A MECHANICAL PROOF OF THE
CHURCH-ROSSER THEOREM

N. Shankar

Technical Report 45 March 1985

Institute for Computing Science
2100 Main Building
The University of Texas at Austin
Austin, Texas 78712
(512) 471-1901

The research reported here was supported by National Science Foundation Grant DCR 8202943 and by the
Science and Engineering Research Council of United Kingdom

Abstract

This paper presents the highlights of a formalization and proof of the Church-Rosser theorem that was
carried out with the Boyer-Moore theorem prover. The Church-Rosser theorem is a celebrated
metamathematical result on the Lambda Calculus. It is aso of historical interest since there was a gap of more
than thirty years between the statement of the theorem and the construction of a widely accepted proof for it.
The proof presented in this paper is based on that of Tait and Martin-Lof. The mechanical proof illustrates the
effective use of the Boyer-Moore theorem prover in proof-checking difficult metamathematical proofs.

By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced
problems, and in effect increases the mental power of the race.

A. N. Whitehead [whitehead]

1. Introduction

The use of computer programs for theorem proving, program verification and proof-checking has been
under criticism from various quarters. Most critics have based their comments on misgivings that are grounded
in their philosophical attitudes, rather than on any actual experience using such programs. By the same token,
proponents of automated theorem proving and program verification have mainly been either users or builders of
such systems and can therefore hardly claim objectivity. The purpose of this paper is neither to join in the
criticisms nor to respond to them. Rather it is to demonstrate that these computational aids (such as the
Boyer-Moore theorem prover) when effectively employed, can be of considerable value in the study and use of
formal logical reasoning. They can be used to construct, examine and understand proofs with much greater
clarity, rigor and detail than would have been feasible without them.

This paper presents the results of a successful application of the Boyer-Moore theorem prover [boyer] to the
proof of the Church-Rosser theorem [church-rosser], a deep metamathematical result on the Lambda Calculus
[lambda]. The paper outlines the formalization of this theorem in the Boyer-Moore logic and describes the
means by which the theorem prover was led to the proof. In the conclusions, we present some observations
regarding the importance of notation in the proof and the role of a high-level automatic proof-checker in the
construction and verification of the proof. The paper is self-contained and no familiarity with the Boyer-Moore
theorem prover or Lambda Calculus is assumed.

The Lambda Calculus (or A-calculus) was introduced by Church [barendregt, lambda] in order to study
functions as rules of computation rather than as graphs of argument-value pairs. It was hoped that A-calculus
would provide an alternative foundation for logic and mathematics. This aim has remained unfulfilled due to
the appearance of contradictions when A-calculus was extended with logical notions. Lambda calculus has
neverthel ess been a fruitful medium for the study of functions and computations. The programming language in
which the mechanical proof was formalized, a variant of pure-Lisp [mccarthy], was one of the first languages
whose design was influenced by A-calculus.

The Church-Rosser theorem [church-rosser] implies the consistency of A-calculus. The theorem is of great
significance in the theory and implementation of programming languages. The history behind the theorem and
its proofs is also very interesting since it took many attempts and over thirty years to construct a plausible and
widely accepted proof of the Church-Rosser theorem. To paraphrase Rosser [rosser]:

The original proof of CRT [the Church-Rosser theorem] was fairly long and very complicated. ... Newman
generalized the universe of discourse . .. He proved aresult similar to CRT by topological arguments. Curry . . .
generalized the Newman result . . . Unfortunately, it turned out that neither the Newman result nor the Curry
generalization entailed CRT. ... Thiswasdiscovered by Schroer ... Schroer derived till further generalizations
of the Newman and Curry results, which indeed do entail CRT. . .. Schroer 1965 is 627 typed pages . . . Chapter
4 of Curry and Feys 1958 is devoted to a proof of CRT for A-calculus and . . . is not recommended for light
reading. ... Meanwhile a genuine simplification of the proof of CRT had come in sight. See Martin-Lof 1972.
It is agreed that Martin-Lof got some of his ideas from lectures by W. Tait. An exposition of the proof of CRT
according to Tait and Martin-Lof appearsin Appendix | of Hindley, Lercher and Seldin 1972.

The mechanical proof presented in this paper is based on the Tait/Martin-Lof proof. Since the proof was a
relatively recent one and involved considerable combinatorial case-analysis, it made an interesting candidate for
mechanical verification. A part of the proof involves the use of a representation of A-calculus terms due to
de Bruijn [debruijn]. The mechanization of this proof also illustrates the efficacy of the Boyer-Moore logic and
the accompanying theorem-proving heuristics in stating and proving difficult and deep theorems of a

metamathematical nature.

The Boyer-Moore theorem prover [boyer] is an interactive system for the verification of the properties of
pure-Lisp programs. A distinguishing feature of the theorem prover is its powerful use of mathematical
induction. The theorem prover has been used to prove many important theorems in number theory, recursive
function theory, program verification, etc. It isonly recently that the theorem prover has been applied to proofs
in the metamathematics of formal systems[metamathematics]. Mechanical proofs in metamathematics have
applications in proof-checking and program verification.

The rest of this paper is organized as follows. Section 2 is a brief introduction to A-calculus. In Section 3,
the Church-Rosser theorem is stated and its proof isinformally sketched. In both Sections 2 and 3, the standard
notation for A-calculus will be used. Section 4 is a brief introduction to the Boyer-Moore logic in which the
mechanical proof was formalized. Section 5 describes the formalization of A-calculus and a statement of the
Church-Rosser theorem in the Boyer-Moore logic. The same formalization in terms of the de Bruijn
representation for A-calculustermsis carried out in Section 6. Section 7 covers the highlights of the mechanical
proof. Init, the key lemmas are stated without proof. The machine-generated proofs of some of the key
lemmas are presented in Appendix A. In Section 8, conclusions are drawn based on the mechanical proof.
Appendix B isacomplete list of events (definitions and lemmas) in the proof.

2. An Introduction to Lambda Calculus

This section presents the A-calculus notions needed to understand the proof. The formalization of
A-calculus within the Boyer-Moore logic will be presented in Section 5. A clear exposition of A-calculus and
the related topic of combinatory logic can be found in the book Introduction to Combinatory Logic by Hindley,
Lercher and Seldin[hindley]. This book also contains a presentation of the proof of the Church-Rosser
theorem. Barendregt’s The Lambda Calculus [barendregt] is a comprehensive volume on the subject.

2.1 Terms

The forma system of Lambda Calculus consists of terms (or A-terms) and certain rules for transforming
terms. Intuitively, terms in A-calculus denote one-argument functions. Terms are constructed starting from
constants and variables (collectively labelled atoms). Some confusion might arise from the use of the words
‘constant’ and ‘variable’, but unless otherwise mentioned, these refer to A-calculus constants and variables.
Constants do not play any role in the proof. The syntactic variables a, b, ¢, will be used to indicate constants.
A term that is avariable represents an arbitrary one-argument function. The syntactic variablesx, y, z, etc., will
be used to represent variables. The actual form of the variables will not be specified except to say that they
form a denumerable set and are distinguishable from the constants. The bold-face uppercase letters A, B, C,
etc., will be used as syntactic variables for terms. There are two ways of forming new terms. The first of these
istermed A-abstraction. If M isaterm and x is avariable, then the term (Ax M) represents the A-abstraction of
M with respect to X. This means that (Ax M) is now a one-argument function with a dummy argument x. The
second way of forming termsis called an application. The term (X Y represents result of applying the function
X to the argument Y. The argument to a function and the resulting value can both be functions. The process of
evaluating a function application will be discussed later.

Thus, the notion of a term in A-calculus has been defined inductively by showing how terms can be
constructed starting from atoms (the base case), by the operations of A-abstraction and application (the inductive
cases). Thisinductive definition provides a corresponding recursion which will be used extensively. These are
definitions where the base case is defined for atoms; the recursive call for a term (Ax M) is on M; and the
recursive callsfor aterm (M N) are on theterms M and N. The phrase, ‘‘recursion on the structure of aterm’’,

isused to identify arecursion of thiskind. Correspondingly, many proofs involve induction on the structure of
aterm.

Examples of terms:

a, (x a), (Ax a),
(Ax x), (Axy), (Ax (ax)),
((AX (X X)) (AX (X X)), (A Ay y) u) v),
(Ax Ay Az (x (y 2))))), (Ax Ay (Az ((x 2)(y 2))))).

The expression X #=#Y can beread as ‘' X isidentical to Y''. In situations where new syntactic variables
are introduced in the right-hand side, ‘#=# is usually read as ‘‘of the form’’, e.g., X #=# (Ax M), isread as ‘' X
isof theform (Ax M)".

A few relations on terms need to be defined before the transformations on terms can be described. X is said
to be a subterm of Y if either X #=#Y; or Y is of the form (Ax M) and X is a subterm of M; or if Y is of the
form (M N) and X is a subterm of either M or N.

Examples:

aisasubterm of (Ax a),
(Ax x) isasubterm of (x (Ax x)), and
(Ax (x X)) isasubterm of ((Ax (X X)) (AX (X X))).

The phrase, X occursin Y, is an alternate way of saying X is a subterm of Y. An occurrence of X in'Y
refers to a specific location in Y where X occurs. The term (Ax (X X)) has two occurrences in the term

((Ax (xx)) (Ax (x x)))-

If (Ax M) is a subterm of aterm Y, then al the occurrences of x in M are said to be bound in Y. Those
variable occurrences which are not bound in Y are said to befreein Y. For example, y isfree but x isbound in
the term (Ax (x y)). These notions will now be used to define the important operation of substitution.

2.2 Substitution

Substitution is the operation of replacing all the free occurrences of a variable in a term by another term.
The result of substituting X for the variable x in Y will be denoted by [X/x]Y (to beread as‘*X for x in Y’).
To ensure that such a substitution has the intended meaning, no free variable occurrence in X can be alowed to
become bound in [X/x]Y. If this holds of the given X, X, and Y, then X is said to be free for x in Y.
Substitution is defined recursively as follows:

[XIX]x #=# X
[XIX]y #=t#ty, if x #=3t
[XIX]a#=#a

[XIX](Ay M) #=# (Ay M), if x #=#y, and
#=# (Ay [X/X]M), otherwise.

[X/XI(M N) #=# ([X/XIM [X/X]N).

In the remainder of this paper, whenever the expression [X/x]Y is used, it will be assumed that X is free for
x in'Y, unless otherwise specified.

Examples: [a/X](Ax X) #=# (AX X)
[AAX (X X))/X](x x) #=# (A (X X)) (AX (X X)))
[AX YIX](Ay X) #=# (A\y (Ax Y)) (Note: (Axy) isnot freefor X in (Ay X)).

2.3 a-stepsand B-steps

There are two rulesin A-calculus for transforming terms. Both the rules will be defined as relations between
a term and its transformed version. The first rule permits the renaming of bound variables and is called an
a-step. X goestoY inan a-step (denoted by ‘X #-#Y’) iffl X and Y areidentical except that the names used
to denote the occurrences of variables bound by a A in X and the corresponding A in Y might uniformly differ.
This vague definition of an a-step will be made precise in Section 5.

Examples: ((AxX) 2) #-# (AyY) 2)
A (x Ay (xy)) #-# Ay (y (Ax (y X))
(A Ay (xy))) Az (y) §-# ((Ax(Az(x2))) Az (y 2)))

a-steps can be used to rename bound variablesin aterm Y to ensure that a given term X is free for x in the
transformed version of Y.

The evaluation of terms takes place through a rule known as a (B-step. It is similar to the operation of
replacing dummy parameters with actual parameters in a sub-program. A subterm of the form ((Ax M) N) is
caled aredex. A redex ((Ax M) N) is reduced by means of B-reduction to the term that is got by replacing all
the free occurrences of x in M by N, i.e., the term [N/X]M. A term X goesto Y in a B-step iff Y is got by
replacing some non-overlapping redexesin X by their 3-reduced forms. Two subterms of aterm overlap if they
both contain the same occurrence of at least one subterm. So, the B-reductions in a B-step must be such that
they do not affect one another. Therelation X goesto Y in a3-step, will be denoted by ‘X ﬁtq# Y'.

Examples: 1. ((Ax (ax)) b) #-# (ab)
2.(((xy) @) ((Ax (xx)) b)) f—#(y (b b))
3 (Ax (x X)) (Ax (x X)) ff—# ((Ax (x X)) (AX (x X)))
4 (Ay () y)) ((Ax (x X)) @) f#-# ((AxX) (A (x X)) a))
5. (Ay (Axx)y)) ((Ax (xx)) @) f-# ((Ayy) (aa)

Note that in the examples 4 and 5 above, the same term is transformed to two different terms by the two
B-steps. These two examples will be referred to in the next section.

A term X reduces to aterm Y iff Y is obtained from X by a finite (possibly empty) series of a-steps or
B-steps. This means either X #=#Y or there must existterms Zy, . . ., Z, suchthat X #=#Z, Y #=#Z , and for
al i (0@z< >i<n), either Z, §~# Z,, 4 or Z; ﬁ_,# Zi,,. The relation X reduces to Y is denoted simply as
X##Y.

In summary, A-calculus consists of terms and transformations on terms. Terms are either atoms,
A-abstractions or applications. Substitution is the operation of replacing all the occurrences of a certain free
variable in one term by another term. There are two rules for transforming terms. a-steps and (3-steps. A
seguence of a-steps and B-steps can be used to reduce one term to another. These basic A-calculus notions will
be used in the next section to state the Church-Rosser theorem and to sketch a proof of it.

1iff is an abbreviation for if and only if.

3. A Proof-sketch of the Church-Rosser Theorem

In this section, the Church-Rosser theorem will be stated and an outline of the proof will be given. The
outline of the proof given in this section also applies to the mechanical proof, though the details of the proof
differ.

3.1 The Statement

Given the definitions stated in the previous section, the Church-Rosser theorem [church-rosser] can be
stated as follows:

IfX#-#Y and X #-#Z, thenthereexistsaW suchthat Y #-#W and Z #-#W.

The theorem is depicted pictorially in Figure DIAMOND. It can therefore be said to assert the Diamond
Property of the relation ‘# - #'.

Figurel: The Church-Rosser theorem

The remainder of this section provides a brief outline of the key steps in the proof of the Church-Rosser
theorem. The notion of one relation being the transitive closure of another relation plays an important role in
the proof. A relation (X RY) is the transitive closure of another relation (U SW) iff the following holds of R
and S

OX,Y [XRY
if and only if for somen
(Zg - - Zy (X #=#Zy and
Y ##Z and
Hi(O##i<n) Z, SZ;,,)]

The proof of the Church-Rosser theorem consists of the following steps:
1. Showing that the transitive closure of a relation with the Diamond property has the Diamond
property.
2. Defining the relation X walksto Y, such that therelation X #-# Y isitstransitive closure.

3. Proving that the walks to relation has the Diamond property.

Clearly, if we can carry out the above three steps, we have a proof of the Diamond property of the relation
‘#-#, and hence the Church-Rosser theorem.

3.2 The Diamond Property over Transitive Closures

A diagram is employed to establish step 1. Though this diagram is given in terms of the relations X reduces
toY, and X walksto Y, no property of these relationsis used in the justification save for the fact that the former
isthetransitive closure of the latter. The relation X walksto Y isrepresented by ‘X #-#Y’. Sincetherelation
X #-# Y is the transitive closure of X #-# Y, it can be represented by a series of walks as
XHHRY H#Y HoH. . ##Y #-#Y ##Y. Figure CLOSURE shows how the diamond for relation
X #=#Y can be constructed from the diamonds for the relation X #-#Y. Giventhat X #-#Y and X #-# Z,
the figure shows how aW such that Y #-# W and Z # - # W can be constructed by repeatedly constructing the
smaller diamonds along arow to derive W, W, and so on.

Figure2: The Diamond property over transitive closures

3.3 The Definition of Walk

The second step in the proof is to define the notion of awalk or the relation X #-# Y. This relation must
have the Diamond property and the relation X #- # Y must be definable asits transitive closure. Therelation X
goesto Y inasingle a or B step has the second property but does not possess the Diamond property. The
appropriate counter-example is given below.

Counter-example:

It can be constructed using only B-steps. Consider the examples 4 and 5 that were used to illustrate 3-steps.
Let X be ((Ay (AX X) ¥)) ((Ax (x X)) &), and Y be ((Ax x) ((Ax (x X)) &), and let Z be ((Ay y) (a @)). Asthe
examples show, X g¥#and X ﬁZ#The task isto construct a W such that Y ﬁtw#and z gw& Clearly, W is not
one of Y or Z. The only other possibility is (a @). Z goes to (a a) in a single B-step, but Y needs two
overlapping 3-reductions. Overlapping B-reductions are not permitted in a 3-step.

One poaint to notice in the above counter-example is that though Y could only go to (a a) by two overlapping
B-reductions, they were such that the inner of these two reductions could be performed first. This example
suggests working with aless restricted relation than a 3-step in which overlapping -reductions were permitted,
provided the inner redex is reduced before the outer one. Note that when two subterms overlap, one must
always be the subterm of the other. Therefore it makes sense to talk of the reduction on an inner redex and an
outer one. In any case, this less restricted form of a 3-step turns out to work. This new step is called a walk.
Therest of the proof makes the definition of awalk precise, and demonstrates that it has the Diamond property.

For reasons of brevity, a-steps will beignored in the remainder of the discussion and it will be assumed that
for any redex ((Ax M) N), N isawaysfreefor x in M.

At this point, the reader is urged to make an attempt at defining a walk and showing that it has the Diamond
property.

Therelation X #-#Y (X walksto Y) is defined recursively asfollows:
If X isanatom, then X #-#Y iff Y #=# X.

If X #=# (AX M), then X #- # Y iff Y #=# (\Ax M) and M #-# M.

If X #=# (M N), then X #-.#Y iff either:
LY #=#(My Ny), M #-#M,, and N #-#N,, or

2.M #=# (A A), My #=# (X AY), M #o# My, N#-# Ny, and Y #=# [Ny /XA).

The above definition employs a recursion on the structure of the term X. Clearly, a single -step can be
represented as awalk. It isalso the case that any walk can be represented as a series of 3-steps. Therefore, the
relation X reducesto Y forms the transitive closure of the relation X walksto Y. The above definition of awalk
plays an important role in the proof of the Diamond property of walks.

3.4 The Diamond Property of Walks

All that is needed now to complete this sketch of the proof of the Church-Rosser theorem is a proof of the
Diamond property of walks. This property could be stated as:

If X#-#Y and X #-#Z, then thereexistsaW suchthat Y #-#W and Z # - #W.

The proof is by induction on the structure of the term X. Three cases arise and in each case, the appropriate
W is constructed as follows:

Case 1. [X isan atom]

If X isan atom, then by the definition of awalk, X #=#Y #=#Z. Then, let W be X itself. By the definition
of awalk, Y #-#W and Z #-#W.

Case 2: [X #=# (Ax M)]

By the definition of awalk, there must exist My, and M, such that Y #=# (Ax M) and Z #=# (AX M), and
M#-#My @
M #-#M,. 2

Applying the Induction Hypothesis to M given (1) and (2), yields M,,, such that M, #-# M,, and
M, #-#M,,. Let W be (Ax M,,). Then, by the definition of awalk, both Y and Z walk to W.

Case 3: [X #=# (M N)]

This splits up into 5 subcases depending on whether or not X is a redex, and if it is, whether or not that
redex is 3-reduced in the walk. The subcases are as follows:
1. X isnot aredex.

2. X isaredex andisonly B-reduced inthewalk to Y.

3. X isaredex and is only B-reduced inthewalk to Z.

4. X isaredex and is 3-reduced in both thewalk to Y and to Z.
5. X isaredex but isnot 3-reduced inthewalk to Y orto Z.

The subcases 1 and 5 turn out to have the same proof. Subcases 2 and 3 are symmetrical and so the proof of
subcase 3 will be omitted.

Subcases 1, 5: [X isnot aredex or is aredex which is not B-reduced in thewalksto Y and Z.]

By the definition of a walk, there must exist My, Ny, M,, N, such that Y ## (My Ny) and
Z##M,N;),and
M#-#My; N#-#N, (3)
M#-#M,, N#-#N,. (4)
Applying the Induction Hypothesis to both M and N given (3) and (4), we derive M,,, and N,,, such that
My #-#My; My, #o#M,,
©)
Ny #-#Ny; Ny #-#N,. (6)

Now if we let W be (M, Ny, we can conclude from (5), (6) and the definition of awalk that both Y and Z
walk toW.

The remaining subcases employ alemma called the Substitutivity of Walks which asserts that if A, and Ny,
wak to Ay, and N,, respectively, then the result of substituting Ny for x in Ay, walks to the result of
substituting Ny, for x in A,,,. Thiswill be stated here without proof as:

Lemma: If Ay #-#A,, and Ny #-# Ny, then [Ny /XJA #-# [Ny /XAy -
Subcase 2: [X isaredex which isonly reduced in the walk to Y]

Since X isaredex, let X #=# ((Ax A) N). From the definition of awalk appliedto X #-#Y and X #-# Z,
there must exist Ay, Ny, A, N, such that Y #=# [Ny /x]A and Z #=# ((Ax A;) N), and
A#HH#Ay, N#-#N (7
A#HHA, N#SH#N,. (8)

Therefore, by the Induction Hypothesis applied to A and N and given (7) and (8), there must exist A,,, and
N,y such that
Ay #-HAy A #HSHA, (9
Ny #-#N,,, Ny #-#N,. (10)

Let W be [N,\/x]A,y. It canbeshownthat Y (of the form [Ny /x]A,) walksto W (of the form [N,,/X]A\y),
from (9), (10) and Substitutivity of Walks lemma. Showing that Z (of the form ((Ax A;) N,)) walks to W
involves (9), (10) and the definition of awalk.

Subcase 4: [X isaredex and isreduced in the walksto both Y and Z]

This subcase is very similar to the previous one. Asbefore, let X #=# ((Ax A) N). The definition of awalk
yields (7) and (8) as before but with Z #=# [N,/x]A,. The same Induction Hypothesis applied to A and N leads
to (9) and (10) respectively. The argument to show that Y #-# W is the same as in the previous subcase.
Showing that Z (of the form [N,/x]A,) walks to W (of the form [N,,/x]A,\) employs (9), (10) and the
Substitutivity of Walks lemma.

This completes the proof of the Diamond property of walks. The proof of the Substitutivity of Walks lemma
proceeds by a similar induction on the structure of the term A,. This proof requires the property of substitution
which permits us to exchange the order of two successive substitutions. The lemma bel ow asserts that the result

10

of substituting aterm N for x in [Z/y]M, is the same as the result of substituting [N/x]Z for y in [N/x]M, where
x isdifferent fromy.

Lemma: [N/X][ZIyIM @eger
for theshell isthe 1-place function NLAMBDAP, and (NLAMBDAP (NLAMBDA X Y)) returnsT.

Applications are represented by another shell in which the constructor isthe 2-place function NCOVB.

Examples of terms:
Term Forma Representation

1 (A (xx)(Ax (xx))) (NCOVB (NLAVBDA 1 (NCOMB 1 1))
(NLAVBDA 1 (NCOMB 1 1)))

2. (A (ax)) (NLAVBDA 0 (NCOMB ' A 0))

3. (AXAY (Az((x2)(y2))) (NLAWVBDA 1
(NLAMBDA 2 (NLAMBDA 3
(NCOvB (NCOwvB 1 3)
(NCOVB 2 3)))))

Having described the manner in which termsarerepresented, we can now examinethe function that ch
9. Definition.
(NTERVP X)
(1 F (NLAVBDAP X)
(NTERMP (NBODY X))
(1 F (NCOMBP X)
(AND (NTERMVP (NLEFT X))
(NTERMP (NRI GHT X)))
(OR (NUMBERP X) (LI TATOM X))))

The next step isto define the operation of substitution. Thefunction NSUBST takesthree arguments X,
4. Definition.
(NSUBST X Y N)
(I'F (NLAMBDAP X)
(IF (EQUAL (NBIND X) N)
X

(NLAVBDA (NBI ND X)
(NSUBST (NBODY X) Y N)))
(1 F (NCOVBP X)
(NCOMVB (NSUBST (NLEFT X) Y N)
(NSUBST (NRIGHT X) Y N))

(1 F (NUVBERP X)

(IF (EQUAL X N) Y X)

X)))

Examples:

1. [a/X](Ax X) (NSUBST (NLAVBDA 1 1) 'A 1)

@z< > =
(Ax x) (NLAVBDA 1 1)

2. [OX (X X)IX](x X) (NSUBST (NCOVB 1 1)

(NLAMBDA 1 (NCovB 1 1)) 1)

@z<

((AX (X X))(AX (x x)))
(NCOVB (NLAVBDA 1 (NCOMVB 1 1))

(NLAMVBDA 1 (NCOMB 1 1)))

3

(X Y)XIOy X)
(NSUBST (NLAVBDA 2 1) (NLAVBDA 1 2) 1)

@z< >

(Ay (Axy))
(NLAVBDA 2 (NLAMBDA 1 2))
(Note: thefreevariabley iscaptured in this substitution.)

11

Thefunction NOT- FREE- | Nused as(NOT- FREE- I N X Y) checksif the variable X doesnot occur free

The next definition provides a formal definition of an a-step. The function ALPHA- EQUAL checksif tw

7. Definition.
(I NDEX N LI ST)

(IF (LI STP LIST)
(IF (EQUAL (CAR LIST) N)
1

(ADDL (INDEX N (CDR LIST))))
(ADDL N))

12

8. Definition.
(ALPHA- EQUAL A B X YY)

(I F (AND (NLAVBDAP A) (NLAVBDAP B))
(ALPHA- EQUAL (NBODY A)
(NBODY B)
(CONS (NBIND A) X)
(CONS (NBIND B) Y))
(I F (AND (NCOVBP A) (NCOVBP B))
(AND (ALPHA- EQUAL (NLEFT A) (NLEFT B) X V)
(ALPHA- EQUAL (NRI GHT A)
(NRI GHT B)
X'Y))
(I F (AND (NUVBERP A) (NUVBERP B))
(EQUAL (INDEX A X) (INDEX B Y))

(EQUAL A B))))

Examples:

1L ((Wxx)2) §-# ((Ayy) 2)
(ALPHA- EQUAL (NCOMB (NLAMBDA 1 1) 3)
(NCOVB (NLAMBDA 2 2) 3) N L NL)

2. (MX(XAy (xy)) g-# Ay (y Ax (¥ x))))
(ALPHA- EQUAL (NLAVBDA 1 (NCOVB 1 (NLAMBDA 2 (NCOMB 1 2))))
(NLAVBDA 2 (NCOVB 2 (NLAMBDA 1 (NCOMB 2 1))))
NIL NIL)

3. (MAy (xy) Az (y2)) §-# (A (Az(x2)) Az (y 2)))
(ALPHA- EQUAL (NCOVB (NLAMBDA 1 (NLAMVBDA 2 (NCOMB 1 2)))
(NLAVBDA 3 (NCOVB 2 3)))
(NCOVB (NLAMBDA 1 (NLAVBDA 3 (NCOMB 1 3)))
(NLAVBDA 3 (NCOVB 2 3)))
NIL NIL)

The next important definition capturesthereation A ﬁa# B. Thefunction NBETA- STEP takes two arg
10. Definition.
(NBETA- STEP A B)

(IF (EQUAL A B)
T
(1 F (NLAVBDAP A)
(AND (NLAVBDAP B)
(EQUAL (NBIND A) (NBIND B))
(NBETA- STEP (NBODY A) (NBODY B)))
(1 F (NCOVBP A)
(OR (AND (NLAVBDAP (NLEFT A))
(FREE- FOR (NBODY (NLEFT A))

(NRIGHT A))
(EQUAL B
(NSUBST (NBODY (NLEFT A))
(NRI GHT A)

(NBIND (NLEFT A)))))
(AND (NCOVBP B)
(NBETA- STEP (NLEFT A) (NLEFT B))
(NBETA- STEP (NRIGHT A) (NRIGHT B))))

F))

13

Examples:

1L ((\x(ax)b) f-# (ab)
(NBETA- STEP (NCOMB (NLAVBDA 1 (NCOVB ' A 1)) ' B)
(NCOMVB ' A ' B))

2. (A (Axx)y)) (Ax (xx)) @) #-# (AxX)((AX (x X)) &)
(NBETA- STEP (NCOVB (NLAMVBDA 2 (NCOMB (NLAMVBDA 1 1) 2))

(NCOVB (NLAMBDA 1 (NCOMB 1 1)) ' A))
(NCOVB (NLAVBDA 1 1) (NCOMB (NLAMVBDA 1 (NCOVB 1 1)) ' A)))

3. (A (xx)y)) (Ax (xx)) @) #-# ((Ayy) (aa))
(NBETA- STEP (NCOVB (NLAVBDA 2 (NCOMB (NLAMVBDA 1 1) 2))

(NCOVB (NLAMBDA 1 (NCOMB 1 1)) ' A))
(NCOVB (NLAMBDA 2 2) (NCOVB ' A ' A)))

Thelast definition isthat of areduction and is quite straightforward. The function NREDUCTI ON chec
11. Definition.
(NSTEP A B)

(OR (ALPHA-EQUAL A B NIL NIL)
(NBETA- STEP A B))

12. Definition.
(NREDUCTI ON A B LI ST)

(I'F (LISTP LIST)
(AND (NSTEP (CAR LI ST) B)
(NREDUCTI ON A (CAR LI ST) (CDR LIST)))
(NSTEP A B))

Finally, the statement of the Church-Rosser theorem expressed in terms of thisformalization would read

REDS-Y, REDS-Z, W (IMPLIES (AND (NTERVP X)
(NREDUCTI ON X Y LI ST1)
(NREDUCTI ON X Z LI ST2))
(AND (NREDUCTI ON Y W REDS-Y)
(NREDUCTI ON Z W REDS- 2)))

In English, if XreducestoYvialLl ST1,andtoZvialLl ST2, thenthereexist REDS-Y, REDS-Z, and
157. Theorem FI NALLY- CHURCH ROSSER (rewrite):
(1 MPLI ES (AND (NTERMP X)
(NREDUCTI ON X Y LI ST1)
(NREDUCTI ON X Z LI ST2))
(AND (NREDUCTI ON Y
(MAKE-N-W X Z Y LI ST2 LI ST1)
(NMAKE- REDUCTION X' Y Z LI ST1 LI ST2))
(NREDUCTI ON zZ
(MAKE-N-W X Z Y LI ST2 LI ST1)
(NVAKE- REDUCTI ON X Z Y LI ST2 LI ST1))))

Thus, the A-calculus described in Section 2 has been formalized in the Boyer-Moorelogic. The statement

14

4. TheFormalization in the de Bruijn Notation

In this section, the Lambda Calculus will be formally defined using a notation dueto de Bruijn and the
1. Discussion of the de Bruijn notation for A-terms.

2. Definition of B-reduction.
3. Definition of awalk.
4. Statement of the Diamond property for walks.

5. Statement of the Church-Rosser theorem.
4.1 ThedeBruijn Notation

Asmentioned earlier, a part of the mechanical proof employsa notation for A-calculustermsthat isdiffe

ThedeBruijn notation isdrastically different from the standard notation used in Sections2,3and 5. A f

Thede Bruijn notation used in this proof does away with namesfor variablesand tagsfor A whileretaini

Oneimportant difference between the standard notation and the de Bruijn notation isthat in thede Bru

Another important differenceisthat since variables do not have names in the de Bruijn notation, it make

Therepresentation of thesetermsin the Boyer-Moore logic isquite similar to that described in the previ

The second shell consists of a 1-place recognizer COVBP; a 2-place constructor COVB; and two 1-place

Variables arerepresented by the positive natural numbers1, 2, 3, etc. Theliteral atomsin the Boyer-Mo

Example:
Standard Notation de Bruijn notation
(Ax X) (LAVBDA 1)
(AX Ay Az (x (Y 2))))) (LAMBDA (LAMBDA
(LAVBDA (COMB 3 (COMB 2 1)))))
(A ((Ay (x (y 2))) (x 2))) (LAVBDA (COVB
(LAVBDA (COVB 2 (COVMB 1 3)))
(COVB 1 2)))

We can now examine the definition of the function which translates aterm in the standard notation to th

15

50. Definition.
(TRANSLATE X BOUNDS)

(1 F (NLAVBDAP X)
(LAVBDA (TRANSLATE (NBODY X)
(CONS (NBIND X) BOUNDS)))
(1 F (NCOVBP X)
(COMB (TRANSLATE (NLEFT X) BOUNDS)
(TRANSLATE (NRI GHT X) BOUNDS))
(I'F (NUVBERP X) (INDEX X BOUNDS) X)))

To get abetter grasp of the de Bruijn notation, let uswriteafew programsin pidgin pure-Lisp that man

BEEP wor ks by recursing down the structure of theterm X incrementing its counter by one, each timeit

(DEFN BEEP (X N)
(1'F (LAVBDAP X)
(BEEP (BODY X) (ADDL N))
(I1'F (COvBP X)
(AND (BEEP (LEFT X) N)
(BEEP (RIGHT X) N))
(I'F (LESSP N X)
"beep”

m)))

L et usexamine one other program which locatesthe occurrences of variablesin Y that are bound by the

(DEFN HOOT (X N)
(I F (LAVBDAP X)
(HOOT (BODY X) (ADDL N))
(1 F (COVBP X)
(AND (HOOT (LEFT X) N)
(HOOT (RIGHT X) N))
(IF (EQUAL X N)

“hoot "

7))

Thus (HOOT X 1) locates occurrences of the lowest freevariable in X, i.e., the one that would be bound

Both BEEP and HOOT recurse on the structure of termsand will be used as paradigmsin explaining so
4.2 (-Reduction

Thedefinition of B-reduction in this notation is substantially more complicated than the corresponding d
Asbefore, a subterm of the form (COVB (LAMBDA X) YY) islabelled aredex. A [B-reduction should

Thereason we need an appropriate transformation of Y isto ensurethat thefreevariablesin Ydonot b

The function BUMP displayed below isvery similar to the previously introduced function BEEP. It take
15. Definition.
(BUMP X N)
(1 F (LAVBDAP X)
(LAVBDA (BUMP (BODY X) (ADDL N)))
(I F (COVBP X)
(COMB (BUMP (LEFT X) N)
(BUMP (RIGHT X) N))
(IF (LESSP N X) (ADD1 X) X)))

Examples of Bump:

(BUMP (LAVBDA (LAMBDA (COMB 2 3))) 0) = (LAVBDA (LAVBDA (COVB 2 4)))
(BUVP (LAVBDA (LAMBDA (COMB 1 2))) 0) = (LAVBDA (LAVBDA (COVB 1 2)))
(BUVP (LAVBDA (COMB (LAMBDA 3)(COMB 3 1))) 1) = (LAVBDA (COVB (LAMVB

Now we can use the function BUVP to define B-reduction. (-reduction will be defined by means of a func
Thefreevariablesin the (LAMBDA X) part of theredex are affected because the LAMBDA in (LAM

The function SUBST combines features of the previously defined functions BEEP and HOOT. |t takest
16. Definition.
(SUBST X Y N)

(I F (LAVBDAP X)
(LAVBDA (SUBST (BODY X) (BUWP Y 0) (ADDL N)))
(I F (COVBP X)
(COMB (SUBST (LEFT X) Y N)
(SUBST (RIGHT X) Y N))
(1 F (NOT (ZEROP X))
(IF (EQUAL X N)
Y

(IF (LESSP N X) (SUBL X) X))
X)))

In the base case, Xiseither aconstant or avariable. Thetest (NOT (ZEROP X)) isT only if Xis aposi
If Xisof theform (LAMBDA M, then SUBST returns (LAMBDA ML), where ML istheresult of ther

The case when Xisof theform (COVB U V) turnsout to be quite simple. SUBST recurseson U, i.e,, (

17

Examples of Subst:
1. (SUBST 1 (LAMBDA 1) 1) = (LAMBDA 1)

2. (SUBST (LAVBDA (COVB 2 3)) (LAVBDA (COMB 1 2)) 1)
(LAVBDA (COVB (LAVBDA (COMB 1 3)) 2))

3. (SUBST (COMVB (LAMBDA (LAVBDA (COMB 1 (COVB 4 5))))
(COVB (LAVBDA 3) (LAVBDA 4)))
1 2
(COVB (LAVBDA (LAVBDA (COMB 1 (COVB 3 4))))
(COVB (LAVBDA 2) (LAVBDA 3)))

(SUBST X Y 1) denotestheresult of applying a 3-reduction to theredex (COVB (LAMBDA X) Y).
70. Theorem TRANSLATE- PRESERVES- REDUCTI ON (rewrite):
(1 MPLI ES (AND (NLAVBDAP X)
(FREE- FOR (NBODY X) V)
(NTERVP X)
(NTERMP Y))
(EQUAL (TRANSLATE (NSUBST (NBODY X) Y (NBIND X))
BOUNDS)
(SUBST (BODY (TRANSLATE X BOUNDS))
(TRANSLATE Y BOUNDS)

1))

Thiscompletesthe description of p-reduction. We can now use thisto describe the notion of a walk.
4.3 Definition of a Walk

In theinformal proof-sketch, a walk was described as a sequence of 3-reductions on theredexes of ater

Thefunction WALK below applies a walk-instruction Wio aterm Mto return the conclusion of thew
29. Definition.
(VALK W M

(I F (LAVBDAP M
(LAVBDA (VALK W (BODY M))
(IF (COVBP M
(I F (AND (EQUAL (COMVAND W ' REDUCE)
(LAVBDAP (LEFT M))
(SUBST (BODY (WALK (LEFT-1NSTRS W (LEFT M))
(WALK (RIGHT-INSTRS W (RIGHT M)
1)
(COMB (WALK (LEFT-1NSTRS W (LEFT M)
(WALK (RIGHT-INSTRS W (RIGHT M)))
M)

Thefunction WALK is defined by a recursion on the structure of the term M In the base case when M
1. Misaredex and Wcontainsa’ REDUCE in the command position, i.e., (COUWAND W .

2. Misaredex but * REDUCE does not occur in the command position of W
3. Misnot aredex.

18

Subcases 2 and 3 aredealt with identically. To determineif subcasel applies, twotestsaremade. The

The above notion of a walk can now be used to formally state the Diamond property for walksin the Boy

4.4 The Statement of the Diamond Property for Walks

The statement of the Diamond property from Section 2 was as follows:
If X#-#Y and X #-#Z, thenthereexistsaW suchthat Y #-#W and Z # - #W.

Thetask hereistorestatethe Diamond property using the function WALK instead of therelation X # - #

W W (EQUAL (WALK WL (WALK U M)
(WALK V2 (WALK V M)).

Since the Boyer-M oor e logic does not per mit the use of quantifiers, the existential quantifiersover WL an
41. Theorem MAIN (rewite):
(EQUAL (WALK (MAKE-WALK MU V) (WALK U M)
(WALK (MAKE-WALK MV U) (WALK V M))

Thedefinition of the function MAKE- WALK will be discussed in the next section. The statement of the
4.5 The Statement of the Church-Rosser Theorem

At thispoint, two assumptionswill be made. One, that any single 3-step can be represented asawalk.
42. Definition.
(REDUCE W M

(IF (LISTP W
(REDUCE (CDR W (WALK (CAR W M)
M

Given the assumptions made in the previous paragraph, the statement of the Church-Rosser theorem c

W, W (EQUAL (REDUCE WL (REDUCE V M)
(REDUCE W2 (REDUCE U M)).

To relate the above statement to the one given in the Section 3, Mcorrespondsto X, (REDUCE U M re

Asbefore, the existential quantifiersover WL and W2 will haveto be replaced by functions. The term
49. Theorem CHURCH ROSSER (rewite):
(EQUAL (REDUCE (MAKE- REDUCE M U V)
(REDUCE V M)
(REDUCE (MAKE- REDUCE M V U)
(REDUCE U M))

This concludes the presentation of the formalization of the A-calculususing the de Bruijn notation, within

19

5. Highlights of the M echanical Proof

Having formally defined the A-calculus and stated a version of the Church-Rosser theorem for it, we can
1. Somelemmason SUBST, WALK, and BUVP.

2. The Substitutivity of Walkslemma.
3. The Diamond property for walks.

4. The Church-Rosser theorem
5.1 Some Properties of BUMP, SUBST, and WALK

Thelemmas discussed below state some interesting propertiesof the functionsBUMP, SUBST, and WA

Thefirst of theseisa straightforward lemma about commuting the order of two successive applications o
17. Theorem BUMP-BUWP (rewrite):
(IMPLIES (LEQN M
(EQUAL (BUWMP (BUMP Y N) (ADDL M)
(BUMP (BUMP Y M N)))

The next couple of lemmas will relate the operations BUMP and SUBST. Both demonstrate how BUMP
19. Theorem BUMP-SUBST (rewrite):
(1 MPLIES (LESSP M N)
(EQUAL (BUWP (SUBST X Y N) M
(SUBST (BUMP X M)
(BUMP Y M

(ADDL N))))
H nt: Induct as for (BUWMP-SUBST-INDUCT X Y NM.

Theother lemma relating BUMP and SUBST, ANOTHER- BUMP- SUBST dealswith the casewhen the
23. Theorem ANOTHER- BUMP- SUBST (rewrite):
(1 MPLIES (LEQ N (ADDL M)
(EQUAL (SUBST (BUWP X (ADD1 M) (BUMP Y M N
(BUMP (SUBST X Y N) M))
Hint: Induct as for (BUWP-SUBST-INDUCT X Y N M.

Thereisone other lemma about BUVP and SUBST which isdisplayed below as SUBST- NOT- FREE- | N.
36. Theorem SUBST-NOT-FREE-IN (rewite):
(EQUAL (SUBST (BUMP X N) Y (ADDL N))
X)
Hint: Induct as for (SUBST X Y N).

Thenext lemma is perhapsthe most significant onein the proof. Just as BUMP- BUVP stated that the or
37. Theorem SUBST-SUBST (rewite):
(1 MPLI ES (AND (NUMBERP M (LESSP M N))
(EQUAL (SUBST (SUBST X (BUMP Z M (ADDL N))
(SUBST Y Z N)
(ADDL M)
(SUBST (SUBST X Y (ADDL M) Z N)))
H nt: Induct as for (SUBST-INDUCT XY Z MN).

20

At first sight, the statement of the above lemma might seem contrived and motivated by some specificre
5.2 The Substitutivity of WalksLemma

Theinformal statement of the substitutivity of walkslemmawas givenin Section 3. It went asfollows:
If M walksto M’, and N walksto N’, then [N/x]M walksto [N'/x]M’.

Thesamelemma stated below will read differently because it is stated in terms of walk-instructionsrath

If Wand U are two walk-instructions such that Wapplied to Myields M , and U applied to X yields X' , then there
exists awalk-instruction V such that V applied to (SUBST M X N) yields(SUBST M X N).

In the statement below, the required walk-instruction Vis constructed by the function SUB- WALK, and
38. Theorem WALK-SUBST (rewite):
(1 MPLI ES (NOT (ZEROP N))
(EQUAL (WALK (SUB-WALK WM U N)
(SUBST M X N))
(SUBST (WALK WM (WALK U X) N)))
H nt: Induct as for (WALK-SUBST-IND WM U X N).

Aswas seen in the proof-sketch in Section 3, the substitutivity of walkslemmaisthe key to the proof of t
5.3 The Diamond Property of Walks

The Diamond property of walkswas formally stated in the previous section. A function MAKE- WALK
40. Definition.
(MAKE- WALK M U V)
(I F (LAVBDAP M
(MAKE- VALK (BODY M) U V)
(1F (COVBP M
{code for COVBP case}
V)

In the base case, when Mis neither a LAMBDAP nor a COMBP, MAKE- WALK returns U. Thisisactu
When Mis of theform (LAMBDA X) , where Xis (BODY M, MAKE- WALK recurseson X. From th

In the case when Mis of theform (COMB X Y) ,where Xis(LEFT M and Yis(RI GHT M ,there ar

21

(I'F (AND (EQUAL (COMVAND U) ' REDUCE)

(LAVBDAP (LEFT M))

{code for case when X is a redex and

Uinstructs a reduction}
(I'F (AND (EQUAL (COMVAND V) ' REDUCE)
(LAVBDAP (LEFT M))

{code for case when X is a redex and
V instructs a reduction but U does not}

{code for case when either X is not a redex
or neither Unor Vinstructs a reduction}

))

If Misaredex and the walk-instruction command is’ REDUCE, then regardless of V, the resulting walk-

X1is(WALK (LEFT-1NSTRS U) X),

Y1is(WALK (RIGHT-INSTRS U) V),
X2 is(WALK (MAKE-WALK X (LEFT-1NSTRS U) (LEFT-INSTRS V)) X1),and

Y2 is(WALK (MAKE- WALK Y (RI GHT- 1 NSTRS U) (Rl GHT- 1 NSTRS V) Y1).

The codefor the above caseis given below as:
(SUB- WALK (MAKE- WALK (LEFT M

(LEFT- 1 NSTRS U)
(LEFT-1 NSTRS V))

(BODY (WALK (LEFT-INSTRS U) (LEFT M))

(MAKE- WALK (RIGHT M
(RI GHT- I NSTRS U)
(RIGHT- 1 NSTRS V))

1

If Misaredex and walk-instruction U does not command a reduction but walk-instruction V does, then
(LI ST (MAKE- WALK (LEFT M

(LEFT- I NSTRS U)
(LEFT-1NSTRS V))

(MAKE-WALK (RIGHT M
(RI GHT- I NSTRS U)
(RI GHT- 1 NSTRS V))

' REDUCE)

Thefinal caseiswhen either Misnot aredex or neither walk-instruction commands a reduction, then M
(LI ST (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(MAKE- VALK (RI GHT M
(Rl GHT- 1 NSTRS U)
(R GHT-1NSTRS V)))))

The Diamond construction for the Church-Rosser theorem ismuch simpler than the above Diamond con

22

5.4 The Church-Rosser theorem

The statement of the theorem has already been presented in Section 6. The function MAKE- REDUCE i

MAKE- REDUCE takes threearguments: aterm Mand two lists of walk-instructions Uand V. In defi
46. Definition.
(MAKE- REDUCE M U V)

(I1F (LISTP U
(CONS (MAKE- WALK- REDUCE M (CAR U) V)
(MAKE- REDUCE (WALK (CAR U) M
(COR Y
(MAKE- REDUCE- WALK M (CAR U) V)))
)

Thekey lemmarelating the two functions MAKE- WAL K- REDUCE and MAKE- REDUCE- WALK is:
45. Theorem WALK- REDUCE (rewrite):
(EQUAL (REDUCE (MAKE- REDUCE- WALK M W V)
(VALK W M)
(WALK (MAKE- WALK- REDUCE M W V)
(REDUCE V M))

The Figure RECTANGL E shows how these functions can be used to build a rectangle consisting of a wal

Figure3: MAKE-WALK-REDUCE and MAKE-REDUCE-WALK.

Figure MAKE-REDUCE illustrates how MAKE- REDUCE employsthe rectangles built by MAKE- WAL

Figure4: MAKE-REDUCE and the Church-Rosser theorem

In stating the Church-Rosser theorem as shown in CHURCH ROSSER some assumptionswere made. T

74.

94.

23

Theorem MAKE- WALK- STEP- WALKS (rewrite):
(1 MPLI ES (BETA- STEP A B)
(EQUAL (WALK (MAKE-WALK- STEP A B) A)
B))

Theorem MAKE- REDUCE- STEPS- STEPS (rewrite):
(REDUCTI ON A

(REDUCE W A)

(MAKE- REDUCE- STEPS W A))

Finally, the Church-Rosser theorem was proved in the acceptable form by the two lemmas below, which

97.

98.

Theorem THE- REAL- CHURCH ROSSER (rewrite):
(1 MPLI ES (AND (REDUCTION X Y LI ST1)
(REDUCTION X Z LI ST2))
(AND (REDUCTI ON Y
(MAKE-W X Z Y LI ST2 LI ST1)
(MAKE- REDUCTION X Y Z LI ST1 LI ST2))
(REDUCTI ON Z
(MAKE-W X Y Z LI ST1 LI ST2)
(MAKE- REDUCTION X Z Y LI ST2 LIST1))))

Theorem BOTH MAKE- W ARE- SAME (rewrite):
(I MPLIES (AND (REDUCTION X Y LI ST1)
(REDUCTION X Z LI ST2))
(EQUAL (MAKE-W X Y Z LI ST1 LI ST2)
(MAKE-W X Z Y LIST2 LIST1)))

Thetheorems THE- REAL- CHURCH ROSSER and BOTH- MAKE- W ARE- SAME wer e used to provet

Thetrandglation back into the standard notation was done using the function UNTRANS. The definition
107. Definition.

(UNTRANS X M N)

(I F (LAVBDAP X)
(NLAVBDA (PLUS M (ADDL N))
(UNTRANS (BODY X) M (ADDL N)))
(I F (COVBP X)
(NCOMVB (UNTRANS (LEFT X) M N)
(UNTRANS (RIGHT X) M N))
(I F (LESSP N X)
(DI FFERENCE X (ADDL N))
(I F (NOT (ZEROP X))
(ADDL (PLUS M (DI FFERENCE N X)))
X))))

In summary, thelemmasleading to a proof of the Church-Rosser theorem were stated and proved using

24

6. Conclusions

In the preceding sections, we have discussed the formalization and mechanical proof of the Church-Ross
6.1 Background notes

The Church-Rosser theorem isan extremely important theorem in Lambda Calculus which lacked a wid

In 1983, Boyer and M oor e suggested that the proof would make an interesting candidate to try out on th

Theresultswere presented at a weekly seminar conducted by Boyer and Moore. It wasencouragington

The proof was carried out on a Symbolics 3600 Lisp machine. " Alonzo", " Barkley", and "Haskell" were
6.2 Observations

The above mechanical proof of the Church-Rosser theorem raisesseveral issuesthat require comment.

Thefirst observation deals with theimplications of the success of the mechanical proof attempt. Theco

The next observation concer nsthe level at which the proof was checked. Clearly, the theorem prover did

Thethird observation concernsthetimetaken to carry out the proof. Once avague outline of a proof ha

Thefourth observation isan incidental onethat the entire formalization and proof wascarried out inas

Thefifth observation dealswith the use of the de Bruijn notation. The reader might suspect that thiswas

The second appr oach isto define the operation of substitution so that bound variables are automatically

Finally, the de Bruijn notation does make the proof alot easier mainly becauseit isa better notation for

Somereaders might find it disturbing that therepresentation for A-terms should have made such a big di

25

6.3 Acknowledgements

Thework reported in this paper was supervised by Bob Boyer and J Moore. They suggested the proble

26
Appendix A

Selections from Proofs generated by the
Boyer-M oore Theorem Prover

A.1 TheProof of SUBST-SUBST

(PROVE- LEMVA SUBST- SUBST
(REVRI TE)
(I MPLI ES (AND (NUMBERP M (LESSP M N))
(EQUAL (SUBST (SUBST X (BUMP Z M (ADDL N))
(SUBST Y Z N)
(ADDL M)

(SUBST (SUBST X Y (ADD1 M) Z N)))
((I'NDUCT (SUBST-INDUCT XY Z MN))))
Thi s conjecture can be sinplified, using the abbreviations | MPLIES, NOT, OR,
and AND, to three new fornul as:

Case 3. (I MPLIES (AND (LAVBDAP X)

(I MPLI ES (AND (NUMBERP (ADDL M)

(LESSP (ADDL M (ADDL N)))
(EQUAL (SUBST (SUBST (BODY X)

(BUVP (BUVP Z 0) (ADDL M)
(ADDL (ADDL N)))
(SUBST (BUMWP Y 0)
(BUVMP Z 0)
(ADDL N))
(ADDL (ADDL M))
(SUBST (SUBST (BODY X)

(BUVP Y 0)
(ADDL (ADDL M))
(BUVP Z 0)
(ADDL N))))
(NUVBERP M)
(LESSP M N))

(EQUAL (SUBST (SUBST X (BUMP Z M (ADDL N))
(SUBST Y Z N)
(ADDL M)
(SUBST (SUBST X Y (ADDL M) Z N))),

which sinplifies, using linear arithnetic, rewiting with the | emmas
SUB1- ADD1, BUMP- BUMP, BUMP- SUBST, SUBST-LAMBDA, LAMBDAP- SUBST, and

BODY- LAMBDA, and opening up the functions LESSP, AND, | MPLIES, and SUBST,
to:

T.

Case 2. (I MPLIES
(AND (NOT (LAVBDAP X))
(COVBP X)
(I MPLI ES (AND (NUMBERP M (LESSP M N))
(EQUAL (SUBST (SUBST (RIGHT X) (BUWP Z M
(ADDL N))
(SUBST Y Z N)
(ADDL M)
(SUBST (SUBST (RIGHT X) Y (ADDL M)
ZN))
(I MPLI ES (AND (NUMBERP M (LESSP M N))

(EQUAL (SUBST (SUBST (LEFT X) (BUMP Z M

(ADDL N))
(SUBST Y Z N)
(ADDL M)
(SUBST (SUBST (LEFT X) Y (ADDL M)
ZN))
(NUVBERP M)
(LESSP M N))

(EQUAL (SUBST (SUBST X (BUMP Z M (ADDL N))
(SUBST Y Z N)
(ADDL M)
(SUBST (SUBST X Y (ADDL M) Z N))).

This sinplifies, rewiting with the | emmas RI GHT- COMB and LEFT-COMVB, and
opening up the definitions of AND, I MPLIES, and SUBST, to:

T.

Case 1. (I MPLIES (AND (NOT (LAVBDAP X))
(NOT (COVBP X))
(NUVBERP M)
(LESSP M N))
(EQUAL (SUBST (SUBST X (BUMP Z M (ADDL N))
(SUBST Y Z N)
(ADD1 M)
(SUBST (SUBST X Y (ADDL M) Z N))).

This sinplifies, applying SUBl1-ADDl, and expandi ng the definitions of LESSP
and SUBST, to the following 17 new conjectures:

[Most of these 17 cases are trivia and are handled by the linear arithmetic package. Only the interesting cases
are displayed below.]

Case 1.13.
(I MPLIES (AND (NOT (LAMBDAP X))
(NOT (COVBP X))
(NUMBERP M
(LESSP M N)
(NOT (EQUAL X 0))
(NUMBERP X)
(NOT (EQUAL X (ADD1 M))
(LESSP M (SUBL X))
(EQUAL X (ADD1 N)))
(EQUAL (SUBST (BUMP Z M
(SUBST Y Z N)
(ADDL M)
(SUBST (SUB1 X) Z N))).

But this again sinplifies, rewiting with the | emmas ADD1- EQUAL,
SUB1- TYPE- RESTRI CTI ON, SUB1- ADD1, and SUBST- NOT- FREE- I N, and expandi ng the
functions SUB1, EQUAL, LESSP, and SUBST, to:

(I MPLI ES (AND (NUVBERP M
(LESSP M N)
(NUVBERP N)
(NOT (EQUAL N M)
(EQUAL N 0))
(EQUAL Z 0)).

27

But this again sinplifies, using linear arithmetic, to:

T.

Case 1.10.
(I MPLIES (AND (NOT (LAMBDAP X))
(NOT (COVBP X))
(NUVMBERP M
(LESSP M N)
(NOT (EQUAL X 0))
(NOT (NUMBERP X)))
(EQUAL (SUBST X (SUBST Y Z N (ADDL M)
(SUBST X Z N))).

But this again sinplifies, opening up SUBST, to:

T.

Case 1. 3.

(I MPLIES (AND (NOT (LAMBDAP X))
(NOr (CovBP X))
(NUMBERP M
(LESSP M N)
(NOT (EQUAL X 0))
(NUMBERP X)
(EQUAL X (ADDL M)
(NOT (EQUAL X (ADD1 N)))
(NUMBERP N)
(LEQ (SUBL X) N))

(EQUAL (SUBST X (SUBST Y Z N (ADD1L M)
(SUBST Y Z N)).

This sinplifies again, applying ADDl- EQUAL and SUB1- ADD1, and unfol di ng
SUBST, to:

T.

Case 1.1.
(I MPLI ES (AND (NOT (LANMBDAP X))
(NOT (COVBP X))
(NUMBERP M
(LESSP M N)
(EQUAL X 0))
(EQUAL (SUBST 0 (SUBST Y Z N (ADDL M)
(SUBST 0 Z N))),

whi ch we again sinmplify, unfolding the definitions of LAVBDAP, COVBP,
EQUAL, and SUBST, to:

T.

QE D

[13.4 3.1]

SUBST- SUBST

A.2 TheProof of the Substitutivity of Walks

(PROVE- LEMVA WALK- SUBST

(REVRRI TE)

(1 MPLI ES (NOT (ZEROP N))

(EQUAL (WALK (SUB-WALK WM U N)
(SUBST M X N))
(SUBST (VALK WM (WALK U X) N)))

((1I'NDUCT (WALK-SUBST-IND WM U X N)))
This formula can be sinplified, using the abbreviati ons ZEROP, | MPLIES, NOT,
OR, AND, LEFT-INSTRS, RIGHT-|NSTRS, COMVAND, and BUWMP-WALK, to four new
conj ectures:

Case 4. (I MPLIES
(AND (LAVMBDAP M
(1 MPLI ES (NOT (ZEROP (ADDL N)))
(EQUAL (WALK (SUB-WALK W (BODY M U (ADD1 N))
(SUBST (BODY M (BUMP X 0) (ADD1 N)))
(SUBST (WALK W (BODY M)
(BUWP (WALK U X) 0)
(ADDL N))))
(NOT (EQUAL N 0))
(NUMBERP N))
(EQUAL (WALK (SUB-WALK WM U N)
(SUBST M X N))
(SUBST (WALK WM (WALK U X) N))).

This sinmplifies, rewiting with the | emma BODY- LAMBDA, and unf ol di ng ZEROP,
NOT, | MPLIES, SUB-WALK, SUBST, and WALK, to:

T.

Case 3. (I MPLIES (AND (NOT (LAVBDAP M)
(COVBP M
(EQUAL (CADDR W ' REDUCE)
(LAVBDAP (LEFT M)
(I MPLI ES (NOT (ZEROP N))
(EQUAL (WALK (SUB-WALK (CADR W (RIGHT M U N)
(SUBST (RIGHT M X N))
(SUBST (WALK (CADR W (RIGHT M)
(WALK U X)
N)))
(IMPLI ES (NOT (ZERCP N))
(EQUAL (WALK (SUB-WALK (CAR W (LEFT M U N)
(SUBST (LEFT M X N))
(SUBST (WALK (CAR W (LEFT M)
(WALK U X)
N))
(NOT (EQUAL N 0))
(NUVBERP N))
(EQUAL (WALK (SUB-WALK WM U N)
(SUBST M X N))
(SUBST (WALK WM (WALK U X) N))),

29

which we sinplify, using linear arithmetic, applying the | emmas SUBST- SUBST,
Rl GHT- COVB, SUBST- LAMBDA, LAMBDA- WALK, CAR- CONS, LAMBDAP- SUBST, LEFT-COVB,
and CDR- CONS, and expanding the definitions of ZEROP, NOT, | MPLIES,

Rl GHT- | NSTRS, LEFT-INSTRS, EQUAL, COMVAND, SUB-WALK, SUBST, ADD1, CAR, and
WALK, to:

T.

Case 2. (I MPLIES (AND (NOT (LAVBDAP M)
(COVBP M
(NOT (AND (EQUAL (CADDR W ' REDUCE)
(LAVBDAP (LEFT M)))
(I MPLI ES (NOT (ZERCP N))
(EQUAL (WALK (SUB-WALK (CADR W (RIGHT M U N)
(SUBST (RIGHT M X N))
(SUBST (WALK (CADR W (RIGHT M)
(WALK U X)
N))
(I MPLI ES (NOT (ZERCP N))
(EQUAL (WALK (SUB-WALK (CAR W (LEFT M U N)
(SUBST (LEFT M X N))
(SUBST (WALK (CAR W (LEFT M)
(WALK U X)
N))
(NOT (EQUAL N 0))
(NUVBERP N))
(EQUAL (WALK (SUB-WALK WM U N)
(SUBST M X N))
(SUBST (WALK WM (WALK U X) N))).

This sinplifies, rewiting with the | emmas Rl GHT- COVB, LEFT- COVB, CAR- CONS,
and CDR- CONS, and unfol ding AND, ZEROP, NOT, |MPLIES, RI GHT-I|NSTRS,
LEFT- 1 NSTRS, COWAND, SUB-WALK, SUBST, EQUAL, CAR, and WALK, to:

T.

Case 1. (I MPLIES (AND (NOT (LAVBDAP M)
(Nor (covBP M)
(NOT (EQUAL N 0))
(NUVBERP N))
(EQUAL (WALK (SUB-WALK WM U N)
(SUBST M X N))
(SUBST (WALK WM (WALK U X) N))),

whi ch sinplifies, opening up the functions SUB-WALK, SUBST, and WALK, to
four new formnul as:

Case 1.4.

(I MPLIES (AND (NOT (LAMBDAP M)
(Nor (covBP M)
(NOT (EQUAL N 0))
(NUMBERP N)
(NOT (EQUAL M 0))
(NUMBERP M
(NOT (EQUAL M N))
(LESSP N M)

(EQUAL (WALK W(SuUB1 M) (SuB1 M)).

However this again sinplifies, expanding the definition of WALK, to:

T.

30

Case 1. 3.
(I MPLIES (AND (NOT (LAMBDAP M)
(NOT (COVBP M)
(NOT (EQUAL N 0))
(NUMBERP N)
(NOT (EQUAL M 0))
(NOT (NUMBERP M))
(EQUAL (WALK WM M).

This again sinplifies, opening up WALK, to:
T.

Case 1. 2.
(I MPLI ES (AND (NOT (LANMBDAP M)
(NOT (COVBP M)
(NOT (EQUAL N 0))
(NUMBERP N)
(NOT (EQUAL M 0))
(NOT (EQUAL M N))
(LEQ M N))
(EQUAL (VALK WM M).

This sinmplifies again, unfolding the function WALK, to:
T.
Case 1.1.
(I MPLI ES (AND (NOT (LAVBDAP M)
(NoT (CcavBP M)
(NOT (EQUAL N 0))
(NUMBERP N)
(EQUAL M 0))
(EQUAL (WALK WO0) 0)),
whi ch we again sinplify, opening up LAMBDAP, COVBP, WALK, and EQUAL, to:
T.

QE D

[14.0 0.9]

WALK- SUBST

A.3 The Proof of the Diamond Property of Walks

(PROVE- LEMVA MAI N
(REVWRI TE)
(EQUAL (WALK (MAKE-WALK MU V) (WALK U M)
(WALK (MAKE-WALK MV U) (WALK V M))
NI L)
Name the conjecture *1.
Perhaps we can prove it by induction. Four inductions are suggested by

terms in the conjecture. However, they nmerge into one |ikely candidate
induction. W will induct according to the follow ng schene:

31

(AND (I MPLIES (AND (LAMBDAP M) (P (BODY M U V))

(PMUYV))

(I MPLIES (AND (NOT (LAVBDAP M)

(covBP M

(AND (EQUAL (COMMAND U) ’ REDUCE)
(LAVBDAP (LEFT M))

(P (LEFT M

(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))

(P(RGHT M

(RI GHT- I NSTRS U)
(RI GHT- I NSTRS V)))

MU V))

(P
(1 MPLI ES (AND (NOT (LANMBDAP M)

(cavBP M

(NOT (AND (EQUAL (COMMAND U) ’ REDUCE)
(LAVBDAP (LEFT M)))
(AND (EQUAL (COMVAND V) ’ REDUCE)
(LAVBDAP (LEFT M))

(P (LEFT M

(LEFT- | NSTRS U)
(LEFT- 1 NSTRS V))

(P(RGAT M

(Rl GHT- | NSTRS U)
(RI GHT- I NSTRS V)))

MU V))

(P
(I MPLIES (AND (NOT (LAVBDAP M)

(caovBP M

(NOT (AND (EQUAL (COMMAND U) ’ REDUCE)
(LAVBDAP (LEFT M)))

(NOT (AND (EQUAL (COMVAND V) ’ REDUCE)
(LAVBDAP (LEFT M)))

(P (LEFT M

(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))

(P (RGIT M

(Rl GHT- | NSTRS U)
(RIGHT- I NSTRS V)))

MU V))

(P
(I MPLI ES (AND (NOT (LAVBDAP M)

(NOT (COVBP M))

(PMUWV))).

Linear arithnmetic and the | emmas BODY- LESSP, Rl GHT- LESSP, and LEFT- LESSP
establish that the measure (COUNT M decreases according to the well-founded
relation LESSP in each induction step of the schene. Note, however, the

i nductive instances chosen for V and U.
five new conjectures:

Case 5.

whi ch we sinplify,

(I MPLI ES (AND (LAVBDAP M

The above induction schene |leads to

(EQUAL (WALK (MAKE-WALK (BODY M U V)
(WALK U (BODY M))
(WALK (MAKE- WALK (BODY M V U)
(WALK V (BODY M))))
(EQUAL (WALK (MAKE-WALK MU V) (WALK U M)
(WALK (MAKE-WALK MV U) (WALK V M))),

definitions of MAKE-WALK and WALK, to:

Case 4.

T.

(I MPLI ES (AND (NOT (LANMBDAP M)

appealing to the | enma BODY- LAMBDA, and opening up the

32

33

(COVBP M
(AND (EQUAL (COMVAND U) ' REDUCE)
(LAVBDAP (LEFT M))
(EQUAL (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- I NSTRS V))
(WALK (LEFT-INSTRS U) (LEFT M))
(WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (LEFT-1NSTRS V) (LEFT M)))
(EQUAL (WALK (MAKE-WALK (RIGHT M
(Rl GHT- | NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE- WALK (RI GHT M
(Rl GHT- | NSTRS V)
(RI GHT- I NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M))))
(EQUAL (WALK (MAKE-WALK MU V) (WALK U M)
(WALK (MAKE-WALK MV U) (WALK V M))),

which we sinplify, rewiting with WALK- LAMBDA and WALK- SUBST, and openi ng up
the functions COWAND, AND, MAKE-WALK, EQUAL, and WALK, to two new fornul as:

Case 4. 2.
(I MPLIES (AND (COVBP M
(EQUAL (CADDR U) ' REDUCE)
(LAVMBDAP (LEFT M)
(EQUAL (WALK (MAKE-WALK (LEFT M
(LEFT-1NSTRS U)
(LEFT-1NSTRS V))
(WALK (LEFT-INSTRS U) (LEFT M))
(WALK (MAKE- WALK (LEFT M
(LEFT-1NSTRS V)
(LEFT-1NSTRS U))
(WALK (LEFT-1NSTRS V) (LEFT M)))
(EQUAL (WALK (MAKE-WALK (RIGHT M
(RI GHT- 1 NSTRS U)
(RI GHT- 1 NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE-VWALK (RIGHT M
(RI GHT- 1 NSTRS V)
(RI GHT- 1 NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M)))
(NOT (EQUAL (CADDR V) ' REDUCE)))
(EQUAL (SUBST (WALK (MAKE- WALK (LEFT M
(LEFT-1 NSTRS U)
(LEFT-1NSTRS V))
(WALK (LEFT-1 NSTRS U)
(BODY (LEFT M)))
(WALK (MAKE-WALK (RIGHT M
(RI GHT- 1 NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U (RIGHT M))
1)
(WALK (CONS (MAKE- WALK (LEFT M
(LEFT-1 NSTRS V)
(LEFT-1NSTRS U))
(CONS (MAKE-WALK (RIGHT M
(RI GHT- 1 NSTRS V)
(RI GHT- 1 NSTRS U))

" (REDUCE)))
(COVB (WALK (LEFT-1NSTRS V) (LEFT M)
(WALK (RIGHT-INSTRS V) (RIGHT M))))),

whi ch again sinplifies, applying WALK- LAMBDA, LAMBDA- WALK, RI GHT- COVB,
CAR- CONS, LEFT-COMB, and CDR- CONS, and expandi ng WALK, LEFT-1NSTRS,
Rl GHT- | NSTRS, EQUAL, COWWAND, and CAR, to the formul a:

(I MPLI ES (AND (COMVBP M
(EQUAL (CADDR U) ' REDUCE)
(LAVBDAP (LEFT M)
(EQUAL (LAMVBDA (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- I NSTRS V))
(WALK (CAR U) (BODY (LEFT M))))
(WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (LEFT-1NSTRS V) (LEFT M)))
(EQUAL (WALK (MAKE-WALK (RIGHT M
(Rl GHT- | NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE- WALK (RI GHT M
(Rl GHT- | NSTRS V)
(RI GHT- I NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M)))
(NOT (EQUAL (CADDR V) ' REDUCE)))
(EQUAL (SUBST (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(WALK (CAR U) (BODY (LEFT M)))
(WALK (MAKE- WALK (RI GHT M
(RI GHT- I NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
1)
(SUBST (WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (CAR V) (BODY (LEFT M)))
(WALK (MAKE- WALK (RI GHT M
(RI GHT- I NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
1))),

which we further sinplify, rewiting with BODY- LAMBDA and LAMBDA- EQUAL,
and unfol ding the definitions of LEFT-INSTRS, WALK, and RI GHT-I|NSTRS, to:

T.

Case 4.1.
(I MPLI ES
(AND (COVBP M

(EQUAL (CADDR U) ' REDUCE)

(LAVBDAP (LEFT M)

(EQUAL (WALK (MAKE-WALK (LEFT M
(LEFT- 1 NSTRS U)
(LEFT-1NSTRS V))

(WALK (LEFT-INSTRS U) (LEFT M))
(WALK (MAKE- WALK (LEFT M

(LEFT- | NSTRS V)
(LEFT- I NSTRS U))
(WALK (LEFT-1NSTRS V) (LEFT M)))
(EQUAL (WALK (MAKE-WALK (RIGHT M
(Rl GHT- I NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE- WALK (RI GHT M
(Rl GHT- I NSTRS V)
(RI GHT- I NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M)))
(EQUAL (CADDR V) ' REDUCE))
(EQUAL (SUBST (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- I NSTRS V))
(WALK (LEFT- I NSTRS U)
(BODY (LEFT M)))
(WALK (MAKE- WALK (RI GHT M
(Rl GHT- I NSTRS U)
(R GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
1)
(WALK (SUB- WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (LEFT-I NSTRS V)
(BODY (LEFT M))
(MAKE- WALK (RI GHT M
(Rl GHT- | NSTRS V)
(RI GHT- I NSTRS U))
1)
(SUBST (WALK (LEFT-1NSTRS V) (BODY (LEFT M))
(WALK (RIGHT-INSTRS V) (RIGHT M)

1))

This sinplifies again, applying WALK- LAMBDA, LAMBDA- WALK, and WALK- SUBST,
and expandi ng WALK, LEFT-I1NSTRS, and EQUAL, to:

(I MPLI ES (AND (COVBP M
(EQUAL (CADDR U) ' REDUCE)
(LAVBDAP (LEFT M)
(EQUAL (LAMVBDA (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(WALK (CAR U) (BODY (LEFT M))))
(WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (LEFT-1NSTRS V) (LEFT M)))
(EQUAL (WALK (MAKE-WALK (RIGHT M
(RI GHT- I NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE- WALK (RI GHT M
(RI GHT- | NSTRS V)
(RI GHT- I NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M)))
(EQUAL (CADDR V) ' REDUCE))
(EQUAL (SUBST (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(WALK (CAR U) (BODY (LEFT M)))

35

(WALK (MAKE- WALK (RI GHT M
(RI GHT- I NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
1)
(SUBST (WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (CAR V) (BODY (LEFT M)))
(WALK (MAKE- WALK (RI GHT M
(RI GHT- I NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
1)),

whi ch further sinplifies, applying BODY- LAMBDA and LAMBDA- EQUAL, and
unfol ding the definitions of LEFT-INSTRS, WALK, and Rl GHT-INSTRS, to:

T.

Case 3. (I MPLIES (AND (NOT (LAVBDAP M)
(COVBP M
(NOT (AND (EQUAL (COMVAND U) ' REDUCE)
(LAVBDAP (LEFT M)))
(AND (EQUAL (COMMAND V) * REDUCE)
(LAVBDAP (LEFT M))
(EQUAL (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(WALK (LEFT-1NSTRS U) (LEFT M))
(WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (LEFT-1NSTRS V) (LEFT M)))
(EQUAL (WALK (MAKE-WALK (RIGHT M
(Rl GHT- I NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE- WALK (RI GHT M
(Rl GHT- | NSTRS V)
(RI GHT- I NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M))))
(EQUAL (WALK (MAKE-WALK MU V) (WALK U M)
(WALK (MAKE-WALK MV U) (WALK V M))).

This sinplifies, applying Rl GHT- COVB, WALK- LAMBDA, CAR- CONS, LAMBDA- WALK,
LEFT- COVB, CDR-CONS, and WALK- SUBST, and expandi ng COVWAND, AND, MAKE-WALK,
EQUAL, WALK, RICGHT-INSTRS, LEFT-INSTRS, and CAR, to:

(I MPLI ES (AND (COMVBP M
(NOT (EQUAL (CADDR U) ' REDUCE))
(EQUAL (CADDR V) ' REDUCE)
(LAVBDAP (LEFT M)
(EQUAL (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(WALK (LEFT-1NSTRS U) (LEFT M))
(WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (LEFT-1NSTRS V) (LEFT M)))
(EQUAL (WALK (MAKE-WALK (RIGHT M

37

(Rl GHT- | NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE- WALK (RI GHT M
(Rl GHT- | NSTRS V)
(RI GHT- I NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M))))
(EQUAL (SUBST (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(WALK (CAR U) (BODY (LEFT M)))
(WALK (MAKE- WALK (RI GHT M
(R GHT- | NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
1)
(SUBST (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (LEFT- I NSTRS V)
(BODY (LEFT M)))
(WALK (MAKE- WALK (RI GHT M
(RI GHT- I NSTRS U)
(Rl GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))

).

whi ch again sinplifies, appealing to the | emmas WALK- LAMBDA and LAMBDA- WALK,
and unfol di ng WALK and LEFT-INSTRS, to:

(I MPLI ES (AND (COVBP M
(NOT (EQUAL (CADDR U) ' REDUCE))
(EQUAL (CADDR V) ' REDUCE)
(LAVBDAP (LEFT M)
(EQUAL (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(WALK (LEFT-1NSTRS U) (LEFT M))
(LAVBDA (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (CAR V) (BODY (LEFT M)))))
(EQUAL (WALK (MAKE-WALK (RIGHT M
(Rl GHT- I NSTRS U)
(Rl GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE- WALK (RI GHT M
(Rl GHT- | NSTRS V)
(RI GHT- I NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M))))
(EQUAL (SUBST (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(WALK (CAR U) (BODY (LEFT M)))
(WALK (MAKE- WALK (RI GHT M
(Rl GHT- | NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
1)
(SUBST (WALK (MAKE-WALK (LEFT M
(LEFT- I NSTRS V)
(LEFT- 1 NSTRS U))

38

(WALK (CAR V) (BODY (LEFT M)))
(WALK (MAKE- WALK (RI GHT M
(RI GHT- I NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
1))).

However this further sinplifies, rewiting with BODY- LAMBDA and
LAMBDA- EQUAL, and unfol ding the definitions of LEFT-1NSTRS, WALK, and
Rl GHT- I NSTRS, to:

T.

Case 2. (I MPLIES (AND (NOT (LAVBDAP M)
(COVBP M
(NOT (AND (EQUAL (COMMVAND U) ' REDUCE)
(LAVBDAP (LEFT M)))
(NOT (AND (EQUAL (COMMVAND V) ' REDUCE)
(LAVBDAP (LEFT M)))
(EQUAL (WALK (MAKE-WALK (LEFT M
(LEFT- | NSTRS U)
(LEFT- I NSTRS V))
(WALK (LEFT-INSTRS U) (LEFT M))
(WALK (MAKE- WALK (LEFT M
(LEFT- | NSTRS V)
(LEFT- 1 NSTRS U))
(WALK (LEFT-1NSTRS V) (LEFT M)))
(EQUAL (WALK (MAKE-WALK (RIGHT M
(Rl GHT- | NSTRS U)
(RI GHT- I NSTRS V))
(WALK (RIGHT-INSTRS U) (RIGHT M))
(WALK (MAKE- WALK (RI GHT M
(R GHT- | NSTRS V)
(RI GHT- I NSTRS U))
(WALK (RIGHT-INSTRS V) (RIGHT M))))
(EQUAL (WALK (MAKE-WALK MU V) (WALK U M)
(WALK (MAKE-WALK MV U) (WALK V M))).

This sinplifies, applying R GHT- COVB, LEFT-COVB, CAR-CONS, and CDR- CONS, and

openi ng up COVMAND, AND, MAKE-WALK, WALK, RIGHT-INSTRS, LEFT-INSTRS, EQUAL,

and CAR, to:

T.
Case 1. (I MPLIES (AND (NOT (LAMBDAP M)
(NOT (CavBP M))
(EQUAL (WALK (MAKE-WALK MU V) (WALK U M)
(WALK (MAKE-WALK MV U) (WALK V M))),
which sinplifies, unfolding the functi ons MAKE-WALK and WALK, to:

T.

That finishes the proof of *1. Q E. D.

[28.0 3.0]

MAI N

Appendix B
TheList of Definitions and Lemmas

1. (BOOT- STRAP)

2. Shel | Definition.
Add the shell NLAMBDA of two argunents with
recogni zer NLAVBDAP,
accessors NBI ND and NBODY,
type restrictions (ONE-OF NUVBERP) and (NONE- OF),
and default values ZERO and ZERO.

3. Shel |l Definition.
Add the shell NCOVB of two arguments with
recogni zer NCOVBP,
accessors NLEFT and NRI GHT,
type restrictions (NONE-OF) and (NONE- OF),
and default values ZERO and ZERO

4, Definition.
(NSUBST X Y N)

(1 F (NLAVBDAP X)
(IF (EQUAL (NBIND X) N)
X
(NLAVBDA (NBI ND X)
(NSUBST (NBODY X) Y N)))
(1 F (NCOVBP X)
(NCOMB (NSUBST (NLEFT X) Y N)
(NSUBST (NRIGHT X) Y N))
(1 F (NUVBERP X)
(IF (EQUAL X N) Y X)
X)))

5. Definition.
(NOT- FREE- I N X YY)

(I E (NLAVBDAP)
(IF (EQUAL X (NBIND Y))
T

(NOT- FREE- I N X (NBODY Y)))
(1 F (NCOVBP Y)
(AND (NOT- FREE- I N X (NLEFT Y))
(NOT- FREE- IN X (NRIGHT Y)))

(NOT (EQUAL X Y))))

6. Definition.
(FREE- FOR X YY)

(1 F (NLAVBDAP X)
(AND (NOT- FREE- I N (NBI ND X) V)
(FREE- FOR (NBODY X) VY))
(1 F (NCOVBP X)
(AND (FREE- FOR (NLEFT X))
(FREE-FOR (NRIGHT X) Y))
)

10.

11.

40

Definition.
(I NDEX N LI ST)

(1 F_(LI STP LI ST)
(IF (EQUAL (CAR LIST) N
1
(ADD1 (INDEX N (CDR LIST))))
(ADDL N))

Definition.
(ALPHA- EQUAL A B X Y)

(I F (AND (NLAVBDAP A) (NLAVBDAP B))
(ALPHA- EQUAL (NBODY A)
(NBODY B)
(CONS (NBIND A) X)
(CONS (NBIND B) Y))
(I F (AND (NCOVBP A) (NCOVBP B))
(AND (ALPHA- EQUAL (NLEFT A) (NLEFT B) X V)
(ALPHA- EQUAL (NRI GHT A)
(NRI GHT B)
XY))
(I F (AND (NUVBERP A) (NUVBERP B))
(EQUAL (INDEX A X) (INDEX B Y))
(EQUAL A B))))

Definition.
(NTERWP X)

(1 F (NLAVBDAP X)
(NTERMP (NBODY X))
(1 F (NCOVBP X)
(AND (NTERVP (NLEFT X))
(NTERMP (NRI GHT X)))
(OR (NUVBERP X) (LITATOM X))))

Definition.
(NBETA- STEP A B)

(IF (EQUAL A B)
T

(I F (NLAVBDAP A)
(AND (NLAVBDAP B)
(EQUAL (NBIND A) (NBIND B))
(NBETA- STEP (NBODY A) (NBODY B)))
(1 F (NCOVBP A)
(OR (AND (NLAVBDAP (NLEFT A))
(FREE- FOR (NBODY (NLEFT A))

(NRIGHT A))
(EQUAL B
(NSUBST (NBODY (NLEFT A))
(NRI GHT A)

(NBIND (NLEFT A)))))
(AND (NCOVBP B)
(NBETA- STEP (NLEFT A) (NLEFT B))
(NBETA- STEP (NRIGHT A) (NRIGHT B))))

)
Definition.
(NSTEP A B)

(OR (ALPHA-EQUAL A B NIL NIL)
(NBETA- STEP A B))

12.

13.

14.

15.

16.

17.

18.

Definition.
(NREDUCTI ON A B LI ST)
(I'F (LI STP LI ST)

(AND (NSTEP (CAR LI ST) B)
(NREDUCTI ON A (CAR LI ST) (CDR LIST)))
(NSTEP A B))

Shel | Definition.
Add the shell LAMBDA of one argunent with

recogni zer

LAMBDAP,

accessor BQODY,

type restri
and defaul t

ction (NONE-OF),
val ue ZERQO

Shel | Definition.
Add the shell COWMB of two argunents with

recogni zer

COVBP,

accessors LEFT and RI GHT,

type restri
and defaul t
Def i ni tion.
(BUMP X N)

ctions (NONE-OF) and (NONE-OF),
val ues ZERO and ZERQO.

(1 F (LAVBDAP X)
(LAVBDA (BUMP (BODY X) (ADDL N)))
(I F (COVBP X)
(COMB (BUVP (LEFT X) N)

(BUWP (RIGHT X) N))

(IF (LESSP N X) (ADDL X) X)))

Definition.
(SUBST X Y

N)

(I F (LAVBDAP X)
(LAVBDA (SUBST (BODY X) (BUWP Y 0) (ADDL N)))
(I F (COVBP X)
(COMB (SUBST (LEFT X) Y N

(SUBST (RIGHT X) Y N))

(1F (NOT (ZEROP X))

(IF (EQUAL X N)
Y

(IF (LESSP N X) (SUBL X) X))
X))

Theorem BUWP-BUWP (rewrite):
(IMPLIES (LEQN M
(EQUAL (BUWP (BUWP Y N) (ADDL M)

Definition.

(BUVP (BUMP Y M N)))

(BUMP- SUBST- I NDUCT X Y N M

(I F (LAVBDAP X)
(BUVP- SUBST- | NDUCT (BODY X)

(BUMP Y 0)
(ADDL N)
(ADDL M)

(I F (COVBP X)
(AND (BUMP- SUBST- | NDUCT (LEFT X) Y N M

)

(BUVP- SUBST- I NDUCT (RIGHT X) Y N M)

41

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Theorem BUMP- SUBST (rewrite):

(I MPLI ES (LESSP

M N)

(EQUAL (BUWP (SUBST X Y N) M
(SUBST (BUWP X M
(BUMP Y M
(ADDL N))))
H nt: Induct as for (BUWMP-SUBST-INDUCT X Y NM.
Definition.
(SUBST-INDUCT X Y Z MN)

(I F (LAVBDAP X)

(SUBST- | NDUCT (BODY X)

(BUVP Y 0)
(BUVP Z 0)
(ADDL M

(ADDL N))

(I F (COVBP X)
(AND (SUBST-INDUCT (LEFT X) Y Z M N)
(SUBST-INDUCT (RIGHT X) Y Z M N))

)

Theorem LAVBDAP-BUWP (rewrite):
(I MPLI ES (LAMBDAP X)
(LAVBDAP (BUMP X N)))

Theorem LAMBDAP- SUBST (rewrite):
(I MPLI ES (LAMBDAP X)
(LAVBDAP (SUBST X Y N)))

Theorem ANOTHER- BUMP- SUBST (rewrite):

(I MPLI ES (LEQ N
(EQUAL

(ADD1 M)
(SUBST (BUMP X (ADDL M) (BUMP Y M N)
(BUWP (SUBST X Y N) M))

H nt: Induct as for (BUWMP-SUBST-INDUCT X Y NM.

Theorem BUMP- LAMBDAP (rewrite):
(1 MPLI ES (LAVBDAP X)

(EQUAL

Theorem SUBST-

(BODY (BUMP X N))
(BUMP (BODY X) (ADDL N))))

LAMBDA (rewite):

(1 MPLI ES (LAVBDAP X)

(EQUAL
Definition.
(LEFT- I NSTRS X)
(CAR X)
Definition.

(RI GHT- 1 NSTRS X)

(CADR X)

Defi nition.
(COWWAND X)

(CADDR X)

(BODY (SUBST X Y N))
(SUBST (BODY X) (BUWP Y 0) (ADDL N))))

42

Definition.
(WALK WM

(I F (LAVBDAP M
(LAVBDA (VALK W (BODY M))
(IF (COVBP M
(I F (AND (EQUAL (COMMVAND W ' REDUCE)
(LAVBDAP (LEFT M))
(SUBST (BODY (WALK (LEFT-1NSTRS W (LEFT M))
(WALK (RIGHT-INSTRS W (RIGHT M)
1)
(COMB (WALK (LEFT-1NSTRS W (LEFT M)
(WALK (RIGHT-INSTRS W (RIGHT M)))
M)

Definition.
(BUMP-WALK-1ND U M N)
(1 F (LAVBDAP M

(BUVMP-WALK- I ND U (BODY M (ADDL N))

(IF (COWBP M

(I'F (AND (EQUAL (COMVAND U) ' REDUCE)
(LAVBDAP (LEFT M))
(AND (BUVP-WALK-1 ND (LEFT-I NSTRS U)
(LEFT M

N)
(BUVP- WALK- | ND (RI GHT- | NSTRS U)
(RIGHT M
N))
(AND (BUVP- WALK- | ND (LEFT- 1 NSTRS U)
(LEFT M

N)
(BUVP- WALK- | ND (RI GHT- | NSTRS U)
(RIGHT M
N)))
)

Theorem LAVBDA-WALK (rewrite):
(1 MPLI ES (LAVBDAP M
(LAVBDAP (WALK WM))

Theorem BUWMP-WALK (rewrite):
(EQUAL (WALK U (BUMP M N))
(BUMP (VALK UM N))
Hint: Induct as for (BUWP-WALK-IND U M N).

Theorem NLI STP-WALK (rewrite):
(I MPLIES (NLISTP W
(EQUAL (WVALK WM M)

34.

35.

36.

37.

Definition.
(SUB-WALK WM U N)

(I F (LAVBDAP M
(SUB-WALK W (BODY M U (ADDL N))
(IF (COVBP M
(I F (AND (EQUAL (COMMVAND W ' REDUCE)
(LAVBDAP (LEFT M))
(LI ST (SUB-WALK (LEFT-1NSTRS W
(LEFT M
UN
(SUB- WALK (RI GHT- | NSTRS W
(RIGHT M

UN
* REDUCE)
(LI ST (SUB-WALK (LEFT-1NSTRS W
(LEFT M
UN
(SUB- WALK (Rl GHT- | NSTRS W
(RIGHT M

UN)))
(I'F (NOT (ZEROP M)
(IFF (EQUAL MN U W
w))
Definition.
(WALK- SUBST-IND WM U X N)
(1 F (LAVBDAP M
(WALK- SUBST- | ND W
(BODY M
U
(BUMP X 0)
(ADD1 N))
(1F (COVBP M
(1F (AND (EQUAL (COMMAND W ' REDUCE)
(LAVBDAP (LEFT M))
(AND (VALK- SUBST- | ND (LEFT- I NSTRS W
(LEFT M
UXN
(WALK- SUBST- | ND (Rl GHT- | NSTRS W
(RGHT M
UXN)
(AND (WALK- SUBST- | ND (LEFT-1 NSTRS W
(LEFT M
UXN
(VWALK- SUBST- | ND (Rl GHT- I NSTRS W
(RIGHT M
UXN))
m)

Theorem SUBST- NOT- FREE-IN (rewite):

(EQUAL (SUBST (BUMP X N) Y (ADDL N))
X)

Hnt: Induct as for (SUBST X Y N).

Theorem SUBST-SUBST (rewrite):
(1 MPLI ES (AND (NUMBERP M (LESSP M N))
(EQUAL (SUBST (SUBST X (BUwP Z M (ADDL N))
(SUBST Y Z N)
(ADDL M)
(SUBST (SUBST X Y (ADDL M) Z N))
Hint: Induct as for (SUBST-INDUCT XY Z MN).

38.

39.

40.

41.

42.

43.

Theorem WALK- SUBST (rewrite):
(I MPLIES (NOT (ZEROP N))
(EQUAL (WALK (SUB-WALK WM U N)
(SUBST M X N))
(SUBST (VALK WM (WALK U X) N)))
H nt: Induct as for (WALK-SUBST-IND WM U X N).

Theorem WALK- LAMBDA (rewrite):
(I MPLI ES (LAMBDAP X)
(EQUAL (BODY (WALK U X))
(WALK U (BODY X))))

Definition.
(MAKE- WALK M U V)

(I F (LAVBDAP M
(MAKE- WALK (BODY M) U V)
(IF (COVBP M
(I F (AND (EQUAL (COMMVAND U) ' REDUCE)
(LAVBDAP (LEFT M))
(SUB- WALK (MAKE- WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(BODY (WALK (LEFT-INSTRS U) (LEFT M))
(MAKE- WALK (Rl GHT M)
(RI GHT- | NSTRS U)
(RI GHT- I NSTRS V))
1)
(I F (AND (EQUAL (COMMVAND V) ' REDUCE)
(LAVBDAP (LEFT M))
(LI ST (MAKE- WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(MAKE- WALK (RI GHT M
(RI GHT- I NSTRS U)
(Rl GHT- I NSTRS V))
* REDUCE)
(LI ST (MAKE- WALK (LEFT M
(LEFT- I NSTRS U)
(LEFT- 1 NSTRS V))
(MAKE- WALK (Rl GHT M)
(RI GHT- | NSTRS U)
(RIGHT-INSTRS V)))))
U)

Theorem MAIN (rewite):
(EQUAL (WALK (MAKE-WALK MU V) (WALK U M)
(WALK (MAKE-WALK MV U) (WALK V M))

Defi nition.
(REDUCE W M)

(1F (LISTP W
(REDUCE (CDR W (WALK (CARW M)
M
Definition.
(MAKE- WALK- REDUCE M W V)
(IF_(LISTPV)
(MAKE- WALK- REDUCE (WALK (CAR V) M
(MAKE- WALK M (CAR V) W
W (CDR V))

45

44.

45.

46.

47.

48.

49.

50.

Definition.
(MAKE- REDUCE- WALK M W V)

(IF (LISTP V)
(CONS (MAKE- WALK M W (CAR V))
(MAKE- REDUCE- WALK (VALK (CAR V) M
(MAKE- WALK M (CAR V) W

(COR V)))
NI L)

Theorem WALK- REDUCE (rewrite):
(EQUAL (REDUCE (MAKE- REDUCE- WALK M W V)
(WALK WM)
(WALK (MAKE- WALK- REDUCE M W V)
(REDUCE V M))

Definition.
(MAKE- REDUCE M U V)

(I F (LISTP U
(CONS (MAKE- WALK- REDUCE M (CAR U) V)
(MAKE- REDUCE (WALK (CAR U) M
(CDR U
(MAKE- REDUCE- WALK M (CAR U) V)))
)

Theorem LI ST- MAKE- REDUCE (rewrite):
(I MPLIES (LISTP V)
(EQUAL (REDUCE (MAKE- REDUCE M U V)
(REDUCE V M)
(REDUCE (MAKE- REDUCE (WALK (CAR V) M
(MAKE- REDUCE- WVALK M (CAR V) U
(CDR V))
(REDUCE V M)))

Theorem LI ST- MAKE- REDUCEL (rewrite):
(EQUAL (REDUCE (MAKE- REDUCE M U (CONS X VY))
(REDUCE Y (WALK X M))
(REDUCE (MAKE- REDUCE (WALK X M
(MAKE- REDUCE- WVALK M X U)

Y)
(REDUCE (CONS X' Y) M))
H nts: Consider:
LI ST- MAKE- REDUCE with {V<-(CONS X Y)}
Enabl e LI ST- MAKE- REDUCE

Theorem CHURCH ROSSER (rewrite):

(EQUAL (REDUCE (MAKE- REDUCE M U V)
(REDUCE V V)

(REDUCE (MAKE- REDUCE M V U)
(REDUCE U M))

Definition.
(TRANSLATE X BOUNDS)

(1 F (NLAVBDAP X)
(LAVBDA (TRANSLATE (NBODY X)
(CONS (NBIND X) BOUNDS)))
(1 F (NCOVBP X)
(COMB (TRANSLATE (NLEFT X) BOUNDS)
(TRANSLATE (NRI GHT X) BOUNDS))
(IF (NUVBERP X) (INDEX X BOUNDS) X)))

46

51.

52.

53.

54.

55.

56.

Theorem ALPHA- TRANSLATE (rewrite):
(I MPLI ES (ALPHA-EQUAL A B X Y)
(EQUAL (TRANSLATE A X)
(TRANSLATE B Y)))

Definition.
(1 NSERT X BOUNDS N)

(I F (ZEROP N)
(CONS X BOUNDS)
(1 F (LI STP BOUNDS)
(CONS (CAR BOUNDS)
(I NSERT X (CDR BOUNDS) (SUBL N)))
(CONS X NI'L)))

Definition.
(NSUBST-1ND X Y Z BOUNDS N)

(1 F (NLAVBDAP X)
(IF (EQUAL (NBIND X) 2)

T
(NSUBST- | ND (NBODY X)
Y Z
(CONS (NBIND X) BOUNDS)
(ADDL N)))

(1 F (NCOVBP X)
(AND (NSUBST-1ND (NLEFT X) Y Z BOUNDS N)
(NSUBST-1ND (NRIGHT X) Y Z BOUNDS N))
M)

Definition.
(TRANS- | NSERT-1 ND X Z BOUNDS N)
(I'F (NLAMBDAP X)
(TRANS- | NSERT- 1 ND (NBODY X)
V4
(CONS (NBI ND X) BOUNDS)
(ADD1 N))
(1'F (NCOVBP X)
(AND (TRANS- | NSERT- | ND (NLEFT X)
Z BOUNDS N)
(TRANS- | NSERT- 1 ND (NRI GHT X)
Z BOUNDS N))

)

Defi nition.
(PRECEDE X BOUNDS N)

(I F_(ZERCP N)
F

(1F (LI STP BOUNDS)
(OR (EQUAL (CAR BOUNDS) X)
(PRECEDE X (CDR BOUNDS) (SUBL N)))
F))

Theorem NPRECEDE- | NDEX (rewrite):
(1 MPLI ES (AND (NOT (PRECEDE Z BOUNDS N))
(LEQ N (LENGTH BOUNDS)))
(EQUAL (I NDEX Z (I NSERT Z BOUNDS N))
(ADDL N)))

47

57. Theorem PRECEDE-|NDEX1 (rewite):
(1 MPLI ES (AND (LESSP N (I NDEX X BOUNDS))
(LEQ N (LENGTH BOUNDS)))
(EQUAL (1 NDEX X (I NSERT Z BOUNDS N))
(I'F (EQUAL X 2)
(ADDL N)
(ADDL (I NDEX X BOUNDS)))))

58. Theorem PRECEDE-| NDEX (rewite):
(1 MPLI ES (PRECEDE Z BOUNDS N)
(LESSP (I NDEX Z (1 NSERT Z BOUNDS N))
(ADDL N)))

59. Theorem PRECEDE-INDEX2 (rewite):
(1 MPLI ES (AND (LEQ (1 NDEX X BOUNDS) N)
(LEQ N (LENGTH BOUNDS)))
(EQUAL (1 NDEX X (I NSERT Z BOUNDS N))
(1 NDEX X BOUNDS)))

60. Theorem TRANSLATE-INSERT (rewrite):
(1 MPLI ES (AND (PRECEDE Z BOUNDS N)
(LEQ N (LENGTH BOUNDS))
(NTERWP X))
(EQUAL (TRANSLATE X (I NSERT Z BOUNDS N))
(BUMP (TRANSLATE X BOUNDS) N)))
H nt: Induct as for (TRANS-INSERT-IND X Z BOUNDS N).

61. Theorem SUBST-NSUBST (rewrite):
(1 MPLI ES (AND (PRECEDE Z BOUNDS N)
(NTERMP X)
(LEQ N (LENGTH BOUNDS)))
(EQUAL (SUBST (TRANSLATE X (I NSERT Z BOUNDS N))
Y
(ADD1 N))
(TRANSLATE X BOUNDS)))

62. Definition.
(NOT- FREE- I ND Y Z BOUNDS N)

(1 F (NLAVBDAP)
(NOT- FREE- | ND (NBODY Y)
v4
(CONS (NBIND Y) BOUNDS)
(ADDL N))
(1 F (NCOVBP Y)
(AND (NOT- FREE- I ND (NLEFT Y) Z BOUNDS N)
(NOT- FREE- | ND (NRI GHT Y) Z BOUNDS N))
M)

63. Theorem TRANSLATE-INSERT1 (rewite):
(1 MPLI ES (AND (PRECEDE Z (CONS X BOUNDS) (ADDL N))
(NTERMP Y)
(LEQ N (LENGTH BOUNDS)))
(EQUAL (TRANSLATE Y
(CONS X (I NSERT Z BOUNDS N)))
(BUMP (TRANSLATE Y (CONS X BOUNDS))

(ADD1 N))))
H nts: Consider:
TRANSLATE- | NSERT wi t h { BOUNDS<- (CONS X BOUNDS), N<-(ADD1 N),
X<-Y}

Enabl e TRANSLATE- | NSERT

48

64.

65.

66.

67.

68.

69.

Theorem NOT- FREE- | N- TRANSLATE (rewrite):
(1 MPLI ES (AND (NOT- FREE-IN Z YY)

H nt:

(LEQ N (LENGTH BOUNDS))
(NTERWP Y))
(EQUAL (TRANSLATE Y (I NSERT Z BOUNDS N))
(BUWP (TRANSLATE Y BOUNDS) N)))
I nduct as for (NOT-FREE-IND Y Z BOUNDS N).

Theorem NOT- FREE-IN-CORR (rewrite):
(1 MPLI ES (AND (NTERWP Y) (NOT-FREE-IN Z Y))

H nts:

(EQUAL (TRANSLATE Y (CONS Z BOUNDS))
(BUMP (TRANSLATE Y BOUNDS) 0)))
Consi der:
NOT- FREE- | N- TRANSLATE wi t h { N<- 0}
Enabl e NOT- FREE- | N- TRANSLATE

Theorem SUBST-NSUBST2 (rewite):
(1 MPLI ES (AND (PRECEDE Z (CONS W BOUNDS) (ADDL N))

Hints:

(NTERMP X)
(LEQ N (LENGTH BOUNDS)))
(EQUAL (SUBST (TRANSLATE X
(CONS W (I NSERT Z BOUNDS N)))
Y
(ADDL (ADD1 N)))
(TRANSLATE X (CONS W BOUNDS))))
Consi der:
SUBST- NSUBST wi t h { BOUNDS<- (CONS W BOUNDS), N<-(ADDL N)}
Enabl e SUBST- NSUBST

Theorem SUBST- NSUBST2- CORR (rewrite):
(1 MPLI ES (NTERWP X)

H nts:

(EQUAL (SUBST (TRANSLATE X (CONS Z (CONS Z BOUNDS)))
Y

(ADD1 (ADDL 0)))
(TRANSLATE X (CONS Z BOUNDS))))
Consi der:
SUBST-NSUBST2 wi th {W-2Z, N<-0}
Enabl e SUBST- NSUBST2

Theorem | NDEX-I NSERT (rewrite):
(I MPLIES (AND (NOT (EQUAL X 2))

(LEQ N (LENGTH BOUNDS)))
(NOT (EQUAL (I NDEX X (1 NSERT Z BOUNDS N))

(ADDL N))))

Theorem = TRANSLATE- PRESERVES- SUBST (rewrite):
(1 MPLI ES (AND (FREE- FOR X Y)

H nt:

(NOT (PRECEDE Z BOUNDS N))
(LEQ N (LENGTH BOUNDS))
(NTERMWP X)
(NTERWP Y))
(EQUAL (TRANSLATE (NSUBST X Y Z) BOUNDS)
(SUBST (TRANSLATE X (I NSERT Z BOUNDS N))
(TRANSLATE Y BOUNDS)

(ADDL N))))
I nduct as for (NSUBST-IND X Y Z BOUNDS N).

49

70.

71.

72.

73.

74.

50

Theorem TRANSLATE- PRESERVES- REDUCTI ON (rewrite):
(1 MPLI ES (AND (NLAVBDAP X)

(FREE- FOR (NBODY X) Y)

(NTERWP X)

(NTERWP Y))

(EQUAL (TRANSLATE (NSUBST (NBODY X) Y (NBIND X))
BOUNDS)
(SUBST (BODY (TRANSLATE X BOUNDS))
(TRANSLATE Y BOUNDS)

1)))
H nts: Consider:
TRANSLATE- PRESERVES- SUBST with {X<-(NBODY X), Z<-(NBIND X),
N<- 0}
Enabl e TRANSLATE- PRESERVES- SUBST

Definition.
(BETA- STEP X YY)

(1E (EQUAL X Y)
T

(I F (LAVBDAP X)
(AND (LAVBDAP)
(BETA- STEP (BODY X) (BODY Y)))
(I F (COVBP X)
(OR (AND (LAVBDAP (LEFT X))
(EQUAL Y
(SUBST (BODY (LEFT X)) (RIGHT X) 1)))
(AND (COVBP Y)
(BETA- STEP (LEFT X) (LEFT Y))
(BETA-STEP (RIGHT X) (RIGHT Y))))

F))
Definition.
(REDUCTION A B LI ST)
(1 F_(LI STP LI ST)
(AND (BETA- STEP (CAR LI ST) B)
(REDUCTION A (CAR LIST) (CDR LIST)))
(BETA- STEP A B))

Definition.
(MAKE- WALK- STEP X)

(IF (EQUAL X Y)
NI L
(I F (LAVBDAP X)
(MAKE- WALK- STEP (BODY X) (BODY Y))
(I F (COVBP X)
(I F (AND (LAVBDAP (LEFT X))
(EQUAL Y
(SUBST (BODY (LEFT X)) (RIGHT X) 1)))
"(NI'L NI L REDUCE)
(LI ST (MAKE- WALK- STEP (LEFT X) (LEFT Y))
(MAKE- WALK- STEP (RIGHT X) (RIGHT Y))))
NIL)))

Theorem MAKE- WALK- STEP- WALKS (rewrite):
(1 MPLI ES (BETA- STEP A B)
(EQUAL (WALK (MAKE- WALK- STEP A B) A)
B))

75.

76.

77.

78.

79.

80.

81.

82.

51

Definition.
(APPEND X Y)

(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) VY))
Y)

Definition.
(MAKE- REDUCE- REDUCTI ON A B LI ST)

(I F (LISTP LIST)
(APPEND (MAKE- REDUCE- REDUCTI ON A
(CAR LI ST)
(CDR LI ST))
(LI ST (MAKE- WALK- STEP (CAR LI ST) B)
NI L))
(LI ST (MAKE- WALK- STEP A B)))

Theorem REDUCE- APPEND (rewrite):
(EQUAL (REDUCE (APPEND X Y) A)
(REDUCE Y (REDUCE X A)))

Theorem MAKE- REDUCE- REDUCTI ON- REDUCTI ON (rewrite):
(I MPLI ES (REDUCTI ON A B LI ST)
(EQUAL (REDUCE (MAKE- REDUCE- REDUCTI ON A B LI ST)
A
B))

Definition.
(LI ST- LAVBDA LI ST)

(I F_(LI STP LI ST)
(CONS (LAMBDA (CAR LI ST))
(LI ST- LAVBDA (CDR LI ST)))
NI L)

Theorem LAVBDA- REDUCTION (rewrite):
(I MPLI ES (REDUCTI ON A Al LI ST)
(REDUCTI ON (LAVBDA A)
(LAVBDA Al)
(LI ST- LAMBDA LI ST)))

Definition.
(MAP- COMB- LEFT A LI ST)
(1 F_(LI STP LI ST)
(CONS (COVMB A (CAR LIST))
(MAP- COMB- LEFT A (CDR LIST)))
NI L)

Definition.
(MAP- COMB- RI GHT A LI ST)

(IF_(LI STP LI ST)
(CONS (COMB (CAR LIST) A)
(MAP- COVB- RI GHT A (CDR LI ST)))
NI L)

83.

84.

85.

86.

87.

88.

89.

Definition.
(LIST-COVMB A B LIST1 LI ST2)

(I F (LISTP LI ST1)
(I F (LISTP LI ST2)
(CONS (COMB (CAR LIST1) (CAR LIST2))
(LIST-COMB A B
(CDR LI ST1)
(CDR LI ST2)))
(MAP- COVB- RI GHT B LI ST1))
(I F (LISTP LIST2)
(MAP- COVB- LEFT A LI ST2)
NI L))

Theorem MAP- COVB- Rl GHT- REDUCTI ON2 (rewrite):
(1 MPLI ES (REDUCTION A Al LI ST1)
(REDUCTI ON (COVB A Bl)
(covB Al Bl)

(MAP- COVB- RI GHT Bl LI ST1)))

Theorem MAP- COMB- RI GHT- REDUCTI ON (rewrite):
(1 MPLI ES (AND (BETA- STEP B B1)
(REDUCTI ON A Al LI ST1))
(REDUCTI ON (COMB A B)
(COMB Al B1)
(MAP- COVB- RI GHT B LI ST1)))

Theorem NMAP- COVB- LEFT- REDUCTI ON2 (rewrite):
(I MPLI ES (REDUCTION B B1 LI ST2)
(REDUCTI ON (COvVB Al B)
(CovB Al Bl)
(MAP- COVB- LEFT Al LIST2)))

Theorem MAP- COVB- LEFT- REDUCTION (rewrite):
(1 MPLI ES (AND (REDUCTI ON B Bl LI ST2)
(BETA- STEP A Al))
(REDUCTI ON (COMVB A B)
(COVB Al B1)
(MAP- COVB- LEFT A LI ST2)))

Theorem LI ST- COVB- REDUCTI ON (rewrite):
(1 MPLI ES (AND (REDUCTI ON A Al LI ST1)
(REDUCTI ON B Bl LI ST2))
(REDUCTI ON (COMB A B)
(COMB Al B1)
(LI ST-COMB A B LIST1 LIST2)))

Theorem BETA-SUBST (rewrite):
(BETA- STEP (COVB (LAMVBDA A) B)
(SUBST A B 1))

52

90. Definition.
(MAKE- REDUCTI ON- VALK W A)

(IF (EQUAL (WALK WA) A)

NI L
(I F (LAVBDAP A)

(LI ST- LAVBDA (MAKE- REDUCTI ON- WALK W (BODY A)))

(I F (COVBP A)

(I F (AND (LAVBDAP (LEFT A))
(EQUAL (COMMAND W ’ REDUCE))
(CONS (SUBST (BODY (WALK (LEFT-1NSTRS W

(LEFT A)))
(WALK (RI GHT-1NSTRS W (RI GHT A))
1)
(CONS (COMB (WALK (LEFT-1NSTRS W
(LEFT A))
(WALK (Rl GHT- I NSTRS W
(RIGHT A)))
(LI ST-COMB (LEFT A)
(RIGHT A

(MAKE- REDUCTI ON- VALK
(LEFT- 1 NSTRS W
(LEFT A))
(MAKE- REDUCTI ON- WALK
(R GHT- | NSTRS W
(RIGHT A)))))
(LI ST-COMB (LEFT A)
(RIGHT A
(MAKE- REDUCTI ON- VALK (LEFT- | NSTRS W
(LEFT A))
(MAKE- REDUCTI ON- VALK (RI GHT- | NSTRS W
(RIGHT A))))

NIL)))

91. Theorem MAKE- REDUCTI ON- WALK- STEPS (rewrite):
(REDUCTI ON A
(WALK W A)
(MAKE- REDUCTI ON- WALK W A))

92. Theorem REDUCTI ON- APPEND (rewrite):
(I MPLI ES (AND (REDUCTION A B X)
(REDUCTION B C Y))
(REDUCTION A C (APPEND Y (CONS B X))))

93. Definition.
(MAKE- REDUCE- STEPS W A)
(IF (LISTP W
(APPEND (MAKE- REDUCE- STEPS (CDR W
(WALK (CAR'W A))
(CONS (WALK (CAR W A
(MAKE- REDUCTI ON- WALK (CAR W A)))
NI L)

94. Theorem MAKE- REDUCE- STEPS- STEPS (rewrite):
(REDUCTI ON A
(REDUCE W A)
(MAKE- REDUCE- STEPS W A))

53

95. Definition.
(MAKE-W X' Y Z LI ST1 LI ST2)

(REDUCE (MAKE- REDUCE X
(MAKE- REDUCE- REDUCTI ON X Y LI ST1)
(MAKE- REDUCE- REDUCTI ON X Z LI ST2))
(REDUCE (MAKE- REDUCE- REDUCTI ON X Z LI ST2)

X))

96. Definition.
(MAKE- REDUCTION X Y Z LI ST1 LI ST2)

(MAKE- REDUCE- STEPS (MAKE- REDUCE X
(MAKE- REDUCE- REDUCT| ON
(MAKE- REDUCE- REDUCTI ON

X Z LI ST2)
X Y LIST1))
Y)
97. Theorem THE- REAL- CHURCH RCSSER (rewrite):
(1 MPLI ES (AND (REDUCTI ON X Y LI ST1)
(REDUCTI ON X Z LI ST2))
(AND (REDUCTI ON Y
(MAKE-W X Z Y LI ST2 LI ST1)
(MAKE- REDUCTION X Y Z LI ST1 LI ST2))
(REDUCTI ON Z
(MAKE-W X' Y Z LI ST1 LI ST2)
(MAKE- REDUCTI ON X Z Y LI ST2 LIST1))))

98. Theorem BOTH MAKE- W ARE- SAME (rewrite):
(1 MPLI ES (AND (REDUCTI ON X Y LI ST1)
(REDUCTION X Z LI ST2))
(EQUAL (MAKE-W X Y Z LI ST1 LI ST2)
(MAKE-W X Z Y LIST2 LIST1)))
Hints: Consider:
CHURCH RCSSER wi th { Mk- X, U<- (MAKE- REDUCE- REDUCTI ON X Y LI ST1),
V<- (MAKE- REDUCE- REDUCTI ON X Z LI ST2)}
Enabl e CHURCH ROSSER

99. Theorem NBETA- STEP- TRANSLATES (rewite):
(1 MPLI ES (AND (NTERVP A) (NBETA- STEP A B))
(BETA- STEP (TRANSLATE A X)
(TRANSLATE B X)))

100. Definition.
(TRANS- LI ST X)

(1 F (LISTP X)
(CONS (TRANSLATE (CAR X) NI L)
(TRANS- LI ST (CDR X)))
NI L)

101. Theorem NTERMP-SUBST (rewite):
(I MPLIES (AND (NTERWP X) (NTERMP Y))
(NTERWP (NSUBST X Y N)))

102. Theorem NTERMP-BSTEP (rewite):
(I MPLI ES (AND (NBETA- STEP A B) (NTERMP A))
(NTERWP B))
Hint: Induct as for (NBETA-STEP A B).

103. Theorem NTERMP- ASTEP (rewrite):
(I MPLI ES (AND (ALPHA-EQUAL A B X Y) (NTERWP A))
(NTERWP B))

104. Theorem NTERMP-LIST (rewite):
(1 MPLI ES (AND (NREDUCTION A B LI ST) (NTERWP A))
(NTERWP B))

105.

106.

107.

108.

1009.

110.

Theorem REDUCTI ON- TRANSLATES (rewrite):
(1 MPLI ES (AND (NTERWMP A) (NREDUCTION A B LIST))
(REDUCTI ON (TRANSLATE A NI'L)
(TRANSLATE B NI L)
(TRANS-LI ST LIST)))

Definition.
(FIND-M X N)

(I F (LAVBDAP X)
(FIND-M (BODY X) (ADDL N))
(I F (COVBP X)
(I F (LESSP (FIND-M (LEFT X) N)
(FIND-M (RIGHT X) N))
(FIND-M (RIGHT X) N)
(FIND-M (LEFT X) N))
(DI FFERENCE X N)))

Definition.
(UNTRANS X M N)

(1 F (LAVBDAP X)
(NLAVBDA (PLUS M (ADDL N))
(UNTRANS (BODY X) M (ADDL N)))
(I F (COVBP X)
(NCOMB (UNTRANS (LEFT X) M N)
(UNTRANS (RIGHT X) M N))
(I F (LESSP N X)
(DI FFERENCE X (ADDL N))
(I F (NOT (ZERCP X))
(ADDL (PLUS M (DI FFERENCE N X)))
X))))

Defi nition.
(TERWP X)

(I F (LAVBDAP X)
(TERVP (BODY X))
(I F (COVBP X)
(AND (TERVP (LEFT X))
(TERVP (RIGHT X)))
(OR (NOT (ZEROP X)) (LITATOM X))))

Theorem NOT- FREE- | N- UNTRANS (rewrite):
(1 MPLI ES (AND (TERMP X)
(LEQ (FIND-MX N M
(LESSP (PLUS M N) Y))
(NOT-FREE-IN Y (UNTRANS X M N)))

Theorem FREE- FOR- UNTRANS (rewrite):
(1 MPLI ES (AND (TERWVP X)
(TERVP YY)
(LEQ N2 N1)
(LEQ (FIND-MY N2) M)
(FREE- FOR (UNTRANS X M N1)
(UNTRANS Y M N2)))
H nt: Induct as for (UNTRANS X M N1).

55

111. Definition.
(TRANS- UNTRANS- | ND X BOUNDS M N)

(1 F (NLAVBDAP X)
(TRANS- UNTRANS- | ND (NBODY X)
(CONS (NBIND X) BOUNDS)
M
(ADDL N))
(1 F (NCOVBP X)
(AND (TRANS- UNTRANS- | ND (NLEFT X)
BOUNDS M N)
(TRANS- UNTRANS- | ND (NRI GHT X)
BOUNDS M N))

)

112. Definition.
(BI'NDI NGS M N)
(I'F (ZERCP N)
NI L
(CONS (PLUS M N)
(BINDINGS M (SUB1 N))))

113. Theorem TRANS- UNTRANS (rewrite):
(I MPLI ES (AND (EQUAL (LENGTH BOUNDS) N)
(NTERMP X)
(LEQ (FI ND- M (TRANSLATE X BOUNDS) N)
M)
(ALPHA- EQUAL X
(UNTRANS (TRANSLATE X BOUNDS) M N)
BOUNDS
(BINDINGS M N)))
H nts: Di sabl e ALPHA- TRANSLATE
I nduct as for (TRANS-UNTRANS-1ND X BOUNDS M N).

114. Theorem TERMP-NTERWMP (rewrite):
(1 MPLI ES (NTERWP X)
(TERVP (TRANSLATE X BOUNDS)))

115. Theorem NTERMP-TERWMP (rewrite):
(1 MPLI ES (TERWMP X)
(NTERWP (UNTRANS X M N)))

116. Theorem | NDEX- FREEVAR (rewrite):
(1 MPLI ES (AND (LESSP N X)
(LEQ (DI FFERENCE X N) M)
(EQUAL (1 NDEX (DI FFERENCE (SUB1 X) N)
(BI'NDINGS M N))
X))

117. Theorem UNTRANS- TRANS (rewrite):
(I MPLIES (AND (TERWP X) (LEQ (FINDM X N M)
(EQUAL (TRANSLATE (UNTRANS X M N)
(BINDINGS M N))
X))

