set containing the input formula, it
has failed to reduce the problem and we try some other proof technique, e.g., induction. Otherwise we try to
prove, recursively, each output formula.

A formula is represented as a clause consisting of an implicitly disjoined set of literals. Literals are in fact
terms of our logic. The term p, when used as a literal, can be thought of as the formula p@NEqvF, where F is a
distinguished constant in our logic.

The simplifier works by successively "rewriting" the literals of the goal clause while assuming the
complements of the remaining literals. The object is to rewrite at least one literal to T (or any other non-F
value).

The rewriter is a procedure that takes a term, a substitution, and a "context" and returns a term. Among
other things the context specifies a set of assumptions. The term returned by the rewriter is equal (in a certain
sense determined by the context) to the result of instantiating the input term with the input substitution, under
the assumptions in the context. The context contains a variety of other information which we will explain when
necessary.

The rewriter applies conditional rewrite rules derived from axioms, recursive definitions, and previously
proved theorems tagged "rewrite rule" by the user. Roughly speaking, a previously proved lemma of the form:

h ∧ h ∧ ... ∧ h #→# lhs = rhs1 2 n

causes the rewriter to replace all instances of lhs by the corresponding instance of rhs provided each of the
instantiated h can be established. To establish the hypotheses the rewriter attempts recursively to rewrite themi
to non-F -- a form of backwards chaining. The system contains fairly sophisticated search strategic heuristics
for controlling the expansion of definitions, stopping unproductive backwards chaining, using permutative
rewrites, etc.

Among the theorems proved by the theorem prover described in [4] are: the totality, soundness, and
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completeness of a decision procedure for propositional calculus, the correctness of a "toy" expression compiler,
the correctness of the fastest known string searching algorithm, and the existence and uniqueness of prime
factorizations. All of these results are described in [4]. Other proofs discovered before the linear algorithm was
implemented include the correctness of a recursive descent parser [9], the correctness of an arithmetic simplifier
now in routine use in the system [5], and the correctness of several FORTRAN programs [6].
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3. Linear Arithmetic

The theorem prover described above can easily prove by mathematical induction such simple theorems as:

*1 X@LTEY ∧ Y@LTEZ #→# X@LTEZ

*2 X-1@LTEX

*3 0@LTEY #→# X@LTEX+Y,

But because of search strategic heuristics the system cannot always employ such lemmas intelligently after they
have been proved. For example, while the system would easily recognize:

A@LTEB ∧ B@LTEC #→# A@LTEC

as an instance of the transitivity of #≤#, *1, it would not so easily prove:

A-1@LTEA+B

where B is non-negative. But A-1 #≤# A+B can be derived from *2 and *3 using *1. The theorem prover
described in [4] tries to derive A-1 #≤# A+B from *1-*3 by rewriting. In particular, it observes that the result
follows from *1 if one instantiates X with A-1 and Z with A+B, chooses an appropriate instantiation of the
intermediate variable Y, and backward chains to relieve the two hypotheses. If the instance chosen for Y is A,
then the two hypotheses are immediate from *2 and *3 and the assumption that B is non-negative. But our
system is unable to guess that an appropriate choice for Y is A. After failing to find a proof by simplification,
the system in [4] proves the inequality by induction on A.

Now suppose that in a subsequent proof the rewrite routine is faced with the task of relieving the hypothesis
A-1 #≤# A+B. Since it cannot derive this inequality from *1-*3 by rewriting alone, and since we do not try
induction to relieve hypotheses, the inequality hypothesis can be established only if A-1 #≤# A+B (or some
mild variation of it) is available explicitly as a previously proved rewrite rule. There are two undesirable
aspects to this situation. First, the search space for rewrites about #≤# gets very large because it contains many
derived facts involving transitivity and addition. Second, the user is obliged to recognize when the system is
failing to find a proof because of its lack of knowledge of such composite "linear" facts and state such ad hoc
lemmas explicitly.

But the integers are probably the most important objects in the mathematics of computer programming.
Facts about the integers must be second nature to any practical theorem prover for program analysis. Therefore,
after having convinced ourselves of the power of our underlying heuristics, we decided to build-in a linear
arithmetic procedure.

The naturals, N, or Peano numbers are the most primitive inductively constructed domain in our theory.
Many other domains are constructed on top of the naturals (e.g., the "atomic symbols" or literal atoms, the
integers, the rationals). Thus, we decided to build-in a procedure for deciding some linear inequalities over N,
i.e., universally quantified formulas involving the equality (=) and Peano less than ( ) relations, the natural

.constants (0, 1, 2, ...), and the Peano addition (#⊕#) and subtraction (-) functions. The syntax of our logic is
actually the prefix syntax of LISP. We adopt infix here for the purposes of exposition. For readers familiar
with [4] or our theorem prover, x#∈#N here denotes (NUMBERP x), x@muchlty denotes the term (LESSP x

.y), x@z( )y denotes (NOT (LESSP y x)), x@oplusy denotes (PLUS x y), and x-y denotes (DIFFERENCE x y).

While our logic provides many different types of objects it does not have a typed syntax. Thus, T@oplus3
.is a well-formed term. Our definitions of , @z( ), #⊕#, and - "coerce" non-natural arguments to 0. Thus,
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T@oplus3 = -1@oplus3 = 3 and T@muchlt4 is true but -3@muchlt0 is false. In addition, the Peano subtraction
. .function returns 0 if the minuend is smaller than the subtrahend, i.e., x-y = 0 if x@muchlty, so 5-8 = 0.

In this paper we use the more familiar signs, <, +, -, and * to denote less than, sum, difference, and
multiplication, respectively, over the integers or rationals (according to context).

Linear integer arithmetic, and thus linear Peano arithmetic, is decidable. However, integer decision
procedures (e.g., [8]) are quite complicated compared to the many well-known decision procedures for linear
inequalities over the rationals [11], [10], [1], [16], [17]. Therefore, following the tradition in program
verification, we adopted a rational-based procedure, exploiting the observation that if a conjunction of
inequalities is unsatisfiable over the rationals it is unsatisfiable over the integers. Such a procedure is sound but
incomplete. For example, 2*X = 3 is satisfiable over the rationals but not over the integers. Thus, a rational
procedure would not prove 2*N ##≡# 3, where N is an integer. Of course, it is hoped such theorems do not arise#/
frequently in program verification [13]. Should they, we might prove them by more powerful methods (e.g.,
induction).

For efficiency reasons, the rational method we eventually adopted was based on that described in the
literature by Hodes [10]. The algorithm is just a formalization of the high school idea of "cross multiplying and
adding" equalities to eliminate variables.

In its simplest form the algorithm is used to detect unsatisfiability in a conjunction of linear inequalities over
the rationals. The first step is to convert each inequality into a "normalized polynomial inequality" (or simply
"polynomial") by collecting like terms, canceling when possible, and making all coefficients integers. Thus, the
expression:

2 + X - (Y + Z) #≤# (A - X) - 1

is "linearized" to:

3 - 1*Z - 1*Y + 2*X - 1*A #≤# 0

Then, working one’s way down through some ordering on the multiplicands, one eliminates one
multiplicand at a time from the set of polynomial inequalities by cross-multiplying coefficients and adding
inequations so as to cancel out the selected multiplicand in all possible ways. Eventually one obtains a set of
ground inequalities whose validity may be determined by evaluation and which is satisfiable over the rationals
iff the initial set is.

To apply such a procedure to problems over the integers it is convenient to adopt #≤# as the main
connective and to transform X < Y into X+1 #≤# Y. By making explicit the information that distinct integers
are separated by at least 1, fewer valid integer inequalities "fall between the cracks" in the rationals. An
equality, such as X = Y, is handled as though it were the conjunction X #≤# Y ∧ Y #≤# X; a negative equality,
such as X ##≡# Y, is handled as though it were the disjunction X < Y ## ∨# Y < X (i.e., the main conjunction must/
be split into two cases).

To apply the procedure to the naturals as they are axiomatized in our logic, we must take precautions to
.insure that all quantities involved in arithmetic expressions are of type N and that the minuend of each -

-expression is no smaller than the subtrahend. For example, we can linearize X ##≡# Y to 1-Y+X ## ≤# 0 #∨#/
1+Y-X #≤# 0 only if we know both X#∈#N and Y#∈#N. Failure to consider the non-numeric case would

1permit the linear arithmetic procedure to prove the non-theorem X@z( )Y ∧ Y@z( )X #→# X=Y. Similarly, it

1A counterexample to the conjecture is obtained by letting X be T and Y be F.
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.is permitted to linearize X @z( ) Y-Z to Z-Y+X@LTE0 only when Z@z( )Y. We call such additional
conditions as X#∈#N and Z@z( )Y "linearization hypotheses." Roughly speaking, we assume the linearization
hypotheses necessary to obtain the normalized polynomials for the main conjecture. If the linear arithmetic
procedure is able to prove the main conjecture under those hypotheses we set ourselves the task of proving the
main conjecture under the negation of each linearization hypothesis.

Readers troubled by our desire to handle the naturals instead of the integers or by the lack of typing in our
language should not be discouraged from reading on. These aspects of the problem only contribute in minor
ways to the difficulty of using linear procedures.

Readers troubled by our selection of such a simple and old-fashioned decision procedure are invited to
reflect upon the fact that an instantaneous oracle for deciding linear arithmetic problems like those above would
increase the speed of our theorem prover on typical program verification problems by less than 3%.
Furthermore, as a cursory reading of section 8 reveals, our final linear arithmetic procedure is an
implementation of the above procedure in much the same sense that the software for the space shuttle is an
implementation of Newton’s laws.
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4. Adequacy of Linear Arithmetic Procedures

Before we describe how we have combined the above decision procedure with our more powerful heuristic
techniques we address the question "is linear arithmetic alone sufficient?" Of course, one must ask "sufficient
for what?" Since our major concern is the mechanization of the mathematics underlying computer program
analysis, we focus our attention on proofs of program correctness. In this context linear arithmetic procedures,
and particularly those that are decision procedures only on the rationals, are far from adequate. In this section
we discuss three simple program verification exercises that involve either valid integer inequalities that are
invalid over the rationals or that are nonlinear.

A problem of the first type arose in the first program we tried to verify after adding a linear procedure. The
specification of the program was to implement a simple table look-up scheme. The implementation of the table
was an array of positive even length, D, with keys and their associated values stored in alternate locations. The
access program searched the array linearly, pushing the current index, I, up from 1 in increments of 2, stopping
when I > D. One of the verification conditions established that when the winning key is found at I and the
associated value is fetched from I+1 no array bound violation occurs. That is, if the current index, I, is a
positive odd integer and I #≤# D, then I+1 #≤# D. By letting D be 2*L and I be 2*K+1, where L and K are
arbitrary positive integers, we can cast the problem as a linear arithmetic problem:

0<K ∧ 0<L ∧ 2*K+1 #≤# 2*L #→# 2*K+2 #≤# 2*L.

This is a theorem over the naturals. However, it is not a theorem over the rationals and so does not yield to a
rational based linear arithmetic procedure. Our modified system proved it by induction.

More frequently we see arithmetic problems that do not fall into the linear domain at all. The classic
verification example, Euclid’s gcd algorithm, illustrates this. Consider the verification condition (vc) that states
that if X < Y then the largest number that divides X and Y is also the largest number that divides X and Y-X.
Some attempts to verify Euclid’s algorithm assume this vc. We wish to prove it. The key step in the proof is
that if X < Y and Z divides X then Z divides Y iff Z divides Y-X. The definition of "I divides J" is that (J mod
I)=0, where mod is defined recursively. This problem falls outside linear arithmetic.

A much more mundane example arises in the attempt to implement a two dimensional array access module
on top of a linear storage scheme. The element at position I,J in the two dimensional array is mapped to
location I+D*J in the linear array. One of the vcs establishes that every pair of distinct points in the two
dimensional array maps to a pair of distinct points in the one dimensional array. Roughly speaking one wishes
to establish that I +D*J = I +D*J iff I =I and J =J . Because of the multiplication by D, this problem falls1 1 2 2 1 2 1 2
outside of linear arithmetic. One might assume this obvious fact. However, attempts to prove it -- by induction
(on J and J simultaneously) or by appeals to inductively proved facts about mod and quotient -- reveal that as1 2
stated it is not a theorem. One must hypothesize that I and I are legal indices in the two dimensional array,1 2
i.e., that I < D and I < D.1 2

Our point is not to say that linear arithmetic is useless. We have invested several years in building it into
our system and have seen it help out in the verification of very many programs. Our point is that it is not
unusual to see programs -- mundane, everyday programs -- that require the proof of arithmetic theorems beyond
those of linear arithmetic. If a verification system cannot establish such results then one is forced to assume,
rather than prove, many verification conditions.
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5. Simple Integration Strategies

In this and the next section we sketch the evolution of our linear arithmetic procedure and its use by the
theorem prover described in [4]. We then illustrate the procedure in use. Our intention in these sections is to
motivate some of the elaborate bells and whistles described in section 8.

Our goal was simple: build in enough information about the naturals so that it is no longer necessary for the
rewriter to consider explicitly those rewrite rules expressing the truths of linear arithmetic. For example, if
some old proof required an explicit appeal to the transitivity of and some inspired "guess" instantiating the
intermediate variable, then after building in linear arithmetic we should be able to find that proof without an
explicit appeal to transitivity or a heuristic guess. Ideally, achieving this goal should speed up the theorem
prover because certain facts are built-in and because the search space of lemmas is reduced by the deletion of
many derived truths of linear arithmetic. Furthermore, achieving the goal frees the user from having to bring
linear facts to the system’s attention by proving them as rewrite rules.

Our first attempt at incorporating a linear arithmetic procedure was to add it as a "black-box" applied to
every formula produced by the simplifier. The procedure took as its input a clause to prove. If the conjunction
of the negations of the literals in the clause is unsatisfiable, the clause is valid. The linear procedure extracted
the inequalities in the clause, negated them, introduced linearization hypotheses, formed the set of normalized
polynomials and tested the set for unsatisfiability as described. If the set was not found unsatisfiable, the
theorem prover tried the next proof technique in its repertoire. If the set was found unsatisfiable, the linear
procedure produced as its output a set of clauses, each obtained by adding the negation of a linearization
hypothesis to the input clause. The theorem prover then recursively set out to prove each of those
"pathological" cases.

When we applied the modified theorem prover to the 404 definitions and theorems in Appendix A of [4] the
linear arithmetic procedure contributed to almost no proof except those of rewrite rules expressing linear facts.
That is, when the theorem prover was working on interesting theorems, the simplifier did not produce many
conjectures that yielded to linear arithmetic.

Here is an example. One of the uninteresting rewrite rules proved by the linear procedure was named
.GT.SUB1 and stated that X-1 @z( ) X@oplusY. The only reason this rewrite rule was in the list was because it

was needed in the proof of an interesting verification condition later in the list, named FSTRPOS.VC7. The
linear procedure in the modified theorem prover established GT.SUB1 immediately but the linear procedure did
not participate in the proof of FSTRPOS.VC7. In fact, the proof of FSTRPOS.VC7 still required the explicit
use of GT.SUB1 as a lemma and if that lemma was absent then the proof attempt failed -- even though the
lemma was built-in.

The problem was that while GT.SUB1 was built into the modified theorem prover it was not built-in in the
right place. The proof of FSTRPOS.VC7 used GT.SUB1 to relieve a hypothesis of another lemma, not to prove
a simplified part of the main theorem. In our experience linear arithmetic reasoning is most often required
during term rewriting and is not terribly useful if its only role is to establish simplified vcs.

How can we move the linear arithmetic procedure into the rewriter? Recall that the rewriter operates in a
context of assumptions. Suppose we wish to establish an inequality -- say a hypothesis of a rewrite rule we
wish to apply. We may do so as follows: negate the inequality, conjoin it to the inequalities among our
assumptions, linearize the inequalities to obtain a set of polynomials, and then apply the cross-multiply and add
procedure to detect unsatisfiability. If the set is found unsatisfiable, the inequality is valid under our
assumptions. (Since assumptions of the form x@NEqvy generate disjunctions of polynomials we will for the
time being simply discard any such assumptions.)



11

For efficiency, we implement this test incrementally. We store the assumptions in a preprocessed internal
form in which all polynomials have been maximally "propagated" in the sense that every admissible cross-
multiply and add has been performed. A cross-multiply and add is admissible under our propagation rules only
if it eliminates the "heaviest" multiplicand in both inequalities. For example, because F(G(X)) has greater
weight than G(X), a cross-multiply and add involving the polynomial

8 + F(G(X)) - G(X) #≤# 0

is permissible only if it eliminates F(G(X)). Thus, if no inequality in the incremental data base has F(G(X))
occurring negatively as the heaviest multiplicand we do not propagate the above polynomial even if there are
other polynomials about G(X). Such propagation will occur as soon as F(G(X)) is eliminated and G(X) is
exposed as the heaviest multiplicand. This reduces the amount of work the procedure does if irrelevant
polynomials are present.

The "heavier" relation is a total ordering on terms. We say t is heavier than t iff either the number of1 2
variables in t is greater than that in t , or the number of variables in the two are equal but the "size" of t is1 2 1
greater than that of t , or the number of variables in and the sizes of the two are equal and t comes later than t2 1 2
in the lexicographic ordering of terms. By size we mean the number of open parentheses in the unabbreviated
presentation of the term.

When we introduce a new polynomial into a data base and perform all admissible cross-multiplies and adds,
we say we have "pushed" the polynomial into the data base. The result is a new data base representing the
conjunction of the old assumptions and the new inequality.

If pushing a polynomial destructively modifies the initial data base one needs a "pop" or "undo" operation;
otherwise the attempt to establish a hypothesis by assuming its negation would permanently alter our
assumptions. If pushing an inequality does not destructively modify the data base, the initial data base may be
recovered by the usual variable binding mechanisms. This aspect of the problem detracts from the efficiency
and simplicity of linear algorithms that rely upon destructively modified cyclic structures (e.g., [17]) since the
"pop" algorithm is usually messy. The simple procedure we chose allows the data base to be an ordered alist
(associating polynomials with the heaviest multiplicand in them) and permits the implementation of a
nondestructive push operation that constructs the new data base from the old using little new structure.

Using such a scheme we programmed the rewriter to use the linear arithmetic procedure when trying to
establish inequalities. We found that while the new system was an improvement over the earlier one, our goal
-- of eliminating the need for explicit lemmas expressing linear facts -- was far from achieved.

The problem arises from the presence of interpreted functions. Here is a simple, artificially constructed
example. Suppose one needs to prove:

*4 L @z( ) MIN(A) ∧ 0 K #→# L MAX(A)@oplusK

where MIN(A) and MAX(A) are defined as the minimum and maximum elements of A. This theorem is not a
consequence of linear arithmetic; in particular, since MIN and MAX are treated as uninterpreted function
symbols *4 is treated as though it were:

L @z( ) MIN ∧ 0 K #→# L MAX@oplusK

However, if one adds to *4 the additional hypothesis that

*5 MIN(A) @z( ) MAX(A)

the resulting linear arithmetic problem is equivalent to
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L @z( ) MIN ∧ 0 K ∧ MIN @z( ) MAX #→# L MAX@oplusK,

which is a theorem.

To use a linear arithmetic procedure to prove formulas like *4 it is necessary to identify "interesting"
additional hypotheses like *5 to connect multiplicands in the linearization of the goal.

Many readers may object that we should not be trying to use linear arithmetic to prove formulas like *4.
But what is the alternative? If we do not use our built-in linear arithmetic procedure we are forced to derive *4
from *5 and explicit linear facts such as the transitivity of @z( ). But if linear arithmetic procedures are to be
useful to larger systems they should free the larger system from having to consider the truths of linear arithmetic
(such as transitivity). If we do not extend our handling of linear arithmetic to take into account lemmas about
"nonlinear" function symbols then the only way we will prove many arithmetic facts is to ignore the work on
linear procedures altogether and return to the heuristic instantiation and chaining methods rejected earlier.

How shall we take into account facts about defined functions? We decided that if after a polynomial has
been pushed into the data base no contradiction was found we would look at the multiplicands in the data base
and try to link them via additional inequalities obtained by instantiating previously proved lemmas. We call this
"augmenting" the data base. For example, if we have previously proved that:

MIN(S) @z( ) MAX(S)

and construct a linear data base containing the multiplicand MIN(A) or MAX(A) we might push the polynomial
obtained from MIN(A) @z( ) MAX(A).

Of course, as Herbrand knew, the problem of which instances of which lemmas to consider is the heart of
the theorem proving problem. We therefore implemented heuristics to control the instantiation of previously
proved inequalities and their addition to the polynomial data base. For example, a lemma such as X F(X) is a
"pump" that may cause one to push, successively, N F(N), F(N) F(F(N)), etc. Just as with backwards
chaining, one has to decide when to stop trying to add new multiplicands to the data base. Our heuristic is to
use the same criteria we use to limit backwards chaining, namely, add no multiplicand that is "worse than"

5every multiplicand in the data base. For example, we might go around the above loop five times if F (N) was
initially a multiplicand in the data base.

The problem is further complicated by the need to consider inequality lemmas with hypotheses. For
example, let MEMB(X,S) be the predicate that X occurs in the sequence S, LEN(S) be the length of S, and
DEL(X,S) be the result of deleting all occurrences of X from S. Then the following lemma links the theory of
lists to arithmetic.

*6 MEMB(X,S) #→# LEN(DEL(X,S)) LEN(S)

Suppose we are asked to prove

MEMB(Z,A) ∧ W@oplusLEN(A) @z( ) K #→# W@oplusLEN(DEL(Z,A)) K@oplusV.

The theorem is a consequence of linear arithmetic if we first add the additional information that:

LEN(DEL(Z,A)) LEN(A).

To obtain this inequality we must first instantiate *6, replacing X by Z and S by A (so as to obtain a new
inequality about the multiplicand LEN(DEL(Z,A))), and then relieve the hypothesis MEMB(Z,A). Note that to
relieve the hypothesis we may have to engage in nonarithmetic reasoning. Therefore, we relieve the hypotheses
of "linear rules" like *6 by the same methods we relieve the hypotheses of conditional rewrite rules: we
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recursively rewrite them under our current assumptions.

As a consequence, the rewrite mechanism and the linear arithmetic procedure are mutually recursive. The
rewrite mechanism calls the linear arithmetic procedure to establish certain inequalities and the linear arithmetic
procedure calls the rewrite routine to establish the hypotheses of lemmas providing additional information about
the multiplicands in the problem.
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6. Further Refinements

Thus far it has not been crucial to this discussion that we adopted the simple propagation procedure based
on Hodes’ algorithm. Indeed, at this stage in our actual experimentation we had coded several different linear
arithmetic decision procedures and used them as "black boxes." However, the attempt to implement the use of
"linear rules" required opening up the black box. In addition, other problems, not yet discussed in detail,
required significant modifications to the procedure itself.

One obvious problem is that the heuristic component of the theorem prover must be able to determine what
the multiplicands in the current data base are. Either the linear arithmetic procedure should construct the set of
multiplicands and make that available outside, or the heuristic component should know the structure of the
internal data base. We chose the latter because it was most efficient. However this choice blurs the line
between the heuristic component and the linear procedure.

A second problem arises from the restrictions on the order in which inequalities are processed by the
propagation procedure. Consider our procedure. It eliminates the heaviest multiplicands first. Thus, it is a
waste of time for the heuristic component to obtain an inequality about G(X) in response to a polynomial such
as 8 + F(G(X)) - G(X) #≤# 0.

A related problem is the organization of previously proved inequalities so that the system can rapidly
determine relevant facts about the key multiplicands in the data base. Suppose we want to preprocess and store
a lemma whose conclusion is an inequality. We store such a lemma so that it may be accessed according to the
function symbols of the terms that might, when the lemma is instantiated, become the heaviest multiplicands in
the linearized form of the concluding inequality. For example, if a lemma concludes with F(X)@oplusG(Y)

H(G(Y))@oplusX, we store it under the function symbols F and H. We further require that each such "key
multiplicand" contain enough of the variables in the lemma so that if the key multiplicand is instantiated and the
hypotheses are relieved (possibly requiring the instantiation of additional variables) the concluding inequality is
fully instantiated.

Note that the notion that the linear procedure is a black box has been destroyed. Once a particular linear
procedure has been selected by the implementor, an extremely large amount of work must be done to interface
to it efficiently. In our case, the time taken to program the linear procedure was insignificant (one man-day)
compared to the time taken to interface to it (several man-months, not counting the several man-months devoted
to the empirical evaluation of each successive implementation). It is certainly not possible to substitute one
linear procedure for another. But the worst is yet to come. Much to our dismay we were eventually forced to
modify both the linearization subroutine and the propagation subroutine to complete the integration. Thus, the
notion that we could choose a linear procedure "off the shelf" is also destroyed.

It has been found useful by those who write verification systems for the theorem prover to report which
lemmas were used in a proof. Such information is necessary if the verification system is to permit the user to
redefine or re-axiomatize concepts without having to rederive the proofs of logically independent results. How
can the heuristic theorem prover determine whether a given linear rule was used? A "shotgun" approach can be
used. That is, when linear arithmetic participates in a proof it can report that it used every linear rule from
which a polynomial was generated and pushed. But the shotgun approach tends to make proofs depend upon
many irrelevant lemmas. The approach we finally took was to modify the linearization and propagation
subroutines so that every polynomial in the data base carries with it a record of the linear rules from which it
was derived. This information is propagated in the obvious way as new inequalities are formed from old ones.
When a contradiction is found it is possible to announce exactly which linear rules were used.

More seriously, the search for "interesting" lemmas and the work involved in relieving their hypotheses
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make it more expensive to set up the data base for a clause initially. Our first approach was as follows. To
rewrite a literal in a clause we pushed into an initially empty data base the polynomials derived from the
negations of the remaining inequalities in the clause. The data base was then closed under the operation of
pushing polynomials derived from heuristically chosen instances of linear rules after relieving their hypotheses.
An arbitrary amount of work might be done in setting up the data base for the rewriting of a single literal.
Furthermore, the work done to set up the data base for one literal is often very similar to that done for the
adjacent literal. Thus, if there is a set of "expensive" literals in the clause the work they trigger is duplicated
each time an "inexpensive" literal is set up. We found this prohibitively expensive and abandoned the idea of
setting up a different data base for each literal.

While trying to prove p it is permitted to assume the negation of p. Thus, we set up just one data base
containing the negations of all the inequalities in the clause and closed under linear rules. That data base was
used during the rewriting of each literal.

Of course, while working on the literal p one must be very careful to avoid using the assumption that p is
2false to rewrite p to F. "Accidentally" replacing a literal by F is sound but risky: the rewritten literal is dropped

from the disjunction being proved and one is forced to prove a stronger goal which may in fact be invalid and
hence unprovable. When this occurs we say the simplifier has "bitten its own tail." If the literal being rewritten
is assumed false in the context of the rewriter then special precautions must be taken.

Our first attempt to keep the simplifier from biting its own tail was to prevent any attempt to push into the
data base the literal we are trying to simplify. This method failed to be effective because the inequality being
pushed might be different but linearly equivalent to the one being simplified.

The presence of conditional rewrite rules also complicates the situation. For example, suppose the system
knows the lemma:

*7 X Y #→# (X@oplus1 Y) ##(X@oplus1 #←→## #≡# Y).#/

This permits (X@oplus1 Y) to be rewritten to (X@oplus1 ##≡# Y) under the condition that X#/
Y. Suppose the current literal is #¬#(A@oplus1 B). We assume its complement, A@oplus1 B, and

begin simplifying #¬#(A@oplus1 B). The rewriter observes that it can use *7 to simplify (A@oplus1 B)
to (A@oplus1 ##≡# B) if it can establish A B. By appealing to linear arithmetic it derives A B from#/
A@oplus1 B. Therefore, it simplifies #¬#(A@oplus1 B) to A@oplus1 = B, biting its own tail. We
abandoned the hope that we could easily avoid tail biting when we saw such examples. (Less pathological
examples can be constructed if one considers lemmas about user defined function symbols.)

The solution we finally adopted required the further elaboration of the linear algorithm itself. We
programmed the linearization subroutine to attach to each polynomial the set of literals from which it was
derived. In most cases this is a singleton set containing the inequality literal itself, but in some cases (as when
the linearization depends upon another literal to relieve linearization hypotheses) it contains multiple literals.
We programmed the propagation subroutine to merge these sets as new polynomials are formed. Thus, we
know which literals are involved in the derivation of each polynomial in the data base. Finally, we programmed
the propagation subroutine to avoid using any polynomial whose derivation involves the literal we are currently

2This phenomenon happens often to students learning proof by contradiction. They assume the negation of what they wish to prove,
engage in a long sequence of steps, and then announce that the "theorem is false."
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3trying to rewrite or any literal previously rewritten to F.

Another problem we faced is dealing with the linearization hypotheses. These hypotheses are generated
when inequalities are put into polynomial form and must be relieved (i.e., either by proving them from other
hypotheses or by splitting on them and proving the entire conjecture assuming each of them false).

For example, if the linear arithmetic procedure is applied to:

.W I-K ∧ J K #→# W@oplusJ I

then, under the hypothesis K@z( )I the formula is found valid. But an additional case, obtained by assuming
.that I@muchltK and I-K = 0, must be proved:

I K ∧ W 0 ∧ J K #→# W@oplusJ I.

Our first attempt to handle this problem took the shotgun approach again. That is, if the linear arithmetic
procedure participated in the simplification of a clause we added to the simplified clause(s) the linearization
hypotheses for each literal in the input clause. Furthermore, we produced as new goals additional versions of
the input clause in which each of these added hypotheses is negated. Once again, the advantage to the shotgun
approach is that while we had to modify the subroutine for putting literals into normal form we did not have to
modify the propagation subroutine itself.

But the difficulty with the shotgun approach was that it caused many irrelevant splits. For example, suppose
the theorem to be proved is:

.X Y ∧ J @z( ) I-K #→# X Y@oplus1.

The contradiction found is actually derived from the first hypothesis and the conclusion. The second hypothesis
.is irrelevant. But the I-K expression in it gives rise to the additional case:

X Y ∧ I K ∧ J @z( ) 0 #→# X Y@oplus1.

This case will be proved exactly as before, but it need not have arisen in the first place and, in general,
reproducing the proof may be quite expensive because of the need for lemmas. Furthermore, the number of
irrelevant splits grows exponentially with the number of irrelevant difference or predecessor expressions in the
clause. Unfortunately, irrelevant hypotheses are common in mechanically generated formulas. For example, in
our system’s first proof of the termination of the Takeuchi function [12] the proof of one lemma involved 412
cases, many of which were irrelevant.

One solution to this problems is that adopted for the tail biting problem. If the linear procedure keeps track
of which literals are involved in the derivation of each polynomial, it is possible to report which literals are
involved in the eventual contradiction found. Then one can split on the hypotheses necessary to obtain the
polynomial for those literals.

. .However, one can do better. Recall that an assumption such as I-J=K gives rise to two inequalities, I-J @z( )
. .K and K @z( ) I-J. If one is asked to assume I-J @z( ) K it is permitted to assume - K - J + I #≤# 0 even if

I@muchltJ. That is, the polynomial for the first inequality can be obtained without any additional hypothesis.

3The latter restriction prevents another form of tail biting. Suppose p and p’ are two equivalent but nonidentical inequality literals.
Consider simplifying the clause {p p’}. The polynomial data base contains two equivalent polynomials one descending from @notp and the
other from @notp’. While rewriting p, we use the polynomial descending from @notp’ to derive p=F. If we permit ourselves, while
rewriting p’, to use the old polynomial descending from @notp we will bite our tail.



17

.However, if one is asked to assume K @z( ) I-J, the polynomial, K + J - I #≤# 0, may be obtained only under the
additional hypothesis that J@z( )I. It is possible that only one of the two polynomials will participate in a
contradiction. Thus, in our implementation of the linearization subroutine we attach to each polynomial its
linearization hypotheses, we propagate that information in the obvious way, and split on the hypotheses
necessary for those polynomials used in the eventual contradiction found. This eliminates many irrelevant case
splits when dealing with the naturals. For example, in the proof of the above mentioned lemma about
Takeuchi’s function, 311 of the 412 cases were eliminated.

There is one remaining aspect of our scheme. It is often the case that the linear arithmetic procedure derives
two polynomials -y+x@LTE0 and y-x@LTE0. That is, under the hypothesis that x and y are both naturals, they
are equal. While the knowledge of this equality is available to the linear arithmetic procedure it is not known to
the rewriter. Therefore, after we have set up the polynomial data base for a clause but before we begin
rewriting the literals of the clause, we search the data base for "mated" pairs of polynomials as above and under
certain circumstances add equality hypotheses to the clause.

This concludes the casual description of how we integrated a linear arithmetic procedure into our heuristic
theorem prover. The objective of these two sections has been to substantiate our assertion that integrating such
a procedure into a larger system is quite difficult and frequently requires discarding the notion that the
procedure is a black box. In addition, we have attempted to motivate the rather elaborate data structures and
procedures described in section 8.
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7. Two Examples

In this section we present two examples illustrating the cooperation between our heuristic theorem prover
and its linear arithmetic procedure.

The first example comes from our system’s proof of the correctness of the Boyer-Moore fast string
searching algorithm [3]. The algorithm searches for the first occurrence of a given pattern in a given text. Both
the pattern and text are strings of characters over a finite alphabet. The algorithm uses an array that associates
with each character in the alphabet the distance between the last occurrence of that character in the pattern and
the end of the pattern. For those characters in the alphabet that do not occur in the pattern the array contains the
length of the pattern. A previously verified subroutine initializes this array. In particular, after the call of this

thsubroutine the C element of the array is known to be DELTA1(PAT,LP,C), where DELTA1 is defined
recursively to be the distance specified above, PAT is the input pattern and LP is the length of PAT. DELTA1
is another example of an interpreted function symbol needed to specify a program. An interesting inequality
involving DELTA1 is DELTA1.LESSEQP.PATLEN, which states that DELTA1(PAT,LP,C) @z( ) LP. This
result can be proved by induction on LP.

Repeatedly during the execution of the string searching algorithm the current index into the text, I, is
thincremented by the C element of the above array. One must prove that this addition does not cause an

arithmetic overflow. The input assertion of the program assures us that the sum of the length of PAT, LP, and
that of the text, LT, is less than or equal to the maximum representable positive integer, MAXINT.
Furthermore, at the time of the increment we know that I is less than or equal to LT. We must prove:

LP@oplusLT @z( ) MAXINT ∧ I @z( ) LT

#→#

I #⊕# DELTA1(PAT,LP,C) @z( ) MAXINT.

This is not a consequence of linear arithmetic alone. However, after pushing the above inequalities into the data
base, DELTA1(PAT,LP,C) is a heaviest multiplicand in an inequality in the data base. By appealing to
DELTA1.LESSEQP.PATLEN we obtain the additional information that DELTA1(PAT,LP,C) @z( ) LP, from
which the above conjecture follows by linear arithmetic.

A second example comes from our program’s proof that a certain tree normalization algorithm terminates.
The proof involves showing that the measure MS of the nested ordered pair <<a,b>,c> is strictly greater than
MS of <a,<b,c>>, where MS is defined by the user as follows:

MS(atm) = 1, if atm is not a pair, and

MS(<x,y>) = MS(x)@multiMS(x) + MS(y)

where @multi is the Peano multiplication function.

Note that by induction one can prove 0 MS(X).

Consider our goal:

*8 MS(<a,<b,c>>) MS(<<a,b>,c>).

After simplifying by expanding the definition of MS several times and applying such previously proved
arithmetic rewrite rules as the associativity and commutativity of addition and the distributivity of
multiplication over addition the goal becomes:
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2 2*9 MS(c) + MS(a) + MS(b)

2 2 4MS(c) + MS(b) + 2*MS(a) @multiMS(b) + MS(a) ,

2 n+1where MS(x) is an abbreviation for MS(x)@multiMS(x) and MS(x) , for n>1, is an abbreviation for
nMS(x)@multiMS(x) .

Upon trying to simplify the above inequality we push into an empty data base the polynomial obtained from
its negation:

4 2 2MS(a) + 2*MS(a) @multiMS(b) - MS(a) #≤# 0

4from which we hope to derive a contradiction. No linear contradiction is found. Therefore we note that MS(a)
is the heaviest multiplicand and search for linear rules about @multi. We find the linear rule

0 I #→# J @z( ) I@multiJ

3and instantiate it by replacing I with MS(a) and J with MS(a) to produce:

3 40 MS(a) #→# MS(a) @z( ) MS(a) .

The hypothesis is rewritten to T by appealing to 0 MS(X). We then heuristically decide whether we wish to
3push the polynomial produced from the concluding inequality. Even though it contains MS(a) , which is a new

4 4multiplicand, we decide it is no worse than the existing MS(a) (indeed, it is a subterm of MS(a) ). By pushing
the concluding polynomial into the data base and canceling it against the negated goal we obtain:

2 3 22*MS(a) @multiMS(b) + MS(a) - MS(a) #≤# 0.

No contradiction is found so we again look for linear rules about the heaviest multiplicands.
2 3MS(a) @multiMS(b) is the heaviest multiplicand in the new polynomial (since it is the same size as MS(a) but

b is lexicographically larger than a). We appeal to the same lemma about @multi, relieve the hypothesis in
exactly the same way as before, once again approve the new conclusion as being being no worse than existing
polynomials and push:

2- MS(a) @multiMS(b) + MS(a)@multiMS(b) #≤# 0.

Propagation produces the new polynomial:

3 2MS(a) + 2*MS(a)@multiMS(b) - MS(a) #≤# 0.

3Again no linear contradiction is found. This time the heaviest term is MS(a) . Appealing again to our
lemma about multiplication we obtain and push the polynomial:

3 2- MS(a) + MS(a) #≤# 0.

Canceling again produces:

2*MS(a)@multiMS(b) #≤# 0.

No contradiction is found. This time the largest multiplicand is MS(a)@multiMS(b). Appealing again to our
@multi lemma we obtain and push:
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- MS(a)@multiMS(b) + MS(b) #≤# 0

which produces:

2*MS(b) #≤# 0.

Again no linear contradiction is found. But this time MS(b) is the heaviest multiplicand. We search for lemmas
about MS and obtain:

0 MS(b)

which, when linearized is

1 - MS(b) #≤# 0

Pushing this polynomial produces 2 #≤# 0, which is a contradiction. Thus the goal has been proved.

It takes our system a total of 22.3 seconds to prove the goal, *8. We can break the proof down into two
phases: producing from *8 the fourth degree polynomial *9, and appealing to linear arithmetic reasoning to
prove *9. The first phase, which consists of expanding the definition of MS and applying previously proved
rewrite rules, takes a total of 16.5 seconds. However, 5 of those seconds are consumed by attempts to prove the
theorem by linear arithmetic before the normalized polynomial *9 is produced. The second phase -- in which
the linear arithmetic interface performs the iterated sequence of pushes and lemma instantiations leading to the
final contradiction -- consumes 5.8 seconds. The times measured are DEC KL-10 cpu seconds consumed while

4running compiled INTERLISP (not counting garbage collection times and the time taken to output the proof).

4During the four year period this research was conducted we converted our system from INTERLISP to the MACLISP family. The
MACLISP version of the system runs about twice as fast as the INTERLISP version. However, all experimental statistics in this paper are
based on the INTERLISP version.
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8. The Current Implementation

In this section we describe precisely the current (if not the final) version of the linear arithmetic procedure.

8.1 More Background on the Rewriter

Since the linear arithmetic procedure is mutually recursive with the new rewriter, the description of the two
are intertwined. We here explain in greater detail aspects of the new rewriter that are mentioned as we describe
the linear arithmetic procedure.

The rewriter takes a term, a substitution, and a context and returns a term, a set of linearization hypotheses,
and the list of all rewrite and linear rules used to derive the result. The context specifies, among other things,
some assumptions and the sense of equality to be maintained by the rewriter. The primary specification
satisfied by the rewriter is that under the assumptions in the context plus the returned linearization hypotheses,
the output term is equal (in the specified sense) to the instantiation of the input term with the input substitution.
Two senses of equality are supported: propositional equivalence and identity. Two terms, p and q, are
propositionally equivalent iff either p=F and q=F or p@NEqvF and q@NEqvF. Thus, 3 and T are
propositionally equivalent. When rewriting the literals of a clause, the hypotheses of lemmas, and the tests of
IFs it is sufficient to maintain propositional equivalence only. At all other times we maintain identity.

Fundamental to the rewriter and to linearization is the notion of "type sets" and "type alists."

A type alist is an association list pairing terms with "type sets." If r is a "shell recognizer" then we denote
by r the set of all x such that (r x)=T; we call r a type. For example, TRUEP is the set {T}, FALSEP is the set
{F}, NUMBERP is the set of all natural numbers, and LISTP is the set of all ordered pairs constructed with
CONS. In addition, we define one additional type containing all the non-shell objects. A type set is a set of
types. If the term t is associated with the type set {r ... r } on the type alist then we are assuming that t is an1 n
element of one of the r ’s.i

Type alists are used in the rewriter to record the assumptions governing the term being rewritten. This
mechanism is discussed at length in Chapter V of [4]. When the simplifier applies the rewriter to a literal it
supplies as part of the context a type alist encoding the assumptions that all the other literals of the clause are
false.

In addition to a type alist, the context contains a polynomial data base, set up by the simplifier by pushing
the negations of all the inequalities of the clause. The dependence on literals of each polynomial in this data
base is carefully tracked so that the rewriter can ignore polynomials descending from the current literal and
literals previously rewritten to F. Because of the ubiquity of type sets the rewriter does not record which type set
assumptions were used by a rewrite. This makes it difficult to track the dependencies of polynomials derived
from linear rules when setting up the initial data base and we will describe several kludges to mitigate these
difficulties.

The polynomial data base is used by the rewriter when it encounters an inequality: if the negation of the
inequality, when pushed into the data base, produces a contradictory polynomial, we rewrite the inequality to
T. But we must note the hypotheses governing the contradictory polynomial and report them with our final
answer if the reduction of this inequality to T is part of the derivation of that answer. It may not be: the
inequality just established might be the first of two hypotheses of a rewrite rule. If we fail to establish the
second one the work done on the first is irrelevant.

To keep track of the hypotheses generated by a rewrite, we use a push down stack called the hyps stack
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consisting of frames each of which contains a set of hypotheses. It is assumed that when the rewriter is called a
frame has been pushed onto the hyps stack. The rewriter is implemented so that it adds to the top frame of the
stack all of the hypotheses assumed during the derivation of the answer delivered. For example, suppose we are
rewriting some term t and try to apply a rewrite rule with hypotheses. Then we push an empty frame on the
hyps stack and rewrite the hypotheses of the rule, accumulating the linearization hypotheses in the new frame.
If all the hypotheses of the rule are relieved and our heuristics permit us to apply the rule, we pop the new hyps
frame off the stack and union its contents into the frame below (which is accumulating the linearization
hypotheses actually used to rewrite t). If, on the other hand, some hypothesis of the rule is not relieved, we pop
the new frame off the stack and throw its contents away.

A similar stack, called the lemma stack is used to keep track of the axiom, definition, and lemma names
used by a given rewrite.

The context in which a rewrite takes place thus contains:

• TA: a type alist encoding the assumption that each literal of the current clause is false (except the
literal we are in the process of rewriting) and, during recursive calls to the rewriter from within the
rewriter, the assumptions of the truth or falsity (as appropriate) of the tests of IFs governing the
occurrence of the term being rewritten.

• DB: a polynomial data base encoding the assumption that every arithmetic literal in the clause is
false.

• LITS-TO-BE-IGNORED-BY-LINEAR: a list containing the current literal and all previous
literals of the goal clause rewritten to F. Polynomials in DB that descend from any literal on this
list are ignored by the propagation routine.

• LITS-THAT-MAY-BE-ASSUMED-FALSE: the clause being simplified, during the initial
construction of the linear arithmetic data base.

• HEURISTIC-TA: a type alist used for heuristic purposes when setting up the initial polynomial
data base.

• OBJECTIVE: a flag that tells the rewriter whether it should try to rewrite the input term to T, to
F, or to anything it can. If the rewriter is "trying" to get to T it does not attempt to apply rewrite
rules that would replace the term by F. The flag is used to direct the rewriter’s efforts when trying
to establish the hypotheses of rewrite and linear rules.

• ID/IFF: a flag specifying whether identity or propositional equivalence is to be maintained.

• hyps stack: a stack of frames containing linearization hypotheses. When the rewriter returns, the
assumed hypotheses will have been unioned into the top-most frame.

• lemma stack: a stack of frames containing lemma names (and literals from LITS-THAT-MAY-
BE-ASSUMED-FALSE used to relieve hypotheses). When the rewriter returns, the lemmas and
literals used will have been unioned into the top-most frame.

• history: a record of the ancestry of the current clause and what proof techniques were involved in
producing each clause in the ancestry.

• Other aspects to the context, not relevant to the current discussion, include such search strategic
information as the stack of lemmas through which we are currently backwards chaining and a flag
indicating whether the term being rewritten is textually within the clause or is part of a lemma or
definition.

In addition, of course, the context implicitly contains a set of rewrite rules and linear rules derived from
axioms, definitions, and previously proved theorems. This set of rules is here called the library.

This elaborate notion of "context" is used implicitly not only by the rewriter but also by the linearization and
augmentation procedures.
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8.2 Polynomials

A polynomial is a five tuple <c,alist,hyps,lits,supports>. The first field, c, is an integer constant. The
second, alist, is a list of pairs <t ,k >, where each t is a term, called a multiplicand, and each k is an integer,i i i i
called the coefficient of the corresponding multiplicand. The pairs in alist are ordered according to the
multiplicands, with the heaviest first, and no two distinct pairs have identical multiplicands. The multiplicand
in the first pair of the alist (the heaviest) is called the key multiplicand of the polynomial and the sign of the
polynomial is the sign of the key multiplicand’s coefficient. The third field of a polynomial, hyps, contains a
set of terms. The fourth and fifth fields, lits and supports, contain sets of LISP objects. (Note: the last three
fields all contain LISP lists treated as sets. However, we use EQUAL to compare elements in the hyps field but
EQ to compare elements in the other two fields.)

The formula represented by a polynomial with constant c, alist (<t ,k >, ..., <t ,k >), and hyps h , ..., h is1 1 n n 1 m

h ∧ ... ∧ h #→# c + k *t + ... + k *t #≤# 0.1 m 1 1 n n

The lits field of a polynomial contains the literals linearized to produce the polynomial or its ancestors. The
hyps of a polynomial contain the linearization hypotheses. The supports field contains a variety of things: the
names of the axioms, definitions, and lemmas used in the derivation of the polynomial, the literals used to
relieve linearization hypotheses or the hypotheses of rewrite and linear rules contributing to the derivation of the
polynomial, and special marks explained in subsection 8.7.

We say a polynomial is impossible iff its constant is greater than 0 and no coefficient is negative. We say a
polynomial is vacuous iff its constant is less than or equal to 0 and no coefficient is positive. Observe that if a
polynomial is impossible the conclusion of the formula it represents is contradictory. Similarly, if a polynomial
is vacuous then the conclusion of its formula is trivially true.

8.3 Converting Terms to Polynomials

The process of converting a literal into one or more polynomials is called "linearization." Linearization
implicitly takes place in a context (as does rewriting). The linearization of lit is either NIL or a set of sets of
polynomials. If the result is NIL, we draw no arithmetic conclusions from assuming lit. Otherwise, the answer
represents a formula, form, obtained by disjoining (across the set) the result of conjoining (across each element)
the formulas represented by each polynomial. It is a theorem that form is implied by the assumptions in the
context.

Below we show some examples of literals linearized and the formulas represented by the answers. In each
of the cases below, the lits field of the polynomials returned is {lit} and the supports field is {}.

formula represented by
lit result of linearization

.I@muchltJ-I I@z( )J #→# 1 + -1*J + 2*I #≤# 0

.I=J-I I@z( )J #→# 0 + -1*J + 2*I #≤# 0
∧

0 + 1*J + -2*I #≤# 0

.I@NEqvJ-I I@z( )J ∧ I#∈#N #→# 1 + -1*J + 2*I #≤# 0
#∨#

I#∈#N #→# 1 + 1*J + -2*I #≤# 0

In order to describe the linearization process we need three auxiliary concepts. The first is the notion of the
zero polynomial depending on lit, which is the polynomial with constant 0, empty alist, hyps, and supports
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fields, and lits field {lits}.

The other two concepts we mention informally here and define precisely after discussing linearization. One
concept is that of "inserting a hypothesis hyp into a polynomial p," which, roughly speaking, is the construction
of a polynomial identical to p except that hyp is included in the hyps field. The third notion is that of "adding a
term t positively (or negatively) to a polynomial p." Roughly speaking, this means constructing a new
polynomial by adding t to (or subtracting t from) p. However, when we add a term to a polynomial we may also
insert hypotheses.

Careful treatment of the hypotheses is essential to the utility of our linear arithmetic procedure. Omitting a
hypothesis that is not known to be true can cause unsoundness. But failure to recognize that a hypothesis is
already known to be true or false can cause unnecessary case splitting or infinite looping (as the system may
case split repeatedly on the same condition). Exactly how the linearization procedure handles the hypotheses
depends upon how the procedure is being used.

It is useful to distinguish two different occasions on which we linearize terms. The first, and simpler of the
two, is during the process of rewriting a literal after we have set up our polynomial data base. Linearization is
used both to relieve hypotheses of rewrite rules and to augment the data base. But the data base produced by
pushing the polynomials is not saved -- we are only looking for a contradiction. Hence we need not track our
dependency on literals and can use the type alist, TA, supplied by the context of the rewriter, to check the truth
or falsity of some linearization hypotheses. If a hypothesis is true under TA we need not include it. If it is false
we should avoid producing a polynomial requiring its truth.

The second occasion we use linearization is when we are setting up the initial data base. In this case we
must track our dependencies on literals very carefully to avoid tail biting. During the initialization of the data
base we therefore use a context in which TA is empty -- preventing the unreported use of type set information --
and use LITS-THAT-MAY-BE-ASSUMED-FALSE and HEURISTIC-TA to determine the truth or falsity of
some linearization hypotheses. For example, if the complement of a required linearization hypothesis is in
LITS-THAT-MAY-BE-ASSUMED-FALSE (which, recall, is the clause being proved), then we need not
include it in the hyps field of the polynomials but must include it in the supports field.

Looking for a hypothesis or its complement in LITS-THAT-MAY-BE-ASSUMED-FALSE is not as
powerful as computing its type set. For example, the type set mechanism could deduce the truth of
(NUMBERP t) from the assumption t=A@oplusB. Nevertheless, we have adopted this approach because we
must know which literals in the clause are being used when a required linearization hypothesis is omitted.
However, recall that if we believe a hypotheses is false we simply avoid producing a polynomial requiring its
truth. The soundness of the theorem prover is unaffected by the validity of our belief that a hypothesis is false:
at worst we deny the system access to information it could have used. In this case it is irrelevant to track
dependencies, since no polynomial is produced. Thus, we can afford to use a type alist as a heuristic device to
avoid the production of certain polynomials. This is the role of HEURISTIC-TA in the context and it encodes
the negations of all the literals of the clause.

Except where noted, all type set computations are done with respect to TA.

We say a term t is possibly numeric if the type set of t under HEURISTIC-TA (or, if HEURISTIC-TA is
NIL, under TA) is {NUMBERP}.

The positive (or negative) linearization of a literal lit is either NIL or a set of sets of polynomials as
described below. In the description below we handle the positive case only. The negative case is identical to
the positive case for the complement of lit with one exception: the lits fields of all the polynomials constructed
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contain lit rather than its complement.

If any polynomial in any element of the answer contains F in its hyps field we delete that polynomial from
the element.

If lit is of the form (LESSP lhs rhs) the answer is {{poly}} where poly is the result of adding the term
(ADD1 lhs) positively to the result of adding the term rhs negatively to the zero polynomial for lit.

If lit is of the form (EQUAL lhs rhs) and either lhs or rhs is possibly numeric, the answer is {{poly poly }}1 2
where poly is the result of adding lhs positively to the result of adding rhs negatively to the zero polynomial1
for lit, and poly is obtained by the symmetric procedure (swapping the roles of lhs and rhs).2

If lit is (NOT (LESSP lhs rhs)) the answer is {{poly}} where poly is the result of adding rhs positively to
the result of adding lhs negatively to the zero polynomial for lit.

If lit is (NOT (EQUAL lhs rhs)) and either lhs or rhs is possibly numeric, then let poly be the result of1
inserting (NUMBERP lhs) and (NUMBERP rhs) hypotheses to the result of adding (ADD1 lhs) positively to the
result of adding rhs negatively to the zero polynomial for lit, and let poly be obtained by the symmetric2
procedure (swapping the roles of lhs and rhs). If poly is impossible, the answer is {{poly ’}} where poly ’ is1 2 2
obtained from poly by adding to its hyps field those of poly ; if poly is impossible, the answer is {{poly ’}}2 1 2 1
where poly ’ is obtained from poly by adding to its hyps field those of poly ; otherwise the answer is {{poly }1 1 2 1
{poly }}.2

If none of the above four cases obtains, the answer is NIL.

This concludes the definition of linearization.

The result of adding a term to a polynomial involves manipulating the alist of the polynomial (and possibly
the hyps field). The following subsidiary concept is used:

The result of inserting a term t with a coefficient of n into the alist field of a polynomial poly is the
polynomial that results from poly by modifying its alist as follows. If the type set of t does not include
NUMBERP, do not modify the alist (since our arithmetic functions coerce non-NUMBERP arguments to 0); if
there is a pair with multiplicand t in the alist, increment the coefficient of that pair by n; otherwise, add the pair
<t,n> to the alist (maintaining the previously noted ordering of entries).

The result of adding a term t with parity p to a polynomial poly is the polynomial obtained as follows:

If t is a constant, then if t is a natural number, increment (decrement) the constant of poly by t (according to
whether p is positive or negative) and return the result; otherwise return poly (since non-NUMBERPs are
coerced to 0).

If t is (ADD1 x), increment (decrement) the constant in poly by 1 (according to whether p is positive or
negative) and add x with parity p to the result.

If t is (SUB1 x), then if p is positive: decrement the constant in poly by 1 and add x with parity p to the
result; otherwise p is negative: insert the hypothesis (NOT (LESSP x 1)) into poly, increment the constant in
the resulting polynomial by 1, and add x with parity p to the result.

If t is (PLUS x y), add y with parity p to the result of adding x with parity p to poly.
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If t is (DIFFERENCE x y), then if p is positive: add x positively to the result of adding y negatively to poly;
otherwise p is negative: insert the hypothesis (NOT (LESSP x y)) into poly and then to the result add x
negatively to the result of adding y positively.

If t is (TIMES n x), where n is a natural number, insert x with a coefficient of n (or -n) (according to
whether p is positive or negative) into the alist field of poly and return the result.

Otherwise, insert t with a coefficient of 1 (or -1) (according to whether p is positive or negative) into the
alist field of poly and return the result.

This completes the definition of how to add a term to a polynomial.

The result of inserting the hypothesis hyp into a polynomial poly is obtained as follows.

If hyp is (NOT (LESSP x 1)) and the type set of x is {NUMBERP}, insert the hypothesis (NOT (EQUAL x
0)) into poly instead and return the result.

If hyp is (NOT (LESSP x 1)) and the complement of (NUMBERP x) occurs as some literal lit in LITS-
THAT-MAY-BE-ASSUMED-FALSE, add lit to the supports field of poly and return the result.

If hyp is (NOT (EQUAL (DIFFERENCE u v) 0)), insert the hypothesis (LESSP v u) into poly and return the
result.

If hyp is (NOT (EQUAL (ADD1 x) 0)), return poly.

If hyp is (NOT (EQUAL n 0)) where n is any constant other than 0, return poly.

If hyp is (NOT (EQUAL 0 0)), insert the hypothesis F into poly and return the result.

If the type set of hyp is {TRUE}, return poly.

If the type set of hyp does not include TRUE, insert the hypothesis F into poly and return the result.

If the type set of t (computed with HEURISTIC-TA) does not include TRUE, insert the hypothesis F into
poly and return the result.

If the complement of hyp occurs as some member, lit, of LITS-THAT-MAY-BE-ASSUMED-FALSE, add
lit to supports field of poly and return the result.

Otherwise, add hyp to the hypothesis field of poly and return the result.

8.4 Combining Polynomials

Suppose p and p are polynomials with the same key multiplicand, t, and opposite signs. Let the1 2
coefficients of t in p and p be k and k respectively. By cross-multiplying and adding p and p we can form1 2 1 2 1 2
a new polynomial whose key multiplicand, if any, is smaller than t. The polynomial obtained has as its constant
k *c + k *c , where c and c are the constants of p and p respectively. The alist of the new polynomial is2 1 1 2 1 2 1 2
obtained from the alists of p and p by multiplying each coefficient in the first by k and each coefficient in the1 2 2
second by k , then merging the two alists (adding together the coefficients of identical multiplicands and1
deleting any pair with a 0 coefficient). The hyps, lits, and supports fields of the new polynomial are the unions
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of the corresponding fields of p and p (comparing with EQUAL or EQ as appropriate).1 2

Observe that if the formulas represented by p and p are both true in the context then so is the formula1 2
represented by the result of cross-multiplying and adding.

For each term t we define the non-negative assumption for t to be the polynomial obtained by linearizing the
theorem 0@z( )t, i.e., the polynomial representing 0 + -1*t #≤# 0, with empty hyps, lits and supports fields.
Any polynomial with a positive first coefficient can be cross-multiplied and added to the appropriate non-
negative assumption to obtain a true polynomial differing from the initial polynomial only in that the first pair
in the alist is missing.

8.5 Pushing Polynomials into the Data Base

Conceptually, our linear arithmetic data base is just a set of polynomials. To make it easier to find all the
polynomials with a given key multiplicand and sign, we actually partition the database into "pots" according to
their key multiplicands and further partition each pot according to the sign of the polynomials. We then store
the pots in order according to the weight of the key multiplicands. However, for the purposes of this paper we
treat the database simply as a set of polynomials.

The fundamental operation on the data base is to add new polynomials to it and deduce the consequences by
cross multiplying and adding. However, recall that during the simplification of a given literal we wish not to
use polynomials that descend from LITS-TO-BE-IGNORED-BY-LINEAR. We say a polynomial poly is
available if no element of LITS-TO-BE-IGNORED-BY-LINEAR is EQ to any element of the lits or supports
fields of poly.

The result of pushing a set of polynomials s into a data base db is the closure of the union of db and s under
the following two operations:

• for any available member polynomial x with positive sign, include the result of cross-multiplying
and adding x to the non-negative assumption for the key multiplicand of x, provided that result is
non-vacuous.

• for any two available member polynomials x and y with the same key multiplicand and opposite
signs, include the result of cross-multiplying and adding x and y, provided that result is non-
vacuous.

The above description fails to describe our code in three respects. First, because the initial data base is
closed under the operations above, it suffices to consider only the new polynomials and their consequences.
Second, the order in which we combine polynomials is not specified. Third, since we are seeking to derive an
impossible polynomial, the code that closes the data base halts when a cross multiply and add produces an
impossible polynomial. The hyps, lits, and supports fields of the impossible polynomial found influence the
subsequent proof attempt. Thus, if more than one impossible polynomial can be derived from the assumptions,
the order in which polynomials are combined is relevant.

8.6 Augmenting the Data Base

In this subsection we explain how we use previously proved theorems to augment the data base of
polynomials.

A linear rule is a four tuple <name, hyps, concl, max-term>, where name is the user-supplied name of a
formula, hyps is a list of terms, concl is a term of the form (LESSP x y) or (NOT (LESSP x y)), the positive
linearization of concl (under empty TA, LITS-THAT-MAY-BE-ASSUMED-FALSE, and HEURISTIC-TA) is
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a singleton set containing a singleton set containing a polynomial poly, and max-term is one of the
multiplicands in the alist of poly and has the following properties: (a) max-term is not a variable symbol, (b)
the set of variables occurring in concl is a subset of the union of those occurring in max-term and those
occurring in hyps, and (c) no other multiplicand in the alist of poly has larger size and contains a superset of the
variables occurring in max-term.

Roughly speaking, linear rules are interpreted as follows. Whenever a new key multiplicand is introduced
into the polynomial data base we search for applicable linear rules, finding each rule whose max-term can be
instantiated to yield the key multiplicand in question. When we find such a rule we attempt to establish, by
rewriting, the corresponding instance of each of the hypotheses in the hyps of the rule. Provided we succeed,
we rewrite the appropriate instance of the concl of the rule and linearize it to obtain a polynomial. We then
modify the hyps and supports fields of the polynomial to take into account the hypotheses assumed and lemmas
and literals used during the rewriting. Then, provided certain heuristic conditions are met, we push the resulting
polynomial into the data base.

The restrictions on max-term above are motivated by two considerations. First, we want to insure that once
the variables in a maximal term are instantiated (by the pattern match with a key multiplicand) and the
hypotheses are relieved (possibly instantiating variables occurring in hyps but not in max-term), then every
variable in concl is instantiated. Second, since the polynomial produced from the instantiated conclusion can
only be used to cancel its heaviest multiplicand, we try to select as our max-terms only those terms which
might, under suitable instantiation, become the largest.

Linear rules are added to the system’s library of rules whenever certain user-supplied formulas are proved.
Suppose the user submits to the theorem prover a conjecture named name of the form (IMPLIES hyp concl).
Suppose further the conjecture was tagged as a rewrite rule. Let hyps be the result of flattening the AND
structure of hyp, i.e., the conjunction over hyps is hyp. If the conjecture is proved, we store in our library each

5four-tuple <name, hyps, concl, t> that is a linear rule.

Before linearizing the instantiated conclusion of a linear rule we rewrite it to put the terms into normal form
under the current set of rewrite rules. However, rather than rewrite the entire conclusion, we rewrite merely the
two sides of the inequality to avoid applying linear arithmetic to the conclusion before we have normalized the
terms.

The rewritten form of term under substitution s, where term is a term of the form (LESSP lhs rhs) or (NOT
(LESSP lhs rhs)) is the term obtained as follows. Let lhs’ and rhs’ be obtained by rewriting lhs and rhs,
respectively, under the substitution s. If concl is (LESSP lhs rhs), the rewritten form is (LESSP lhs’ rhs’),
otherwise, it is (NOT (LESSP lhs’ rhs’)).

Pushing a linear rule <name, hyps, concl, max-term> for multiplicand t into a data base db produces a data
base as follows. If db contains an impossible polynomial, return db. If there is no substitution s on the
variables of max-term such that s applied to max-term is t, return db. Otherwise, push new frames onto both the
lemma stack and the hyps stack, and, using db as DB, attempt to relieve the hypotheses hyps. This either fails
or succeeds and delivers an extension s’ of s and modifies the top frames of the two stacks. If the attempt fails,
pop and discard the two frames added and return db. Otherwise, pop the lemma stack and let lemmas be the
resulting set of items. Pop the hyps stack and let hyps be the resulting set of terms. Let {{poly}} be the
positive linearization of the rewritten form of concl under s’. If for any reason the linearization does not

5Actually, the recognition of candidate theorems is more sophisticated. For example, a simple (LESSP x y) or (NOT (LESSP x y))
theorem is recognized as a candidate and hyp defaults to T. If concl is a conjunction, we strip out the individual conjuncts and look for
inequalities. These details are unimportant in this paper.
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produce such a structure or if there is a multiplicand in the alist of poly that is distinct from, as large as, and
"worse than" every key multiplicand in db, then return db. (We use the same sense of "worse than" defined on
page 110 of [4].) Otherwise, let poly’ be obtained from poly by setting the hyps field to the union of the hyps of
poly and hyps, and setting the supports field to the union of {name} and lemmas. Return the result of pushing
poly into db.

The result of augmenting a data base db with linear rules for a set of multiplicands s is a polynomial data
base constructed as follows. If db contains an impossible polynomial, return db. If s is empty, return db.
Otherwise, let db’ be the result of iteratively expanding db by pushing into it each linear rule about any
multiplicand in s. Return the result of augmenting db’ with linear rules for every non-variable key multiplicand
in db’ that is not a key multiplicand in db.

The result of pushing a set of polynomials s into a data base db and augmenting with linear rules is the data
base constructed as follows. Let db’ be the result of pushing s into db. Return the result of augmenting db’
with linear rules for all non-variable key multiplicands in db’ that are not key multiplicands in db.

8.7 The Interface between Linear Arithmetic and Rewriting

In this subsection we describe the operation of pushing terms (as opposed to polynomials) into a data base
and augmenting with lemmas. This operation is the entry to the linear arithmetic procedure from the rest of the
simplifier. It is used both to construct the initial data base and to rewrite inequalities by showing they contradict
our previous assumptions.

Given a data base encoding our current linear assumptions and a list of terms to assume true (or false) we
desire to construct a new data base containing the conjunction of the old and new assumptions. If each term
linearized into a conjunction of polynomials the task would be simple: linearize each term, push each
polynomial produced and then augment the data base with linear rules. However, some terms, e.g., I@NEqvJ,
linearize to a disjunction of polynomials: either I<J or J<I. A single data base cannot, in general, represent the
assumption I@NEqvJ. However, if I<J contradicts other assumptions, we can push J<I, and vice versa. Our
initial implementation simply ignored disjoined polynomials, but we found several cases where that prevented
proofs. We dismissed as too expensive (without even implementing it) the much stronger approach of
producing a data base for each combination of alternatives and carrying out the desired simplifications in each
of them.

The result of pushing the list of terms s positively (or negatively) into the data base db and augmenting with
linear rules is the data base obtained as follows: Linearize each term in s (positively or negatively, as
indicated). Each answer can be classified into one of three categories: It is a singleton list containing a list of
polynomials, in which case we say the polynomials are conjuncts; it is a doubleton list containing two lists of
polynomials, in which case the doubleton is said to be a pair of alternatives; or it is neither of the above, in
which case the linearized term was not recognized as an arithmetic equality or inequality. Let db’ be the result
of pushing all of the conjunct polynomials into db and augmenting with linear rules. Then, iteratively expand
db’ by considering each pair of alternatives {poly-lst poly-lst } and doing the following: if the result of1 2
pushing poly-lst into db’ and augmenting with linear rules contains an impossible polynomial, modify the hyps1
and supports fields of the polynomials in poly-lst by unioning into them the hyps and supports fields2
(respectively) of the impossible polynomial found, and then replace db’ by the result of pushing the modified
poly-lst into db’ and augmenting with linear rules; otherwise (if pushing poly-lst produced no contradiction),2 1
perform the symmetric test with poly-lst and modify and push poly-lst if a contradiction is found; otherwise,2 1
do not expand db’ on this iteration. When all alternatives have been considered, return the final db’.

As described above the consideration of the alternatives is needlessly expensive: if pushing poly-lst into1
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db’ does not lead to a contradiction but pushing poly-lst does, we push poly-lst into db’ again after modifying2 1
its hyps and supports. Of course, the data base produced by pushing the modified poly-lst is exactly the same1
as produced by pushing poly-lst except that the consequences derived from the modified poly-lst have1 1
additional hyps and supports. But pushing and augmenting can be quite expensive since it causes conditional
rewriting and backwards chaining. Our implementation avoids the near-duplicated pushes by putting a unique
mark in the supports field of poly-lst before it is pushed the first time. Because of the way the supports field is1
propagated by cross-multiplication and adding, every consequence deduced from members of poly-lst is1
marked in the resulting data base, db’ . If db’ does not contain a contradiction but pushing poly-lst into db’1 1 2
does, we visit every marked polynomial in db’ and update the hyps and supports fields with those from the1
contradiction found with poly-lst .2

8.8 Rewriting Terms and Relieving Hypotheses

We now complete our description of how the rewriter has been modified to use linear arithmetic.

At the point in rewriting where we used to "rewrite with lemmas" (page 122 of [4]) we now try linear
arithmetic first, provided the atom of the term being rewritten is a LESSP or EQUAL expression and the
objective of rewriting is either to show the term T or to show it F. If the objective is to show the term T, we
push the term negatively into DB and augment with linear rules. If the resulting data base contains an
impossible polynomial, poly, we add to the top frame of the hyps stack the terms in the hyps field of poly, add
to the top frame of the lemma stack the items in the supports field of poly, and return T as the value of the
rewritten term. If, on the other hand, the objective is to show the term F, we do the symmetric operation.

In an earlier implementation we tried using linear arithmetic to simplify LESSP or EQUAL terms even
when the objective was not T or F. In particular, we first tried pushing the term positively and if that produced
no contradiction, we tried pushing it negatively. To our surprise, this increased the total number of conses used
during the proofs of the theorems in Appendix A of [4] from roughly 6 million to roughly 10 million without
significantly shortening the proofs produced. We therefore abandoned the idea of using linear arithmetic except
when we had a clear objective to establish.

The remaining changes to the rewriter are motivated by the need to track accurately which literals are being
used when we augment the initial data base with linear rules. To prevent surreptitious use of type information,
we set TA to NIL during the construction of the data base. This cripples the rewriter described in [4] since it
has no assumptions with which to work while trying to relieve the hypotheses of linear rules. We use
LITS-THAT-MAY-BE-ASSUMED-FALSE to encode assumptions in a way that permits us to track
dependencies.

As noted on page 124 of [4], just before the rewriter returns its answer, ans, it asks whether ans has type set
{TRUEP} or {FALSEP} under TA and, if so, returns T or F, as appropriate, instead. Now we ask, in addition,
whether ans is EQUAL to some member, lit, of LITS-THAT-MAY-BE-ASSUMED-FALSE. If so, we return F
instead,but we add lit to the top frame of the lemma stack. That literal will ultimately be deposited in the
supports field of any polynomial depending on this rewrite. Similarly, if the complement of ans occurs in
LITS-THAT-MAY-BE-ASSUMED-FALSE we return T instead and store the corresponding lit in the lemma
stack, provided that ans is Boolean valued or that the sense of equality to be preserved by this rewrite is
propositional equivalence.

As noted on page 122 of [4], when we are trying to relieve a hypothesis hyp under some substitution s and s
does not instantiate every variable of hyp we use TA to try to extend s to make the instantiation of hyp true. We
now use LITS-THAT-MAY-BE-ASSUMED-FALSE in an analogous way, recording on the lemma stack the
literals used. In addition, if any hypothesis to be established is on LITS-THAT-MAY-BE-ASSUMED-FALSE
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we abandon the attempt to relieve the hypotheses.

8.9 Deriving Equalities from the Data Base

In this subsection we define the concepts necessary to describe how we generate from the polynomial data
base equality literals to add to the clause being proved.

We say a polynomial p isolates t positively (or negatively) iff t is a multiplicand in the alist of p, thei i
coefficient, k , of t is positive (negative), the constant of p and all coefficients other than that of t are negativei i i
(positive) and multiples of k , and the lits field of p is not a singleton set containing a negated equality.i

Note that if a polynomial with constant c and alist (<t ,k >, ..., <t ,k >) isolates t positively then the1 1 n n i
concluding inequality in the formula represented by the polynomial can be put into the form:

t #≤# c’ + k’ *t + ... + k’ *t + k’ *t + ... + k’ *t ,i 1 1 i-1 i-1 i+1 i+1 n n

where c’ and the k’ ’s are all natural numbers. We call t the isolated term of the polynomial andi i

(PLUS c’
(TIMES k’ t ) ...1 1
(TIMES k’ t )i-1 i-1
(TIMES k’ t ) ...i+1 i+1
(TIMES k’ t ))n n

the conglomerated term corresponding to t.

To multiply (or divide) a polynomial poly by an integer n is a 5-tuple <c, alist, hyps, lits, support>, where c
is the constant of poly multiplied (or divided) by n, alist is obtained from the alist of poly by multiplying (or
dividing) each coefficient by n, and the remaining fields are those of the same name in poly. Multiplying a
polynomial by n produces a polynomial. Dividing a polynomial by n produces a polynomial only if n divides
the constant and each coefficient.

We say a polynomial poly is a complementary multiple of a polynomial poly iff there is a negative integer2 1
n such that the result of multiplying poly by n is poly .1 2

We say two polynomials, poly and poly , are mates on a term t iff poly isolates t (positively or negatively)1 2 1
and poly is a complementary multiple of the result of dividing poly by the coefficient of t in poly .2 1 1

If a data base contains two mates, poly and poly , on a term t then, under the conjunction over the union of1 2
the hypotheses in the two polynomials, we can derive an equation between t and its corresponding
conglomerated term. In the next subsection we describe how we process mated polynomials.

8.10 Simplifying Clauses

Roughly speaking, to simplify a clause we first set up a polynomial data base derived by assuming all the
literals of the clause false. If the data base contains an impossible polynomial we are done. Otherwise, we look
for mated polynomials and process them. If we find no mates, we sweep the clause from left to right rewriting
each literal in turn, using the polynomial data base previously set up but ignoring certain polynomials in it. At
each stage we must deal with the linearization hypotheses arising from polynomials we have used.

The polynomial data base for the clause cl is constructed as follows. First, we bind LITS-THAT-MAY-BE-
ASSUMED-FALSE to cl, HEURISTIC-TA to the type alist encoding the falsity of every term in CL, TA to
NIL, and LITS-TO-BE-IGNORED-BY-LINEAR to NIL. Then we push cl negatively into the empty data base
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and augment it with linear rules and return the result.

If a clause is a consequence of simple linear arithmetic, the polynomial data base will contain an impossible
polynomial. However, because TA is NIL during the augmentation of the polynomial data base we sometimes
fail to find contradictions (involving linear rules) that would be found if TA contained the negations of all the
literals. Therefore, when we simplify a clause we take time out to augment the data base under the stronger TA,
hoping to generate an impossible polynomial. If no contradiction is found we discard the resulting data base
since it contains "hidden" dependencies.

The control structure of clause simplification exploits the fact that clauses are represented by sequences, not
sets. In addition, we must agree upon a way to mark the "current literal" in a clause. We will continue to use
set brackets to denote clauses but will consider the objects described to be sequences and will attach importance
to the order of the literals. When we use the "union" operator, , in connection with clauses, we mean
concatenation. The "current literal" of a clause will be enclosed in square brackets. Thus, {@notp [q] r} is a
clause whose first literal is @notp and whose current literal is q.

The result of splitting the clause {... p [q] r ...} on h , ..., h is the set consisting exactly of each clause of the1 n
form {... p h q [r] ...}, where 1@LTEi@LTEn. If there is no literal r to the right of the selected literal q in thei
input, the clauses in the output set have no selected literal.

The result of adding the hypotheses h , ..., h to the clause {... p [q] r ...} is the clause {... p @noth ...1 n 1
@noth [q] r ...}.n

The result of splicing the clause segments seg , ..., seg in place of the selected literal in {... p [q] r ...} is the1 n
set consisting exactly of the clauses {... p} seg {[r] ...}, where 1@LTEi@LTEn. If there is no literal r toi
the right of the selected literal q in the input, the clauses in the output set have no selected literal.

We now define the heuristic for controlling the introduction of derived equalities and the way we handle the
hypotheses generated by the derivation.

The heuristics for equality introduction for two terms t and t’ is the condition that the type set of both t and
t’ contains NUMBERP and that no clause in the ancestry of the clause being simplified is a "result of adding the

6equation of t and t’" as defined below.

The result of introducing into a clause cl the equality between t and t’ derived from two polynomials poly1
and poly is the union of S and S defined below. Let hyps be the result of unioning together the hyps fields of2 1 2
the two polynomials and then adding the term (NUMBERP t) (unless the type set of t is {NUMBERP}) and the
term (NUMBERP t’) (unless the type set of t’ is {NUMBERP}). S is the singleton set containing the result of1
adding the hypothesis t=t’ to the result of adding the hypotheses hyps to cl. S is the result of splitting cl on2
hyps. We say every clause in S and S is a result of adding the equation of t and t’.1 2

To sweep a clause cl, {... p [q] r ...}, construct a set of clauses as follows. If there is no selected literal,
return {cl}. Otherwise, let TA be the type alist obtained by assuming false every literal in cl except the selected
literal, q. Let LITS-THAT-MAY-BE-ASSUMED-FALSE and HEURISTIC-TA be NIL. Let LITS-TO-BE-
IGNORED-BY-LINEAR be the list containing q and every literal to its left in cl, that "rewrote to F" as defined
below. Push empty frames onto both the hyps stack and the lemma stack. Let q’ be the result of rewriting q. If

6Yes, every clause processed by the theorem prover comes with a complete history of its derivation, including its parent and the
operations that produced it.
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7q’ is F, we say q rewrote to F. Pop and discard the top frame of the lemma stack. Pop the top frame of the
hyps stack and let hyps be the set of terms in that frame.

Let segs be the set of clause segments obtained by normalizing the IFs in q’ and splitting out each branch, as
shown on page 124 of [4]. For example, if q’ is (G (IF a b c)) then we obtain two clause segments, {@nota (G
b)} and {a (G c)}. The final answer is obtained by recursively sweeping each clause in the union of S and S1 2
(defined below) and unioning together the results. S is the result of splicing segs in place of the selected literal1
in the clause obtained by adding hyps to cl. S is the result of splitting cl on hyps.2

To simplify a clause, cl, construct a set of clauses as follows. Select the first literal of cl as the current
literal. Let DB be the polynomial data base for cl. If there is an impossible polynomial, poly, in DB, return the
result of splitting cl on the hypotheses of poly. Otherwise, let TA be the type alist obtained by assuming all
literals of cl false. If there is an impossible polynomial, poly, in the result of augmenting DB with linear rules
for every key multiplicand in DB, return the result of splitting cl on the hypotheses of poly. If there are two
polynomials in DB that are mates on some term t with conglomerated term t’ and the heuristics for equality
introduction are satisfied, return the result of introducing into cl the equality between t and t’ derived from the
two polynomials. Otherwise, sweep cl and return the result.

7Actually, the names in that frame are accumulated and eventually printed as part of a description of the proof. In addition, they are used
to build a dependency graph when the system’s library is updated at the end of successful proofs.
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9. Efficiency

The incorporation of the linear procedure sketched above has dramatically improved the performance of our
theorem prover on arithmetic problems. For example, compared to the theorem prover described in [4] the
system spends 40% less time processing the theorems and definitions in Appendix A of [4]. Furthermore, we
have been able to eliminate the need for the user to state explicitly linear facts. Thus, our original objective was
achieved. Among the theorems proved by the latest version of the theorem prover are the invertibility of the
Rivest, Shamir, and Adleman public key encryption algorithm [7], Wilson’s theorem [14], Gauss’ law of

8quadratic reciprocity and the Church-Rosser theorem [15]. All of these proofs involved a substantial amount
of linear arithmetic reasoning.

We now turn to our observation that theoretical efficiency is not a good measure of the utility of a linear
procedure in a larger system. Let us reconsider our decision to use the simple "cross-multiply and add"
algorithm instead of more efficient ones. Might our handling of arithmetic be sped up by the use of another
propagation algorithm? The answer is no; an insignificant portion of the time is devoted to the problem of
propagating polynomials through the data base. Consider what else must be done. Terms must be linearized,
the key multiplicands in the data base determined, interesting lemmas must be selected and instantiated (and
their hypotheses must be relieved by nonarithmetic reasoning) with due caution for avoiding traps like "pumps,"
the lemmas, literals, and hypotheses supporting the derivation of each inequality must be recorded and
maintained, one must avoid biting one’s own tail, one must be able to "pop" or "undo" the effect of pushing an
inequality and all of the linear rules it introduced, and when a linear contradiction is found one must handle the
additional cases raised by the particular contradiction found.

Consider the MS proof sketched above. Of the total time spent in arithmetic reasoning in the second phase
of the proof (5.8 seconds) only 1.8% (0.119 seconds) is spent propagating polynomials. The rest is spent taking
care of the issues listed above. Thus, the availability of an instantaneous oracle for linear arithmetic problems
would speed up the MS proof by an insignificant amount.

Perhaps more realistic data is that obtained during the proof of the verification conditions for the
FORTRAN version of our fast string searching algorithm. We regard this set of 53 lemmas and verification
conditions to be quite representative of the verification of practical programs. The verification conditions
establish that the preprocessor correctly sets up a global COMMON array and that the search algorithm
correctly computes the location of the first occurrence of the pattern in the text, if there is an occurrence, or else
correctly announces that no occurrence exists. Furthermore, the vcs establish that there are no array bounds
violations, arithmetic overflows, or other run time errors, and that both subroutines terminate. To prove these
vcs the system must first establish several important lemmas about strings and string searching. These lemmas
are proved inductively from the definitions of such concepts as "a string over a finite alphabet," "leftmost
occurrence" and our DELTA1 function. The definitions themselves are proved satisfiable by the system before
they are admitted. The admission of the definitions, proofs of the lemmas, and proofs of the vcs all require both
arithmetic and nonarithmetic reasoning, as is common in the verification of programs that compute
nonarithmetic functions on arrays and tables (e.g., searching, sorting, hashing).

The total time taken is 1417 cpu seconds (23.6 cpu minutes). We push terms into the polynomial data base
2637 times. Relatively few linear rules are available for instantiation. Only once in every six calls does the
augmentation procedure find a lemma that is judged to be relevant to the data base. (Thus, one can infer that
not an inordinate amount of time is spent pursuing instantiations.) The total time consumed while pushing
terms into the data base is 357 cpu seconds, 25% of the total proof time. But only 38.5 seconds is spent pushing
polynomials. That is, in this fairly representative verification problem, an instantaneous oracle for linear

8David M. Russinoff led the theorem prover to Gauss’ law.
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inequalities would reduce the time in arithmetic reasoning by 10.7% and would reduce the time for the overall
proof by only 2.7%.

One should not get the idea that the linear procedure is not doing anything for us. As we have already said,
the presence of built-in arithmetic speeds up the theorem prover dramatically and makes the system far more
rugged when applied to arithmetic problems. But the timing difference between the simple algorithm and
theoretically more efficient ones is insignificant. Furthermore, it is not necessarily the case that a more efficient
propagation algorithm would make the interface run faster. In particular, if the faster algorithm used a more
complicated data structure for the data base and required a destructive push operation, it is probably the case
that the interface would spend more time than it does now in such activities as popping the data base and
exploring it for the key multiplicands.
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10. Conclusion

We have made and documented three observations: linear arithmetic is inadequate for the arithmetic needs
of program verification, integrating a linear arithmetic procedure into a theorem prover for a richer theory is
surprisingly difficult, and the theoretical efficiency of a linear arithmetic procedure is a poor measure of its
utility to a larger system.

We believe these same observations can be made about decision procedures in general. Let us quickly
review our observations while considering decision procedures.

Decidable theories are inadequate for the specification of most programs. The situation is improved
somewhat by the work of Oppen and Nelson [13] which shows how one can construct a system of cooperating
decision procedures for disjoint theories. But in our experience most theories of use to program verification are
not disjoint. For example, the function LEN connects the theory of lists to that of the naturals and DELTA1
connects character strings to naturals.

But what makes it hardest to apply the work on decision procedures to program verification is the presence
of user defined functions. DELTA1 is one example of a function that cannot be anticipated by the designer of
the decision procedure. Other examples we have seen recently are: "the number of times X occurs in Y," "the
number of processors that voted for X," and "the length of the noncircular path defined by tracing the non-0
indices stored in the array A starting at location I." Such functions are introduced not by the designer of the
theorem prover but by the user when he is confronted with the need to specify a given program. Since decision
procedures for these extended theories are not generally available, one must have more powerful proof
techniques or be forced to assume the more doubtful conjectures behind a program’s correctness.

But decidable theories are common fragments of the theories used in the specification of programs. It is
thus useful to integrate decision procedures with the more powerful methods. A natural goal is to make it
unnecessary for the more powerful system to derive from explicit axioms and lemmas the theorems of the
decidable theory. To achieve such integration is very difficult because one must identify each use to which the
heuristic theorem prover puts axioms and lemmas and make the decision procedure serve in each of those roles.

Furthermore, the black box nature of the decision procedure is frequently destroyed by the need to integrate
it. The integration forces into the theorem prover much knowledge of the inner workings of the procedure and
forces into the procedure many features that are unnecessary when the problem is considered in isolation. Thus
it is not possible to substitute one decision procedure for another nor can the selection (much less the
implementation) of the original procedure be entirely independent of the needs of the larger system.

Finally, the time spent in the interface between the heuristic theorem prover and the decision procedure may
dominate that spent in the decision procedure itself. Since efficiency in the decision procedure may not gain
much overall, it is often not worth the effort to select more efficient procedures because of the complicated data
structures and inflexible control strategies they employ to gain efficiency.

When sufficiently powerful theorem provers for program verification are finally produced they will
undoubtedly contain many integrated decision procedures. But despite the fact that work on decision
procedures is elegant, easily published, mathematically pleasing, and demands rather limited computational
resources, the usefulness of that work to program verification is not easily evaluated. The difference between a
black box and an integrated decision procedure is a lot of work. It is probably the case that much hard work on
any given black box will be scrapped when the box is torn apart and reassembled inside a larger system.
Indeed, we believe that the work on many procedures is simply irrelevant to the goal of constructing useful
mechanical theorem provers since the use of a faster procedure will not necessarily speed up the overall system.
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We believe that the development of useful decision procedures for program verification must take into
consideration the problems of connecting those procedures to more powerful theorem provers.
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