
A User’s Manual for an Interactive Enhancement
to the Boyer-Moore Theorem Prover

1Matt Kaufmann

Technical Report #60 August 1987

Institute for Computing Science

2100 Main Building

The University of Texas at Austin

Austin, Texas 78712

(512) 471-1901

1Supported by ONR Contract N00014-81-K-0634 ,Department of the Navy Contract N00039-85-K-0085, and IBM grant
award "ICSCA--Research in Hardware Verification, Various Purposes"

1

SECTION 0: PREFACE

NOTE: Most users can get by with reading no further than Section 1 of this manual, at least until they desire

to utilize the potential of this system more fully. That said

This manual accompanies a system for checking the provability of terms in the Boyer-Moore logic, as

described in [1] and (more recently) updated in [2]. This system is loaded on top of the Boyer-Moore Theorem

Prover, as explained below, and is integrated with that prover. Thus, the user can give commands at a low level

(such as deleting a hypothesis) or at a high level (such as calling the Boyer-Moore Theorem Prover). As with a

variety of proof-checking systems, this system is goal-directed: a proof is completed when the main goal and all

subgoals have been proved. A notion of macro commands lets the user create compound commands, in the spirit of

the tactics and tacticals of LCF [3]. Upon completion of an interactive proof, the lemma with its proof may be

stored as a Boyer-Moore event which can be added to the user’s current library of events (i.e. definitions and

lemmas). An on-line help facility is provided.

We assume a little familiarity with the Boyer-Moore Theorem Prover, especially, with definition events

(DEFN) and lemma events (PROVE-LEMMA).

The manual is organized into sections as follows. Section 1 gives an introduction to the system, including a

short annotated transcript of a sample session. Section 2 contains a reasonably careful explanation of the notion of a

proof "state" and an introduction to the various commands and what they do. The third section is a presentation of

helpful tips. The final section contains a description of the macro command facility together with a more detailed

description of the top-level loop. This manual concludes with three appendices. The first appendix contains an

annotated transcript of a sample session which is somewhat more realistic than the one presented in Section 1, so

that beginning users may gain some additional feel for how the system might be used. The second appendix

presents a soundness argument for this system. The final appendix lists information printed by the "short" help

facility.

ACKNOWLEDGEMENTS. An early version of part of this system was written by J Moore, who I also thank

for suggesting this project. I also thank David Goldschlag, Carl Pixley, and Bill Young for their helpful feedback in

the development of this system. Finally, I truly appreciate the congenial and stimulating atmosphere that has been

present during my year at the Institute for Computing Science at the University of Texas. It’s great to love your job!

2

SECTION 1: INTRODUCTION TO THE SYSTEM

This section is divided into four parts. The first part contains the essentials needed to get started with the

system. In the second part, a few words are said about the organization of the system into goals, states, and the state

stack. The third part describes the four types of commands (change, help, meta, and macro) that the user may give.

The final part (which is perhaps the most important) gives a basic introduction to the use of the system by way of an

example. Although more precise details are given in later sections, the four parts of this section should provide an

adequate introduction for most users.

Getting started

Let us assume that you have been given instructions on how to set up the files for the interactive proof-

checker and that you have loaded them all in, after loading the Boyer-Moore system. (Presumably such instructions

have been provided on a separate sheet.) You now have a proposed theorem to verify. Then submit that theorem as

an argument to the Lisp function VERIFY; for example, to proof-check the associativity of APPEND, submit the

form

(VERIFY (EQUAL (APPEND (APPEND X Y) Z)
(APPEND X (APPEND Y Z))))

You will see the prompt "->: ", indicating that the system is ready to accept proof commands, i.e. commands which

alter the state of the system. The idea then is to give various commands, some of which may introduce subgoals.

Upon completion of the session, you may give an EXIT command, which may be used to cause the goal to be stored

as a Boyer-Moore event in case the proof is complete; more on this later. However, whenever you leave the

interactive proof-checker (either by an EXIT command or by aborting out), you may re-enter where you left off

simply by submitting the form

(VERIFY)

to Lisp.

At any point during the proof, you may review the available commands by submitting HELP or

HELP-LONG, which give lists of the main commands, or (HELP <command > <command > ... <command >),1 2 n

(similarly for HELP-LONG), which give descriptions of the indicated commands. The principle here is that most

users will be content with the help provided by HELP rather than HELP-LONG, but HELP-LONG may be used

to get more precise specifications of the commands (which can be useful in obscure cases) and more details about

2unusual arguments that are allowed for various commands. More precisely, the difference between HELP and

2By arguments to a command we mean, for example, that the numbers 3 and 4 are arguments to DIVE in the instruction (DIVE 3 4).

3

HELP-LONG tends to be that (HELP <command > <command > ... <command >) prints out enough1 2 n

information for most purposes and generally gives examples, while the corresponding use of HELP-LONG rarely

gives examples but instead gives more dry and often more complete specifications of the commands.

During the course of a session, the user will submit a number of commands which will alter the state of the

system. Some of these commands will create new goals to be proved. The session is complete when all goals have

been proved, in the sense that their conclusions have been reduced to T (true). (The notions of goal and conclusion,

among others, are explained in the next subsection.) At that time the user may create an event by submitting an

appropriate EXIT command. For example, the the final subsection of Section 1 (below) will display an interactive

session for proving the associativity of the APPEND function. Upon completion of that session, the user will type an

EXIT command in order to "create" the following Boyer-Moore event:

(PROVE-LEMMA ASSOCIATIVITY-OF-APPEND
(REWRITE)
(EQUAL (APPEND (APPEND X Y) Z)

(APPEND X (APPEND Y Z)))
((INSTRUCTIONS (INDUCT (APPEND X Y))

PROMOTE
(DIVE 1 1)
X UP X NX X TOP
(DIVE 1 2)
= TOP S S)))

The INSTRUCTIONS hint is a record of all the (successful) proof commands given during the session. This event

may be submitted like any other Boyer-Moore event when running events in batch mode, i.e. when submitting

events to Lisp rather than creating them through the interactive proof checker. Since the Lisp machine prints this

event out in the Lisp window, the user will probably want to have output "dribbling" into a "dribble buffer", where

he can then grab this event and copy it into his list of events.

Organization: goals, states, and the state stack

This section gives an informal introduction to the organization of the system. Details are postponed until

Section 2.

The history of an interactive session is stored as a state stack. This stack consists of proof states (or, "states"

for short). A state contains a collection of goals, where each goal has a list of hypotheses and a conclusion. Each of

the goal’s hypotheses can either be active or hidden; hidden hypotheses are generally ignored by proof commands

unless (and until) they are made active (again). Dependencies are recorded between goals: the goals are stored in a

directed acyclic graph, where an arc joins one goal to another if the former depends on the latter. At the start of an

interactive session, only one state is on the state stack, namely the one corresponding to the user’s input.

4

Let us consider an example. Suppose the user enters the system with the goal of proving the associativity of

APPEND:

(verify (equal (append (append x y) z)
(append x (append y z))))

Then the unique state on the state stack contains only one goal, namely the goal whose conclusion is the argument

given to verify above and whose hypothesis list is empty. Now various commands may be given to create new

states by modifying this goal, possibly introducing subgoals in the process. The idea is that when invoking a proof

command, the goal follows from its modified version together with the subgoals that are created. Note that all goals

are viewed as (implicitly) universally quantified; for example, the initial goal asserts the equality of the two

APPEND expressions shown above for all values of x, y, and z.

Continuing with this example, notice that the initial goal follows by the Boyer-Moore induction principle from

the following two subgoals, which one might call the "base step" and "induction step" respectively:

(IMPLIES (NOT (LISTP X))
(EQUAL (APPEND (APPEND X Y) Z)

(APPEND X (APPEND Y Z))))

(IMPLIES (AND (LISTP X)
(EQUAL (APPEND (APPEND (CDR X) Y) Z)

(APPEND (CDR X) (APPEND Y Z))))
(EQUAL (APPEND (APPEND X Y) Z)

(APPEND X (APPEND Y Z))))

Now this induction is "dual to" the recursion in the definition of the function APPEND. Hence the following

command may be invoked to generate these subgoals. (This command is in complete analogy to the giving of this

as a hint to the Boyer-Moore PROVE-LEMMA command.)

(induct (append x y))

At any rate, the original goal follows from the two subgoals above (when all goals are viewed as universally

quantified). So, when the above command is executed, a new state is pushed onto the state stack, where the new

state contains two new goals (one for each of the subgoals displayed above). Moreover, since the original goal

follows from these two goals, its conclusion may be replaced by T (true) in the new state. That is, the property

mentioned earlier does indeed hold (and we restate it now for emphasis):

(*) When invoking a proof command, the goal follows from its
modified version together with the subgoals that are created.

Now in fact, a state also has a current goal as well as a pointer to the current subterm of the current goal’s

conclusion. Here is another example of creating a new state to be pushed onto the state stack. Suppose that the

current goal has hypotheses as follows:

5

H1. (LISTP X)
H2. (EQUAL (APPEND (APPEND (CDR X) Y) Z)

(APPEND (CDR X) (APPEND Y Z)))

Also suppose that the conclusion of the current goal is as follows, where the current subterm (cf. first paragraph of

this subsection) has been "highlighted" with asterisks:

(EQUAL (CONS (CAR X)
(*** (APPEND (APPEND (CDR X) Y) Z)

***))
(CONS (CAR X)

(APPEND (CDR X) (APPEND Y Z))))

Now the second hypothesis equates the current subterm with the term (APPEND (CDR X) (APPEND Y Z)),

and we might wish to make a substitution of this new term for the current subterm. It turns out that the command =

does just that. But more precisely, this = command pushes a new state on top of the state stack, where the new state

is obtained from the old state by making the substitution indicated by the second hypothesis (for the current subterm

in the conclusion of the current goal). Unlike the previous example, no new subgoals are generated, and the

modified version of the current goal has a conclusion that is not yet T (true). But again, the key property (*) above

is maintained, since the current version of the goal follows from the modified version (in fact it follows by making

the reverse of the equality substitution that was used).

Suppose instead that the second hypothesis had not been present in the example above. Then a different

version of the = command would be appropriate here, namely (= * (APPEND (CDR X) (APPEND Y Z))

0). (This and other commands are introduced in the example here and in the first appendix, and are explained by

the help facility.) In this case, the substitution would still have been made but also a new subgoal would have been

generated. This new subgoal would have had the same hypotheses as the current goal, but its conclusion would have

been the equality of the current subterm with the term to be substituted for it. Again the key property (*) would be

maintained: the current goal follows from the new version (obtained by substitution) together with the goal stating

the equality of the relevant terms.

The four types of commands: change, help, meta, and macro

Recall that the purpose of an interactive proof session is ultimately to create a state in which every goal has

conclusion equal to T (true). The commands that push new states on top of the state stack, such as the INDUCT

and = commands described in the subsection above, are called change commands. These are the only "official"

commands, in the sense that each PROVE-LEMMA event created upon EXIT from the system will store these

commands in the INSTRUCTIONS hint, as shown in the first subsection above.

6

However, there is a vast difference between the result of an interactive session and the session itself. That is,

even though one’s aim is to arrive at a sequence of change commands which result in all goals having conclusions of

T, one would certainly like helpful support toward achieving that end. The other three types of commands provide

such support.

The help commands display useful information while making no change whatsoever in the state of the system.

Probably the most commonly used help command is P: print the current subterm. Some other commonly used help

commands include PP (like P, but with a more raw syntax), HYPS (print the current goal’s hypotheses),

SHOW-REWRITES (show the rewrite rules which apply to the current subterm), and HELP and HELP-LONG

(print information about the commands); a complete list is given in the final appendix.

The meta commands allow one to manipulate the entire state stack to (potentially) create a new state stack.

3However, the new state stack will still correspond to a sequence of change commands. Probably the most

commonly used meta command is UNDO, which may be used to pop the state stack (i.e. revert to a previous state).

In addition, the previous state stack is stored to that the meta command RESTORE may be used to undo the effect

of an UNDO command. Most of the other meta commands are used to create macro commands, which are the

remaining type of command.

The idea behind macro commands are that they enable the user to extend the system. For example, suppose

that one wants a command which prints the value of an arbitrary Lisp form <exp>. Now the meta command LISP

evaluates an arbitrary Lisp form, so one could simply submit the command (LISP (PRINT <exp>)). But perhaps

the user requires this sort of thing frequently and is tired of typing (LISP (PRINT ...)). Then he can define a macro

command which does just that. In fact, some macro commands are provided in the system that is initially loaded,

including a macro command PRINT. Macro commands are discussed at length in Section 4, including a detailed

description of the top-level evaluation mechanism and how to define macro commands. So we’ll keep the

discussion here short. Even at this stage though it is worth pointing out that the help facility does print information

about the predefined macro commands, so the user can begin using them right away. It is also worth pointing out

that, as the terminology implies, a macro command is actually expanded (textually) into its body, and then the

resulting command is resubmitted. (The resulting command may however also be a macro command, which is in

3In fact, the command creating a state is one of the fields of the state record, so the commands actually exist in the state stack. Actually, a
malicious user could create "invalid" state stacks using e.g. the LISP meta command; however, we claim that the non-malicious user would not
get into this trouble. Moreover, even the malicious user cannot violate soundness, in the sense that we do not consider events to have been
completely checked until they have been run back through the system. Since only change commands may be given as INSTRUCTION hints to
the PROVE-LEMMA events, malicious LISP commands will be ignored when these events are run back through.

7

turn resubmitted, and so on.) So for example, in the example described above where we defined the macro

command (PRINT X) to expand to (LISP (PRINT X)), if the user submits the macro command (PRINT <exp>)

then the top-level interactive loop expands this command into the command (LISP (PRINT X)), which (being a

meta command rather than a macro command) is then executed.

The full story of macro commands is presented in Section 4. That section is however not necessary reading

for the user to be able to use macro commands.

An introduction by way of example

Here is a annotated display of a short interactive session corresponding to the PROVE-LEMMA event shown

above. Comments will be enclosed in curly braces {} and italicized. Other than the initial verify command, user

input is preceded on each line by the prompt "->: "; the rest is printed by the system. Some extra blank lines have

been added for readability.

A slightly more realistic example appears in Appendix 1.

(verify (equal (append (append x y) z)
(append x (append y z))))

->: p {Print the current subterm}

(EQUAL (APPEND (APPEND X Y) Z)
(APPEND X (APPEND Y Z)))

->: (induct (append x y)) {Similar to the Boyer-Moore INDUCT hint}

Creating 2 new subgoals, (MAIN . 1) and (MAIN . 2).

The proof of the current goal, MAIN, has been completed. However, the
following subgoals of MAIN remain to be proved: (MAIN . 1) and (MAIN . 2).
Now proving (MAIN . 1).
{Note: The proof of this goal is "completed" because there’s
nothing left to do except to prove its subgoals.}

->: p {Print the current subterm}

(IMPLIES (AND (LISTP X)
(EQUAL (APPEND (APPEND (CDR X) Y) Z)

(APPEND (CDR X) (APPEND Y Z))))
(EQUAL (APPEND (APPEND X Y) Z)

(APPEND X (APPEND Y Z))))

8

->: hyps {Print the current hypotheses}

*** Active top-level hypotheses:
There are no top-level hypotheses to display.

*** Active governors: {Governors are discussed later}
There are no governors to display.

->: promote {Turn the left side of the implication into top-level hypotheses}

->: hyps {Print the current hypotheses}

*** Active top-level hypotheses:
H1. (LISTP X)
H2. (EQUAL (APPEND (APPEND (CDR X) Y) Z)

(APPEND (CDR X) (APPEND Y Z)))

*** Active governors:
There are no governors to display.

->: p {Print the current subterm}

(EQUAL (APPEND (APPEND X Y) Z)
(APPEND X (APPEND Y Z)))

->: (dive 1 1) {Point to the first argument of the current subterm and
then to that subterm’s first argument}

->: p {Print the current subterm}

(APPEND X Y)

->: pp-top {Print the entire conclusion, highlighting the current subterm}

(EQUAL (APPEND (*** (APPEND X Y) ***) Z)
(APPEND X (APPEND Y Z)))

->: x {Expand the function call in the current subterm, namely in
(APPEND X Y), and simplify the result.}

->: p {Print the current subterm -- Notice that the expansion using the X command
simplified away the IF test in the body of the definition of APPEND.}

(CONS (CAR X) (APPEND (CDR X) Y))

->: pp-top {Print the entire conclusion, highlighting the current subterm}

(EQUAL (APPEND (*** (CONS (CAR X) (APPEND (CDR X) Y))
***)

Z)
(APPEND X (APPEND Y Z)))

->: up {Move up to the enclosing term}

9

->: pp-top {Print the entire conclusion, highlighting the current subterm}

(EQUAL (*** (APPEND (CONS (CAR X) (APPEND (CDR X) Y))
Z)

***)
(APPEND X (APPEND Y Z)))

->: x {Expand the function call in the current subterm and simplify}

->: pp-top {Print the entire conclusion, highlighting the current subterm}

(EQUAL (*** (CONS (CAR X)
(APPEND (APPEND (CDR X) Y) Z))

***)
(APPEND X (APPEND Y Z)))

->: nx {Move to the next argument in the current subterm}

->: pp-top {Print the entire conclusion, highlighting the current subterm}

(EQUAL (CONS (CAR X)
(APPEND (APPEND (CDR X) Y) Z))

(*** (APPEND X (APPEND Y Z)) ***))

->: x {Expand the function call in the current subterm and simplify}

->: pp-top {Print the entire conclusion, highlighting the current subterm}

(EQUAL (CONS (CAR X)
(APPEND (APPEND (CDR X) Y) Z))

(*** (CONS (CAR X)
(APPEND (CDR X) (APPEND Y Z)))

***))

->: top {Move to the top of the goal’s conclusion}

->: hyps {Print the current hypotheses}

*** Active top-level hypotheses:
H1. (LISTP X)
H2. (EQUAL (APPEND (APPEND (CDR X) Y) Z)

(APPEND (CDR X) (APPEND Y Z)))

*** Active governors:
There are no governors to display.

->: p {Print the current subterm}

(EQUAL (CONS (CAR X)
(APPEND (APPEND (CDR X) Y) Z))

(CONS (CAR X)
(APPEND (CDR X) (APPEND Y Z))))

->: (dive 1 2) {Point to the first argument of the current subterm and
then to that subterm’s second argument}

10

->: pp-top {Print the entire conclusion, highlighting the current subterm}

(EQUAL (CONS (CAR X)
(*** (APPEND (APPEND (CDR X) Y) Z)

***))
(CONS (CAR X)

(APPEND (CDR X) (APPEND Y Z))))

->: hyps

*** Active top-level hypotheses:
H1. (LISTP X)
H2. (EQUAL (APPEND (APPEND (CDR X) Y) Z)

(APPEND (CDR X) (APPEND Y Z)))

*** Active governors:
There are no governors to display.

->: = {Make a substitution for the current subterm, using an equality
among the current hypotheses and governors.}

->: p {Print the current subterm}

(APPEND (CDR X) (APPEND Y Z))

->: top

->: p {Print the current subterm}

(EQUAL (CONS (CAR X)
(APPEND (CDR X) (APPEND Y Z)))

(CONS (CAR X)
(APPEND (CDR X) (APPEND Y Z))))

->: s {Simplify}

The current goal, (MAIN . 1), has been proved, and has no dependents.
Now proving (MAIN . 2).

->: p {Print the current subterm}

(IMPLIES (NOT (LISTP X))
(EQUAL (APPEND (APPEND X Y) Z)

(APPEND X (APPEND Y Z))))

->: s {Simplify}

The current goal, (MAIN . 2), has been proved, and has no dependents.

!!*!*!*!*!* All other goals have also been proved! *!*!*!*!*!*!*
You may wish to EXIT -- type (HELP EXIT) for details.

11

->: (exit associativity-of-append (rewrite)) {As described previously}

The indicated goal has been proved. Here is the desired event:

(PROVE-LEMMA ASSOCIATIVITY-OF-APPEND
(REWRITE)
(EQUAL (APPEND (APPEND X Y) Z)

(APPEND X (APPEND Y Z)))
((INSTRUCTIONS (INDUCT (APPEND X Y))

PROMOTE
(DIVE 1 1)
X UP X NX X TOP
(DIVE 1 2)
= TOP S S)))

Do you want to submit this event?
Y (Yes), R (Yes and replay commands), or N (No) ? Yes {User response}
[0.2 0.0 0.0]
ASSOCIATIVITY-OF-APPEND
{The event has been stored in the Boyer-Moore database of events,
i.e. it now shows up in the Lisp variable CHRONOLOGY.}

Remark. The triple of numbers above the event name "ASSOCIATIVITY-OF-APPEND" above is

meaningless when printed as a response to the prompt at the end of an interactive session. However, when the event

is submitted to Lisp (in what we refer to as batch mode), the numbers have the following meaning (which agrees

with the usual meaning). The sum of the second and third numbers is the amount of time spent inside the Theorem

Prover, and the third number alone is that portion of the sum which is spent inside the I/O routines. The first

number is what is left of the total, i.e. the sum of the three numbers is the total time spent on the event. To

summarize, we have three times:

[Miscellaneous_time Proof_time I/O_time(inside Prover)]

SECTION 2: A MORE DETAILED DESCRIPTION OF THE SYSTEM

In this section we present detailed accountings of the notions of goal, state, and state stack that were

introduced in Section 1, together with some related notions. At the same time we also give an overview of the

commands that the user may give; more complete details of the commands may be found by using the help facility,

i.e. by typing (HELP <command > <command > ... <command >), or similarly with HELP-LONG.1 2 n

(Information is also included in the final appendix.) Finally, top-level matters such as creation of

PROVE-LEMMA events and aborting and re-entering an interactive session are dealt with in detail in the final

subsection.

Goals

A goal is a record with the fields discussed below. It is not important for the user to know the names of these

12

fields (or of the fields for the state record to be presented next), but the concepts underlying them are important for

4using the system. It is also important to keep in mind that a goal is viewed as the universal closure of the

implication whose antecedent is the term formed by conjoining the goal’s hypotheses and whose consequent is the

goal’s conclusion (or, of just the conclusion in case there are no hypotheses). Recall though the convention from

[1] that a term <exp> may be used as a formula by identifying it with the negation of [EXP = F].

A goal consists of:
CONC, HYPS, DEPENDS-ON, GOAL-NAME, and ORIG-CONC-AND-HYPS

CONC is called the conclusion of the goal, and is a Boyer-Moore term.

HYPS is called the hypotheses of the goal, or sometimes the top-level hypotheses, and is a list of Boyer-Moore

terms. The hypotheses of the current goal can be found by employing the help command HYPS. But actually --

HYPS is really a list of pairs, where the first element of the pair is a hypothesis and the second element is

either the atom A or the atom H, indicating that the hypothesis is active or hidden (respectively). All of the change

commands are set up so that they "ignore" hidden hypotheses. For example, the S (simplify) command uses only the

active hypotheses in simplifying the current subterm. The change commands HIDE-HYPS and SHOW-HYPS are

used to hide and activate hypotheses, so that one can hide hypotheses temporarily and then bring them back. There

5is also a DROP change command which eliminates hypotheses.

There are several other change commands which modify the HYPS. Here are brief, simplified descriptions;

use the help facility or see the final appendix for more details. The CLAIM command allows one to add additional

hypotheses that follow from the existing (active) hypotheses. The command PROMOTE modifies a current goal

with conclusion (IMPLIES TERM TERM) by replacing its conclusion with TERM while adding TERM to its1 2 2 1

hypotheses. (More accurately, as with all change commands it pushes a new state on the state stack which agrees

with the old state except that the current goal has been modified approximately as indicated.) On the other hand, the

command DEMOTE is (roughly) an inverse to PROMOTE. The CONTRADICT command exchanges a

hypothesis and the conclusion while negating each of them. Finally, USE-GOAL and USE-LEMMA allow one to

add hypotheses that are instances of another goal or of a lemma from the chronology, respectively. In the former

case, it is the original form of the used goal that is actually used; see the description of ORIG-CONC-AND-HYPS

below.

4The universal closure of a formula in first-order logic is obtained by prefixing it with a sequence of all quantifiers of the form (FORALL X)
as X ranges over the free variables of the formula.

5Except one can always return to a previous state with the UNDO command; more on UNDO later.

13

DEPENDS-ON is a list of Lisp objects (S-expressions): the names of the goals that the given goal depends on.

(Intuitively, goal X depends on goal Y if Y is related to X by the transitive closure of the subgoal relation, i.e. Y is a

subgoal of X or a subgoal of a subgoal of X or) The dependents of all the goals are shown with the help

command GOAL-NAMES (or macro command GOALS). Several commands modify the DEPENDS-ON field.

For example, the command USE-GOAL mentioned in the paragraph above will add the used goal’s name to the

DEPENDS-ON field of the current goal. In fact, this command will fail if the current goal’s name is in the

DEPENDS-ON field of the goal which is to be used; we maintain the invariant that the dependency graph has no

cycles, i.e. we avoid circular reasoning. A very useful command that creates a dependency is PUSH, which replaces

6the current subterm <exp> by T (true). In this case, the current goal is further modified by adding the name of a

new goal to its DEPENDS-ON field, where the new goal has the current goal’s active hypotheses and governors as

its (top-level) hypotheses and has <exp> as its conclusion. The INDUCT command creates subgoals as discussed

in the demo in Section 1. Other change commands that create dependents are GENERALIZE, SPLIT, and

sometimes CLAIM, REWRITE, =, and USE-GOAL.

GOAL-NAME is a Lisp object that we call the name of the goal. When the system generates subgoals of a

given goal named <name> it does so by creating new names of the form (<name> . N), where N is a positive

integer. (Exceptions: the commands PUSH and GENERALIZE allow one to specify the new subgoal.)

Finally, ORIG-CONC-AND-HYPS is a list whose first element is the conclusion of the goal at the state where

it first existed and whose other elements are its original hypotheses. By the way, the hypotheses in

ORIG-CONC-AND-HYPS are indeed terms rather than the term-atom pairs found in HYPS.

States

Next, we consider the state record type.

A state consists of:
INSTRUCTION, CURRENT-TERM, GOVERNORS, CURRENT-ADDR-R, GOAL,

OTHER-GOALS, CUMULATIVE-LEMMAS-USED, FREWRITE-DISABLED-RULES,
and ABBREVIATIONS

INSTRUCTION is the change command that created the given state from the previous state. (However,

INSTRUCTION is START for the initial state, i.e. the state created by the call of VERIFY on the term to be

proved.)

6Exception: if <exp> is not known either to be boolean or to be in a position where only propositional equivalence needs to be maintained,
then it is replaced by (IF <exp> <exp> T).

14

The next three fields -- CURRENT-TERM, GOVERNORS, and CURRENT-ADDR-R -- are all based on the

notion of a pointer to a subterm of the current goal’s conclusion. This pointer can be thought of as a list of positive

integers which gives directions for diving in to the conclusion. For example, the address would be (2 3 1) for

the subterm (PLUS X Y) of:

(TIMES (ADD1 X)
(IF (EQUAL X Y)

Y
(SUB1 (PLUS X Y))))

since: we are diving to the second argument of the TIMES term, then the third argument of that IF term, and then

finally the first argument of the SUB1 term. The CURRENT-TERM, usually called the current subterm, is in this

case (PLUS X Y), while the CURRENT-ADDR-R, i.e. current-address-reversed, is (1 3 2). The GOVERNORS

are, roughly speaking, the IF-tests accumulated on the way to diving down to the current subterm. More precisely,

the GOVERNORS is a list of all terms which govern the current subterm, in the sense of the definition of governs on

the top of page 45 of [1]. For example, the GOVERNORS of (PLUS X Y) in the term displayed above is the

one-element list ((NOT (EQUAL X Y))). NOTE: the GOVERNORS are defined only with respect to the

IF-structure of the term. So for example, there are no governors of X in the term (IMPLIES Y X). (There are of

course other ways of using the hypothesis, as discussed in the "Proving Implications" discussion in Section 3.)

Let us discuss the commands which are particularly related to these notions of CURRENT-TERM,

GOVERNORS, and CURRENT-ADDR-R. The commands P and PP both print the current subterm, the difference

being that P introduces some notational conventions for terms with top function symbols among CAR, CDR, CONS,

AND, OR, PLUS, TIMES. So for example, the command P prints the term (PLUS X (PLUS Y Z)) as (PLUS

X Y Z), while PP prints it as is. In other words, the command P prints the current subterm just as the Boyer-

7Moore Theorem Prover would print it, while PP simply prints the term according to its actual structure. Why ever

use PP rather than the (prettier) P? Because the command DIVE may be used to move to a subterm of the current

subterm according to a specified list of addresses (as explained in the example in Section 1), and on a few occasions

it thus helps to see the term displayed in the more "raw" form given by the PP command. Other change commands

besides DIVE which change the current subterm are UP, TOP, NX, and BK, all of which are of course explained by

the help facility (and in the final appendix).

We continue with our description of the fields of a STATE. GOAL is the current goal, in the sense of "goal"

7An exception is that both commands print explicit value terms using the quote notation, which is explained in detail in [4]. So for example,
(LIST ’A ’B) is printed as ’(A B) with both commands.

15

described in the previous subsections (i.e. a record consisting of a CONC, HYPS, DEPENDS-ON, GOAL-NAME, and

ORIG-CONC-AND-HYPS). The user may change the current goal by using the change command

CHANGE-GOAL. Also, when a goal has been completed, i.e. its conclusion is T (true), the system automatically

chooses an uncompleted goal as the current goal (unless of course there are no further goals to prove, in which case

it informs the user of that situation).

OTHER-GOALS is a list of all the goals in the STATE other than the current GOAL together with information

8about the current subterm of each goal.

CUMULATIVE-LEMMAS-USED is a list of atoms to be used when forming the dependencies for a

PROVE-LEMMA event which results from an interactive session. So for example, any function symbol which has

a call expanded by the S (simplify) command will be added to this field in the new state, as will any function symbol

or name of lemma used in a call to the Theorem Prover by the PROVE command (or any of several other

commands).

FREWRITE-DISABLED-RULES is a list of atoms which are names of function symbols or rewrite rules

which are to be ignored by the so-called "fast rewriter", which is called by the S (simplify) and X (expand)

commands. This field is updated when the ENABLE and DISABLE commands are executed.

Finally, ABBREVIATIONS is a list of abbreviations in the following sense. An abbreviation is a pair

consisting of an atom and a term, where the atom begins with the ampersand ‘@’ character. The user interface is set

up so that both printing of terms and (generally) reading of terms in commands is done with respect to this list of

abbreviations. Unabbreviating takes place from the outside in. So, for example, if the abbreviations consist of the

pairs

((@W . (ADD1 X))
(@V . (PLUS (ADD1 X) Y)))

then the term (TIMES Z (PLUS (ADD1 X) Y)) would be printed as (TIMES Z @V) rather than as (TIMES

Z (PLUS @W Y)). Notice that this is true whether that term is printed as part of the current term or as one of the

hypotheses (via the HYPS command). The ADD-ABBREVIATION and REMOVE-ABBREVIATIONS

8More precisely, each member of the list OTHER-GOALS is a list of the form (goal’ current-term’ governors’
current-addr-r’), where each member of this list is of the type that one would expect from its name. The idea here is that when goal’
becomes the current goal, then the other three members of the list will become the current subterm, governors, and current-address-reversed
(respectively).

16

commands modify the ABBREVIATIONS field of the state, or more precisely, they push a new state onto the state

stack which obtained from the previous top state by changing the ABBREVIATIONS field appropriately. The

current abbreviations can be viewed using the help command SHOW-ABBREVIATIONS.

State stacks and other related matters

The next topic for this section is that of the state stack. As we already discussed in Section 1, a stack of states

is maintained -- in fact it is stored in the global Lisp variable STATE-STACK -- such that execution of a change

command pushes a new state on top of this stack. More precisely, when the user submits a change command then

one of two things can happen. If the command is not "allowed", for example if the S (simplify) command fails to

make any changes in the current subterm, then STATE-STACK is unchanged. However, if the command

9"succeeds", then the appropriate new state is pushed on top of the state stack.

UNDO is a meta command which can be used to pop states off the state stack. In this way, abortive

"branches" in an interactive proof effort can be undone. The UNDO and BOOKMARK (see below) commands

interact in that the argument to UNDO can be a bookmark. (As usual, we defer the details to the final appendix or to

the user’s inquiry of the help facility.) Generally, though, the user will give UNDO a numeric argument which

indicates the number of states to be popped. (The default of 1 is used when no arguments to UNDO are given.) The

help command COMMANDS may be used to list the INSTRUCTION fields of the states in STATE-STACK. They

are listed in reverse order in order to aid use of the UNDO command.

On occasion, a user may wish to undo an UNDO command. The meta command RESTORE has been

provided for this purpose. What RESTORE really does is swap the value of STATE-STACK with the value of

another global Lisp variable, OLD-SS. Each time an UNDO command is executed, the variable OLD-SS is set to

the existing value of STATE-STACK while STATE-STACK is in turn reset to be the popped state stack; and that is

why RESTORE will undo an UNDO.

Two change commands push new states on the state stack in particularly trivial ways. The command

COMMENT simply inserts comments: it creates a new state from the previous top state by simply inserting an

appropriate comment into the INSTRUCTION field. The command BOOKMARK is similar in that it simply

creates an instruction of the form (BOOKMARK x) which is understood by the meta command UNDO.

9Actually, there is a third possibility in the current system, namely that an error is caused. Most or all errors are however caused "on purpose".
For example, if the second argument to ADD-ABBREVIATION contains a function symbol that is unknown in the current Boyer-Moore
database, then an error is caused by the Boyer-Moore Lisp function TRANSLATE. In this case the user can return to the top-level interactive loop
simply by submitting the Lisp form (VERIFY).

17

We omit mention of the other commands here, referring the reader once again to the help facility or the final

appendix.

Top-level matters

In this final subsection of Section 2, we discuss carefully the relation between this system and the Boyer-

Moore system. Let us begin by recalling some such matters which have been explained above. To enter the system,

one submits

(verify <term>)

to Lisp. This puts the user into a read-eval-print loop signified by the prompt "->: ", where one can submit the

various proof-checker commands. However, the user may for some reason wish to leave this loop and return to the

top level of Lisp, either by aborting out or by giving the command EXIT. By submitting the form

(verify)

to Lisp, the user will return to the system’s read-eval-print loop (and receive the prompt "->: "), where the global

10state (i.e. STATE-STACK and OLD-SS) is exactly as it was when the system was exited . (VERIFY) also

initializes certain parameters to match the current state of the Theorem Prover’s database. The (VERIFY) feature is

quite useful, for example, in conjunction with calling the Theorem Prover (using the command PROVE, for

example). For, if the Prover goes down a "bad path" one may wish to abort the proof attempt, which will throw the

user back to the top level of Lisp; but using (VERIFY) the user can return to where he was just before submitting

the PROVE command. More generally, aborting during the execution of any change command should result in no

change to the global state (i.e. the state stack), in which case the execution of (VERIFY) will return the user to that

global state. The user can ascertain whether the command has completed, by submitting the help command

COMMANDS; we believe that it is not possible for a change command to complete only partially.

We have already mentioned that a command of the form

(exit <event-name> <lemma-types>)

will let the user create a Boyer-Moore event by simply answering "Y" to the prompt (as illustrated by the example in

the subsection above). Generally this form of the EXIT command will only be used once all the goals have been

proved (i.e. their conclusions have all been reduced to T (true)). However, it is possible to create an event which

records progress made during an interactive session. If there are remaining goals to prove, then upon execution of

the EXIT command displayed above the system will first print a warning and then will print an appropriate event.

10unless, of course, changes were made using SETQ or RPLACA or such evilness in the top level of Lisp!

18

This event will have a conclusion of T (true), and thus the event has no logical content. It does have operational

content, however: the Lisp function RE-ENTER may be used to get back in to the environment recorded by the

exit process above.

For example, suppose that one is proving commutativity of times and has given commands which result in a

state where a goal still remains to be proved. Here is the information which might be printed in such a situation,

upon invocation of the VIEW macro command:

*** Active top-level hypotheses:
H1. (NOT (ZEROP X))

*** Active governors:
There are no governors to display.

The current subterm is:
(EQUAL (PLUS Y (TIMES Y (SUB1 X)))

(TIMES Y X))

At this point, one might choose to exit the interactive loop:

->: (exit times-comm-progress nil)

WARNING: The appropriate goal has not been proved.
The following event notes progress made during this (fresh) session.

(PROVE-LEMMA TIMES-COMM-PROGRESS NIL T
((START-GOAL (EQUAL (TIMES X Y) (TIMES Y X)))
(INSTRUCTIONS (INDUCT 1)

PROVE PROMOTE
(DIVE 1)
X
(DIVE 2)
=
(HIDE-HYPS 2)
TOP)))

Do you want to submit this event?
Y (Yes), R (Yes and replay commands), or N (No) ? Yes
[0.0 0.0 0.0]
TIMES-COMM-PROGRESS

Now one might prove a lemma which can be used to finish the proof of the goal displayed above:

(prove-lemma times-add1 (rewrite)
(equal (times x (add1 y))

(plus x (times x y))))

Finally, one can re-enter the previously recorded interactive environment. This is done by supplying RE-ENTER

with the name of the interactive event displayed above:

(re-enter times-comm-progress)

19

At this point the user will see the prompt "->: " and can proceed with the interactive proof. It turns out that the

single command PROVE finishes the proof. After execution of this PROVE command the user can exit:

->: (exit times-comm (rewrite))

The indicated goal has been proved. Here is the desired event:

(PROVE-LEMMA TIMES-COMM
(REWRITE)
(EQUAL (TIMES X Y) (TIMES Y X))
((PREVIOUS-EVENT TIMES-COMM-PROGRESS)
(INSTRUCTIONS PROVE)))

Do you want to submit this event?
Y (Yes), R (Yes and replay commands), or N (No) ? Yes
[0.1 0.0 0.0]
TIMES-COMM

The user doesn’t have to understand the meaning of the hints above, since the system prints this event and the user

need only put it in his event file (or retrieve it using the Theorem Prover’s Lisp function PPE, e.g. (PPE

’TIMES-COMM)). Actually, though, the hints mean what they say: the PREVIOUS EVENT from which the

proof was continued is called TIMES-COMM-PROGRESS, and the only instruction needed to complete the proof

was the single instruction PROVE.

Now in fact, the user had at least one other option in the way the proof was managed above. Instead of

leaving the system the first time with the command (EXIT TIMES-COMM-PROGRESS NIL), the user could

have simply typed EXIT (or aborted). Then no event would be stored in the Theorem Prover’s database. The user

could then submit the lemma TIMES-ADD1 as shown above. Finally, the re-entry mechanism could have been used

that was shown earlier: one simply executes (VERIFY). Then one would re-enter the interactive system at the

same state in which it was left, and could give the final PROVE command and then submit (EXIT

TIMES-COMM (REWRITE)) to conclude the proof. There is a danger with this approach. Imagine re-playing

the events created in this manner. Since the lemma TIMES-ADD1 would precede TIMES-COMM, the

TIMES-ADD1 rewrite rule would be available for calls to the Theorem Prover that take place during the replay of

the proof of TIMES-COMM. This approach could (in rare cases) cause the replay to fail, since calls to the prover

which precede the place where re-entry took place were not originally made with TIMES-ADD1 present. Probably

such failures are rare, and the user can of course check the replayability by answering "R" to the exit prompt instead

of "Y". Thus, it should not often be necessary to use the premature exit feature described in the previous paragraph.

There is also a mechanism for storing a goal other than the main (i.e. original) goal, though we seriously

doubt whether anyone will use this feature. Submit (HELP-LONG EXIT) for instructions regarding the use of this

mechanism.

20

SECTION 3: HELPFUL TIPS

When I sit down to use the Theorem Prover and am ready to prove a lemma, I generally see first if it can be

proved automatically (possibly with appropriate hints). If the first few seconds either give virtually no output or

give output that’s discouraging, I’m likely to decide then to use the interactive system by submitting (VERIFY

<lemma to be proved>). Sometimes I’ll start with an INDUCT command and then try PROVE on each of the

goals thus created. Often the base case(s) will present no problem (using PROVE or even S). Then sometimes the

inductive step(s) can be proved by opening up various function calls using X, X-DUMB, or S-PROP and then

messing around. Occasionally this approach reveals that one or more rewrite rules are really called for, in which

case I may exit the interactive system, prove some rewrite rules, and then go back in with (VERIFY). Occasionally

the proof can actually now be done automatically in the presence of these rules.

Some people may wish to use the interactive system only as a tool for finding automatic proofs. The strategy

outlined above can be used to test induction strategies. That is, suppose one thinks that a theorem should be true by

induction according to (foo x y z). One might invoke VERIFY and then give the command (INDUCT (FOO

X Y Z)). By using CHANGE-GOAL repeatedly together with the printing command P, one can look at all the

goals and decide if they are all true. Once convinced that they are all true, the user might then try simplifying or

proving each of them, as described above -- or one might choose to focus on a particularly worrisome inductive step.

Here are some other random observations.

The Syntax of Commands

There is a general rule which can help the user remember whether a command expects an arbitrary number of

arguments or a single list of arguments. Macro commands always expect a fixed number of arguments, as in

(USE ((APPEND-ASSOC (X A) (Y B)) (TIMES-0))) .

Primitive commands, however, expect a fixed number of arguments unless all arguments are of the same "type".

For example, we have

(DIVE 2 3 1)

rather than (DIVE (2 3 1)), and

(PROVE (DISABLE TIMES APPEND) (INDUCT (PLUS X Y)))

rather than (PROVE (DISABLE TIMES APPEND) (INDUCT (PLUS X Y))), since PROVE expects a list all of

whose members are hints. Compare though with

21

(GENERALIZE (((PLUS X Y) A)) MAIN-SUBGOAL)

which has two arguments, namely a list of term-variable pairs and a new goal name. Now in fact the new goal name

is optional; however, for consistency one still would use (GENERALIZE (((PLUS X Y) A))) rather than

(GENERALIZE ((PLUS X Y) A)).

Of course, the help facility is the final authority on the syntax of commands. However, this subsection is

intended to save the user some time in some cases. One final note on this subject: the meta command BIND is an

exception to the rule, since it takes an arbitrary number of arguments but the first is of a different type. We did this

to make BIND have a syntax similar to Lisp’s LET.

Brief Introduction to Several Useful Macro Commands

More detailed descriptions of these commands may of course be obtained by using the help facility.

The command H is like HELP except that it clears the screen first.

The command VIEW (equivalently, TH) is very handy, as it shows the hypotheses, governors, and current

subterm after clearing the screen. The command VIEW-TOP is similar: it shows the entire conclusion instead of

just the current subterm, and it highlights the current subterm.

The command TAUT checks to see whether the current goal is essentially a tautology. (The primitive

command SPLIT can also be used for this purpose, though unlike TAUT it does not expand ZEROP and NLISTP.)

The command GOALS is like GOAL-NAMES but hides certain information which is thought to be mostly

useless.

The command ELIM is used to perform elimination. For example, if one has a goal in which (SUB1 X)

occurs, one may wish to use the ELIM to eliminate X in favor of (ADD1 Z) (for some variable Z).

The command PRINT may be used to print the value of an arbitrary Lisp form.

The command THEN applies a given command and then applies another command to each of the new

subgoals. For example, suppose that you wish to REWRITE within the consequent of an implication. Try (THEN

22

REWRITE TAUT), which is best said in English as "Rewrite then Taut". This will cause REWRITE to be

applied, and then TAUT will be applied to each new subgoal. Those subgoals which are trivial will be proved using

TAUT, leaving you only with the "real" new goals. A more common use of THEN might be for calling the

Theorem Prover on each subgoal created by REWRITE (or any other command that creates subgoals). The syntax

would be (THEN REWRITE PROVE+). But in fact, THEN is allowed one argument with the second defaulting

to PROVE+, and hence (THEN REWRITE) is acceptable syntax.

The command INTRO-APPLY$ may be of interest to those who use the "second-order" function APPLY$ on

the left side of rewrite rules. For, one may then wish to introduct an APPLY$ into the current subterm so that such

rules will be applicable.

The commands HYP and WRAP are explained in Section 4. Finally, the commands CLAIM+, PROVE+,

and =+ are described in the following subsection, while S* is discussed in the one after that.

Calling the Theorem Prover

The change commands which may call the Theorem Prover are CLAIM, PROVE, and =. In each of these

cases, the Prover is called with a context that ignores the interactive session, i.e. the same context that existed at the

start of the session. In particular, and ENABLE and DISABLE commands given during that session are irrelevant.

Often, though, the user would expect that such commands would in fact be respected by the Prover. For that

purpose we have provided the macro commands CLAIM+, PROVE+, and =+, which do respect the context

provided during the interactive session. The user may wish to use these on any non-trivial calls to the Prover.

Simplification: S, S-PROP, and S*

When one wants to simplify the current subterm, each of these three commands can perhaps be used -- but

which is appropriate? S* is a macro command which alternates between S and S-PROP, and is hence the safest to

use if one wants to be sure that every "fast" simplification possible is made. However, in most cases either S or

S-PROP is in fact the preferable command -- but which one? Both commands perform propositional simplification,

eliminating the propositional functions AND, OR, IMPLIES, and NOT in favor of IF (unless these are disabled or

some arguments are given to S-PROP). However, S goes further in that it expands all nonrecursive function

symbols (except the disabled ones) and uses the so-called fast rewrite rules -- use (HELP-LONG S) for details

about this. On the other hand, while S-PROP is not as powerful in that sense, it has the advantage that it normalizes

expressions in the sense that IF is pushed to the outside. To be precise, after applying S-PROP it will be the case

that for every proper subterm of the current subterm which has the form (IF x y z), it is in fact the second or

23

third argument (not the test) of a term of that form. This movement of IF-expression to the outside is often quite

helpful. For example, consider the term:

(EQUAL (FIX X) (IF (ZEROP X) 0 X))

To prove this term, one might give the command S; but this only results in the term

(EQUAL (IF (NUMBERP X) X 0)
(IF (EQUAL X 0)

0
(IF (NUMBERP X) X 0)))

which however can then be proved with S-PROP. If instead S-PROP is done first, one obtains the simpler term

(IF (ZEROP X)
(EQUAL (FIX X) 0)
(EQUAL (FIX X) X))

11which in fact can be proved using S.

There are times when one wants to expand all calls of one or more function symbols without having to move

to the individual relevant subterms first. In this case the command S-PROP with arguments (as explained by the

HELP-LONG command) is useful. Finally, use (S-PROP NIL) when all you want to do is to normalize

IF-expressions.

Case Splitting

A common strategy in all sorts of proof methodologies is the splitting of a goal into cases. Usually, one will

probably want to do this with (CLAIM <term> 0), where <term> is the term on which one want to case

(according to whether or not it is F) and the argument 0 indicates that the theorem-prover should not attempt to

prove <term>. The current goal will then have <term> as an additional hypothesis, but a new goal will be

created which is identical to the current goal except that instead (NOT <term>) is added as a hypothesis.

Moreover, the current goal now depends on the new goal (which in turn has no dependents). Other case splitting

methods include using the macro command CASE (use the help facility for a specification) and, if <term> is an

equality to be used for substitution, a version of the = command.

Proving Implications

There are at least two basic approaches to proving terms of the form (IMPLIES <hyp> <conc>). The

preferability of one or the other approach may well be mainly a matter of taste. One approach is to begin with the

11In fact, S* and PROVE both prove the original goal; this example was chosen merely to illustrate the differences between S and S-PROP.

24

command PROMOTE, which adds <hyp> to the hypotheses (after flattening its AND structure, if it is an AND

expression). The other approach is to invoke S or S-PROP or S*, which will create a (possibly rather large) IF tree

and then DIVE, which when given no arguments will put you at a non-T branch of the IF-tree (if there is one).

Often the two approaches are equivalent except that the second approach makes the assumptions governors rather

than top-level hypotheses. I suppose that the first approach has the advantage of keeping the hypotheses out of the

way (at the top level) and eliminating the need for DIVE, while the second approach has the advantage of allowing

you to do simplification in the assumptions without doing the contortions involving DEMOTE that are ilustrated in

the subsection "Simplifying Hypotheses" below. Usually I prefer the former approach, but again, that’s probably

just a matter of taste.

However, if there are more than a couple of cases implicit (or explicit) in the implication, I recommend the

use of SPLIT. This command will create a goal for each case generated, roughly speaking, by OR-terms in the

hypotheses and AND-terms in the conclusion (and by other appropriate propositional functions).

Substitution

A lot of the work in an interactive proof may involve substituting equals for equals. Often this is

accomplished by simplification or by expanding function calls (S, S-PROP, X, X-DUMB). However, when the

underlying equality seems fairly straightforward but requires some proof, it may be worthwhile using the =

command. For example, suppose that the current term has the form (IF <test> <branch1> <branch2>),

where the user sees that <test> equals T. Although one might be tempted to expand the outermost function call of

<test> and to do various other low-level operations, there may be an easier way: simply submit the command

(DIVE 1) (or equivalently, just 1) in order to make <test> the current term, and then submit the command (= T).

12If the Theorem Prover is able to prove this equality, then the substitution will be made. Then of course one can

submit UP followed by S or S-PROP to replace (IF T <branch1> <branch2>) with simply <branch1>

(or a simplified version thereof).

Managing Goals

Suppose that one is trying to prove a rather complicated goal. It may be that this amounts to proving that

various subterms of the conclusion are equal to T. Perhaps one or two of these subterms seem(s) difficult to

simplify. Then it may be helpful for bookkeeping purposes to use the PUSH command. Roughly speaking, the

PUSH command replaces the current subterm by T and creates a new goal to prove the current subterm (under the

current active hypotheses and governors). In this manner one can prove the goal that was under consideration

12If not, then the second paragraph below suggests a different form of the = command, which here would be: (= * T 0).

25

without getting lost in details, and then go prove the goals that were PUSHed in the process. Of course, one may

further PUSH subgoals of the new goals, and so on.

A similar modularization is accomplished by using versions of CLAIM and = which allow one to postpone

proof attempts; see the help facility. The REWRITE command is also useful for proof control, and in particular for

controlling backward chaining via application of conditional rewrite rules.

When a "significant" goal is proved by pushing difficult subgoals, you may wish to insert a BOOKMARK

instruction to make it easy to undo back to the point at which the difficult goal’s proof was begun (in case the proofs

of the messy subgoals get gnarled up). One can also insert comments using the COMMENT command.

Exiting Temporarily

Suppose that you wish to exit an interactive session without creating an event but with a record of what you

have done. One way to do this is to submit the command (EXIT <any name> NIL) and then answer N to the query

about adding an event. You can then grab this "event" from the dribble-buffer and run it later, followed by (UBT)

13(so that you don’t actually create an event) and then (VERIFY) (in order to resume the proof). Alternatively, you

can just enter the interactive system later with (VERIFY <term>) and submit (PLAY <command > ...1

<command >), where these are the change commands that were put in the INSTRUCTIONS hint.k

What should you do if you exit the interactive system, prove some rewrite lemmas, and then go back in where

you were? (By the way, this is often an excellent approach when you are confronted with a goal which follows from

a relatively simple and general fact.) The issue here is that if the interactive session had involved calls to the

theorem-prover, those calls may not work later in the batch re-play of events because of the presence of these

rewrite rules. As mentioned in Section 2, one can create events noting the progress of an interactive session. While

that solves this problem, it probably isn’t necessary in a majority of cases: usually the added rewrite rules won’t

cause a problem. If you suspect that there isn’t going to be a problem but want to make sure, the command

REPLAY will play back all the instructions and let you know if one or more of them didn’t work. Alternatively,

you can finish the interactive proof and then answer R ("replay") to the query regarding adding the event.

Bringing in Useful Information

Suppose that you are working on a goal and you need a certain fact. How can you make that fact explicit?

13An obscure but sometimes helpful fact is that the global Lisp variable EV0 stores the most recent PROVE-LEMMA expression printed in
response to the user’s answer to the query caused by the EXIT command.

26

There are a few ways. One is to CLAIM it, i.e. submit (CLAIM <fact>). This will invoke the theorem-prover. If

the proof fails then a new goal will be generated as though you had submitted (CLAIM <fact> 0) (which was

alluded to above; it avoids calling the Prover); or, you may wish (or need) to submit (CLAIM <fact> 0) anyhow in

this case. Then later, when considering the new goal, you can invoke the CONTRADICT command to move the

<fact> to the conclusion, then (optionally) hide the resulting new hypothesis, and finally proceed from there to

prove <fact> from the other (original) hypotheses.

If the fact is an instance of a lemma in the chronology, you may use the command USE-LEMMA or the

macro command USE. On the other hand, if the fact is an instance of the original form of another goal, you may use

USE-GOAL. All of these are of course described in the help facility.

Simplifying Hypotheses

Suppose that during the course of an interactive proof, one has a situation in which one wants to simplify (or

make any sort of substitution in) a hypothesis. Now this system is designed for working on the conclusion of the

current goal, and especially on the current subterm of that conclusion; so what can one do? One approach is to use

(CLAIM <new_version> 0) to add the "new version" of the hypothesis to the hypothesis list, and then prove the

correctness of this operation later (by proving the resulting subgoal). Here we describe another approach.

A simple approach is to shift a hypothesis from the hypothesis list into the conclusion, by making it the

antecedent for an implication concluding with the current conclusion; one then may manipulate the hypothesis, and

then move it back. (In fact there is a macro command HYP which uses CONTRADICT for this purpose; it is

described in Section 4. However, let us proceed with a manual approach based on DEMOTE.) Here’s an example.

->: view

*** Active top-level hypotheses:
H1. (NUMBERP X)
H2. (EQUAL (PLUS 0 X) Y)

*** Active governors:
There are no governors to display.

The current subterm is:
<some term>

->: (demote 2)

27

->: view

*** Active top-level hypotheses:
H1. (NUMBERP X)

*** Active governors:
There are no governors to display.

The current subterm is:
(IMPLIES (EQUAL (PLUS 0 X) Y)

<some term>)

->: 1

->: p
(EQUAL (PLUS 0 X) Y)

->: s

->: p
(EQUAL X Y)

->: top

->: view

*** Active top-level hypotheses:
H1. (NUMBERP X)

*** Active governors:
There are no governors to display.

The current subterm is:
(IMPLIES (EQUAL X Y) <some term>)

->: promote

->: view

*** Active top-level hypotheses:
H1. (NUMBERP X)
H2. (EQUAL Y Z)

*** Active governors:
There are no governors to display.

The current subterm is:
<some term>

So now the hypothesis (EQUAL (PLUS 0 X) Y) has been replaced by the simpler hypothesis (EQUAL X

Y), and we can proceed with the proof however we choose to.

28

Pesky Abbreviations

As things stand currently, the functions LEQ, GREATERP, and GEQ are immediately expanded upon

translation. This means that they will never be seen except as user input. In fact, they won’t even appear in events

which have been created by EXIT, even if you originally entered VERIFY with a term having such function

symbols in it. Now of course you can edit this event before making it part of your events file so that the original

term is the body of the event, and the proof should replay in batch mode just fine, but admittedly that’s a nuisance.

Of course, you can just leave the event so that your pretty (LEQ A B) has been replaced by (IF (LESSP B A)

F T) in the body of your lemma, and that will work too. Sorry about the pair of undesirable choices.

SECTION 4: MACRO COMMANDS AND THE TOP LEVEL LOOP

The system described above may well be adequate for many users’ needs. However, the system is in fact

extensible by way of a facility called macro commands. The idea behind these commands is that a single macro

command generates zero or more "real" commands, i.e. change, help, and meta commands. Several macro

commands are currently provided by the system, and a mechanism exists for adding additional macro commands

and even for redefining the given ones. The soundness of the system is not affected by macro commands, in the

following sense: macro commands are ignored by the PROVE-LEMMA command. That is, a user may give

macro commands freely during an interactive session, but in order to be secure in the correctness of the proofs

constructed, the resulting events should be run through once more. The INSTRUCTIONS hints to

PROVE-LEMMA events should contain no macro commands, since these are all "expanded out" during the

interactive proof session. But even if a malicious user tries to sneak some such commands in to the

INSTRUCTIONS, no harm will arise: the system will simply complain, since only change commands are

recognized by PROVE-LEMMA.

This section is organized into three subsections. We begin by giving an introduction to the use of macro

commands by describing informally how to use some of the predefined macro commands. The second subsection

gives a detailed definition of the execution of the top-level loop. We conclude with examples which illustrate the

writing of macro commands.

How to use macro commands: some examples

Suppose that you wish to call the Theorem Prover with the PROVE command, but you have already disabled

or enabled various functions and rewrite rules during the current interactive session (with the DISABLE and

ENABLE commands). Perhaps you want to call the Prover with the corresponding "environment". For example,

perhaps you have begun the current session with the commands (DISABLE TIMES-COMMUTATIVITY) and

29

(ENABLE APPEND), and you are ready to call the Prover. But suppose for some reason that you want

TIMES-COMMUTATIVITY disabled and APPEND enabled (even though they are presumably the other way around,

say, in the global Theorem Prover state). Now one way to do this, as explained by invoking (HELP PROVE), is to

submit the command

(PROVE (DISABLE TIMES-COMMUTATIVITY) (ENABLE APPEND)) .

However, there is a better way. The macro command PROVE+ has been defined to accomplish the same effect.

Here is the documentation provided by submitting (HELP PROVE+):

->: (help prove+)
Macro Command [Use HELP-LONG to see the definition]
(PROVE+ &OPTIONAL HINTS)

Call the theorem prover with hints that match the local
disable-enable environment in the current interactive
session, as updated (optionally) by the HINTS argument.
Notice that this command has the same syntax as PROVE,
except that the hints are put into a list; compare
(PROVE (DISABLE PLUS TIMES)) versus
(PROVE+ ((DISABLE PLUS TIMES))).

Thus, in the example above, the command PROVE+ will actually generate the command displayed above, namely

(PROVE (DISABLE TIMES-COMMUTATIVITY) (ENABLE APPEND)). This PROVE command is then the

one that is actually executed by the system: if the proof is successful, a new state will be pushed onto the state stack

and its INSTRUCTION field will be the PROVE command shown above, while if the proof is not successful, there

will be no change in the state stack.

The information provided above by (HELP PROVE+) also mentions an optional argument HINTS, which

may be provided using essentially the same syntax as for the PROVE command. Consider then the example above

but where we instead give the command

(PROVE+ ((DISABLE PLUS DIFFERENCE)
(USE (PLUS (X A)))))

In this case, the command generated would be

(PROVE (USE (PLUS (X A)))
(DISABLE TIMES-COMMUTATIVITY PLUS DIFFERENCE)
(ENABLE APPEND))

and this would be the one that is actually executed.

Let us consider another example. Suppose that hypothesis number 2 is of the form (IF T X Y), which one

30

would like to simplify to X. Now the command S only works on the conclusion; hence one approach is to move that

hypothesis into the conclusion somehow, then simplify it there, and then move it back into its former position. The

following sequence of commands accomplishes this task. (We provide some comments in italics.)

(CONTRADICT 2) {Swap <hyp> hypothesis number 2, with the conclusion}
(DIVE 1) {Dive to the first argument of (NOT <hyp>)}
S {Simplify}
TOP {Move to the top of the conclusion}
(CONTRADICT 2) {Swap back the second hypothesis with the conclusion}

As this sequence of commands is really independent of the contents of the second hypothesis and the

14conclusion, one can imagine a macro command that generates this sequence of commands. Such a command is in

fact a predefined macro command called HYP. Here’s its description, as provided by the help facility:

->: (help hyp)
Macro Command [Use HELP-LONG to see the definition]
(HYP N INSTR)

Applies instruction INSTR to hypothesis number N.
If this "fails", then there is no change made to
the state stack, the command "fails", and a
message to that effect is printed; otherwise it
"succeeds".

We’ll talk about "success" and "failure" in the next subsection; roughly, the submission of any command (whether

change, meta, help, or macro) either "succeeds" or "fails" (we always put these notions in double-quotes to

emphasize that they are technical terms). In the case of change commands, "success" means creation of a new state

to push on top of the state stack, while for the other commands, the HELP-LONG facility gives the definitions of

"success". At any rate, the sequence of commands given above (for simplifying hypothesis number 2) is in fact

generated by the invocation of: (HYP 2 S).

Now suppose that one gives the command (HYP 2 S) in the example above, but then decides that one wants to

undo this command. The command UNDO is inadequate, since in fact five actual change commands have been

given, as can be seen by giving the command COMMANDS. But it’s not always convenient to look through the

commands, and that doesn’t always make it clear just how far back one wants to undo. For this purpose it is handy

to use the predefined macro command WRAP to put bookmarks around the use of a macro command when that

command generates several change commands. Here is the information provided by the help facility:

14Actually, a macro command generates a single command, but there are several meta commands to use as sequencers. For example, the above
sequence could be put in the single command (DO-ALL (CONTRADICT 2) (DIVE 1) S TOP (CONTRADICT 2)).

31

->: (help wrap)
Macro Command [Use HELP-LONG to see the definition]
(WRAP INSTR)

The difference between (WRAP instr) and instr is
that in case of success, the former will insert
two bookmarks: (BOOKMARK (BEGIN name)) before the
first new primitive command put on the state
stack, and (BOOKMARK (END name)) after the last.
Success is the same for both, however.

If one submits the command (WRAP (HYP 2 S)) in place of (HYP 2 S) in the example above, one obtains the same

five change commands together with (BOOKMARK (BEGIN HYP)) preceding these five and (BOOKMARK

(END HYP)) following these five. Now if one wants to undo these commands, one can submit either (UNDO 7) or

(and here’s the point of using WRAP) (UNDO (BEGIN HYP)). One final note regarding this use of UNDO,

however: when using this (bookmark) form of UNDO, the undoing only goes back up to (and not including) the

given bookmark; hence the atomic command UNDO still needs to be given. But have no fear -- there is also a

predefined macro command UNDO+ which undoes up to and including a specified bookmark!

The examples above are intended to give enough of an introduction to the use of macro commands so that the

user can use the predefined macro commands with ease. One other useful thing to know is that the global Lisp

variable BASIC-MACRO-COMMAND-NAMES stores a list of names of particularly useful macro commands,

essentially the ones discussed in Section 3 above. (The user can of course use Lisp to set this variable to anything he

chooses.) This variable is used by the help facility: HELP and H do not mention any macro commands other than

these. Several of these are very useful right from the start (especially H and VIEW).

The top-level loop

Roughly speaking, the top-level loop has the following operational-style semantics. First, the instruction is

checked to see if it is a call of a macro command, and if so, it is repeatedly expanded until the result is no longer a

call of a macro command. Now the resulting instruction is executed. If the resulting command is a meta command

then its execution may in fact result in the execution of any number of other commands (of any kinds); this

sequencing is controlled by notions of "success" and "failure". Let us now be more precise.

It is convenient to refer to the main Lisp procedures by their names. The key ones here are called

15INTERACTIVE-SINGLE-STEP and READ-INSTR. Here are their specifications. The discussion below can

also be viewed as documentation for the code.

15We omit details concerning the "identification" of atomic instructions with instructions that are lists of length 1, e.g. <cmd> vs. (<cmd>).

32

READ-INSTR takes a (potential) instruction, which might be a call of a macro command, and returns either a

call of a primitive (non-macro) command or else returns NIL (indicating that the instruction did not expand into a

call of a primitive command). In the latter case, explanatory comments are printed to the screen.

More precisely, READ-INSTR is defined as follows. First, for each argument <arg > of the potentiali

instruction (<cmd> <arg > ... <arg >), if that argument has the form (! x) then replace it by the result of1 n

evaluating x in Lisp. More precisely, there is a global variable called COMMAND-BINDINGS which contains a list

16of pairs each of the form (variable . S-expression), and the form x is evaluated in this environment.

Even in the case that READ-INSTR is applied recursively (for macro commands, as explained below), arguments of

the form (! x) are always evaluated in the sense above. In a nutshell: READ-INSTR causes evaluation of the "(!

x)" arguments of the given instruction as explained above, and then returns an instruction as follows:

• If the instruction is a positive integer N, return (DIVE N).

• If the instruction is a call of a macro command but the arity of the macro command does not match the
number of arguments, cause an error.

• If the instruction is a call of a macro command in which the arity does match the number of arguments,
then textually substitute the arguments for the formals into the body of the macro command’s
definition. (Optional arguments which are omitted are treated as NIL for this purpose. This
substitution procedure will be discussed in more detail in the next subsection.) Then, recursively
apply READ-INSTR to the result.

• If the instruction is a call of a primitive command (either a change, meta, help or exit command), then
return the instruction.

• Otherwise, return NIL (and print to the screen that the given instruction is not a valid instruction).

INTERACTIVE-SINGLE-STEP is evaluated for side-effect, especially to the STATE-STACK. It takes an

arbitrary S-expression and immediately applies READ-INSTR to that form. If the result of READ-INSTR is NIL,

then nothing further happens (and READ-INSTR is responsible for printing helpful information to the screen).

Otherwise, READ-INSTR returns a form which is a call of a legitimate command (and not a macro command).

What happens next depends on the kind of command.

• If the instruction is a call of a change command, then the current state is fed to an appropriate function,
named CHANGE-STATE-WITH-<command_name>. That function either returns a new state,
which is then pushed on top of the STATE-STACK, or else returns NIL (in which case the state stack
is not changed).

• If the instruction is a call of a help command, then an appropriate function (named
PRINT-HELP-WITH-<command_name>) is called to print information to the screen.

• If the instruction is a call of a meta command, then the function
CHANGE-STATE-STACK-WITH-<command_name> is called. That function may itself call
INTERACTIVE-SINGLE-STEP. For example, the meta command DO-ALL invokes the function

16The meta command BIND modifies this environment.

33

CHANGE-STATE-STACK-WITH-DO-ALL, which in turn sequentially calls
INTERACTIVE-SINGLE-STEP on each instruction in its list of arguments.

• If the instruction is EXIT, the top-level loop is exited.

• If the instruction is (EXIT <name> <lemma-types>) (or a three-argument version), the top-level loop
is exited in the manner explained in the example in Section 1.

• Otherwise, the instruction is not legitimate, and there is no change in the STATE-STACK.

An important consideration was left out of the specifications above. Each call of

INTERACTIVE-SINGLE-STEP returns a value which we think of as denoting "success" or "failure", according to

whether that value is non-NIL or is NIL (respectively). For change commands, "success" occurs (i.e. a non-NIL

value is returned) if and only if a new state is indeed pushed on to the state stack. (The user can tell if this is the

case by checking, using the instruction COMMANDS, whether or not the new instruction was stored.) There is no

specification of "success" and "failure" for help commands. For calls of meta and macro commands, the "success"

17or "failure" depends on the particular command (as specified by the HELP-LONG facility). Various meta and

macro commands cause multiple calls to INTERACTIVE-SINGLE-STEP which are however guarded by the

"success" or "failure" of subcalls. Another important use of the "success" notion is made by the meta command

PROTECT: (PROTECT <instruction>) runs the given instruction, but reverts the system to the global state

existing at call time in case that instruction fails (by restoring the values of the Lisp variables STATE-STACK and

OLD-SS).

Defining macro commands

In this section we present the syntax for defining macro commands. In the process, we review carefully the

evaluation mechanism presented in the immediately preceding subsection above. The ideas are presented with some

examples.

The syntax for defining macro commands is:

(DEFINSTR <command_name> <formals> <body> <documentation>)

where <documentation> is optional. The arguments to DEFINSTR may be described briefly as follows:

• <command_name> is the name that one wishes to assign to the command (e.g. PROVE+). It may
not be the name of a primitive (i.e. change, meta, help, or exit) command.

• <formals> is the list of arguments to the macro command. The syntax should be a list of distinct
symbols, one of which may be the symbol &OPTIONAL. We define the upper arity of the command
to be the number of symbols in <formals> other than the (optional) symbol &OPTIONAL, while the
lower arity is the number of symbols in <formals> which occur strictly before &OPTIONAL (unless
&OPTIONAL is not in the list, in which case the lower arity is defined to equal the upper arity).

17As "success" and "failure" are considered "advanced" notions, the long help must be used to get such information about meta commands.

34

• <body> is an arbitrary S-expression. However, it should be an S-expression which makes sense
when formal parameters are textually replaced by actual parameters (as explained in the specification
of READ-INSTR in the subsection above).

• <documentation> is a list of atoms to be printed by the help facility (both HELP and
HELP-LONG). This printing is done with code written by Boyer and Moore, and certain conventions
apply. The atom CR denotes a carriage return (with line feed), while |#| denotes a tab. Lower-case
words and punctuation need to be enclosed in vertical bars. Finally, this printing routine is intelligent
about line length and punctuation. The examples below will make all of this clearer.

The most recent definition of <command_name> may be removed by invoking

(UNDEFINSTR <command_name>)

Let us consider some examples. We begin with the definition of a simple macro command which changes

goals except when its argument is already the current goal. Explanation follows.

(DEFINSTR MAYBE-CHANGE-GOAL (NAME)
(IF (EQ (QUOTE NAME) (GOAL-NAME))

SKIP
(CHANGE-GOAL NAME))

(|Change| |to| |the| |goal| |with| |the| |indicated|
|name| |,| |unless| |we| |are| |already|
|at| |that| |goal| |.|))

Here, IF and SKIP are themselves macro commands, with the following documentation:

• (IF TEST INSTR1 INSTR2): Evaluate the test in the environment obtained from COMMAND-
BINDINGS. Execute INSTR1 if the result is not NIL and INSTR2 otherwise.

• SKIP: Does nothing, but "succeeds".

Suppose that we are at the prompt "->: ", and we submit the instruction (MAYBE-CHANGE-GOAL (MAIN . 1)).

Let us trace through the calls of INTERACTIVE-SINGLE-STEP and READ-INSTR, assuming that the current

goal’s name is not (MAIN . 1). Notice that here (GOAL-NAME) is the call of a Lisp function GOAL-NAME

which returns the GOAL-NAME of the current GOAL of the STATE on top of the state stack (cf. Section 2). (All

corresponding functions returning the fields of the current state and goal are also defined.) Also important is the

18definition of the macro command IF. (We omit the documentation here, as it’s shown above.)

(DEFINSTR IF (TEST INSTR1 INSTR2)
(BIND ((INSTR

(IF TEST
(QUOTE INSTR1)
(QUOTE INSTR2))))

(DO-ALL (! INSTR))))

18The reason for (DO-ALL (! INSTR)) rather than simply (! INSTR) is the semantics of BIND. The extension of the environment which is
given in the first argument of BIND is only available inside calls of its arguments. Unfortunately, there are several somewhat obscure places like
this to make errors. Perhaps someday we will improve the macro command facility.

35

Now we are ready for the trace. Since anyone reading this far had better be familiar with Lisp, we make no apology

for presenting the trace in a traditional Lisp format. Comments are inserted in curly braces in italics, {<comment>}.

1 Enter INTERACTIVE-SINGLE-STEP (MAYBE-CHANGE-GOAL (MAIN . 1))

| 1 Enter READ-INSTR (MAYBE-CHANGE-GOAL (MAIN . 1))

| 2 Enter READ-INSTR (IF (EQ (QUOTE (MAIN . 1)) (GOAL-NAME))
SKIP
(CHANGE-GOAL (MAIN . 1)))

| | 3 Enter READ-INSTR (BIND ((INSTR (IF (EQ (QUOTE (MAIN . 1)) (GOAL-NAME))
(QUOTE SKIP)
(QUOTE (CHANGE-GOAL (MAIN . 1))))))

(DO-ALL (! INSTR)))

| | 3 Exit READ-INSTR (BIND)

| 2 Exit READ-INSTR (BIND)

| 1 Exit READ-INSTR (BIND)

| 1 Enter CHANGE-STATE-STACK-WITH-BIND (BIND)

| 1 Enter CHANGE-STATE-STACK-WITH-DO-ALL (DO-ALL (DO-ALL (! INSTR)))
{roughly, because BIND is defined in terms of DO-ALL}

| | 2 Enter INTERACTIVE-SINGLE-STEP (DO-ALL (! INSTR))

| | 1 Enter READ-INSTR (DO-ALL (! INSTR))

| | 1 Exit READ-INSTR (DO-ALL (CHANGE-GOAL (MAIN . 1)))
{by using the binding of INSTR in COMMAND-BINDINGS}

| | 2 Enter CHANGE-STATE-STACK-WITH-DO-ALL (DO-ALL (CHANGE-GOAL (MAIN . 1)))

| | | 3 Enter INTERACTIVE-SINGLE-STEP (CHANGE-GOAL (MAIN . 1))

| | | 1 Enter READ-INSTR (CHANGE-GOAL (MAIN . 1))

| | | 1 Exit READ-INSTR (CHANGE-GOAL (MAIN . 1))

| | | 1 Enter CHANGE-STATE-WITH-CHANGE-GOAL (CHANGE-GOAL (MAIN . 1)) <state>

| | | 1 Exit CHANGE-STATE-WITH-CHANGE-GOAL <new state>

| | | 3 Exit INTERACTIVE-SINGLE-STEP <a state stack>

| | 2 Exit CHANGE-STATE-STACK-WITH-DO-ALL T

| | 2 Exit INTERACTIVE-SINGLE-STEP T

| 1 Exit CHANGE-STATE-STACK-WITH-DO-ALL T

| 1 Exit CHANGE-STATE-STACK-WITH-BIND T

36

1 Exit INTERACTIVE-SINGLE-STEP T

Finally, let us look at and analyze definitions of macro commands which were introduced earlier. First,

PROVE+:

(DEFINSTR PROVE+ (&OPTIONAL HINTS)
(DO-ALL
(LISP (PROGN (CHK-ACCEPTABLE-HINTS (QUOTE HINTS)) T))
(BIND ((HNTS (MAKE-LOCAL-HINTS (QUOTE HINTS) STATE-STACK)))

(IF HNTS (! (CONS (QUOTE PROVE) HNTS)) PROVE))))

How does this macro command work? The outer command DO-ALL is simply a sequencer. The first command is

LISP, which submits the form to Lisp (in an environment augmented by COMMAND-BINDINGS). LISP is called

simply to check that the (optional) hints to the PROVE+ command are appropriate; in fact,

CHK-ACCEPTABLE-HINTS is a Lisp function written by Boyer and Moore for the Theorem Prover which checks

19the hints to PROVE-LEMMA, causing an error if it finds something it doesn’t like. Then the symbol HNTS is

bound in COMMAND-BINDINGS to an appropriate hint list, which is the result of evaluating

(MAKE-LOCAL-HINTS (QUOTE <hints>) STATE-STACK) for the particular <hints> supplied in the

20instruction. Inside the execution of BIND we have a call of the macro command IF, which we have seen before.

Here, this IF command evaluates HNTS, i.e. it considers (MAKE-LOCAL-HINTS (QUOTE HINTS)

STATE-STACK). If this is not NIL then it executes the command (PROVE <hints>), where <hints> is the

result of evaluating this call of MAKE-LOCAL-HINTS; otherwise it executes the command PROVE.

The next example presented earlier in this section was the macro command HYP. In fact HYP is defined in

terms of a macro command HYP0; here are the definitions.

19The reason for the call of PROGN is simply that we want this call of LISP to "succeed", and as the HELP-LONG facility explains, this
command "succeeds" if and only if the result of the Lisp evaluation is not NIL. But why do we want this to "succeed"? Because as the
HELP-LONG facility explains, DO-ALL "succeeds" if and only if all of its subcommands "succeed"; thus in our case, that’s equivalent to the
BIND command "succeeding". That in turn is equivalent (by the specification of BIND) to the "success" of the IF command, which in turn is
simply a call for execution of one of its two branches, i.e. a call to PROVE. And that’s what we desire, i.e. the "success" of a call to PROVE+
should be equivalent to the "success" of the corresponding call to PROVE (as explained by the help facility).

20Currently, the file "macro-commands-aux" contains definitions of Lisp functions written for the macro commands, which themselves are in
the file "macro-commands". The user should feel free to add to these files; as long as they aren’t loaded in the final check of a sequence of
events, soundness won’t be affected. In fact, unless functions like PROVE-LEMMA are redefined in these files, soundness won’t be affected even
if they are loaded.

37

(DEFINSTR HYP (N INSTR)
(ORELSE
(HYP0 N INSTR)
(PROG2 (PRINT "HYP failed")

FAIL)))

(DEFINSTR HYP0 (N INSTR)
(PROTECT
(DO-STRICT
((CONTRADICT-DUMB N)
(DIVE 1)
(DO-ALL (! (SUBST (QUOTE (DO-ALL TOP 1))

(QUOTE TOP)
(QUOTE INSTR))))

TOP
(CONTRADICT? N)))))

The reader is invited to use the help facility (especially HELP-LONG) to learn about the macro commands called

inside the definitions of HYP and HYP0. But here is a brief explanation of these commands. FIrst,

(HYP N INSTR) calls for the execution of (HYP0 N INSTR). ORELSE is defined so that if this call of HYP0

"succeeds", then so does the call of HYP and nothing further happens. Otherwise, the macro command PRINT is

called to let us know that the call to HYP in fact failed (and the entire call "fails" because of the definition of

PROG2). Next consider HYP0. HYP0 has a call of PROTECT wrapped around its body, so that if it does not

"succeed" then no change is made to the global state. Inside that, a call of DO-STRICT is made to sequence the

commands so that once a command "fails", no further execution is made of commands in the sequence and the entire

sequence is deemed to have "failed". Then five commands are given in the list fed to DO-STRICT, and behave as

explained earlier in this section. The first and last of the five commands are appropriate versions of

CONTRADICT, and the call of DO-ALL is there to create an instruction which is the same as the given

instruction, except that the atom TOP is replace everywhere by (DO-ALL TOP 1). The idea here is that if the

conclusion is of the form (NOT HYP), where HYP was a hypothesis before invocation of a CONTRADICT

command, and if one then wants to run INSTR on HYP, one wants any occurrence of TOP to lift one only to the top

of HYP, not to the top of (NOT HYP). Such mundane considerations often arise when writing macro commands,

which is why this entire section has been considered optional (as explained in the first sentence of the report).

38

Appendix A

A small but somewhat realistic example

Here’s a sample session showing how I actually use this system. I’ll use it to verify the commutativity of

TIMES. This is a good example because a novice user of the Boyer-Moore Theorem Prover is likely to find it to be

a bit awkward to prove this lemma. The interactive mode helps one discover the facts needed to prove this lemma

(after which one could, in fact, get the proof through without the interactive enhancement).
(verify (equal (times x y) (times y x)))

->: induct

Inducting according to the scheme:

(AND (IMPLIES (ZEROP X) (p X Y))
(IMPLIES (AND (NOT (ZEROP X)) (p (SUB1 X) Y))

(p X Y)))

Creating 2 new subgoals, (MAIN . 1) and (MAIN . 2).

The proof of the current goal, MAIN, has been completed. However, the
following subgoals of MAIN remain to be proved: (MAIN . 1) and
(MAIN . 2).
Now proving (MAIN . 1).

->: view {A "macro command" which clears the screen first}

*** Active top-level hypotheses:
There are no top-level hypotheses to display.

*** Active governors:
There are no governors to display.

The current subterm is:
(IMPLIES (ZEROP X)

(EQUAL (TIMES X Y) (TIMES Y X)))

39

->: prove {We call the Boyer-Moore theorem prover,
since this looks easy.}

***** Now entering the theorem prover *****:

This formula simplifies, expanding the functions ZEROP, EQUAL, and
TIMES, to two new conjectures:

{And so on -- I’ll omit the output of the theorem-prover. It does an
induction and then two sub-inductions, but it only takes a few seconds.}
....

That finishes the proof of *1.1, which, consequently, finishes the
proof of *1. Q.E.D.

The current goal, (MAIN . 1), has been proved, and has no dependents.
Now proving (MAIN . 2).

->: view

*** Active top-level hypotheses:
There are no top-level hypotheses to display.

*** Active governors:
There are no governors to display.

The current subterm is:
(IMPLIES (AND (NOT (ZEROP X))

(EQUAL (TIMES (SUB1 X) Y)
(TIMES Y (SUB1 X))))

(EQUAL (TIMES X Y) (TIMES Y X)))

->: promote

->: view

*** Active top-level hypotheses:
H1. (NOT (ZEROP X))
H2. (EQUAL (TIMES (SUB1 X) Y)

(TIMES Y (SUB1 X)))

*** Active governors:
There are no governors to display.

The current subterm is:
(EQUAL (TIMES X Y) (TIMES Y X))

->: 1 {Move to the first argument of EQUAL}

->: x {Recall that X simplifies}

->: p
(PLUS Y (TIMES (SUB1 X) Y))

->: 2

40

->: p
(TIMES (SUB1 X) Y)

->: = {Apply the inductive hypothesis}

->: p
(TIMES Y (SUB1 X))

->: top

->: p
(EQUAL (PLUS Y (TIMES Y (SUB1 X)))

(TIMES Y X))

->: hyps

*** Active top-level hypotheses:
H1. (NOT (ZEROP X))
H2. (EQUAL (TIMES (SUB1 X) Y)

(TIMES Y (SUB1 X)))

*** Active governors:
There are no governors to display.

->: (hide-hyps 2)

->: prove

***** Now entering the theorem prover *****:

This formula can be simplified, using the abbreviations ZEROP, NOT, and
IMPLIES, to:

(IMPLIES (AND (NOT (EQUAL X 0)) (NUMBERP X))
(EQUAL (PLUS Y (TIMES Y (SUB1 X)))

(TIMES Y X))).

{I’ll omit the rest of the theorem-prover’s output. It does a
straightforward proof by induction.}

The current goal, (MAIN . 2), has been proved, and has no dependents.

!!*!*!*!*!* All goals have been proved! *!*!*!*!*!*!*
You may wish to EXIT -- type (HELP EXIT) for details.

41

Appendix B

Soundness

In this appendix we argue that if the interactive system certifies a term to be a theorem of the Boyer-Moore

logic, i.e. the appropriate interactive PROVE-LEMMA event completes successfully, then that term is indeed a

theorem of the logic (relative to the existing list of events, of course). We say "argue" rather than "prove" because

we sluff over some important issues:

• correctness of Boyer and Moore’s code for their Theorem Prover;

• correctness of the code for the interactive system;

• details involving preservation of the invariant (*) from Section 1 (reviewed below)

However, we do feel that there is value in at least stating the theorem below and in presenting an outline that could

21in principle be fleshed out to a rigorous proof. First we need a definition.

DEFINITION. A valid state stack is a state stack which can be produced from an interactive session which

begins with a call of the form (VERIFY <term>) and then results from the execution of a sequence of change

commands.

And now, one more definition.

DEFINITION. Let’s say that a goal is provable if its hypotheses (hidden and active) provably imply its

current conclusion, i.e. the appropriate implication is provable. (If there are no hypotheses then we simply mean

that the conclusion is provable.)

We wish to prove the following theorem:

THEOREM. Suppose that G is a goal of the top state in a valid state stack, and suppose that G and all of its

dependents have conclusions of T. Then the original version of G is provable.

In particular, if a sequence of change commands results in a state in which every goal has a conclusion of T,

then the original term given to VERIFY is provable.

21Again, we beg the reader to forgive us. The following definition is clearly much more operational than might be desired. However, we
believe it to be a routine (though very tedious) exercise to give a purely logical specification of each command’s action so that this definition can
itself be purely logical.

42

To prove this theorem we begin by recalling property (*) from Section 1. As we mentioned above, we will

omit the proof of this property, which we believe to be without deep content but rather to depend on careful tedious

thinking about the code.

(*) When invoking a proof command, the goal follows from its
modified version together with the subgoals that are created.

Here, a goal is said to "follow from" others if the provability of the others implies the provability of the goal. Now

property (*) trivially implies the following key lemma, which says (roughly) that each state-changing operation

preserves validity in reverse.

LEMMA. Fix a valid state stack. Let G be a goal in a given state s of that state stack, let s’ be the next state

in the stack (thus created from s by a change command), and let G’ be the version of G in s’. Suppose that all

22subgoals of G’ in s’ are provable in their original forms and that G’ is provable. Then G is provable.

We may now complete the proof of the theorem, which we do by contradiction. Fix a valid state stack for

which the theorem fails. By acyclicity of the goal graph (at the top state in the stack), there is a goal G for which all

original versions of its (final) subgoals are provable yet its original version is not provable. Now the set of subgoals

of any previous version of G is contained in the set of subgoals of the final version of G, and hence the lemma above

implies (by a trivial induction argument) that every previous version of G is provable. In particular, the original

version of G is provable, which contradicts our choice of G.

22that is, in the sense of the field ORIG-CONC-AND-HYPS described in Section 2: the goal as it was when it was created

43

Appendix C

A Listing of the Help Facility

Here is a list of the messages printed in response to commands of the form (HELP <command>). For more

details (which probably will not be necessary too often), the user is advised to use (HELP-LONG <command>).

This appendix is organized as shown by invoking HELP-LONG (with no arguments):

STATE CHANGE (PROOF) COMMANDS:
Subterm manipulation commands:

DIVE UP NX BK TOP
Goal manipulation commands:

CHANGE-GOAL HIDE-HYPS HIDE-GOVS SHOW-HYPS SHOW-GOVS CLAIM
PROMOTE DEMOTE DROP CONTRADICT USE-GOAL USE-LEMMA

Goal creation commands:
PUSH GENERALIZE INDUCT SPLIT
(and sometimes CLAIM, REWRITE, =, and USE-GOAL)

Simplification/replacement commands:
X X-DUMB SUBV S S-PROP = PROVE REWRITE

Fast rewrite enable/disable commands:
ENABLE DISABLE

Bookmark command:
BOOKMARK COMMENT

Abbreviation commands:
ADD-ABBREVIATION REMOVE-ABBREVIATIONS

HELP COMMANDS:
PP P PP-TOP GOAL-NAMES PRINT-GOAL HYPS SHOW-REWRITES
SHOW-INDUCTIONS COMMANDS SHOW-ABBREVIATIONS HELP HELP-LONG

META COMMANDS:
UNDO RESTORE LISP REPLAY PLAY BIND DO-ALL PROG2 NEGATE
PROTECT SUCCEED

Exit command: EXIT

(We omit macro commands in this appendix. Some of the more useful
predefined macro commands are discussed in Section 3.)

--
--

44

(DIVE N): For N>0, move to the Nth argument.
EXAMPLE: If the current subterm is

(TIMES (PLUS A B) C),
then after (DIVE 1) it is

(PLUS A B).

DIVE: Dive down to the leftmost unproved branch in the IF-structure
(from the top of the conclusion, unless the current term is an IF term).
EXAMPLE: If the conclusion is

(IF A (IF B T (G X)) Y),
then DIVE puts the current subterm at (G X).

NOTE: N is an abbreviation for (DIVE N), so we could have typed 1
instead of (DIVE 1) in the first example above.

OTHER FORMS (see HELP-LONG): (DIVE N1 ... Nk).

--
--

UP: Move up to enclosing subterm.
EXAMPLE: If the conclusion is

(G (H X (FOO Y)) Z)
and the current subterm is

(FOO Y),
then after executing UP, the current subterm will be

(H X (FOO Y)).

--
--

NX: Move forward one argument in the enclosing term.
EXAMPLE: If the conclusion is

(G (H X (FOO Y)) Z)
and the current subterm is X, then after executing NX, the current subterm
will be (FOO Y).

--
--

BK: Move backword one argument in the enclosing term.
EXAMPLE: If the conclusion is

(G (H X (FOO Y)) Z)
and the current subterm is (FOO Y), then after executing BK, the current
subterm will be X.

--
--

TOP: Move to the top of the current conclusion.
EXAMPLE: If the conclusion is

(G (H X (FOO Y)) Z)
and the current subterm is (FOO Y), then after executing TOP, the current
subterm will be

(G (H X (FOO Y)) Z).

--
--

45

(CHANGE-GOAL <goal-name>): Change to the goal with the name <goal-name>,
i.e. make it the current goal.
EXAMPLE: (CHANGE-GOAL (MAIN . 1))

CHANGE-GOAL: Change to the first unproved goal (in the list shown by the
command GOAL-NAMES).

--
--

HIDE-HYPS: Hide all of the hypotheses.

(HIDE-HYPS ...): Hide the indicated hypotheses, referenced by number.
To obtain these numbers, type HYPS or (HYPS ALL NIL).
EXAMPLE: (HIDE-HYPS 2 4).

--
--

HIDE-GOVS: Hide all of the governors.

(HIDE-GOVS ...): Hide the indicated governors, referenced by number. To
obtain these numbers, type HYPS or (HYPS NIL ALL).

--
--

SHOW-HYPS: Activate all of the top-level hypotheses.

(SHOW-HYPS ...): Activate the indicated top-level hypotheses, referenced
by number. To obtain these numbers, type (HYPS ALL NIL).
EXAMPLE: (SHOW-HYPS 2 4).

--
--

SHOW-GOVS: Activate all of the governors.

(SHOW-GOVS ...): Activate the indicated governors, referenced by number.
To obtain these numbers, type (HYPS NIL ALL).
EXAMPLE: (SHOW-GOVS 2 4).

--
--

46

(CLAIM exp): attempt to prove exp from the currently active hypotheses
(using the theorem prover). If this can be done, then add exp as a
hypothesis. Otherwise, add it as a hypothesis anyhow, but also also add a new
subgoal which is identical to the (previous) current goal except for the added
assumption that exp is false.
EXAMPLE: (CLAIM (NUMBERP (PLUS X Y))) will simply add (PLUS X Y) as a
hypothesis in the current goal. However, if one submits the command
(CLAIM (NUMBERP X)) and if this cannot be proved by the prover (from the other
hypotheses), then in addition to adding this hypothesis to the current goal, a
new subgoal will be created with the extra hypothesis (NOT (NUMBERP X)).

OTHER FORMS (see HELP-LONG):
(CLAIM exp (hint1 hint2 ... hintK)) {to give hints to the prover}
(CLAIM exp TAUT) {to replace the prover call with a tautology check}
(CLAIM exp 0) {to turn off all proof checking, thus forcing a case split}

--
--

PROMOTE: Replace (IMPLIES hyps exp) with simply exp, adding hyps to
the list of hypotheses (after flattening its AND structure, if it is an AND
expression).
EXAMPLE: If the conclusion is (IMPLIES (AND X Y) Z), then after execution of
PROMOTE, the conclusion will be Z and the terms X and Y will be hypotheses.

--
--

(DEMOTE n1 n2 ... nk): Replace the current conclusion with the goal of
proving that the conjunction of the indicated hypotheses implies the current
conclusion, and drop these hypotheses. Note that this command may only be
used when at the top of the conclusion.

DEMOTE: As above, but demote all the active hypotheses.
EXAMPLE: If the active hypotheses are

H1. (LESSP X Y)
H2. (NOT (ZEROP Z))

and the conclusion and current subterm are both
(LESSP (TIMES X Z) (TIMES Y Z)),

then after executing DEMOTE, there will be no active hypotheses and the
conclusion will be

(IMPLIES (AND (LESSP X Y) (NOT (ZEROP Z)))
(LESSP (TIMES X Z) (TIMES Y Z)))

--
--

DROP: Drop all the top-level hypotheses.

(DROP n1 ... nk): Drop the top-level hypotheses with the indicated
indices.
EXAMPLE: (DROP 2 5).

(DROP HIDDEN): Drop the hidden top-level hypotheses.

47

--
--

(CONTRADICT n): Negate the current conclusion and make it the n-th
hypothesis, while negating the current n-th hypothesis and making it the
current conclusion.
EXAMPLE: If the active hypotheses are

H1. (LESSP X Y)
H2. (NOT (ZEROP Z))

and the conclusion and current subterm are both
(LESSP (TIMES X Z) (TIMES Y Z)),

then after executing (CONTRADICT 2), the hypotheses are
H1. (LESSP X Y)
H2. (NOT (LESSP (TIMES X Z) (TIMES Y Z)))

and the conclusion is
(ZEROP Z).

--
--

(USE-GOAL goal-name ((var1 term1) ... (varK termK))): Add the indicated
instance of the ORIGINAL version of the indicated goal as a hypothesis of the
current goal (eliminating hypotheses of the indicated goal that are already
known). However, this must not introduce a cycle in the dependency structure
of the goals. EXAMPLE: If (MAIN . 3) is the name of a goal with hypothesis
(P X) and conclusion (Q X), then after executing (USE-GOAL (MAIN . 3) ((X
A))), the implication (IMPLIES (P A) (Q A)) would be added to the list of
hypotheses of the current goal. However, there would be no change if (MAIN .
3) either is the current goal or depends on the current goal. Also, if (P A)
is already an active hypothesis of the current goal, then the hypothesis (Q A)
would be added instead.

(USE-GOAL goal-name): Same as (USE-GOAL goal-name ()).

OTHER FORM (see HELP-LONG): USE-GOAL.

--
--

(USE-LEMMA name ((var1 term1) ... (varK termK))): Add the given lemma or
axiom from the chronology to the list of hypotheses, after instantiating it
according to the given substitution.
EXAMPLE: Invocation of (USE-LEMMA TIMES-0 ((X A))) will add the hypothesis
(EQUAL (TIMES A 0) 0) if the lemma TIMES-0 (from the chronology) is
(EQUAL (TIMES X 0) 0).

USE-LEMMA: Same as (USE-LEMMA ()).

--
--

48

PUSH: Replace the current subterm with T (assuming it’s boolean), and
create a new goal to prove that term under the active hypotheses and
governors.
EXAMPLE: Suppose that we have the single active hypothesis and
single active governor

H1. (LESSP X Y)
G1. (NOT (ZEROP Z)),

and conclusion
(IF (ZEROP Z) T (LESSP (TIMES X Z) (TIMES Y Z)))

with current subterm
(LESSP (TIMES X Z) (TIMES Y Z)).

Then after the execution of PUSH, the current subterm is T, the new conclusion
is

(IF (ZEROP Z) T T),
and the new subgoal has hypotheses

H1. (LESSP X Y)
H2. (NOT (ZEROP Z))

and conclusion
(LESSP (TIMES X Z) (TIMES Y Z)).

OTHER FORMS (see HELP-LONG): (PUSH name).

--
--

(GENERALIZE ((term1 V1) ... (termn Vn))): Replace each of the given
terms by the indicated new variable (which must not occur anywhere in the
current goal). A question mark (?) may be used in place of any or all
variables Vi.
EXAMPLE: (GENERALIZE (((PLUS X Y) ?))).

OTHER FORMS (see HELP-LONG):
(GENERALIZE ((term1 V1) ... (termn Vn)) new-goal-name).

--
--

(INDUCT (g v1 ... vn)): Induct as in the corresponding INDUCT hint given
to the theorem prover, creating new subgoals for the base and induction steps.
EXAMPLE: If the current conclusion is of the form (P X) and there are no
hypotheses, then after (INDUCT (TIMES X Y)), there are two new subgoals with
conclusions

(IMPLIES (ZEROP X) (P X)) and
(IMPLIES (AND (NOT (ZEROP X)) (P (SUB1 X))) (P X))

INDUCT: Induct according to a scheme chosen by the theorem prover’s
heuristics, creating subgoals for the base and induction steps.

--
--

49

SPLIT: Replace the current goal by the cases generated from its
propositional structure. This command can only be used at the top of the
conclusion. Roughly speaking, this command does OR-splitting in the
hypotheses and AND-splitting in the conclusion.
EXAMPLE: Suppose that there is a hypothesis of the form (IMPLIES (AND P Q)
R). Then a subgoal would be generated replacing this hypothesis by (NOT P),
and similarly there would be one for (NOT Q) and for R. Of course, there
could be more subgoals generated if P, Q, or R had additional propositional
structure or if other hypotheses or the conclusion generated further cases.

--
--

X: Expand function call at current subterm, and simplify.
EXAMPLE: If the current subterm is

(APPEND (CONS A X) Y),
then after executing X the current subterm will be

(CONS A (APPEND X Y)).

--
--

X-DUMB: Expand function call at current subterm without simplifying the
result.
EXAMPLE: If the current subterm is

(APPEND (CONS A X) Y),
then after executing X the current subterm will be

(IF (LISTP (CONS A X))
(CONS (CAR (CONS A X))

(APPEND (CDR (CONS A X)) Y))
Y)

--
--

(SUBV (v1 t1) ... (vn tn)): Do parallel substitution of each term ti
for the respective variable vi into the current subterm, if justified by the
current active hypotheses and governors.
EXAMPLE: If the equalities (EQUAL X (PLUS A B)) and (EQUAL (TIMES C D) Y) are
among the active hypotheses, and if the current subterm is

(DIFFERENCE X Y),
then after executing

(SUBV (X (PLUS A B)) (Y (TIMES C D))),
the current subterm will be

(DIFFERENCE (PLUS A B) (TIMES C D)).

SUBV: As above, but every such substitution will be performed.
EXAMPLE: In the example above, SUBV would have had the same effect.

--
--

50

S: Simplify the current subterm, expanding nonrecursive function calls
and doing various nice things. (For details, use (HELP-LONG S).)
EXAMPLE: (ZEROP X) simplifies to

(IF (EQUAL X 0) T (IF (NUMBERP X) F T))
if there are no active hypotheses or governors, but in the presence of the
hypotheses (NOT (EQUAL X 0)) it simplifies to

(IF (NUMBERP X) F T).

OTHER FORMS (see HELP-LONG): (S ALL).

--
--

S-PROP: Expand all calls of IMPLIES, AND, OR, and NOT in the current
subterm, and then push all calls of IF to the top of the current subterm.

OTHER FORMS (see HELP-LONG): (S-PROP NIL), (S-PROP x1 ... xn).

--
--

= : Make a substitution for the current subterm, using an equality which
is explicitly among the current active hypotheses and governors.
EXAMPLE: If the current subterm is (PLUS X Y) and the equality
(EQUAL (TIMES U V) (PLUS X Y)) is an active hypothesis, then after executing
the = command, the current subterm will be (TIMES U V) (unless perhaps some
other hypothesis equates (PLUS X Y) with something).

(= Exp): Replace the current subterm by Exp, if they can be proved equal
by the theorem prover under the current active hypotheses and governors.
EXAMPLE: (= T) will replace the current subterm with T if the prover can prove
their equality.

(= Exp1 Exp2): Replace Exp1 by Exp2 in the current subterm, if they can
be proved equal by the theorem prover under the current active hypotheses and
governors.

OTHER FORMS (see HELP-LONG): In the following one may use * in place of
Exp1 if it’s the current subterm.
(= Exp1 Exp2 (hint1 hint2 ... hintK)): for giving hints to the prover) ;
(= Exp1 Exp2 <atom>): Use tautology checking instead of calling prover, and
create new goal if this fails.

--
--

PROVE: Attempt to prove the current goal.
(PROVE hint1 ... hintk): as above, where each hint is as in PROVE-LEMMA

and the theorem prover is to use these hints as it does with PROVE-LEMMA.
EXAMPLE:

(PROVE (DISABLE TIMES APPEND) (INDUCT (PLUS X Y))).

--
--

51

(REWRITE N): Replace the current subterm with a new term by using the Nth
rewrite rule, as displayed by the command SHOW-REWRITES.
EXAMPLE: Suppose that the current subterm is (REVERSE (REVERSE X)). The
command SHOW-REWRITES might result in the following being printed to the
screen:

1. REVERSE-NLISTP
New term: NIL
Hypotheses: ((NOT (LISTP (REVERSE X))))
2. REVERSE-REVERSE
New term: X
Hypotheses: ((PLISTP X))

Then (REWRITE 2) results in a new current subterm of X together with a new
subgoal of proving (PLISTP X) under the current goal’s active hypotheses.

OTHER FORMS (see HELP-LONG):
One may specify the name of the rewrite rule instead of the number. One

may also specify a substitution for the free variables, specify a subterm to
rewrite, or specify the result of the rewrite. Also, REWRITE (with no
arguments) may be used to apply the first hypothesis-free rewrite rule (or,
just the first rule if all have hypotheses to relieve), as displayed by
SHOW-REWRITES. Use (HELP-LONG REWRITE) to get the details.

--
--

(ENABLE <name1> ... <nameK>): Enable the given fast rewrite rules and
function definitions for the fast rewriter. (These terms are explained with
(HELP-LONG S).)
EXAMPLE USE: (ENABLE APPEND ZEROP).

ENABLE: Enable all fast rewrite rules and function definitions.

--
--

(DISABLE name1 ... nameK): Disable the given fast rewrite rules and
function definitions for the fast rewriter. (These terms are explained with
(HELP-LONG S).)
EXAMPLE USE: (DISABLE APPEND ZEROP).

DISABLE: Disable all fast rewrite rules and function definitions.

--
--

(BOOKMARK x): Makes no change in the state except to insert this
instruction, for the purpose of possible UNDOing later.
EXAMPLE: The command (BOOMARK HOWDY) creates an instruction such that if
later one submits (UNDO HOWDY), then the state stack will be unwound back to
(but not including) this bookmark.

--
--

52

(COMMENT): A no-op, except that the instruction field of the new
state contains the given instruction.
EXAMPLE: (COMMENT HI THERE HUMAN) makes this instruction the new instruction,
as shown e.g. by executing COMMANDS.

OTHER FORMS (see HELP-LONG):
COMMENT makes a comment which displays the current subterm.

--
--

(ADD-ABBREVIATION <var> <exp>): Add the abbreviation which displays
<exp> as <var>.

NOTE: The variable <var> should start with the character @.
EXAMPLE: (ADD-ABBREVIATION @V (TIMES X Y)) causes future occurrences of
(TIMES X Y) to be printed as @V. Moreover, user input can henceforth contain
the symbol @V as an abbreviation for (TIMES X Y).

--
--

REMOVE-ABBREVIATIONS: Remove all abbreviations.

(REMOVE-ABBREVIATIONS var1 var2 ... varK): Remove the indicated
abbreviations.
EXAMPLE: (REMOVE-ABBREVIATIONS @X @Y) will cause future proof states to be
unaware of @X and @Y as abbreviations (unless they are restored by future
invocations of ADD-ABBREVIATION).

--
--

PP: Prettyprint current subterm without any special use of
pretty-printing abbreviations. So for example, (AND x y z) is printed as
(AND x (AND y z)); compare with P.

--
--

P: Prettyprint current subterm in the usual manner. So for example,
(AND x y z) is printed rather than (AND x (AND y z)); compare with PP.

--
--

PP-TOP: Prettyprint entire term, highlighting current subterm.
Printing is with respect to the same conventions as for the command PP.
EXAMPLE: If the conclusion is (EQUAL (PLUS X X 0) (TIMES X 2)) and the
current subterm is (PLUS X X 0), then PP-TOP will cause the printing of:

(EQUAL (*** (PLUS X (PLUS X 0)) ***)
(TIMES X 2))

--
--

53

GOAL-NAMES: Print the name of each goal, current goal first, showing
dependencies.

OTHER FORMS (see HELP-LONG): (GOAL-NAMES goal-name)

--
--

(PRINT-GOAL goal-name): Print the original and the current conclusion
and hypotheses of the given goal-name.

PRINT-GOAL: similarly for the current goal.

--
--

HYPS: Print the current active hypotheses, both top-level and governors.

(HYPS ALL ALL) As above, but show the hidden hypotheses and governors as
well.
EXAMPLE: If the current hypotheses are (EQUAL X1 Y) and (EQUAL X2 Y) (in that
order), where the first of these is hidden but the second is active, and there
are no governors, then (HYPS ALL ALL) will display:

*** Top-level hypotheses (with "*" when hidden):
*H1. (EQUAL X1 Y)
H2. (EQUAL X2 Y)

*** Governors (with "*" when hidden):
There are no governors to display.

while HYPS will simply display:

*** Active top-level hypotheses:
H2. (EQUAL X2 Y)

*** Active governors:
There are no governors to display.

OTHER FORM (see HELP-LONG): (HYPS (H1 H2 ... Hk) (G1 G2 ... Gn))

--
--

54

SHOW-REWRITES: Show all the rewrite rules which apply to the current
subterm, including the name, resulting subterm, and hypotheses whose relieving
will require the generation of new subgoals.
EXAMPLE: Suppose that the current subterm is (LESSP A (PLUS A 3)) and that
there is a rewrite rule for transitivity of LESSP. Then SHOW-REWRITES might
display the following:

1. LESSP-TRANS
New term: T
Hypotheses: ((LESSP A $Y) (LESSP $Y (PLUS A 3)))

The dollar sign indicates a free variable, i.e. a variable which occurs in the
hypotheses of the rewrite rule (or, in rare cases, the right side of the
conclusion of the rule) but does not occur in the left side of the conclusion
of the rule. Submit (HELP REWRITE) to see the role of free variables in
applying the REWRITE command.

OTHER FORM (see HELP-LONG): (SHOW-REWRITES term).

--
--

SHOW-INDUCTIONS: Show all the heuristically-chosen induction schemes.

--
--

COMMANDS: Show all of the previous commands, in reverse order.
EXAMPLE: Here is some possible output upon execution of COMMANDS:

The commands thus far (in reverse order, i.e. last one first) have been:
1. (CLAIM (LESSP A B))
2. (REWRITE LESSP-TRANS)
3. PROMOTE
4. START

Thus, there have been three commands so far, with the CLAIM command being the
most recent.

(COMMANDS n): Show the last n previous commands, in reverse order.

--
--

SHOW-ABBREVIATIONS: Show all abbreviations.
EXAMPLE OUTPUT:

@Y corresponds to
(TIMES B C)

@X corresponds to
(PLUS A @Y)
i.e. to

(PLUS A (TIMES B C))

OTHER FORM (see HELP-LONG): (SHOW-ABBREVIATIONS var1 var2 ... varK).

55

--
--

HELP: Print names of selected instructions, including a selected set of
predefined macro commands. NOTE: To get the names of all instructions and
all macro commands, use HELP-LONG.

(HELP instr1 ...): Print short help on instr1 ..., generally with
examples. NOTE: Use HELP-LONG to get more complete information, but without
examples.

--
--

HELP-LONG: Print names of all instructions, including all macro
commands. For a shortened list appropriate for people new to this system, use
HELP instead.

(HELP-LONG instr1 ...): Print help on instr1 NOTE: Use HELP to
get less detailed information, but with examples, which is perhaps more
appropriate for people who are just beginning to use this system.

--
--

(UNDO N): Undo N instructions.
EXAMPLE: (UNDO 3) undoes the last three instructions.

UNDO: Undo one instruction.

OTHER FORM (see HELP-LONG): (UNDO x), where x is a bookmark.

--
--

RESTORE: Restores the state stack to its value just before the
immediately preceding RESTORE or UNDO, if any.
EXAMPLE: After successfully executing (UNDO 3), the execution of RESTORE will
put the state-stack back to its value before that UNDOing, provided that there
is no intervening invocation of UNDO or RESTORE.

--
--

(LISP form): Evaluate the given Lisp form.
EXAMPLE: (LISP (PROGN (PRINT (+ 2 5)) (TERPRI NIL))) will cause the numeral 7
to be printed, followed by a newline.

--
--

REPLAY: This command is used to check that everything is in order, by
re-running all the instructions from the start.

--
--

56

(PLAY instr1 instr2 ...): Play the given CHANGE instructions from the
current state, stopping if any fails and otherwise noting if all instructions
run successfully.
EXAMPLE: (PLAY INDUCT (CHANGE-GOAL (MAIN . 2)) S) will cause the three given
instructions to be run, as long as they each create new states.

--
--

(BIND bindings instr1 instr2 ...): This instruction is only of interest
to writers of macro commands -- execute (HELP-LONG BIND) if you really care.

--
--

(DO-ALL instr1 instr2 ...): Run all of the given instructions.
EXAMPLE: (DO-ALL UNDO DIVE (PLAY S S-PROP)).

--
--

(PROG2 instr1 instr2): This instruction is only of interest to writers
of macro commands -- execute (HELP-LONG PROG2) if you really care.

--
--

(NEGATE instr): This instruction is only of interest to writers of macro
commands -- execute (HELP-LONG NEGATE) if you really care.

--
--

(PROTECT instr): Treats instr as an atomic entity, in the sense that if
it is a macro command, then either instr "succeeds" or else the global state
reverts to what it was before invocation of the PROTECT command.
EXAMPLE: (PROTECT (DO-ALL DIVE PUSH TOP S)) will either cause execution of all
instructions DIVE, PUSH, TOP, and S (in that order), or else will be a no-op
on the global state (in case any of these four instructions does not create a
new state).

--
--

(SUCCEED instr): This instruction is only of interest to writers of
macro commands -- execute (HELP-LONG SUCCEED) if you really care.

--
--

(EXIT name lemma-types): Exit the proof checker, printing out the
appropriate PROVE-LEMMA event with the given name and types (e.g. (REWRITE) or
NIL).
EXAMPLE: (EXIT TIMES-ASSOCIATIVITY (REWRITE)).

EXIT: Quit the proof checker without making an event. In this case,
(VERIFY) may be executed to get back in at the same state, as long as there
hasn’t been an intervening use of the proof-checker.

--

57

References

1. Robert S. Boyer and J Strother Moore, A Computational Logic, Academic Press, New York, 1979.

2. Robert S. Boyer and J Strother Moore, ‘‘The User’s Manual for A Computational Logic (Draft)’’, Tech.
report 55, Institute for Computing Science, University of Texas at Austin, March 1987.

3. M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh LCF, Springer-Verlag, New York, 1979.

4. R.S. Boyer and J S. Moore, Metafunctions: Proving Them Correct and Using Them Efficiently as New Proof
Procedures, Academic Press, 1981, pp. 103-185.

Table of Contents

Appendix A. A small but somewhat realistic example . 38

Appendix B. Soundness . 41

Appendix C. A Listing of the Help Facility . 43

i

