Copyright (C) 1994 by Alex Bronstein and Carolyn Talcott. All Rights Reserved.

You may copy and distribute verbatim copies of this Nqthm-1992 event script as you receive it, in any medium, including embedding it verbatim in derivative works, provided that you conspicuously and appropriately publish on each copy a valid copyright notice "Copyright (C) 1994 by Alex Bronstein and Carolyn Talcott. All Rights Reserved."

NO WARRANTY

Alex Bronstein and Carolyn Talcott PROVIDE ABSOLUTELY NO WARRANTY. THE EVENT SCRIPT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL Alex Bronstein or Carolyn Talcott BE LIABLE TO YOU FOR ANY DAMAGES, ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

EVENT: Start with the library "mlp" using the compiled version.

; pplinc3.bm is our 1st PIPELINE proof.

;;;; (Sugared) Circuits:
| #|
(setq A '(SY-A (x))
 (Y1 S Inc x)
 (Y2 S Inc Y1)
 (Y3 S Inc Y2)
 ; and the cork:
 (Yc2 R 2 Y3)
 (Yc1 R 1 Yc2)
(setq B '(SY-B (x))
 (Z1 S Inc x)
 (Z2 R 0 Z1)
 (Z3 S Inc Z2)
 (Z4 R 0 Z3)
 (Z5 S Inc Z4)
 (Zout R 0 Z5)
))

(setq pplinc3 ' (|#
 ; BM DEFINITIONS and A2 LEMMAS, generated by BMSYSD:
 ; comb_inc.bm: INCrement combinational element
 ; U7-DONE

DEFINITION: inc(u) = (1 + u)

; Everything below generated by: (bmcomb 'inc '() '(x))

DEFINITION:
 s-inc(x)
 = if empty(x) then E
 else a (s-inc(p(x)), inc(l(x))) endif

;; A2-Begin-S-INC

THEOREM: a2-empty-s-inc
empty (s-inc(x)) = empty(x)

THEOREM: a2-e-s-inc
(s-inc(x) = E) = empty(x)

THEOREM: a2-lp-s-inc
len (s-inc(x)) = len(x)

THEOREM: a2-lpe-s-inc
eqlen (s-inc(x), x)

THEOREM: a2-ic-s-inc
s-inc (i (c_x, x)) = i (inc (c_x), s-inc (x))
Theorem: a2-lc-s-inc
(¬empty(x)) → (l(s-inc(x)) = inc(l(x)))

Theorem: a2-pc-s-inc
p(s-inc(x)) = s-inc(p(x))

Theorem: a2-hec-s-inc
(¬empty(x)) → (h(s-inc(x)) = inc(h(x)))

Theorem: a2-bc-s-inc
b(s-inc(x)) = s-inc(b(x))

Theorem: a2-bnc-s-inc
bn(n, s-inc(x)) = s-inc(bn(n, x))

;; A2-End-S-INC

; eof:comb_inc.bm

Definition:
topor-sy-a(ln)
= if ln = 'y1 then 1
 elseif ln = 'y2 then 2
 elseif ln = 'y3 then 3
 elseif ln = 'yc2 then 0
 elseif ln = 'yc1 then 0
 elseif ln = 'yout then 0
 else 0 endif

Definition:
sy-a(ln, x)
= if ln = 'y1 then s-inc(x)
 elseif ln = 'y2 then s-inc(sy-a('y1, x))
 elseif ln = 'y3 then s-inc(sy-a('y2, x))
 elseif ln = 'yc2
 then if empty(x) then E
 else i(2, sy-a('y3, p(x))) endif
 else ln = 'yc1
 then if empty(x) then E
 else i(1, sy-a('yc2, p(x))) endif
 else ln = 'yout
 then if empty(x) then E
 else i(0, sy-a('yc1, p(x))) endif
 else sfix(x) endif
Theorem: a2-empty-sy-a
empty (sy-a (ln, x)) = empty (x)

Theorem: a2-e-sy-a
(sy-a (ln, x) = e) = empty (x)

Theorem: a2-lp-sy-a
len (sy-a (ln, x)) = len (x)

Theorem: a2-lpe-sy-a
eqlen (sy-a (ln, x), x)

Theorem: a2-pe-sy-a
p (sy-a (ln, x)) = sy-a (ln, p (x))

Definition:
topor-sy-b (ln)
= if ln = 'z1 then 1
 elseif ln = 'z2 then 0
 elseif ln = 'z3 then 1
 elseif ln = 'z4 then 0
 elseif ln = 'z5 then 1
 elseif ln = 'zout then 0
 else 0 endif

Definition:
sy-b (ln, x)
= if ln = 'z1 then s-inc (x)
 elseif ln = 'z2 then if empty (x) then E
 else i (0, sy-b ('z1, p (x))) endif
 elseif ln = 'z3 then s-inc (sy-b ('z2, x))
 elseif ln = 'z4 then if empty (x) then E
 else i (0, sy-b ('z3, p (x))) endif
 elseif ln = 'z5 then s-inc (sy-b ('z4, x))
 elseif ln = 'zout then if empty (x) then E
 else i (0, sy-b ('z5, p (x))) endif
 else sfix (x) endif
;;; A2-Begin-SY-B

THEOREM: a2-empty-sy-b
empty (sy-b (ln, x)) = empty (x)

THEOREM: a2-e-sy-b
(sy-b (ln, x) = E) = empty (x)

THEOREM: a2-lp-sy-b
len (sy-b (ln, x)) = len (x)

THEOREM: a2-lpe-sy-b
eqlen (sy-b (ln, x), x)

THEOREM: a2-pc-sy-b
p (sy-b (ln, x)) = sy-b (ln, p (x))

;;; A2-End-SY-B

;;; CORRECTNESS PROOF (hand generated, dreamer!):

; EQ-A-B: just like in CorrSL, since there are no loops, straight unfolding
; should work, as long as Brain's normalization is strong enough...
; Note about the hint:
; - STR-add1-len-P2 (and hence LEN) came from CorrSL.
; - at first we disabled S-INC thinking that it was irrelevent, but it
; IS necessary, since it affects the value of the cork.

THEOREM: eq-a-b
sy-b ('zout, x) = sy-a ('yout, x)

; eof: pplinc3_bm
;})
Index

a, 2
a2-bc-s-inc, 3
a2-bnc-s-inc, 3
a2-e-s-inc, 2
a2-e-sy-a, 4
a2-e-sy-b, 5
a2-empty-s-inc, 2
a2-empty-sy-a, 4
a2-empty-sy-b, 5
a2-hc-s-inc, 3
a2-ic-s-inc, 2
a2-ic-s-inc, 3
a2-lp-s-inc, 2
a2-lp-sy-a, 4
a2-lp-sy-b, 5
a2-lpe-s-inc, 2
a2-lpe-sy-a, 4
a2-lpe-sy-b, 5
a2-pc-s-inc, 3
a2-pc-sy-a, 4
a2-pc-sy-b, 5
b, 3
bn, 3
e, 2–5
extynt, 2–5
eq-a-b, 5
eqlen, 2, 4, 5
h, 3
i, 2–4
inc, 2, 3
l, 2, 3
len, 2, 4, 5
p, 2–5
s-inc, 2–4
sf1x, 3, 4