#|

Copyright (C) 1994 by Alex Bronstein and Carolyn Talcott. All Rights
Reserved.

You may copy and distribute verbatim copies of this Nqthm-1992 event script as
you receive it, in any medium, including embedding it verbatim in derivative
works, provided that you conspicuously and appropriately publish on each copy
a valid copyright notice "Copyright (C) 1994 by Alex Bromnstein and Carolyn
Talcott. All Rights Reserved."

NO WARRANTY

Alex Bronstein and Carolyn Talcott PROVIDE ABSOLUTELY NO WARRANTY. THE EVENT
SCRIPT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT WILL Alex Bronstein or Carolyn Talcott BE LIABLE TO YOU FOR ANY
DAMAGES, ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

| #

EVENT: Start with the library "mlp" using the compiled version.

; acc_CSXAO00.bm

; . definition of circuit (only 1 here) [assumes stringadd.bm]

; — no hint: FAIL

; — w/ TOPOR: OK!

; . proof of equivalence w/ Spec(s): OK!

; NOTE: the above comments date back to the hand-generation time, when we

; were still trying to FIND a way to feed things to BM. They are kept
; here for historical purposes only...

;53 DEFINITION OF CIRCUIT:
#|

(setq sysd ’(SY-ACC (x)
(Yacc S Plus x Yacc?2)
(Yacc2 R 0 Yacc)

))

(setq acc_CSXA00 ’(

-rsb |#

; BM DEFINITIONS and A2 LEMMAS, generated by BMSYSD:
; comb_plus.bm: Plus combinational element.

; U7T-DONE

5 no character function definition since BM already knows about Plus..

; Everything below generated by: (bmcomb ’plus ’() ’(x y))

DEFINITION:

s-plus (z, y)
= if empty (z) then E

else a (s-plus (p (z), p(y)), 1(z) + 1(y)) endif

;3 A2-Begin-S-PLUS

THEOREM: a2-empty-s-plus
empty (s-plus (z, y)) = empty (z)

THEOREM: a2-e-s-plus
(s-plus (z, y) = E) = empty ()

THEOREM: a2-lp-s-plus
len (s-plus (z, y)) = len ()

THEOREM: a2-lpe-s-plus
eqlen (s-plus (z, y), z)

THEOREM: a2-ic-s-plus
(len (2) = len (y))
— (splus (i (ca,), i (cy, 1) = i (co + ey, s-plus (z, 1))

THEOREM: a2-lc-s-plus
(= empty (z)) — (I(s-plus (z, y)) = (1(z) + 1(y)))

THEOREM: a2-pc-s-plus
p (s-plus (2, y)) = s-plus (p (z), p (y))

THEOREM: a2-hc-s-plus
((= empty (z)) A (len (z) = len(y)))
— (h(s-plus(z, y)) = (h(z) + h(y)))

THEOREM: a2-bc-s-plus
(len (z) = len (y)) — (b (s-plus (z, y)) = s-plus (b (z), b(y)))

THEOREM: a2-bnc-s-plus
(len (z) = len(y)) — (bn (n, s-plus (z, y)) = s-plus (bn (n, z), bn(n, y)))

;3 A2-End-S-PLUS

; eof:comb_plus.bm

DEFINITION:

topor-sy-acc (In)

= if In = ’yacc then 1
elseif In = >yacc2 then 0
else 0 endif

DEFINITION:
sy-acc (In, x)
= if In = ’>yacc then s-plus(z, sy-acc (’yacc2, z))
elseif In = ’yacc2
then if empty (z) then E
else i (0, sy-acc (*yacc, p(z))) endif
else sfix (z) endif

;3 A2-Begin-SY-ACC

THEOREM: a2-empty-sy-acc
empty (sy-acc (In, z)) = empty (z)

THEOREM: a2-e-sy-acc
(sy-acc (In,) = E) = empty ()

THEOREM: a2-lp-sy-acc
len (sy-acc (In, z)) = len (z)

THEOREM: a2-lpe-sy-acc
eqlen (sy-acc (In,),)

THEOREM: a2-pc-sy-acc
b (sy-ace (In,) = sy-ace (In, p ()

;3 A2-End-SY-ACC

;33 SPEC definition (hand, of course):

DEFINITION:
numer-acc (z)
= if empty (z) then 0
else numer-acc (p (z)) + 1(z) endif

; this is the standard extension from last-char-fun to MLP-string-fun.

DEFINITION:
spec-acc ()
= if empty (z) then E
else a (spec-acc (p (z)), numer-acc (z)) endif

;35 Circuit CORRECTNESS:

; Acc-correct-ax-help makes the proof of acc_correct_ax much easier, but is
; not necessary.

; (prove-lemma acc-correct-ax-help (rewrite)

; (implies (not (empty x))

; (equal (L (sy-acc ’yacc x))

; (plus (numer-acc (P x)) (L x))))

; ((induct (induct-P x))

; (expand (sy-acc ’yacc x))

;)

)

; Acc-correct-ax is a '"predicative correctness statement", i.e. what we would
; do if we didn’t have functional equality as a specification method, but

; instead used a purely axiomatic approach.

; BM finds the proof on its own, but still needs quite a few generalizatioms...

THEOREM: acc-correct-ax
(— empty (z)) — (1(sy-acc (’yacc, z)) = numer-acc (z))

; to go to a functional equality once we have the "last" (ax) statement is
; a trivial induction, if we start out with an P-L split which is unnatural
; for BM, so we force it w/ a USE hint of A-p-l-split

THEOREM: a-p-l-split
(= empty (z))
— (sy-acc(’yacc, z) = a(p (sy-acc (’yacc, z)), 1(sy-acc (’yacc, z))))

THEOREM: acc-correct
sy-acc (’yacc, z) = spec-acc (z)

; eof: acc_CSXAO0O.bm
; —rsb))

Index

a,2,4,5
a-p-l-split, 5
a2-bc-s-plus, 3
a2-bne-s-plus, 3
a2-e-s-plus, 2
a2-e-sy-acc, 3
a2-empty-s-plus, 2
a2-empty-sy-acc, 3
a2-hc-s-plus, 3
a2-ic-s-plus, 2
a2-lc-s-plus, 2
a2-1p-s-plus, 2
a2-1p-sy-acc, 3
a2-lpe-s-plus, 2
a2-lpe-sy-acc, 3
a2-pc-s-plus, 2
a2-pc-sy-acc, 3
acc-correct, 5
acc-correct-ax, 4

b, 3
bn, 3

e, 24
empty, 2-5
eqlen, 2, 3

h, 3
i,2,3

1,2,4,5
len, 2, 3

numer-acc, 4
P, 2-5

s-plus, 2, 3
sfix, 3
spec-acc, 4, 5
sy-acc, 3-H

topor-sy-acc, 3

