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Event: Start with the initial thm theory.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; TH_ARITHMETIC.BM
;;;
;;; This file contains natural number arithmetic lemmas for BM.
;;;

;; FUNDAMENTAL:

; standard Nint-induction, which sometime we want to force
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Definition:
ari-add1-induct (n)
= if n ' 0 then t

else ari-add1-induct (n − 1) endif

;; PLUS and TIMES: a lot of the basic stuff is in "linear
;; arithmetic" already.

Theorem: ari-plus-0-ident-r
(x + 0) = fix (x )

Theorem: ari-plus-0-ident-l
(0 + x ) = fix (x )

Theorem: ari-times-0-cancel-r
(y ∗ 0) = 0

Theorem: ari-times-0-cancel-l
(0 ∗ y) = 0

; Note: each of the 4 previous lemmas has a corresponding strong
; version, which is more powerful, since it trivially implies the
; weak versions. But they are too AGRESSIVE because they trigger
; EVERY TIME we have a PLUS/TIMES expression, and generate a case
; disjunction as to whether one of the arguments is ZEROP, which
; may be totally irrelevant to the proof at hand. In fact, in
; testing just this arithmetic package with the strong or the weak
; axioms, and observing the proofs, the conclusion was that the
; proofs based on the weak theorems never reestablished the strong
; versions (as intermediate lemmas) and the theorems only triggered
; when they were guaranteed to be relevant, yielding fewer or equal
; number of case disjunctions, and significantly faster proofs.
; We therefore prove the strong theorems but keep them disabled, to
; be enabled explicitly when needed.

Theorem: ari-plus-0-ident-r2
(z ' 0) → ((x + z ) = fix (x ))

Event: Disable ari-plus-0-ident-r2.

Theorem: ari-plus-0-ident-l2
(z ' 0) → ((z + x ) = fix (x ))

Event: Disable ari-plus-0-ident-l2.
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Theorem: ari-times-0-cancel-r2
(z ' 0) → ((y ∗ z ) = 0)

Event: Disable ari-times-0-cancel-r2.

Theorem: ari-times-0-cancel-l2
(z ' 0) → ((z ∗ y) = 0)

Event: Disable ari-times-0-cancel-l2.

; now onto more properties..

Theorem: ari-times-0-equal
((x ∗ y) = 0) = ((x ' 0) ∨ (y ' 0))

Theorem: ari-times-1-ident
(x ∗ 1) = fix (x )

Theorem: ari-times-add1
(z ∈ N) → ((y + (y ∗ z )) = (y ∗ (1 + z )))

; WARNING: ARI-times-commute sometime loops, so we leave it
; disabled.

Theorem: ari-times-commute
(x ∗ y) = (y ∗ x )

Event: Disable ari-times-commute.

Theorem: ari-times-plus-distribute
((x ∗ x1 ) + (x ∗ x2 )) = (x ∗ (x1 + x2 ))

; WARNING: ARI-lessp-sub1 looped infinitely once (in remainder
; context). It does not seem to be used anywhere. So we leave it
; DISABLEd for ever.

Theorem: ari-lessp-sub1
((p 6' 0) ∧ (q 6' 0)) → (((p − 1) < (q − 1)) = (p < q))

Event: Disable ari-lessp-sub1.
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Theorem: ari-lessp-plus
((n + p) < (n + q)) = (p < q)

Theorem: ari-lessp-times
(n 6' 0) → (((n ∗ p) 6< (n ∗ q)) = (p 6< q))

Theorem: ari-lessp-times2
(n 6' 0) → (((n ∗ p) < (n ∗ q)) = (p < q))

;; DIFFERENCE:

Theorem: ari-diff-less-0
(a 6< b) → ((b − a) = 0)

Theorem: ari-lessp-diff
(0 < (p − q)) = (q < p)

Theorem: ari-diff-not-0
((x − y) = 0) = (y 6< x )

Theorem: ari-diff-0
(x ' 0) → ((x − y) = 0)

Theorem: ari-times-diff-distribute
((x ∗ x1 ) − (x ∗ x2 )) = (x ∗ (x1 − x2 ))

Theorem: ari-diff-x-x-0
(x − x ) = 0

; Difference recurses on both arguments, but sometime we need to
; recurse just on the first one.
; Note that this lemma also appears in Hunt’s thesis (rn 451),
; p.119, but with "NIL" as BM-use. It may interfere with regular
; diff-induction, in which case we’ll disable it locally, or more
; drastically, disable here, and enable locally.

Theorem: ari-diff-add1
((1 + n) − p)
= if p < (1 + n) then 1 + (n − p)

else 0 endif

;; REMAINDER:

; ARI-lessp-remainder is fundamental.
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Theorem: ari-lessp-remainder
(p 6' 0) → ((n mod p) < p)

; Note that the following phrasing found in Hunt’s thesis, p.120,
; but even though it seems more powerful, it failed to allow BM to
; deduce a contradiction from (not (equal (rem n 4) 0..3)) so we
; stick with ours.
;(prove-lemma ARI-lessp-remainder (rewrite generalize)
;(equal (lessp (remainder n p) p)
; (not (zerop p)))
;)

; Remainder recurses on both arguments, but sometime we need to
; recurse just on the first one.

Theorem: ari-remainder-add1
(p 6' 0)
→ (((1 + n) mod p)

= if (n mod p) = (p − 1) then 0
else 1 + (n mod p) endif)

; This more specific version of the same in the case of remainder
; by 2 is true and provable, but does not help anything. We leave
; it commented out, for future generations...
;
;(prove-lemma ARI-remainder-2-not (rewrite)
;(implies (and (numberp n) (numberp r))
; (equal (not (equal (remainder n 2) r))
; (if (equal r 0) (equal (remainder n 2) 1)
; (if (equal r 1) (equal (remainder n 2) 0)
; T))))
;)

;;; eof: th_arithmetic.bm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; STRINGADD.BM: string theory with <add,past,last> shell for BM.
;;;
;;; The normalization we are trying to achieve with all the basic
;;; theorems is: I (all the way to the outside)... , then A...,
;;; then P & L (all the way in).
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;;;
;;; Note that all the H/B stuff only comes into real play with
;;; pipelines. The rules of interaction with base constructors are
;;; defined in the H/B theory and a bit fuzzy (they came in late
;;; in the work, and are a bit ad-hoc).
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; String type definition:
; constructor: A, destructors: P, L, empty string: (e).

Event: Add the shell a, with bottom object function symbol e, with recog-
nizer function symbol stringp, and 2 accessors: p, with type restriction (one-of
stringp) and default value e; l , with type restriction (none-of) and default value
e.

;PN: iterations of the P constructor, useful in specification, and
; maybe in proofs. Note however that in hand proofs we use it
; only as a macro, whereas the general definition is recursive
; and hence may not always be expanded appropriately by BM.
; Beware...

Definition:
pn (n, x )
= if n ' 0 then x

else pn (n − 1, p (x )) endif

; Empty: non-strings are treated as empty, which is a standard
; BM trick.

Definition: empty (x ) = ((¬ stringp (x )) ∨ (x = e))

; These 3 lemmas allow running w/ empty DISABLED 99% of the time,
; winning big.

Theorem: str-empty-p
empty (x ) → empty (p (x ))

; STR-Empty-Stringp was intended to deal w/ the silly case brought
; on by the (inappropriate when Empty disabled) P/L elimination
; theorem. Instead it seems to be a LOSER: helping its purpose
; rarely, and triggering all over the place:
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;(prove-lemma STR-Empty-Stringp (rewrite)
;(implies (not (empty x))
; (stringp x))
;)

Theorem: str-empty-count
(¬ empty (x )) → (count (p (x )) 6= count (x ))

; STR-P-L-Elim provides an elimination more suitable to running
; w/ empty disabled, than the shell P-L-Elim. %%% BUT CURRENTLY BM
; REJECTS IT ON GROUNDS OF NOT BEING ABLE TO HANDLE MANY ELIM
; LEMMAS FOR ONE DESTRUCTOR. %%%
;
;(prove-lemma STR-P-L-Elim (ELIM)
;(implies (not (empty x))
; (equal (A (P x) (L x))
; x))
;)

; Late decision, but helpful nonetheless:

Event: Disable empty.

Definition:
len (x )
= if empty (x ) then 0

else 1 + len (p (x )) endif

; EQLEN was suggested by Shankar as a way to push BM toward a
; better, richer induction scheme.

Definition:
eqlen (x , y)
= if empty (x ) ∧ empty (y) then t

elseif empty (x ) ∨ empty (y) then f
else eqlen (p (x ), p (y)) endif

; the idea is that EQLEN(x,y) <=> |x| = |y| which can be proved,
; but should not be used in general..

Theorem: eqlen-is-equal-len
eqlen (x , y) = (len (x ) = len (y))
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Event: Disable eqlen-is-equal-len.

; EQLEN-EMPTY is a KEY inference about EQLEN .

Theorem: eqlen-empty
eqlen (x , y) → (empty (x ) = empty (y))

;; Derived constructors:

Definition:
i (u, x )
= if empty (x ) then a (e, u)

else a (i (u, p (x )), l (x )) endif

Definition:
h (x )
= if empty (x ) then e

elseif empty (p (x )) then l (x )
else h (p (x )) endif

Definition:
b (x )
= if empty (x ) then e

elseif empty (p (x )) then e
else a (b (p (x )), l (x )) endif

; Bn is the iteration of B. Same warnings as for Pn in
; th_stringadd.bm apply. Note however that for Pn we used a tail
; recursive (more efficient) def. whereas here we use a fully
; recursive def, less efficient, but usually easier to prove things
; about, since x is fixed in the recursion. (Clearly, we got a
; little bit smarter in the many many months which separate the
; definition of Pn and Bn...)

Definition:
bn (n, x )
= if n ' 0 then x

else b (bn (n − 1, x )) endif

;;; Fundamental properties of the THEORY of STRINGS; all names
;;; prefixed w/ "STR".

;; NOT-EMPTY theorems, which clearly need to know about empty...:
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Theorem: str-not-empty-a
¬ empty (a (x , u))

; the next 2 lemmas say almost the same thing, but both facts are
; helpful to BM

Theorem: str-not-e-i
i (u, x ) 6= e

Theorem: str-not-empty-i
¬ empty (i (u, x ))

;; key commutativity/distributivity properties of A/P/L with I:

; STR-A-I should never coexist with I as they will loop.

Theorem: str-a-i
a (i (u, x ), v) = i (u, a (x , v))

Event: Disable str-a-i.

; one additional lemma which is useful for running with I disabled
; is:

Theorem: str-i-e
i (u, e) = a (e, u)

; The 2 theorems STR-P-I and STR-L-I can be written more
; "powerfully": however they trigger too "agressively" for my
; taste, and cause case disjunctions too early at times. So in
; general I keep the strong versions disabled.
; 2/4/89 note: that comment was written when the "2" versions
; where physically AFTER the weak versions. Now that they’re
; before, we may be able to leave them enabled all the time, since
; BM will try the non-disjunctive rules first...

Theorem: str-p-i2
p (i (u, x ))
= if empty (x ) then e

else i (u, p (x )) endif

Event: Disable str-p-i2.
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Theorem: str-l-i2
l (i (u, x ))
= if empty (x ) then u

else l (x ) endif

Event: Disable str-l-i2.

; also, because of Fundamental Remark in THETA-PRF-35, need
; explicit bottom cases:

Theorem: str-p-i-e
empty (x ) → (p (i (u, x )) = e)

Theorem: str-p-i
(¬ empty (x )) → (p (i (u, x )) = i (u, p (x )))

Theorem: str-l-i-e
empty (x ) → (l (i (u, x )) = u)

Theorem: str-l-i
(¬ empty (x )) → (l (i (u, x )) = l (x ))

;; properties (and assorted kludges) of LEN:

; STR-len0-empty helps, and the zero result is always re-obtainable
; as long as EMPTY and LEN are enabled.
; Note: we tried to also have the symmetric rule:
; (equal (equal 0 (len x)) (empty x))
; but 1: BM warned us it was useless, and 2: we tried it and it
; was useless.

Theorem: str-len0-empty
(len (x ) = 0) = empty (x )

; on rare occasions we may need the symmetric:
;(prove-lemma STR-empty-len0 (rewrite)
;(equal (empty x)
; (equal (len x) 0))
;)
; but so far the only time we thought it might help (in PPLFadd,
; bypassing the impotent use of eq-len hyps by BM) it did not, so..

; STR-len-eq-empty is another symptom of us bad EQLEN handling...
; Also, it’s only useful w/ LEN disabled, of course.
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Theorem: str-len-eq-empty
(len (x ) = len (y)) → ((empty (y) = empty (x )) = t)

; this back-chaining helps on RARE occasions when you need think:
; "x can’t be empty, we know its length is something (>0)", enable
; it then.
; Note that if you can disable len when you use it, it can help
; a lot...

Theorem: str-not-empty-len
(0 < len (x )) → (¬ empty (x ))

Event: Disable str-not-empty-len.

; STR-len-P is a hack for LEN in "backwards" contexts, loops
; w/ len, of course.

Theorem: str-len-p
(0 < len (x )) → (len (p (x )) = (len (x ) − 1))

Event: Disable str-len-p.

; This is also an "anti-definition" which is useful when we want to
; prevent LEN being around because of mindless case disjunctions...

Theorem: str-add1-len-p
(¬ empty (x )) → ((1 + len (p (x ))) = len (x ))

Event: Disable str-add1-len-p.

; This should be used as last resort to force a case disjunction.
; Using it globally is like having L-I2 and P-I2 around: they
; trigger too agressively, preventing some bigger-formula thms to
; trigger, and failing.
; When used, LEN should be disabled, as they will loop together.

Theorem: str-add1-len-p2
(1 + len (p (x )))
= if empty (x ) then 1

else len (x ) endif

Event: Disable str-add1-len-p2.
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; Another hack which we may use instead of LEN is:
; Note however, that when testing on IC_times, it resulted to
; a passage to len0 to reduce to T instead of arithmetic, taking a
; lot more time, and different cases, but same total # cases.

Theorem: str-len-e
empty (x ) → (len (x ) = 0)

Event: Disable str-len-e.

; This is yet another hack needed to run with LEN disabled. It’s
; left on all the time because it won’t trigger much.

Theorem: str-len-1
((¬ empty (x )) ∧ empty (p (x ))) → ((1 = len (x )) = t)

; STR-len-lessp-1-empty: general effect? doesn’t hurt...

Theorem: str-len-lessp-1-empty
(len (x ) < 1) = empty (x )

Theorem: str-len-i
len (i (u, x )) = (1 + len (x ))

Theorem: str-len-p-i
len (p (i (u, x ))) = len (x )

Theorem: str-len-i-p
(¬ empty (x )) → (len (i (u, p (x ))) = len (x ))

; STR-equal-len-P actually DOES help during IC-S-Plus. It may hurt
; under other circumstances, so beware... Note also that the rule
; has to be written with the extra " equal ... t" so as not to be
; confused with an attempt to rewrite "len P x" .

Theorem: str-equal-len-p
(len (x ) = len (y)) → ((len (p (x )) = len (p (y))) = t)

;; Basic Properties of H/B , essentially what we would have gotten
;; in a shell.
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Theorem: str-b-decreases
(¬ empty (x )) → (count (b (x )) < count (x ))

; The reverse of the following theorem would make a fine H/B ELIM
; thm if we ever need it.

Theorem: str-i-h-b
(¬ empty (x )) → (i (h (x ), b (x )) = x )

Theorem: str-h-i
h (i (u, x )) = u

; STR-B-I should be changed to return: if (empty x) (e) x .
; Note: we could also use SFIX here, but we’d have to
; leave it enabled all the time, which so far we have avoided.

Theorem: str-b-i
b (i (u, x ))
= if stringp (x ) then x

else e endif

; STR-Empty-B is useful because it eliminates a B, and links case
; disjunctions.

Theorem: str-empty-b
empty (b (x )) = empty (p (x ))

; STR-P-B is our usual P pushthrough

Theorem: str-p-b
p (b (x )) = b (p (x ))

; STR-L-B doesn’t require induction, but it’s sometimes useful..

Theorem: str-l-b
(¬ empty (b (x ))) → (l (b (x )) = l (x ))

; STR-Bn-1 for some weird reason, BM doesn’t get that by itself...

Theorem: str-bn-1
bn (1, x ) = b (x )

; STR-Bn-E: if we used fix, we would have the more general:
; if (empty x) ...

13



Theorem: str-bn-e
bn (n, e) = e

Theorem: str-p-bn
p (bn (n, x )) = bn (n, p (x ))

; STR-B-Bn-I may not be in its most general form, and we pay for
; the fact that for n=0 we use "x" instead of sfix x:

Theorem: str-b-bn-i
stringp (x ) → (b (bn (n, i (u, x ))) = bn (n, x ))

;; properties of H/B w/ Len, probably should be copied largely
;; from above properties of L/P w/ Len.

; We have the weak version below, but it didn’t trigger in
; len-Stut-R since we don’t have a condition on empty(Stut-R x y).
; Keeping this one higher should have the right effect of only
; introducing the case disjunction when needed; it may also do it
; too much...

Theorem: str-len-b2
len (b (x ))
= if empty (x ) then 0

else len (x ) − 1 endif

Theorem: str-len-b
(¬ empty (x )) → (len (b (x )) = (len (x ) − 1))

; STR-len-Bn needs ARIthmetic properties... and is the first such
; property which caused ARIthmetic to be loaded before string
; theory.

Theorem: str-len-bn
len (bn (n, x )) = (len (x ) − n)

; STR-Bn-empty not necessarily phrased in the most universally
; useful way.. Probably should be able to disable Bn here...

Theorem: str-bn-empty
empty (bn (n, x )) = (len (x ) < (1 + n))

14



; STR-L-Bn needs STR-Bn-Empty, hence its position here.

Theorem: str-l-bn
(¬ empty (bn (n, x ))) → (l (bn (n, x )) = l (x ))

;;; END OF FUNDAMENTAL PROPERTIES.

;; at this point I is completely characterized, and since BM
;; rewrites formulas inside-out, its definition goes against our
;; normalization, hence:

Event: Disable i.

Event: Enable str-a-i.

;; and ditto, in general, for H and B:

Event: Disable h.

Event: Disable b.

; at this point we should rarely have to use LEN’s definition
; anymore:

Event: Disable len.

; ??? Maybe we should enable: (enable STR-add1-len-P) here

; SFIX is the "type fixer" for BM. We don’t really use it much,
; the only place is in SYSD definitions for the (uninteresting
; case) when the line variable is none defined, and we could
; use S-Id instead, but I think it would give it too much
; meaning.
; old: (defn sfix (x) (if (stringp x) x (e)))
; new: proved equivalent to old, and computationally no worse, and
; better suited to running with empty disabled:

Definition:
sfix (x )
= if empty (x ) then e

else x endif

15



; BM doesn’t figure that out right away for new def, so...

Theorem: sfix-stringp
stringp (sfix (x ))

; We prove the key A2 properties for sfix, just like a
; combinational, so they don’t become an issue in A2-SYSD proofs..

Theorem: a2-e-sfix
(sfix (x ) = e) = empty (x )

Theorem: a2-empty-sfix
empty (sfix (x )) = empty (x )

Theorem: a2-lp-sfix
len (sfix (x )) = len (x )

Theorem: a2-lpe-sfix
eqlen (sfix (x ), x )

Theorem: a2-ic-sfix
sfix (i (c x , x )) = i (c x , sfix (x ))

Theorem: a2-lc-sfix
(¬ empty (x )) → (l (sfix (x )) = l (x ))

; HISTORICAL NOTE: the fact that we need EMPTY for A2-PC-Sfix is
; what held us back so long in A2-PC-Sysds, forcing us to allow
; EMPTY there, increasing entropy beyond belief...

Theorem: a2-pc-sfix
p (sfix (x )) = sfix (p (x ))

Theorem: a2-hc-sfix
(¬ empty (x )) → (h (sfix (x )) = h (x ))

Theorem: a2-bc-sfix
b (sfix (x )) = sfix (b (x ))

Theorem: a2-bnc-sfix
bn (n, sfix (x )) = sfix (bn (n, x ))

; for all thinkable purposes, sfix is sufficiently characterized:
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Event: Disable sfix.

; eof: th_stringadd.bm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; TH_STRSPEC.BM: additional string theory with string things
;;; needed in SPECIFICATIONS, as opposed to just sysd
;;; definitions. This could just have been appended to
;;; th_stringadd.bm, but it doesn’t feel right, and has some
;;; automatically generated pieces, so it didn’t look as
;;; "bottom" as Stringadd.
;;;
;;; Functions: S-IF, S-AND, S-OR, S-NOT, S-EQUAL, S-CONST, S-CONSTL
;;; Predicate: S-BOOLP
;;; Miscellaneous boolean identities extended to the S versions.
;;;
;;; Induction scheme induct-P,P2,P3,P4.
;;;
;;; BEWARE (when updating with new versions of Sugar for
;;; combinationals): Most A2’s are automatically generated by
;;; Sugar, EXCEPT where expressely noted in the comments, in
;;; particular for: AND, OR, CONSTL .
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; S-IF is just the STAR of the logical If-Then-Else. Paillet uses
;; it a lot.
;; The code below is Sugar generated by: (bmcomb ’if ’() ’(x y z))

Definition:
s-if (x , y , z )
= if empty (x ) then e

else a (s-if (p (x ), p (y), p (z )),
if l (x ) then l (y)
else l (z ) endif) endif

;; A2-Begin-S-IF
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Theorem: a2-empty-s-if
empty (s-if (x , y , z )) = empty (x )

Theorem: a2-e-s-if
(s-if (x , y , z ) = e) = empty (x )

Theorem: a2-lp-s-if
len (s-if (x , y , z )) = len (x )

Theorem: a2-lpe-s-if
eqlen (s-if (x , y , z ), x )

Theorem: a2-ic-s-if
((len (x ) = len (y)) ∧ (len (y) = len (z )))
→ (s-if (i (c x , x ), i (c y , y), i (c z , z ))

= i (if c x then c y
else c z endif,
s-if (x , y , z )))

Theorem: a2-lc-s-if
(¬ empty (x ))
→ (l (s-if (x , y , z ))

= if l (x ) then l (y)
else l (z ) endif)

Theorem: a2-pc-s-if
p (s-if (x , y , z )) = s-if (p (x ), p (y), p (z ))

Theorem: a2-hc-s-if
((¬ empty (x )) ∧ ((len (x ) = len (y)) ∧ (len (y) = len (z ))))
→ (h (s-if (x , y , z ))

= if h (x ) then h (y)
else h (z ) endif)

Theorem: a2-bc-s-if
((len (x ) = len (y)) ∧ (len (y) = len (z )))
→ (b (s-if (x , y , z )) = s-if (b (x ), b (y), b (z )))

Theorem: a2-bnc-s-if
((len (x ) = len (y)) ∧ (len (y) = len (z )))
→ (bn (n, s-if (x , y , z )) = s-if (bn (n, x ), bn (n, y), bn (n, z )))

;; A2-End-S-IF

;; S-AND is just the STAR of the logical AND, put in because of
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;; Paillet.
;; The code below is Sugar generated by: (bmcomb ’AND ’() ’(x y))
;; Note: we reenable AND by hand everywhere sugar disables it,
;; because it’s necessary at least for IC and LC.

Definition:
s-and (x , y)
= if empty (x ) then e

else a (s-and (p (x ), p (y)), l (x ) ∧ l (y)) endif

;; A2-Begin-S-AND

Theorem: a2-empty-s-and
empty (s-and (x , y)) = empty (x )

Theorem: a2-e-s-and
(s-and (x , y) = e) = empty (x )

Theorem: a2-lp-s-and
len (s-and (x , y)) = len (x )

Theorem: a2-lpe-s-and
eqlen (s-and (x , y), x )

Theorem: a2-ic-s-and
(len (x ) = len (y))
→ (s-and (i (c x , x ), i (c y , y)) = i (c x ∧ c y , s-and (x , y)))

Theorem: a2-lc-s-and
(¬ empty (x )) → (l (s-and (x , y)) = (l (x ) ∧ l (y)))

Theorem: a2-pc-s-and
p (s-and (x , y)) = s-and (p (x ), p (y))

Theorem: a2-hc-s-and
((¬ empty (x )) ∧ (len (x ) = len (y)))
→ (h (s-and (x , y)) = (h (x ) ∧ h (y)))

Theorem: a2-bc-s-and
(len (x ) = len (y)) → (b (s-and (x , y)) = s-and (b (x ), b (y)))

Theorem: a2-bnc-s-and
(len (x ) = len (y)) → (bn (n, s-and (x , y)) = s-and (bn (n, x ), bn (n, y)))
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;; A2-End-S-AND

;; S-OR is just the STAR of the logical OR, put in because of
;; Paillet.
;; The code below is Sugar generated by: (bmcomb ’OR ’() ’(x y))
;; Note: just like for AND we reenable OR by hand everywhere
;; because it’s necessary at least for IC and LC.

Definition:
s-or (x , y)
= if empty (x ) then e

else a (s-or (p (x ), p (y)), l (x ) ∨ l (y)) endif

;; A2-Begin-S-OR

Theorem: a2-empty-s-or
empty (s-or (x , y)) = empty (x )

Theorem: a2-e-s-or
(s-or (x , y) = e) = empty (x )

Theorem: a2-lp-s-or
len (s-or (x , y)) = len (x )

Theorem: a2-lpe-s-or
eqlen (s-or (x , y), x )

Theorem: a2-ic-s-or
(len (x ) = len (y))
→ (s-or (i (c x , x ), i (c y , y)) = i (c x ∨ c y , s-or (x , y)))

Theorem: a2-lc-s-or
(¬ empty (x )) → (l (s-or (x , y)) = (l (x ) ∨ l (y)))

Theorem: a2-pc-s-or
p (s-or (x , y)) = s-or (p (x ), p (y))

Theorem: a2-hc-s-or
((¬ empty (x )) ∧ (len (x ) = len (y)))
→ (h (s-or (x , y)) = (h (x ) ∨ h (y)))

Theorem: a2-bc-s-or
(len (x ) = len (y)) → (b (s-or (x , y)) = s-or (b (x ), b (y)))
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Theorem: a2-bnc-s-or
(len (x ) = len (y)) → (bn (n, s-or (x , y)) = s-or (bn (n, x ), bn (n, y)))

;; A2-End-S-OR

;; S-NOT is just the STAR of the logical NOT, put in because of
;; Paillet, but useful in tons of other places!
;; The code below is Sugar generated by: (bmcomb ’NOT ’() ’(x))

Definition:
s-not (x )
= if empty (x ) then e

else a (s-not (p (x )), ¬ l (x )) endif

;; A2-Begin-S-NOT

Theorem: a2-empty-s-not
empty (s-not (x )) = empty (x )

Theorem: a2-e-s-not
(s-not (x ) = e) = empty (x )

Theorem: a2-lp-s-not
len (s-not (x )) = len (x )

Theorem: a2-lpe-s-not
eqlen (s-not (x ), x )

Theorem: a2-ic-s-not
s-not (i (c x , x )) = i (¬ c x , s-not (x ))

Theorem: a2-lc-s-not
(¬ empty (x )) → (l (s-not (x )) = (¬ l (x )))

Theorem: a2-pc-s-not
p (s-not (x )) = s-not (p (x ))

Theorem: a2-hc-s-not
(¬ empty (x )) → (h (s-not (x )) = (¬ h (x )))

Theorem: a2-bc-s-not
b (s-not (x )) = s-not (b (x ))
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Theorem: a2-bnc-s-not
bn (n, s-not (x )) = s-not (bn (n, x ))

;; A2-End-S-NOT

;; S-EQUAL is just the STAR of the logical Equal. Paillet uses it
;; a lot.
;; The code below is Sugar generated by: (bmcomb ’equal ’() ’(x y))

Definition:
s-equal (x , y)
= if empty (x ) then e

else a (s-equal (p (x ), p (y)), l (x ) = l (y)) endif

;; A2-Begin-S-EQUAL

Theorem: a2-empty-s-equal
empty (s-equal (x , y)) = empty (x )

Theorem: a2-e-s-equal
(s-equal (x , y) = e) = empty (x )

Theorem: a2-lp-s-equal
len (s-equal (x , y)) = len (x )

Theorem: a2-lpe-s-equal
eqlen (s-equal (x , y), x )

Theorem: a2-ic-s-equal
(len (x ) = len (y))
→ (s-equal (i (c x , x ), i (c y , y)) = i (c x = c y , s-equal (x , y)))

Theorem: a2-lc-s-equal
(¬ empty (x )) → (l (s-equal (x , y)) = (l (x ) = l (y)))

Theorem: a2-pc-s-equal
p (s-equal (x , y)) = s-equal (p (x ), p (y))

Theorem: a2-hc-s-equal
((¬ empty (x )) ∧ (len (x ) = len (y)))
→ (h (s-equal (x , y)) = (h (x ) = h (y)))

Theorem: a2-bc-s-equal
(len (x ) = len (y)) → (b (s-equal (x , y)) = s-equal (b (x ), b (y)))
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Theorem: a2-bnc-s-equal
(len (x ) = len (y)) → (bn (n, s-equal (x , y)) = s-equal (bn (n, x ), bn (n, y)))

;; A2-End-S-EQUAL

;; S-CONST: CONSTANT combinational element, takes VALue as
;; parameter. Even though in most circuits this will be 0 or 1,
;; it makes no sense to hardwire it for BM.

Definition: const (val , u) = val

;we require at least one string argument (MLP sfuns)

; Everything until A2-End-S-CONST Sugar generated by:
; (bmcomb ’const ’(val) ’(x))

Definition:
s-const (val , x )
= if empty (x ) then e

else a (s-const (val , p (x )), const (val , l (x ))) endif

;; A2-Begin-S-CONST

Theorem: a2-empty-s-const
empty (s-const (val , x )) = empty (x )

Theorem: a2-e-s-const
(s-const (val , x ) = e) = empty (x )

Theorem: a2-lp-s-const
len (s-const (val , x )) = len (x )

Theorem: a2-lpe-s-const
eqlen (s-const (val , x ), x )

Theorem: a2-ic-s-const
s-const (val , i (c x , x )) = i (const (val , c x ), s-const (val , x ))

Theorem: a2-lc-s-const
(¬ empty (x )) → (l (s-const (val , x )) = const (val , l (x )))

Theorem: a2-pc-s-const
p (s-const (val , x )) = s-const (val , p (x ))
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Theorem: a2-hc-s-const
(¬ empty (x )) → (h (s-const (val , x )) = const (val , h (x )))

Theorem: a2-bc-s-const
b (s-const (val , x )) = s-const (val , b (x ))

Theorem: a2-bnc-s-const
bn (n, s-const (val , x )) = s-const (val , bn (n, x ))

;; A2-End-S-CONST

; Additional lemmas which give the key properties of S-CONST:

Theorem: l-sconst
(¬ empty (x )) → (l (s-const (val , x )) = val)

; Note that I-SConst remotely descends from the insadd experiment
; and the solution that David Goldschlag gave me to that problem
; then..

Theorem: i-sconst
(¬ empty (x )) → (i (val , s-const (val , p (x ))) = s-const (val , x ))

;; S-CONSTL is like S-Const, except that the length is given
;; numerically, and so the definition does NOT follow the standard
;; S- def. A2’s are therefore generated by hand.

Definition:
s-constl (val , n)
= if n ' 0 then e

else a (s-constl (val , n − 1), val) endif

; we need to prove the fundamental sequentiality properties of
; S-Const, which are significantly DIFFERENT from the standard,
; although I’ve kept the names since they FUNCTION identically.

Theorem: a2-e-s-constl
(s-constl (val , n) = e) = (n ' 0)

Theorem: a2-empty-s-constl
empty (s-constl (val , n)) = (n ' 0)
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Theorem: a2-lp-s-constl
len (s-constl (val , n)) = fix (n)

; no LPE of course

Theorem: a2-lc-s-constl
(n 6' 0) → (l (s-constl (val , n)) = val)

Theorem: a2-pc-s-constl
p (s-constl (val , n)) = s-constl (val , n − 1)

Theorem: a2-hc-s-constl
(n 6' 0) → (h (s-constl (val , n)) = val)

Theorem: a2-bc-s-constl
b (s-constl (val , n)) = s-constl (val , n − 1)

; A2-BNC-S-ConstL is a bit deep... We haven’t needed it anywhere,
; but we prove it just to show off! Yeeeahh!

Theorem: a2-bnc-s-constl
bn (n, s-constl (val , m)) = s-constl (val , m − n)

; Back in multadd.bm (Paillet#7) we noticed that S-ConstL was quite
; virulent and counter-productive, i.e. failed proofs expensively,
; so:

Event: Disable s-constl.

;; BOOLP:

; Note: we experimented w/ Hunt’s def: (or (truep u) (falsep u))
; and it doesn’t seem to make any difference whatsoever, so we
; stick with ours.

Definition: boolp (u) = ((u = t) ∨ (u = f))

Definition:
s-boolp (x )
= if empty (x ) then x = e

else boolp (l (x )) ∧ s-boolp (p (x )) endif
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; Sometime we just want this weaker fact around, and disabling
; S-boolp saves big.
; Note that S-boolp-P is true even without the hypothesis:
; (not (empty x)). The question is whether we want it to be applied
; in cases when that hyp. is not known...

Theorem: s-boolp-p
((¬ empty (x )) ∧ s-boolp (x )) → s-boolp (p (x ))

Event: Disable s-boolp-p.

;;; MISCELLANEOUS BOOLEAN IDENTITIES extended to S versions:

Theorem: s-and-x-x
s-boolp (x ) → (s-and (x , x ) = x )

Theorem: s-or-not-x-x
s-boolp (x ) → (s-or (s-not (x ), x ) = s-const (t, x ))

Theorem: s-and-x-t
s-boolp (x ) → (s-and (x , s-const (t, x )) = x )

;;; INDUCTION SCHEMES which correspond to our SYSD definitions and
;;; theory:

Definition:
induct-p (x1 )
= if empty (x1 ) then t

else induct-p (p (x1 )) endif

Definition:
induct-p2 (x1 , x2 )
= if empty (x1 ) then t

else induct-p2 (p (x1 ), p (x2 )) endif

Definition:
induct-p3 (x1 , x2 , x3 )
= if empty (x1 ) then t

else induct-p3 (p (x1 ), p (x2 ), p (x3 )) endif

Definition:
induct-p4 (x1 , x2 , x3 , x4 )
= if empty (x1 ) then t

else induct-p4 (p (x1 ), p (x2 ), p (x3 ), p (x4 )) endif
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; eof: th_strspec.bm

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; TH_TYPES.BM
;;;
;;; This file contains TYPE defns & lemmas for Boyer-Moore, to deal
;;; with standard hardware coding of booleans, numbers, and others.
;;; as well of course as their star extensions.
;;;
;;; Type: NUMERIC BITS
;;; bitp: predicate.
;;; bibo: translator: bit to bool (positive logic)
;;; bobi: translator: bool to bit (positive logic)
;;; Note: experimentation (bcdS, bcdSbi) has revealed that this is
;;; a BAD way to represent bits. Booleans are much better. In
;;; an industrial setting, this type could disappear.
;;;

Definition: bitp (u) = ((u = 0) ∨ (u = 1))

Definition:
s-bitp (x )
= if empty (x ) then x = e

else bitp (l (x )) ∧ s-bitp (p (x )) endif

;; BIBO:

Definition:
bibo (bi)
= if bi = 0 then f

else t endif

; star extension generated by: (bmcomb ’bibo ’() ’(bi))

Definition:
s-bibo (bi)
= if empty (bi) then e

else a (s-bibo (p (bi)), bibo (l (bi))) endif

;; A2-Begin-S-BIBO
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Theorem: a2-empty-s-bibo
empty (s-bibo (bi)) = empty (bi)

Theorem: a2-e-s-bibo
(s-bibo (bi) = e) = empty (bi)

Theorem: a2-lp-s-bibo
len (s-bibo (bi)) = len (bi)

Theorem: a2-lpe-s-bibo
eqlen (s-bibo (bi), bi)

Theorem: a2-ic-s-bibo
s-bibo (i (c bi , bi)) = i (bibo (c bi), s-bibo (bi))

Theorem: a2-lc-s-bibo
(¬ empty (bi)) → (l (s-bibo (bi)) = bibo (l (bi)))

Theorem: a2-pc-s-bibo
p (s-bibo (bi)) = s-bibo (p (bi))

;; A2-End-S-BIBO

;; BOBI:

Definition:
bobi (bo)
= if bo then 1

else 0 endif

; star extension generated by: (bmcomb ’bobi ’() ’(bo))

Definition:
s-bobi (bo)
= if empty (bo) then e

else a (s-bobi (p (bo)), bobi (l (bo))) endif

;; A2-Begin-S-BOBI

Theorem: a2-empty-s-bobi
empty (s-bobi (bo)) = empty (bo)

Theorem: a2-e-s-bobi
(s-bobi (bo) = e) = empty (bo)
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Theorem: a2-lp-s-bobi
len (s-bobi (bo)) = len (bo)

Theorem: a2-lpe-s-bobi
eqlen (s-bobi (bo), bo)

Theorem: a2-ic-s-bobi
s-bobi (i (c bo, bo)) = i (bobi (c bo), s-bobi (bo))

Theorem: a2-lc-s-bobi
(¬ empty (bo)) → (l (s-bobi (bo)) = bobi (l (bo)))

Theorem: a2-pc-s-bobi
p (s-bobi (bo)) = s-bobi (p (bo))

;; A2-End-S-BOBI

;;; eof: th_types.bm

Event: Make the library "mlp" and compile it.
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