EVENT: Start with the initial `nqthm` theory.

; A brief introduction to the
; Boyer-Moore Theorem Prover

; by
; John R. Cowles

; The theorem prover is a computer program, written in Common Lisp and
; about one million characters long, under continuous development since
; 1971 by B.S. Boyer and J S. Moore. The purpose of the program is to
; mechanize a mathematical logic suitable for the study of computation.

; Some data types such as the nonnegative integers and the Boolean truth
; values are built into the prover. The user may add new recursively
; defined data types and recursively defined functions on such data
; types as well as prove theorems. The prover specializes in induction
The prover uses the prefix syntax of Lisp. For example, the prover uses (PLUS x y) where others might use PLUS(x, y) or x + y.

As an example, the prover is given the task of proving the following.

The SUM, from k=0 to n, of k*k!

equals

(n+1)! - 1.

First the theorem prover is initialized and arrangements are made to record the proof as well as other useful information in files by the command (BOOT-STRAP NQTHM) executed at the start of this file.

Recursively define a function that computes n!.

Definition:

\[
\text{fact}(n) = \begin{cases}
1 & \text{if } n \equiv 0 \\
0 & \text{else} \\
n \times \text{fact}(n-1) & \text{endif}
\end{cases}
\]

Recursively define a function, called SUM<K*FACT_K>, that computes the sum on the left side of the equation given above.

Definition:

\[
\text{sum}<k*fact_k>(n) = \begin{cases}
0 & \text{if } n \equiv 0 \\
0 & \text{else sum}<k*fact_k>(n-1) + (n \times \text{fact}(n)) & \text{endif}
\end{cases}
\]

The formal argument of each of these functions is N. The functions IF, ZEROP, TIMES, SUB1, PLUS, FACT, and SUM<K*FACT_K> give the following results when y and z are nonnegative integers.

(IF x y z) returns y if x <> false

(z if x = false

(ZEROP y) returns true if y = 0

false if y <> 0

(TIMES y z) returns y * z

(SUB1 y) returns y - 1 if y > 0
(PLUS y z) returns y + z

(FACT y) returns y!

(SUM<K*FACT_K> y) returns the SUM, from k=0 to y, of k*k!

Before the prover will accept these proposed recursive definitions for
the functions, FACT and SUM<K*FACT_K>, the recursion must be proved to
terminate. That is, the prover verifies that functions actually exist
that satisfy the proposed definitions.

Next the prover is asked to prove the following trivial algebraic
modification of the theorem originally suggested above.

The SUM, from k=0 to n, of k*k!
plus 1
equals
(n+1)!.

The results produced by the functions EQUAL and ADD1 are given below.

(EQUAL x y) returns true if x = y
false if x <> y

(ADD1 y) returns y + 1

THEOREM: sum<k*fact_k>+1=fact<n+1>
(1 + sum<k*fact_k>(n)) = fact (1 + n)

After some simplification, the prover decides to use induction in the
proof of this lemma.

Now the prover is asked to prove the original version of the theorem.
The prover is informed that the theorem just proved is a useful hint.

THEOREM: sum<k*fact_k>=fact<n+1>-1
sum<k*fact_k>(n) = (fact (1 + n) - 1)
With the hint, the prover has no trouble completing the proof. The previous two lemmas together produce a proof by induction which should be easy to follow by a person new to the theorem prover. However, the hint is not needed by the prover to complete the proof of the original theorem. Let’s start over and this time let the prover work directly on the last lemma without first proving the first lemma.

EVENT: Undo back through the event named ‘sum<k*fact,k>+1=fact<n+1>’.

THEOREM: sum<k*fact,k>=fact<n+1>-1
sum<k*fact,k>(n) = (fact(1 + n) - 1)

This produces a mechanical proof that is much longer and no doubt more mysterious to a new user of the prover. It is also more interesting. There is an induction inside an induction, some use of elimination, and also some generalization. The details of the theorem prover, including induction, elimination, and generalization, are explained in: R.S. Boyer and J. S. Moore, A Computational Logic Handbook. Academic Press, San Diego, 1988.
Index

fact, 2–4

\[\text{sum} < k \cdot \text{fact}_k >, \; 2–4 \]
\[\text{sum} < k \cdot \text{fact}_k > + 1 = \text{fact}_n + 1, \; 3 \]
\[\text{sum} < k \cdot \text{fact}_k > = \text{fact}_n + 1 - 1, \; 3, \; 4 \]