Copyright (C) 1994 by Robert S. Boyer and J Strother Moore. All Rights Reserved.

This script is hereby placed in the public domain, and therefore unlimited editing and redistribution is permitted.

NO WARRANTY

Robert S. Boyer and J Strother Moore PROVIDE ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Robert S. Boyer or J Strother Moore BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

|#

EVENT: Start with the initial **nqthm** theory.

EVENT: For efficiency, compile those definitions not yet compiled.

EVENT: Add the shell btm, with recognizer function symbol btmp and no accessors.

```
DEFINITION:

get (x, alist)

= if alist \simeq nil then BTM

else if x = caar(alist) then cdar(alist)

else get (x, cdr(alist)) endif

DEFINITION:

unsolv-subrp (fn)
```

```
(fn \in `(	ext{zero true false add1 sub1 numberp cons car cdr})]
             listp pack unpack litatom equal list))
DEFINITION:
unsolv-apply-subr (fn, lst)
= if fn = 'zero then ZERO
    elseif fn = 'true then TRUE
    elseif fn = 'false then FALSE
    elseif fn = 'add1 then 1 + car(lst)
    elseif fn = 'sub1 then car(lst) - 1
    elseif fn = \text{'numberp then } car(lst) \in \mathbf{N}
    elseif fn = 'cons then cons(car(lst), cadr(lst))
    elseif fn = 'list then lst
    elseif fn = ' car then car(car(lst))
    elseif fn = 'cdr then cdr(car(lst))
    elseif fn = \text{'listp then listp}(car(lst))
    elseif fn = \text{'pack then pack}(car(lst))
    elseif fn = \text{'unpack then unpack}(\operatorname{car}(lst))
    elseif fn = 'litatom then litatom (car (lst))
    elseif fn = 'equal then car(lst) = cadr(lst)
    else 0 endif
DEFINITION:
\operatorname{ev}(flq, x, va, fa, n)
= if flg = 'al
    then if x \simeq \text{nil}
           then if x \in \mathbb{N} then x
                 elseif x = 't then t
                 elseif x = f then f
                 elseif x = nil then nil
                 else get (x, va) endif
           elseif car(x) = 'quote then cadr(x)
           elseif car(x) = \text{'if}
           then if btmp (ev ('al, cadr (x), va, fa, n)) then BTM
                 elseif ev ('al, cadr (x), va, fa, n)
                 then ev ('al, caddr (x), va, fa, n)
                 else ev ('al, cadddr (x), va, fa, n) endif
           elseif btmp (ev ('list, cdr (x), va, fa, n)) then BTM
           elseif unsolv-subrp (car(x))
           then unsolv-apply-subr (car(x), ev('list, cdr(x), va, fa, n))
           elseif btmp (get (car (x), fa)) then BTM
           elseif n \simeq 0 then BTM
           else ev ('al,
                    \operatorname{cadr}(\operatorname{get}(\operatorname{car}(x), fa)),
```

```
pairlist (car (get (car (x), fa)),
                            \operatorname{ev}(\operatorname{iist},\operatorname{cdr}(x),\operatorname{va},\operatorname{fa},\operatorname{n})),
                   n-1) endif
    elseif listp (x)
    then if btmp (ev ('al, car (x), va, fa, n)) then BTM
          elseif btmp (ev ('list, cdr (x), va, fa, n)) then BTM
          else cons (ev ('al, car (x), va, fa, n),
                      ev ('list, cdr(x), va, fa, n)) endif
    else nil endif
DEFINITION: pr-eval (x, va, fa, n) = \text{ev}(\ 'al, x, va, fa, n)
DEFINITION: evlist (x, va, fa, n) = \text{ev}(\text{iist}, x, va, fa, n)
     We now define the functions x, va, fa, and k. To do so we first define
    SUBLIS, which applies a substitution to an s-expression. Then we use the
    names CIRC and LOOP in the definitions of \boldsymbol{x} and fa and use SUBLIS to
    replace those names with "new" names. It is not important whether we have
    defined this notion of substitution correctly, since all that is required
     is that we exhibit some x, va, fa, and k with the desired properties.
DEFINITION:
sublis (alist, x)
= if x \simeq nil
    then if assoc(x, alist) then cdr(assoc(x, alist))
          else x endif
    else cons (sublis (alist, car (x)), sublis (alist, cdr (x))) endif
x(fa) = \text{sublis}(\text{list}(\cos(', \text{circ}, \cos(fa, 0))), '(\text{circ a}))
DEFINITION:
fa(fa)
= append (sublis (list (cons ('circ, cons (fa, 0)), cons ('loop, cons (fa, 1))),
                    '((circ
                        (a)
                        (if
                          (halts '(circ a) (list (cons 'a a)) a)
                          (loop)
                         t))
                       (loop nil (loop))),
             fa
DEFINITION: va(fa) = list(cons('a, fa(fa)))
```

```
Definition: k(n) = (1 + n)
      We wish to prove that having "new" program names in the function
      environment does not effect the computation of the body of HALTS. To state
      this we must first define formally what we mean by "new". Then we will
      prove the general result we need and then we will instantiate it for the
      particular "new" program names we choose.
DEFINITION:
\operatorname{occur}(x, y)
= if x = y then t
      elseif y \simeq \text{nil} then f
      else occur (x, \operatorname{car}(y)) \vee \operatorname{occur}(x, \operatorname{cdr}(y)) endif
DEFINITION:
occur-in-defns (x, lst)
    if lst \simeq nil then f
      else occur (x, \operatorname{caddr}(\operatorname{car}(lst))) \vee \operatorname{occur-in-defns}(x, \operatorname{cdr}(lst)) endif
Theorem: occur-occur-in-defns
((\neg \text{ occur-in-defns } (fn, fa)) \land (\neg \text{ btmp } (\text{get } (x, fa))))
 \rightarrow (\neg \operatorname{occur}(fn, \operatorname{cadr}(\operatorname{get}(x, fa))))
Theorem: lemma1
 ((\neg \text{ occur } (fn, x)) \land (\neg \text{ occur-in-defns } (fn, fa)))
 \rightarrow (ev (flg, x, va, cons (cons (fn, def), fa), n) = ev (flg, x, va, fa, n))
Theorem: count-occur
 (\operatorname{count}(y) < \operatorname{count}(x)) \to (\neg \operatorname{occur}(x, y))
Theorem: count-get
\operatorname{count} \left( \operatorname{cadr} \left( \operatorname{get} \left( fn, fa \right) \right) \right) < (1 + \operatorname{count} \left( fa \right))
Theorem: count-occur-in-defns
(\operatorname{count}(fa) < \operatorname{count}(x)) \to (\neg \operatorname{occur-in-defns}(x, fa))
THEOREM: corollary1
ev('al,
      \operatorname{cadr}(\operatorname{get}('\operatorname{halts}, fa)),
      \cos(\cos(\cos(fa, 0), def\theta)),
              \cos (\operatorname{list} (\cos (fa, 1), \operatorname{nil}, \operatorname{list} (\cos (fa, 1))), fa)),
      n)
    \operatorname{ev}(\operatorname{'al},\operatorname{cadr}(\operatorname{get}(\operatorname{'halts},fa)),\operatorname{va},fa,\operatorname{n})
```

EVENT: Disable lemma1.

```
Theorem: lemma2
((\neg btmp(ev(flg, x, va, fa, n))) \land (\neg btmp(ev(flg, x, va, fa, k))))
\rightarrow (ev (flg, x, va, fa, n) = ev (flg, x, va, fa, k))
Theorem: corollary2
(\operatorname{ev}(flg, x, va, fa, n) = \mathbf{t}) \to \operatorname{ev}(flg, x, va, fa, k)
Theorem: lemma3
(listp(x))
 \wedge listp (car (x))
 \wedge \quad (\operatorname{cdr}(x) \simeq \operatorname{\mathbf{nil}})
 \wedge listp (get (car (x), fa))
 \wedge (car (get (car (x), fa)) = nil)
 \wedge (cadr (get (car (x), fa)) = x))
   btmp(ev('al, x, va, fa, n))
THEOREM: expand-circ
((\neg btmp(val)) \land (\neg btmp(get(cons(fn, 0), fa))))
\rightarrow (ev ('al, cons (cons (fn, 0), '(a)), list (cons ('a, val)), fa, j)
       = if j \simeq 0 then BTM
           else ev ('al,
                    \operatorname{cadr}(\operatorname{get}(\operatorname{cons}(fn, 0), fa)),
                    pairlist (car (get (cons (fn, 0), fa)),
                             ev('list,
                                 '(a),
                                 list (cons('a, val)),
                                 fa,
                                 j)),
                    fa, j-1) endif)
     After we published a proof of the unsolvability of the halting problem in
     the JACM, a student in one of our classes named Jonathan Bellin observed
     that one could get a trivial proof by defining (x FA) = (BTM). However,
     the "idea" is that the frustrating values (x FA), (va FA), and (fa FA) are
     supposed to be objects on which EVAL behaves normally. This class consists
     of those objects for which SEXP, defined below is, true. So we added the
     second conjunct to our statement of UNSOLVABILITY-OF-THE-HALTING-PROBLEM.
```

DEFINITION:

sexp(x)

```
= if x = t then t
       elseif x = f then t
       elseif x \in \mathbb{N} then t
       elseif listp (x) then sexp (car(x)) \wedge sexp(cdr(x))
       elseif litatom (x) then sexp (unpack (x))
       else fendif
Theorem: unsolvability-of-the-halting-problem
((h = \text{pr-eval}(\text{list}('))))
                                list ('quote, x(fa)),
                                list ('quote, va(fa)),
                                list ('quote, fa(fa))),
                         nil,
                         fa,
                          n))
  \rightarrow (((h = f) \rightarrow (\neg btmp (pr-eval (x (fa), va (fa), fa (fa), k (n)))))
           \wedge \quad ((h = \mathbf{t}) \to \text{btmp} (\text{pr-eval} (\mathbf{x} (fa), \text{va} (fa), \text{fa} (fa), k)))))
 \wedge \quad \left( \operatorname{sexp} \left( fa \right) \to \left( \operatorname{sexp} \left( \operatorname{x} \left( fa \right) \right) \wedge \operatorname{sexp} \left( \operatorname{va} \left( fa \right) \right) \right) \wedge \operatorname{sexp} \left( \operatorname{fa} \left( fa \right) \right) \right) \right)
```

EVENT: Make the library "unsolv" and compile it.

Index

```
btm, 1-3, 5
btmp, 2-6
corollary1, 4
corollary2, 5
count-get, 4
count-occur, 4
count-occur-in-defns, 4
ev, 2–5
evlist, 3
expand-circ, 5
fa, 3, 6
get, 1-5
k, 4, 6
lemma1, 4
lemma2, 5
lemma3, 5
occur, 4
occur-in-defns, 4
occur-occur-in-defns, 4
pr-eval, 3, 6
sexp, 5, 6
sublis, 3
unsolv-apply-subr, 2
unsolv-subrp, 1, 2
unsolvability-of-the-halting-pr
    oblem, 6
va, 3, 6
x, 3, 6
```