The Gypsy 2.0 and Gypsy 2.1 differences have been removed and placed in a separate document.)



Report on Gypsy 2.05
February 1, 1986

Donald |. Good
Robert L. Akers
Lawrence M. Smith

Institute for Computing Science
2100 Main Building
The University of Texas at Austin
Austin, Texas 78712
(512) 471-1901



Abstract

Gypsy is a collection of methods, languages, and tools for building formally verified computing systems.
Gypsy provides capabilities specifying a system, implementing it, and for using formal, logical deduction to
prove important properties about the specification and the implementation of the system. The Gypsy program
description language is a single, unified language that is used to express both the specification and the
implementation of a computing system. This report defines the Gypsy 2.05 program description language.
Gypsy 2.05 includes amost all of Gypsy 2.0 with some extensions and minor modifications.



Preface

The development of Gypsy began late in 1974, and the first report on Gypsy 1.0 was issued in August 1976.
Initial attempts to use Gypsy 1.0, to define its specification and proof methods and to implement it led to a
number of significant language revisions. The report on Gypsy 2.0 was issued in September 1978. Although
Gypsy 2.0 extended Gypsy 1.0 in some significant ways, Gypsy 2.0 primarily was a simplification of Gypsy
1.0. In order to provide a stable implementation target, the definition of Gypsy 2.0 has remain fixed until this
time. Now, based on the experience of the last several years of using and implementing Gypsy 2.0, this report
describes Gypsy 2.05. Again, Gypsy 2.05 primarily is adightly extended subset of Gypsy 2.0.

The style and organization of this report on Gypsy 2.05 is a major change from the Gypsy 2.0 report. The
reason for this change is to make the report much more concise and readable. The style of presentation is
informal, but precise, and the organization is from the smpler to the more complex parts of the language.
Chapter 1 gives a summary of the basic Gypsy concepts. Chapters 2-7 are sufficient to specify and implement
simple sequential programs. Chapters 8-11 describe the more advanced parts of Gypsy, exception conditions,
dynamic objects, concurrency, and type abstraction.

In this organization, the chapters that describe the basic facilities make forward references to the existence
of the more advanced ones. For example, Chapter 3 on types describes the Gypsy type mechanism and
mentions all of the possible types. However, only the simple types and the static type compositions are
described there. The others are described in later chapters. The index of this report gives the page that defines
each phrase in the language.

This report on Gypsy 2.05 immediately supersedes the report on Gypsy 2.0. There will, however, be a
period of transition during which the Gypsy Verification Environment (GVE) will continue to operate on Gypsy
2.0. Because Gypsy 2.05 consists mainly of a large subset of Gypsy 2.0, this report on Gypsy 2.05, for the
greatest part, is also a report on Gypsy 2.0. The cases where Gypsy 2.05 differs from Gypsy 2.0 are described
in a separate document, entitled "Differences in Gypsy Dialects," by Lawrence M. Smith and Robert L. Akers.
During the transition period, these two documents together may serve as areport on Gypsy 2.0.



Acknowledgements

The contributions of Allen L. Ambler, Robert L. Akers, Richard E. Alterman, William R. Bevier, Woodrow
W. Bledsoe, James C. Browne, Wilhelm F. Burger, Richard M. Cohen, Carol A. David, Benedetto L. DiVito,
Dwight F. Hare, Charles G. Hoch, Gary R. Horn, John H. Howard, James C. Hsu, Lawrence W. Hunter, James
Keeton-Williams, John McHugh, Judith S. Merriam, Mark S. Moriconi, Karl Nyberg, Ann E. Siebert, Lawrence
M. Smith, Michael K. Smith, Russell A. Still, Anand V. R. Tripathi, Robert E. Wells and William D. Y oung to
the development, implementation and initial experimental applications of Gypsy are gratefully acknowledged.
Specia acknowledgment is given to Robert L. Akers who prepared much of the materia in the appendices of
this report.

Pascal was the starting point for the development of Gypsy, and there are still strong semantic similarities.
The languages Algol 60, Algol 68, Alphard, CLU, Concurrent Pascal, Euclid, Fortran, Nucleus, Simula and
Special and the structured programming principles pioneered by Edsger W. Dijkstra and C. A. R. Hoare also
have provided an assortment of fruitful ideas from which to draw.

The development, implementation and initial experimental applications of Gypsy have been sponsored
primarily by the National Computer Security Center (Contracts MDA904-80-C-0481, MDA904-82-C-0445).
Additional sponsorship has been provided by the U. S. Space and Naval Warfare Systems Command (formerly
Naval Electronic Systems Command) (Contract N00039-81-C-0074), by the U. S. Air Force Rome Air
Development Center (Contract F30602-84-C-0081), by Digital Equipment Corporation, by Digicomp Research
Corporation, and by the National Science Foundation (Grant MCS-22039).



GYPSY 2.05 REPORT FEBRUARY 1, 1986 1

Chapter 1
BASIC CONCEPTS

Gypsy is a language for specifying, implementing and proving computer programs. A specification
describes what effect is desired when a program runs, an implementation defines how the effect is caused, and a
proof verifies that the program always runs as specified.

1.1 Programs

A Gypsy program is a mechanism whose operation causes an effect on its environment. The environment
of a Gypsy program consists of data objects and exception conditions. Every data object has a name and a
value. The only ways that running a program can cause an effect on its environment are by changing the value
of a data object or by signalling a condition. A data object always has some value specified by the type of the
object. Normally, a program causes an effect on its environment by changing the value of some data object. A
program also, however, can signal an exception condition. Normally, this is done only to indicate that
something unusual has happened.

1.2 Specification

A Gypsy specification is a declarative statement about the environment of a program. Every program must
have a environment specification, and it also may have operational specifications.

The environment specification names every data object and exception condition in the environment. It also
specifies the type of each data object and whether the object is variable or constant. The program can change
the value of a variable object, but it can not change the value of a constant object. The environment
specification completely isolates the effects of running the program. The only objects that a program can have
access to are those that are named in its environment specification, and the only ones that it can change are its
variable objects.

The environment specification provides a very weak, but complete, description of the effect caused by
running a program. It defines completely what objects are in the environment and it identifies all those that
might be changed as a result of running the program. Operational specifications may be used to state much
stronger specifications. An operational specification gives a statement about what values the data objects may
have as the program runs. An operational specification may make a very strong statement that describes many
properties about the effect that is to be caused by a program, or it may make only a very weak statement that
describes only afew properties. The strength of a specification is matter of human choice.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 2

1.3 Implementation

A Gypsy implementation of a program is an imperative statement of how the program causes its effect. A
program is implemented by describing how it is composed of pre-defined programs. Some of these are
standard programs that are pre-defined by the Gypsy language, and others may be pre-defined by a particular
implementation of the language (for example to provide i/o support on a particular machine).

1.4 Proof

Gypsy supports proofs about specifications and proofs about programs. Specifications are stated in terms of
compositions of mathematical functions. Theorems about these functions and their compositions can be stated
directly in the Gypsy specification language, and they can be proved in the Gypsy proof system.

The specifications of a program define constraints on its implementation. The specifications of a program
can be viewed as sensors that are attached to its environment. The specification sensors are applied to the
environment at various times as the program runs. Whenever a specification sensor is applied, its gives a value
of either true or false. The implementation of a program satisfies its specifications if and only if al of its
specification sensors give true whenever the program runs.

The main distinguishing characteristic of Gypsy isthat is possible to give formal, mathematical proofsthat a
program satisfies its specifications. Gypsy is designed so that it always is possible to construct a set of logical
formulas, called verification conditions, that are sufficient (but not always necessary) to show that the
implementation of a program satisfies its specifications. |If these formulas can be proved, then, whenever the
program runs, its implementation causes an effect that satisfies its specifications.

The main reason for proving that an implementation satisfies its specifications is to give a sound, objective,
convincing argument that the program is reliable -- that it aways does what a user expects of it. It istempting
to believe that a proved program is totally reliable -- that it never can produce an unexpected result. This,
however, provides a false sense of safety because there are several reasons why even a proved program
sometimes may not run as expected. First, the selection of specifications often is quite subjective.
Specifications may make a strong statement about what effect is expected, or they may make only a weak
statement, or they may even say something that is not expected at all! In general, there is no objective way to
determine if the specifications require that the program do exactly everything that a user will expect of it.
Second, every proof is based on certain assumptions. If these assumptions are not valid, then the conclusions
drawn from the proof may not be valid either. Third, any mechanical tools that are used to help construct a
proof must produce a valid one. Fourth, a proof of a Gypsy program assumes that the combination of the
supporting software and hardware, which implement the Gypsy language, satisfy exactly the Gypsy semantics.
If any of these assumptions are violated, running the program may cause effects that do not satisfy its
specification. A proved program normally is more reliable than an unproved one; but, one must understand
clearly the specifications that are stated and the assumptions upon which the proofs are based.

1.5 Independence Principle

Gypsy is designed so that the proof of a program requires only certain, limited specifications about its
components. An implementation of its components, for example, is never required. This characteristic is
known as the independence principle, and it has two very important consequences. First, a large, complex
program can be proved component by component in small, manageable steps. Second, the proof of a program
can be done before its components are implemented. The word PENDI NG can be used in many places in Gypsy
to indicate components that will be supplied in subsequent stages of development.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 3

Because of the independence principle, Gypsy can be used throughout al the normal stages of the software
life cycle. For example, at the highest level of system design, specifications can be stated for the total system.
Then, the Gypsy program composition rules can be used to state how the system is implemented by its
subsystems, and specifications can be given for these. Even at this very early stage, a proof of the total system
can be constructed. Of course, this proof is contingent upon the subsystems satisfying their specifications, and
consequently, a subsequent step must be to prove the subsystems in a similar way. This process can be applied
repeatedly until all system components are decomposed into the pre-defined Gypsy programs. In this way, the
Gypsy specification, implementation and proof methods can be applied throughout all levels of system
composition, from the highest level of system design to the lowest level of coding.

1.6 Language Summary

The specifications and implementations of all Gypsy programs are written in terms of the five kinds of
Gypsy units: PROCEDURE, FUNCTI QN, CONST (constant), LEMVA and TYPE. The fundamental units are
types and procedures. A type specifies constraints on data objects. All Gypsy programs are procedures. A
function is a special kind of procedure, and constants and lemmas are specia kinds of functions. By providing
pre-defined units and rules for composing units into user-defined units, Gypsy provides a program
implementation language that includes data assignment, condition handling, dynamic memory (without explicit
pointers) and concurrency. It also provides a specification language, including type abstraction, for stating
desired properties of these implementations.

The Gypsy standard types are BOOLEAN, CHARACTER, | NTEGER, RATI ONAL, and ACTI VATI ONI D.
Scalar types a'so may be defined. The standard type compositions are ARRAY, RECORD, SET, SEQUENCE,
MAPPI NG, and BUFFER. Standard functions are pre-defined on all of these. Integer, boolean, rational, set,
sequence and mapping are the familiar structures from ordinary mathematics, and the other types also have
precise mathematical definitions. In so far as possible, the Gypsy standard functions are the ones normally
associated with the mathematical structures. The well developed properties of these structures and their
functions provide much of the power of the Gypsy proof methods. Logical deductions can be made about the
Gypsy structures in the same way as the mathematical structures because, in most cases, the Gypsy structures
are the mathematical structures.

The Gypsy standard procedures are assignment (: =), NEW MOVE, REMOVE, SEND, RECEI VE and G VE.
New, move and remove are standard procedures for dynamic memory management. Send, receive and give are
standard procedures for handling buffers. BUFFER objects are the only objects in Gypsy that can be shared
among procedures that run concurrently. The sequential procedure compositions are | F, CASE, LOOP and
BEQ N; and the concurrent procedure compositions are AWAI T and COBEGQ N.

ENTRY, BLOCK and EXI T statements are operational specifications about the effect of a program on its
external environment. KEEP and ASSERT statements are internal operational specifications. A relation among
functions can be specified by alemma. CENTRY, CBLOCK, CEXI T and HOLD are specification statements for
type abstraction.

1.7 Language Implementation

Many of the Gypsy types are potentially unbounded in size, and therefore, it is impossible to make al
Gypsy programs run on a real machine with finite resources. All of the Gypsy specification, implementation
and proof methods are perfectly sound for these objects of unbounded size, but obviously, there always can be
some value that istoo big to fit in the available storage capacity of areal machine.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 4

Therefore, every implementation of Gypsy for areal machine must restrict the programs that can run on that
machine to some subset of Gypsy. There are no restrictions on how this subset may be chosen. The
implementation for a particular machine also may provide an implementation prelude. An implementation
prelude simply pre-defines a set of Gypsy units in addition to the standard ones. Defining a Gypsy subset and
an implementation prelude can be used to tailor Gypsy to the individual characteristics of any particular
machine. Clearly, this constrains the portability of Gypsy programs. However, if a Gypsy program can be
ported from one machine to another, then so can its proof.

1.8 Verification Environment

Gypsy is designed to be implemented within an integrated programming environment. This programming
environment is an interactive system that is intended to provide the al the tools needed to specify, implement
and prove Gypsy programs throughout their life cycle. Because this environment needs to include tools for
verifying programs, as well as other more conventional tools such as compilers, it is referred to as a Gypsy
Verification Environment (GVE). A GVE consists of two major parts, a data base and a set of tools for working
on information in the data base. The data base serves as a library for Gypsy units and other supporting
information. The Gypsy unitsin the library may be in various stages of evolution. Asthe library evolves, new
units may be added and old ones may be modified or deleted. The library may contain units from one or more
computing systems, and the same units may be used in several systems. The library also may contain other
supporting information such as verification conditions and their proofs. Ideally, a GVE contains all relevant
information about the Gypsy units it contains (including even such things as documentation), and it contains
mechanisms for ensuring the consistency of thisinformation. There are no specific requirements on what tools
must be provided by a GVE. Idedlly, it should provide al the tools that a program developer needs to support
the evolution of aformally specified and proved program throughout its life cycle. Tools are needed to create
and modify Gypsy text, to prove the programs, to make them run and to produce whatever other kinds of
information can be contained in the library. The basic tools that are needed are a text editor, verification
condition generator, theorem prover and compiler. In fact, it is quite reasonable for one GVE to contain several
different compilers for several different target machines. These compilers may be somewhat different from
conventional compilers because they compile from unitsin the library rather than directly from atext file.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 5

Chapter 2
LEXICAL PRELIMINARIES

Every segment of text in the Gypsy language is a sequence of ASCII characters. The characters are grouped
into words which form the five kinds of Gypsy units. procedures, functions, constants, lemmas, types. Finally,
Gypsy units are organized into scopes.

2.1 Notation

The phrases of characters and words that may appear in Gypsy text are identified by English words
embedded in <...>. These same words are used to describe the meaning of the phrase. Each phraseisdefined in
terms of other phrases, words and characters. For example,

<identifier> ::= <letter>{ [ _ ] <letter or digit>}

The symbol : : = means "isdefined as." In defining the phrases, | means "or", parts enclosed in [...] are optional
and partsenclosed in { ...} may appear zero or more times. For example, the preceding defines an identifier as a
seguence of letters, digits and underscores that begins with aletter and does not end with an underscore.

In defining phrases, any letter or word that appears literaly as a part of the phrase is given in upper case.
Also, unless stated otherwise, there may be any number of space, tab, carriage return or line feed characters
between phrases.

2.2 Character Set and Conventions

Gypsy text is composed of ASCII characters. Unless specified otherwise, upper and lower case letters can
be used interchangeably, and matching pairs of parentheses (...) and sguare brackets [...] may be used
interchangeably. However, in this report, to distinguish Gypsy text from the text of the report, Gypsy text will
be written only in upper case. Also, Gypsy text will contain only (...) so that [...] can denote optional parts of
phrases.

2.3 ldentifiers

Identifiers are used as names for Gypsy units and objects.

<identifier> ::=<letter> { [ _ ] <letter or digit>}
<letter or digit> ::= <letter> | <digit>

<letter> ::=



GYPSY 2.05 REPORT FEBRUARY 1, 1986 6

Al B| C|D|E|F|G|HII|J]|K|LIM
| N| O P| Q] R| S| T| U] V| W| X] Y] Z
<digit>::=0] 1] 2| 3| 4| 5| 6] 7] 8] 9

The sequence of characters of an identifier must be contiguous, and any character immediately either before or
after an identifier must be some character other than a letter, digit, or underscore. The identifiers given in
Appendix A have a pre-defined meaning, and they can not be used for any other purpose.

Examples: X Y Z4 WDTH AREA OF_BOX

2.4 Comments

Comments are annotations that are embedded in the Gypsy text. These annotations have no effect on the
meaning of the text. If they are removed from the text, the meaning of the text is not changed. Any number of
comments can be placed before or after any Gypsy phrase.

<comment> ::= "{" { <comment character>} "}"

<comment character> ::= any character except "}"

The symbols"{" and "}" above mean literally the characters{ and }.

Exanpl es: {VARI ABLE X CORRESPONDS TO THE CRT}
{TH S PROCEDURE LAST MODI FI ED ON MARCH 1, 1983}



GYPSY 2.05 REPORT FEBRUARY 1, 1986 7

Chapter 3
TYPE SPECIFICATIONS

A Gypsy type specifies constraints for data objects. A type specification must be given for every data
object. A type specification defines a set of values, and a data object always must have some value in the set of
values defined by its type. Every type specification also defines a default initia value, and some type
specifications may specify certain additional constraints. There are only two ways in which a type may be
defined. It may be a pre-defined type, or it may be some composition of existing types. Thus, every type is
either pre-defined or it is some composition of the pre-defined types. There are a fixed set of rules for
composing types. An object that has a composed typeiscaled a structured object (because it is a structure that

has several components).
<type specification> ::= <type nane> | <subrange type>
| <restricted buffer type conposition>
<type nane> ::= <identifier>

A type name may be the name of a pre-defined type, or it may be the name of atype that is defined by a type
declaration.
<type declaration> ::= <ordinary type declaration>
| <abstract type declaration>

<ordinary type declaration> ::=
TYPE <type name> = <type definition>

<type definition> ::=
PENDI NG | <scal ar type> | <static type conposition>
| <dynami c type conposition> | <buffer type conposition>
| <type specification> [ := <default initial value expression> ]

PENDI NGis a place holder for some unknown type definition.
Exanpl e type declaration: TYPE |INT = | NTEGER

3.1 Default Initial Values

Every type has a default initial value that is assigned to an object of that type when it is created (unless
specified otherwise). The default initial value ensures that every data object always has some value of its
specified type. A data object never has an undefined value. The standard function | NI Tl AL gives the default
initial value of atype.

<default initial value expression> ::= <pre-conputabl e expression>

The use of a default initial value expression in atype definition defines a type that is the same as the one given



GYPSY 2.05 REPORT FEBRUARY 1, 1986 8

by the type specification except that the default initial value is the one given by the initial value expression.
The default initial value must satisfy the type specification that it follows.

Exanpl e type declaration with default initial value expression:
TYPE INT2 = INTEGER : = 2
{INT2 is the sane type as | NTEGER except that its default
initial value is 2 (instead of 0)}

3.2 Simple Types

The simple standard types are boolean, character, integer, rational. Scalar types and the subrange types also
may be defined.

3.2.1 Scalar Types
A scalar type defines a non-empty sequence of scalar values. Its default initial value is the first value in the
sequence.

<scal ar type> ::= ( <scalar value> { , <scalar value>} )

<scal ar value> ::= <identifier>

A scalar type definition TYPE t=(v0, ..., vn) defines a set of Gypsy constants (Section 5.5)
CONST vO:t = 0; ...; CONST vn:t = n. Theinteger values of these constants can be obtained only
by using the standard function ORD -- for example, ORD(v0) = 0, ..., ORD(vn) = n.

Exampl e type decl aration of a scal ar type:
TYPE COLCR = (RED, BLUE, GREEN)
{Thi s defines CONST RED: COLOR=0 ... CONST GREEN:. COLOR=2
and ORD(RED)=0, ..., ORD(CGREEN) =2.}

3.2.2 Type Boolean

Type BOOLEAN is the standard scalar type of logical truth values.
TYPE BOOLEAN = (FALSE, TRUE)

3.2.3 Type Character

Type CHARACTER is the standard type that defines scalar values for the 128 member ASCII character set.
The scalar values for the printable ASCII characters " " (space) through "~" are named by non-standard
"identifiers’ consisting of a character between two single quote marks. For example,” X’ names the lower-case
character x. These "identifiers' can be used in the same way as normal identifiers (that name a scalar value).
The other ASCII characters do not have predefined names in Gypsy 2.05, so they must be constructed with the
standard function scal e.

3.2.4 Typelnteger

Type | NTEGERis the set of whole numbers of ordinary mathematics. The default initial valueisO.

<integer value> ::=[ - ] <nunber>

<nunber> ::= [ <base> ] <digit> { <digit>}



GYPSY 2.05 REPORT FEBRUARY 1, 1986 9

<base> ::= BINARY | OCTAL | DECI MAL | HEX

The digits in a number must be contiguous, and they must be of the base indicated. If no base is given,
DECI MAL isassumed. Any character either immediately before the first digit or immediately after the last digit
must be some character other than a digit.

Exampl es: 17 -3 Bl NARY 101111 - HEX 3F9

3.2.5 Type Rational

Type RATI ONAL isthe set of rational numbers of ordinary mathematics. The default initial valueis0/ 1.
<rational value> ::= <integer value>/ <nunber>

Note that the bases of the numerator and the denominator are stated separately -- for example,
OCTAL 777/ 111 istherational number (OCTAL 777)/ ( DECI MAL 111).

Examples: 2/4 -17/2

3.2.6 Subrange Types

A subrange type isasimple type with avalue set that isrestricted to alimited range.

<subrange type> ::= <sinple type nane> <range restriction>
<range restriction> ::= <non-enpty pre-conputable range>
<sinple type nane> ::= <type nane>
<non-enpty pre-conputabl e range> ::= <range>
<range> ::= ( <range linmts>)
<range limts> ::= <m ni mum val ue> .. <maxi num val ue>
<m ni mum val ue> ::= <expression>

<mexi mum val ue> :: = <expression>

Both the minimum and maximum values in the range restriction must be pre-computable (Section 4.3) values of
the simple type named, and the minimum must be less than or equal to the maximum.

The subrange type is the same as the simple type named except for the following. The value set specified
by the subrange type is set of values from the minimum to the maximum value or the range limits. If the default
initial value of the simple type named is not in the range limits, the default is the minimum value in the range.

Exampl es of type decl arations of subrange types:
TYPE OCTAL_I NT = | NTEGER(O. . 7)
TYPE PRI NTABLE_CHAR = CHARACTER('!'.."'~")
TYPE DIG T = PRINTABLE_CHAR(' 0" .."9")
TYPE WORK_DAY = DAY( MONDAY. . FRI DAY)
TYPE BASE_| NTERVAL = RATI ONAL(1/2..3/2)



GYPSY 2.05 REPORT FEBRUARY 1, 1986 10

3.3 Static Type Compositions
The static type compositions compose values that have a fixed number of components.
<static type conposition> ::= <array type> | <record type>
3.3.1 Arrays

An array has a fixed number of components each of the same type. Each component is called an element.
The default initial value of an array is the value obtained by assigning the default initial value of the element
type to each element.

<array type> ::= ARRAY ( <index type> ) OF <conponent type>

<i ndex type> ::= <non-rational sinple type specification>
<non-rational sinple type specification> ::= <type specification>
<conponent type> ::= <type specification>

Theindex type may be any simple type except rational or a subrange of rational.

An array has one element for each value of its index type. Each element has a selector i, which is an
element of the index type, and a value v of the element type. The value of an array is
array:{(i1,v1), ..., (injvn)}. The{...} part isthe set of components, and the tag array marks the set as the value
of an array.

Exanpl es of type declarations of array types:
TYPE | NT_ARRAY = ARRAY (I NTEGER(1..10)) OF OBJECT
TYPE OBJECT = ARRAY (CHARACTER) OF BOOLEAN

3.3.2 Records

A record has a fixed number of components which may be of different types. Each component of a record
is called afield. The default initial value of a record is the value obtained by assigning each of its fields the
default initial value of its type.

<record type> ::= RECORD ( <fields>)
<fields> ::= <simlar fields>{ ; <simlar fields>}
<simlar fields> ::= <field nane> { , <field nane>} : <field type>

<field nane> ::= <identifier>

<field type> ::= <type specification>

Each field has a name f and a value v which is of the type of that field. The name of each field must be unique
within the record. The value of arecord isrecord:{ (f1,v1), ..., (fn,vn)}. The value of arecord is a set marked
with the tag record. Therefore, the order in which itsfields are defined is unimportant.

Exanpl es of type declarations of record types:
TYPE DATE = RECORD( MONTH: MONTH_I D
DAY: | NTEGER(1..31);
YEAR: | NTEGER( 1900. . 2000))



GYPSY 2.05 REPORT FEBRUARY 1, 1986 11

3.4 Base Types

Base types are used to determine if data objects are suitable operands for Gypsy programs. In general, the
base type of atype isthe type that is composed in the same way but with its various restrictions removed. The
precise definitions of the base types are given in Appendix B.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 12

Chapter 4
EXPRESSIONS

Expressions are rules for computing values. There are two rules for computing values. A value may be
computed by i) taking the value of a data object, or ii) by computing a function of other values. In some
contexts, expressions also are rules for computing names of data objects. (The conditions that can be signalled
while computing expressions are described in Section 8.5.4 and Appendix C.)

4.1 Name Expressions

A name expression is a rule for computing the name of a data object. If the object is a structured object,
each of its components is also an object and a name expression may name either the entire structured object or
one of its components.

<name expressi on> ::= <data object nanme> { <conponent sel ectors> }

<data object nanme> ::= <identifier>

The data object name must be the name of some existing data object. If the data object name is followed by
component selectors, it must be a structured object and the name expression names the selected component.

Exanples: X RF Y(I) z(1)(J) z(1,3) S.F1,3).G

4.1.1 Component Selectors

Component selectors identify some one component or value (of one component) of a structured object.

<conponent sel ectors> ::=
<field name>
| ( <index selector> { , <index selector>} )

<i ndex sel ector> ::= <expression>

The component selectors are applied in order from left to right, and the form (i j,...) is an abbreviation for the
selector segquence (i)(j).... A field name is a selector for record fields, and an index selector is a selector for
arrays, sequences, and mappings. Except in some cases for mapping components (Section 9.3.1), an index
selector must name an existing component; otherwise, a condition is signalled.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 13

4.2 Value Expressions

A value expression may be a literal value or the value of a data object, or it may be the result of applying
various functions to other values. Some of these functions are denoted by special operators.

4.2.1 Primary Values

The basic parts of avalue expression are its primary values.

= <literal value> | <set or sequence val ue>
| <entry val ue> | <data object nanme>
| <function call>

<primary val ue> ::

<literal value> ::
| <rational value> | <string val ue>

If the primary value is a data object name, its value is the value of the data object it names.

4.2.2 Modified Primary Values

If aprimary value is the value of a structured object, its component values may be selected or they may be
altered.

<nodi fied primary value> ::= <prinary value> { <value nodifiers> }

<val ue nodifiers> ::= <value selectors> | <value alterations>

<val ue sel ectors> ::= <conponent selectors> | <subsequence sel ector>

The value modifiers are applied in order from left to right, and the component selectors are used in the same
way asin name expressions.

4.2.3 ValueAlterations
Value dterations define a value of a composed type. The value is defined in terms of another similarly
composed value with the values of some of its components altered.

<val ue alterations> ::=
W TH ( <conponent alterations> { ; <conmponent alterations>} )

<conponent alterations> ::= [ <each clause> ] <conponent nodification>

<conponent nodification> ::=
|

<comnponent assi gnnent > <conponent creation> | <conponent del etion>

<conmponent assignnent> ::= <alteration selector |ist> := <expression>

<alteration selector list> ::=
<conponent sel ectors> { <conmponent sel ectors> }

Each of the component alterations modifies one or more component values of a composed type. The
modifications are done in sequence from left to right. A component assignment assigns the value of its
expression to the component named by its alteration selector list. If the value is not within the type of the
component, a condition is signalled.

Exanpl es of expressions with value alterations:

<scal ar val ue> | <integer value> | <character val ue>



GYPSY 2.05 REPORT FEBRUARY 1, 1986 14

{ARRAY} AWTH ( (I) := X))
{This value, say U, is the same as array A except U(l)=X
For all other elements, U(l)=A(l).}

{RECORD} RWTH ( .F :=Y; .gK) := 2)
{This value, say V, is the sane as record R except that V.F=Y
and V. @ K)=Z. The other conponents of V and R are equal .}

{STRUCTURE} SWTH ( .F(1,J3).G:=2)
{This value, say W is the same as structure S except that
WF(l,J).G&GZ  The other conmponents of Wand S are equal .}

4.2.4 Each Clauses

An each clause designates a sequence of operations.

<each clause> ::= EACH <identifier> : <bounded index type>
<bounded i ndex type> ::= <index type>

Within value alterations, an each clause has the form
EACH <identifier> : <bounded index type> , <conponent nodification>

This designates a sequence of component modifications. The index type, which must have a smallest and a
largest value, defines an ordered sequence of simple values. These values are bound successively, from
smallest to largest, to the identifier. This defines a sequence of component modifications (one for each value of
the index type) which are performed in order.

The appearance of the identifier in the each clause defines it as alocal name (Section 5.3) of the Gypsy unit
that contains the each clause. The identifier of an each clause may be used only within the component
modification of the each clause (as alocal constant of itsindex type). Within the component modification, the
identifier may not be used as the bound identifier in another each clause or quantified expression (Section
6.1.2).

Exanmpl e expression with each cl auses:
{ARRAY} A WTH ( EACH | : SMALL_INT, (1) :=F(l) )
{If TYPE SMALL_I NT=I NTEGER(1..4), then this is the sane val ue as
AWTH ( (1):=F(1); (2):=F(2); (3):=F(3); (4):=F(4) ).}

4.2.5 Operators

A value of an expression may be simply a modified primary value, or it may be computed by applying
operators to modified primary values as operands. Operators in Gypsy are a special notation for calls of
standard functions.

<expression> ::= <ternmr | <quantified factor>

<ternp ::= <factor> { <binary operator> <factor> }

[ <binary operator> <quantified factor> ]
<factor> ::= [ <unary operator>] <nodified primary val ue>
| <if expression>
| ( <expression>)
<unary operator> ::= <integer unary operator>
| <rational unary operator>
| <bool ean unary operat or >



GYPSY 2.05 REPORT FEBRUARY 1, 1986 15

<bi nary operator> ::= <sinple rel ational operator> | <bool ean operator>
| <integer operator> | <rational operator>
| <set operator> | <sequence operator >

<mappi ng oper at or >

<sinmple relational operator>::=EQ| =| NE| <| LT| LE| >| GI'| CGE
<bool ean unary operator> ::= NOT
<bool ean operator> ::= AND| & | OR| IMP| ->| IFF

<i nteger unary operator> ::
<integer operator> ::=** | * | / | DIV| MD| + | -
<rational unary operator> ::= -

<rational operator> ::=** | * | [ | + | -

<quantified factor> ::= [ <bool ean unary operator> ] <quantified expression>

If an expression has no operators, its value is its modified primary value. If it does have operators, its value is
the result of applying the operators to their operands.

The operand that an operator is applied to is determined by precedence levels. Operators with lower
numbered precedence levels are performed first; and among operators of equal precedence, the operators are
applied from left to right. (The one exception is the : > operator. The operations X : >y :> z:> s are
performed from right to left.) The precedence levels are asfollows:

1 * %

2 - (unary)

3 * [/ DV MD

4 + -(binary) <

5 :> ADJON OMT

6 @ APPEND UNI ON | NTERSECT DI FFERENCE
7 = EQ NE < LT LE > GI' GE IN SUB
8 NOT

9 & AND

10 oR

11 -> |IMP IFF

The operands in an expression must satisfy the type requirements of the standard function denoted by their
operator. These type requirements and the results produced by the operators are given in Appendix C.

Exanpl es of expressions: X A(l) XF<MlI,J) +1 AND B

4.2.6 If Expression

An if expression provides away of choosing one of several potential values as the value of an expression.

<if expression> ::=
| F <bool ean expression> THEN <potential val ue expression>
{ ELIF <bool ean expressi on> THEN <potential val ue expression> }
ELSE <potential val ue expression> F

<potential value expression> ::= <expression>



GYPSY 2.05 REPORT FEBRUARY 1, 1986 16

The value of the if expression is the value of the potential value expression that follows the first boolean
expression that is true. If none of them are true, the value of the if expression is the value of the last potential
value expression. The only boolean expressions whose values are computed are those needed to determine the
first one that is true. The only potential value expression whose value is computed is the one that defines the
value of theif expression.

Exanple: |IF X <Y THEN P+Q ELSE 4 FlI

IF  CH < A THEN "LESS"

ELIF CH = A THEN "EQUAL- LESSER'
ELIF CH < B THEN " BETVEEN'

ELIF CH = B THEN " EQUAL- GREATER"

ELSE " GREATER' FI

4.3 Pre-Computable Expressions

A pre-computable expression is one whose value can be computed in a particular Gypsy verification
environment prior to running a Gypsy program on a target machine. Thus, what is pre-computable in Gypsy
may vary from one environment to another.

<pre-conput abl e expressi on> ::= <expressi on>
<pre-conput abl e val ue> ::= <scal ar value> | <integer val ue>
| <string value> | <constant nane>
| <type nane>

A pre-computable expression is one that is composed only of pre-computable values, standard functions and
operators. Type names are pre-computable values only insofar as they may appear as actual parameters to the
standard functions UPPER, LOWER, SCALE, INITIAL, and NULL. Each Gypsy verification environment
determines what set of values, standard functions and operators are pre-computable in that environment.

Exanpl es of expressions that may be pre-conputabl e:
14
TRUE
M:N {Provided M and N are constant units}
SCALE( 1, COLOR)
I NI TI AL( NUM_ARRAY) WTH ( EACH I : INDEX, (I) :=1 )



GYPSY 2.05 REPORT FEBRUARY 1, 1986 17

Chapter 5
PROGRAMS

A Gypsy program can cause an effect on its environment only by changing the value of its data objects or by
signalling a condition (Chapter 8). Complete external environment specifications must be given for every
program. Operational specifications, an internal environment, an implementation and internal specifications
also may be given. All Gypsy programs are procedures. Functions are a special kind of procedure, and
constants are a specia kind of function.

5.1 Procedures

A Gypsy procedure is a mechanism that causes some effect on an environment of data objects and
conditions.

<procedure declaration> ::=
PROCEDURE <procedur e nane>
<external data objects> [ <external conditions> ] =
<pr ocedure body>

<procedure nanme> ::= <identifier>

The following is an example of a complete Gypsy procedure with its supporting type and constant declarations.
(All Gypsy units must be contained in scopes. See Chapter 7.)

SCOPE MATRI X =
BEG N

PROCEDURE COLUWMN_SUM VAR S: A LARGE I NT; A: A MATRI X; COLUWN: AN_| NDEX) =
BEG N
VAR | : AN | NDEX : = 1;
S :=0;
LOOP
S:=S + A(l,COLUW) ;
IF 1 = MATRI X_SI ZE THEN LEAVE { THE LOOP}
ELSE | :=1 + 1;
END;
END;
END;

CONST MATRI X_SI ZE: | NTEGER = 10;
TYPE AN_I NDEX

TYPE A_MATRI X
TYPE AN_ARRAY

| NTEGER( 1. . MATRI X_SI ZE) ;
ARRAY (AN | NDEX) OF AN _ARRAY:
ARRAY (AN | NDEX) OF A _SMALL_I NT;



GYPSY 2.05 REPORT FEBRUARY 1, 1986 18

CONST MAX_SMALL_I NT: | NTEGER = 1000;
TYPE A SMALL_I NT = | NTEGER(- MAX_SMALL_| NT. . MAX_SMALL_I NT) ;

CONST MAX_LARGE_I NT: | NTEGER = 10 * MAX_SMALL_| NT;
TYPE A LARGE | NT = | NTEGER( - MAX_LARGE_| NT.. MAX_LARGE_| NT);

END;

5.2 External Environment

An external object is one whose life time extends beyond the interval during which the procedure runs. The
external data objects and conditions of the procedure define its complete external environment. It has access to
no other external objects. The external data objects and conditions define the formal parameters of the
procedure. A formal parameter is a name that is used temporarily, while the procedure runs, to refer to an
external object. (It does, however, have access to other Gypsy units (Section 7.4). Gypsy units are neither data
nor condition objects.)

<external data objects> ::=
( <sinmlar formal data paraneters>
{ ; <simlar formal data paraneters> } )

<simlar fornmal data paraneters> ::=
[ <access specification>] <formal data paraneters> : <formal type>

<access specification> ::= VAR | CONST
<formal data paraneters> ::= <identifier>{ , <identifier>}
<formal type> ::= <type specification>

The formal parameters are local names of the procedure. (See Section 5.3.) Every formal data parameter has an
access specification and a formal type specification. An access specification of VAR specifies that the external
object is a variable object, and CONST specifies that it is a constant object. If no access specification is given,
CONST isassumed. The procedure may assign avalue to a variable object, but not to a constant object. Within
the procedure, each object must have avalue of itsformal type.

5.3 Local Names

Every Gypsy unit has associated with it a set of local names. The local names are identifiers which are
contained within the unit and which identify various parts of the unit. The local names include the following:
the unit name, the names of the formal parameters including Myl D (Section 10.6.1) and RESULT (Section 5.4),
the names of the internal data objects and conditions, the names of al external units referred to within the unit.
Each of the local names mentioned above must be unique within the unit.

Quantified names in quantified expressions (Section 6.1.2) and the names of identifiers in each clauses
(Section 4.2.4) are the bound identifiers of the unit. Each bound identifier is also alocal name and it must be
different from each of the local names listed in the preceding paragraph. Bound identifiers need not be unique
within aunit so long as they satisfy the restrictions stated in Sections 6.1.2 and 4.2.4.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 19

5.4 Functions

A Gypsy function is a procedure that has exactly one formal variable parameter named RESULT. RESULT
isthe value of the function.

<function declaration> ::=
FUNCTI ON <function name> [ <equality extension> ]
[ <external data objects>] : <result type>
[ <external conditions>] =
<pr ocedure body>

<function name> ::= <identifier>

<result type> ::.= <type specification>

The external data objects, external conditions and body are the same as for procedures except that a function
may have only constant formal data parameters. Therefore, running a function can not produce any effect on its
external data objects except to give avauetoits RESULT.

The RESULT parameter for a function is specified automatically and implicitly. It may not appear explicitly
in the list of formal parameters, but it may be used throughout the rest of the function just like an ordinary
formal variable parameter. The result type is the formal type of the RESULT parameter. (When a function is
called, an object whose value is the default initial value of the result type is used as the actua parameter for
RESULT.)

The Gypsy proof methods assume that all functions are deterministic -- that is, if given the same values for
its constant formal parameters, the function always produces the same value of RESULT. Determinism is not
assumed for procedures. Most functions that can be written in Gypsy are deterministic, but there are a few
cases in which (by virtue of concurrency and type abstraction) it is possible to write hon-deterministic ones.
Thus, for a Gypsy proof to be valid, every function that it refers to must be proved to be deterministic.

Exanpl e: FUNCTI ON CSUM A: A MATRI X; COLUWN: AN I NDEX) : A LARGE INT =
BEG N
COLUMN_SUM RESULT, A, COLUW) ;
END;

5.5 Constants

A Gypsy constant is a concise notation for a pre-computabl e function with no constant formal parameters.

<constant declaration> ::=

CONST <constant name> : <result type> := <constant body>
<constant name> ::= <identifier>
<constant body> ::= PENDI NG | <pre-conmputable expression>

The constant body must produce a value of the result type. The definitions of constants may not be circular.
PENDI NGis aplace holder for some unknown constant body.

Exanpl es: CONST N : |INTEGER := 14
CONST M: A COLOR := SCALE(1,A COLOR)
CONST LAST_DAY : A DAY : = PENDI NG
CONST | NI TI AL_VECTOR : A VECTOR
= INITIAL(A_VECTOR) WTH ( EACH |I: AN_I NDEX, (I) := 2*I| )



GYPSY 2.05 REPORT FEBRUARY 1, 1986 20

5.6 Bodies

A procedure body defines the external operational specifications, implementation and internal specifications
of a procedure. The implementation may define an internal environment and it also defines the imperative
statements that cause the effect of the procedure. The internal environment is a set of objects that exist only
while the procedure runs. The external and the internal environment of a procedure are its total environment. It
has access to no other data or condition objects.

<procedure body> ::= PENDI NG
| BEA N
[ <external operational specifications> ]
[ <internal environment> ]
[ <keep specification> ]
[ <internal statements> ]
END

The internal environment defines the internal objects of the procedure body, and the names of these objects are
local names of the procedure. The internal objects may be referred to in all parts of the procedure body except
in the external operational specifications. PENDI NGis a place holder for some unknown procedure body.

5.7 Internal Environment

The internal environment of a procedure consists of data objects and conditions that exist only while the
procedure runs.

<internal environment> ::= <internal data or condition objects>
{ <internal data or condition objects> }

<internal data or condition objects> ::= <internal data objects> ;
| <internal condition objects> ;

<internal data objects> ::=
<access specification>
<i nternal data object names> : <type specification>
[ := <internal initial value> ]

<internal data object names> ::= <data object name>
{ , <data object name> }

<internal initial value> ::= <expression>

The internal data objects are created and initialized in order. If an internal initial value is not given, the default
initial value of the type is the initial value of the internal data object. The only internal objects that can be
referred to in an internal initial value expression are data objects created previously. If an interna initial value
is not of the type of itsinternal object, a condition issignalled. See Section 8.5.3.) The access specification for
an internal data object has the same meaning as for formal parameters.

Exampl es: VAR | : | NTEGER
VAR PER_CENT : | NTEGER : = 100
CONST SOUND_HYPOTHESI S : BOOLEAN :
CONST | DENTI TY_VMATRI X : A MATRI X :

TRUE
| DENTI TY(N)



GYPSY 2.05 REPORT FEBRUARY 1, 1986 21

5.8 Internal Statements

The internal statements contain imperative statements about how the procedure causes its effect and they
contain declarative statements of certain specifications. The imperative statements may be procedural
statements (which are calls of standard procedures) or compositions of procedure calls. A procedure
composition rule describes a way of calling one or more procedures. Therefore, a composition rule has the
same general effect as calling a single procedure. It produces a state change in the objects of the environment.
PENDI NGis aplace holder for some unknown statement list.

<internal statenents> ::.= <statement list>[;] | PENDING [;]
<statement list> ::= <statenent> {; <statenent> }
<statement> ::= <procedural statenent> | <procedure conposition rule>

| <assert specification>

<procedural statenent> ::=
<assi gnnent st at enent >
| <give statenent>
| <l eave statenent>
| <nove statenent>
| <new st atement >
| <procedure statenment>
| <receive statenent>
| <renobve statenent>
| <send statenent>
| <signal statenent>

<procedure conposition rule> ::=
<i f conposition> | <case conposition> | <loop conposition>
| <begin conposition> | <await conposition> | <cobegin conposition>

5.8.1 Data Assignment

A data assignment statement is a call of the standard assignment procedure.

<assi gnnent statement> ::=
<vari abl e nane expression> ;= <expression>

<vari abl e name expression> ::= <name expression>

The variable name expression must name some existing variable data object. The base type of the variable

object must be the same as the base type of the value expression. The effect of the call is that the value of the

variable becomes the value of the expression. A condition is signalled if the value is not of the type of the

variable.

Examples: X :=Y
A(l +J)
R F(K)

F(X)
IF G(Y) THEN X < 2 * P + 1 ELSE FALSE FI



GYPSY 2.05 REPORT FEBRUARY 1, 1986 22

5.8.2 Input and Output

Gypsy does not have any special statements for input and output. Input and output are done through
whatever Gypsy objects are provided in the implementation prelude (Section 5.10.3). Input and output
commonly are done with the send and receive statements on objects of type buffer as described in Chapter 10.
However, input and output are defined solely by the implementation prelude, and it may provide whatever
pre-defined objects and procedures are appropriate for a particular machine. Type string is sometimes defined
by an implementation for input and output of string objects.

5.8.3 If Composition

An if composition chooses and performs one of several internal statement lists.

<if conposition> ::=
| F  <bool ean expression> THEN [ <internal statenments> ]
{ ELIF <bool ean expression> THEN [ <internal statenents> ] }
[ ELSE [ <internal statenments> ] ]
[ <condition handl ers> ]
END

The internal statements are performed that follow the first boolean expression that is true. If none of the
boolean expressions are true, the internal statements following the ELSE are preformed provided there is one; if
not, none of the internal statements are performed. The only boolean expressions whose values are computed
are those needed to determine the first one that is true.

Examples: |IF | = N THEN LEAVE
END

| F P(X,Y) THEN GENERATE(W
ELIF Q X, Y) THEN RESTORE(W
ELSE LEAVE;

END

5.8.4 Case Composition

A case composition is another way of choosing and performing one of several internal statements.

<case conposition> ::=
CASE <l abel expression>

{ IS <case labels>: [ <internal statenents>] }
[ ELSE : [ <internal statements> ] ]
[ <condition handl ers> ]
END
<l abel expression> ::= <scalar or integer val ued expressi on>
<scal ar or integer valued expression> ::= <expression>
<case | abel s> ::= <pre-conputabl e | abel expression>

{ , <pre-conputable |abel expression>}

<pre-conput abl e | abel expression> ::= <integer value> | - <integer val ue>
| <character val ue>

<scal ar value> | <identifier>

Every case label must be unique and of the same base type as the label expression. The identifier in the case



GYPSY 2.05 REPORT FEBRUARY 1, 1986 23

label must represent a constant value. | the label expression is equal to one of the case labels in a branch of the
case composition, the corresponding internal statements are performed. If there is no such case label, but there
is an ELSE label, the internal statements after the ELSE are performed. If there is no such case label and no
EL SE, the case composition does not perform any of itsinternal statement lists.

Exampl e: CASE X+1

I'S 2,7: MAKE_RED(Y);

IS - 9: MAKE_BLUE(Y);
IS THREE: MAKE_GREEN(Y) ;
ELSE: MAKE_BLACK(Y) ;
END;

5.8.5 Loop Composition

A loop composition performs its internal statements repeatedly. A loop is terminated by either by
performing a leave statement or by signalling a condition. Every leave statement must be contained within
some loop statement. Performing a leave statement terminates its most tightly enclosing loop statement.

<l oop conposition> ::=
LOOP [ <internal statements> ] [ <condition handlers> ] END

<| eave statement> ::= LEAVE

Exanpl es: LOOP { FOREVER}
GET_CHAR( C, SOURCE) ;
PROCESS_CHAR( C, DATA_BASE) ;
END

LOOP
COVPUTE_VECTOR( V, 1) ;
| F 1=N THEN LEAVE { THE LOOP}
ELSE | =1 + 1;
END;
END

5.9 Procedure and Function Calls

A procedure call causes a procedure to run. This is most fundamental action in all of Gypsy. Running a
procedure is the only way to cause an effect on an environment. The procedure that issues the call is the calling
procedure. The procedure that runs on its behalf is the called procedure.

<procedure statenment> ::= <called procedure nane> <actual paraneters>
<cal | ed procedure nane> ::= <procedure nane>

<function call> ::= <called function name> <actual paraneters>

<cal l ed function nane> ::= <function nane>

The called procedure name must be one that is explicitly declared as a procedure. The standard procedures each
are called with a special notation, and they may not be called with a procedure statement. Even though a
function is regarded as a special kind of procedure, it may only be called with afunction call.

Exanpl es: P(R F, Y+2) c@)) Q



GYPSY 2.05 REPORT FEBRUARY 1, 1986 24

5.9.1 Actual Parameters

The actual parameters of a program (procedure or function) call are the objects of the environment (of the
calling program) that become the external objects of the called program. The called program has access to no
other objects in the calling environment.

<actual paraneters> ::= [ <actual data paraneters> ]
[ <actual condition paranmeters> ]

<actual data paraneters> ::=
( <actual data object> { , <actual data object>} )

<actual data object> ::= <expression> | <variabl e name expression>

There must be one actual data parameter for each formal data parameter of the called program. A function may
have zero or more data parameters, but a procedure must have at least one. While the called program runs, it
uses the name of its formal parameter as a temporary name for the corresponding actual parameter. (Thisis
normal call-by-reference parameter passage.)

If an actual data object corresponds to a variable formal parameter, it must be a variable name expression.
The value set of the formal type of the parameter must be the same as, or a subset of, the value set of the type of
its actual data object. (Without this requirement, running the program could cause the actual data object to have
avalue not allowed by itstype.)

An actual data object that corresponds to a constant formal parameter may be any expression. If this
expression is not a name expression, a uniquely named temporary object is created with the value of the
expression, and the temporary is used as the actual object.

The following checks for type consistency and potentially harmful aliasing also are made (except as
specifically noted in certain standard operations).

5.9.2 Type Consistency

All of the actual data parameters are checked to see if they meet their corresponding formal type
specifications (as specified in the called program). The value of each actual data object must be in the value set
of its corresponding formal type; otherwise, a condition is signalled.

5.9.3 Aliasing

A condition is signaled if there is any potentially harmful aliasing among the actual data parameters.
Aliasing occurs if some actual data object can be referred to by more than one formal name. |If so, these formal
names are different aliases (names) for the same actual object. Aliasing is potentially harmful if changing the
value of one formal variable parameter causes the value of another formal parameter to change. This is
potentially harmful because the called program is specified and proved assuming that a change in the value of
the external object referred to by its formal parameter does not cause a change in the value referred to by any
other formal parameter.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 25

5.9.4 Transfer of Control

When a program is called, the actual parameters are considered from left to right. First, the name or value
of the actual parameter is computed, and then the value is checked for type consistency. After this has been
done for each actual parameter, the checks for aliasing are made. If any of these conditions are signalled,
control returns to the calling program, and these conditions are handled as described in Chapter 8. If none of
these conditions are signalled, the called program starts running with its formal parameters serving as temporary
names for the corresponding actual parameters. While the called program runs, the running of the calling
program is suspended. When the called program stops running (if it does), the running of the calling programis
resumed.

5.10 Getting Started

Normally, Gypsy programs are developed in a Gypsy Verification Environment (GVE), and the GVE
provides the mechanisms for running Gypsy programs in a particular target environment.

5.10.1 Developing a Program

The normal way of starting a Gypsy verification environment iswith a"GVE" command. The GVE should
give various greeting information and pause with aprompt. The greeting information should instruct the user in
how to get further information about the facilities available. Normally, this would be done by some kind of
"HELP" or "?' command.

5.10.2 Running a Program

Any Gypsy program can be run within a target environment just by calling it with actual parameters that are
defined within that environment. How the environment is designated and how this call is made are defined by
the GVE, but the call must satisfy all of the norma Gypsy rules for a program call (Section 5.9). The data and
condition objects of atarget environment are defined by the GVE.

5.10.3 Implementation Prelude

An implementation prelude provides the connection between a Gypsy program and a run-time environment
on a particular target machine. A prelude describes what Gypsy objects are available on a target machine to be
passed as actual parameters to a Gypsy program. Running a Gypsy program on these actual parameters is how
an effect is produced on the target machine. A user of Gypsy never will write an implementation prelude, but it
often will be necessary to use one.

An implementation prelude always contains some target environment. A target environment defines Gypsy
objects that the language implementor has provided on atarget machine. These are the objects that can be used
as the actual parameters to a main program. Normally, these are the objects that provide input and output
facilities, but they may be whatever objects the implementor chooses to provide so long as they behave like
normal Gypsy objects.

An implementation prelude also may include a set of Gypsy units that have been pre-defined by the
language implementor (in addition to the standard Gypsy units). These units may be implemented in Gypsy,
but they need not be. However, if not, their externally visible behavior must be as though they were normal
Gypsy units. Regardless of how these additional pre-defined units are implemented, normal Gypsy
specifications must be stated for them; and, in this way, proofs can be constructed for programs that use these
units. These proofs are based on the assumption that the implementations of the pre-defined units satisfy the



GYPSY 2.05 REPORT

specifications given.

FEBRUARY 1, 1986

26



GYPSY 2.05 REPORT FEBRUARY 1, 1986 27

Chapter 6
OPERATIONAL SPECIFICATIONS

The operational specifications of a program state constraints on its implementation. The specifications of a
program can be viewed as sensors that are applied to the environment of a program at various times as it runs.
Whenever a specification sensor is applied, its gives a value of either true or false. The implementation of a
program satisfies its specifications if all of its specification sensors give true whenever the program runs.
Verifying a program means showing that its implementation always satisfies its specification.

6.1 Specification Expressions

Soecification expressions are boolean expressions about the environment of a program. These expressions
are the logica conditions that are expected to be true at specific times as the program runs. The boolean
expressions may be annotated with verification directives that indicate how they are to be verified.

<specification expression> ::= <sinple specification expression>
| ( <sinple specification expression>)

<si npl e specification expression> ::=
<non-val i dated specification expression> [ <validation directive> ]

<non-val i dated specification expression> ::=
[ <proof directive>] <bool ean expressi on>

<proof directive> ::= PROVE | ASSUME

<validation directive> ::= OTHERW SE <actual condition>

The proof directive states whether the specification is to be proved or assumed. PROVE is the default if no
directive is given. If avalidation directive is given, the expression is verified by validating it a run time. In
this case, the value of the expression is computed when the program runs, and the actual conditionissignalled if
the expression isfalse.

The following subsections describe several features of expressions that are intended primarily for
specifications. These features, however, may be used in any expression.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 28

6.1.1 Entry Values

An entry value gives the value of an external variable data object at the time the program was called. This
provides a way of giving specifications that relate the current values of data objects to values of the external
data objects when the program started to run.

<entry value> ::= <external variable object>

<external variable object> ::= <data object nane>

The object must be a data object that is an externa variable object. The object name and the’ mark must be
contiguous.

Examples: X A () R.F(I")

6.1.2 Quantified Expressions

Quantified expressions apply the universal and existential quantifiers of ordinary logic to a boolean
expression.

<quantified expression> ::= <universal quantification>
| <existential quantification>

<uni versal quantification> ::= ALL <bound expression>
<exi stential quantification> ::= SOVE <bound expressi on>

<bound expression> ::=
<quantified nanes> : <type specification> <bool ean expression>

<quantified nanes> ::= <identifier> { , <identifier>}

<bool ean expressi on> ::= <expression>

The appearance of an identifier as a quantified name defines it as alocal name (Section 5.3) of the Gypsy unit
that contains the quantified expression. A quantified name may be used only within the boolean expression of
the quantified expression (as aloca constant of type boolean); within the boolean expression, a quantified name
may not be used as the quantified name of another quantified expression or as the identifier of an each clause
(Section 4.2.4). (If the type specification in a bound expression has an operation restriction on a buffer, the
restriction isignored.)

A universal quantification is true if and only if its boolean expression is true for every possible assignment
of values of the type specification to the quantified names. An existential quantification istrue if and only if its
boolean expression is true for at |east one assignment of values of the type specification to the quantified names.

Exanples: ALL 1,J : INTEGER P(I,J,K)
SOVE K: AN I NT(1..10), A(K)=X

6.2 External Program Specifications

External operational specifications specify properties about the external environment of a program. An
external operational specification may refer only to external objects. It may not refer to internal ones.

<external operational specification> ::=
[ <abstract operational specification> ]
[ <concrete operational specification> ]



GYPSY 2.05 REPORT FEBRUARY 1, 1986 29

<abstract operational specification> ::=
[ <entry specification> ]
[ <block specification> ]
[ <exit specification> ]

6.2.1 Entry

An entry specification is to be true at the time its program starts running.

<entry specification> ::= ENTRY <non-val i dated specification expression> ;
Exampl es: ENTRY N > O; ENTRY WELL_FORMED( X, YY) ;
6.2.2 Exit

An exit specification isto be true at the time its program stops running (if it does).

<exit specification> ::= EXIT <non-validated specification expression> ;
| EXIT <conditional exit specification> ;

Exanples: EXIT X = FILTER(Y);
EXI T ASSUME RESULT = | F N=O THEN 1 ELSE N*FACTORIAL(N-1) FI;

6.3 Internal Program Specifications

Internal specifications are specifications about the total environment of their program. They may refer to
both internal and external objects.

6.3.1 Keep

A keep specification may be stated after the definition of the internal environment of a program. Once the
internal environment is created, the keep must be true throughout the remainder of the running of the program
except during the running of called programs. However, it must be true immediately before and after the
running of each called program. (This appliesto both user-defined and pre-defined programs.)

<keep specification> ::= KEEP <non-val i dated specification expression> ;
Exanple: KEEP J IN[MN_J.. MAXJ];

6.3.2 Assert

An assert specification is to be true whenever it is reached as the program runs. (To prove a program with a
loop, assert specifications must be placed so that each repetition of each loop encounters at least one assert
specification.)

<assert specification> ::= ASSERT <specification expression>

Exanpl es: ASSERT S = SUMA 1,1-1) & | < N+l
ASSERT (ASSUME A(K) > 0) OTHERW SE NONPOS_ERROR



GYPSY 2.05 REPORT FEBRUARY 1, 1986 30

6.4 Lemma Specifications

A Gypsy lemma is a special form for a boolean-valued function that isto be true for all values of its externa
data objects. The externa data objects of a lemma must meet the same requirements as for a function. The
RESULT of alemma is its lemma body, and it must be of type boolean. Thus, the lemma body specifies a
relation among the functionsiit refersto.

<l emma decl aration> ::=
LEMVA <l emma nane> [ <external data objects>] = <l enma body>

<l emma body> ::= <non-validated specification expression>

<lemma nane> ::= <identifier>

Exanpl es: LEMVA POSI TI VE_BOUND = MAX_N > 0
LEMVA F_COMMUTES( X, Y: A MESSAGE) = (ASSUME F(X, Y)=F(Y, X))

6.5 Example

The following is an example of specifying and implementing a function F that computes FACTORI AL. The
function F is fully specified and implemented. It illustrates an exit specification and an assert specification.
The exit specification states that the RESULT of F(N) is equa to FACTORI AL(N). The function
FACTORI AL is an example of defining a function solely for specification. The definition is stated in an exit
specification with the proof directive ASSUVE, and no implementation is given.

SCOPE A =
BEG N

FUNCTION F (N : INTEGER) : | NTEGER =
BEG N
EXIT RESULT = FACTORI AL (N);
VAR | : INTEGER : = 1,
RESULT := 1;
LOOP
ASSERT RESULT = FACTORIAL (I - 1) &I > O;
RESULT := RESULT * |I;

IF1 =N
THEN LEAVE
ELSE | =1 + 1
END
END
END;
FUNCTI ON FACTORI AL (N : INTEGER) : | NTEGER =
BEG N
EXIT (ASSUME RESULT = IF N=0 THEN 1 ELSE N * FACTORIAL (N - 1) FI);
END;

END;



GYPSY 2.05 REPORT FEBRUARY 1, 1986 31

Chapter 7
SCOPES

All Gypsy units must be grouped textually into one or more scopes. Every unit must appear in some scope.
These groupings are away of assigning names to Gypsy units and of controlling access to those names. Scopes
have no other meaning.

A Gypsy scope defines a set of local names (Section 7.3) that are used, within the scope, to refer to Gypsy
units. It controls its own access to local names in foreign scopes. All local names within a scope must be
unique, and all scope names must be unique.

<scope declaration> ::=
SCOPE <scope name> =
BEG N
<unit or nane declaration>
{ ; <unit or name declaration>1} [ ; ]
END [ ;]

<unit or nane declaration> ::=
<unit declaration> | <nanme decl aration>

<scope nanme> ::= <identifier>

7.1 Unit Declaration

A unit declaration defines a Gypsy unit -- that is, a type, procedure, function, constant, or lemma. It also
defines the name of the unit as alocal name of the scope. (The scalar valuesin a scalar type definition define
constant units (Section 3.2.1).)

<unit declaration> ::=
<type decl arati on> | <procedure decl aration>
| <function declaration> | <constant declaration>
| <l enma decl aration>

7.2 Name Declaration

A name declaration is the mechanism for making a unit which was declared in one scope visible in another
scope. A name declaration does not define a new Gypsy unit; it defines a new alias for an existing unit.

<nane decl aration> ::= NAME <l ocal aliases> FROM <forei gn scope nane>

<l ocal aliases> ::= <local renamng> { , <local renam ng> }



GYPSY 2.05 REPORT FEBRUARY 1, 1986 32

<l ocal renaming> ::=[ <local name> =] <foreign unit name>
<l ocal nanme> ::= <identifier>
<foreign unit name> ::= <identifier>

Each local renaming defines a local dias for the Gypsy unit named by the foreign unit name in the foreign
scope. If the local name of a renaming is not given, the local aias is the same as the foreign unit name. The
foreign unit name must be the name of a unit declared in the foreign scope. It may not be an dias defined by a
name declaration in the foreign scope.

Exanpl es: NAME X FROM PARENT NAVE F=G AN _OBJECT FROM PUBLI C

7.3 Local Names

The local names of a scope are the scope name, the names of the units defined by the unit declarations, and
the additional local aliases defined by the name declarations. All local names within a scope must be unique.

7.4 Resolving References

The declaration of a Gypsy unit contains identifiers that refer to data objects, conditions and Gypsy units.
There are two sets of local names associated with each unit. One set contains the local names that are internal
to unit (Section 5.3). These names refer to data objects and conditions (and they also may be used in each
clauses and quantified expressions). The other set contains the local names of the scope in which the unit is
declared. These names refer to Gypsy units.

Suppose that an identifier | appears in the declaration of a unit U which is contained in scope S What |
refersto is determined by applying the following rulesin order.
1. If l isaninternal local name of unit U, then | refersto object | within U.

2. 1f  isalocal name of scope S then | refersto unitlin S

3.1f | is neither an internal local name of unit U nor a local name of scope S the reference is
undefined and is not allowed.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 33

Chapter 8
CONDITIONS

Conditions are labels for condition handling statements. Sgnalling a condition causes a forward jump to a
condition handler that is labelled with the condition that was signalled.

8.1 Declaring Conditions

Every program has a set of local conditions. The names of these conditions are local names of the program
(Section 5.3). (Therefore, every local condition name must be unique within the program.) Only local
conditions may be used as labels for condition handlers within the program.

<l ocal condition> ::=
<formal condition nane> | <internal condition nane>
| SPACEERROR | ROUTI NEERROR

8.1.1 External Conditions

External conditions may be specified in the external environment of a program (procedure or function)
declaration (Sections 5.1, 5.4). External conditions are local conditions that refer to conditions in the external
environment. SPACEERROR and ROUTI NEERROR are declared automatically as formal condition parameters
in every program. These conditions have a special meaning, and the user can not signal either of them or use
them as actual conditions. They can only be "handled.”

<external conditions> ::= UNLESS ( COND <formal condition paraneters> )

<formal condition paraneters> ::=
<formal condition nane> { , <formal condition name> }

<formal condition nane> ::= <identifier>

Exanpl e of programs with external conditions:
PROCEDURE READ DI A T( VAR C. CHARACTER) UNLESS (COND NON NUMERIC) = ...
FUNCTI ON GRATE( N: | NTEGER) : | NTEGER UNLESS ( COND BAD N)

8.1.2 Internal Conditions
Internal conditions are local conditions that may appear only within the internal statements of a procedure
body (Section 5.6).

<internal condition objects> ::=
COND <internal condition nane> { , <internal condition name> }



GYPSY 2.05 REPORT FEBRUARY 1, 1986 34

<internal condition name> ::= <identifier>

Exanpl es: COND | NDEX_ERR, BAD _CHAR

8.2 Handling Conditions

Every condition that can be signalled within a program is a local condition (Section 8.5.3). When a
condition is signalled, control jumps forward to the nearest internal condition handler that is labelled with the
condition that was signalled. If there is no such internal handler, then the condition is the name of some formal
condition parameter (possibly SPACEERROR or ROUTI NEERRCR). If so, the (called) program that signalled
the condition is terminated, and the corresponding actual condition is signalled in the environment of the calling
program.

8.3 Begin Composition

Condition handlers can be associated with any of the procedure composition rules, and a begin composition
may be used to associate condition handlers with an arbitrary sequence of internal statements.

<begi n conposition> ::= BEGA N
[ <internal statements> ]
[ <condition handl ers> ]
END

8.4 Condition Handlers

Condition handlers are internal statements that are performed only when conditions are signalled.
Conditions handlers can be placed at the end of any procedure composition rule (I F, CASE, LOOP,
BEG N, AWAI T, COBEGQ N). A composition rule may have handlers for several conditions. Each handler
has one or more labels that identify the handler, and it has a body that consists of internal statements. Each
handler label for a single composition rule must be unique (although the same label may be used on different
composition rules). If a condition is signalled in the handler body, control jumps to the next condition handler
with the matching handler label. It is never handled within the handler which signalled it.

<condi tion handlers> ::= WHEN { <handl er> }
<handl er> ::= IS <handl er |abel s> : <handl er body>
<handl er | abel s> ::= <handl er name> { , <handl er name> }

<l ocal condition>

<handl er nanme> ::

<handl er body> ::=[ <internal statenments> ]

Exanpl e of a begin conposition with condition handl ers:
BEG N
READ | NPUT( B, | N_FI LE) UNLESS (BAD_I NPUT) ;
COVPUTE_ANSWER( B, QUT_FI LE) UNLESS ( UNDEFI NED) ;
VWHEN
'S BAD | NPUT: PRI NT_MESSAGE(" | NPUT", QUT_FI LE);
'S UNDEFI NED: PRI NT_MESSAGE( " UNDEFI NED', QUT_FI LE) ;
END



GYPSY 2.05 REPORT FEBRUARY 1, 1986 35

8.5 Signalling Conditions

A condition may be signalled in one of several ways. It may be signalled by a signal statement, by a
validation directive, or by a procedure or function call.

8.5.1 Forward Conditions

Every condition that is signalled must be a forward condition. A forward condition is a formal condition
parameter or the name of an internal handler that appears between the point where the condition is signalled and
the end of the procedure body. (Neither SPACEERROR nor ROUTI NEERROR is aforward condition.)

<forward condition> ::= <formml condition nanme>
| <internal condition nane>

8.5.2 Signal Statement

A signal statement simply signalsits forward condition.
<signal statement> ::= SIGNAL <forward condition>
Exanpl e: S| GNAL BAD | NPUT

8.5.3 Procedure and Function Calls

Performing a program call may cause any one of its condition parameters to be signalled. A forward
condition may be given as an actual parameter for each possible condition parameter that may be signalled.
Like data parameters, condition parameters are passed by reference. If a program has forma condition
parameters defined, then an actual condition must be supplied for each formal.

<actual condition paraneters> ::=
UNLESS ( <actual condition group> )

<actual condition group> ::= [ <group nane> ] <actual condition |ist>
<group nane> ::= COND

<actual condition list> ::= <actual condition> { , <actual condition> }
<actual condition> ::= <forward condition>

Actual condition parameters are given in five groups. VALUE, ALI AS, COND, SPACE and ELSE. Only the
COND group may be supplied explicitly, and the rest are supplied automatically.

The VAL UE group contains the conditions that are signalled as a result of the type consistency checks of the
actual data parameters (Section 5.9.2.) ROUTI NEERRCR is signalled if any of the data parameters has a type
consistency error.

The ALI AS group contains only a single condition. ROUTI NEERROR is signalled if the data parameters
contain potentially harmful aliasing (Section 5.9.3.)

The COND group contains the actual conditions that correspond to the explicitly declared COND formal
parameters of the program (Section 8.1.1). The COND group must be supplied if there are actual condition
names, and there must be exactly one actual for each formal in that group.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 36

The SPACE group contains only a single condition. It is the actual that corresponds to the implicit
SPACEERROR formal parameter. SPACEERROR may be signalled by any pre-defined program to indicate that
there isinsufficient space to continue running the program.

The ELSE group has only a single condition. It is the actual that corresponds to the implicit
ROUTI NEERROR formal parameter, and it defaults to ROUTI NEERROR. ROUTI NEERROR is supplied
automatically as the actual parameter for every condition in every other group. Thus, ROUTI NEERROR denotes
some condition (other than SPACEERROR) for which no handler has been specified. (By virtue of these
defaults to ROUTI NEERROR and SPACEERROR, every condition that is signalled within a program is a local
condition of that program.)

Exanmpl e programcalls with actual condition paraneters:
P(A, B) UNLESS (COND C4, C5)
Y := 2 * (SQUARE_ROOT(X) UNLESS ( UNDEFI NED) )

8.5.4 Standard Procedures and Functions

Many of the standard functions and procedures are not total, that is there are possible parameter values for
which no result can be computed. For example, SCALE( x, BOOLEAN) can only return a value if x is either
zero or one. In such a case, ROUTI NEERROR is signalled. If a standard operation fails because of system
resource failure, SPACEERROR is signalled. (See Appendix C.)

8.6 Conditional Exit Specifications

A conditional exit specification allows a separate exit specification to be given for each condition that may
be signalled by a program to its external environment.

<conditional exit specification> ::= CASE ( <case exit body> )
<case exit body> ::= <case exit> {; <case exit>}
<case exit> ::= 1S <case exit |abels> :

<non-val i dated specification expression>
<case exit labels> ::= <exit label> { , <exit |abel>}

<exit label> ::= <formal condition nane>
| NORMAL | ROUTI NEERROR

Each case exit label must be unique, and each one identifies one of the ways in which the program can return to
its external environment. The non-validated expression that follows the label is the exit specification for that
case. NORMAL identifies the case in which no conditions are signalled. (The form EXI T X, described in
Section 6.2.2, isan abbreviation for EXI T CASE (1S NORMAL: X).)

Exanpl e:
EXIT CASE
(1'S NORMAL: RESULT = BALANCE(N) & N GE O;
'S UNDEFI NED: N < 0);



GYPSY 2.05 REPORT FEBRUARY 1, 1986 37

Chapter 9
DYNAMIC TYPESAND OBJECTS

The dynamic type compositions define values and objects that have a variable number of components.
These values and objects can be used in either the specification or the implementation of a program. In an
implementation, entire data objects can be created in Gypsy only as internal objects to a program, and once
created, an object exists only throughout the running of the program that created it. However, if it isadynamic
object, its components can be created, assigned values and deleted dynamically as the program runs. This
provides a dynamic object management facility without using explicit pointers.

9.1 Dynamic Type Compositions

The dynamic type compositions are sets, sequences and mappings. Each of these compositions have a
variable number of components, and each component is of the same type. Each kind of composition is defined
by a component type and a size limit restriction. The component type specifies the type of each component, and
the size limit restriction indicates the maximum number of components. If no size limit restriction is given,
there is no limit on the number of components. Each component of a composition is called an element.

<dynam c type conposition> ::=
<set type> | <sequence type> | <mapping type>

<size limt restriction> ::=
<non-negative integer pre-conputabl e expression>

<non-negative integer pre-conputable expression> ::=
<pr e- conput abl e expressi on>

9.1.1 Sets

A set has a variable number of unique elements each of the same type. The default initial value of a set is
the empty set.

<set type> ::= SET [ ( <size limt restriction>) ] OF <component type>

Each element of a set has a value v of the component type, and the value of aset isset:{v], ..., vn}. Thereisno
way of selecting a particular element of aset. The component type may be any Gypsy type, with the restriction
that if the component type is an abstract type, the equality extension function for the type must be defined as
concrete equality.

Exanpl es of decl arations of set types:
TYPE KEYS = SET (100) OF LARGE_ I NT
TYPE PRI MES = SET OF | NTEGER



GYPSY 2.05 REPORT FEBRUARY 1, 1986 38

9.1.2 Sequences

A sequence has a variable number of elements, each of the same type, that are kept in order. The default
initial value of a sequenceisthe empty sequence.

<sequence type> ::=
SEQUENCE [ ( <size limit restriction>) ] OF <conmponent type>

Each element of a sequence has an integer selector i, which is the position of that element in the sequence, and a
value v of the component type. The standard function SI ZE gives the number of elements in a sequence, and
the positions of the elements in a sequence s are numbered 1,...,SI ZE(s). It is important to remember that if
elements are added to or removed from a sequence, the position numbers of all succeeding elements will
change. The value of a sequenceis sequence:{(1,v1), ..., (n,vn)}.

Exanmpl es of decl arations of sequence types:
TYPE TEAM = SEQUENCE ( TEAM SI ZE) OF PLAYER
TYPE HI STORY = SEQUENCE OF MESSAGE

9.1.3 Mappings

A mapping has a variable number of elements, each of the same type, that are selected by elements of a
selector type rather than by position. The default initial value of a mapping is the empty mapping.
<mappi ng type> ::= MAPPING [ ( <size limt restriction>) ]
FROM <sel ector type> TO <conponent type>

<sel ector type> ::= <equality type>

<equality type> ::= <type specification>

An equality type is any type that has equality defined on its value set (Appendix C), except that if the equality
type is abstract, its equality extension function must defined as concrete equality. This restriction on equality
extension also applies to the component type if it is an abstract type. Each component of a mapping has a
unique selector s, which must be of the selector type, and a value v which must be of the component type. The
value of amapping is mapping:{ (sL,v1), ..., (sn,vn)}.

9.2 EXxpressions

9.2.1 Set and Sequence Values

A set or sequence value defines the values of a set or a sequence.

<set or sequence value> ::= ( <set or seq mark> <element list>) |
( <range limts>)

<set or seq mark> ::= SET : | SEQ:
<elenent list> ::= <value list>| <range limts>
<value list> ::= <expression> { , <expression> }

If SET: is present, the element list defines the elements of a set; otherwise, it defines the elements of a
sequence in order from left to right. Range limits define an element list that has one element for each value in
therange. (The range may be empty.) If the valuelist of a set has non-unique values, the set contains only the
unique values.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 39

Examples: (SET: "A, 'B, 'C)
(I..J) {The sequence I, 1+1, ..., J}
(SEQ F(X), F(Y), F(2))

9.2.2 Component Selectors

There is no way to select an element of a set. The elements of sequences and mappings may be selected
with an index in the same way as arrays. A subsequence selector can be applied to a sequence to give the
elements within a specific range. A subsequence selector can be used only in avalue expression, not in a name
expression.

<subsequence sel ector> ::= <range>

Exanpl e subsequence selection: S(1..10)

9.2.3 Operators

Several standard operators are provided for the dynamic types. Their operation is described in Appendix C.

<set operator> ::= EQ| =| NE| IN| ADJON| OMT | SUB
| UNION | | NTERSECT | DI FFERENCE

<sequence operator> ::= EQ| =] NE| IN| :>| < | SUB| @| APPEND
<mappi ng operator> ::= EQ| = | NE | UNION | | NTERSECT | DI FFERENCE
Examples: | IN(M.N) R@S X SUB Y A UNION B

9.2.4 ValueAlterations

Value alterations of existing components of sequence values may be made with the ordinary component
assignment part of a value alteration (Section 4.2.3). (A value ateration can not be performed on a set because
the elements of a set do not have selectors) A W TH clause alows value alterations that create and delete
components of values whose type is a dynamic type composition.

<conponent creation> ::=

<conponent creator> <creation conponent sel ectors> := <expression>
<conponent creator> ::= BEFORE | BEHIND | I NTO
<conmponent deletion> ::= SEQOMT <alteration selector |ist>

| MAPOM T <alteration selector |ist>

<creation conponent selectors> ::= <alteration selector list>

A component creation creates a new component of a sequence or mapping. The creation component selectors
must designate some component of dynamic value. BEFORE and BEHI ND are used only with selectors that
designate an existing component of a sequence. A new component, with the value of the expression, is created
either immediately before or behind the component selected.

I NTOis used to modify mapping values. With an | NTO creator, the component selectors may designate
either an existing or a non-existing component of the mapping. If the component does not exist, it is created;
and in either case, the value of the expression is assigned to the (possibly newly created) component.

SEQOM T and MAPOM T designate a sequence or mapping with the selected component deleted from the
dynamic value. Only an existing component can be deleted. An attempt to delete a non-existing component



GYPSY 2.05 REPORT FEBRUARY 1, 1986 40

signals a condition.

Exampl es of expressions with value alterations:
SWTH ( [I] := F(X) )
S WTH ( BEFORE (1) F(X) )
MWTH ( I NTO (P+Q A& B)
SWTH ( SEQOMT (3) )
MWTH ( MAPOM T (P+Q )

9.25 String Values

A STRI NGis aconstant object of type SEQUENCE OF CHARACTER.
<string value> ::=" { <non-quote character> | <quote synbol> } "

<non-quote character> ::= any character except a

<quote synbol> ::=""

A string value is the sequence of all ASCII characters that appear between (but not including) the opening and
closing double quote marks. Within string values, upper and lower case letters are not interchangeable, and
pairs of parentheses and sgquare brackets are not interchangeable. The quote symbol stands for one double quote
character ().

Exanpl es: {The string consisting of a single
"Date of Birth: "
" " {The string of 10 bl anks}

""" Comput o, ergo sum {The string "Conputo, ergo sum"}

character}

9.3 Statements

The following statements dynamically create and delete components of dynamic objects.

9.3.1 New Statement

The new statement calls a standard procedure that creates a new component of a dynamic variable object.

<new statenent> ::= NEW <expressi on> <new dynam ¢ vari abl e conponent >

<new dynani ¢ vari abl e conmponent> ::=
I NTO SET <set nane expressi on>
| INTO <nappi ng el ement nane expressi on>
| BEFORE <sequence position designator>
| BEHI ND <sequence position designator>

<set nane expression> ::= <name expression>
<mappi ng el enent name expressi on> ::= <nane expressi on>
<sequence position designator> ::= SEQ <sequence nane expressi on>

| <sequence el ement nanme expression>
<sequence name expression> ::= <name expression>

<sequence el ement nanme expression> ::= <nane expression>



GYPSY 2.05 REPORT FEBRUARY 1, 1986 41

The expression defines a new value that is created and assigned to a new component of a dynamic variable.
The value of the expression must be of the type of a component of the dynamic variable; otherwise a condition
signalled.

A set name expression must name a variable of type set. The new valueis put into the set if it is not already
there. A mapping element name expression may name either an existing or a non-existing component of a
variable of type mapping. If the component already exists, it is assigned the new value just as with an ordinary
assignment statement. |f the component does not exist, it is created and assigned the new value.

BEFORE and BEHI ND create new components at the designated position in a sequence. A seguence name
expression is an expression that names a variable of type sequence. BEFORE puts the new component at the
beginning of the sequence, and BEHI ND putsit at the end.

A sequence element name expression is an expression that names some existing element of a variable of
type sequence. In this case, BEFORE puts the new element into the sequence immediately preceding the
designated element, and BEHI ND puts it into the sequence immediately succeeding the designated element. (If
the element that is designated does not exist, the component selection signals a condition.)

SEQ denotes the whole sequence that is identified by the sequence name expression. For a non-empty
sequence s, NEW x BEFORE SEQ s means the same as NEW x BEFORE s(1). However, if sisempty,
the BEFORE SEQ form creates a single element sequence, whereas the BEFORE s(1) form signals a
condition. Similarly, for a non-empty s, NEW x BEHIND SEQ s means the same as
NEW x BEHI ND s( Sl ZE( s) ) ; and for an empty sequence, the BEHI ND SEQform creates a single element
seguence, whereas the other form signals a condition.

Exanpl es: NEWF(Z) | NTO M X) NEW F(Z) | NTO SET S
NEW F(Z) BEFORE S(1) NEW F(Z) BEFORE SEQ S
NEW F(Z) BEHI ND S(1) NEW F(Z) BEHI ND SEQ S

9.3.2 Remove Statement

The remove statement calls a standard procedure that deletes one component of a dynamic variable object.
A component may be removed from a set, a sequence or a mapping. The component that is removed from the
object must exist; otherwise, the component selection signals a condition. (Note that if a sequence element is
removed, then the succeeding elements are in anew position.)

<renove statenent> ::= REMOVE <renobvabl e conponent >

<renovabl e component> ::= <set om ssion>
| <dynami c vari abl e component name expression>

<set omi ssion> ::= ELEMENT <expression> FROM SET <set name expression>

<dynami c vari abl e conponent nane expression> ::= <name expression>

Exampl es: REMOVE ELEMENT X FROM SET S
REMOVE M X) REMOVE S( 1)



GYPSY 2.05 REPORT FEBRUARY 1, 1986 42

9.3.3 Move Statement

A move statement moves one component of a dynamic variable into a different variable. The component
may be moved into a new component of adynamic variable, or it may be assigned to a non-dynamic variable.

<nove statenent> ::= MOVE <renovabl e conponent> <conponent desti nation>

<conponent destination> ::= <new dynani c vari abl e conponent >
| TO <sequence el enent nanme expressi on>

A move statement with a removable component r and a new dynamic variable component d has the same effect
asNEWr d; REMOVE r. A move statement with a sequence element name expression s(i) has the same
effect as (i) : = r; REMOVE r. The move statement can be used only to move a component of a dynamic
variable to another different dynamic variable. It can not be used to move components within the same dynamic
variable -- for example, MOVE S(2) BEFORE S(1) is not alowed. (This restriction eliminates some rather
peculiar effectsthat can be caused by aliasing in the call of the standard procedure.)

Exanmpl es: MOVE ELEMENT X FROM SET S BEHIND T(l1) MOVE T(l1) INTO SET S

MOVE M X) BEHI ND SEQ T MOVE T(1) TO S[I]
MOVE LI VE(KI LL) BEFORE SEQ DEAD MOVE Y | NTO M X]



GYPSY 2.05 REPORT FEBRUARY 1, 1986 43

Chapter 10
CONCURRENCY

Gypsy alows several procedures to be concurrently. Each of the procedures that is running concurrently is
called aprocess. Message buffers are the only variable objects that can be shared among concurrent processes.

10.1 Buffers

A buffer type composition is a specia dynamic type whose objects can be shared among concurrent
processes. Thedefault initial value is the empty buffer.

<buffer type conposition> ::=
BUFFER [ <size limt restriction>] OF <non-buffer component type>
<non- buf fer conponent type> ::= <type specification>

The type specification of the components of a buffer may specify any type that does not contain a buffer. A
buffer is a queue of elements of its component type. A buffer object may be passed as a parameter, but the only
operations that can modify a buffer queue are the standard send, receive and give procedures.

Exanpl es of type decl arations of buffer conpositions:
TYPE CHAR BUF = BUFFER (N) OF CHARACTER
TYPE DATA = BUFFER OF BI T_BLOCK

10.2 Operation Restrictions
The type specification of a buffer may have operation restrictions. An operation restriction specifies to
what extent a buffer can appear in the standard send, receive and give procedures.

<restricted buffer type conposition> ::=
<buffer type nanme> [ <operation restriction> ]

<buffer type nane> ::= <type nane>
<operation restriction> ::= "<" <input or output> ">"
<i nput or output> ::= INPUT | OUTPUT

An | NPUT (only) buffer may appear in a receive statement, but it may not appear in a send or give. An
OUTPUT (only) buffer may appear in asend or give statement, but it may not appear in areceive statement.

Exanpl es: TYPE I N BUF = CHAR BUF <I NPUT>



GYPSY 2.05 REPORT FEBRUARY 1, 1986 44

10.3 Buffer Parameters

Buffers can be passed as parameters to programs (and created as internal objects), but they can be modified
only by the standard send, receive and give statements. The size limit restriction of the actual buffer parameter
must be equal to the size limit of its formal parameter. The type of the components of the actual must be the
same as the type of the components of the formal parameter. (Buffer parameters must observe this more severe
type restriction because, at the time the call with the buffer parameter is made, it is not possible to know all of
the values that might appear as components of the buffer. Therefore, they can not be checked for type
consistency at the time of the call.) The forma buffer parameter must be equally or more restricted by
operation restrictions than the actual. For example, an unrestricted buffer can be an actual parameter for an
input only formal parameter, but not vice versa.

10.4 Statements

The following statements call standard procedures on buffers. These procedures are the only way of
modifying a buffer variable. While running, each of them has exclusive access to its buffer parameter, even
though the buffer may be shared among other processes.

10.4.1 Receive Statement
A receive statement removes the oldest element from the buffer queue and assigns its value to some data
object.

<receive statenent> ::= RECEI VE <nane expressi on> FROM <buffer vari abl e>

<buffer variable> ::= <nane expression>

The buffer variable is the name of some buffer object. If the buffer queue is empty, the receive cal isis blocked
(suspended) until some other process sends (or gives) a new element to the buffer.

Exanpl e RECEIVE C(1) FROM | N_BUF

10.4.2 Send Statement

A send statement puts a new (youngest) element onto the buffer queue.
<send statement> ::= SEND <expressi on> TO <buffer vari abl e>

If the buffer queue is full (has a number of elements equal to its size limit restriction), the send call is blocked
until some other process receives an element from the buffer.

Exanpl e: SEND R F TO B(OUT)

10.4.3 Give Statement

A give statement removes a component from a dynamic object and sends it to a buffer.
<give statement> ::= G VE <renovabl e conponent> TO <buffer vari abl e>

A give statement with a removable component r and a buffer variable b has the same effect as
SEND r TO b; REMOVE r. Thegiveisblocked until both the send and remove are complete.

Exanpl e: G VE S(TARGET) TO B



GYPSY 2.05 REPORT FEBRUARY 1, 1986 45

10.5 Concurrent Composition

The concurrent compositions provide mechanisms for performing certain actions concurrently.

10.5.1 Await Composition

The await composition provides away of waiting concurrently on several eventsto occur.

<await conposition> ::= AWAIT
<await arne { <await arnp }
[ <condition handl ers> ]
END

<await arnp ::=
[ <each clause> ] ON <event statenent> THEN [ <internal statenments> ]

<event statement> ::=
<send statement> | <receive statenent> | <give statement>

Each await arm has an event statement and some internal statements. The await composition blocks until at
least one of its event statements can be unblocked. Then one of the ones that can be unblocked is selected, it is
performed, its associated internal statement are performed, and the await composition is complete.

An await arm that contains an each clause (Section 4.2.4) designates a separate await arm for each value of
the identifier in the index type of the each clause. The identifier may be used within the await arm in the same
way as an internal constant data object (of the procedure in which the await appears).

Example: AWAIT
ON RECEI VE C FROM X THEN P(C, 2);
ON RECEI VE D FROM Y THEN P(D, 2);
END

AVWAI T
EACH |: SMALL_I NT, ON RECEIVE X FROM B(1) THEN Q X, B, 1);
END

10.5.2 Cobegin Composition

A cobegin composition calls several procedures which then run concurrently. It is a generalization of the
simple procedure call (Section 5.9). A cobegin of a single procedure has the same effect as a sequential
procedure call.

<cobegi n conposition> ::=
COBEG N
<cobegin arme { ; <cobegin arnme } [;]
[ <condition handl ers> ]
END

<cobegin arme ::= [ <each clause> ] <procedure statenent>

The procedure statements designate the procedures that run concurrently. Each individual procedure statement
must satisfy all of the normal parameter passages rules (Sections 5.9, 10.3). In addition, there must be no
potentially harmful aliasing (Section 5.9.3) among any of the parameters of any of the processes. The only
objects that are allowed to violate this extended non-aliasing rule are buffers or structured objects consisting
solely of buffers.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 46

A cobegin arm containing an each clause (Section 4.2.4) designates a separate process for each value of the
identifier in the index type of the each clause. The identifier may be used within the cobegin arm in the same
way as an internal constant data object (of the procedure in which the cobegin appears).

The cobegin composition stops only when all of its processes stop. They may stop by running to
completion or by signalling a condition. Thus, there is the possibility that a cobegin may stop with several
processes having signalled conditions. Thisis known as a multiple condition. A multiple condition can only be
handled by a handler for ROUTI NEERRCR.

Exanpl e:  COBEG N COBEGI N
PRODUCE( A, B) ; TRANSFER( A, B) ;
CONSUVE( B, O) ; TRANSFER(B, O) ;
END END
COBEGI N
EACH H: HOST I D, MULTI PLEX(X(H), Y)
END

10.6 Specifications

Gypsy has a humber of special facilities for stating specifications of programs that use buffers.

10.6.1 Type Activationid

The same procedure may appear in more than one arm of a cobegin composition. Thus, the same procedure
may be run concurrently by a cobegin as severa different processes. To state specifications for concurrent
processes, it is necessary to identify each process uniquely. To do this, every Gypsy program has one implicit
formal parameter called MYl D of type ACTI VATI ONI D. Some unique value of type ACTI VATI ONI D is
supplied automatically for MYl D for every cal of every program. Objects of type ACTI VATI ONI D can be
passed as parameters, but the only operations that can be performed on them are "=", "ne", and the standard
buffer history functions.

10.6.2 Buffer Histories

For specification of programs that use buffers, Gypsy provides a number of standard buffer history functions
that give the sequences of values that are sent to a buffer and received from a buffer. These functions provide a
way of specifying constraints on the sequences of values that flow through a buffer. These standard functions
are described in Appendix C.

Exampl es of standard history function: | NFROM B, MYl D) QUTTQ( B, M1 D)

10.6.3 Block Specifications

Ordinary entry and exit specifications can be used for procedures that have buffer parameters. However,
concurrent processes often are intended never to stop running, and therefore, an exit specification is
meaningless. Block specifications provide away of stating specifications for non-terminating programs that use
buffers.

A block specification is a specification about the external environment of the program that is to be true
whenever it is blocked on some buffer operation. A block specification may refer only to external objects. The
potential points of blockage are any procedure call with a buffer parameter (including the standard send,



GYPSY 2.05 REPORT FEBRUARY 1, 1986 47

receive, and give procedures) and the await and cobegin compositions. An await composition is blocked if and
only if al of its event statements are blocked. A cobegin composition is blocked if and only if some of it
processes have not yet stopped and all of those are blocked.

<bl ock specification> ::= BLOCK <non-validated specification expression> ;
Exanpl e:  BLOCK QUTTQ(Y, ¥l D) SUB | NFROM X, MYl D) ;



GYPSY 2.05 REPORT FEBRUARY 1, 1986 48

Chapter 11
ABSTRACT TYPES

An abstract type is one whose type definition is visible only to certain privileged units. The definitions of
ordinary types are visible to all units.

11.1 Type Declaration

An abstract type declaration names all of the Gypsy units that are privileged to use its type definition. No
other units are allowed this privilege. The type definition of an abstract type can be used only by the units
named in its privileged units. A scope name in the privileged unitslist is an abbreviation for every unit that has
alocal namein that scope.

<abstract type declaration> ::=
TYPE <type nane> [ <default abstract initial value specification> ]
<privileged units> = <abstract type body>

<privileged units> ::="<" { <unit or scope nane> } ">"

<unit or scope name> ::= <type name> | <procedure nanme>
| <function name> | <constant nane>
| <l enma name> | <scope nane>

Exanpl e TYPE WELL_FORMED_STATE <READ, WRI TE> =
BEG N
S: SYSTEM STATE;
HOLD WELL_FORVED( S);
END;

11.2 Type Body

The abstract type body contains the type definition of the abstract type, and it also may have a hold
specification.
<abstract type body> ::= <type definition>
| BEG N <identifier>: <type definition> ;

<hol d specification>
END

The identifier is a local name of the type, and it must satisfy the restrictions for local names (See 5.3). The
identifier is a name for an arbitrary value of that type, and it may be referred to in the hold specification. The
type definition defines the concrete values of an abstract type.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 49

11.3 Equality Extension

An abstract type also defines a set of abstract values. An equality extension for the abstract type defines the
equality of abstract values. An equality extension function must be defined for every abstract type. Its name
must appear on the access list for the abstract type.

<equal ity extension> ::= EXTENDS "="

The equality extension is provided as part of a function declaration (Section 5.4). The function must have
exactly two formal constant parameters of the abstract type, and its result type may be boolean. (Only one
equality function may be defined for an abstract type.) When the = (or EQ) operator is applied to values of the
abstract type in units that are not privileged to use its type definition, the equality extension function for that
typeisapplied. Within aprivileged unit, the = operator is treated in the usual way.

Defining equality of the abstract values partitions the concrete values into equivalence classes. (Every
concrete value is in exactly one equivalence class, but one equivalence class may contain severa concrete
values.) Each equivalence class represents a different abstract value. The equality extension defines when two
concrete values are in the same equivalence class, or in other words, when they represent the same abstract
value.

Exanpl e:  FUNCTI ON WELL_EQ EXTENDS "="(P, Q WELL_FORVED STATE): BOOLEAN = . ...

11.4 Specifications

11.4.1 Default Initial Values

An abstract default initial value specification of an abstract type may be stated.

<default abstract initial value specification> ::=
I NI TIALLY [ <proof directive>] <expression>

The expression must be of the abstract type.
Exanpl e: TYPE WELL_FORMED STATE INITIALLY | NI T_STATE <READ, WRITE> = ....

11.4.2 Hold

A hold specification of an abstract type is a relation that is to be true of every abstract object upon
completion of every program that is privileged to use the type definition of the abstract type. It also must be
true when an abstract object is created. In effect, a hold specification selects a subset of the concrete values that
can be used to represent abstract values.

<hol d specification> ::= HOLD <specification expression> [;]
Exanpl e:  HOLD WELL_FORMED(S);

11.4.3 Centry, Cblock, Cexit

The concrete specifications of a program may use the type definition of an abstract type if their program is
privileged to use that definition. This is in direct contrast to the abstract specifications of the program. An
abstract specification may not use the type definition of any abstract type, even if its program does have that
privilege. Abstract specifications always must be stated strictly in abstract terms. The concrete specifications
have the same meaning as their abstract counterparts.

<concrete operational specification> ::=



GYPSY 2.05 REPORT FEBRUARY 1, 1986 50

[ <concrete entry specification> ]
[ <concrete block specification> ]
[ <concrete exit specification> ]

<concrete entry specification> ::=
CENTRY <non-val i dated specification expression> ;

<concrete bl ock specification> ::=
CBLOCK <non-val i dated specification expression> ;

<concrete exit specification> ::=
CEXI T <non-validated specification expression> ;
| CEXIT <conditional exit specification> ;

11.4.4 Lemmas

A lemma may be a privileged unit of an abstract type. As with the abstract operational specifications, the
lemma body may not use the type definition of an abstract type even if the lemma has that privilege. The body
must be stated in purely abstract terms. The privilege of using the type definition, however, may be exercised in
proving the lemma.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 51

Appendix A
Reserved | dentifiers

Reserved Words

ADJO N, ALL, AND, APPEND, ARRAY, ASSERT, ASSUVE, AWAI T, BEFORE, BEG N,
BEHI ND, BI NARY, BLOCK, BUFFER, CASE, CBLOCK, CENTRY, CEXI T, COBEG N, COND,
CONST, DECI MAL, DI FFERENCE, DIV, EACH, ELEMENT, ELIF, ELSE, END, ENTRY, EQ
EXI T, EXTENDS, FlI, FROM FUNCTION, GE, G VE, GI, HEX, HOLD, IF, |FF, |NPUT,
IN, INTO, |INTIALLY, |INTERSECT, 1S, KEEP, LE, LEAVE, LEMWA, LOOP, LT,
MAPOM T, MAPPI NG MOD, MOVE, NAME, NE, NEW NORMAL, NOT, OCTAL, OF, OMT,
ON, OR OTHERW SE, OUTPUT, PENDING PROCEDURE, PROVE, RECEIVE, RECORD,
REMOVE, SCOPE, SEND, SEQ SEQOM T, SEQUENCE, SET, SIGNAL, SOVE, SUB, THEN,
TO TYPE, UNION, UNLESS, VAR, WHEN, W TH.

Words Reserved for Language Extensions
ALI AS, EXPORT, | MPORT, MULTIPLECOND, NONE, SPACE, STRING VALUE.

Standard Types
ACTI VATI ONI D, BOOLEAN, CHARACTER, | NTEGER, RATI ONAL.

Boolean Values

TRUE, FALSE.
Functions
ALLFROM  ALLTO, CONTENT, DOMAI N, EMPTY, FI RST, FULL, | NFROM

| NFROWERGE, | NITIAL, LAST, LOAER, NMAX, MESSAGES, M N, NONFI RST, NONLAST,
NULL, ORD, QUTTO, QUTTOMERGE, PRED, RANGE, SCALE, SIZE, SUCC, TI MEDALLFROM
TI MEDALLTO, TI MEDI NFROM TI MEDI NFROMVERGE, TI MEDMERCE, TI MEDORDER,
TI MEDQUTTO, TI MEDOQUTTOVERGE, UPPER

Conditions
ROUTI NEERROR, SPACEERROR.



GYPSY 2.05 REPORT FEBRUARY 1, 1986

52

Appendix B
Base Type Definitions

For typet , itsbase type, bt ype(t), isdefined as shown below. If typet hasacomposition accesslist, its

base type has the same list.

TYPE t<access list>=. ..
v

v(range restriction)
v<buffer restriction>
ARRAY u of v

RECORD( f 1: ul;...;fn:un)

SET OF v
SET (size restriction) OF v

SEQUENCE OF v
SEQUENCE (size restriction) OF v

MAPPI NG FROM u TO v
MAPPI NG (size restriction) FROMu TO v

BUFFER OF v
BUFFER (size restriction) OF v

bt ype(t) <access list>=. ..

bt ype(v)

bt ype(v)

bt ype(v)

ARRAY u of btype(v)

RECORD( f 1: bt ype(ul);...fn: btype(un))

SET OF btype(v)
SET OF btype(v)

SEQUENCE OF btype(vV)
SEQUENCE OF btype(v)

MAPPI NG FROM bt ype(u) TO btype(v)
MAPPI NG FROM bt ype(u) TO btype(v)

BUFFER OF btype(v)
BUFFER (size restriction) OF btype(v)



GYPSY 2.05 REPORT FEBRUARY 1, 1986 53

Appendix C
Standard Operators and Functions

This appendix lists all of the standard Gypsy operators and functions. A syntax example for each operation
is given, along with the type requirements of the operands and a brief description what the operation does.

No standard functions have formal condition parameters. The only conditions which may be signalled out
of astandard function or a predefined Gypsy operation are spaceerror, which indicates a deficiency of resources
in the computing environment, and routineerror, which signifies any other situation under which the operation
was unable to return normally. Such situations might include arithmetic overflow, cases where the function is
not complete over its domain, or any other case where the correct result cannot be returned. Where a function
or operation is not complete, the description below notes those specific cases where routineerror will certainly
be signalled.

OPERATI ON TYPE REQUI REMENTS EFFECT
X **y Bt ype(x) = I NTEGER X to the power vy.
Bt ype(y) = I NTEGER Si gnal s ROUTI NEERROR i f y<0,
Resul t | NTEGER if x=0andy =0, or in
case of arithmetic overflow
Bt ype(x) = RATI ONAL. Sane as above.
Bt ype(y) = | NTEGER
Resul t RATI ONAL.
- X Bt ype(x) = I NTEGER Negati ve Xx.
Resul t | NTEGER Si gnal s ROUTI NEERROR i n
case of arithmetic
overfl ow.
Bt ype(x) = RATI ONAL. Sane as above.
Resul't RATI ONAL.
X *y Bt ype(x) | NTEGER X times y.
Bt ype(y) = | NTEGER Si gnal s ROUTI NEERROR i n
Result | NTEGER case of arithnmetic
overfl ow.
Bt ype(x) = RATI ONAL. Sane as above.

Bt ype(y) = RATI ONAL.
Resul t RATI ONAL.

x Iy Bt ype(x) = | NTEGER x divided by vy.
Btype(y) = | NTEGER Signals ROUTINEERROR if y = 0
Resul t RATI ONAL. or in case of arithnetic
overfl ow.
Bt ype(x) = RATI ONAL. Sane as above.
Bt ype(y) = RATI ONAL.
Resul t RATI ONAL.
x DIVy Bt ype(x) = | NTEGER I nteger quotient of x divided by y.
Bt ype(y) = | NTEGER Signals ROUTINEERROR if y = 0
Resul t | NTEGER or in case of arithnetic

overfl ow.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 54

x MDDy Bt ype(x) = | NTEGER I nt eger remai nder of x divided by vy.
Bt ype(y) = I NTEGER (x DIVy) *y +x MDYy = X.
Result | NTEGER Signals ROUTINEERROR if y = 0
or in case of arithnetic
overfl ow.
X +y Bt ype(x) = | NTEGER X plus y.
Bt ype(y) = | NTEGER Si gnal s ROUTI NEERROR i n case of
Resul t | NTEGER arithmetic overflow.
Bt ype(x) = RATI ONAL. Sane as above.
Bt ype(y) = RATI ONAL.
Result RATI ONAL.
X -y Bt ype(x) = | NTEGER X subtract vy.
Bt ype(y) = | NTEGER Si gnal s ROUTI NEERROR i n case of
Resul t | NTEGER arithmetic overflow.
Bt ype(x) = RATI ONAL. Sane as above.

Bt ype(y) = RATI ONAL.
Resul t RATI ONAL.

X <y Bt ype(x) = SEQUENCE X @(SEQ vy).
OF btype(y).
Result btype(x).
X 1>y Bt ype(y) = SEQUENCE (SEQ x) @y.
OF btype(x).

Result btype(y).
(:>1is right associative.)

x ADJO N y Bt ype(x) = SET X UNION (SET: x)
OF btype(y).
Result btype(x).
X OMT y Bt ype(x) = SET X wth elenment y renoved.
OF btype(y). Signals ROUTINEERROR if y is not
Result btype(x). in X.
X @y Bt ype(x) = SEQUENCE OF t. The sequence x foll owed

x

APPEND y Bt ype(y) = SEQUENCE OF t. by sequence vy.
Result btype(Xx).

X UNION y Btype(x) = SET OF t. Contains the el ements that
Btype(y) = SET OF t. are in either x or vy.
Result btype(x).
Bt ype(x) = MAPPI NG Contains the (p,qg) components
FROM u TO v. that are in either x or vy.
Bt ype(y) = MAPPI NG Signals ROUTINEERROR if there are
FROM u TO v. conponents (p,ql) and (p, q2)
Result btype(x). with ql NE g2.
X | NTERSECT y
Bt ype(x) = SET OF t. Contai ns the el ements that
Btype(y) = SET OF t. are in both x and vy.

Result btype(x).



GYPSY 2.05 REPORT FEBRUARY 1, 1986

Bt ype(x) = MAPPI NG
FROM u TO v.

Bt ype(y) = MAPPI NG
FROM u TO v.

Result btype(x).

x DI FFERENCE y
Bt ype(x) SET OF t.
Bt ype(y) SET OF t.
Result btype(Xx).

Bt ype(x) = MAPPI NG
FROM u TO v.

Bt ype(y) = MAPPI NG
FROM u TO v.

Result btype(x).

X =y Btype(x) = btype(y).

x EQy Resul t BOOLEAN.
Bt ype(x) = scal ar type.
Bt ype(x) = | NTEGER
Bt ype(x) = RATI ONAL.
Bt ype(x) = ACTI VATI ONI D
Bt ype(x) = ARRAY u OF v.
x and y must have the
sanme i ndex type.
Bt ype(x) = RECORD(...).
x and y must have the
sane field nanes.
Bt ype(x) = SET OF v.
Bt ype(x) = SEQUENCE OF v.
Bt ype(x) =

MAPPI NG FROM u TO v.
X NE vy Btype(x) = btype(y).

Resul t BOOLEAN.

Btype(x) = btype(y).

Contains the (p,qg) components
that are in both x and vy.

Signals ROUTINEERROR if there are
conponents (p,ql) and (p, q2)

with ql NE g2.

Contai ns the el enents that
are in x by not iny.

Contains the (p,q) conponents
that are in x but not iny.
Signal s ROUTI NEERROR if there are
conponents (p,ql) and (p, q2)

with ql NE g2.

TRUE if x is the same scal ar
val ue as y; otherw se FALSE.

TRUE if x is the sane integer
nunber as y; otherw se FALSE.

TRUE if x is the sane rational
nunber as y; otherw se FALSE.
(1/2 =2/4 = 3/6 = etc.)

TRUE if x and y indicate the
same activation of the sane
procedure; otherw se FALSE.

TRUE if x(i) = y(i) for each i
in the index range; otherw se
FALSE.

TRUE if x.f = y.f for each
field f; otherwi se FALSE.

TRUE i f x and y have the same
el ements; ot herw se FALSE.

TRUE i f SIZE(x) = SIZE(y)
and x(i) = y(i) for all i
in 1..SIZE(x);otherw se FALSE.

TRUE i f DOVAI N(x) = DOMAI N(y)
and x(i) =y(i) for all i
in DOVAI N(x); otherw se FALSE.

NOT x = vy.

55



GYPSY 2.05 REPORT

X

X X

xX X

xX X

LT y

LE y

INvy

SUB y

_>y
I MP y

FEBRUARY 1, 1986

Resul t BOOLEAN.

Bt ype(x) scal ar.

Bt ype(x) =I NTEGER.

Bt ype(x) RATI ONAL.

Btype(x) = btype(y).
Bt ype(x) sinple type.

Resul t BOOLEAN.

Btype(x) = btype(y).
Bt ype(x) sinmple type.

Resul t BOOLEAN.

Btype(x) = btype(y).
Bt ype(x) sinple type.

Resul t BOOLEAN.

Btype(y) =

SEQUENCE OF btype(Xx).

Resul t BOOLEAN.

Btype(y) =
SET OF btype(x).
Resul t BOOLEAN.

Bt ype(x) = SET OF t.
Bt ype(y) = SET of t.
Resul t BOOLEAN.
Btype(x) =

Btype(y) =

Resul t BOOLEAN.

Bt ype(x) = MAPPI NG
FROM u TO v.

Bt ype(y) = MAPPI NG
FROM u TO v.

Resul t BOOLEAN.

Bt ype(x) = BOOLEAN.
Resul t BOOLEAN.

Bt ype(x) = BOOLEAN.
Bt ype(y) = BOOLEAN.
Resul t BOOLEAN.

Bt ype(x) = BOOLEAN.
Bt ype(y) = BOOLEAN.
Resul t BOOLEAN.

Bt ype(x) = BOOLEAN.
Bt ype(y) = BOOLEAN.

SEQUENCE OF t.
SEQUENCE of t.

56

TRUE i f ORD(x) < ORD(Y);
ot herwi se FALSE.

TRUE if x is less than y;
ot herw se FALSE.

Sane as above.

X <y ORXx =Y.
y <X
X >y ORXx =Y.

TRUE if x is an el ement of
sequence y; otherw se FALSE.

TRUE if x is an el enent of
set y; otherw se FALSE.

TRUE if x is a subset of vy;
ot herwi se FALSE.

TRUE if y has an ordered (not
necessarily contiguous) subsequence
X; ot herw se FALSE.

TRUE i f DOVAI N(x) SUB DOVAI N(y)
and x(d) = y(d) for every
d I N DOVAI N(x); otherw se FALSE.

TRUE if x = FALSE;
FALSE if x = TRUE;

TRUE if both x = TRUE and
y = TRUE; otherw se FALSE.

TRUE if either x = TRUE or
y = TRUE; ot herw se FALSE.

FALSE if x = TRUE and y = FALSE;
ot herw se TRUE.



GYPSY 2.05 REPORT FEBRUARY 1, 1986

Resul t BOOLEAN
X |FFy Bt ype(x) = BOOLEAN
Bt ype(y) = BOOLEAN
Resul t BOOLEAN
ALL x : xtype, p(x)
xtype = a bounded sinple
type.
bt ype(p(x)) = BOOLEAN
p(x) is an expression
SOME x : xtype, p(x)
xtype = a bounded sinmple
type.
bt ype(p(x)) = bool ean
p(x) is an expression
x(y) Btype(x) =
ARRAY y OF btype(v).
Bt ype(y) = non-rationa
sinple type
Result type v.
Bt ype(x) = SEQUENCE OF v.
Result type v.
Btype(x) =
MAPPI NG FROM u TO v.
Result type v.
x(y..z)
Bt ype(x) = SEQUENCE OF v.
Btype(y) = | NTEGER
Bt ype(z) = | NTECER
Result type x.
X.y Btype(x) =
RECORD(... y:Vv ...).
Result type v.
(SET: x1, ..., xn)
Bt ype(x1) =...=btype(xn).
Result SET OF btype(x1).
(SET: x..y)
Bt ype(x) = btype(y) =
si npl e non-rati onal
type.

Result SET OF btype(x).

(SEQ x1, Xn)

57

This is a shorthand notation for
t he expression:

p(x1l) & p(x2) & ... & p(xn),
where (x1, x2, Xn) is the
val ue set of type xtype

This is a shorthand notation for
t he expression:

p(x1) or p(x2) or ... or p(xn),
where (x1, x2, xn) is the
val ue set of type xtype

Component y of x.
Si gnal s ROUTI NEERROR i f there
is no such conponent.

Sane as above.

Sane as above.

If vy le z, the subsequence of x that
begins with elenent in position y and
ends with the elenent in position z.
If y >z, produces the enpty sequence
of type btype(x).

Signals ROUTINEERROR if y LE z and
there is either noy or no z conponent.
Field y of record x.

The set of elenents {x1, ..., xn}.

The set of elenents {x, ..., V}.



GYPSY 2.05 REPORT FEBRUARY 1, 1986

(x1, ..., xn)
Bt ype(x1) =...=btype(xn). The sequence of elenents
(x1, ..., xn)
Resul t SEQUENCE
OF btype(x1).
(SEQ x..y)
(x..y)
Bt ype(x) = btype(y) = The sequence of elenents
si npl e non-rational (X, «.., V)
t ype.
Resul t SEQUENCE
OF btype(x).
X WTH ((y) := 2)
Bt ype(x) = Sane value as x but with
ARRAY u OF btype(z). x(y) = z.
Result btype(x). Signals ROUTINEERROR if there is

no y conponent of x.

Btype(x) = Sane as above.
SEQUENCE OF btype(z).

Bt ype(y) =I NTEGER

Result btype(x).

X WTH (.y := 2)
Bt ype(x) = RECORD Sane value as x but with
(... y:btype(z) ...). X.y = z.
Result btype(x).

X WTH (INTO (y) := 2) Sane value as x but with
Bt ype(x) = MAPPI NG x(y) = z.
FROM bt ype(x) If there is no
TO btype(y). conponent y, one is created with
Result btype(x). z as its val ue.

X WTH (BEFORE (y) := 2z)

Bt ype(x) = SEQUENCE x(1l..y-1) @(SEQ 2z)
OF btype(z). @x(Y..SlZE(x))
Bt ype(y) = I NTEGER Signals routtineerror if thereis
Result btype(Xx). no y conponent of x.
X WTH (BEH ND (y) := 2z)
Bt ype(x) = SEQUENCE x(1l..y) @(SEQ 2z)
OF btype(z). @ x(y+1.. Sl ZE(x))
Bt ype(y) = | NTEGER Signals ROUTINEERROR if there is
Result btype(x). no y conponent of x.
X WTH (SEQOM T (y))
Bt ype(x) = SEQUENCE OF v. x(1l..y-1) @x(y+1.. Sl ZE(x))
Bt ype(y) = | NTEGER Si gnal s ROUTI NEERROR i f there
Result type of x. is no y conponent.

X WTH (MAPOM T (vy))
Bt ype(x) = MAPPI NG Sane val ue as x but wi thout
FROM bt ype(y) TO v. conponent (y,x(y)).



GYPSY 2.05 REPORT FEBRUARY 1, 1986 59

Result type of x. Signals ROUTINEERROR if there is
no y conponent.
X W TH (<conponent sel ector 1> <conmponent selector 2> :=Yy)
Must neet the type X WTH (<conponent sel ector 1>
requirenents of its . = x<component selector 1>
result expression. W TH (<component selector 2> :=y))

Result btype(x).

x WTH (y ; 2z)
Must neet the type (X WTHYy) WTH z
requirenents of its
result expression.
Result btype(x).

X WTH (EACH y:t, 2z)
Type T is a sinple bounded
type with val ues ranging
froma to b.

Must neet the type X WTH (a replacing y in z;
requirenent of its
result expression. b replacingy in z)

Result btype(x).

IF x1 THEN y1
ELIF x2 then y2

ELI F xn THEN yn

ELSE z FlI
Btype(xl) = ... = yl if x1 = TRUE; otherw se
bt ype(xn) = BOOLEAN. y2 if x2 = TRUE; otherw se
Btype(yl) = ... =
bt ype(yn) = btype(z). yn if xn = TRUE; otherw se z

Result btype(z).

ALLFROM x) Bt ype(x) = BUFFER OF t. VESSAGES ( TI MEDALLFROM (x)).
Result SEQUENCE OF t.

ALLTQ( x) Bt ype(x) = BUFFER OF t. MVESSAGES (Tl MEDALLTO (x)).

Result SEQUENCE OF t.
CONTENT( x) Bt ype(x) = BUFFER OF t. The sequence of all val ues

Result SEQUENCE OF t. in the queue of x.

ALLTQ(x) = ALLFROM x) @ CONTENT(X) .

DOVAI N( x) Type of x is The set of all p such that

MAPPI NG FROM u TO v. (p,qg) is in x.

Result type SET OF u.
EMPTY( x) Bt ype(x) = BUFFER OF t. S| ZE( CONTENT( x) ) =0.

Resul t BOOLEAN.
FI RST( x) Bt ype(x) = SEQUENCE OF v. x(1)

Result type v. Si gnal s ROUTI NEERROR i f SIZE(x) = 0.
FULL( x) Bt ype(x) = BUFFER OF t. SI ZE (CONTENT(x)) = k where is the

Resul t BOOLEAN. size limt restriction on the buffer.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 60

FALSE if there is no size limt.

I NFROM X, ¥) Bt ype(x) = BUFFER OF t. MESSAGES (Tl MEDI NFROM (X, Vy)).
Bt ype(y) = ACTI VATI ONI D.
Result SEQUENCE OF t.

| NFROWERGE( X, Y, p, 4) MVESSAGES ( TI MEDI NFROWERGE (X, VY, p, d))
Bt ype(x) = BUFFER OF v.
Bt ype(y) = ARRAY | NTEGER OF ACTI VATI ONI D.
Bt ype(p) = btype(q) = | NTEGER
Result SEQUENCE OF v.
I NI TI AL( x) X is an identifier that The default initial value of
names a type. type x.

Result type x.

LAST( x) Btype(x) = X [SIZE(x)].
SEQUENCE of v. Si gnal s ROUTI NEERROR i f SI ZE(x) = 0.
Result type v.

LONER( x) X = the type nane of any The ninimum val ue of type x.
sinpl e type except
unbounded | NTEGER or
RATI ONAL.
Result type x.

MAX( X, Y) Bt ype(x) = btype(y). IF x >y THEN x ELSE y FI.

Btype(x) = a sinple type.
Result btype(x).

M N( X, y) Bt ype(x) = btype(y). IF x <y THEN x ELSE y FI.

Bt ype(x) = a sinple type.
Result btype(x).

MESSAGES( x) Bt ype(x) = SEQUENCE OF t (SEQ x(1).MESSACE, ...,
where TYPE t = RECORD X (Sl ZE( x) ) . MESSACGE)
( MESSAGE: btype(v);
TI ME: | NTECER) .
type v a non-buffer type.

NONFI RST( x) Bt ype(x) = SEQUENCE OF v. x(2..SlZE(x))

Result type x. Si gnal s ROUTI NEERROR i f SI ZE(x) = 0.
NONLAST( x) Btype(x) = x(1..SIZE(x)-1).
SEQUENCE OF v. Si gnal s ROUTI NEERROR i f Sl ZE(x) = 0.

Result type x.

NULL( x) X is an identifier The enpty set of type x.
that names a set type.
Result type x.

X is an identifier The enpty sequence of type X.
that names a sequence
type.

Result type x.

X is an identifier The enpty mappi ng of type x.



GYPSY 2.05 REPORT FEBRUARY 1, 1986 61

t hat names a napping

type.
Result type x.

ORD( X) Btype(x) = a scalar type The nunber of the position of
Resul t | NTEGER scalar value x in its base type
definition sequence (wth
nunberi ng begi nning at zero).

QUTTO( X, ) Btype(x) = BUFFER OF t.  MESSAGES (TI MEDOUTTQ(X, Y))

Bt ype(y) = ACTI VATI ONI D.
Result SEQUENCE OF t.
OQUTTOVERGE( X, Y, p, Q) MVESSAGES ( TI MEDOUTTOVERGE( X, Y, P, Q) )
Bt ype(x) = BUFFER OF v.
Bt ype(y) = ARRAY | NTEGER OF ACTI VATI ONI D.
Bt ype(p) = btype(q) = I NTEGCER
Result SEQUENCE OF v.
PRED( x) Btype(x) =t wheret is The next scal ar value | ess than x.
a scal ar type. Signal s ROUTI NEERROR i f x = LOAER(t).
Result btype(x).
RANGE( x) Bt ype(x) = The set of all g such that
MAPPI NG FROM u TO v. (p,q) is in x.
Result type SET OF v.
SCALE( X, y) Bt ype(x) = | NTEGER Scal ar val ue nunber x of type btype(y).
y is an identifier Signals ROUTINEERROR if x < O

t hat nanmes a scal ar type. or if x > ORD (UPPER(btype(y))).
Result type btype(y).

Sl ZE( x) Bt ype(x) = SET OF v. The nunber of elements in x.
Resul t | NTEGER

Bt ype(x) = SEQUENCE OF v. Sane as above.
Result | NTEGER

Bt ype(x) = MAPPI NG Sanme as above.
FROM u TO v.
Resul t | NTEGER
SUCC( x) Btype(x) =t wheret is The next scal ar val ue greater
a scal ar type. t han x.
Result btype(x). Signals routineeror if x = UPPER(t).

TI MEDALLFROM x)
Bt ype(x) = BUFFER OF v. TI MEDI NFROM (x, p) where p is
Result SEQUENCE OF t the process in which buffer x
where TYPE t = RECORD defined as internal object.
(MESSAGE: btype(v);
TI ME: | NTECER) .

TI MEDALLTQ( X)
Bt ype(x) = BUFFER OF v. TI MEDQUTTO (X, p) where p is
Result SEQUENCE OF t the process in which buffer x



GYPSY 2.05 REPORT FEBRUARY 1, 1986

where TYPE t = RECORD
( MESSAGE: btype(Vv);
TI ME: | NTEGER).

TI MEDI NFROM X, Y)
Bt ype(x) = BUFFER OF v.
Bt ype(y) = ACTI VATI ONI D
Resul t SEQUENCE OF 't
where TYPE t = RECORD
(MESSAGE: btype(v);

TI ME: | NTEGER).
Tl MEDI NFROWERGE( X, V, p, Q)
Bt ype(x) = BUFFER OF v.
Btype(y) =

ARRAY | NTEGER OF
ACTI VATI ONI D.
Bt ype(p) = btype(q)
= | NTEGER
Resul t SEQUENCE OF t
where TYPE t = RECORD
( MESSAGE: btype(v);
TI ME: | NTEGER)

TI MEDMERGE( X, Y)
Bt ype(x) =btype(y).
Bt ype(x) = SEQUENCE OF t
where TYPE t = RECORD
( MESSACE: v;
TI ME: | NTEGCER)
Result btype(x).

TI MEDORDER( x)
Bt ype(x) = SEQUENCE OF t
where TYPE t = RECORD
( MESSACGE: v;
TI ME: | NTEGER)
Resul t BOOLEAN.

TI MEDOUTTQ( X, )
Bt ype(x) BUFFER OF v.
Bt ype(y) ACTI VATI ONI D.
Result SEQUENCE OF t
wher e
TYPE t = RECORD
( MESSAGE: btype(v);

TI ME: | NTEGER) .
TI MEDOUTTOVERGE( X, Y, P, Q)
Bt ype(x) = BUFFER OF v.
Btype(y) =

ARRAY | NTEGER OF
ACTI VATI ONI D

Btype(p) = btype(q)

62

is defined as internal object.

TI MEDI NFROM (X, y) (k) . MESSAGE

is k-th value that was received
frombuffer x by process vy.

TI MEDI NFROM (x,y) (k). TI ME

is the time at which process y
obtai ned the k-th value from
buf fer x.

TI MEDVERGE ( TI MEDI NFROM (X, y(p)),

TI MEDI NFROM (x,y(Q)))
wher e
TI MEDVERGE (U, ...V, W) =
TI MEDMERGE (u, TI MEDVERGE (. ..V, W))

Consi sts of the elenments of the
sequences x and y ordered on their
Tl ME conponent s.

(TI MEDMERGE (x,y) is defined only if
TI MEDORDER (x) and TI MEDORDER ()
and each TIME conponent is unique
in both sequences.)

TRUE i f x(k).TIME < x(k+1).TIME
for k =1,...,SlI ZE(x) - 1.
FALSE ot her wi se.

TI MEDOUTTO (X, V) (k). MESSAGE
is k-th value that was sent

to buffer x by process vy.

TI MEDOQUTTO (X, y) (k). TIME

is the time at which process y

sent (or gave) the k-th value from
buffer x.

(or given)

TI MEDVERGE ( TI MEDOUTTO (X, y(p)),

TI MEDOUTTO (x,y(q)))
wher e
TI MEDMERGE (U, ...V, W) =
TI MEDMERGE (u, TI MEDVERGE (. ..V, W))



GYPSY 2.05 REPORT

FEBRUARY 1, 1986

= | NTECER.

Result SEQUENCE OF t
where TYPE t = RECORD

UPPER( x) X

( MESSACGE: btype(Vv);
TI ME: | NTECER) .

the type nane of any

simpl e type except
unbounded | NTEGER or
RATI ONAL.

Result type x.

The maxi mum val ue of type x.

63



GYPSY 2.05 REPORT FEBRUARY 1, 1986

Appendix D
Standard Procedures

PROCEDURE TYPE REQUI REMENTS
X 1=y
Bt ype(x) = btype(y).
Bt ype(x) may be any
type except
BUFFER OF v.
x(y) :=z Btype(x) =
ARRAY u OF v.
Btype(y) = btype(u).
Btype(z) = btype(v).
Btype(x) =
SEQUENCE OF v.
Bt ype(y) = | NTEGER
Btype(z) = btype(v).
(x.y :=2) Btype(x) =
RECORD(.. y:Vv ..).
Btype(z) = v.
NEW z BEFORE SEQ X;
Bt ype(x) =
SEQUENCE OF v.
Btype(z) = v.

NEW z BEHI ND SEQ x;

Bt ype(x) =
SEQUENCE OF v.
Btype(z) = v.

NEW z BEFORE x(y)

Bt ype(x) =
SEQUENCE of v.

Bt ype(y) = | NTEGER

Btype(z) = v.

NEW z BEHI ND x(y)

Btype(x) =
SEQUENCE of v.

EFFECT

(Section 5.8.1)

Makes the value of x equal to the
value of y. As a result of the
assi gnment x = y.

Signals ROUTINEERROR if y is not in
the val ue set of the type of x.

( x :=xwith ((y) :=2))

Signals ROUTINEERROR if y is not in
the value set of the index type of x
or if zis not in the value set of the
el enent type of x.

Sane as above.

Signals ROUTINEERROR if y is not in the
range [1..SIZE(x)] or if z is not in the
val ue set of the elenent type of x.

X =X WTH (.y := 2)
Signals ROUTINEERROR if z is not in
t he val ue set of x.y.

X 1=z :>X

Signals ROUTINEERROR if z is not in
t he value set of the elenent type
of x or if SIZE(x) = the size
restriction on the type of x.
(Section 9.3.1).

X 1= X < z;

Signals ROUTINEERROR if z is not in
the val ue set of the elenent type
of x or if SIZE(x) = the size
restriction on the type of x.
(Section 9.3.1).

X := X WTH (BEFORE (y) := 2)
Signals ROUTINEERROR if y is not in
[1..SIZE(X)], if z is not in the

val ue set of the elenment type of x,
or if SIZE(x) = the size restriction
on the type of x. (Section 9.3.1).

X = x WTH (BEHIND (y) := z)
Signals ROUTINEERROR if y is not in
[1..SIZE(X)], if z is not in the



GYPSY 2.05 REPORT FEBRUARY 1, 1986 65

Bt ype(y) =1 NTEGER. val ue set of the elenent type of x,
Bt ype(z) =v. or if SIZE(x) = the size restriction
on the type of x. (Section 9.3.1).
NEW z | NTO x X := x ADJON z
NEW z | NTO SET x; Signals ROUTINEERROR if z is not in
Bt ype(x) = SET OF v. the value set of the elenent type
Btype(z) = v. of x or if SIZE(x ADJON z) > the
size restriction on the type of x.
(Section 9.3.1).
NEW z | NTO x(y) X := X WTH (INTO (y) := 2)

Btype(x) = Signals ROUTINEERROR if y is not
MAPPING FROMu TO v. in the value set of the domain
Bt ype(y) = u. type of x, if z is not in the value
Btype(z) = v. set of the range type of x, or if
SIZE(x WTH (INTO (y) :=2z)) > the
size restriction on the type of x.
(Section 9.3.1).
REMOVE x(y) Btype(x) = X := X WTH (SEQOM T (vy));
SEQUENCE OF v. Signals ROUTINEERROR if y is not
Bt ype(y) = | NTEGER in [l .SIZE(x)].
(Section 9.3.2).
Btype (x) = X =X WTH (MAPOM T (y))
MAPPI NG FROM u TO v. Signal s ROUTI NEERROR i f
Btype(y) = u. y is not in DOVAIN(X).
(Section 9.3.2).
REMOVE ELEMENT z FROM x X =X OMT z
REMOVE ELEMENT z FROM SET x Signals ROUTINEERROR if x is
Bt ype(x) = SET OF v. not in x.
Btype(z) = v. (Section 9.3.2).
MOVE X y Sane restrictions as Sane effect as NEWx y; REMOVE x.
equi val ent NEW and (Section 9.3.3).
REMOVE.
MOVE x TO vy Sane restrictions as Sane effect as y := x; REMOVE x.
equi val ent := and (Section 9.3.3).
REMOVE.
RECEI VE x FROM vy Takes ol dest value fromthe queue of y
Btype(y) = and assigns it to x. Signals
BUFFER OF v. ROUTI NEERRCR i f the value is not
Bt ype(x) = v. in the value set of x.
(Section 10.4.1).
SEND x TO vy Puts a new val ue on the queue of vy.
Btype(y) = Signal s ROUTI NEERROR if x is not
BUFFER OF v. in the value set of the conponent
Bt ype(x) = v. type of y. (Section 10.4.2).
G VE x TOy Sanme effect as SEND x TO y; REMOVE Xx.
Btype(y) = (Section 10.4.3).
BUFFER OF v.

Bt ype(x) V.



GYPSY 2.05 REPORT FEBRUARY 1, 1986

66

Appendix E
Procedure Compositions

In the following, "{ x }" means that "x" may be repeated zero or more times, and "[ x ]* meansthat " x " is
optional. "Statements" or "statementsl"”, etc. are <internal statements>.

| F bool 1 THEN [ st at erment s1]
{ELIF bool 2 THEN [ statenents2]}
[ ELSE [ st at enent s3]]
[WHEN {I S condi: statenentsi}]

END

CASE exp
{1S labeli: [statenentsi]}
[ELSE: [statenentsj]]

[WHEN {i s condi:
END

statenmentsi}]

LOOP [statemnents]
[WHEN {is condi:
END

st at ement si }
LEAVE

procname (expl, expn)

[ UNLESS [ (OG\IIID. ccondl, ccondn) ]

BEQ N [ st at errent s]
[WHEN {is condi:
END

statementsi }]

S| GNAL condnane

AVWAI T

[EACH i1: itypel,] ONstntl

THEN st at enent s1;

{[EACH in: itypen,] ON stntn

An if conposition chooses and
perforns one of several internal
statenent |ists.

(Section 5.8.3).

A case conposition is another way
of choosing and perform ng one of
several internal statement |ists.
(Section 5.8.4).

A |l oop composition performs its
internal statenents repeatedly.

It is termnated by performng a
| eave statenent (or by signalling
a condition.

(Section 5.8.5).

The procedure call causes a procedure
to run. The actual paraneters of the
call are objects in the calling

envi ronnent whi ch becone the externa
obj ects of the called procedure.

Call by reference is used. Actua
paranmeters must conformto type
restrictions on the formals, and

must not allow aliasing. Actuals
corresponding to var formals nust be
vari abl e nane expressions. Actua
condition paraneters nust be forward
conditions. They default to

ROUTI NEERROR.

(Sections 5.9, 8.5.3).

The begin composition may be used to
associ ate condition handlers with

an arbitrary sequence of internal
statenents.

(Section 8.3).

A signal statement sinply signals
its forward condition.
(Section 8.5).

The await conposition provides a way
of waiting concurrently on several
events to occur.

(Section 10.5.1).



GYPSY 2.05 REPORT FEBRUARY 1, 1986 67

THEN st at enrent sn}
[WHEN {I S condi: statenentsi}]

END
COBEA N A cobegin conposition provides a way of
[EACH i 1: itypel,] runni ng several processes concurrently.
procnanmel (expll, .. expln); (Section 10.5.2).
{[EACH in: itypen,]
procnanmen (expnl, .. expnn);}

[WHEN {is condi: statenentsi}]
END



GYPSY 2.05 REPORT FEBRUARY 1, 1986 68

Appendix F
Cross Reference of Operations by Type

This appendix lists the standard operations that are pre-defined for each Gypsy type. A special section
under the buffer class lists functions on buffer histories. Where aternate notations for the same operation are
available, they are presented side by side.

SI MPLE TYPES

Qper ations Statenments (s is a sinple object)

M N
I NI TI AL
LONER (if the operand is a bounded type)
UPPER (if the operand is a bounded type)

SCALAR TYPES

Qper ations St atenment s (s is a scal ar object)

M N

I NI TI AL
LONER
UPPER
ORD
SCALE
PRED
SucC



GYPSY 2.05 REPORT FEBRUARY 1, 1986 69

BOCLEAN TYPES

Qper ations St atenment s (b is a bool ean object)

EQ = | FF b := exp;

M N

I NI TI AL
LOVNER
UPPER
ORD
SCALE
PRED
SucC
NOT
AND

OR

| MP ->
ALL
SQOVE

| NTEGER TYPES

Qper ations St atenent s (i is an integer object)

M N

I NI TI AL

LOAER (if the operand is a subrange type)
UPPER (if the operand is a subrange type)
Dl Vv

- (unary)
- (bi nary)



GYPSY 2.05 REPORT FEBRUARY 1, 1986 70

RATI ONAL TYPES

Qper ations St atenment s (r is a rational object)
EQ = r := exp;
NE
LT <
LE
GIr >
GE
MAX
M N
I NI TI AL
+
- (unary)
- (bi nary)
*
/
* %
ARRAY TYPES
Oper ati ons St at ement s (a is an array object)
EQ = a = exp;
NE a[i] := exp;
ali]
a WTH ([i] := exp)
I NI TI AL
RECORD TYPES
Oper ati ons St at enent s (r is a record object)
EQ = r = exp;
NE r.fieldname := exp;

r.fiel dnane
r WTH (.fieldname : = exp)
I NI TI AL



GYPSY 2.05 REPORT FEBRUARY 1, 1986

SET TYPES

Qper ations

NE

ADJO N

DI FFERENCE

IN

I NI TI AL

| NTERSECT

NULL

OMT

Sl ZE

SUB

UNI ON

(SET: el, e2, ... en)
(SET: el .. en)

SEQUENCE TYPES

Qper ations
EQ =

NE

s[i]
s[i..j]

<

D>
APPEND @
FI RST

IN

I NI TI AL

LAST

NONFI RST
NONLAST
NULL

Sl ZE

SUB

(SEQ el, e2, ... en)
(SEQ el .. en)

s WTH ([i] := exp)
s WTH (BEFORE [i]
s WTH (BEH ND [i]

X)

71

St at ement s
S 1= exp;
NEW exp | NTO SET s;

MOVE exp | NTO SET s;

MOVE expl FROM SET s TO exp2;
MOVE expl FROM SET s | NTO exp2,;
REMOVE exp FROM SET s;

G VE exp FROM SET s TO b;

(s is a set object)

Statenments (s is a sequence object)

s[i] := exp;

MOVE exp BEFORE s[i];

MOVE exp BEFORE SEQ s;

MOVE exp BEHIND s[i];

MOVE exp BEH ND SEQ s;

MOVE exp FROM SET setexp BEFORE s[i];
MOVE exp FROM SET setexp BEFORE SEQ s;
MOVE exp FROM SET setexp BEHIND s[i];
MOVE exp FROM SET setexp BEH ND SEQ s;
NEW exp BEFORE s[i];

NEW exp BEFORE SEQ s;

NEW exp BEHI ND s[i];

NEW exp BEHI ND SEQ s;

REMOVE s[i];

G VE s[i] TO b;



GYPSY 2.05 REPORT FEBRUARY 1, 1986 72

MAPPI NG TYPES

Qper ations St atenment s (mis a mappi ng object)
EQ = m . = exp;

NE MOVE exp INTO nfi];

ni x] MOVE exp FROM SET setexp INTO nfi];
I NI TI AL NEW exp INTO nfi];

DOVAI N REMOVE nfi];

RANGE G VE nfi] TO b;

NULL

Dl FFERENCE

| NTERSECTI ON

UNI ON

Sl ZE

SUB

MWTH ([x] :=Y)
MWTH (INTO [x] =)



GYPSY 2.05 REPORT FEBRUARY 1, 1986 73

BUFFER TYPES

Qper ations St atenment s (b is a buffer object)
FULL SEND exp TO b;
EMPTY RECEI VE exp FROM SET b;
CONTENT G VE exp TO b;
ALLFROM G VE exp FROM SET setexp TO b;

TI MEDALLFROM

TI MEDALLTO

TI MEDI NFROM

TI MEDI NFROVMERGE
TI MEDQUTTO

TI MEDOUTTOVERGE
VESSAGES

I NI TI AL

The followi ng are functions on buffer histories:

TI MEDMVERGE
TI MEDORDER

ACTI VATI ONI D TYPES

Qper ations



GYPSY 2.05 REPORT FEBRUARY 1, 1986 74

I ndex
* 53 <component alterations> 13
** 53 <component assignment> 13
<component creation> 39
+ 54 <component creator> 39
<component deletion> 39
- 53,54 <component destination> 42
<component modification> 13
. 57 <component selectors> 12
. 57 <component type> 10
<concrete block specification> 50
/ 53 <concrete entry specification> 50
<concrete exit specification> 50
= 64 <concrete operational specification> 49
<condition handlers> 34
<abstract operational specification> 29 <conditional exit specification> 36
<abstract type body> 48 <constant body> 19
<abstract type declaration> 48 <constant declaration> 19
<access specification> 18 <constant name> 19
<actual condition group> 35 <creation component selectors> 39
<actual condition list> 35 <data object name> 12
<actual condition parameters> 35 <default abstract initial value specification> 49
<actual condition> 35 <default initial value expression> 7
<actual dataobject> 24 <digit> 6
<actual data parameters> 24 <dynamic type composition> 37
<actual parameters> 24 <dynamic variable component name expression> 41
<alteration selector list> 13 <each clause> 14
<array type> 10 <element list> 38
<assert specification> 29 <entry specification> 29
<assignment statement> 21 <entry value> 28
<await arm> 45 <equality extension> 49
<await composition> 45 <equality type> 38
<base> 8 <event statement> 45
<begin composition> 34 <existential quantification> 28
<binary operator> 15 <exit label> 36
<block specification> 47 <exit specification> 29
<boolean expression> 28 <expression> 14
<boolean operator> 15 <external conditions> 33
<boolean unary operator> 15 <external data objects> 18
<bound expression> 28 <external operational specification> 28
<bounded index> 14 <external variable object> 28
<buffer type composition> 43 <factor> 14
<buffer type name> 43 <field name> 10
<buffer variable> 44 <field type> 10
<called function name> 23 <fidlds> 10
<called procedure name> 23 <foreign unit name> 32
<case composition> 22 <formal condition name> 33
<case exit body> 36 <formal condition parameters> 33, 35
<case exit labels> 36 <formal data parameters> 18
<caseexit> 36 <formal type> 18
<caselabels> 22 <forward condition> 35
<cobeginarm> 45 <function call> 23
<cobegin composition> 45 <function declaration> 19
<comment character> 6 <function name> 19

<comment> 6 <give statement> 44



GYPSY 2.05 REPORT FEBRUARY 1, 1986

<group name> 35

<handler labels> 34

<handler name> 34

<handler> 34

<hold specification> 49
<identifier> 5

<if composition> 22

<if expression> 15

<index selector> 12

<index type> 10

<input or output> 43

<integer operator> 15

<integer unary operator> 15
<integer value> 8

<internal condition name> 33
<internal condition objects> 33
<internal data object names> 20
<internal dataobjects> 20
<internal data or condition objects> 20
<internal environment> 20
<internal initial value> 20
<internal statements> 21

<keep specification> 29

<label expression> 22

<leave statement> 23
<lemmabody> 30
<lemmadeclaration> 30
<lemmaname> 30

<letter or digit> 5

<letter> 5

<literal value> 13

<local aliases> 31

<local condition> 33

<local name> 32

<local renaming> 32

<loop composition> 23
<mapping element name expression> 40
<mapping operator> 39
<mapping type> 38

<maximum value> 9

<minimum value> 9

<modified primary value> 13
<move statement> 42

<name declaration> 31

<name expression> 12

<new dynamic variable component> 40
<new statement> 40
<non-buffer component type> 43
<non-empty pre-computable range> 9

<non-negative integer pre-computable expression> 37

<non-quote character> 40

<non-rational simple type specification> 10
<non-validated specification expression> 27

<number> 8

<operation restriction> 43

<ordinary type declaration> 7
<potential value expression> 15
<pre-computable expression> 16
<pre-computable label expression> 22

75

<pre-computable value> 16
<primary value> 13

<privileged units> 48

<procedural statement> 21
<procedure body> 20

<procedure composition rule> 21
<procedure declaration> 17
<procedure name> 17

<procedure statement> 23

<proof directive> 27

<quantified expression> 28
<quantified factor> 15

<quantified names> 28

<quote symbol> 40
<rangelimits> 9
<rangerestriction> 9

<range> 9

<rational operator> 15

<rational unary operator> 15
<rational value> 9

<receive statement> 44

<record type> 10

<removable component> 41
<remove statement> 41
<restricted buffer type composition> 43
<result type> 19

<scalar or integer valued expression> 22
<scalar type> 8

<scalar value> 8

<scope declaration> 31

<scope name> 31

<selector type> 38

<send statement> 44

<seguence element name expression> 40
<sequence name expression> 40
<sequence operator> 39
<sequence position designator> 40
<seguencetype> 38

<set name expression> 40

<set operator> 39

<set or seq mark> 38

<set or sequencevalue> 38

<set type> 37

<signa statement> 35

<similar fields> 10

<similar formal data parameters> 18
<simple relational operator> 15
<simple specification expression> 27
<simple type name> 9

<sizelimit restriction> 37
<specification expression> 27
<statement list> 21

<statement> 21

<static type composition> 10
<string value> 40

<subrange type> 9

<subsequence selector> 39
<term> 14

<type declaration> 7



GYPSY 2.05 REPORT FEBRUARY 1, 1986

<type definition> 7

<type name> 7

<type specification> 7

<unary operator> 14

<unit declaration> 31

<unit or name declaration> 31
<unit or scope name> 48
<universal quantification> 28
<validation directive> 27
<value dterations> 13
<valuelist> 38

<value modifiers> 13

<value selectors> 13
<variable name expression> 21

& 56
-> 56
= 64
D>

SV
55
55
> 56
@ 54

Abstract specification 49
Abstract type 48
Abstract type body 48
Abstract type declaration 48
Activationid operations 73

= 55

eq 55
Activationid type 46
Actual condition parameter 35
Actual parameter 24
Add 54
Adjoin 54
Adjoinfirst 54
Adjoinlast 54
Aliasgroup 35
Aliasing 24
All 57
Allfrom 59
Allto 59
Alteration 13, 39, 58
And 56
Append 54
Array 10
Array operations 70

= 55

ateration 58

eq 55

if 59

initial 60

ne 55

select 57

with 58
Array statements

= 64

1A A

assignment 64
component assignment 64
element assignment 64
Array type 10
Assert specification 29
Assignment 21, 64
Await blocked 46
Await composition 45, 66

Basetype 11
Before 58
Begin composition 66
Behind 58
Binary 8
Block specification 46
Body 20
Boolean operations 69
& 56
-> 56
al 57
and 56
existential quantification 57
iff 57
imp 56
not 56
or 56
some 57
universal quantification 57
Boolean statements
= 64
assignment 64
Booleantype 8
Bound identifiers 18
Buffer histories 46
Buffer operation restriction 43
Buffer operations 73
alfrom 59
alto 59
content 59
empty 59
full 59
infrom 60
infrommerge 60
initial 60
messages 60
outto 61
outtomerge 61
timedallfrom 61
timedallto 61
timedinfrom 62
timedinfrommerge 62
timedmerge 62
timedorder 62
timedoutto 62
timedouttomerge 62
Buffer parameters 44
Buffer statements
give 65
receive 65

76



GYPSY 2.05 REPORT FEBRUARY 1, 1986

send 65
Buffer type composition 43

Case composition 22, 66
Caseexit 36

Chlock specification 49
Centry specification 49
Cexit specification 49
Character set 5

Character type 8

Cobegin blocked 47
Cobegin composition 45, 67
Comment 6

Component assignment 64
Component selectors 12, 39
Component type 37
Concrete specification 49
Concrete values 48
Concurrent composition 45
Concurrent processes 43
Cond group 35

Condition 33

Condition handlers 34
Conditional exit specification 36
Constant 19

Content 59

Decima 8
Default initial value 7,7, 60
abstract type 49
array 10
buffer 43
functionresult 19
integer 8
internal data object 20
mapping 38
rational 9
record 10
scalar 8
sequence 38
set 37
subrange 9
Developing aprogram 25
Difference 55
Div 53
Divide 53
Domain 59
Dynamic type compositions 37

Each 59

Each clause 14, 45
Element assignment 64
Elsegroup 35

Empty 59

Entry specification 29
Entry value 28

Eq 55

Equality extension 49
Exclusive access 44

Existential quantification 28
Exit specification 29
Expression 12

Extended non-aliasing rule 45
External condition 33
External environment 18
External object 18

77

External operational specifications 28

First 59

Formal parameter 18, 24
Forward conditions 35
Full 59

Function 19

Function call 35

Ge 56

Give 65

Give statement 44
Gt 56

Handling conditions 34
Hex 8
Hold specification 49

Identifier 5
If 59
If composition 22, 66
If expression 15, 59
Iff 57
Imp 56
Implementation prelude 25
In 56
Index 57
Infrom 60
Infrommerge 60
Initial 60
Initially specification 49
Input 22
Integer operations 69

* 53

** 53

+ 54

- 53,54

/ 53

< 55

= 55

> 56

div 53

eq 55

ge 56

gt 56

if 59

initial 60

le 56

lower 60

It 55

max 60

min 60



GYPSY 2.05 REPORT FEBRUARY 1, 1986

minus 53

mod 54

ne 55

pred 61

subtract 54

succ 61

upper 63
Integer statements

= 64

assignment 64
Integer type 8
Internal condition 33
Internal data object 20
Internal environment 20
Internal specifications 29
Internal statement 21
Intersect 54
Into 58

Keep specification 29

Last 60

Le 56

Leave statement 66
Lemma 30, 50

Local condition 33
Local name 18, 32
Local names 31

Loop composition 23, 66
Lower 60

Lt 55

Mapomit 58

Mapping 38

Mapping operations 72
= 55

dlteration 58

difference 55

domain 59

eq 55

if 59

initial 60

intersect 55

ne 55

null 60

range 61

select 57

size 61

sub 56

union 54

with 58
Mapping statements

= 64

assignment 64

component assignment 64

element assignment 64

move 65

new into 65

remove 65

Mapping type 38
Max 60
Messages 60
Min 60
Minus 53
Mod 54
Modified primary value 13
Move 65
mapping 65
sequence 65
set 65
Move statement 42
Multiple condition 46
Multiply 53
Myid 46

Name declaration 31

Name expression 12

Nameresolution 32

Ne 55

New 64, 65
beforeseq 64
before sequence element 64
behind seq 64
behind sequence element 64
into mapping element 65
into set 65

New statement 40

Nonfirst 60

Nonlast 60

Normal 36

Not 56

Null 60

Octal 8

Omit 54

Operational specifications 27
Operator 39

Operator precedence 15
Operators 14

Or 56

Ord 61

Output 22

Outto 61

Outtomerge 61

Pending 7,19, 20, 21
Power 53

Pre-computable expression 9, 16, 19, 22, 37

Precedence 15

Precedence levels 15

Pred 61

Prelude 25

Primary value 13

Procedural statement 21
Procedure 17

Procedure body 20
Procedure call 23, 35, 66
Procedure composition rule 21



GYPSY 2.05 REPORT FEBRUARY 1, 1986

Quantified expression 28

Range 61
Rangerestriction 9
Rational operations 70

* 53

** 53

+ 54

- 53,54

/ 53

< 55

= 55

> 56

eq 55

ge 56

gt 56

if 59

initial 60

le 56

lower 60

It 55

max 60

min 60

minus 53

ne 55

subtract 54
Rationa statements

= 64

assignment 64
Rational type 9
Receive 22, 65
Receive statement 44
Record 10
Record operations 70

= 55

ateration 58

eq 55

if 59

initial 60

select 57

with 58
Record statements

= 64

assignment 64

component assignment 64

element assignment 64
Record type 10
Remove 65

mapping 65

sequence 65

set 65
Remove statement 41
Resolving references 32
Result 19
Routineerror 33, 35, 36
Run time validation 27
Running aprogram 25

Scalar operations 68

55
55

> 56

eq 55

ge 56

gt 56

if 59

initial 60

le 56

lower 60

It 55

max 60

min 60

ne 55

ord 61

pred 61

scale 61

succ 61

upper 63
Scalar statements

= 64

assignment 64
Scalar type 8
Scae 61
Scope 31
Select 57
Send 22, 65
Send statement 44
Seq: 57
Seqgconstructor 57
Seqomit 58
Sequence 38
Sequence operations 71
57
54
54
55
@ 54
adjoinfirst 54
adjoinlast 54
alteration 58
append 54
eq 55
first 59
if 59
in 56
initial 60
last 60
ne 55
nonfirst 60
nonlast 60
null 60
select 57
seq: 57
seqconstructor 57
size 61
sub 56
subsequence select 57
with 58

1A

IWRVE

79



GYPSY 2.05 REPORT FEBRUARY 1, 1986

Seguence statements
= 64
assignment 64
component assignment 64
element assignment 64
move 65
new before element 64
new beforeseq 64
new behind element 64
new behind seq 64
remove 65
Sequencetype 38
Sequencevalue 38
Set 37
Set operations 71
= 55
adjoin 54
difference 55
eq 55
if 59
in 56
initial 60
intersect 54
ne 55
null 60
omit 54
set: 57
setconstructor 57
size 61
sub 56
union 54
Set statements
= 64
assignment 64
move 65
new into 65
remove 65
Set type 37
Set value 38
Set: 57
Setconstructor 57
Signal 33
Signal statement 35, 66
Signalling conditions 35
Simple type operations 68
Size 61
Size limit restriction 37, 43
Some 57
Spacegroup 35
Spaceerror 33, 35, 36
Specification
assert 29
block 47
cblock 50
centry 50
cexit 50
entry 29
exit 29
hold 49

initially 49
keep 29
Specification expression 27
Standard function 36
Standard operation 36
Standard operator 39
Statement 21
assignment 21
await composition 45
begin composition 34
case composition 22
cobegin composition 45
give statement 44
if composition 22
loop composition 23
move statement 42
new statement 40
procedure statement 23
receive 22
receive statement 44
remove statement 41
send 22
send statement 44
signal statement 35
String type 40
Structured object 7
Sub 56
Submapping 56
Subrangetype 9
Subsequence 56
Subsequence select 57
Subset 56
Subtract 54
Succ 61

Target environment 25
Timedallfrom 61
Timedallto 61
Timedinfrom 62
Timedinfrommerge 62
Timedmerge 62
Timedorder 62
Timedoutto 62
Timedouttomerge 62
Transfer of control 25
Type 7

aray 10

boolean 8

buffer 43

character 8

integer 8

mapping 38

rational 9

record 10

scalar 8

sequence 38

set 37

subrange 9
Type consistency 24

80



GYPSY 2.05 REPORT FEBRUARY 1, 1986

Type specification 7

Union 54

Unit declaration 31
Universal quantification 28
Upper 63

Value dteration 13, 39
Value expression 13
Valuegroup 35
Verification 27
Verification directives 27

With 58

81



Table of Contents

Chapter 1. BasiC CONCEPLS . .. oo vt ittt ettt e ettt et

L PrOgIaMS ..ttt e
1.2, SPECiCalioN . ...
L3 Implementation . .......... .
LA PrOOf . o
1.5. Independence PrincCiple . . ...
1.6. Language SUMMEY . ... .ottt e e e e e e
1.7. Language Implementation . ...t i
1.8. Verification ENVIrONMEeNnt . ... ...ttt

Chapter 2. Lexical Preliminaries ............... i

2. L Nt ON ... e
2.2. Character Set and CONVENLIONS .. .. .ottt e e e et
2. 3. ldentifiErS . o
2.8, COMMIEIES . oottt e e e

Chapter 3. Type SpeCificalions . . . ...t e e e

3.1. Default Initial VaUBS . . . ..o

32 SIMPIE TYPES . ot
B2 L SCAlA TY P oottt e
322, TYPEBOOIEAN . ..ottt
323, TYPE O Al O . .ottt
3 2., Y P I g .ottt
3.2 5. TYPE RAONAl . ...
32,6, SUBrANGE TY DS . o v ittt ettt et et e e

3.3. Static Type COMPOSITIONS . . ..ottt ettt et e e
B B L A Y S ottt e
332 RECOMS . .\ ottt

AP WWNNNRERE -

oot or Ol

34.BaseTypes...............

Chapter 4. EXPreSSIONS . . ..ottt et ettt et e

4.1. Name Expressions . .......

4.1.1. Component SElECOrS . ...ttt

4.2. Vaue Expressions ........

A2 1 Primary ValUES . ..ot e
4.2.2. Modified Primary ValuUeS . . ... ..o e e e e
423 VAU AIEIatioNS . . ..ottt
424, EaCh ClaUseS . .. oottt et e e e
T @ = o]
42, B, I EXPIESSI 0N . .ottt

4.3. Pre-Computable Expressions

PR
PoOoOwwowmmommmo®O~ =~

12

12
12
13
13
13
13
14
14
15
16



Chapter 5. Programs . . . ...
5.1. Procedures ........

5.2 External ENVIrONmMENt . .. ..ot

5.3.Loca Names ......
5.4. Functions .........
55.Congtants .........
56.Bodies ...........
5.7. Internal Environment
5.8. Internal Statements. .
5.8.1. Data Assignment . .
5.8.2. Input and Output . .
5.8.3. If Composition .. .
5.8.4. Case Composition .
5.8.5. Loop Composition

5.9. Procedureand FUNCtion Calls . ...

5.9.1. Actua Parameters .
5.9.2. Type Consistency .
593 Aliasing .........
5.9.4. Transfer of Control
5.10. Getting Started . . ..
5.10.1. Developing a Progr
5.10.2. Running a Program

=11

5.10.3. Implementation Prelude . . ... ...

Chapter 6. Operationa Speci

fications . ... ..

6.1. Specification EXPresSsions . ...ttt

6.1.1. Entry Values .. ...

6.1.2. Quantified EXPrESSiONS . . ..ottt e e
6.2. External Program Specifications . ...........c.o it

6.21.Entry ...........
6.22. Exit ............

6.3. Internal Program SpeCifiCationS . . . . ... ..ottt e

631.Keep ...........
6.32. Assert ..........

6.4. Lemma SPeCifiCalionS . . ...ttt e

6.5. Example ..........

Chapter 7. Scopes ... .. ...

7.1. Unit Declaration . . ..
7.2. Name Declaration ..
7.3.Local Names ......
7.4. Resolving References

Chapter 8. Conditions . . ...

8.1. Declaring Conditions
8.1.1. External Conditions
8.1.2. Internal Conditions

8.2. Handling Conditions

17

17
18
18
19
19
20
20
21
21
22
22
22
23
23
24
24
24
25
25
25
25
25

27
28
28
28
29
29
29
29
29
30
30

31
31
32
32

33
33
33



8.3. Begin CompPOSItiON ... ..ot
8.4. Condition Handlers . ...t
8.5. Signalling Conditions .. ... .. it
8.5.1. Forward Conditions . ... ...ttt
8.5.2. Signal StALEMENt . . . . ..ot
8.5.3. Procedureand Function Calls . .. ... oot
8.5.4. Standard Procedures and FUNCLIONS . ... ... oottt e e e e e
8.6. Conditional Exit SPeCifiCations .. ...... ...t

Chapter 9. Dynamic Typesand Objects . ...

9.1. Dynamic Type COMPOSItIONS . . ..ottt ettt e e e e
0. L. L B .ot
0.0.2. SEOUEBNCES . . et ettt ettt et e e e e e e e e e
0. L 3 M NGS .« o e ettt e e e

0.2  EXPIrESSIONS . . ettt ettt e e
0.2.1. Setand SequENCE VaAUBS . . ..ot e
9.2.2. Component SEIECIONS .. ...ttt
0.2.3 OB AIONS . . . o et ettt e e e e e
0.2.4. ValUe AEratioNS . ...ttt
0.2 5. SIHNG VaAlUBS . . . oot

0.3, A O MENES . .. oot
0.3 1 NBW ST EMENt . . ..ottt
0.3.2. REMOVE StateMENt . . ..o
0.3.3. MOVE St EMENT . . .ot

Chapter 10. CONCUITENCY . .ottt ettt e e e ettt et e

10,0 BUITEIS .
10.2. Operation RESIICHIONS . . . oo\ttt e et e et
10.3. Buffer Parameters . ... e
104, St EMENLS . . . ottt e
10.4.1. RECEIVE STAlOMENT . . . .. oottt et e e e e e e e e
10.4.2. Send SEatEmMENt . . ..ottt e e
10.4.3. GIVE SEAEMENT . . oot
10.5. Concurrent COMPOSITION . . ..ottt et et
10.5.1. AWaIt COMPOSITION . . ..ottt et ettt e e e e e e
10.5.2. Cobegin ComMPOSITION . . ..ottt et e e e e e e
10.6. SPeCIfiCatioNS . . . .. oot e
10.6.1. TYpe ACtiVationid . . ... ...
10.6.2. BUFfEr HIStOMES . . . oo oottt e e e e e e e
10.6.3. BIOCK SPeCifiCations . .. ... ..ot e

Chapter 11. ADSIraCt TYPES . . o oot e e e

111 TypeDeClaration .. ... ... e e e e
11.2. TYPEBOOY . .ot e
11.3. Equality EXIENSION . ... e
114, SPeCIfiCatioNS . .. ..ot
11.4.1. Default Initial VAlUES .. . ... o e
104 2. HOd . o
11.4.3. Centry, Chlock, CeXit . . .. ... e e
1144 LOMMES . . . .ottt ettt e e

35

35
35
36
36

37

37
37
38
38
38
38
39

39
40
40
40
411
42



Appendix A. Reserved Identifiers. .. ... 51

Appendix B. Base Type Definitions . .. ... 52
Appendix C. Standard Operatorsand Functions ............... ... ... .oivn.. 53
Appendix D. Standard Procedures . ............ i e 64
Appendix E. Procedure COMpoSItioNS . ...ttt 66
Appendix F. Cross Reference of Operationsby Type ........ .. ..., 68
INOEX . . 74



List of Figures



List of Tables

Vi



