#|

Copyright (C) 1994 by Alex Bronstein and Carolyn Talcott. All Rights
Reserved.

You may copy and distribute verbatim copies of this Nqthm-1992 event script as
you receive it, in any medium, including embedding it verbatim in derivative
works, provided that you conspicuously and appropriately publish on each copy
a valid copyright notice "Copyright (C) 1994 by Alex Bromnstein and Carolyn
Talcott. All Rights Reserved."

NO WARRANTY

Alex Bronstein and Carolyn Talcott PROVIDE ABSOLUTELY NO WARRANTY. THE EVENT
SCRIPT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE SCRIPT IS WITH YOU. SHOULD THE SCRIPT
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT WILL Alex Bronstein or Carolyn Talcott BE LIABLE TO YOU FOR ANY
DAMAGES, ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SCRIPT
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY THIRD PARTIES), EVEN IF YOU HAVE ADVISED US OF THE
POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

| #

EVENT: Start with the library "mlp" using the compiled version.

; pplinc3.bm is our 1st PIPELINE proof.

;5; (Sugared) Circuits:

#|
(setq A ’(SY-A (%)
(Y1 S Inc x)

(Y2 S Inc Y1)
(Y3 S Inc Y2)
; and the cork:
(Yc2 R 2 Y3)
(Ycl R 1 Yc2)

(Yout R O Yc1l)
))

(setq B ’(SY-B (x)
(Z1 S Inc x)

(Z2 R 0 Z1)

(Zz3 S Inc Z2)

(Z4 R 0 Z3)

(Z5 S Inc Z4)
(Zout R 0 Zb)

))

(setq pplinc3 *(|#

; BM DEFINITIONS and A2 LEMMAS, generated by BMSYSD:
; comb_inc.bm: INCrement combinational element

; U7-DONE

DEFINITION: inc(u) = (1 + u)

; Everything below generated by: (bmcomb ’inc ’() ’(x))

DEFINITION:
s-inc ()
= if empty (z) then E
else a (s-inc (p (z)), inc (1(z))) endif

;3 A2-Begin-S-INC

THEOREM: aZ-empty-s-inc
empty (s-inc (z)) = empty (z)

THEOREM: a2-e-s-inc
(s-inc (z) = E) = empty (z)

THEOREM: a2-lp-s-inc
len (s-inc (z)) = len ()

THEOREM: a2-lpe-s-inc
eqlen (s-inc (z),)

THEOREM: aZ2-ic-s-inc
s-inc (i (c_z, x)) = i(inc (c_z), s-inc (z))

THEOREM: a2-lc-s-inc

(= empty (2)) — (I(s-inc (2)) = inc (1(z)))

THEOREM: a2-pc-s-inc
p (s-inc (z)) = s-inc (p (z))

THEOREM: a2-hc-s-inc

(= empty (2)) — (b (s-ine (2)) = ine (b (x)))

THEOREM: a2-bc-s-inc
b (s-inc (z)) = s-inc (b (z))

THEOREM: a2-bnc-s-inc
bn (n, s-inc (z)) = s-inc (bn (n, z))

;3 A2-End-S-INC

; eof:comb_inc.bm

DEFINITION:

topor-sy-a (In)

= if ln =yl then 1
elseif In = >y2 then 2
elseif in = ’y3 then 3
elseif [n = ’yc2 then 0
elseif [n = ’yc1 then 0
elseif In = ’yout then 0
else 0 endif

DEFINITION:
sy-a (In, x)
= if In = ’y1 then s-inc (z)

elseif in = ’y2 then s-inc (sy-a (’y1, z))

elseif in = ’y3 then s-inc (sy-a(’y2, z)

elseif In = ’yc2
then if empty (z) then E

else i(2, sy-a(’y3, p(z))) endif

elseif In = ’yc1
then if empty (z) then E

else i(1, sy-a(’yc2, p(z))) endif

elseif In = ’yout
then if empty (z) then E

else i(0, sy-a(’ycl, p(x))) endif

else sfix (z) endif

)

;3 A2-Begin-SY-A

THEOREM: aZ2-empty-sy-a
empty (sy-a (In, 7)) = empty (z)

THEOREM: a2-e-sy-a
(sy-a(In, z) = E) = empty (z)

THEOREM: a2-lp-sy-a
len (sy-a (In, z)) = len (z)

THEOREM: a2-lpe-sy-a
eglen (sy-a (In,),)

THEOREM: a2-pc-sy-a
p (sy-a (ln, z)) = sy-a(ln, p (z))

;3 A2-End-SY-A

DEFINITION:

topor-sy-b (In)

= if In = ’z1 then 1
elseif In = ’z2 then 0
elseif In = ’z3 then 1
elseif In = ’z4 then 0
elseif In = ’z5 then 1
elseif In = >zout then 0
else 0 endif

DEFINITION:
sy-b (In, z)
= if In = ’z1 then s-inc (z)
elseif In = ’z2
then if empty (z) then E
else i (0, sy-b (°z1, p(z))) endif
elseif In = ’z3 then s-inc (sy-b (’z2, z))
elseif In = ’z4
then if empty (z) then E
else i(0, sy-b (’23, p(x))) endif
elseif In = ’z5 then s-inc (sy-b (’z4, z))
elseif In = ’zout
then if empty (z) then E
else i (0, sy-b (’z5, p(x))) endif
else sfix (z) endif

;; A2-Begin-SY-B

THEOREM: a2-empty-sy-b
empty (sy-b (In, z)) = empty (z)

THEOREM: a2-e-sy-b
(sy-b (In,) = E) = empty (z)

THEOREM: a2-Ip-sy-b
len (sy-b (in, z)) = len ()

THEOREM: a2-lpe-sy-b
eqlen (sy-b (In, z), z)

THEOREM: a2-pc-sy-b
p (sy-b (In, z)) = sy-b (In, p(z))

;35 A2-End-SY-B

;35 CORRECTNESS PROOF (hand generated, dreamer!):

; EQ-A-B: just like in CorrSL, since there are no loops, straight unfolding
; should work, as long as Brain’s normalization is strong enough...

; Note about the hint:

; - STR-addl-len-P2 (and hence LEN) came from CorrSL.
; - at first we disabled S-INC thinking that it was irrelevent, but it
; IS necessary, since it affects the value of the cork.

THEOREM: eq-a-b
sy-b (’zout, z) = sy-a(’yout,)

; eof: pplinc3.bm
3))

Index

a, 2
a2-be-s-inc, 3
a2-bne-s-inc, 3
a2-e-s-inc, 2
a2-e-sy-a, 4
a2-e-sy-b, 5

a2-empty-s-inc, 2
a2-empty-sy-a, 4
a2-empty-sy-b, 5

a2-hc-s-inc, 3
a2-ic-s-inc, 2
a2-lc-s-inc, 3
a2-Ip-s-inc, 2
a2-lp-sy-a, 4
a2-1p-sy-b, 5
a2-lpe-s-inc, 2
a2-lpe-sy-a, 4
a2-lpe-sy-b, 5
a2-pc-s-inc, 3
a2-pc-sy-a, 4
a2-pc-sy-b, b

b, 3
bn, 3

e, 2-5
empty, 2-5
eq-a-b, 5
eqlen, 2,4, 5

h, 3

i, 24

)

inc, 2, 3

1,2, 3
len, 2, 4,5

P, 2-5

s-inc, 2-4
sfix, 3, 4

sy-a, 3-5
sy-b, 4, 5

topor-sy-a, 3
topor-sy-b, 4

