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EVENT: Start with the initial nqgthm theory.

; A brief introduction to the
; Boyer-Moore Theorem Prover

; by
; John R. Cowles

;  The theorem prover is a computer program, written in Common Lisp and
; about one million characters long, under continuous development since
; 1971 by B.S. Boyer and J S. Moore. The purpose of the program is to
; mechanize a mathematical logic suitable for the study of computation.

; Some data types such as the nonnegative integers and the Boolean truth
;  values are built into the prover. The user may add new recursively

; defined data types and recursively defined functions on such data

; types as well as prove theorems. The prover specializes in induction



;  proofs.

;  The prover uses the prefix syntax of Lisp. For example, the prover
; uses (PLUS x y) where others might use PLUS( x,y ) or x + y.

; As an example, the prover is given the task of proving the following.

; The SUM, from k=0 to n, of kxk!
; equals
; (n+1)! - 1.

; First the theorem prover is initialized and arrangements are made to
; record the proof as well as other useful information in files by the
;  command (BOOT-STRAP NQTHM) executed at the start of this file.

; Recursively define a function that computes n!.

DEFINITION:
fact (n)
= ifn~0 then 1
else n * fact (n — 1) endif

; Recursively define a function, called SUM<K+*FACT_K>, that computes the
; sum on the left side of the equation given above.

DEFINITION:
sum<k*fact_k> (n)
= ifn ~0 then 0
else sum<k*fact k> (n — 1) + (n * fact (n)) endif

;  The formal argument of each of these functions is N. The functions
; IF, ZEROP, TIMES, SUB1, PLUS, FACT, and SUM<K*FACT_K> give the
; following results when y and z are nonnegative integers.

; (IF x y z) returns y if x <> false
; z if x = false

; (ZEROP y) returns true if y = 0
; false if y <> 0

; (TIMES y z) returns y * z

; (SUB1 y) returns y -1 if y >0



; 0 ify=0

; (PLUS y z) returns y + z

; (FACT y) returns y!

; (SUM<K*FACT_K> y) returns the SUM, from k=0 to y, of kxk!

; Before the prover will accept these proposed recursive definitions for
;  the functions, FACT and SUM<K*FACT_K>, the recursion must be proved to
;  terminate. That is, the prover verifies that functions actually exist

; that satisfy the proposed definitioms.

;  Next the prover is asked to prove the following trivial algebraic
; modification of the theorem originally suggested above.

5 The SUM, from k=0 to n, of kx*k!
; plus 1

; equals
; (n+1)!.
; The results produced by the functions EQUAL and ADD1 are given below.

; (EQUAL x y) returns true if x = y
H false if x <> y

; (ADD1 y) returns y + 1

THEOREM: sum<k*fact k>+1=fact<n+1>
(1 4+ sum<k*fact_k> (n)) = fact (1 + n)

;  After some simplification, the prover decides to use induction in the
;  proof of this lemma.

; Now the prover is asked to prove the original version of the theorem.
;  The prover is informed that the theorem just proved is a useful hint.

THEOREM: sum<k*fact_k>=fact<n+1>-1
sum<k*fact k> (n) = (fact (1 + n) — 1)



;  With the hint, the prover has no trouble completing the proof.

;  The previous two lemmas together produce a proof by induction which

;  should be easy to follow by a person new to the theorem prover.

; However, the hint is not needed by the prover to complete the proof of
; the original theorem. Let’s start over and this time let the prover

;  work directly on the last lemma without first proving the first lemma.

EVENT: Undo back through the event named ‘sum<k*fact_k>-+1=fact<n-+1>".

THEOREM: sum<k*fact_k>=fact<n+1>-1
sum<k*fact k> (n) = (fact (1 + n) — 1)

; This produces a mechanical proof that is much longer and no doubt more
; mysterious to a new user of the prover. It is also more interesting.

; There is an induction inside an induction, some use of elimination,

; and also some generalization. The details of the theorem prover,

;  including induction, elimination, and generalization, are explained in:
; R.S. Boyer and J S. Moore, A Computational Logic Handbook. Academic

; Press, San Diego, 1988.
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