
The Gypsy 2.0 and Gypsy 2.1 differences have been removed and placed in a separate document.)

Report on Gypsy 2.05
February 1, 1986

Donald I. Good
Robert L. Akers

Lawrence M. Smith

Institute for Computing Science

2100 Main Building

The University of Texas at Austin

Austin, Texas 78712

(512) 471-1901

Abstract

Gypsy is a collection of methods, languages, and tools for building formally verified computing systems.
Gypsy provides capabilities specifying a system, implementing it, and for using formal, logical deduction to
prove important properties about the specification and the implementation of the system. The Gypsy program
description language is a single, unified language that is used to express both the specification and the
implementation of a computing system. This report defines the Gypsy 2.05 program description language.
Gypsy 2.05 includes almost all of Gypsy 2.0 with some extensions and minor modifications.

Preface

The development of Gypsy began late in 1974, and the first report on Gypsy 1.0 was issued in August 1976.
Initial attempts to use Gypsy 1.0, to define its specification and proof methods and to implement it led to a
number of significant language revisions. The report on Gypsy 2.0 was issued in September 1978. Although
Gypsy 2.0 extended Gypsy 1.0 in some significant ways, Gypsy 2.0 primarily was a simplification of Gypsy
1.0. In order to provide a stable implementation target, the definition of Gypsy 2.0 has remain fixed until this
time. Now, based on the experience of the last several years of using and implementing Gypsy 2.0, this report
describes Gypsy 2.05. Again, Gypsy 2.05 primarily is a slightly extended subset of Gypsy 2.0.

The style and organization of this report on Gypsy 2.05 is a major change from the Gypsy 2.0 report. The
reason for this change is to make the report much more concise and readable. The style of presentation is
informal, but precise, and the organization is from the simpler to the more complex parts of the language.
Chapter 1 gives a summary of the basic Gypsy concepts. Chapters 2-7 are sufficient to specify and implement
simple sequential programs. Chapters 8-11 describe the more advanced parts of Gypsy, exception conditions,
dynamic objects, concurrency, and type abstraction.

In this organization, the chapters that describe the basic facilities make forward references to the existence
of the more advanced ones. For example, Chapter 3 on types describes the Gypsy type mechanism and
mentions all of the possible types. However, only the simple types and the static type compositions are
described there. The others are described in later chapters. The index of this report gives the page that defines
each phrase in the language.

This report on Gypsy 2.05 immediately supersedes the report on Gypsy 2.0. There will, however, be a
period of transition during which the Gypsy Verification Environment (GVE) will continue to operate on Gypsy
2.0. Because Gypsy 2.05 consists mainly of a large subset of Gypsy 2.0, this report on Gypsy 2.05, for the
greatest part, is also a report on Gypsy 2.0. The cases where Gypsy 2.05 differs from Gypsy 2.0 are described
in a separate document, entitled "Differences in Gypsy Dialects," by Lawrence M. Smith and Robert L. Akers.
During the transition period, these two documents together may serve as a report on Gypsy 2.0.

Acknowledgements

The contributions of Allen L. Ambler, Robert L. Akers, Richard E. Alterman, William R. Bevier, Woodrow
W. Bledsoe, James C. Browne, Wilhelm F. Burger, Richard M. Cohen, Carol A. David, Benedetto L. DiVito,
Dwight F. Hare, Charles G. Hoch, Gary R. Horn, John H. Howard, James C. Hsu, Lawrence W. Hunter, James
Keeton-Williams, John McHugh, Judith S. Merriam, Mark S. Moriconi, Karl Nyberg, Ann E. Siebert, Lawrence
M. Smith, Michael K. Smith, Russell A. Still, Anand V. R. Tripathi, Robert E. Wells and William D. Young to
the development, implementation and initial experimental applications of Gypsy are gratefully acknowledged.
Special acknowledgment is given to Robert L. Akers who prepared much of the material in the appendices of
this report.

Pascal was the starting point for the development of Gypsy, and there are still strong semantic similarities.
The languages Algol 60, Algol 68, Alphard, CLU, Concurrent Pascal, Euclid, Fortran, Nucleus, Simula and
Special and the structured programming principles pioneered by Edsger W. Dijkstra and C. A. R. Hoare also
have provided an assortment of fruitful ideas from which to draw.

The development, implementation and initial experimental applications of Gypsy have been sponsored
primarily by the National Computer Security Center (Contracts MDA904-80-C-0481, MDA904-82-C-0445).
Additional sponsorship has been provided by the U. S. Space and Naval Warfare Systems Command (formerly
Naval Electronic Systems Command) (Contract N00039-81-C-0074), by the U. S. Air Force Rome Air
Development Center (Contract F30602-84-C-0081), by Digital Equipment Corporation, by Digicomp Research
Corporation, and by the National Science Foundation (Grant MCS-22039).

GYPSY 2.05 REPORT FEBRUARY 1, 1986 1

Chapter 1

BASIC CONCEPTS

Gypsy is a language for specifying, implementing and proving computer programs. A specification
describes what effect is desired when a program runs, an implementation defines how the effect is caused, and a
proof verifies that the program always runs as specified.

1.1 Programs

A Gypsy program is a mechanism whose operation causes an effect on its environment. The environment
of a Gypsy program consists of data objects and exception conditions. Every data object has a name and a
value. The only ways that running a program can cause an effect on its environment are by changing the value
of a data object or by signalling a condition. A data object always has some value specified by the type of the
object. Normally, a program causes an effect on its environment by changing the value of some data object. A
program also, however, can signal an exception condition. Normally, this is done only to indicate that
something unusual has happened.

1.2 Specification

A Gypsy specification is a declarative statement about the environment of a program. Every program must
have a environment specification, and it also may have operational specifications.

The environment specification names every data object and exception condition in the environment. It also
specifies the type of each data object and whether the object is variable or constant. The program can change
the value of a variable object, but it can not change the value of a constant object. The environment
specification completely isolates the effects of running the program. The only objects that a program can have
access to are those that are named in its environment specification, and the only ones that it can change are its
variable objects.

The environment specification provides a very weak, but complete, description of the effect caused by
running a program. It defines completely what objects are in the environment and it identifies all those that
might be changed as a result of running the program. Operational specifications may be used to state much
stronger specifications. An operational specification gives a statement about what values the data objects may
have as the program runs. An operational specification may make a very strong statement that describes many
properties about the effect that is to be caused by a program, or it may make only a very weak statement that
describes only a few properties. The strength of a specification is matter of human choice.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 2

1.3 Implementation

A Gypsy implementation of a program is an imperative statement of how the program causes its effect. A
program is implemented by describing how it is composed of pre-defined programs. Some of these are
standard programs that are pre-defined by the Gypsy language, and others may be pre-defined by a particular
implementation of the language (for example to provide i/o support on a particular machine).

1.4 Proof

Gypsy supports proofs about specifications and proofs about programs. Specifications are stated in terms of
compositions of mathematical functions. Theorems about these functions and their compositions can be stated
directly in the Gypsy specification language, and they can be proved in the Gypsy proof system.

The specifications of a program define constraints on its implementation. The specifications of a program
can be viewed as sensors that are attached to its environment. The specification sensors are applied to the
environment at various times as the program runs. Whenever a specification sensor is applied, its gives a value
of either true or false. The implementation of a program satisfies its specifications if and only if all of its
specification sensors give true whenever the program runs.

The main distinguishing characteristic of Gypsy is that is possible to give formal, mathematical proofs that a
program satisfies its specifications. Gypsy is designed so that it always is possible to construct a set of logical
formulas, called verification conditions, that are sufficient (but not always necessary) to show that the
implementation of a program satisfies its specifications. If these formulas can be proved, then, whenever the
program runs, its implementation causes an effect that satisfies its specifications.

The main reason for proving that an implementation satisfies its specifications is to give a sound, objective,
convincing argument that the program is reliable -- that it always does what a user expects of it. It is tempting
to believe that a proved program is totally reliable -- that it never can produce an unexpected result. This,
however, provides a false sense of safety because there are several reasons why even a proved program
sometimes may not run as expected. First, the selection of specifications often is quite subjective.
Specifications may make a strong statement about what effect is expected, or they may make only a weak
statement, or they may even say something that is not expected at all! In general, there is no objective way to
determine if the specifications require that the program do exactly everything that a user will expect of it.
Second, every proof is based on certain assumptions. If these assumptions are not valid, then the conclusions
drawn from the proof may not be valid either. Third, any mechanical tools that are used to help construct a
proof must produce a valid one. Fourth, a proof of a Gypsy program assumes that the combination of the
supporting software and hardware, which implement the Gypsy language, satisfy exactly the Gypsy semantics.
If any of these assumptions are violated, running the program may cause effects that do not satisfy its
specification. A proved program normally is more reliable than an unproved one; but, one must understand
clearly the specifications that are stated and the assumptions upon which the proofs are based.

1.5 Independence Principle

Gypsy is designed so that the proof of a program requires only certain, limited specifications about its
components. An implementation of its components, for example, is never required. This characteristic is
known as the independence principle, and it has two very important consequences. First, a large, complex
program can be proved component by component in small, manageable steps. Second, the proof of a program
can be done before its components are implemented. The word PENDING can be used in many places in Gypsy
to indicate components that will be supplied in subsequent stages of development.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 3

Because of the independence principle, Gypsy can be used throughout all the normal stages of the software
life cycle. For example, at the highest level of system design, specifications can be stated for the total system.
Then, the Gypsy program composition rules can be used to state how the system is implemented by its
subsystems, and specifications can be given for these. Even at this very early stage, a proof of the total system
can be constructed. Of course, this proof is contingent upon the subsystems satisfying their specifications, and
consequently, a subsequent step must be to prove the subsystems in a similar way. This process can be applied
repeatedly until all system components are decomposed into the pre-defined Gypsy programs. In this way, the
Gypsy specification, implementation and proof methods can be applied throughout all levels of system
composition, from the highest level of system design to the lowest level of coding.

1.6 Language Summary

The specifications and implementations of all Gypsy programs are written in terms of the five kinds of
Gypsy units: PROCEDURE, FUNCTION, CONST (constant), LEMMA and TYPE. The fundamental units are
types and procedures. A type specifies constraints on data objects. All Gypsy programs are procedures. A
function is a special kind of procedure, and constants and lemmas are special kinds of functions. By providing
pre-defined units and rules for composing units into user-defined units, Gypsy provides a program
implementation language that includes data assignment, condition handling, dynamic memory (without explicit
pointers) and concurrency. It also provides a specification language, including type abstraction, for stating
desired properties of these implementations.

The Gypsy standard types are BOOLEAN, CHARACTER, INTEGER, RATIONAL, and ACTIVATIONID.
Scalar types also may be defined. The standard type compositions are ARRAY, RECORD, SET, SEQUENCE,
MAPPING, and BUFFER. Standard functions are pre-defined on all of these. Integer, boolean, rational, set,
sequence and mapping are the familiar structures from ordinary mathematics, and the other types also have
precise mathematical definitions. In so far as possible, the Gypsy standard functions are the ones normally
associated with the mathematical structures. The well developed properties of these structures and their
functions provide much of the power of the Gypsy proof methods. Logical deductions can be made about the
Gypsy structures in the same way as the mathematical structures because, in most cases, the Gypsy structures
are the mathematical structures.

The Gypsy standard procedures are assignment (:=), NEW, MOVE, REMOVE, SEND, RECEIVE and GIVE.
New, move and remove are standard procedures for dynamic memory management. Send, receive and give are
standard procedures for handling buffers. BUFFER objects are the only objects in Gypsy that can be shared
among procedures that run concurrently. The sequential procedure compositions are IF, CASE, LOOP and
BEGIN; and the concurrent procedure compositions are AWAIT and COBEGIN.

ENTRY, BLOCK and EXIT statements are operational specifications about the effect of a program on its
external environment. KEEP and ASSERT statements are internal operational specifications. A relation among
functions can be specified by a lemma. CENTRY, CBLOCK, CEXIT and HOLD are specification statements for
type abstraction.

1.7 Language Implementation

Many of the Gypsy types are potentially unbounded in size, and therefore, it is impossible to make all
Gypsy programs run on a real machine with finite resources. All of the Gypsy specification, implementation
and proof methods are perfectly sound for these objects of unbounded size, but obviously, there always can be
some value that is too big to fit in the available storage capacity of a real machine.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 4

Therefore, every implementation of Gypsy for a real machine must restrict the programs that can run on that
machine to some subset of Gypsy. There are no restrictions on how this subset may be chosen. The
implementation for a particular machine also may provide an implementation prelude. An implementation
prelude simply pre-defines a set of Gypsy units in addition to the standard ones. Defining a Gypsy subset and
an implementation prelude can be used to tailor Gypsy to the individual characteristics of any particular
machine. Clearly, this constrains the portability of Gypsy programs. However, if a Gypsy program can be
ported from one machine to another, then so can its proof.

1.8 Verification Environment

Gypsy is designed to be implemented within an integrated programming environment. This programming
environment is an interactive system that is intended to provide the all the tools needed to specify, implement
and prove Gypsy programs throughout their life cycle. Because this environment needs to include tools for
verifying programs, as well as other more conventional tools such as compilers, it is referred to as a Gypsy
Verification Environment (GVE). A GVE consists of two major parts, a data base and a set of tools for working
on information in the data base. The data base serves as a library for Gypsy units and other supporting
information. The Gypsy units in the library may be in various stages of evolution. As the library evolves, new
units may be added and old ones may be modified or deleted. The library may contain units from one or more
computing systems, and the same units may be used in several systems. The library also may contain other
supporting information such as verification conditions and their proofs. Ideally, a GVE contains all relevant
information about the Gypsy units it contains (including even such things as documentation), and it contains
mechanisms for ensuring the consistency of this information. There are no specific requirements on what tools
must be provided by a GVE. Ideally, it should provide all the tools that a program developer needs to support
the evolution of a formally specified and proved program throughout its life cycle. Tools are needed to create
and modify Gypsy text, to prove the programs, to make them run and to produce whatever other kinds of
information can be contained in the library. The basic tools that are needed are a text editor, verification
condition generator, theorem prover and compiler. In fact, it is quite reasonable for one GVE to contain several
different compilers for several different target machines. These compilers may be somewhat different from
conventional compilers because they compile from units in the library rather than directly from a text file.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 5

Chapter 2

LEXICAL PRELIMINARIES

Every segment of text in the Gypsy language is a sequence of ASCII characters. The characters are grouped
into words which form the five kinds of Gypsy units: procedures, functions, constants, lemmas, types. Finally,
Gypsy units are organized into scopes.

2.1 Notation

The phrases of characters and words that may appear in Gypsy text are identified by English words
embedded in <...>. These same words are used to describe the meaning of the phrase. Each phrase is defined in
terms of other phrases, words and characters. For example,

<identifier> ::= <letter> { [_] <letter or digit> }

The symbol ::= means "is defined as." In defining the phrases, | means "or", parts enclosed in [...] are optional
and parts enclosed in {...} may appear zero or more times. For example, the preceding defines an identifier as a
sequence of letters, digits and underscores that begins with a letter and does not end with an underscore.

In defining phrases, any letter or word that appears literally as a part of the phrase is given in upper case.
Also, unless stated otherwise, there may be any number of space, tab, carriage return or line feed characters
between phrases.

2.2 Character Set and Conventions

Gypsy text is composed of ASCII characters. Unless specified otherwise, upper and lower case letters can
be used interchangeably, and matching pairs of parentheses (...) and square brackets [...] may be used
interchangeably. However, in this report, to distinguish Gypsy text from the text of the report, Gypsy text will
be written only in upper case. Also, Gypsy text will contain only (...) so that [...] can denote optional parts of
phrases.

2.3 Identifiers

Identifiers are used as names for Gypsy units and objects.

<identifier> ::= <letter> { [_] <letter or digit> }

<letter or digit> ::= <letter> | <digit>

<letter> ::=

GYPSY 2.05 REPORT FEBRUARY 1, 1986 6

A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The sequence of characters of an identifier must be contiguous, and any character immediately either before or
after an identifier must be some character other than a letter, digit, or underscore. The identifiers given in
Appendix A have a pre-defined meaning, and they can not be used for any other purpose.

Examples: X Y Z4 WIDTH AREA_OF_BOX

2.4 Comments

Comments are annotations that are embedded in the Gypsy text. These annotations have no effect on the
meaning of the text. If they are removed from the text, the meaning of the text is not changed. Any number of
comments can be placed before or after any Gypsy phrase.

<comment> ::= "{" { <comment character> } "}"

<comment character> ::= any character except "}"

The symbols "{" and "}" above mean literally the characters { and }.

Examples: {VARIABLE X CORRESPONDS TO THE CRT}
{THIS PROCEDURE LAST MODIFIED ON MARCH 1, 1983}

GYPSY 2.05 REPORT FEBRUARY 1, 1986 7

Chapter 3

TYPE SPECIFICATIONS

A Gypsy type specifies constraints for data objects. A type specification must be given for every data
object. A type specification defines a set of values, and a data object always must have some value in the set of
values defined by its type. Every type specification also defines a default initial value, and some type
specifications may specify certain additional constraints. There are only two ways in which a type may be
defined. It may be a pre-defined type, or it may be some composition of existing types. Thus, every type is
either pre-defined or it is some composition of the pre-defined types. There are a fixed set of rules for
composing types. An object that has a composed type is called a structured object (because it is a structure that
has several components).

<type specification> ::= <type name> | <subrange type>
| <restricted buffer type composition>

<type name> ::= <identifier>

A type name may be the name of a pre-defined type, or it may be the name of a type that is defined by a type
declaration.

<type declaration> ::= <ordinary type declaration>
| <abstract type declaration>

<ordinary type declaration> ::=
TYPE <type name> = <type definition>

<type definition> ::=
PENDING | <scalar type> | <static type composition>

| <dynamic type composition> | <buffer type composition>
| <type specification> [:= <default initial value expression>]

PENDING is a place holder for some unknown type definition.

Example type declaration: TYPE INT = INTEGER

3.1 Default Initial Values

Every type has a default initial value that is assigned to an object of that type when it is created (unless
specified otherwise). The default initial value ensures that every data object always has some value of its
specified type. A data object never has an undefined value. The standard function INITIAL gives the default
initial value of a type.

<default initial value expression> ::= <pre-computable expression>

The use of a default initial value expression in a type definition defines a type that is the same as the one given

GYPSY 2.05 REPORT FEBRUARY 1, 1986 8

by the type specification except that the default initial value is the one given by the initial value expression.
The default initial value must satisfy the type specification that it follows.

Example type declaration with default initial value expression:
TYPE INT2 = INTEGER := 2
{INT2 is the same type as INTEGER except that its default
initial value is 2 (instead of 0)}

3.2 Simple Types

The simple standard types are boolean, character, integer, rational. Scalar types and the subrange types also
may be defined.

3.2.1 Scalar Types

A scalar type defines a non-empty sequence of scalar values. Its default initial value is the first value in the
sequence.

<scalar type> ::= (<scalar value> { , <scalar value> })

<scalar value> ::= <identifier>

A scalar type definition TYPE t=(v0, ..., vn) defines a set of Gypsy constants (Section 5.5)
CONST v0:t = 0; ...; CONST vn:t = n. The integer values of these constants can be obtained only
by using the standard function ORD -- for example, ORD(v0) = 0, ..., ORD(vn) = n.

Example type declaration of a scalar type:
TYPE COLOR = (RED, BLUE, GREEN)
{This defines CONST RED:COLOR=0 ... CONST GREEN:COLOR=2
and ORD(RED)=0, ..., ORD(GREEN)=2.}

3.2.2 Type Boolean

Type BOOLEAN is the standard scalar type of logical truth values.

TYPE BOOLEAN = (FALSE, TRUE)

3.2.3 Type Character

Type CHARACTER is the standard type that defines scalar values for the 128 member ASCII character set.
The scalar values for the printable ASCII characters " " (space) through "~" are named by non-standard
"identifiers" consisting of a character between two single quote marks. For example, ’x’ names the lower-case
character x. These "identifiers" can be used in the same way as normal identifiers (that name a scalar value).
The other ASCII characters do not have predefined names in Gypsy 2.05, so they must be constructed with the
standard function scale.

3.2.4 Type Integer

Type INTEGER is the set of whole numbers of ordinary mathematics. The default initial value is 0.

<integer value> ::= [-] <number>

<number> ::= [<base>] <digit> { <digit> }

GYPSY 2.05 REPORT FEBRUARY 1, 1986 9

<base> ::= BINARY | OCTAL | DECIMAL | HEX

The digits in a number must be contiguous, and they must be of the base indicated. If no base is given,
DECIMAL is assumed. Any character either immediately before the first digit or immediately after the last digit
must be some character other than a digit.

Examples: 17 -3 BINARY 101111 - HEX 3F9

3.2.5 Type Rational

Type RATIONAL is the set of rational numbers of ordinary mathematics. The default initial value is 0/1.

<rational value> ::= <integer value> / <number>

Note that the bases of the numerator and the denominator are stated separately -- for example,
OCTAL 777/111 is the rational number (OCTAL 777)/(DECIMAL 111).

Examples: 2/4 -17/2

3.2.6 Subrange Types

A subrange type is a simple type with a value set that is restricted to a limited range.

<subrange type> ::= <simple type name> <range restriction>

<range restriction> ::= <non-empty pre-computable range>

<simple type name> ::= <type name>

<non-empty pre-computable range> ::= <range>

<range> ::= (<range limits>)

<range limits> ::= <minimum value> .. <maximum value>

<minimum value> ::= <expression>

<maximum value> ::= <expression>

Both the minimum and maximum values in the range restriction must be pre-computable (Section 4.3) values of
the simple type named, and the minimum must be less than or equal to the maximum.

The subrange type is the same as the simple type named except for the following. The value set specified
by the subrange type is set of values from the minimum to the maximum value or the range limits. If the default
initial value of the simple type named is not in the range limits, the default is the minimum value in the range.

Examples of type declarations of subrange types:
TYPE OCTAL_INT = INTEGER(0..7)
TYPE PRINTABLE_CHAR = CHARACTER(’!’..’~’)
TYPE DIGIT = PRINTABLE_CHAR(’0’..’9’)
TYPE WORK_DAY = DAY(MONDAY..FRIDAY)
TYPE BASE_INTERVAL = RATIONAL(1/2..3/2)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 10

3.3 Static Type Compositions

The static type compositions compose values that have a fixed number of components.

<static type composition> ::= <array type> | <record type>

3.3.1 Arrays

An array has a fixed number of components each of the same type. Each component is called an element.
The default initial value of an array is the value obtained by assigning the default initial value of the element
type to each element.

<array type> ::= ARRAY (<index type>) OF <component type>

<index type> ::= <non-rational simple type specification>

<non-rational simple type specification> ::= <type specification>

<component type> ::= <type specification>

The index type may be any simple type except rational or a subrange of rational.

An array has one element for each value of its index type. Each element has a selector i, which is an
element of the index type, and a value v of the element type. The value of an array is
array:{(i1,v1), ..., (in,vn)}. The {...} part is the set of components, and the tag array marks the set as the value
of an array.

Examples of type declarations of array types:
TYPE INT_ARRAY = ARRAY (INTEGER(1..10)) OF OBJECT
TYPE OBJECT = ARRAY (CHARACTER) OF BOOLEAN

3.3.2 Records

A record has a fixed number of components which may be of different types. Each component of a record
is called a field. The default initial value of a record is the value obtained by assigning each of its fields the
default initial value of its type.

<record type> ::= RECORD (<fields>)

<fields> ::= <similar fields> { ; <similar fields> }

<similar fields> ::= <field name> { , <field name> } : <field type>

<field name> ::= <identifier>

<field type> ::= <type specification>

Each field has a name f and a value v which is of the type of that field. The name of each field must be unique
within the record. The value of a record is record:{(f1,v1), ..., (fn,vn)}. The value of a record is a set marked
with the tag record. Therefore, the order in which its fields are defined is unimportant.

Examples of type declarations of record types:
TYPE DATE = RECORD(MONTH: MONTH_ID;

DAY: INTEGER(1..31);
YEAR: INTEGER(1900..2000))

GYPSY 2.05 REPORT FEBRUARY 1, 1986 11

3.4 Base Types

Base types are used to determine if data objects are suitable operands for Gypsy programs. In general, the
base type of a type is the type that is composed in the same way but with its various restrictions removed. The
precise definitions of the base types are given in Appendix B.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 12

Chapter 4

EXPRESSIONS

Expressions are rules for computing values. There are two rules for computing values. A value may be
computed by i) taking the value of a data object, or ii) by computing a function of other values. In some
contexts, expressions also are rules for computing names of data objects. (The conditions that can be signalled
while computing expressions are described in Section 8.5.4 and Appendix C.)

4.1 Name Expressions

A name expression is a rule for computing the name of a data object. If the object is a structured object,
each of its components is also an object and a name expression may name either the entire structured object or
one of its components.

<name expression> ::= <data object name> { <component selectors> }

<data object name> ::= <identifier>

The data object name must be the name of some existing data object. If the data object name is followed by
component selectors, it must be a structured object and the name expression names the selected component.

Examples: X R.F Y(I) Z(I)(J) Z(I,J) S.F(I,J).G

4.1.1 Component Selectors

Component selectors identify some one component or value (of one component) of a structured object.

<component selectors> ::=
. <field name>

| (<index selector> { , <index selector> })

<index selector> ::= <expression>

The component selectors are applied in order from left to right, and the form (i,j,...) is an abbreviation for the
selector sequence (i)(j).... A field name is a selector for record fields, and an index selector is a selector for
arrays, sequences, and mappings. Except in some cases for mapping components (Section 9.3.1), an index
selector must name an existing component; otherwise, a condition is signalled.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 13

4.2 Value Expressions

A value expression may be a literal value or the value of a data object, or it may be the result of applying
various functions to other values. Some of these functions are denoted by special operators.

4.2.1 Primary Values

The basic parts of a value expression are its primary values.

<primary value> ::= <literal value> | <set or sequence value>
| <entry value> | <data object name>
| <function call>

<literal value> ::= <scalar value> | <integer value> | <character value>
| <rational value> | <string value>

If the primary value is a data object name, its value is the value of the data object it names.

4.2.2 Modified Primary Values

If a primary value is the value of a structured object, its component values may be selected or they may be
altered.

<modified primary value> ::= <primary value> { <value modifiers> }

<value modifiers> ::= <value selectors> | <value alterations>

<value selectors> ::= <component selectors> | <subsequence selector>

The value modifiers are applied in order from left to right, and the component selectors are used in the same
way as in name expressions.

4.2.3 Value Alterations

Value alterations define a value of a composed type. The value is defined in terms of another similarly
composed value with the values of some of its components altered.

<value alterations> ::=
WITH (<component alterations> { ; <component alterations> })

<component alterations> ::= [<each clause>] <component modification>

<component modification> ::=
<component assignment> | <component creation> | <component deletion>

<component assignment> ::= <alteration selector list> := <expression>

<alteration selector list> ::=
<component selectors> { <component selectors> }

Each of the component alterations modifies one or more component values of a composed type. The
modifications are done in sequence from left to right. A component assignment assigns the value of its
expression to the component named by its alteration selector list. If the value is not within the type of the
component, a condition is signalled.

Examples of expressions with value alterations:

GYPSY 2.05 REPORT FEBRUARY 1, 1986 14

{ARRAY} A WITH ((I) := X)
{This value, say U, is the same as array A except U(I)=X.
For all other elements, U(I)=A(I).}

{RECORD} R WITH (.F := Y; .G(K) := Z)
{This value, say V, is the same as record R except that V.F=Y
and V.G(K)=Z. The other components of V and R are equal.}

{STRUCTURE} S WITH (.F(I,J).G := Z)
{This value, say W, is the same as structure S except that
W.F(I,J).G=Z. The other components of W and S are equal.}

4.2.4 Each Clauses

An each clause designates a sequence of operations.

<each clause> ::= EACH <identifier> : <bounded index type> ,
<bounded index type> ::= <index type>

Within value alterations, an each clause has the form

EACH <identifier> : <bounded index type> , <component modification>

This designates a sequence of component modifications. The index type, which must have a smallest and a
largest value, defines an ordered sequence of simple values. These values are bound successively, from
smallest to largest, to the identifier. This defines a sequence of component modifications (one for each value of
the index type) which are performed in order.

The appearance of the identifier in the each clause defines it as a local name (Section 5.3) of the Gypsy unit
that contains the each clause. The identifier of an each clause may be used only within the component
modification of the each clause (as a local constant of its index type). Within the component modification, the
identifier may not be used as the bound identifier in another each clause or quantified expression (Section
6.1.2).

Example expression with each clauses:
{ARRAY} A WITH (EACH I : SMALL_INT, (I) := F(I))

{If TYPE SMALL_INT=INTEGER(1..4), then this is the same value as
A WITH ((1):=F(1); (2):=F(2); (3):=F(3); (4):=F(4)).}

4.2.5 Operators

A value of an expression may be simply a modified primary value, or it may be computed by applying
operators to modified primary values as operands. Operators in Gypsy are a special notation for calls of
standard functions.

<expression> ::= <term> | <quantified factor>

<term> ::= <factor> { <binary operator> <factor> }
[<binary operator> <quantified factor>]

<factor> ::= [<unary operator>] <modified primary value>
| <if expression>
| (<expression>)

<unary operator> ::= <integer unary operator>
| <rational unary operator>
| <boolean unary operator>

GYPSY 2.05 REPORT FEBRUARY 1, 1986 15

<binary operator> ::= <simple relational operator> | <boolean operator>
| <integer operator> | <rational operator>
| <set operator> | <sequence operator>
| <mapping operator>

<simple relational operator> ::= EQ | = | NE | < | LT | LE | > | GT | GE

<boolean unary operator> ::= NOT

<boolean operator> ::= AND | & | OR | IMP | -> | IFF

<integer unary operator> ::= -

<integer operator> ::= ** | * | / | DIV | MOD | + | -

<rational unary operator> ::= -

<rational operator> ::= ** | * | / | + | -

<quantified factor> ::= [<boolean unary operator>] <quantified expression>

If an expression has no operators, its value is its modified primary value. If it does have operators, its value is
the result of applying the operators to their operands.

The operand that an operator is applied to is determined by precedence levels. Operators with lower
numbered precedence levels are performed first; and among operators of equal precedence, the operators are
applied from left to right. (The one exception is the :> operator. The operations x :> y :> z :> s are
performed from right to left.) The precedence levels are as follows:

1 **
2 -(unary)
3 * / DIV MOD
4 + -(binary) <:
5 :> ADJOIN OMIT
6 @ APPEND UNION INTERSECT DIFFERENCE
7 = EQ NE < LT LE > GT GE IN SUB
8 NOT
9 & AND
10 OR
11 -> IMP IFF

The operands in an expression must satisfy the type requirements of the standard function denoted by their
operator. These type requirements and the results produced by the operators are given in Appendix C.

Examples of expressions: X A(I) X.F < M(I,J) + 1 AND B

4.2.6 If Expression

An if expression provides a way of choosing one of several potential values as the value of an expression.

<if expression> ::=
IF <boolean expression> THEN <potential value expression>
{ ELIF <boolean expression> THEN <potential value expression> }
ELSE <potential value expression> FI

<potential value expression> ::= <expression>

GYPSY 2.05 REPORT FEBRUARY 1, 1986 16

The value of the if expression is the value of the potential value expression that follows the first boolean
expression that is true. If none of them are true, the value of the if expression is the value of the last potential
value expression. The only boolean expressions whose values are computed are those needed to determine the
first one that is true. The only potential value expression whose value is computed is the one that defines the
value of the if expression.

Example: IF X < Y THEN P+Q ELSE 4 FI

IF CH < A THEN "LESS"
ELIF CH = A THEN "EQUAL-LESSER"
ELIF CH < B THEN "BETWEEN"
ELIF CH = B THEN "EQUAL-GREATER"

ELSE "GREATER" FI

4.3 Pre-Computable Expressions

A pre-computable expression is one whose value can be computed in a particular Gypsy verification
environment prior to running a Gypsy program on a target machine. Thus, what is pre-computable in Gypsy
may vary from one environment to another.

<pre-computable expression> ::= <expression>

<pre-computable value> ::= <scalar value> | <integer value>
| <string value> | <constant name>
| <type name>

A pre-computable expression is one that is composed only of pre-computable values, standard functions and
operators. Type names are pre-computable values only insofar as they may appear as actual parameters to the
standard functions UPPER, LOWER, SCALE, INITIAL, and NULL. Each Gypsy verification environment
determines what set of values, standard functions and operators are pre-computable in that environment.

Examples of expressions that may be pre-computable:
14
TRUE
M+N {Provided M and N are constant units}
SCALE(1,COLOR)
INITIAL(NUM_ARRAY) WITH (EACH I:INDEX, (I) := I)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 17

Chapter 5

PROGRAMS

A Gypsy program can cause an effect on its environment only by changing the value of its data objects or by
signalling a condition (Chapter 8). Complete external environment specifications must be given for every
program. Operational specifications, an internal environment, an implementation and internal specifications
also may be given. All Gypsy programs are procedures. Functions are a special kind of procedure, and
constants are a special kind of function.

5.1 Procedures

A Gypsy procedure is a mechanism that causes some effect on an environment of data objects and
conditions.

<procedure declaration> ::=
PROCEDURE <procedure name>
<external data objects> [<external conditions>] =
<procedure body>

<procedure name> ::= <identifier>

The following is an example of a complete Gypsy procedure with its supporting type and constant declarations.
(All Gypsy units must be contained in scopes. See Chapter 7.)

SCOPE MATRIX =
BEGIN

PROCEDURE COLUMN_SUM(VAR S:A_LARGE_INT; A:A_MATRIX; COLUMN:AN_INDEX)=
BEGIN
VAR I:AN_INDEX := 1;
S := 0;
LOOP
S := S + A(I,COLUMN);
IF I = MATRIX_SIZE THEN LEAVE {THE LOOP}
ELSE I := I + 1;
END;

END;
END;

CONST MATRIX_SIZE:INTEGER = 10;

TYPE AN_INDEX = INTEGER(1..MATRIX_SIZE);
TYPE A_MATRIX = ARRAY (AN_INDEX) OF AN_ARRAY;
TYPE AN_ARRAY = ARRAY (AN_INDEX) OF A_SMALL_INT;

GYPSY 2.05 REPORT FEBRUARY 1, 1986 18

CONST MAX_SMALL_INT:INTEGER = 1000;
TYPE A_SMALL_INT = INTEGER(-MAX_SMALL_INT..MAX_SMALL_INT);

CONST MAX_LARGE_INT:INTEGER = 10 * MAX_SMALL_INT;
TYPE A_LARGE_INT = INTEGER(-MAX_LARGE_INT..MAX_LARGE_INT);

END;

5.2 External Environment

An external object is one whose life time extends beyond the interval during which the procedure runs. The
external data objects and conditions of the procedure define its complete external environment. It has access to
no other external objects. The external data objects and conditions define the formal parameters of the
procedure. A formal parameter is a name that is used temporarily, while the procedure runs, to refer to an
external object. (It does, however, have access to other Gypsy units (Section 7.4). Gypsy units are neither data
nor condition objects.)

<external data objects> ::=
(<similar formal data parameters>
{ ; <similar formal data parameters> })

<similar formal data parameters> ::=
[<access specification>] <formal data parameters> : <formal type>

<access specification> ::= VAR | CONST

<formal data parameters> ::= <identifier> { , <identifier> }

<formal type> ::= <type specification>

The formal parameters are local names of the procedure. (See Section 5.3.) Every formal data parameter has an
access specification and a formal type specification. An access specification of VAR specifies that the external
object is a variable object, and CONST specifies that it is a constant object. If no access specification is given,
CONST is assumed. The procedure may assign a value to a variable object, but not to a constant object. Within
the procedure, each object must have a value of its formal type.

5.3 Local Names

Every Gypsy unit has associated with it a set of local names. The local names are identifiers which are
contained within the unit and which identify various parts of the unit. The local names include the following:
the unit name, the names of the formal parameters including MYID (Section 10.6.1) and RESULT (Section 5.4),
the names of the internal data objects and conditions, the names of all external units referred to within the unit.
Each of the local names mentioned above must be unique within the unit.

Quantified names in quantified expressions (Section 6.1.2) and the names of identifiers in each clauses
(Section 4.2.4) are the bound identifiers of the unit. Each bound identifier is also a local name and it must be
different from each of the local names listed in the preceding paragraph. Bound identifiers need not be unique
within a unit so long as they satisfy the restrictions stated in Sections 6.1.2 and 4.2.4.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 19

5.4 Functions

A Gypsy function is a procedure that has exactly one formal variable parameter named RESULT. RESULT
is the value of the function.

<function declaration> ::=
FUNCTION <function name> [<equality extension>]

[<external data objects>] : <result type>
[<external conditions>] =
<procedure body>

<function name> ::= <identifier>

<result type> ::= <type specification>

The external data objects, external conditions and body are the same as for procedures except that a function
may have only constant formal data parameters. Therefore, running a function can not produce any effect on its
external data objects except to give a value to its RESULT.

The RESULT parameter for a function is specified automatically and implicitly. It may not appear explicitly
in the list of formal parameters, but it may be used throughout the rest of the function just like an ordinary
formal variable parameter. The result type is the formal type of the RESULT parameter. (When a function is
called, an object whose value is the default initial value of the result type is used as the actual parameter for
RESULT.)

The Gypsy proof methods assume that all functions are deterministic -- that is, if given the same values for
its constant formal parameters, the function always produces the same value of RESULT. Determinism is not
assumed for procedures. Most functions that can be written in Gypsy are deterministic, but there are a few
cases in which (by virtue of concurrency and type abstraction) it is possible to write non-deterministic ones.
Thus, for a Gypsy proof to be valid, every function that it refers to must be proved to be deterministic.

Example: FUNCTION CSUM(A:A_MATRIX; COLUMN:AN_INDEX) : A_LARGE_INT =
BEGIN
COLUMN_SUM(RESULT,A,COLUMN);

END;

5.5 Constants

A Gypsy constant is a concise notation for a pre-computable function with no constant formal parameters.

<constant declaration> ::=
CONST <constant name> : <result type> := <constant body>

<constant name> ::= <identifier>

<constant body> ::= PENDING | <pre-computable expression>

The constant body must produce a value of the result type. The definitions of constants may not be circular.
PENDING is a place holder for some unknown constant body.

Examples: CONST N : INTEGER := 14
CONST M : A_COLOR := SCALE(1,A_COLOR)
CONST LAST_DAY : A_DAY := PENDING
CONST INITIAL_VECTOR : A_VECTOR

:= INITIAL(A_VECTOR) WITH (EACH I:AN_INDEX, (I) := 2*I)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 20

5.6 Bodies

A procedure body defines the external operational specifications, implementation and internal specifications
of a procedure. The implementation may define an internal environment and it also defines the imperative
statements that cause the effect of the procedure. The internal environment is a set of objects that exist only
while the procedure runs. The external and the internal environment of a procedure are its total environment. It
has access to no other data or condition objects.

<procedure body> ::= PENDING
| BEGIN
[<external operational specifications>]
[<internal environment>]
[<keep specification>]
[<internal statements>]
END

The internal environment defines the internal objects of the procedure body, and the names of these objects are
local names of the procedure. The internal objects may be referred to in all parts of the procedure body except
in the external operational specifications. PENDING is a place holder for some unknown procedure body.

5.7 Internal Environment

The internal environment of a procedure consists of data objects and conditions that exist only while the
procedure runs.

<internal environment> ::= <internal data or condition objects>
{ <internal data or condition objects> }

<internal data or condition objects> ::= <internal data objects> ;
| <internal condition objects> ;

<internal data objects> ::=
<access specification>
<internal data object names> : <type specification>
[:= <internal initial value>]

<internal data object names> ::= <data object name>
{ , <data object name> }

<internal initial value> ::= <expression>

The internal data objects are created and initialized in order. If an internal initial value is not given, the default
initial value of the type is the initial value of the internal data object. The only internal objects that can be
referred to in an internal initial value expression are data objects created previously. If an internal initial value
is not of the type of its internal object, a condition is signalled. See Section 8.5.3.) The access specification for
an internal data object has the same meaning as for formal parameters.

Examples: VAR I:INTEGER
VAR PER_CENT : INTEGER := 100
CONST SOUND_HYPOTHESIS : BOOLEAN := TRUE
CONST IDENTITY_MATRIX : A_MATRIX := IDENTITY(N)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 21

5.8 Internal Statements

The internal statements contain imperative statements about how the procedure causes its effect and they
contain declarative statements of certain specifications. The imperative statements may be procedural
statements (which are calls of standard procedures) or compositions of procedure calls. A procedure
composition rule describes a way of calling one or more procedures. Therefore, a composition rule has the
same general effect as calling a single procedure. It produces a state change in the objects of the environment.
PENDING is a place holder for some unknown statement list.

<internal statements> ::= <statement list> [;] | PENDING [;]

<statement list> ::= <statement> {; <statement> }

<statement> ::= <procedural statement> | <procedure composition rule>
| <assert specification>

<procedural statement> ::=
<assignment statement>

| <give statement>
| <leave statement>
| <move statement>
| <new statement>
| <procedure statement>
| <receive statement>
| <remove statement>
| <send statement>
| <signal statement>

<procedure composition rule> ::=
<if composition> | <case composition> | <loop composition>

| <begin composition> | <await composition> | <cobegin composition>

5.8.1 Data Assignment

A data assignment statement is a call of the standard assignment procedure.

<assignment statement> ::=
<variable name expression> := <expression>

<variable name expression> ::= <name expression>

The variable name expression must name some existing variable data object. The base type of the variable
object must be the same as the base type of the value expression. The effect of the call is that the value of the
variable becomes the value of the expression. A condition is signalled if the value is not of the type of the
variable.

Examples: X := Y
A(I+J) := F(X)
R.F(K) := IF G(Y) THEN X < 2 * P + 1 ELSE FALSE FI

GYPSY 2.05 REPORT FEBRUARY 1, 1986 22

5.8.2 Input and Output

Gypsy does not have any special statements for input and output. Input and output are done through
whatever Gypsy objects are provided in the implementation prelude (Section 5.10.3). Input and output
commonly are done with the send and receive statements on objects of type buffer as described in Chapter 10.
However, input and output are defined solely by the implementation prelude, and it may provide whatever
pre-defined objects and procedures are appropriate for a particular machine. Type string is sometimes defined
by an implementation for input and output of string objects.

5.8.3 If Composition

An if composition chooses and performs one of several internal statement lists.

<if composition> ::=
IF <boolean expression> THEN [<internal statements>]

{ ELIF <boolean expression> THEN [<internal statements>] }
[ELSE [<internal statements>]]
[<condition handlers>]
END

The internal statements are performed that follow the first boolean expression that is true. If none of the
boolean expressions are true, the internal statements following the ELSE are preformed provided there is one; if
not, none of the internal statements are performed. The only boolean expressions whose values are computed
are those needed to determine the first one that is true.

Examples: IF I = N THEN LEAVE
END

IF P(X,Y) THEN GENERATE(W)
ELIF Q(X,Y) THEN RESTORE(W);
ELSE LEAVE;
END

5.8.4 Case Composition

A case composition is another way of choosing and performing one of several internal statements.

<case composition> ::=
CASE <label expression>

{ IS <case labels> : [<internal statements>] }
[ELSE : [<internal statements>]]
[<condition handlers>]
END

<label expression> ::= <scalar or integer valued expression>

<scalar or integer valued expression> ::= <expression>

<case labels> ::= <pre-computable label expression>
{ , <pre-computable label expression> }

<pre-computable label expression> ::= <integer value> | - <integer value>
| <character value>
| <scalar value> | <identifier>

Every case label must be unique and of the same base type as the label expression. The identifier in the case

GYPSY 2.05 REPORT FEBRUARY 1, 1986 23

label must represent a constant value. If the label expression is equal to one of the case labels in a branch of the
case composition, the corresponding internal statements are performed. If there is no such case label, but there
is an ELSE label, the internal statements after the ELSE are performed. If there is no such case label and no
ELSE, the case composition does not perform any of its internal statement lists.

Example: CASE X+1
IS 2,7: MAKE_RED(Y);
IS - 9: MAKE_BLUE(Y);
IS THREE: MAKE_GREEN(Y);
ELSE: MAKE_BLACK(Y);
END;

5.8.5 Loop Composition

A loop composition performs its internal statements repeatedly. A loop is terminated by either by
performing a leave statement or by signalling a condition. Every leave statement must be contained within
some loop statement. Performing a leave statement terminates its most tightly enclosing loop statement.

<loop composition> ::=
LOOP [<internal statements>] [<condition handlers>] END

<leave statement> ::= LEAVE

Examples: LOOP {FOREVER}
GET_CHAR(C,SOURCE);
PROCESS_CHAR(C,DATA_BASE);

END

LOOP
COMPUTE_VECTOR(V,I);
IF I=N THEN LEAVE {THE LOOP}
ELSE I := I + 1;
END;

END

5.9 Procedure and Function Calls

A procedure call causes a procedure to run. This is most fundamental action in all of Gypsy. Running a
procedure is the only way to cause an effect on an environment. The procedure that issues the call is the calling
procedure. The procedure that runs on its behalf is the called procedure.

<procedure statement> ::= <called procedure name> <actual parameters>

<called procedure name> ::= <procedure name>

<function call> ::= <called function name> <actual parameters>

<called function name> ::= <function name>

The called procedure name must be one that is explicitly declared as a procedure. The standard procedures each
are called with a special notation, and they may not be called with a procedure statement. Even though a
function is regarded as a special kind of procedure, it may only be called with a function call.

Examples: P(R.F,Y+Z) G(T) Q

GYPSY 2.05 REPORT FEBRUARY 1, 1986 24

5.9.1 Actual Parameters

The actual parameters of a program (procedure or function) call are the objects of the environment (of the
calling program) that become the external objects of the called program. The called program has access to no
other objects in the calling environment.

<actual parameters> ::= [<actual data parameters>]
[<actual condition parameters>]

<actual data parameters> ::=
(<actual data object> { , <actual data object> })

<actual data object> ::= <expression> | <variable name expression>

There must be one actual data parameter for each formal data parameter of the called program. A function may
have zero or more data parameters, but a procedure must have at least one. While the called program runs, it
uses the name of its formal parameter as a temporary name for the corresponding actual parameter. (This is
normal call-by-reference parameter passage.)

If an actual data object corresponds to a variable formal parameter, it must be a variable name expression.
The value set of the formal type of the parameter must be the same as, or a subset of, the value set of the type of
its actual data object. (Without this requirement, running the program could cause the actual data object to have
a value not allowed by its type.)

An actual data object that corresponds to a constant formal parameter may be any expression. If this
expression is not a name expression, a uniquely named temporary object is created with the value of the
expression, and the temporary is used as the actual object.

The following checks for type consistency and potentially harmful aliasing also are made (except as
specifically noted in certain standard operations).

5.9.2 Type Consistency

All of the actual data parameters are checked to see if they meet their corresponding formal type
specifications (as specified in the called program). The value of each actual data object must be in the value set
of its corresponding formal type; otherwise, a condition is signalled.

5.9.3 Aliasing

A condition is signalled if there is any potentially harmful aliasing among the actual data parameters.
Aliasing occurs if some actual data object can be referred to by more than one formal name. If so, these formal
names are different aliases (names) for the same actual object. Aliasing is potentially harmful if changing the
value of one formal variable parameter causes the value of another formal parameter to change. This is
potentially harmful because the called program is specified and proved assuming that a change in the value of
the external object referred to by its formal parameter does not cause a change in the value referred to by any
other formal parameter.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 25

5.9.4 Transfer of Control

When a program is called, the actual parameters are considered from left to right. First, the name or value
of the actual parameter is computed, and then the value is checked for type consistency. After this has been
done for each actual parameter, the checks for aliasing are made. If any of these conditions are signalled,
control returns to the calling program, and these conditions are handled as described in Chapter 8. If none of
these conditions are signalled, the called program starts running with its formal parameters serving as temporary
names for the corresponding actual parameters. While the called program runs, the running of the calling
program is suspended. When the called program stops running (if it does), the running of the calling program is
resumed.

5.10 Getting Started

Normally, Gypsy programs are developed in a Gypsy Verification Environment (GVE), and the GVE
provides the mechanisms for running Gypsy programs in a particular target environment.

5.10.1 Developing a Program

The normal way of starting a Gypsy verification environment is with a "GVE" command. The GVE should
give various greeting information and pause with a prompt. The greeting information should instruct the user in
how to get further information about the facilities available. Normally, this would be done by some kind of
"HELP" or "?" command.

5.10.2 Running a Program

Any Gypsy program can be run within a target environment just by calling it with actual parameters that are
defined within that environment. How the environment is designated and how this call is made are defined by
the GVE, but the call must satisfy all of the normal Gypsy rules for a program call (Section 5.9). The data and
condition objects of a target environment are defined by the GVE.

5.10.3 Implementation Prelude

An implementation prelude provides the connection between a Gypsy program and a run-time environment
on a particular target machine. A prelude describes what Gypsy objects are available on a target machine to be
passed as actual parameters to a Gypsy program. Running a Gypsy program on these actual parameters is how
an effect is produced on the target machine. A user of Gypsy never will write an implementation prelude, but it
often will be necessary to use one.

An implementation prelude always contains some target environment. A target environment defines Gypsy
objects that the language implementor has provided on a target machine. These are the objects that can be used
as the actual parameters to a main program. Normally, these are the objects that provide input and output
facilities, but they may be whatever objects the implementor chooses to provide so long as they behave like
normal Gypsy objects.

An implementation prelude also may include a set of Gypsy units that have been pre-defined by the
language implementor (in addition to the standard Gypsy units). These units may be implemented in Gypsy,
but they need not be. However, if not, their externally visible behavior must be as though they were normal
Gypsy units. Regardless of how these additional pre-defined units are implemented, normal Gypsy
specifications must be stated for them; and, in this way, proofs can be constructed for programs that use these
units. These proofs are based on the assumption that the implementations of the pre-defined units satisfy the

GYPSY 2.05 REPORT FEBRUARY 1, 1986 26

specifications given.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 27

Chapter 6

OPERATIONAL SPECIFICATIONS

The operational specifications of a program state constraints on its implementation. The specifications of a
program can be viewed as sensors that are applied to the environment of a program at various times as it runs.
Whenever a specification sensor is applied, its gives a value of either true or false. The implementation of a
program satisfies its specifications if all of its specification sensors give true whenever the program runs.
Verifying a program means showing that its implementation always satisfies its specification.

6.1 Specification Expressions

Specification expressions are boolean expressions about the environment of a program. These expressions
are the logical conditions that are expected to be true at specific times as the program runs. The boolean
expressions may be annotated with verification directives that indicate how they are to be verified.

<specification expression> ::= <simple specification expression>
| (<simple specification expression>)

<simple specification expression> ::=
<non-validated specification expression> [<validation directive>]

<non-validated specification expression> ::=
[<proof directive>] <boolean expression>

<proof directive> ::= PROVE | ASSUME

<validation directive> ::= OTHERWISE <actual condition>

The proof directive states whether the specification is to be proved or assumed. PROVE is the default if no
directive is given. If a validation directive is given, the expression is verified by validating it at run time. In
this case, the value of the expression is computed when the program runs, and the actual condition is signalled if
the expression is false.

The following subsections describe several features of expressions that are intended primarily for
specifications. These features, however, may be used in any expression.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 28

6.1.1 Entry Values

An entry value gives the value of an external variable data object at the time the program was called. This
provides a way of giving specifications that relate the current values of data objects to values of the external
data objects when the program started to run.

<entry value> ::= <external variable object>’

<external variable object> ::= <data object name>

The object must be a data object that is an external variable object. The object name and the ’ mark must be
contiguous.

Examples: X’ A’(J) R’.F(I’)

6.1.2 Quantified Expressions

Quantified expressions apply the universal and existential quantifiers of ordinary logic to a boolean
expression.

<quantified expression> ::= <universal quantification>
| <existential quantification>

<universal quantification> ::= ALL <bound expression>

<existential quantification> ::= SOME <bound expression>

<bound expression> ::=
<quantified names> : <type specification>, <boolean expression>

<quantified names> ::= <identifier> { , <identifier> }

<boolean expression> ::= <expression>

The appearance of an identifier as a quantified name defines it as a local name (Section 5.3) of the Gypsy unit
that contains the quantified expression. A quantified name may be used only within the boolean expression of
the quantified expression (as a local constant of type boolean); within the boolean expression, a quantified name
may not be used as the quantified name of another quantified expression or as the identifier of an each clause
(Section 4.2.4). (If the type specification in a bound expression has an operation restriction on a buffer, the
restriction is ignored.)

A universal quantification is true if and only if its boolean expression is true for every possible assignment
of values of the type specification to the quantified names. An existential quantification is true if and only if its
boolean expression is true for at least one assignment of values of the type specification to the quantified names.

Examples: ALL I,J : INTEGER, P(I,J,K)
SOME K:AN_INT(1..10), A(K)=X

6.2 External Program Specifications

External operational specifications specify properties about the external environment of a program. An
external operational specification may refer only to external objects. It may not refer to internal ones.

<external operational specification> ::=
[<abstract operational specification>]
[<concrete operational specification>]

GYPSY 2.05 REPORT FEBRUARY 1, 1986 29

<abstract operational specification> ::=
[<entry specification>]
[<block specification>]
[<exit specification>]

6.2.1 Entry

An entry specification is to be true at the time its program starts running.

<entry specification> ::= ENTRY <non-validated specification expression> ;

Examples: ENTRY N > 0; ENTRY WELL_FORMED(X,Y);

6.2.2 Exit

An exit specification is to be true at the time its program stops running (if it does).

<exit specification> ::= EXIT <non-validated specification expression> ;
| EXIT <conditional exit specification> ;

Examples: EXIT X = FILTER(Y);
EXIT ASSUME RESULT = IF N=0 THEN 1 ELSE N*FACTORIAL(N-1) FI;

6.3 Internal Program Specifications

Internal specifications are specifications about the total environment of their program. They may refer to
both internal and external objects.

6.3.1 Keep

A keep specification may be stated after the definition of the internal environment of a program. Once the
internal environment is created, the keep must be true throughout the remainder of the running of the program
except during the running of called programs. However, it must be true immediately before and after the
running of each called program. (This applies to both user-defined and pre-defined programs.)

<keep specification> ::= KEEP <non-validated specification expression> ;

Example: KEEP J IN [MIN_J..MAX_J];

6.3.2 Assert

An assert specification is to be true whenever it is reached as the program runs. (To prove a program with a
loop, assert specifications must be placed so that each repetition of each loop encounters at least one assert
specification.)

<assert specification> ::= ASSERT <specification expression>

Examples: ASSERT S = SUM(A,1,I-1) & I < N+1
ASSERT (ASSUME A(K) > 0) OTHERWISE NONPOS_ERROR

GYPSY 2.05 REPORT FEBRUARY 1, 1986 30

6.4 Lemma Specifications

A Gypsy lemma is a special form for a boolean-valued function that is to be true for all values of its external
data objects. The external data objects of a lemma must meet the same requirements as for a function. The
RESULT of a lemma is its lemma body, and it must be of type boolean. Thus, the lemma body specifies a
relation among the functions it refers to.

<lemma declaration> ::=
LEMMA <lemma name> [<external data objects>] = <lemma body>

<lemma body> ::= <non-validated specification expression>

<lemma name> ::= <identifier>

Examples: LEMMA POSITIVE_BOUND = MAX_N > 0
LEMMA F_COMMUTES(X,Y:A_MESSAGE) = (ASSUME F(X,Y)=F(Y,X))

6.5 Example

The following is an example of specifying and implementing a function F that computes FACTORIAL. The
function F is fully specified and implemented. It illustrates an exit specification and an assert specification.
The exit specification states that the RESULT of F(N) is equal to FACTORIAL(N). The function
FACTORIAL is an example of defining a function solely for specification. The definition is stated in an exit
specification with the proof directive ASSUME, and no implementation is given.

SCOPE A =
BEGIN

FUNCTION F (N : INTEGER) : INTEGER =
BEGIN

EXIT RESULT = FACTORIAL (N);
VAR I : INTEGER := 1;
RESULT := 1;
LOOP

ASSERT RESULT = FACTORIAL (I - 1) & I > 0;
RESULT := RESULT * I;
IF I = N

THEN LEAVE
ELSE I := I + 1

END
END

END;

FUNCTION FACTORIAL (N : INTEGER) : INTEGER =
BEGIN

EXIT (ASSUME RESULT = IF N = 0 THEN 1 ELSE N * FACTORIAL (N - 1) FI);
END;

END;

GYPSY 2.05 REPORT FEBRUARY 1, 1986 31

Chapter 7

SCOPES

All Gypsy units must be grouped textually into one or more scopes. Every unit must appear in some scope.
These groupings are a way of assigning names to Gypsy units and of controlling access to those names. Scopes
have no other meaning.

A Gypsy scope defines a set of local names (Section 7.3) that are used, within the scope, to refer to Gypsy
units. It controls its own access to local names in foreign scopes. All local names within a scope must be
unique, and all scope names must be unique.

<scope declaration> ::=
SCOPE <scope name> =
BEGIN
<unit or name declaration>
{ ; <unit or name declaration> } [;]

END [;]

<unit or name declaration> ::=
<unit declaration> | <name declaration>

<scope name> ::= <identifier>

7.1 Unit Declaration

A unit declaration defines a Gypsy unit -- that is, a type, procedure, function, constant, or lemma. It also
defines the name of the unit as a local name of the scope. (The scalar values in a scalar type definition define
constant units (Section 3.2.1).)

<unit declaration> ::=
<type declaration> | <procedure declaration>

| <function declaration> | <constant declaration>
| <lemma declaration>

7.2 Name Declaration

A name declaration is the mechanism for making a unit which was declared in one scope visible in another
scope. A name declaration does not define a new Gypsy unit; it defines a new alias for an existing unit.

<name declaration> ::= NAME <local aliases> FROM <foreign scope name>

<local aliases> ::= <local renaming> { , <local renaming> }

GYPSY 2.05 REPORT FEBRUARY 1, 1986 32

<local renaming> ::= [<local name> =] <foreign unit name>

<local name> ::= <identifier>

<foreign unit name> ::= <identifier>

Each local renaming defines a local alias for the Gypsy unit named by the foreign unit name in the foreign
scope. If the local name of a renaming is not given, the local alias is the same as the foreign unit name. The
foreign unit name must be the name of a unit declared in the foreign scope. It may not be an alias defined by a
name declaration in the foreign scope.

Examples: NAME X FROM PARENT NAME F=G, AN_OBJECT FROM PUBLIC

7.3 Local Names

The local names of a scope are the scope name, the names of the units defined by the unit declarations, and
the additional local aliases defined by the name declarations. All local names within a scope must be unique.

7.4 Resolving References

The declaration of a Gypsy unit contains identifiers that refer to data objects, conditions and Gypsy units.
There are two sets of local names associated with each unit. One set contains the local names that are internal
to unit (Section 5.3). These names refer to data objects and conditions (and they also may be used in each
clauses and quantified expressions). The other set contains the local names of the scope in which the unit is
declared. These names refer to Gypsy units.

Suppose that an identifier I appears in the declaration of a unit U which is contained in scope S. What I
refers to is determined by applying the following rules in order.

1. If I is an internal local name of unit U, then I refers to object I within U.

2. If I is a local name of scope S, then I refers to unit I in S.

3. If I is neither an internal local name of unit U nor a local name of scope S, the reference is
undefined and is not allowed.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 33

Chapter 8

CONDITIONS

Conditions are labels for condition handling statements. Signalling a condition causes a forward jump to a
condition handler that is labelled with the condition that was signalled.

8.1 Declaring Conditions

Every program has a set of local conditions. The names of these conditions are local names of the program
(Section 5.3). (Therefore, every local condition name must be unique within the program.) Only local
conditions may be used as labels for condition handlers within the program.

<local condition> ::=
<formal condition name> | <internal condition name>

| SPACEERROR | ROUTINEERROR

8.1.1 External Conditions

External conditions may be specified in the external environment of a program (procedure or function)
declaration (Sections 5.1, 5.4). External conditions are local conditions that refer to conditions in the external
environment. SPACEERROR and ROUTINEERROR are declared automatically as formal condition parameters
in every program. These conditions have a special meaning, and the user can not signal either of them or use
them as actual conditions. They can only be "handled."

<external conditions> ::= UNLESS (COND <formal condition parameters>)

<formal condition parameters> ::=
<formal condition name> { , <formal condition name> }

<formal condition name> ::= <identifier>

Example of programs with external conditions:
PROCEDURE READ_DIGIT(VAR C:CHARACTER) UNLESS (COND NON_NUMERIC) = ...
FUNCTION GRATE(N:INTEGER):INTEGER UNLESS (COND BAD_N) = ...

8.1.2 Internal Conditions

Internal conditions are local conditions that may appear only within the internal statements of a procedure
body (Section 5.6).

<internal condition objects> ::=
COND <internal condition name> { , <internal condition name> }

GYPSY 2.05 REPORT FEBRUARY 1, 1986 34

<internal condition name> ::= <identifier>

Examples: COND INDEX_ERR, BAD_CHAR

8.2 Handling Conditions

Every condition that can be signalled within a program is a local condition (Section 8.5.3). When a
condition is signalled, control jumps forward to the nearest internal condition handler that is labelled with the
condition that was signalled. If there is no such internal handler, then the condition is the name of some formal
condition parameter (possibly SPACEERROR or ROUTINEERROR). If so, the (called) program that signalled
the condition is terminated, and the corresponding actual condition is signalled in the environment of the calling
program.

8.3 Begin Composition

Condition handlers can be associated with any of the procedure composition rules, and a begin composition
may be used to associate condition handlers with an arbitrary sequence of internal statements.

<begin composition> ::= BEGIN
[<internal statements>]
[<condition handlers>]
END

8.4 Condition Handlers

Condition handlers are internal statements that are performed only when conditions are signalled.
Conditions handlers can be placed at the end of any procedure composition rule (IF, CASE, LOOP,
BEGIN, AWAIT, COBEGIN). A composition rule may have handlers for several conditions. Each handler
has one or more labels that identify the handler, and it has a body that consists of internal statements. Each
handler label for a single composition rule must be unique (although the same label may be used on different
composition rules). If a condition is signalled in the handler body, control jumps to the next condition handler
with the matching handler label. It is never handled within the handler which signalled it.

<condition handlers> ::= WHEN { <handler> }

<handler> ::= IS <handler labels> : <handler body>

<handler labels> ::= <handler name> { , <handler name> }

<handler name> ::= <local condition>

<handler body> ::= [<internal statements>]

Example of a begin composition with condition handlers:
BEGIN
READ_INPUT(B,IN_FILE) UNLESS (BAD_INPUT);
COMPUTE_ANSWER(B,OUT_FILE) UNLESS (UNDEFINED);

WHEN
IS BAD_INPUT: PRINT_MESSAGE("INPUT",OUT_FILE);
IS UNDEFINED: PRINT_MESSAGE("UNDEFINED",OUT_FILE);
END

GYPSY 2.05 REPORT FEBRUARY 1, 1986 35

8.5 Signalling Conditions

A condition may be signalled in one of several ways. It may be signalled by a signal statement, by a
validation directive, or by a procedure or function call.

8.5.1 Forward Conditions

Every condition that is signalled must be a forward condition. A forward condition is a formal condition
parameter or the name of an internal handler that appears between the point where the condition is signalled and
the end of the procedure body. (Neither SPACEERROR nor ROUTINEERROR is a forward condition.)

<forward condition> ::= <formal condition name>
| <internal condition name>

8.5.2 Signal Statement

A signal statement simply signals its forward condition.

<signal statement> ::= SIGNAL <forward condition>

Example: SIGNAL BAD_INPUT

8.5.3 Procedure and Function Calls

Performing a program call may cause any one of its condition parameters to be signalled. A forward
condition may be given as an actual parameter for each possible condition parameter that may be signalled.
Like data parameters, condition parameters are passed by reference. If a program has formal condition
parameters defined, then an actual condition must be supplied for each formal.

<actual condition parameters> ::=
UNLESS (<actual condition group>)

<actual condition group> ::= [<group name>] <actual condition list>

<group name> ::= COND

<actual condition list> ::= <actual condition> { , <actual condition> }

<actual condition> ::= <forward condition>

Actual condition parameters are given in five groups: VALUE, ALIAS, COND, SPACE and ELSE. Only the
COND group may be supplied explicitly, and the rest are supplied automatically.

The VALUE group contains the conditions that are signalled as a result of the type consistency checks of the
actual data parameters (Section 5.9.2.) ROUTINEERROR is signalled if any of the data parameters has a type
consistency error.

The ALIAS group contains only a single condition. ROUTINEERROR is signalled if the data parameters
contain potentially harmful aliasing (Section 5.9.3.)

The COND group contains the actual conditions that correspond to the explicitly declared COND formal
parameters of the program (Section 8.1.1). The COND group must be supplied if there are actual condition
names, and there must be exactly one actual for each formal in that group.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 36

The SPACE group contains only a single condition. It is the actual that corresponds to the implicit
SPACEERROR formal parameter. SPACEERROR may be signalled by any pre-defined program to indicate that
there is insufficient space to continue running the program.

The ELSE group has only a single condition. It is the actual that corresponds to the implicit
ROUTINEERROR formal parameter, and it defaults to ROUTINEERROR. ROUTINEERROR is supplied
automatically as the actual parameter for every condition in every other group. Thus, ROUTINEERROR denotes
some condition (other than SPACEERROR) for which no handler has been specified. (By virtue of these
defaults to ROUTINEERROR and SPACEERROR, every condition that is signalled within a program is a local
condition of that program.)

Example program calls with actual condition parameters:
P(A,B) UNLESS (COND C4,C5)
Y := 2 * (SQUARE_ROOT(X) UNLESS (UNDEFINED))

8.5.4 Standard Procedures and Functions

Many of the standard functions and procedures are not total, that is there are possible parameter values for
which no result can be computed. For example, SCALE(x,BOOLEAN) can only return a value if x is either
zero or one. In such a case, ROUTINEERROR is signalled. If a standard operation fails because of system
resource failure, SPACEERROR is signalled. (See Appendix C.)

8.6 Conditional Exit Specifications

A conditional exit specification allows a separate exit specification to be given for each condition that may
be signalled by a program to its external environment.

<conditional exit specification> ::= CASE (<case exit body>)

<case exit body> ::= <case exit> {; <case exit>}

<case exit> ::= IS <case exit labels> :
<non-validated specification expression>

<case exit labels> ::= <exit label> { , <exit label> }

<exit label> ::= <formal condition name>
| NORMAL | ROUTINEERROR

Each case exit label must be unique, and each one identifies one of the ways in which the program can return to
its external environment. The non-validated expression that follows the label is the exit specification for that
case. NORMAL identifies the case in which no conditions are signalled. (The form EXIT x, described in
Section 6.2.2, is an abbreviation for EXIT CASE (IS NORMAL: x).)

Example:
EXIT CASE

(IS NORMAL: RESULT = BALANCE(N) & N GE 0;
IS UNDEFINED: N < 0);

GYPSY 2.05 REPORT FEBRUARY 1, 1986 37

Chapter 9

DYNAMIC TYPES AND OBJECTS

The dynamic type compositions define values and objects that have a variable number of components.
These values and objects can be used in either the specification or the implementation of a program. In an
implementation, entire data objects can be created in Gypsy only as internal objects to a program, and once
created, an object exists only throughout the running of the program that created it. However, if it is a dynamic
object, its components can be created, assigned values and deleted dynamically as the program runs. This
provides a dynamic object management facility without using explicit pointers.

9.1 Dynamic Type Compositions

The dynamic type compositions are sets, sequences and mappings. Each of these compositions have a
variable number of components, and each component is of the same type. Each kind of composition is defined
by a component type and a size limit restriction. The component type specifies the type of each component, and
the size limit restriction indicates the maximum number of components. If no size limit restriction is given,
there is no limit on the number of components. Each component of a composition is called an element.

<dynamic type composition> ::=
<set type> | <sequence type> | <mapping type>

<size limit restriction> ::=
<non-negative integer pre-computable expression>

<non-negative integer pre-computable expression> ::=
<pre-computable expression>

9.1.1 Sets

A set has a variable number of unique elements each of the same type. The default initial value of a set is
the empty set.

<set type> ::= SET [(<size limit restriction>)] OF <component type>

Each element of a set has a value v of the component type, and the value of a set is set:{v1, ..., vn}. There is no
way of selecting a particular element of a set. The component type may be any Gypsy type, with the restriction
that if the component type is an abstract type, the equality extension function for the type must be defined as
concrete equality.

Examples of declarations of set types:
TYPE KEYS = SET (100) OF LARGE_INT
TYPE PRIMES = SET OF INTEGER

GYPSY 2.05 REPORT FEBRUARY 1, 1986 38

9.1.2 Sequences

A sequence has a variable number of elements, each of the same type, that are kept in order. The default
initial value of a sequence is the empty sequence.

<sequence type> ::=
SEQUENCE [(<size limit restriction>)] OF <component type>

Each element of a sequence has an integer selector i, which is the position of that element in the sequence, and a
value v of the component type. The standard function SIZE gives the number of elements in a sequence, and
the positions of the elements in a sequence s are numbered 1,...,SIZE(s). It is important to remember that if
elements are added to or removed from a sequence, the position numbers of all succeeding elements will
change. The value of a sequence is sequence:{(1,v1), ..., (n,vn)}.

Examples of declarations of sequence types:
TYPE TEAM = SEQUENCE (TEAM_SIZE) OF PLAYER
TYPE HISTORY = SEQUENCE OF MESSAGE

9.1.3 Mappings

A mapping has a variable number of elements, each of the same type, that are selected by elements of a
selector type rather than by position. The default initial value of a mapping is the empty mapping.

<mapping type> ::= MAPPING [(<size limit restriction>)]
FROM <selector type> TO <component type>

<selector type> ::= <equality type>

<equality type> ::= <type specification>

An equality type is any type that has equality defined on its value set (Appendix C), except that if the equality
type is abstract, its equality extension function must defined as concrete equality. This restriction on equality
extension also applies to the component type if it is an abstract type. Each component of a mapping has a
unique selector s, which must be of the selector type, and a value v which must be of the component type. The
value of a mapping is mapping:{(s1,v1), ..., (sn,vn)}.

9.2 Expressions

9.2.1 Set and Sequence Values

A set or sequence value defines the values of a set or a sequence.

<set or sequence value> ::= (<set or seq mark> <element list>) |
(<range limits>)

<set or seq mark> ::= SET : | SEQ :

<element list> ::= <value list> | <range limits>

<value list> ::= <expression> { , <expression> }

If SET: is present, the element list defines the elements of a set; otherwise, it defines the elements of a
sequence in order from left to right. Range limits define an element list that has one element for each value in
the range. (The range may be empty.) If the value list of a set has non-unique values, the set contains only the
unique values.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 39

Examples: (SET: ’A’, ’B’, ’C’)
(I..J) {The sequence I, I+1, ..., J}
(SEQ: F(X), F(Y), F(Z))

9.2.2 Component Selectors

There is no way to select an element of a set. The elements of sequences and mappings may be selected
with an index in the same way as arrays. A subsequence selector can be applied to a sequence to give the
elements within a specific range. A subsequence selector can be used only in a value expression, not in a name
expression.

<subsequence selector> ::= <range>

Example subsequence selection: S(1..10)

9.2.3 Operators

Several standard operators are provided for the dynamic types. Their operation is described in Appendix C.

<set operator> ::= EQ | = | NE | IN | ADJOIN | OMIT | SUB
| UNION | INTERSECT | DIFFERENCE

<sequence operator> ::= EQ | = | NE | IN | :> | <: | SUB | @ | APPEND

<mapping operator> ::= EQ | = | NE | UNION | INTERSECT | DIFFERENCE

Examples: I IN (M..N) R @ S X SUB Y A UNION B

9.2.4 Value Alterations

Value alterations of existing components of sequence values may be made with the ordinary component
assignment part of a value alteration (Section 4.2.3). (A value alteration can not be performed on a set because
the elements of a set do not have selectors.) A WITH clause allows value alterations that create and delete
components of values whose type is a dynamic type composition.

<component creation> ::=
<component creator> <creation component selectors> := <expression>

<component creator> ::= BEFORE | BEHIND | INTO

<component deletion> ::= SEQOMIT <alteration selector list>
| MAPOMIT <alteration selector list>

<creation component selectors> ::= <alteration selector list>

A component creation creates a new component of a sequence or mapping. The creation component selectors
must designate some component of dynamic value. BEFORE and BEHIND are used only with selectors that
designate an existing component of a sequence. A new component, with the value of the expression, is created
either immediately before or behind the component selected.

INTO is used to modify mapping values. With an INTO creator, the component selectors may designate
either an existing or a non-existing component of the mapping. If the component does not exist, it is created;
and in either case, the value of the expression is assigned to the (possibly newly created) component.

SEQOMIT and MAPOMIT designate a sequence or mapping with the selected component deleted from the
dynamic value. Only an existing component can be deleted. An attempt to delete a non-existing component

GYPSY 2.05 REPORT FEBRUARY 1, 1986 40

signals a condition.

Examples of expressions with value alterations:
S WITH ([I] := F(X))
S WITH (BEFORE (I) := F(X))
M WITH (INTO (P+Q) := A & B)
S WITH (SEQOMIT (3))
M WITH (MAPOMIT (P+Q))

9.2.5 String Values

A STRING is a constant object of type SEQUENCE OF CHARACTER.

<string value> ::= " { <non-quote character> | <quote symbol> } "

<non-quote character> ::= any character except a "

<quote symbol> ::= ""

A string value is the sequence of all ASCII characters that appear between (but not including) the opening and
closing double quote marks. Within string values, upper and lower case letters are not interchangeable, and
pairs of parentheses and square brackets are not interchangeable. The quote symbol stands for one double quote
character (").

Examples: """" {The string consisting of a single " character}
"Date of Birth: "
" " {The string of 10 blanks}
"""Computo, ergo sum.""" {The string "Computo, ergo sum."}

9.3 Statements

The following statements dynamically create and delete components of dynamic objects.

9.3.1 New Statement

The new statement calls a standard procedure that creates a new component of a dynamic variable object.

<new statement> ::= NEW <expression> <new dynamic variable component>

<new dynamic variable component> ::=
INTO SET <set name expression>

| INTO <mapping element name expression>
| BEFORE <sequence position designator>
| BEHIND <sequence position designator>

<set name expression> ::= <name expression>

<mapping element name expression> ::= <name expression>

<sequence position designator> ::= SEQ <sequence name expression>
| <sequence element name expression>

<sequence name expression> ::= <name expression>

<sequence element name expression> ::= <name expression>

GYPSY 2.05 REPORT FEBRUARY 1, 1986 41

The expression defines a new value that is created and assigned to a new component of a dynamic variable.
The value of the expression must be of the type of a component of the dynamic variable; otherwise a condition
signalled.

A set name expression must name a variable of type set. The new value is put into the set if it is not already
there. A mapping element name expression may name either an existing or a non-existing component of a
variable of type mapping. If the component already exists, it is assigned the new value just as with an ordinary
assignment statement. If the component does not exist, it is created and assigned the new value.

BEFORE and BEHIND create new components at the designated position in a sequence. A sequence name
expression is an expression that names a variable of type sequence. BEFORE puts the new component at the
beginning of the sequence, and BEHIND puts it at the end.

A sequence element name expression is an expression that names some existing element of a variable of
type sequence. In this case, BEFORE puts the new element into the sequence immediately preceding the
designated element, and BEHIND puts it into the sequence immediately succeeding the designated element. (If
the element that is designated does not exist, the component selection signals a condition.)

SEQ denotes the whole sequence that is identified by the sequence name expression. For a non-empty
sequence s, NEW x BEFORE SEQ s means the same as NEW x BEFORE s(1). However, if s is empty,
the BEFORE SEQ form creates a single element sequence, whereas the BEFORE s(1) form signals a
condition. Similarly, for a non-empty s, NEW x BEHIND SEQ s means the same as
NEW x BEHIND s(SIZE(s)); and for an empty sequence, the BEHIND SEQ form creates a single element
sequence, whereas the other form signals a condition.

Examples: NEW F(Z) INTO M(X) NEW F(Z) INTO SET S
NEW F(Z) BEFORE S(I) NEW F(Z) BEFORE SEQ S
NEW F(Z) BEHIND S(I) NEW F(Z) BEHIND SEQ S

9.3.2 Remove Statement

The remove statement calls a standard procedure that deletes one component of a dynamic variable object.
A component may be removed from a set, a sequence or a mapping. The component that is removed from the
object must exist; otherwise, the component selection signals a condition. (Note that if a sequence element is
removed, then the succeeding elements are in a new position.)

<remove statement> ::= REMOVE <removable component>

<removable component> ::= <set omission>
| <dynamic variable component name expression>

<set omission> ::= ELEMENT <expression> FROM SET <set name expression>

<dynamic variable component name expression> ::= <name expression>

Examples: REMOVE ELEMENT X FROM SET S
REMOVE M(X) REMOVE S(I)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 42

9.3.3 Move Statement

A move statement moves one component of a dynamic variable into a different variable. The component
may be moved into a new component of a dynamic variable, or it may be assigned to a non-dynamic variable.

<move statement> ::= MOVE <removable component> <component destination>

<component destination> ::= <new dynamic variable component>
| TO <sequence element name expression>

A move statement with a removable component r and a new dynamic variable component d has the same effect
as NEW r d; REMOVE r. A move statement with a sequence element name expression s(i) has the same
effect as s(i) := r; REMOVE r. The move statement can be used only to move a component of a dynamic
variable to another different dynamic variable. It can not be used to move components within the same dynamic
variable -- for example, MOVE S(2) BEFORE S(1) is not allowed. (This restriction eliminates some rather
peculiar effects that can be caused by aliasing in the call of the standard procedure.)

Examples: MOVE ELEMENT X FROM SET S BEHIND T(I) MOVE T(I) INTO SET S
MOVE M(X) BEHIND SEQ T MOVE T(I) TO S[I]
MOVE LIVE(KILL) BEFORE SEQ DEAD MOVE Y INTO M[X]

GYPSY 2.05 REPORT FEBRUARY 1, 1986 43

Chapter 10

CONCURRENCY

Gypsy allows several procedures to be concurrently. Each of the procedures that is running concurrently is
called a process. Message buffers are the only variable objects that can be shared among concurrent processes.

10.1 Buffers

A buffer type composition is a special dynamic type whose objects can be shared among concurrent
processes. The default initial value is the empty buffer.

<buffer type composition> ::=
BUFFER [<size limit restriction>] OF <non-buffer component type>

<non-buffer component type> ::= <type specification>

The type specification of the components of a buffer may specify any type that does not contain a buffer. A
buffer is a queue of elements of its component type. A buffer object may be passed as a parameter, but the only
operations that can modify a buffer queue are the standard send, receive and give procedures.

Examples of type declarations of buffer compositions:
TYPE CHAR_BUF = BUFFER (N) OF CHARACTER
TYPE DATA = BUFFER OF BIT_BLOCK

10.2 Operation Restrictions

The type specification of a buffer may have operation restrictions. An operation restriction specifies to
what extent a buffer can appear in the standard send, receive and give procedures.

<restricted buffer type composition> ::=
<buffer type name> [<operation restriction>]

<buffer type name> ::= <type name>

<operation restriction> ::= "<" <input or output> ">"

<input or output> ::= INPUT | OUTPUT

An INPUT (only) buffer may appear in a receive statement, but it may not appear in a send or give. An
OUTPUT (only) buffer may appear in a send or give statement, but it may not appear in a receive statement.

Examples: TYPE IN_BUF = CHAR_BUF <INPUT>

GYPSY 2.05 REPORT FEBRUARY 1, 1986 44

10.3 Buffer Parameters

Buffers can be passed as parameters to programs (and created as internal objects), but they can be modified
only by the standard send, receive and give statements. The size limit restriction of the actual buffer parameter
must be equal to the size limit of its formal parameter. The type of the components of the actual must be the
same as the type of the components of the formal parameter. (Buffer parameters must observe this more severe
type restriction because, at the time the call with the buffer parameter is made, it is not possible to know all of
the values that might appear as components of the buffer. Therefore, they can not be checked for type
consistency at the time of the call.) The formal buffer parameter must be equally or more restricted by
operation restrictions than the actual. For example, an unrestricted buffer can be an actual parameter for an
input only formal parameter, but not vice versa.

10.4 Statements

The following statements call standard procedures on buffers. These procedures are the only way of
modifying a buffer variable. While running, each of them has exclusive access to its buffer parameter, even
though the buffer may be shared among other processes.

10.4.1 Receive Statement

A receive statement removes the oldest element from the buffer queue and assigns its value to some data
object.

<receive statement> ::= RECEIVE <name expression> FROM <buffer variable>

<buffer variable> ::= <name expression>

The buffer variable is the name of some buffer object. If the buffer queue is empty, the receive call is is blocked
(suspended) until some other process sends (or gives) a new element to the buffer.

Example: RECEIVE C(I) FROM IN_BUF

10.4.2 Send Statement

A send statement puts a new (youngest) element onto the buffer queue.

<send statement> ::= SEND <expression> TO <buffer variable>

If the buffer queue is full (has a number of elements equal to its size limit restriction), the send call is blocked
until some other process receives an element from the buffer.

Example: SEND R.F TO B(OUT)

10.4.3 Give Statement

A give statement removes a component from a dynamic object and sends it to a buffer.

<give statement> ::= GIVE <removable component> TO <buffer variable>

A give statement with a removable component r and a buffer variable b has the same effect as
SEND r TO b; REMOVE r. The give is blocked until both the send and remove are complete.

Example: GIVE S(TARGET) TO B

GYPSY 2.05 REPORT FEBRUARY 1, 1986 45

10.5 Concurrent Composition

The concurrent compositions provide mechanisms for performing certain actions concurrently.

10.5.1 Await Composition

The await composition provides a way of waiting concurrently on several events to occur.

<await composition> ::= AWAIT
<await arm> { <await arm> }

[<condition handlers>]
END

<await arm> ::=
[<each clause>] ON <event statement> THEN [<internal statements>]

<event statement> ::=
<send statement> | <receive statement> | <give statement>

Each await arm has an event statement and some internal statements. The await composition blocks until at
least one of its event statements can be unblocked. Then one of the ones that can be unblocked is selected, it is
performed, its associated internal statement are performed, and the await composition is complete.

An await arm that contains an each clause (Section 4.2.4) designates a separate await arm for each value of
the identifier in the index type of the each clause. The identifier may be used within the await arm in the same
way as an internal constant data object (of the procedure in which the await appears).

Example: AWAIT
ON RECEIVE C FROM X THEN P(C,Z);
ON RECEIVE D FROM Y THEN P(D,Z);

END

AWAIT
EACH I:SMALL_INT, ON RECEIVE X FROM B(I) THEN Q(X,B,I);

END

10.5.2 Cobegin Composition

A cobegin composition calls several procedures which then run concurrently. It is a generalization of the
simple procedure call (Section 5.9). A cobegin of a single procedure has the same effect as a sequential
procedure call.

<cobegin composition> ::=
COBEGIN
<cobegin arm> { ; <cobegin arm> } [;]

[<condition handlers>]
END

<cobegin arm> ::= [<each clause>] <procedure statement>

The procedure statements designate the procedures that run concurrently. Each individual procedure statement
must satisfy all of the normal parameter passages rules (Sections 5.9, 10.3). In addition, there must be no
potentially harmful aliasing (Section 5.9.3) among any of the parameters of any of the processes. The only
objects that are allowed to violate this extended non-aliasing rule are buffers or structured objects consisting
solely of buffers.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 46

A cobegin arm containing an each clause (Section 4.2.4) designates a separate process for each value of the
identifier in the index type of the each clause. The identifier may be used within the cobegin arm in the same
way as an internal constant data object (of the procedure in which the cobegin appears).

The cobegin composition stops only when all of its processes stop. They may stop by running to
completion or by signalling a condition. Thus, there is the possibility that a cobegin may stop with several
processes having signalled conditions. This is known as a multiple condition. A multiple condition can only be
handled by a handler for ROUTINEERROR.

Example: COBEGIN COBEGIN
PRODUCE(A,B); TRANSFER(A,B);
CONSUME(B,C); TRANSFER(B,C);

END END

COBEGIN
EACH H:HOST_ID, MULTIPLEX(X(H),Y)

END

10.6 Specifications

Gypsy has a number of special facilities for stating specifications of programs that use buffers.

10.6.1 Type Activationid

The same procedure may appear in more than one arm of a cobegin composition. Thus, the same procedure
may be run concurrently by a cobegin as several different processes. To state specifications for concurrent
processes, it is necessary to identify each process uniquely. To do this, every Gypsy program has one implicit
formal parameter called MYID of type ACTIVATIONID. Some unique value of type ACTIVATIONID is
supplied automatically for MYID for every call of every program. Objects of type ACTIVATIONID can be
passed as parameters, but the only operations that can be performed on them are "=", "ne", and the standard
buffer history functions.

10.6.2 Buffer Histories

For specification of programs that use buffers, Gypsy provides a number of standard buffer history functions
that give the sequences of values that are sent to a buffer and received from a buffer. These functions provide a
way of specifying constraints on the sequences of values that flow through a buffer. These standard functions
are described in Appendix C.

Examples of standard history function: INFROM(B,MYID) OUTTO(B,MYID)

10.6.3 Block Specifications

Ordinary entry and exit specifications can be used for procedures that have buffer parameters. However,
concurrent processes often are intended never to stop running, and therefore, an exit specification is
meaningless. Block specifications provide a way of stating specifications for non-terminating programs that use
buffers.

A block specification is a specification about the external environment of the program that is to be true
whenever it is blocked on some buffer operation. A block specification may refer only to external objects. The
potential points of blockage are any procedure call with a buffer parameter (including the standard send,

GYPSY 2.05 REPORT FEBRUARY 1, 1986 47

receive, and give procedures) and the await and cobegin compositions. An await composition is blocked if and
only if all of its event statements are blocked. A cobegin composition is blocked if and only if some of it
processes have not yet stopped and all of those are blocked.

<block specification> ::= BLOCK <non-validated specification expression> ;

Example: BLOCK OUTTO(Y,MYID) SUB INFROM(X,MYID);

GYPSY 2.05 REPORT FEBRUARY 1, 1986 48

Chapter 11

ABSTRACT TYPES

An abstract type is one whose type definition is visible only to certain privileged units. The definitions of
ordinary types are visible to all units.

11.1 Type Declaration

An abstract type declaration names all of the Gypsy units that are privileged to use its type definition. No
other units are allowed this privilege. The type definition of an abstract type can be used only by the units
named in its privileged units. A scope name in the privileged units list is an abbreviation for every unit that has
a local name in that scope.

<abstract type declaration> ::=
TYPE <type name> [<default abstract initial value specification>]

<privileged units> = <abstract type body>

<privileged units> ::= "<" { <unit or scope name> } ">"

<unit or scope name> ::= <type name> | <procedure name>
| <function name> | <constant name>
| <lemma name> | <scope name>

Example: TYPE WELL_FORMED_STATE <READ, WRITE> =
BEGIN
S: SYSTEM_STATE;
HOLD WELL_FORMED(S);

END;

11.2 Type Body

The abstract type body contains the type definition of the abstract type, and it also may have a hold
specification.

<abstract type body> ::= <type definition>
| BEGIN <identifier> : <type definition> ;

<hold specification>
END

The identifier is a local name of the type, and it must satisfy the restrictions for local names (See 5.3). The
identifier is a name for an arbitrary value of that type, and it may be referred to in the hold specification. The
type definition defines the concrete values of an abstract type.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 49

11.3 Equality Extension

An abstract type also defines a set of abstract values. An equality extension for the abstract type defines the
equality of abstract values. An equality extension function must be defined for every abstract type. Its name
must appear on the access list for the abstract type.

<equality extension> ::= EXTENDS "="

The equality extension is provided as part of a function declaration (Section 5.4). The function must have
exactly two formal constant parameters of the abstract type, and its result type may be boolean. (Only one
equality function may be defined for an abstract type.) When the = (or EQ) operator is applied to values of the
abstract type in units that are not privileged to use its type definition, the equality extension function for that
type is applied. Within a privileged unit, the = operator is treated in the usual way.

Defining equality of the abstract values partitions the concrete values into equivalence classes. (Every
concrete value is in exactly one equivalence class, but one equivalence class may contain several concrete
values.) Each equivalence class represents a different abstract value. The equality extension defines when two
concrete values are in the same equivalence class, or in other words, when they represent the same abstract
value.

Example: FUNCTION WELL_EQ EXTENDS "="(P,Q:WELL_FORMED_STATE):BOOLEAN =

11.4 Specifications

11.4.1 Default Initial Values

An abstract default initial value specification of an abstract type may be stated.

<default abstract initial value specification> ::=
INITIALLY [<proof directive>] <expression>

The expression must be of the abstract type.

Example: TYPE WELL_FORMED_STATE INITIALLY INIT_STATE <READ, WRITE> =

11.4.2 Hold

A hold specification of an abstract type is a relation that is to be true of every abstract object upon
completion of every program that is privileged to use the type definition of the abstract type. It also must be
true when an abstract object is created. In effect, a hold specification selects a subset of the concrete values that
can be used to represent abstract values.

<hold specification> ::= HOLD <specification expression> [;]

Example: HOLD WELL_FORMED(S);

11.4.3 Centry, Cblock, Cexit

The concrete specifications of a program may use the type definition of an abstract type if their program is
privileged to use that definition. This is in direct contrast to the abstract specifications of the program. An
abstract specification may not use the type definition of any abstract type, even if its program does have that
privilege. Abstract specifications always must be stated strictly in abstract terms. The concrete specifications
have the same meaning as their abstract counterparts.

<concrete operational specification> ::=

GYPSY 2.05 REPORT FEBRUARY 1, 1986 50

[<concrete entry specification>]
[<concrete block specification>]
[<concrete exit specification>]

<concrete entry specification> ::=
CENTRY <non-validated specification expression> ;

<concrete block specification> ::=
CBLOCK <non-validated specification expression> ;

<concrete exit specification> ::=
CEXIT <non-validated specification expression> ;
| CEXIT <conditional exit specification> ;

11.4.4 Lemmas

A lemma may be a privileged unit of an abstract type. As with the abstract operational specifications, the
lemma body may not use the type definition of an abstract type even if the lemma has that privilege. The body
must be stated in purely abstract terms. The privilege of using the type definition, however, may be exercised in
proving the lemma.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 51

Appendix A

Reserved Identifiers

Reserved Words
ADJOIN, ALL, AND, APPEND, ARRAY, ASSERT, ASSUME, AWAIT, BEFORE, BEGIN,

BEHIND, BINARY, BLOCK, BUFFER, CASE, CBLOCK, CENTRY, CEXIT, COBEGIN, COND,
CONST, DECIMAL, DIFFERENCE, DIV, EACH, ELEMENT, ELIF, ELSE, END, ENTRY, EQ,
EXIT, EXTENDS, FI, FROM, FUNCTION, GE, GIVE, GT, HEX, HOLD, IF, IFF, INPUT,
IN, INTO, INITIALLY, INTERSECT, IS, KEEP, LE, LEAVE, LEMMA, LOOP, LT,
MAPOMIT, MAPPING, MOD, MOVE, NAME, NE, NEW, NORMAL, NOT, OCTAL, OF, OMIT,
ON, OR, OTHERWISE, OUTPUT, PENDING, PROCEDURE, PROVE, RECEIVE, RECORD,
REMOVE, SCOPE, SEND, SEQ, SEQOMIT, SEQUENCE, SET, SIGNAL, SOME, SUB, THEN,
TO, TYPE, UNION, UNLESS, VAR, WHEN, WITH.

Words Reserved for Language Extensions
ALIAS, EXPORT, IMPORT, MULTIPLECOND, NONE, SPACE, STRING, VALUE.

Standard Types
ACTIVATIONID, BOOLEAN, CHARACTER, INTEGER, RATIONAL.

Boolean Values
TRUE, FALSE.

Functions
ALLFROM, ALLTO, CONTENT, DOMAIN, EMPTY, FIRST, FULL, INFROM,

INFROMMERGE, INITIAL, LAST, LOWER, MAX, MESSAGES, MIN, NONFIRST, NONLAST,
NULL, ORD, OUTTO, OUTTOMERGE, PRED, RANGE, SCALE, SIZE, SUCC, TIMEDALLFROM,
TIMEDALLTO, TIMEDINFROM, TIMEDINFROMMERGE, TIMEDMERGE, TIMEDORDER,
TIMEDOUTTO, TIMEDOUTTOMERGE, UPPER.

Conditions
ROUTINEERROR, SPACEERROR.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 52

Appendix B

Base Type Definitions

For type t, its base type, btype(t), is defined as shown below. If type t has a composition access list, its
base type has the same list.

TYPE t<access list>=... btype(t)<access list>=...

v btype(v)

v(range restriction) btype(v)

v<buffer restriction> btype(v)

ARRAY u of v ARRAY u of btype(v)

RECORD(f1:u1;...;fn:un) RECORD(f1:btype(u1);...fn:btype(un))

SET OF v SET OF btype(v)
SET (size restriction) OF v SET OF btype(v)

SEQUENCE OF v SEQUENCE OF btype(v)
SEQUENCE (size restriction) OF v SEQUENCE OF btype(v)

MAPPING FROM u TO v MAPPING FROM btype(u) TO btype(v)
MAPPING (size restriction) FROM u TO v MAPPING FROM btype(u) TO btype(v)

BUFFER OF v BUFFER OF btype(v)
BUFFER (size restriction) OF v BUFFER (size restriction) OF btype(v)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 53

Appendix C

Standard Operators and Functions

This appendix lists all of the standard Gypsy operators and functions. A syntax example for each operation
is given, along with the type requirements of the operands and a brief description what the operation does.

No standard functions have formal condition parameters. The only conditions which may be signalled out
of a standard function or a predefined Gypsy operation are spaceerror, which indicates a deficiency of resources
in the computing environment, and routineerror, which signifies any other situation under which the operation
was unable to return normally. Such situations might include arithmetic overflow, cases where the function is
not complete over its domain, or any other case where the correct result cannot be returned. Where a function
or operation is not complete, the description below notes those specific cases where routineerror will certainly
be signalled.

OPERATION TYPE REQUIREMENTS EFFECT
x ** y Btype(x) = INTEGER. x to the power y.

Btype(y) = INTEGER. Signals ROUTINEERROR if y<0,
Result INTEGER. if x = 0 and y = 0, or in

case of arithmetic overflow.

Btype(x) = RATIONAL. Same as above.
Btype(y) = INTEGER.
Result RATIONAL.

- x Btype(x) = INTEGER. Negative x.
Result INTEGER. Signals ROUTINEERROR in

case of arithmetic
overflow.

Btype(x) = RATIONAL. Same as above.
Result RATIONAL.

x * y Btype(x) INTEGER. x times y.
Btype(y) = INTEGER. Signals ROUTINEERROR in
Result INTEGER. case of arithmetic

overflow.

Btype(x) = RATIONAL. Same as above.
Btype(y) = RATIONAL.
Result RATIONAL.

x / y Btype(x) = INTEGER. x divided by y.
Btype(y) = INTEGER. Signals ROUTINEERROR if y = 0
Result RATIONAL. or in case of arithmetic

overflow.

Btype(x) = RATIONAL. Same as above.
Btype(y) = RATIONAL.
Result RATIONAL.

x DIV y Btype(x) = INTEGER. Integer quotient of x divided by y.
Btype(y) = INTEGER. Signals ROUTINEERROR if y = 0
Result INTEGER. or in case of arithmetic

overflow.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 54

x MOD y Btype(x) = INTEGER. Integer remainder of x divided by y.
Btype(y) = INTEGER. (x DIV y) * y + x MOD y = x.
Result INTEGER. Signals ROUTINEERROR if y = 0

or in case of arithmetic
overflow.

x + y Btype(x) = INTEGER. x plus y.
Btype(y) = INTEGER. Signals ROUTINEERROR in case of
Result INTEGER. arithmetic overflow.

Btype(x) = RATIONAL. Same as above.
Btype(y) = RATIONAL.
Result RATIONAL.

x - y Btype(x) = INTEGER. x subtract y.
Btype(y) = INTEGER. Signals ROUTINEERROR in case of
Result INTEGER. arithmetic overflow.

Btype(x) = RATIONAL. Same as above.
Btype(y) = RATIONAL.
Result RATIONAL.

x <: y Btype(x) = SEQUENCE x @ (SEQ: y).
OF btype(y).

Result btype(x).

x :> y Btype(y) = SEQUENCE (SEQ: x) @ y.
OF btype(x).

Result btype(y).
(:> is right associative.)

x ADJOIN y Btype(x) = SET x UNION (SET: x)
OF btype(y).

Result btype(x).

x OMIT y Btype(x) = SET x with element y removed.
OF btype(y). Signals ROUTINEERROR if y is not

Result btype(x). in x.

x @ y Btype(x) = SEQUENCE OF t. The sequence x followed
x APPEND y Btype(y) = SEQUENCE OF t. by sequence y.

Result btype(x).

x UNION y Btype(x) = SET OF t. Contains the elements that
Btype(y) = SET OF t. are in either x or y.
Result btype(x).

Btype(x) = MAPPING Contains the (p,q) components
FROM u TO v. that are in either x or y.

Btype(y) = MAPPING Signals ROUTINEERROR if there are
FROM u TO v. components (p,q1) and (p,q2)

Result btype(x). with q1 NE q2.

x INTERSECT y
Btype(x) = SET OF t. Contains the elements that
Btype(y) = SET OF t. are in both x and y.
Result btype(x).

GYPSY 2.05 REPORT FEBRUARY 1, 1986 55

Btype(x) = MAPPING Contains the (p,q) components
FROM u TO v. that are in both x and y.

Btype(y) = MAPPING Signals ROUTINEERROR if there are
FROM u TO v. components (p,q1) and (p,q2)

Result btype(x). with q1 NE q2.

x DIFFERENCE y
Btype(x) = SET OF t. Contains the elements that
Btype(y) = SET OF t. are in x by not in y.
Result btype(x).

Btype(x) = MAPPING Contains the (p,q) components
FROM u TO v. that are in x but not in y.

Btype(y) = MAPPING Signals ROUTINEERROR if there are
FROM u TO v. components (p,q1) and (p,q2)

Result btype(x). with q1 NE q2.

x = y Btype(x) = btype(y).
x EQ y Result BOOLEAN.

Btype(x) = scalar type. TRUE if x is the same scalar
value as y; otherwise FALSE.

Btype(x) = INTEGER. TRUE if x is the same integer
number as y; otherwise FALSE.

Btype(x) = RATIONAL. TRUE if x is the same rational
number as y; otherwise FALSE.
(1/2 = 2/4 = 3/6 = etc.)

Btype(x) = ACTIVATIONID TRUE if x and y indicate the
same activation of the same
procedure; otherwise FALSE.

Btype(x) = ARRAY u OF v. TRUE if x(i) = y(i) for each i
x and y must have the in the index range; otherwise
same index type. FALSE.

Btype(x) = RECORD(...). TRUE if x.f = y.f for each
x and y must have the field f; otherwise FALSE.
same field names.

Btype(x) = SET OF v. TRUE if x and y have the same
elements; otherwise FALSE.

Btype(x) = SEQUENCE OF v. TRUE if SIZE(x) = SIZE(y)
and x(i) = y(i) for all i
in 1..SIZE(x);otherwise FALSE.

Btype(x) = TRUE if DOMAIN(x) = DOMAIN(y)
MAPPING FROM u TO v. and x(i) = y(i) for all i

in DOMAIN(x); otherwise FALSE.

x NE y Btype(x) = btype(y). NOT x = y.
Result BOOLEAN.

x < y Btype(x) = btype(y).

GYPSY 2.05 REPORT FEBRUARY 1, 1986 56

x LT y Result BOOLEAN.

Btype(x) scalar. TRUE if ORD(x) < ORD(y);
otherwise FALSE.

Btype(x)=INTEGER. TRUE if x is less than y;
otherwise FALSE.

Btype(x) RATIONAL. Same as above.

x LE y Btype(x) = btype(y). x < y OR x = y.
Btype(x) simple type.
Result BOOLEAN.

x > y Btype(x) = btype(y). y < x.
x GT y Btype(x) simple type.

Result BOOLEAN.

x GE y Btype(x) = btype(y). x > y OR x = y.
Btype(x) simple type.
Result BOOLEAN.

x IN y Btype(y) = TRUE if x is an element of
SEQUENCE OF btype(x). sequence y; otherwise FALSE.

Result BOOLEAN.

Btype(y) = TRUE if x is an element of
SET OF btype(x). set y; otherwise FALSE.

Result BOOLEAN.

x SUB y Btype(x) = SET OF t. TRUE if x is a subset of y;
Btype(y) = SET of t. otherwise FALSE.
Result BOOLEAN.

Btype(x) = SEQUENCE OF t. TRUE if y has an ordered (not
Btype(y) = SEQUENCE of t. necessarily contiguous) subsequence
Result BOOLEAN. x; otherwise FALSE.

Btype(x) = MAPPING TRUE if DOMAIN(x) SUB DOMAIN(y)
FROM u TO v. and x(d) = y(d) for every

Btype(y) = MAPPING d IN DOMAIN(x); otherwise FALSE.
FROM u TO v.

Result BOOLEAN.

NOT x Btype(x) = BOOLEAN. TRUE if x = FALSE;
Result BOOLEAN. FALSE if x = TRUE;

x & y Btype(x) = BOOLEAN. TRUE if both x = TRUE and
x AND y Btype(y) = BOOLEAN. y = TRUE; otherwise FALSE.

Result BOOLEAN.

x OR y Btype(x) = BOOLEAN. TRUE if either x = TRUE or
Btype(y) = BOOLEAN. y = TRUE; otherwise FALSE.
Result BOOLEAN.

x -> y Btype(x) = BOOLEAN. FALSE if x = TRUE and y = FALSE;
x IMP y Btype(y) = BOOLEAN. otherwise TRUE.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 57

Result BOOLEAN.

x IFF y Btype(x) = BOOLEAN. x = y.
Btype(y) = BOOLEAN.
Result BOOLEAN.

ALL x : xtype, p(x)
xtype = a bounded simple This is a shorthand notation for
type. the expression:

btype(p(x)) = BOOLEAN. p(x1) & p(x2) & ... & p(xn),
p(x) is an expression. where (x1, x2, ... xn) is the

value set of type xtype.

SOME x : xtype, p(x)
xtype = a bounded simple This is a shorthand notation for
type. the expression:

btype(p(x)) = boolean. p(x1) or p(x2) or ... or p(xn),
p(x) is an expression. where (x1, x2, ... xn) is the

value set of type xtype.

x(y) Btype(x) = Component y of x.
ARRAY y OF btype(v). Signals ROUTINEERROR if there

Btype(y) = non-rational is no such component.
simple type.

Result type v.

Btype(x) = SEQUENCE OF v. Same as above.
Result type v.

Btype(x) = Same as above.
MAPPING FROM u TO v.

Result type v.

x(y..z)
Btype(x) = SEQUENCE OF v. If y le z, the subsequence of x that
Btype(y) = INTEGER. begins with element in position y and
Btype(z) = INTEGER. ends with the element in position z.
Result type x. If y > z, produces the empty sequence

of type btype(x).
Signals ROUTINEERROR if y LE z and
there is either no y or no z component.

x.y Btype(x) = Field y of record x.
RECORD(... y:v ...).

Result type v.

(SET: x1, ..., xn)
Btype(x1)=...=btype(xn). The set of elements {x1, ..., xn}.
Result SET OF btype(x1).

(SET: x..y)
Btype(x) = btype(y) = The set of elements {x, ..., y}.
simple non-rational
type.

Result SET OF btype(x).

(SEQ: x1, ..., xn)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 58

(x1, ..., xn)
Btype(x1)=...=btype(xn). The sequence of elements

(x1, ..., xn)
Result SEQUENCE

OF btype(x1).

(SEQ: x..y)
(x..y)

Btype(x) = btype(y) = The sequence of elements
simple non-rational (x, ..., y)
type.

Result SEQUENCE
OF btype(x).

x WITH ((y) := z)
Btype(x) = Same value as x but with
ARRAY u OF btype(z). x(y) = z.
Result btype(x). Signals ROUTINEERROR if there is

no y component of x.

Btype(x) = Same as above.
SEQUENCE OF btype(z).
Btype(y)=INTEGER.
Result btype(x).

x WITH (.y := z)
Btype(x) = RECORD Same value as x but with
(... y:btype(z) ...). x.y = z.

Result btype(x).

x WITH (INTO (y) := z) Same value as x but with
Btype(x) = MAPPING x(y) = z.
FROM btype(x) If there is no
TO btype(y). component y, one is created with

Result btype(x). z as its value.

x WITH (BEFORE (y) := z)
Btype(x) = SEQUENCE x(1..y-1) @ (SEQ: z)

OF btype(z). @ x(Y..SIZE(x))
Btype(y) = INTEGER. Signals routtineerror if there is
Result btype(x). no y component of x.

x WITH (BEHIND (y) := z)
Btype(x) = SEQUENCE x(1..y) @ (SEQ: z)

OF btype(z). @ x(y+1..SIZE(x))
Btype(y) = INTEGER. Signals ROUTINEERROR if there is
Result btype(x). no y component of x.

x WITH (SEQOMIT (y))
Btype(x) = SEQUENCE OF v. x(1..y-1) @ x(y+1..SIZE(x))
Btype(y) = INTEGER. Signals ROUTINEERROR if there
Result type of x. is no y component.

x WITH (MAPOMIT (y))
Btype(x) = MAPPING Same value as x but without
FROM btype(y) TO v. component (y,x(y)).

GYPSY 2.05 REPORT FEBRUARY 1, 1986 59

Result type of x. Signals ROUTINEERROR if there is
no y component.

x WITH (<component selector 1> <component selector 2> := y)
Must meet the type x WITH (<component selector 1>
requirements of its := x<component selector 1>
result expression. WITH (<component selector 2> := y))
Result btype(x).

x WITH (y ; z)
Must meet the type (x WITH y) WITH z
requirements of its
result expression.
Result btype(x).

x WITH (EACH y:t, z)
Type T is a simple bounded
type with values ranging
from a to b.
Must meet the type x WITH (a replacing y in z;
requirement of its ...
result expression. b replacing y in z)
Result btype(x).

IF x1 THEN y1
ELIF x2 then y2
...
ELIF xn THEN yn
ELSE z FI

Btype(x1) = ... = y1 if x1 = TRUE; otherwise
btype(xn) = BOOLEAN. y2 if x2 = TRUE; otherwise

Btype(y1) = ... = ...
btype(yn) = btype(z). yn if xn = TRUE; otherwise z
Result btype(z).

ALLFROM(x) Btype(x) = BUFFER OF t. MESSAGES (TIMEDALLFROM (x)).
Result SEQUENCE OF t.

ALLTO(x) Btype(x) = BUFFER OF t. MESSAGES (TIMEDALLTO (x)).
Result SEQUENCE OF t.

CONTENT(x) Btype(x) = BUFFER OF t. The sequence of all values
Result SEQUENCE OF t. in the queue of x.

ALLTO(x) = ALLFROM(x) @ CONTENT(x).

DOMAIN(x) Type of x is The set of all p such that
MAPPING FROM u TO v. (p,q) is in x.
Result type SET OF u.

EMPTY(x) Btype(x) = BUFFER OF t. SIZE(CONTENT(x))=0.
Result BOOLEAN.

FIRST(x) Btype(x) = SEQUENCE OF v. x(1)
Result type v. Signals ROUTINEERROR if SIZE(x) = 0.

FULL(x) Btype(x) = BUFFER OF t. SIZE (CONTENT(x)) = k where is the
Result BOOLEAN. size limit restriction on the buffer.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 60

FALSE if there is no size limit.

INFROM(x,y) Btype(x) = BUFFER OF t. MESSAGES (TIMEDINFROM (x,y)).
Btype(y) = ACTIVATIONID.
Result SEQUENCE OF t.

INFROMMERGE(x,y,p,q) MESSAGES (TIMEDINFROMMERGE (x,y,p,q))
Btype(x) = BUFFER OF v.
Btype(y) = ARRAY INTEGER OF ACTIVATIONID.
Btype(p) = btype(q) = INTEGER.
Result SEQUENCE OF v.

INITIAL(x) x is an identifier that The default initial value of
names a type. type x.

Result type x.

LAST(x) Btype(x) = x [SIZE(x)].
SEQUENCE of v. Signals ROUTINEERROR if SIZE(x) = 0.

Result type v.

LOWER(x) x = the type name of any The minimum value of type x.
simple type except
unbounded INTEGER or
RATIONAL.
Result type x.

MAX(x,y) Btype(x) = btype(y). IF x > y THEN x ELSE y FI.
Btype(x) = a simple type.
Result btype(x).

MIN(x,y) Btype(x) = btype(y). IF x < y THEN x ELSE y FI.
Btype(x) = a simple type.
Result btype(x).

MESSAGES(x) Btype(x) = SEQUENCE OF t (SEQ: x(1).MESSAGE,...,
where TYPE t = RECORD x(SIZE(x)).MESSAGE)

(MESSAGE: btype(v);
TIME: INTEGER).

type v a non-buffer type.

NONFIRST(x) Btype(x) = SEQUENCE OF v. x(2..SIZE(x))
Result type x. Signals ROUTINEERROR if SIZE(x) = 0.

NONLAST(x) Btype(x) = x(1..SIZE(x)-1).
SEQUENCE OF v. Signals ROUTINEERROR if SIZE(x) = 0.

Result type x.

NULL(x) x is an identifier The empty set of type x.
that names a set type.

Result type x.

x is an identifier The empty sequence of type x.
that names a sequence
type.

Result type x.

x is an identifier The empty mapping of type x.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 61

that names a mapping
type.

Result type x.

ORD(x) Btype(x) = a scalar type The number of the position of
Result INTEGER. scalar value x in its base type

definition sequence (with
numbering beginning at zero).

OUTTO(x,y) Btype(x) = BUFFER OF t. MESSAGES (TIMEDOUTTO(x,y))
Btype(y) = ACTIVATIONID.
Result SEQUENCE OF t.

OUTTOMERGE(x,y,p,q) MESSAGES (TIMEDOUTTOMERGE(x,y,p,q))
Btype(x) = BUFFER OF v.
Btype(y) = ARRAY INTEGER OF ACTIVATIONID.
Btype(p) = btype(q) = INTEGER.
Result SEQUENCE OF v.

PRED(x) Btype(x) = t where t is The next scalar value less than x.
a scalar type. Signals ROUTINEERROR if x = LOWER(t).

Result btype(x).

RANGE(x) Btype(x) = The set of all q such that
MAPPING FROM u TO v. (p,q) is in x.

Result type SET OF v.

SCALE(x,y) Btype(x) = INTEGER. Scalar value number x of type btype(y).
y is an identifier Signals ROUTINEERROR if x < 0
that names a scalar type. or if x > ORD (UPPER(btype(y))).
Result type btype(y).

SIZE(x) Btype(x) = SET OF v. The number of elements in x.
Result INTEGER.

Btype(x) = SEQUENCE OF v. Same as above.
Result INTEGER.

Btype(x) = MAPPING Same as above.
FROM u TO v.

Result INTEGER.

SUCC(x) Btype(x) = t where t is The next scalar value greater
a scalar type. than x.

Result btype(x). Signals routineeror if x = UPPER(t).

TIMEDALLFROM(x)
Btype(x) = BUFFER OF v. TIMEDINFROM (x,p) where p is
Result SEQUENCE OF t the process in which buffer x
where TYPE t = RECORD defined as internal object.

(MESSAGE: btype(v);
TIME: INTEGER).

TIMEDALLTO(x)
Btype(x) = BUFFER OF v. TIMEDOUTTO (x,p) where p is
Result SEQUENCE OF t the process in which buffer x

GYPSY 2.05 REPORT FEBRUARY 1, 1986 62

where TYPE t = RECORD is defined as internal object.
(MESSAGE: btype(v);
TIME: INTEGER).

TIMEDINFROM(x,y) TIMEDINFROM (x,y)(k).MESSAGE
Btype(x) = BUFFER OF v. is k-th value that was received
Btype(y) = ACTIVATIONID. from buffer x by process y.
Result SEQUENCE OF t TIMEDINFROM (x,y)(k).TIME
where TYPE t = RECORD is the time at which process y

(MESSAGE: btype(v); obtained the k-th value from
TIME: INTEGER). buffer x.

TIMEDINFROMMERGE(x,y,p,q) TIMEDMERGE (TIMEDINFROM (x,y(p)),
Btype(x) = BUFFER OF v. ...,
Btype(y) = TIMEDINFROM (x,y(q)))
ARRAY INTEGER OF where

ACTIVATIONID. TIMEDMERGE (u,...v,w) =
Btype(p) = btype(q) TIMEDMERGE (u,TIMEDMERGE (...v,w))

= INTEGER.
Result SEQUENCE OF t
where TYPE t = RECORD

(MESSAGE: btype(v);
TIME: INTEGER).

TIMEDMERGE(x,y) Consists of the elements of the
Btype(x)=btype(y). sequences x and y ordered on their
Btype(x) = SEQUENCE OF t TIME components.
where TYPE t = RECORD (TIMEDMERGE (x,y) is defined only if

(MESSAGE: v; TIMEDORDER (x) and TIMEDORDER (y)
TIME: INTEGER). and each TIME component is unique

Result btype(x). in both sequences.)

TIMEDORDER(x) TRUE if x(k).TIME < x(k+1).TIME
Btype(x) = SEQUENCE OF t for k = 1,...,SIZE(x)-1.
where TYPE t = RECORD FALSE otherwise.
(MESSAGE: v;
TIME: INTEGER).

Result BOOLEAN.

TIMEDOUTTO(x,y) TIMEDOUTTO (x,y)(k).MESSAGE
Btype(x) = BUFFER OF v. is k-th value that was sent (or given)
Btype(y) = ACTIVATIONID. to buffer x by process y.
Result SEQUENCE OF t TIMEDOUTTO (x,y)(k).TIME
where is the time at which process y
TYPE t = RECORD sent (or gave) the k-th value from
(MESSAGE: btype(v); buffer x.
TIME: INTEGER).

TIMEDOUTTOMERGE(x,y,p,q) TIMEDMERGE (TIMEDOUTTO (x,y(p)),
Btype(x) = BUFFER OF v. ...,
Btype(y) = TIMEDOUTTO (x,y(q)))
ARRAY INTEGER OF where

ACTIVATIONID. TIMEDMERGE (u,...v,w) =
Btype(p) = btype(q) TIMEDMERGE (u,TIMEDMERGE (...v,w))

GYPSY 2.05 REPORT FEBRUARY 1, 1986 63

= INTEGER.
Result SEQUENCE OF t
where TYPE t = RECORD

(MESSAGE: btype(v);
TIME: INTEGER).

UPPER(x) x = the type name of any The maximum value of type x.
simple type except
unbounded INTEGER or
RATIONAL.
Result type x.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 64

Appendix D

Standard Procedures

PROCEDURE TYPE REQUIREMENTS EFFECT

x := y (Section 5.8.1)
Btype(x) = btype(y). Makes the value of x equal to the
Btype(x) may be any value of y. As a result of the
type except assignment x = y.
BUFFER OF v. Signals ROUTINEERROR if y is not in

the value set of the type of x.

x(y) := z Btype(x) = (x := x with ((y) := z))
ARRAY u OF v. Signals ROUTINEERROR if y is not in

Btype(y) = btype(u). the value set of the index type of x
Btype(z) = btype(v). or if z is not in the value set of the

element type of x.

Btype(x) = Same as above.
SEQUENCE OF v. Signals ROUTINEERROR if y is not in the

Btype(y) = INTEGER. range [1..SIZE(x)] or if z is not in the
value set of the element type of x.

Btype(z) = btype(v).

(x.y := z) Btype(x) = x := x WITH (.y := z)
RECORD(.. y:v ..). Signals ROUTINEERROR if z is not in

Btype(z) = v. the value set of x.y.

NEW z BEFORE SEQ x; x := z :> x
Btype(x) = Signals ROUTINEERROR if z is not in
SEQUENCE OF v. the value set of the element type

Btype(z) = v. of x or if SIZE(x) = the size
restriction on the type of x.
(Section 9.3.1).

NEW z BEHIND SEQ x; x := x <: z;
Btype(x) = Signals ROUTINEERROR if z is not in
SEQUENCE OF v. the value set of the element type

Btype(z) = v. of x or if SIZE(x) = the size
restriction on the type of x.
(Section 9.3.1).

NEW z BEFORE x(y) x := x WITH (BEFORE (y) := z)
Btype(x) = Signals ROUTINEERROR if y is not in
SEQUENCE of v. [1..SIZE(X)], if z is not in the

Btype(y) = INTEGER. value set of the element type of x,
Btype(z) = v. or if SIZE(x) = the size restriction

on the type of x. (Section 9.3.1).

NEW z BEHIND x(y) x := x WITH (BEHIND (y) := z)
Btype(x) = Signals ROUTINEERROR if y is not in
SEQUENCE of v. [1..SIZE(X)], if z is not in the

GYPSY 2.05 REPORT FEBRUARY 1, 1986 65

Btype(y)=INTEGER. value set of the element type of x,
Btype(z)=v. or if SIZE(x) = the size restriction

on the type of x. (Section 9.3.1).

NEW z INTO x x := x ADJOIN z
NEW z INTO SET x; Signals ROUTINEERROR if z is not in

Btype(x) = SET OF v. the value set of the element type
Btype(z) = v. of x or if SIZE(x ADJOIN z) > the

size restriction on the type of x.
(Section 9.3.1).

NEW z INTO x(y) x := x WITH (INTO (y) := z)
Btype(x) = Signals ROUTINEERROR if y is not
MAPPING FROM u TO v. in the value set of the domain

Btype(y) = u. type of x, if z is not in the value
Btype(z) = v. set of the range type of x, or if

SIZE(x WITH (INTO (y) := z)) > the
size restriction on the type of x.
(Section 9.3.1).

REMOVE x(y) Btype(x) = x := x WITH (SEQOMIT (y));
SEQUENCE OF v. Signals ROUTINEERROR if y is not
Btype(y) = INTEGER. in [1..SIZE(x)].

(Section 9.3.2).

Btype (x) = x := x WITH (MAPOMIT (y))
MAPPING FROM u TO v. Signals ROUTINEERROR if

Btype(y) = u. y is not in DOMAIN(x).
(Section 9.3.2).

REMOVE ELEMENT z FROM x x := x OMIT z
REMOVE ELEMENT z FROM SET x Signals ROUTINEERROR if x is

Btype(x) = SET OF v. not in x.
Btype(z) = v. (Section 9.3.2).

MOVE x y Same restrictions as Same effect as NEW x y; REMOVE x.
equivalent NEW and (Section 9.3.3).
REMOVE.

MOVE x TO y Same restrictions as Same effect as y := x; REMOVE x.
equivalent := and (Section 9.3.3).
REMOVE.

RECEIVE x FROM y Takes oldest value from the queue of y
Btype(y) = and assigns it to x. Signals
BUFFER OF v. ROUTINEERROR if the value is not
Btype(x) = v. in the value set of x.

(Section 10.4.1).

SEND x TO y Puts a new value on the queue of y.
Btype(y) = Signals ROUTINEERROR if x is not
BUFFER OF v. in the value set of the component
Btype(x) = v. type of y. (Section 10.4.2).

GIVE x TO y Same effect as SEND x TO y; REMOVE x.
Btype(y) = (Section 10.4.3).
BUFFER OF v.

Btype(x) = v.

GYPSY 2.05 REPORT FEBRUARY 1, 1986 66

Appendix E

Procedure Compositions

In the following, "{ x }" means that "x" may be repeated zero or more times, and "[x]" means that " x " is
optional. "Statements" or "statements1", etc. are <internal statements>.

IF bool1 THEN [statements1] An if composition chooses and
{ELIF bool2 THEN [statements2]} performs one of several internal
[ELSE [statements3]] statement lists.
[WHEN {IS condi: statementsi}] (Section 5.8.3).

END

CASE exp A case composition is another way
{IS labeli: [statementsi]} of choosing and performing one of
[ELSE: [statementsj]] several internal statement lists.
[WHEN {is condi: statementsi}] (Section 5.8.4).

END

LOOP [statements] A loop composition performs its
[WHEN {is condi: statementsi} internal statements repeatedly.

END It is terminated by performing a
leave statement (or by signalling

LEAVE a condition.
(Section 5.8.5).

procname (exp1, .. expn) The procedure call causes a procedure
[UNLESS [(COND ccond1, .. ccondn)] to run. The actual parameters of the

call are objects in the calling
environment which become the external
objects of the called procedure.
Call by reference is used. Actual
parameters must conform to type
restrictions on the formals, and
must not allow aliasing. Actuals
corresponding to var formals must be
variable name expressions. Actual
condition parameters must be forward
conditions. They default to
ROUTINEERROR.
(Sections 5.9, 8.5.3).

BEGIN [statements] The begin composition may be used to
[WHEN {is condi: statementsi}] associate condition handlers with

END an arbitrary sequence of internal
statements.
(Section 8.3).

SIGNAL condname A signal statement simply signals
its forward condition.
(Section 8.5).

AWAIT The await composition provides a way
[EACH i1: itype1,] ON stmt1 of waiting concurrently on several

THEN statements1; events to occur.
{[EACH in: itypen,] ON stmtn (Section 10.5.1).

GYPSY 2.05 REPORT FEBRUARY 1, 1986 67

THEN statementsn}
[WHEN {IS condi: statementsi}]

END

COBEGIN A cobegin composition provides a way of
[EACH i1: itype1,] running several processes concurrently.

procname1 (exp11, .. exp1n); (Section 10.5.2).
{[EACH in: itypen,]

procnamen (expn1, .. expnn);}
[WHEN {is condi: statementsi}]

END

GYPSY 2.05 REPORT FEBRUARY 1, 1986 68

Appendix F

Cross Reference of Operations by Type

This appendix lists the standard operations that are pre-defined for each Gypsy type. A special section
under the buffer class lists functions on buffer histories. Where alternate notations for the same operation are
available, they are presented side by side.

SIMPLE TYPES

Operations Statements (s is a simple object)
---------- ----------
EQ = s := exp;
NE
LT <
LE
GT >
GE
MAX
MIN
INITIAL
LOWER (if the operand is a bounded type)
UPPER (if the operand is a bounded type)

SCALAR TYPES

Operations Statements (s is a scalar object)
---------- ----------
EQ = s := exp;
NE
LT <
LE
GT >
GE
MAX
MIN
INITIAL
LOWER
UPPER
ORD
SCALE
PRED
SUCC

GYPSY 2.05 REPORT FEBRUARY 1, 1986 69

BOOLEAN TYPES

Operations Statements (b is a boolean object)
---------- ----------
EQ = IFF b := exp;
NE
LT <
LE
GT >
GE
MAX
MIN
INITIAL
LOWER
UPPER
ORD
SCALE
PRED
SUCC
NOT
AND
OR
IMP ->
ALL
SOME

INTEGER TYPES

Operations Statements (i is an integer object)
---------- ----------
EQ = i := exp;
NE
LT <
LE
GT >
GE
MAX
MIN
INITIAL
LOWER (if the operand is a subrange type)
UPPER (if the operand is a subrange type)
DIV
MOD
+
- (unary)
- (binary)
*
/
**

GYPSY 2.05 REPORT FEBRUARY 1, 1986 70

RATIONAL TYPES

Operations Statements (r is a rational object)
---------- ----------
EQ = r := exp;
NE
LT <
LE
GT >
GE
MAX
MIN
INITIAL
+
- (unary)
- (binary)
*
/
**

ARRAY TYPES

Operations Statements (a is an array object)
---------- ----------
EQ = a := exp;
NE a[i] := exp;
a[i]
a WITH ([i] := exp)
INITIAL

RECORD TYPES

Operations Statements (r is a record object)
---------- ----------
EQ = r := exp;
NE r.fieldname := exp;
r.fieldname
r WITH (.fieldname := exp)
INITIAL

GYPSY 2.05 REPORT FEBRUARY 1, 1986 71

SET TYPES

Operations Statements (s is a set object)
---------- ----------
EQ = s := exp;
NE NEW exp INTO SET s;
ADJOIN MOVE exp INTO SET s;
DIFFERENCE MOVE exp1 FROM SET s TO exp2;
IN MOVE exp1 FROM SET s INTO exp2;
INITIAL REMOVE exp FROM SET s;
INTERSECT GIVE exp FROM SET s TO b;
NULL
OMIT
SIZE
SUB
UNION
(SET: e1, e2, ... en)
(SET: e1 .. en)

SEQUENCE TYPES

Operations Statements (s is a sequence object)
---------- ----------
EQ = s := exp;
NE s[i] := exp;
s[i] MOVE exp BEFORE s[i];
s[i..j] MOVE exp BEFORE SEQ s;
<: MOVE exp BEHIND s[i];
:> MOVE exp BEHIND SEQ s;
APPEND @ MOVE exp FROM SET setexp BEFORE s[i];
FIRST MOVE exp FROM SET setexp BEFORE SEQ s;
IN MOVE exp FROM SET setexp BEHIND s[i];
INITIAL MOVE exp FROM SET setexp BEHIND SEQ s;
LAST NEW exp BEFORE s[i];
NONFIRST NEW exp BEFORE SEQ s;
NONLAST NEW exp BEHIND s[i];
NULL NEW exp BEHIND SEQ s;
SIZE REMOVE s[i];
SUB GIVE s[i] TO b;
(SEQ: e1, e2, ... en)
(SEQ: e1 .. en)
s WITH ([i] := exp)
s WITH (BEFORE [i] := x)
s WITH (BEHIND [i] := x)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 72

MAPPING TYPES

Operations Statements (m is a mapping object)
---------- ----------
EQ = m := exp;
NE MOVE exp INTO m[i];
m[x] MOVE exp FROM SET setexp INTO m[i];
INITIAL NEW exp INTO m[i];
DOMAIN REMOVE m[i];
RANGE GIVE m[i] TO b;
NULL
DIFFERENCE
INTERSECTION
UNION
SIZE
SUB
m WITH ([x] := y)
m WITH (INTO [x] := y)

GYPSY 2.05 REPORT FEBRUARY 1, 1986 73

BUFFER TYPES

Operations Statements (b is a buffer object)
---------- ----------
FULL SEND exp TO b;
EMPTY RECEIVE exp FROM SET b;
CONTENT GIVE exp TO b;
ALLFROM GIVE exp FROM SET setexp TO b;
ALLTO
INFROM
INFROMMERGE
OUTTO
OUTTOMERGE
TIMEDALLFROM
TIMEDALLTO
TIMEDINFROM
TIMEDINFROMMERGE
TIMEDOUTTO
TIMEDOUTTOMERGE
MESSAGES
INITIAL

The following are functions on buffer histories:

TIMEDMERGE
TIMEDORDER

ACTIVATIONID TYPES

Operations

EQ =

GYPSY 2.05 REPORT FEBRUARY 1, 1986 74

Index

* 53 <component alterations> 13
** 53 <component assignment> 13

<component creation> 39
+ 54 <component creator> 39

<component deletion> 39
- 53, 54 <component destination> 42

<component modification> 13
. 57 <component selectors> 12
.. 57 <component type> 10

<concrete block specification> 50
/ 53 <concrete entry specification> 50

<concrete exit specification> 50
:= 64 <concrete operational specification> 49

<condition handlers> 34
<abstract operational specification> 29 <conditional exit specification> 36
<abstract type body> 48 <constant body> 19
<abstract type declaration> 48 <constant declaration> 19
<access specification> 18 <constant name> 19
<actual condition group> 35 <creation component selectors> 39
<actual condition list> 35 <data object name> 12
<actual condition parameters> 35 <default abstract initial value specification> 49
<actual condition> 35 <default initial value expression> 7
<actual data object> 24 <digit> 6
<actual data parameters> 24 <dynamic type composition> 37
<actual parameters> 24 <dynamic variable component name expression> 41
<alteration selector list> 13 <each clause> 14
<array type> 10 <element list> 38
<assert specification> 29 <entry specification> 29
<assignment statement> 21 <entry value> 28
<await arm> 45 <equality extension> 49
<await composition> 45 <equality type> 38
<base> 8 <event statement> 45
<begin composition> 34 <existential quantification> 28
<binary operator> 15 <exit label> 36
<block specification> 47 <exit specification> 29
<boolean expression> 28 <expression> 14
<boolean operator> 15 <external conditions> 33
<boolean unary operator> 15 <external data objects> 18
<bound expression> 28 <external operational specification> 28
<bounded index> 14 <external variable object> 28
<buffer type composition> 43 <factor> 14
<buffer type name> 43 <field name> 10
<buffer variable> 44 <field type> 10
<called function name> 23 <fields> 10
<called procedure name> 23 <foreign unit name> 32
<case composition> 22 <formal condition name> 33
<case exit body> 36 <formal condition parameters> 33, 35
<case exit labels> 36 <formal data parameters> 18
<case exit> 36 <formal type> 18
<case labels> 22 <forward condition> 35
<cobegin arm> 45 <function call> 23
<cobegin composition> 45 <function declaration> 19
<comment character> 6 <function name> 19
<comment> 6 <give statement> 44

GYPSY 2.05 REPORT FEBRUARY 1, 1986 75

<group name> 35 <pre-computable value> 16
<handler labels> 34 <primary value> 13
<handler name> 34 <privileged units> 48
<handler> 34 <procedural statement> 21
<hold specification> 49 <procedure body> 20
<identifier> 5 <procedure composition rule> 21
<if composition> 22 <procedure declaration> 17
<if expression> 15 <procedure name> 17
<index selector> 12 <procedure statement> 23
<index type> 10 <proof directive> 27
<input or output> 43 <quantified expression> 28
<integer operator> 15 <quantified factor> 15
<integer unary operator> 15 <quantified names> 28
<integer value> 8 <quote symbol> 40
<internal condition name> 33 <range limits> 9
<internal condition objects> 33 <range restriction> 9
<internal data object names> 20 <range> 9
<internal data objects> 20 <rational operator> 15
<internal data or condition objects> 20 <rational unary operator> 15
<internal environment> 20 <rational value> 9
<internal initial value> 20 <receive statement> 44
<internal statements> 21 <record type> 10
<keep specification> 29 <removable component> 41
<label expression> 22 <remove statement> 41
<leave statement> 23 <restricted buffer type composition> 43
<lemma body> 30 <result type> 19
<lemma declaration> 30 <scalar or integer valued expression> 22
<lemma name> 30 <scalar type> 8
<letter or digit> 5 <scalar value> 8
<letter> 5 <scope declaration> 31
<literal value> 13 <scope name> 31
<local aliases> 31 <selector type> 38
<local condition> 33 <send statement> 44
<local name> 32 <sequence element name expression> 40
<local renaming> 32 <sequence name expression> 40
<loop composition> 23 <sequence operator> 39
<mapping element name expression> 40 <sequence position designator> 40
<mapping operator> 39 <sequence type> 38
<mapping type> 38 <set name expression> 40
<maximum value> 9 <set operator> 39
<minimum value> 9 <set or seq mark> 38
<modified primary value> 13 <set or sequence value> 38
<move statement> 42 <set type> 37
<name declaration> 31 <signal statement> 35
<name expression> 12 <similar fields> 10
<new dynamic variable component> 40 <similar formal data parameters> 18
<new statement> 40 <simple relational operator> 15
<non-buffer component type> 43 <simple specification expression> 27
<non-empty pre-computable range> 9 <simple type name> 9
<non-negative integer pre-computable expression> 37 <size limit restriction> 37
<non-quote character> 40 <specification expression> 27
<non-rational simple type specification> 10 <statement list> 21
<non-validated specification expression> 27 <statement> 21
<number> 8 <static type composition> 10
<operation restriction> 43 <string value> 40
<ordinary type declaration> 7 <subrange type> 9
<potential value expression> 15 <subsequence selector> 39
<pre-computable expression> 16 <term> 14
<pre-computable label expression> 22 <type declaration> 7

GYPSY 2.05 REPORT FEBRUARY 1, 1986 76

<type definition> 7 assignment 64
<type name> 7 component assignment 64
<type specification> 7 element assignment 64
<unary operator> 14 Array type 10
<unit declaration> 31 Assert specification 29
<unit or name declaration> 31 Assignment 21, 64
<unit or scope name> 48 Await blocked 46
<universal quantification> 28 Await composition 45, 66
<validation directive> 27
<value alterations> 13 Base type 11
<value list> 38 Before 58
<value modifiers> 13 Begin composition 66
<value selectors> 13 Behind 58
<variable name expression> 21 Binary 8

Block specification 46
& 56 Body 20
-> 56 Boolean operations 69
:= 64 & 56
:> 54 -> 56
<: 54 all 57
< 55 and 56
= 55 existential quantification 57
> 56 iff 57
@ 54 imp 56

not 56
Abstract specification 49 or 56
Abstract type 48 some 57
Abstract type body 48 universal quantification 57
Abstract type declaration 48 Boolean statements
Activationid operations 73 := 64

= 55 assignment 64
eq 55 Boolean type 8

Activationid type 46 Bound identifiers 18
Actual condition parameter 35 Buffer histories 46
Actual parameter 24 Buffer operation restriction 43
Add 54 Buffer operations 73
Adjoin 54 allfrom 59
Adjoinfirst 54 allto 59
Adjoinlast 54 content 59
Alias group 35 empty 59
Aliasing 24 full 59
All 57 infrom 60
Allfrom 59 infrommerge 60
Allto 59 initial 60
Alteration 13, 39, 58 messages 60
And 56 outto 61
Append 54 outtomerge 61
Array 10 timedallfrom 61
Array operations 70 timedallto 61

= 55 timedinfrom 62
alteration 58 timedinfrommerge 62
eq 55 timedmerge 62
if 59 timedorder 62
initial 60 timedoutto 62
ne 55 timedouttomerge 62
select 57 Buffer parameters 44
with 58 Buffer statements

Array statements give 65
:= 64 receive 65

GYPSY 2.05 REPORT FEBRUARY 1, 1986 77

send 65 Existential quantification 28
Buffer type composition 43 Exit specification 29

Expression 12
Case composition 22, 66 Extended non-aliasing rule 45
Case exit 36 External condition 33
Cblock specification 49 External environment 18
Centry specification 49 External object 18
Cexit specification 49 External operational specifications 28
Character set 5
Character type 8 First 59
Cobegin blocked 47 Formal parameter 18, 24
Cobegin composition 45, 67 Forward conditions 35
Comment 6 Full 59
Component assignment 64 Function 19
Component selectors 12, 39 Function call 35
Component type 37
Concrete specification 49 Ge 56
Concrete values 48 Give 65
Concurrent composition 45 Give statement 44
Concurrent processes 43 Gt 56
Cond group 35
Condition 33 Handling conditions 34
Condition handlers 34 Hex 8
Conditional exit specification 36 Hold specification 49
Constant 19
Content 59 Identifier 5

If 59
Decimal 8 If composition 22, 66
Default initial value 7, 7, 60 If expression 15, 59

abstract type 49 Iff 57
array 10 Imp 56
buffer 43 Implementation prelude 25
function result 19 In 56
integer 8 Index 57
internal data object 20 Infrom 60
mapping 38 Infrommerge 60
rational 9 Initial 60
record 10 Initially specification 49
scalar 8 Input 22
sequence 38 Integer operations 69
set 37 * 53
subrange 9 ** 53

Developing a program 25 + 54
Difference 55 - 53, 54
Div 53 / 53
Divide 53 < 55
Domain 59 = 55
Dynamic type compositions 37 > 56

div 53
Each 59 eq 55
Each clause 14, 45 ge 56
Element assignment 64 gt 56
Else group 35 if 59
Empty 59 initial 60
Entry specification 29 le 56
Entry value 28 lower 60
Eq 55 lt 55
Equality extension 49 max 60
Exclusive access 44 min 60

GYPSY 2.05 REPORT FEBRUARY 1, 1986 78

minus 53 Mapping type 38
mod 54 Max 60
ne 55 Messages 60
pred 61 Min 60
subtract 54 Minus 53
succ 61 Mod 54
upper 63 Modified primary value 13

Integer statements Move 65
:= 64 mapping 65
assignment 64 sequence 65

Integer type 8 set 65
Internal condition 33 Move statement 42
Internal data object 20 Multiple condition 46
Internal environment 20 Multiply 53
Internal specifications 29 Myid 46
Internal statement 21
Intersect 54 Name declaration 31
Into 58 Name expression 12

Name resolution 32
Keep specification 29 Ne 55

New 64, 65
Last 60 before seq 64
Le 56 before sequence element 64
Leave statement 66 behind seq 64
Lemma 30, 50 behind sequence element 64
Local condition 33 into mapping element 65
Local name 18, 32 into set 65
Local names 31 New statement 40
Loop composition 23, 66 Nonfirst 60
Lower 60 Nonlast 60
Lt 55 Normal 36

Not 56
Mapomit 58 Null 60
Mapping 38
Mapping operations 72 Octal 8

= 55 Omit 54
alteration 58 Operational specifications 27
difference 55 Operator 39
domain 59 Operator precedence 15
eq 55 Operators 14
if 59 Or 56
initial 60 Ord 61
intersect 55 Output 22
ne 55 Outto 61
null 60 Outtomerge 61
range 61
select 57 Pending 7, 19, 20, 21
size 61 Power 53
sub 56 Pre-computable expression 9, 16, 19, 22, 37
union 54 Precedence 15
with 58 Precedence levels 15

Mapping statements Pred 61
:= 64 Prelude 25
assignment 64 Primary value 13
component assignment 64 Procedural statement 21
element assignment 64 Procedure 17
move 65 Procedure body 20
new into 65 Procedure call 23, 35, 66
remove 65 Procedure composition rule 21

GYPSY 2.05 REPORT FEBRUARY 1, 1986 79

Quantified expression 28 < 55
= 55

Range 61 > 56
Range restriction 9 eq 55
Rational operations 70 ge 56

* 53 gt 56
** 53 if 59
+ 54 initial 60
- 53, 54 le 56
/ 53 lower 60
< 55 lt 55
= 55 max 60
> 56 min 60
eq 55 ne 55
ge 56 ord 61
gt 56 pred 61
if 59 scale 61
initial 60 succ 61
le 56 upper 63
lower 60 Scalar statements
lt 55 := 64
max 60 assignment 64
min 60 Scalar type 8
minus 53 Scale 61
ne 55 Scope 31
subtract 54 Select 57

Rational statements Send 22, 65
:= 64 Send statement 44
assignment 64 Seq: 57

Rational type 9 Seqconstructor 57
Receive 22, 65 Seqomit 58
Receive statement 44 Sequence 38
Record 10 Sequence operations 71
Record operations 70 .. 57

= 55 :> 54
alteration 58 <: 54
eq 55 = 55
if 59 @ 54
initial 60 adjoinfirst 54
select 57 adjoinlast 54
with 58 alteration 58

Record statements append 54
:= 64 eq 55
assignment 64 first 59
component assignment 64 if 59
element assignment 64 in 56

Record type 10 initial 60
Remove 65 last 60

mapping 65 ne 55
sequence 65 nonfirst 60
set 65 nonlast 60

Remove statement 41 null 60
Resolving references 32 select 57
Result 19 seq: 57
Routineerror 33, 35, 36 seqconstructor 57
Run time validation 27 size 61
Running a program 25 sub 56

subsequence select 57
Scalar operations 68 with 58

GYPSY 2.05 REPORT FEBRUARY 1, 1986 80

Sequence statements initially 49
:= 64 keep 29
assignment 64 Specification expression 27
component assignment 64 Standard function 36
element assignment 64 Standard operation 36
move 65 Standard operator 39
new before element 64 Statement 21
new before seq 64 assignment 21
new behind element 64 await composition 45
new behind seq 64 begin composition 34
remove 65 case composition 22

Sequence type 38 cobegin composition 45
Sequence value 38 give statement 44
Set 37 if composition 22
Set operations 71 loop composition 23

= 55 move statement 42
adjoin 54 new statement 40
difference 55 procedure statement 23
eq 55 receive 22
if 59 receive statement 44
in 56 remove statement 41
initial 60 send 22
intersect 54 send statement 44
ne 55 signal statement 35
null 60 String type 40
omit 54 Structured object 7
set: 57 Sub 56
setconstructor 57 Submapping 56
size 61 Subrange type 9
sub 56 Subsequence 56
union 54 Subsequence select 57

Set statements Subset 56
:= 64 Subtract 54
assignment 64 Succ 61
move 65
new into 65 Target environment 25
remove 65 Timedallfrom 61

Set type 37 Timedallto 61
Set value 38 Timedinfrom 62
Set: 57 Timedinfrommerge 62
Setconstructor 57 Timedmerge 62
Signal 33 Timedorder 62
Signal statement 35, 66 Timedoutto 62
Signalling conditions 35 Timedouttomerge 62
Simple type operations 68 Transfer of control 25
Size 61 Type 7
Size limit restriction 37, 43 array 10
Some 57 boolean 8
Space group 35 buffer 43
Spaceerror 33, 35, 36 character 8
Specification integer 8

assert 29 mapping 38
block 47 rational 9
cblock 50 record 10
centry 50 scalar 8
cexit 50 sequence 38
entry 29 set 37
exit 29 subrange 9
hold 49 Type consistency 24

GYPSY 2.05 REPORT FEBRUARY 1, 1986 81

Type specification 7

Union 54
Unit declaration 31
Universal quantification 28
Upper 63

Value alteration 13, 39
Value expression 13
Value group 35
Verification 27
Verification directives 27

With 58

Table of Contents

Chapter 1. Basic Concepts . 1

1.1. Programs . 1
1.2. Specification . 1
1.3. Implementation . 2
1.4. Proof . 2
1.5. Independence Principle . 2
1.6. Language Summary . 3
1.7. Language Implementation . 3
1.8. Verification Environment . 4

Chapter 2. Lexical Preliminaries . 5

2.1. Notation . 5
2.2. Character Set and Conventions . 5
2.3. Identifiers . 5
2.4. Comments . 6

Chapter 3. Type Specifications . 7

3.1. Default Initial Values . 7
3.2. Simple Types . 8

3.2.1. Scalar Types . 8
3.2.2. Type Boolean . 8
3.2.3. Type Character . 8
3.2.4. Type Integer . 8
3.2.5. Type Rational . 9
3.2.6. Subrange Types . 9

3.3. Static Type Compositions . 10
3.3.1. Arrays . 10
3.3.2. Records . 10

3.4. Base Types . 11

Chapter 4. Expressions . 12

4.1. Name Expressions . 12
4.1.1. Component Selectors . 12

4.2. Value Expressions . 13
4.2.1. Primary Values . 13
4.2.2. Modified Primary Values . 13
4.2.3. Value Alterations . 13
4.2.4. Each Clauses . 14
4.2.5. Operators . 14
4.2.6. If Expression . 15

4.3. Pre-Computable Expressions . 16

i

Chapter 5. Programs . 17

5.1. Procedures . 17
5.2. External Environment . 18
5.3. Local Names . 18
5.4. Functions . 19
5.5. Constants . 19
5.6. Bodies . 20
5.7. Internal Environment . 20
5.8. Internal Statements . 21

5.8.1. Data Assignment . 21
5.8.2. Input and Output . 22
5.8.3. If Composition . 22
5.8.4. Case Composition . 22
5.8.5. Loop Composition . 23

5.9. Procedure and Function Calls . 23
5.9.1. Actual Parameters . 24
5.9.2. Type Consistency . 24
5.9.3. Aliasing . 24
5.9.4. Transfer of Control . 25

5.10. Getting Started . 25
5.10.1. Developing a Program . 25
5.10.2. Running a Program . 25
5.10.3. Implementation Prelude . 25

Chapter 6. Operational Specifications . 27

6.1. Specification Expressions . 27
6.1.1. Entry Values . 28
6.1.2. Quantified Expressions . 28

6.2. External Program Specifications . 28
6.2.1. Entry . 29
6.2.2. Exit . 29

6.3. Internal Program Specifications . 29
6.3.1. Keep . 29
6.3.2. Assert . 29

6.4. Lemma Specifications . 30
6.5. Example . 30

Chapter 7. Scopes . 31

7.1. Unit Declaration . 31
7.2. Name Declaration . 31
7.3. Local Names . 32
7.4. Resolving References . 32

Chapter 8. Conditions . 33

8.1. Declaring Conditions . 33
8.1.1. External Conditions . 33
8.1.2. Internal Conditions . 33

8.2. Handling Conditions . 34

ii

8.3. Begin Composition . 34
8.4. Condition Handlers . 34
8.5. Signalling Conditions . 35

8.5.1. Forward Conditions . 35
8.5.2. Signal Statement . 35
8.5.3. Procedure and Function Calls . 35
8.5.4. Standard Procedures and Functions . 36

8.6. Conditional Exit Specifications . 36

Chapter 9. Dynamic Types and Objects . 37

9.1. Dynamic Type Compositions . 37
9.1.1. Sets . 37
9.1.2. Sequences . 38
9.1.3. Mappings . 38

9.2. Expressions . 38
9.2.1. Set and Sequence Values . 38
9.2.2. Component Selectors . 39
9.2.3. Operators . 39
9.2.4. Value Alterations . 39
9.2.5. String Values . 40

9.3. Statements . 40
9.3.1. New Statement . 40
9.3.2. Remove Statement . 41
9.3.3. Move Statement . 42

Chapter 10. Concurrency . 43

10.1. Buffers . 43
10.2. Operation Restrictions . 43
10.3. Buffer Parameters . 44
10.4. Statements . 44

10.4.1. Receive Statement . 44
10.4.2. Send Statement . 44
10.4.3. Give Statement . 44

10.5. Concurrent Composition . 45
10.5.1. Await Composition . 45
10.5.2. Cobegin Composition . 45

10.6. Specifications . 46
10.6.1. Type Activationid . 46
10.6.2. Buffer Histories . 46
10.6.3. Block Specifications . 46

Chapter 11. Abstract Types . 48

11.1. Type Declaration . 48
11.2. Type Body . 48
11.3. Equality Extension . 49
11.4. Specifications . 49

11.4.1. Default Initial Values . 49
11.4.2. Hold . 49
11.4.3. Centry, Cblock, Cexit . 49
11.4.4. Lemmas . 50

iii

Appendix A. Reserved Identifiers . 51

Appendix B. Base Type Definitions . 52

Appendix C. Standard Operators and Functions . 53

Appendix D. Standard Procedures . 64

Appendix E. Procedure Compositions . 66

Appendix F. Cross Reference of Operations by Type . 68

Index . 74

iv

List of Figures

v

List of Tables

vi

