Event: Start with the library "mlp" using the compiled version.

; (setq theta '(
 ; theta.bm
 ; This is a 2nd order circuit constructor, derived from all the "Accumulator"
 ; examples, as well as the simple counter example. Basically, it arises in
 ; a case where the SPEC is easily expressible: as the iteration of "last-char"
 ; function which can be expressed only using the input string (x). So in other
 ; words, we have a string to char function "last-char" which defines the
 ; circuit, for example: the sum of all inputs, the length of input, etc...
 ; and we just build the corresponding string function in a "standard" fashion.
 ; This standard fashion is the THETA operator.
; This file just attempts to abstract the construction, and the correctness
; proof that goes with it, to facilitate future instantiations.
;
; Clearly, there is no sugar involved.
;
; Standard hints necessary for a PROVE-LEMMA have been removed in the
; corresponding ADD-AXIOM.

;;; DEFINITION OF CIRCUIT:

EVENT: Introduce the function symbol sysd-theta of 2 arguments.

;sysd-stringp is normally deduced by BM.

Axiom: sysd-stringp
 stringp(sysd-theta(line, x))

;;; SPEC definition:

EVENT: Introduce the function symbol spec-theta-lastchar of one argument.

; this is the standard extension from last-char-fun to MLP-string-fun.

Definition:
 spec-theta(x) = if empty(x) then E
 else a(spec-theta(p(x)), spec-theta-lastchar(x)) endif

;;; PROOF of equivalence with spec:

;;; 2nd order instantiations for circuits:
; theta-begin

Axiom: a2-empty-theta
 empty(sysd-theta(line, x)) = empty(x)

Axiom: a2-e-theta
 (sysd-theta(line, x) = E) = empty(x)

Axiom: a2-lp-theta
 len(sysd-theta(line, x)) = len(x)

Axiom: a2-lpe-theta
 eqlen(sysd-theta(line, x), x)
Axiom: a2-pc-theta
(¬ empty \(x \)) \(\rightarrow \) (p (sysd-theta (\textit{line}, \(x \))) = sysd-theta (\textit{line}, p (\(x \))))

;; theta-end

;;; Circuit CORRECTNESS:

; Theta-correct-ax is a "predicative correctness statement", i.e. what we would
; do if we didn’t have functional equality as a specification method, but
; instead used a purely axiomatic approach. It matches the intuitive view
; of just looking at the last char.

Axiom: theta-correct-ax
(¬ empty \(x \)) \(\rightarrow \) (l (sysd-theta (\textit{ytheta}, \(x \))) = spec-theta-lastchar (\(x \)))

; To go to a functional equality once we have the "last" (ax) statement is
; a trivial induction, if we start out with an P-L split which is unnatural
; for BM, so we force it w/ a USE hint of A-p-l-split

Theorem: a-p-l-split
(¬ empty \(x \))
\(\rightarrow \) (sysd-theta (\textit{ytheta}, \(x \))
\quad =
\quad a (p (sysd-theta (\textit{ytheta}, \(x \))), l (sysd-theta (\textit{ytheta}, \(x \)))))

; Interestingly: A-P-L needs to be disabled for theta-correct to go through.
; yet in more specific cases such as macc, or funacc, it is not needed, and
; in fact just makes a very minor time improvement.

Theorem: theta-correct
sysd-theta (\textit{ytheta}, \(x \)) = spec-theta (\(x \))

; eof: theta.bm
;)}
Index

a, 2, 3
a-p-l-split, 3
a2-e-theta, 2
a2-empty-theta, 2
a2-lp-theta, 2
a2-lpe-theta, 2
a2-pc-theta, 3
e, 2
empty, 2, 3
eqlen, 2

l, 3
len, 2

p, 2, 3
spec-theta, 2, 3
spec-theta-lastchar, 2, 3
stringp, 2
sysd-stringp, 2
sysd-theta, 2, 3

theta-correct, 3
theta-correct-ax, 3