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Copyright (C) 1994 by Alex Bronstein and Carolyn Talcott. All Rights
Reserved.

You may copy and distribute verbatim copies of this Nqthm-1992 event script as
you receive it, in any medium, including embedding it verbatim in derivative
works, provided that you conspicuously and appropriately publish on each copy
a valid copyright notice "Copyright (C) 1994 by Alex Bronstein and Carolyn
Talcott. All Rights Reserved."

NO WARRANTY

Alex Bronstein and Carolyn Talcott PROVIDE ABSOLUTELY NO WARRANTY. THE EVENT
SCRIPT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT WILL Alex Bronstein or Carolyn Talcott BE LIABLE TO YOU FOR ANY
DAMAGES, ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.
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Event: Start with the library "mlp" using the compiled version.

; funacc.bm
; Circuit is similar to acc, but uses ARBITRARY CHAR-FUN (arity 2) instead of
; addition. It’s expressed in CSXA form. Proving it guarantees (at the BM
; level) that the theorems stated in bm_syds_2ndorder.txt are indeed true
; in general, although of course, BM can not instantiate them.
;

;;; DEFINITION OF CIRCUIT:
#|
(setq sysd ’(sy-funacc (x)
(Yfun S Fun2 x Yreg)
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(Yreg R ’finit Yfun)
))

(setq funacc ’(
|#
; BM DEFINITIONS and A2 LEMMAS, generated by BMSYSD:
; comb_fun2.bm: Fun2 combinational element
; U7-DONE

; arbitrary Char-Fun of arity 2:

Event: Introduce the function symbol fun2 of 2 arguments.

; Everything below generated by: (bmcomb ’Fun2 ’() ’(x y))

Definition:
s-fun2 (x , y)
= if empty (x ) then e

else a (s-fun2 (p (x ), p (y)), fun2 (l (x ), l (y))) endif

;; A2-Begin-S-FUN2

Theorem: a2-empty-s-fun2
empty (s-fun2 (x , y)) = empty (x )

Theorem: a2-e-s-fun2
(s-fun2 (x , y) = e) = empty (x )

Theorem: a2-lp-s-fun2
len (s-fun2 (x , y)) = len (x )

Theorem: a2-lpe-s-fun2
eqlen (s-fun2 (x , y), x )

Theorem: a2-ic-s-fun2
(len (x ) = len (y))
→ (s-fun2 (i (c x , x ), i (c y , y)) = i (fun2 (c x , c y), s-fun2 (x , y)))

Theorem: a2-lc-s-fun2
(¬ empty (x )) → (l (s-fun2 (x , y)) = fun2 (l (x ), l (y)))

Theorem: a2-pc-s-fun2
p (s-fun2 (x , y)) = s-fun2 (p (x ), p (y))
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Theorem: a2-hc-s-fun2
((¬ empty (x )) ∧ (len (x ) = len (y)))
→ (h (s-fun2 (x , y)) = fun2 (h (x ), h (y)))

Theorem: a2-bc-s-fun2
(len (x ) = len (y)) → (b (s-fun2 (x , y)) = s-fun2 (b (x ), b (y)))

Theorem: a2-bnc-s-fun2
(len (x ) = len (y)) → (bn (n, s-fun2 (x , y)) = s-fun2 (bn (n, x ), bn (n, y)))

;; A2-End-S-FUN2

; eof:comb_fun2.bm

Definition:
topor-sy-funacc (ln)
= if ln = ’yfun then 1

elseif ln = ’yreg then 0
else 0 endif

Definition:
sy-funacc (ln, x )
= if ln = ’yfun then s-fun2 (x , sy-funacc (’yreg, x ))

elseif ln = ’yreg
then if empty (x ) then e

else i (’finit, sy-funacc (’yfun, p (x ))) endif
else sfix (x ) endif

;; A2-Begin-SY-FUNACC

Theorem: a2-empty-sy-funacc
empty (sy-funacc (ln, x )) = empty (x )

Theorem: a2-e-sy-funacc
(sy-funacc (ln, x ) = e) = empty (x )

Theorem: a2-lp-sy-funacc
len (sy-funacc (ln, x )) = len (x )

Theorem: a2-lpe-sy-funacc
eqlen (sy-funacc (ln, x ), x )

Theorem: a2-pc-sy-funacc
p (sy-funacc (ln, x )) = sy-funacc (ln, p (x ))
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;; A2-End-SY-FUNACC

;;; SPEC definition:

Definition:
numer-funacc (x )
= if empty (x ) then ’finit

else fun2 (numer-funacc (p (x )), l (x )) endif

; this is the standard extension from last-char-fun to MLP-string-fun.

Definition:
spec-funacc (x )
= if empty (x ) then e

else a (spec-funacc (p (x )), numer-funacc (x )) endif

;;; Circuit CORRECTNESS:

; We now declare Fun2 to be COMMUTATIVE because the definition of NUMER-FUNACC
; funs the 2 arguments in the opposite order than the sysd, and hence
; commutativity is required. Alternatively, we could change NUMER-FUNACC’s
; definition. (This has been tested and runs.)

Axiom: fun2-comm
fun2 (u, v) = fun2 (v , u)

; Funacc-correct-ax is a "predicative correctness statement",i.e. what we would
; do if we didn’t have functional equality as a specification method, but
; instead used a purely axiomatic approach.
; NOTE: the simplicity of the proof should imply that disabling the
; char-function in specific instances of accumulator syds should help...

Theorem: funacc-correct-ax
(¬ empty (x )) → (l (sy-funacc (’yfun, x )) = numer-funacc (x ))

; to go to a functional equality once we have the "last" (ax) statement is
; a trivial induction, if we start out with an P-L split which is unnatural
; for BM, so we force it w/ a USE hint of A-p-l-split . See also THETA.BM .

Theorem: a-p-l-split
(¬ empty (x ))
→ (sy-funacc (’yfun, x )

= a (p (sy-funacc (’yfun, x )), l (sy-funacc (’yfun, x ))))
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Theorem: funacc-correct
sy-funacc (’yfun, x ) = spec-funacc (x )

; eof: funacc.bm
;))
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